WO2022001093A1 - 一种中长波红外宽光谱光吸收材料及其制备方法 - Google Patents

一种中长波红外宽光谱光吸收材料及其制备方法 Download PDF

Info

Publication number
WO2022001093A1
WO2022001093A1 PCT/CN2021/073740 CN2021073740W WO2022001093A1 WO 2022001093 A1 WO2022001093 A1 WO 2022001093A1 CN 2021073740 W CN2021073740 W CN 2021073740W WO 2022001093 A1 WO2022001093 A1 WO 2022001093A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
wave infrared
spectrum light
hole structure
medium
Prior art date
Application number
PCT/CN2021/073740
Other languages
English (en)
French (fr)
Inventor
阮翔宇
管志强
徐红星
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉大学 filed Critical 武汉大学
Publication of WO2022001093A1 publication Critical patent/WO2022001093A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices

Definitions

  • the invention belongs to the field of preparation of inorganic functional materials, in particular to a medium and long-wave infrared wide-spectrum light absorption material and a preparation method thereof.
  • Broad-spectrum light-absorbing materials in the mid- and long-wave infrared band can be used in infrared analog light sources, infrared stealth, infrared photothermal detection, infrared enhanced spectroscopy, waste heat utilization, etc.
  • broad spectrum, non-polarization dependence and large incident angle are important performance indicators.
  • broad-spectrum absorbing materials with high temperature resistance are of great value in aerospace and broad-spectrum infrared thermal light sources.
  • the structural design of broad-spectrum absorbing materials follows two ideas.
  • One is to enhance the absorption characteristics of materials, mainly by using the optical resonance mode excitation of micro-nano structures to achieve strong absorption of light in materials, typically including surface plasmon resonance of metal nanostructures, optical microstructures of dielectric nanostructures. Cavity modes and metal-dielectric-metal resonant cavity modes, etc., achieve broad-spectrum absorption through the superposition of optical mode resonances in multiple frequency bands.
  • the second is to design a light trapping structure, that is, to reduce the impedance mismatch of light during the incident process through the design of gradient index of refraction, to reduce reflection, and to gradually absorb the incident light energy through the weak light absorption coefficient of the substrate structure, which is widely used.
  • the problem of idea 1 is that it is difficult to achieve ultra-broadband light absorption due to the superposition of multi-band resonance modes. Due to the limitation of the plasmon resonance wavelength, the absorption wavelength is difficult to adjust to the mid- and far-infrared bands, and light-absorbing materials containing metal nanostructures Can not withstand high temperature, high power light irradiation and other conditions.
  • the second idea is limited by the low light absorption efficiency of the material. A very thick light-absorbing material layer is required to achieve a satisfactory wide-spectrum light absorption effect, and the typical thickness is between 50 microns and several hundreds of microns. In addition, the large-area and low-cost fabrication of mid- and far-infrared broad-spectrum light-absorbing materials is also the key to practicality.
  • the preparation process of a mid- and long-wave infrared wide-spectrum absorption structure with low cost, large area, high temperature resistance, high absorption and thin absorption layer is the key process for realizing the utilization of mid- and far-infrared photothermal.
  • One of the objectives of the present invention is to provide a medium- and long-wave infrared wide-spectrum light absorbing material, which has a gradient of refractive index, and realizes the mid- and far-infrared band by the absorption of free carriers in the medium and long-wave infrared band by the silicon material with adjustable doping concentration. high temperature resistance and broad spectrum light absorption.
  • the second purpose of the present invention is to provide a preparation method of a medium and long-wave infrared broad-spectrum light absorbing material, which is simple, low in cost, and can realize large-area preparation.
  • a medium- and long-wave infrared wide-spectrum light absorption material which is composed of an alumina hole structure, a silicon hole structure, a silicon nanometer hole structure and a silicon substrate stacked in sequence.
  • the structures are distributed in the silicon void structure and the silicon substrate.
  • the mid- and long-wave infrared wide-spectrum light absorption material according to claim 1 is characterized in that: the thickness of the alumina hole structure is 50nm-10 ⁇ m, the period is 100nm-20 ⁇ m, and the hole wall width is 10nm-500nm.
  • the thickness of the silicon hole structure is 50 nm-10 ⁇ m, the period is 100 nm-20 ⁇ m, and the width of the hole wall is 10 nm-500 nm.
  • the thickness of the silicon nanopore structure is 10 nm-10 ⁇ m, and the width of the nanopore is 1 nm-100 nm.
  • the second scheme adopted by the present invention to achieve the second objective is: a method for preparing a medium and long-wave infrared wide-spectrum light absorbing material, comprising the following steps:
  • the alumina hole structure is prepared by anodizing method, and then the bottom aluminum and alumina layers are etched and removed to obtain a through-hole structure of alumina holes;
  • step b The structure obtained in step b is electrochemically etched to obtain a silicon nano-void structure, and after cleaning and drying, the medium and long-wave infrared wide-spectrum light absorbing material is obtained.
  • the thickness of the alumina hole structure is 50 nm-10 ⁇ m, the period is 100 nm-20 ⁇ m, and the width of the hole wall is 10 nm-500 nm.
  • the silicon substrate is etched by a reactive ion beam, the etching depth in the silicon substrate is 50 nm-10 ⁇ m, the silicon substrate is p-type or n-type, and the doping concentration is 10 12 /cm 3 to 10 20 /cm 3 .
  • the etching solution is prepared from 10%wt hydrofluoric acid and 99.9wt% ethanol according to a volume ratio of 1:1, the current is 100pA-1000mA, the corrosion is performed for 10 seconds to 2 hours, and the cathode is p type silicon wafer, the anode is the structure to be etched.
  • step a it also includes the following steps: determining the appropriate doping concentration of the silicon wafer by combining the infrared band absorption peak position with the Drude model of the dielectric constant; The number of graded index layers, the thickness of each layer and the effective index of refraction of the substrate.
  • Alumina pore structure can be fabricated with controllable large area, period and pore diameter through mature anodizing technology.
  • the silicon substrate is directly etched through the aluminum oxide holes as an etching mask, and then the silicon nanovoid material is processed by the electrochemical etching method. These processing processes do not involve expensive micro-nano processing technology, and are compatible with an area of more than 4 inches. large-scale preparation.
  • the thickness of the light-absorbing layer is greatly reduced, which provides a basis for improving the extraction efficiency of photogenerated carriers.
  • the medium- and long-wave infrared wide-spectrum light absorption material of the present invention utilizes the characteristic of the gradient gradient of refractive index, thereby reducing the impedance mismatch of light during the incident process, improving the light absorption efficiency, and the light of the gradient gradient material of the hole structure is light.
  • Absorption has the advantages of non-polarization dependence and wide range of incident angles of light absorption.
  • the melting points of both silicon and aluminum oxide materials exceed 1000° C., thereby ensuring good high temperature resistance characteristics of the broad-spectrum absorbing material based on silicon and aluminum oxide structures.
  • the light absorption rate in the mid-to-far infrared band is increased by the carrier concentration of the silicon wafer
  • the wide-spectrum light absorption material is constructed by the graded refractive index and the transfer matrix method
  • the silicon nanometer is prepared by the alumina etching mask.
  • Pore structure, and the preparation of silicon nanovoid structure by electrochemical corrosion, the void ratio is controlled by adjusting the electrochemical corrosion current and the corrosion time, and then the equivalent refractive index of the material is controlled, which is the key process to realize the gradient gradient of the refractive index of the entire structure.
  • the related method is simple, suitable for large area, and highly controllable.
  • the method is based on common materials such as silicon and alumina, and the processing technology is mature, the material cost is low, and the reserves are abundant.
  • the preparation process has high controllability and is suitable for large-scale industrial production.
  • the medium and long-wave infrared wide-spectrum light absorbing material of the present invention is formed by stacking four layers of materials in order: alumina pore structure, silicon pore structure, silicon nano-pore structure and silicon substrate to form a refractive index gradient material, which can be adjusted depending on the doping concentration
  • the silicon material absorbs free carriers in the mid- and long-wave infrared bands to achieve high-temperature and broad-spectrum light absorption in the mid- and far-infrared bands.
  • the medium and long-wave infrared broad spectrum light absorbing material of the present invention has a large absorption wavelength range and high absorption efficiency (average absorption rate in the range of 5-20 microns> 90%), the thickness of the absorption layer is thin (not more than 10 microns), independent of polarization, and the incidence angle Wide range (0 to 50°), high temperature resistance (not more than 800°C).
  • the preparation method of the invention is based on common materials such as silicon and alumina, has mature processing technology, low material cost, abundant reserves, high controllability of the preparation process, and is suitable for large-scale industrial production.
  • AAO, Si and PSi respectively represent alumina pore structure, silicon pore structure and silicon nanopore structure
  • RIE and EE respectively represent reactive ion beam etching and electrochemical corrosion
  • Fig. 3 is the absorption spectrum (obtained by 1-reflection spectrum-transmission spectrum) diagram of the medium and long-wave infrared broad-spectrum light absorbing material of the present invention under different incident angles and different incident polarizations;
  • Fig. 5 is the design drawing of the graded index of refraction and the thickness of the absorption layer absorbed by the medium and long wave infrared wide spectrum light absorbing material of the present invention
  • FIG. 6 is a graph showing the result of the change of the mid-spectrum absorptivity with the absorption depth of the mid- and long-wave infrared broad-spectrum light absorbing material of the present invention.
  • a preparation method of a medium and long-wave infrared wide-spectrum light absorbing material comprising the following steps:
  • the preferred doping concentration is not less than 1.3 ⁇
  • the average absorption rate at the absorption depth of 9 ⁇ m can be Close to 70% with an average reflectivity of 30%.
  • the model function of continuous graded index with thickness is:
  • n air is the refractive index of air
  • n b is the substrate refractive index
  • l is the depth from the material surface
  • n(l) is the refractive index at depth l in the material
  • T is the thickness of the entire graded-index layer
  • is the model to be determined parameter.
  • the effective refractive index of porous materials can be continuously tunable between the refractive index of air and the refractive index of the material when the characteristic size of the voids of the material is much smaller than the wavelength of the incident light.
  • Porous anodized aluminum was chosen as the first layer. The lower refractive index (about 1.5) and larger porosity of alumina are fully utilized. Pores in anodized aluminum are easier to introduce than through the two-step anodization method to change its effective refractive index.
  • the hole spacing is 450 nanometers, and the hole diameter is 340 nanometers.
  • the equivalent refractive index of the alumina hole structure is calculated to be 1.2.
  • the alumina hole structure is attached to the surface of the silicon wafer, and the cavity structure is introduced into the silicon by reactive ion beam etching using the alumina hole structure as a template.
  • the etching gas is CF 4
  • the flow rate is 300sccm
  • the power is 200W.
  • the etching cycle is 250 seconds, and a total of seven cycles are etched, and finally a mesoporous structure with a depth of 1 micron is realized in the silicon.
  • AAO, Si and PSi respectively represent alumina pore structure, silicon pore structure and silicon nanopore structure
  • RIE and EE respectively represent reactive ion beam etching and electrochemical corrosion.
  • the measuring instrument is a Fourier transform infrared spectrometer Nicolet 6700; it can be seen from the figure that only the final structure of the example can achieve an average absorption of more than 95% at 5 ⁇ m-15 ⁇ m.
  • Fig. 3 is the absorption spectrum (obtained from 1-reflection spectrum-transmission spectrum) of the medium and long-wave infrared wide-spectrum light absorbing material of the present invention at different incident angles and different incident polarizations. It can be seen from the figure that the absorption at the incident angle When it reaches 50°, it can still maintain the average absorption rate > 90% in the 5 ⁇ m-20 ⁇ m waveband.
  • FIG. 5 is a design diagram of the graded index of refraction and the thickness of the absorption layer for the broad spectral absorption of the mid- and long-wave infrared broad-spectrum light absorbing material of the present invention, and the result of the change of the spectral absorption rate with the absorption depth in the embodiment of the present invention.
  • FIG. 6 is a graph showing the result of the change of the mid-spectrum absorptivity with the absorption depth of the mid- and long-wave infrared broad-spectrum light absorbing material of the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种中长波红外宽光谱光吸收材料,由氧化铝孔洞结构、硅孔洞结构、硅纳米空隙结构和硅衬底依次堆叠组成,其中硅纳米空隙结构分布于硅孔洞结构和硅衬底中。中长波红外宽光谱光吸收材料由四层材料依次堆叠而成,形成折射率梯度渐变材料,依靠掺杂浓度可调的硅材料在中长波红外波段的自由载流子吸收来实现中远红外波段的耐高温宽光谱光吸收,吸收波长范围大且吸收效率高,吸收层厚度薄,非偏振依赖,入射角度范围大,耐高温。还提供了该中长波红外宽光谱光吸收材料的制备方法。

Description

一种中长波红外宽光谱光吸收材料及其制备方法 技术领域
本发明属于无机功能材料制备领域,特别涉及一种中长波红外宽光谱光吸收材料及其制备方法。
背景技术
中长波红外波段的宽光谱光吸收材料可用于红外模拟光源、红外隐身、红外光热探测、红外增强光谱、废热利用等方向,因而受到研究的重视。其中,宽光谱、非偏振依赖和大入射角度是重要的性能指标,此外,具有耐高温的宽光谱吸收材料在航空航天、宽光谱红外热光源方面有重要价值。
宽光谱吸收材料在结构设计上遵循两条思路。一是增强材料的吸收特性,主要通过利用微纳结构的光学共振模式激发,来实现光在材料中的强吸收,典型代表包括金属纳米结构的表面等离激元共振,介质纳米结构的光学微腔模式和金属-介质-金属的谐振腔模式等,通过多个频段光学模式共振的叠加来实现宽光谱吸收。二是设计陷光结构,即通过梯度渐变的折射率设计,减少光在入射过程中的阻抗不匹配,来降低反射,通过衬底结构的弱光吸收系数来逐步吸收入射光能量,广泛采用的如碳管、硅锥等结构。思路一的问题在于多频段共振模式的叠加很难实现超宽波段的光吸收,受等离激元共振波长所限,吸收波长很难调到中远红外波段,且含金属纳米结构的光吸收材料不能耐受高温,高功率光照射等条件。思路二受到材料光吸收效率低的限制,需要很厚的吸光材料层才能达到满意的宽光谱吸光效果,典型的厚度在50微米到几百微米之间。此外,中远红外宽光谱光吸收材料的大面积低成本制备也是可实用化的关键。
因此,一种低成本、大面积、耐高温、吸收高、吸收层厚度薄的中长波红外宽光谱吸收结构的制备工艺是实现中远红外光热利用的关键工艺。
发明内容
本发明的目的之一在于提供一种中长波红外宽光谱光吸收材料,具有折射率梯度渐变,依靠掺杂浓度可调的硅材料在中长波红外波段的自由载流子吸收来实现中远红外波段的耐高温宽光谱光吸收。
本发明的目的之二在于提供一种中长波红外宽光谱光吸收材料的制备方法,制备方法简单,成本低,可实现大面积制备。
本发明实现目的之一所采用的方案是:一种中长波红外宽光谱光吸收材料,由氧化铝孔洞结构、硅孔洞结构、硅纳米空隙结构和硅衬底依次堆叠组成,所述硅纳米孔隙结构分布于硅孔洞结构和硅衬底中。
优选地,根据权利要求1所述的中长波红外宽光谱光吸收材料,其特征在于:所述氧化铝孔洞结构的厚度为50nm-10μm,周期为100nm-20μm,孔壁宽度为10nm-500nm。
优选地,所述硅孔洞结构的厚度为50nm-10μm,周期为100nm-20μm,孔壁宽度为10nm-500nm。
优选地,所述硅纳米孔隙结构的厚度为10nm-10μm,纳米空隙的宽度为1nm-100nm。
本发明实现目的之二所采用的方案是:一种所述的中长波红外宽光谱光吸收材料的制备方法,包括以下步骤:
a.通过阳极氧化方法制备氧化铝孔洞结构,然后对底部铝和氧化铝层进行腐蚀去除,得到氧化铝孔洞的通孔结构;
b.将上述氧化铝孔洞结构附着在硅衬底上,以氧化铝孔洞结构为刻蚀掩模刻蚀硅,在硅衬底上制作孔洞结构,得到硅孔洞结构;
c.将步骤b得到的结构进行电化学腐蚀,得到硅纳米空隙结构,洗净、干燥后得所述的中长波红外宽光谱光吸收材料。
优选地,所述步骤a中,氧化铝孔洞结构的厚度为50nm-10μm,周期为100nm-20μm,孔壁宽度为10nm-500nm。
优选地,所述步骤b中,通过反应离子束刻蚀硅衬底,在硅衬底中刻蚀深度为50nm-10μm,硅衬底为p型或n型,掺杂浓度为10 12/cm 3至10 20/cm 3
优选地,所述步骤c中,腐蚀溶液为10%wt的氢氟酸和99.9wt%的乙醇按照体积比1:1配制而成,电流100pA-1000mA,腐蚀10秒至2小时,阴极为p型硅片,阳极为待腐蚀结构。
优选地,在所述步骤a之前还包括以下步骤:通过红外波段吸收峰位结合介电常数的Drude模型确定硅片的合适掺杂浓度,根据传递矩阵方法结合渐变折射率模型确定匹配空气入射硅衬底的渐变折射率层数、每层厚度和有效折射率。
氧化铝孔洞结构可通过成熟的阳极氧化技术实现大面积、周期和孔洞直径可控的制备。通过氧化铝孔洞作为刻蚀掩模直接刻蚀硅衬底,然后通过电化学腐蚀方法加工硅纳米空隙材料,这些加工过程不涉及到昂贵的微纳加工工艺,且都兼容面积可达4英寸以上的大面积制备。
采用在中远红外波段具有良好的自由载流子吸收和等离激元光吸收特性的高掺杂浓度硅片,从而大大降低了吸光层的厚度,为提高光生载流子的提取效率提供了基础。
本发明的中长波红外宽光谱光吸收材料利用了折射率梯度渐变的特性,从而降低了光在入射过程中的阻抗不匹配,提高了光吸收效率,且孔洞结构的折射率梯度渐变材料的光吸收具有非偏振依赖,光吸收入射角度范围大等优点
本发明的中长波红外宽光谱光吸收材料中,硅和氧化铝材料的熔点都超过1000℃,从而保证了基于硅和氧化铝结构的宽光谱吸收材料良好的耐高温特性。
本发明的制备方法中,通过硅片载流子浓度来提高在中远红外波段的光吸收率,通过渐变折射率和传递矩阵方法构筑宽光谱光吸收材料,通过氧化铝刻蚀掩模制备硅纳米孔洞结构,以及利用电化学腐蚀制备硅纳米空隙结构,通过调节电化学腐蚀电流大小和腐蚀时间来控制孔隙比,进而控制材料的等效折射率,这是实现整个结构折射率梯度渐变的关键工艺。相关方法简单、适合大面积,且高度可控。本方法基于硅和氧化铝等常见材料,加工工艺成熟且材料成本低,储量丰富。制备工艺可控性高,适合大面积工业生产。
本发明具有以下优点和有益效果:
本发明的中长波红外宽光谱光吸收材料由氧化铝孔洞结构,硅孔洞结构,硅纳米孔隙结构和硅衬底四层材料依次堆叠而成,形成折射率梯度渐变材料,依靠掺杂浓度可调的硅材料在中长波红外波段的自由载流子吸收来实现中远红外波段的耐高温宽光谱光吸 收。
本发明的中长波红外宽光谱光吸收材料吸收波长范围大且吸收效率高(5-20微米范围平均吸收率>90%),吸收层厚度薄(不超过10微米),非偏振依赖,入射角度范围大(0至50°),耐高温(不超过800℃)。
本发明的制备方法基于硅和氧化铝等常见材料,加工工艺成熟且材料成本低,储量丰富,制备工艺可控性高,适合大面积工业生产。
附图说明
图1是本发明的中长波红外宽光谱光吸收材料的加工过程示意图,AAO,Si和PSi分别代表氧化铝孔洞结构,硅孔洞结构和硅纳米孔隙结构,RIE和EE分别代表反应离子束刻蚀和电化学腐蚀;
图2是本发明的中长波红外宽光谱光吸收材料的扫描电镜图,a-b分别为氧化铝孔洞结构的俯视图和侧视图,c-d为刻蚀硅之后的俯视图和侧视图,e为不同组分在2.5微米-15微米范围的反射谱图;
图3是本发明的中长波红外宽光谱光吸收材料在不同入射角度和不同入射偏振下的吸收谱(由1-反射谱-透射谱得到)图;
图4是本发明的中长波红外宽光谱光吸收材料在氩气气氛下加热到不同温度退火后,重新测得的吸收率图;
图5是本发明的中长波红外宽光谱光吸收材料宽光谱吸收的渐变折射率与吸收层厚度的设计图;
图6为本发明的中长波红外宽光谱光吸收材料的中光谱吸收率随吸收深度的变化结果图。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
一种中长波红外宽光谱光吸收材料的制备方法,包括以下步骤:
(1)根据目标吸收光谱范围,取中心波长10微米,通过硅的介电常数Drude模型,计算得到体等离激元波长不小于10微米波长的情况下,优选掺杂浓度不低于1.3×10 18/cm 3的重掺杂硅片,通过计算此选定掺杂浓度硅基底的吸收率随吸收深度和波长的变化,确认在8μm-14μm波段,在9μm吸收深度时其平均吸收率可以接近70%,平均反射率为30%。
(2)通过传递矩阵法计算了不同参数下连续渐变折射率模型下中远红外波段光谱反射率。
连续渐变折射率随厚度的模型函数为:
Figure PCTCN2021073740-appb-000001
n air是空气折射率,n b是基底折射率,l是距材料表面的深度,n(l)是材料中深度l处的折射率,T是整个渐变折射率层的厚度,κ是待定模型参数。
优选κ=1.4作为满足在8μm-14μm波段的低反射模型参数。并根据κ=1.4的连续渐变折射率模型确定了四层阶梯折射率变化层的等效折射率和层厚,见图5。
(3)通过引入空隙实现对材料等效折射率的调控。根据布拉格曼的有效介质理论,当材料的空隙特征尺寸远小于入射光波长时,多孔材料的有效折射率可以在空气折射率和材料折射率之间连续可调。选取多孔阳极氧化铝作为第一层。充分利用了氧化铝较低的折射率(1.5左右)和较大的孔隙率。阳极氧化铝的孔洞较通过两步阳极氧化的方法较容易引入从而改变其有效折射率。采用400纳米厚氧化铝孔洞结构,孔间距450纳米,孔洞直径为340纳米,根据有效介质理论计算得到氧化铝孔洞结构的等效折射率为1.2。
(4)将氧化铝孔洞结构附着在硅片表面,通过反应离子束刻蚀,以氧化铝孔洞结构为模板将空洞结构引入硅中,刻蚀气体为CF 4,流量300sccm,功率200W,单个刻蚀周期为250秒,一共刻蚀七个周期,最终在硅中实现深度为1微米的介孔结构。
(5)将上述结构移入电化学腐蚀池中,进行电化学腐蚀得到硅的纳米空隙结构,稀释氢氟酸10%wt和乙醇99.9wt%体积比1:1配比溶液,电化学工作站,腐蚀电流35毫安,腐蚀时间40秒,阴极为p型硅片,阳极为待腐蚀结构。纳米孔隙结构在无孔的硅衬底中分布的厚度为400纳米。然后用去离子水洗涤3遍,氮气吹干,得到中长波红外宽光谱光吸收材料。
用带积分球的傅里叶变换红外光谱仪测量样品在5-25微米波段的反射谱,用傅里叶变换红外光谱仪测量样品的透射谱。在空气或氮气气氛下将样品加热到600-800℃加热半小时,然后冷却至室温后,重新测量样品的红外吸收率,发现变化不大。
图1是本发明的中长波红外宽光谱光吸收材料的加工过程示意图,AAO,Si和PSi分别代表氧化铝孔洞结构,硅孔洞结构和硅纳米孔隙结构,RIE和EE分别代表反应离子束刻蚀和电化学腐蚀。
图2是本发明的中长波红外宽光谱光吸收材料的扫描电镜图,a-b分别为氧化铝孔洞结构的俯视图和侧视图,c-d为刻蚀硅之后的俯视图和侧视图,e为不同组分在2.5-15微米范围的反射谱图,测量仪器为傅里叶变换红外光谱仪Nicolet 6700;从图中可以看到,只有在实施例最终结构才能实现在5μm-15μm平均吸收超过95%。
图3是本发明的中长波红外宽光谱光吸收材料在不同入射角度和不同入射偏振下的吸收谱(由1-反射谱-透射谱得到)图,从图中可以看出,吸收在入射角度达到50°时仍能在5μm-20μm波段保持平均吸收率>90%。
图4是本发明的中长波红外宽光谱光吸收材料在氩气气氛下加热到不同温度退火后,重新测得的吸收率图;由图可知,退火温度不超过800℃时,结构的宽光谱吸收性能基本变化不大。
图5是本发明的中长波红外宽光谱光吸收材料宽光谱吸收的渐变折射率与吸收层厚度的设计图,以及本发明实施例中光谱吸收率随吸收深度的变化结果图。
图6为本发明的中长波红外宽光谱光吸收材料的中光谱吸收率随吸收深度的变化结果图。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (9)

  1. 一种中长波红外宽光谱光吸收材料,其特征在于:由氧化铝孔洞结构、硅孔洞结构、硅纳米空隙结构和硅衬底依次堆叠组成,所述硅纳米孔隙结构分布于硅孔洞结构和硅衬底中。
  2. 根据权利要求1所述的中长波红外宽光谱光吸收材料,其特征在于:所述氧化铝孔洞结构的厚度为50nm-10μm,周期为100nm-20μm,孔壁宽度为10nm-500nm。
  3. 根据权利要求1所述的中长波红外宽光谱光吸收材料,其特征在于:所述硅孔洞结构的厚度为50nm-10μm,周期为100nm-20μm,孔壁宽度为10nm-500nm。
  4. 根据权利要求1所述的中长波红外宽光谱光吸收材料,其特征在于:所述硅纳米孔隙结构的厚度为10nm-10μm,纳米空隙的宽度为1nm-100nm。
  5. 一种如权利要求1-4中任一项所述的中长波红外宽光谱光吸收材料的制备方法,其特征在于,包括以下步骤:
    a.通过阳极氧化方法制备氧化铝孔洞结构,然后对底部铝和氧化铝层进行腐蚀去除,得到氧化铝孔洞的通孔结构;
    b.将上述氧化铝孔洞结构附着在硅衬底上,以氧化铝孔洞结构为刻蚀掩模刻蚀硅,在硅衬底上制作孔洞结构,得到硅孔洞结构;
    c.将步骤b得到的结构进行电化学腐蚀,得到硅纳米空隙结构,洗净、干燥后得所述的中长波红外宽光谱光吸收材料。
  6. 根据权利要求5所述的中长波红外宽光谱光吸收材料的制备方法,其特征在于:所述步骤a中,氧化铝孔洞结构的厚度为50nm-10μm,周期为100nm-20μm,孔壁宽度为10nm-500nm。
  7. 根据权利要求5所述的中长波红外宽光谱光吸收材料的制备方法,其特征在于:所述步骤b中,通过反应离子束刻蚀硅衬底,在硅衬底中刻蚀深度为50nm-10μm,硅衬底为p型或n型,掺杂浓度为10 12/cm 3至10 20/cm 3
  8. 根据权利要求5所述的中长波红外宽光谱光吸收材料的制备方法,其特征在于:所述步骤c中,腐蚀溶液为10%wt的氢氟酸和99.9wt%的乙醇按照体积比1:1配制而成,电流100pA-1000mA,腐蚀10秒至2小时,阴极为p型硅片,阳极为待腐蚀结构。
  9. 根据权利要求5所述的中长波红外宽光谱光吸收材料的制备方法,其特征在于:在所述步骤a之前还包括以下步骤:通过红外波段吸收峰位结合介电常数的Drude模型确定硅片的合适掺杂浓度,根据传递矩阵方法结合渐变折射率模型确定匹配空气入射硅衬底的渐变折射率层数、每层厚度和有效折射率。
PCT/CN2021/073740 2020-07-01 2021-01-26 一种中长波红外宽光谱光吸收材料及其制备方法 WO2022001093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010631350.3 2020-07-01
CN202010631350.3A CN111880247B (zh) 2020-07-01 2020-07-01 一种中长波红外宽光谱光吸收材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2022001093A1 true WO2022001093A1 (zh) 2022-01-06

Family

ID=73151352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073740 WO2022001093A1 (zh) 2020-07-01 2021-01-26 一种中长波红外宽光谱光吸收材料及其制备方法

Country Status (2)

Country Link
CN (1) CN111880247B (zh)
WO (1) WO2022001093A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115626825A (zh) * 2022-11-10 2023-01-20 江苏大学 一种氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111880247B (zh) * 2020-07-01 2021-11-05 武汉大学 一种中长波红外宽光谱光吸收材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136444A (zh) * 2006-08-25 2008-03-05 通用电气公司 薄膜硅太阳能电池中的纳米线
KR20110033317A (ko) * 2009-09-25 2011-03-31 박영선 나노미터크기의 구멍이 형성되는 알루미늄 기판의 하부전극 및 나노패턴구조 광 흡수 상부 전극층을 갖고 있는 태양전지 및 그 제조방법
CN103762248A (zh) * 2014-01-23 2014-04-30 中国科学院半导体研究所 具有减反射膜的太阳能电池元件及其制备方法
CN107658247A (zh) * 2017-09-12 2018-02-02 北京旭日龙腾新能源科技有限公司 基片表面陷光结构的制备装置及其制备方法
CN111029421A (zh) * 2019-12-13 2020-04-17 西安工业大学 一种实现近红外光吸收增强的微纳米阵列结构
CN111880247A (zh) * 2020-07-01 2020-11-03 武汉大学 一种中长波红外宽光谱光吸收材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104678461B (zh) * 2015-03-17 2016-08-24 中国科学院上海高等研究院 渐变折射率材料制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101136444A (zh) * 2006-08-25 2008-03-05 通用电气公司 薄膜硅太阳能电池中的纳米线
KR20110033317A (ko) * 2009-09-25 2011-03-31 박영선 나노미터크기의 구멍이 형성되는 알루미늄 기판의 하부전극 및 나노패턴구조 광 흡수 상부 전극층을 갖고 있는 태양전지 및 그 제조방법
CN103762248A (zh) * 2014-01-23 2014-04-30 中国科学院半导体研究所 具有减反射膜的太阳能电池元件及其制备方法
CN107658247A (zh) * 2017-09-12 2018-02-02 北京旭日龙腾新能源科技有限公司 基片表面陷光结构的制备装置及其制备方法
CN111029421A (zh) * 2019-12-13 2020-04-17 西安工业大学 一种实现近红外光吸收增强的微纳米阵列结构
CN111880247A (zh) * 2020-07-01 2020-11-03 武汉大学 一种中长波红外宽光谱光吸收材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHANG HUNG-CHIH, LAI KUN-YU, DAI YU-AN, WANG HSIN-HUA, LIN CHIN-AN, HE JR-HAU: "Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency", ENERGY & ENVIRONMENTAL SCIENCE, vol. 4, no. 8, 1 January 2011 (2011-01-01), Cambridge , pages 2863, XP055884540, ISSN: 1754-5692, DOI: 10.1039/c0ee00595a *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115626825A (zh) * 2022-11-10 2023-01-20 江苏大学 一种氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法
CN115626825B (zh) * 2022-11-10 2023-05-09 江苏大学 一种氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法

Also Published As

Publication number Publication date
CN111880247A (zh) 2020-11-03
CN111880247B (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2022001093A1 (zh) 一种中长波红外宽光谱光吸收材料及其制备方法
Alimanesh et al. Broadband anti-reflective properties of grown ZnO nanopyramidal structure on Si substrate via low-temperature electrochemical deposition
Aziz et al. The effect of anti-reflection coating of porous silicon on solar cells efficiency
Craighead et al. Textured thin‐film Si solar selective absorbers using reactive ion etching
EP3375912A1 (en) Composite material device
CN111239866A (zh) 一种超宽带的中红外波段完美吸波器及其制备方法
CN112856837A (zh) 一种用于太阳能水气化的光谱选择性吸光结构
CN113740940A (zh) 一种宽带宽角度抗反射复合微纳结构表面及其制备方法
US10054489B2 (en) Infrared radiation emission surface having a high thermal emissivity and a long life time and its manufacturing method
Esmaeilzad et al. Nanosphere concentrated photovoltaics with shape control
Druzhinin et al. Texturing of the silicon substrate with nanopores and Si nanowires for anti-reflecting surfaces of solar cells
Saito et al. Honeycomb-textured structures on crystalline silicon surfaces for solar cells by spontaneous dry etching with chlorine trifluoride gas
CN110634966B (zh) 一种超薄太阳光黑硅吸波器及其制备方法
Ariza-Flores et al. Design and optimization of antireflecting coatings from nanostructured porous silicon dielectric multilayers
Wang et al. Nickel-infused nanoporous alumina as tunable solar absorber
Wu et al. Performance enhancement of pc-Si solar cells through combination of anti-reflection and light-trapping: Functions of AAO nano-grating
CN110195209A (zh) 一种可见红外宽频带光吸收材料及其制备方法
Ghrib Structural, optical and thermal properties of nanoporous aluminum
Cheon et al. Enhanced blue responses in nanostructured Si solar cells by shallow doping
Joshi et al. Black Silicon Photovoltaics: Fabrication methods and properties
Nguyen et al. Optical and Thermal Characteristics of Porous Anodic Aluminum Oxide for Photothermal Applications.
CN110376667A (zh) 一种基于耐火材料的宽波段电磁波吸收器及其制备方法
CN114460673B (zh) 一种基于等离激元共振的高温太阳光谱选择性吸收器及其制备方法
Cao et al. Antireflection effect of SiO2 thin film on the pyramidal textured surface of monocrystalline silicon
Shishkin et al. Multilayer structures with the rare earth metal fluoride films based on porous silicon

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833105

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21833105

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21833105

Country of ref document: EP

Kind code of ref document: A1