CN111029421A - 一种实现近红外光吸收增强的微纳米阵列结构 - Google Patents

一种实现近红外光吸收增强的微纳米阵列结构 Download PDF

Info

Publication number
CN111029421A
CN111029421A CN201911279501.7A CN201911279501A CN111029421A CN 111029421 A CN111029421 A CN 111029421A CN 201911279501 A CN201911279501 A CN 201911279501A CN 111029421 A CN111029421 A CN 111029421A
Authority
CN
China
Prior art keywords
micro
nano
nano array
silicon
near infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911279501.7A
Other languages
English (en)
Inventor
杨鹏飞
张锦
蒋世磊
孙国斌
季雪淞
杨柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN201911279501.7A priority Critical patent/CN111029421A/zh
Publication of CN111029421A publication Critical patent/CN111029421A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种实现近红外光吸收增强的微纳米阵列结构,微结构包括微纳米阵列结构的基底、微纳米阵列柱、填充在所述微纳米阵列结构空隙中的填充物。所述微纳米阵列结构的基底为单晶硅,用于作为所述微纳米阵列柱的结构载体;所述微纳米阵列柱为周期分布的硅柱状结构,覆盖于所述基底上,用于增加对光源吸收;所述填充物为金属物和缓冲层,所述填充物设置在所述相邻的微纳米阵列柱的空隙中,因该填充物为金属,在光照下,微结构阵列的局域表面发生等离子体共振效应,从而实现对近红外波段光吸收增强。该微纳米阵列结构从所设计微纳阵列的边长、占空比、高度、填充物等方面进行优化,从而提高该微结构在近红外波段的光吸收效率。该发明在抗反射,隐身,太阳能电池等领域具有广阔的应用前景。

Description

一种实现近红外光吸收增强的微纳米阵列结构
技术领域
本发明涉及光伏太阳能、光电探测领域,特别是一种实现近红外光吸收增强的微纳米阵列结构。
背景技术
目前影响太阳能电池光电转换效率的关键因素之一是光能损失。基底材料单晶硅的折射率较高,光照射到硅基表面光能损失较大。传统的增强单晶硅表面太阳能入射光吸收的方法是在硅表面制备一层或多层减反射膜,利用光在减反射膜上下两个表面的光程差,减弱反射,此方法减反射效果虽好,但只能对一种或少种波长的光进行减反,并且长时间会出现薄膜与基底的脱落现象。
当今微纳米技术迅速发展,凭借其自身独特的优秀减反射特性以及成熟的微结构加工技术被人们广泛的应用,微结构加工有多种方法,如离子刻蚀法,光刻法,激光直写等,在单晶硅的表面制造特殊的微纳阵列结构,实现在较宽的光谱范围内减小光能的反射损失,且能有效避免利用传统镀膜方法带来的问题。对于工作波长为400nm~780nm的可见波段,减反射等于增吸收,但是对于工作波长为7800nm~2500nm的近红外波段,单晶硅具有透过特性,减反不等于吸收,所以实现提高单晶硅在近红外光波段光能的吸收率具有重要科学意义。
发明内容
本发明提供一种实现近红外光吸收增强的微纳米阵列结构,解决现有技术中微结构采用单晶硅材料,其对近红外波段的光具有高透过性,导致能量转换过程中各项光能损失大的问题。
本发明的技术解决方案是:
一种实现近红外光吸收增强的微纳米阵列结构,包括基底,在基底上设置微纳米阵列柱,在所述微纳米阵列柱的结构空隙中设置填充物。
进一步的,所述基底为单晶硅基底,所述纳米阵列柱包括多个硅纳米柱,多个硅纳米柱覆盖于所述基底上,多个硅纳米柱排列成有空隙的周期矩形阵列结构。
进一步的,所述填充物分别为金属物和缓冲层,所述金属物选用金属银纳米球,所述缓冲层选用Al2O3
进一步的,所述硅纳米柱的截面为正方形,其边长L为600nm~1000nm,硅纳米柱的高度H为600nm~2000nm;所述微纳米阵列的占空比f为0.5,。
进一步的,所述金属银纳米球放置于相邻硅纳米柱之间的空隙中,金属银纳米球的直径D为300nm~500nm。
进一步的,所述缓冲层Al2O3填充在硅纳米柱间隙中且覆盖住全部的硅纳米柱,实现与银纳米球的折射率匹配。
本发明与现有技术相比具有以下优点:
本发明提供的实现近红外光吸收增强的微纳米阵列结构,能够对近红外波段的光进行增强吸收,微纳米阵列结构的硅基底用于作为结构载体,填充物为金属物和Al2O3,将其设置在所述相邻的微纳米阵列结构的空隙中,在光照下,在微结构阵列的局域表面发生等离子体共振效应,从而实现对近红外光的吸收增强。
附图说明
图1是本发明微纳米阵列结构的结构示意图;
图2是图1的侧视图;
图3是本发明光源正入射情形下结构的不同硅柱边长(L)和空隙(G)随硅柱高度(H)的吸收光谱曲线图;
图4是本发明在整个近红外波段780nm~2500nm的吸收光谱曲线图,其中图4(a)是L=G=800nm在近红外波段的吸收光谱曲线图,图4(b)是L=G=1000nm在近红外波段的吸收光谱曲线图;
图5是本发明利用FDTD模拟在中心波长1550nm处的微纳结构电场分布图,其中图5(a)是L=G=800nm的电场强度图,图5(b)是L=G=1000nm的电场强度图。
具体实施方式
为进一步阐述本发明达成预定目的所采取的技术手段及功效,下面结合说明书附图对本发明的具体实施方式做详细的说明。
参见图1和图2所示的一种实现近红外光吸收增强的微纳米阵列结构,包括微纳米阵列柱、微纳米阵列结构的基底、填充在所述微纳米阵列结构空隙中的填充物;微纳米阵列结构的基底用于作为所述微纳米阵列的结构载体;微纳米阵列柱用于对光源的反射和吸收;填充物为金属物和缓冲层,填充物设置在相邻的微纳米阵列柱的空隙中,在光照下,微结构阵列的局域表面发生等离子体共振效应,从而实现对近红外波段光的吸收增强。
微纳米阵列结构的纳米阵列柱为硅柱状结构,微纳米阵列结构的基底为单晶硅基底。
硅柱状结构包括多个硅纳米柱,各所述硅纳米柱覆盖于基底上,排列成有空隙的周期阵列结构。
填充物材料分别为金属物和缓冲层,本实施例中填充物优先选取金属银纳米球和Al2O3,也可选取其它金属材料和与之匹配的缓冲层材料;金属银纳米球要求放置在相邻硅柱间的空隙中,银纳米球直径D为300nm~500nm。缓冲层Al2O3填充在纳米柱间隙中且覆盖全部硅柱,实现与银纳米球的折射率匹配。微纳米阵列结构的纳米柱边长L为600nm~1000nm,占空比f为0.5,纳米柱高度H为600nm~2000nm。
本发明光源为工作波段在780nm~2500nm,中心波长为1550nm的近红外光。
不同纳米柱尺寸边长L,间隙G与硅柱高度H变化对近红外光宽带吸收特性的影响:采用时域有限差分法(FDTD)分别对不同结构参数的微纳米阵列结构计算出在中心波长为1550nm的近红外光正入射情形下结构对应的吸收光谱曲线。当微纳米阵列结构的纳米柱分别L=G=600nm,700nm,800nm,900nm,1000nm,对应的银纳米球直径D=300nm,350nm,400nm,450nm,500nm,分别计算出相应的结构参数随纳米柱高度H为600nm至2000nm的变化。计算得到的曲线如图3。
如图4中所示,纳米柱L=G=800nm和L=G=1000nm时吸收率较好,采用时域有限差分法(FDTD)对以上两个参数计算出整个近红外波段780nm~2500nm的光谱吸收率,计算得到曲线图3。由图3可知在全波段吸收率增强了20%以上,由此可知该结构具有优秀的光吸收能力,为增强近红外光吸收提供了良好的结构保障。
如图4在中心波长1550nm利用时域有限差分法软件(FDTD)模拟电场分布的图。可以得到主要在硅柱边缘处有一定的电场增强,在金属银纳米球周围也有强烈程度的电场增强,其原因为金属局域表面发生等离子体共振效应,将银纳米球置于硅柱空隙内可以更有效利用电场增强,从而提高材料对近红外光的吸收。
以上所述仅是本发明的优选实施方案,对于本技术人员而言,在本发明的设计思想的情况下,还可以改变硅阵列的形状、结构参数以及填充物的材料等,这些改进也应视为本发明的保护范围。

Claims (6)

1.一种实现近红外光吸收增强的微纳米阵列结构,其特征在于:包括基底,在基底上设置微纳米阵列柱,在所述微纳米阵列柱的结构空隙中设置填充物。
2.根据权利要求1所述的实现近红外光吸收增强的微纳米阵列结构,其特征在于:所述基底为单晶硅基底,所述纳米阵列柱包括多个硅纳米柱,多个硅纳米柱覆盖于所述基底上,多个硅纳米柱排列成有空隙的周期矩形阵列结构。
3.根据权利要求1或2所述的实现近红外光吸收增强的微纳米阵列结构,其特征在于:所述填充物分别为金属物和缓冲层,所述金属物选用金属银纳米球,所述缓冲层选用Al2O3
4.根据权利要求3所述的实现近红外光吸收增强的微纳米阵列结构,其特征在于:所述硅纳米柱的截面为正方形,其边长L为600nm~1000nm,硅纳米柱的高度H为600nm~2000nm;所述微纳米阵列的占空比f为0.5,。
5.根据权利要求4所述的实现近红外光吸收增强的微纳米阵列结构,其特征在于:所述金属银纳米球放置于相邻硅纳米柱之间的空隙中,金属银纳米球的直径D为300nm~500nm。
6.根据权利要求5所述的实现近红外光吸收增强的微纳米阵列结构,其特征在于:所述缓冲层Al2O3填充在硅纳米柱间隙中且覆盖住全部的硅纳米柱,实现与银纳米球的折射率匹配。
CN201911279501.7A 2019-12-13 2019-12-13 一种实现近红外光吸收增强的微纳米阵列结构 Pending CN111029421A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911279501.7A CN111029421A (zh) 2019-12-13 2019-12-13 一种实现近红外光吸收增强的微纳米阵列结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911279501.7A CN111029421A (zh) 2019-12-13 2019-12-13 一种实现近红外光吸收增强的微纳米阵列结构

Publications (1)

Publication Number Publication Date
CN111029421A true CN111029421A (zh) 2020-04-17

Family

ID=70206669

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911279501.7A Pending CN111029421A (zh) 2019-12-13 2019-12-13 一种实现近红外光吸收增强的微纳米阵列结构

Country Status (1)

Country Link
CN (1) CN111029421A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111880247A (zh) * 2020-07-01 2020-11-03 武汉大学 一种中长波红外宽光谱光吸收材料及其制备方法
CN114910988B (zh) * 2022-05-17 2023-10-24 扬州大学 一种多重纳米方柱阵列宽带完美吸收器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311424A (zh) * 2013-06-04 2013-09-18 北京工业大学 一种锗镓碲硫卤玻璃微纳波导结构中红外传感器及其制备方法
WO2014130868A1 (en) * 2013-02-21 2014-08-28 The Governing Council Of The University Of Toronto Photovoltaic devices with plasmonic nanoparticles
CN109801733A (zh) * 2018-12-29 2019-05-24 深圳大学 X射线吸收光栅制作方法及其x射线吸收光栅

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014130868A1 (en) * 2013-02-21 2014-08-28 The Governing Council Of The University Of Toronto Photovoltaic devices with plasmonic nanoparticles
CN103311424A (zh) * 2013-06-04 2013-09-18 北京工业大学 一种锗镓碲硫卤玻璃微纳波导结构中红外传感器及其制备方法
CN109801733A (zh) * 2018-12-29 2019-05-24 深圳大学 X射线吸收光栅制作方法及其x射线吸收光栅

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHUNLIAN MEI 等: "Localized Surface Plasmon Induced Position-Sensitive Photodetection in Silicon-Nanowire-Modified Ag/Si", 《SMALL》 *
WEN-JENG HO 等: "Performance-Enhanced Textured Silicon Solar Cells Based on Plasmonic Light Scattering Using Silver and Indium Nanoparticles", 《MATERIALS》 *
刘莉 等: "硅纳米线阵列的制备及其光电应用", 《化学进展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111880247A (zh) * 2020-07-01 2020-11-03 武汉大学 一种中长波红外宽光谱光吸收材料及其制备方法
CN111880247B (zh) * 2020-07-01 2021-11-05 武汉大学 一种中长波红外宽光谱光吸收材料及其制备方法
WO2022001093A1 (zh) * 2020-07-01 2022-01-06 武汉大学 一种中长波红外宽光谱光吸收材料及其制备方法
CN114910988B (zh) * 2022-05-17 2023-10-24 扬州大学 一种多重纳米方柱阵列宽带完美吸收器

Similar Documents

Publication Publication Date Title
Enrichi et al. Plasmonic enhanced solar cells: Summary of possible strategies and recent results
Narasimhan et al. Nanostructures for photon management in solar cells
Zhu et al. Nanostructured photon management for high performance solar cells
Boden et al. Optimization of moth‐eye antireflection schemes for silicon solar cells
Battaglia et al. Light trapping in solar cells: can periodic beat random?
Spinelli et al. Optical impedance matching using coupled plasmonic nanoparticle arrays
WO2017107783A1 (zh) 一种减反射自清洁薄膜及其制备方法
Eyderman et al. Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping
TWI672817B (zh) 太陽能電池的製造方法及製得的太陽能電池
Eyderman et al. Light-trapping optimization in wet-etched silicon photonic crystal solar cells
CN101431110A (zh) 低折射率纳米材料减反射膜
Branham et al. Empirical comparison of random and periodic surface light-trapping structures for ultrathin silicon photovoltaics
Zhang et al. High-efficiency photon capturing in ultrathin silicon solar cells with double-sided skewed nanopyramid arrays
CN111029421A (zh) 一种实现近红外光吸收增强的微纳米阵列结构
Beye et al. Optimization of SiNx single and double layer ARC for silicon thin film solar cells on glass
Sprafke et al. Light trapping concepts for photon management in solar cells
Sun et al. Double grating high efficiency nanostructured silicon-based ultra-thin solar cells
Ram et al. Efficient light-trapping with quasi-periodic uniaxial nanowrinkles for thin-film silicon solar cells
Li et al. Multiscale array antireflective coatings for improving efficiencies of solar cells
Barugkin et al. Diffuse reflectors for improving light management in solar cells: a review and outlook
CN105355697A (zh) 一种陷光结构和其制作方法以及应用该结构的薄膜太阳能电池
CN102881728B (zh) 基于超颖材料结构的薄膜太阳能电池及其制备方法
Shen et al. Improving thin film solar cells performance via designing moth-eye-like nanostructure arrays
Shi et al. Disorder improves light absorption in thin film silicon solar cells with hybrid light trapping structure
Hu et al. Study on the photoelectric conversion efficiency of solar cells with light trapping arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200417

RJ01 Rejection of invention patent application after publication