WO2022000936A1 - 悬浮系统等效参数修正方法及系统、介质、电子设备 - Google Patents

悬浮系统等效参数修正方法及系统、介质、电子设备 Download PDF

Info

Publication number
WO2022000936A1
WO2022000936A1 PCT/CN2020/128833 CN2020128833W WO2022000936A1 WO 2022000936 A1 WO2022000936 A1 WO 2022000936A1 CN 2020128833 W CN2020128833 W CN 2020128833W WO 2022000936 A1 WO2022000936 A1 WO 2022000936A1
Authority
WO
WIPO (PCT)
Prior art keywords
simulation
curve
vibration motor
linear vibration
frequency point
Prior art date
Application number
PCT/CN2020/128833
Other languages
English (en)
French (fr)
Inventor
陈勇勇
郑亚军
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2022000936A1 publication Critical patent/WO2022000936A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design

Definitions

  • the invention relates to the technical field of control, in particular to a method and system for correcting equivalent parameters of a suspension system, a medium and an electronic device.
  • Linear vibration motors have become a mainstream haptic feedback solution in mid- to high-end mobile phones.
  • the application in touch display devices such as automobiles is not yet mature. This is because this type of touch interactive device requires finger feeling and surface vibration. Therefore, it is necessary to design a reasonable suspension structure for the touch screen to ensure that sufficient vibration is generated under the drive of the online vibration motor, thereby bringing users Comfortable tactile feedback and vibration experience.
  • the equivalent parameters of the linear vibration motor are obtained based on the simulation test of the single motor. When the equivalent parameters are used When simulating and modeling the touch suspension system of the linear vibration motor, the simulated system response frequency response curve often deviates from the actual structure frequency response curve, which reduces the simulation accuracy of the subsequent short signal of the linear vibration motor.
  • the embodiments of the present invention provide a method, system, medium, and electronic device for correcting equivalent parameters of a suspension system. Taking the actual frequency response curve of an actual touch suspension system with a linear vibration motor as a reference, according to the The simulation frequency response curve of the touch suspension system, and the equivalent parameters are corrected segmentally, providing accurate simulation parameters for the simulation modeling of the touch suspension system with a linear vibration motor, so that the simulation frequency response curve is consistent with the actual frequency response curve.
  • the noise curve is as close as possible to improve the simulation accuracy of the short signal of the linear vibration motor.
  • an embodiment of the present invention provides an equivalent parameter correction method for a touch suspension system with a linear vibration motor, including: performing a frequency response test on the touch suspension system with a linear vibration motor , obtain a reference frequency curve, in the direction of the reference frequency from small to large, the reference frequency curve includes a first reference curve, a second reference frequency point, a second reference curve, a third reference frequency point and a first reference frequency point in turn. Three reference curves; the initial equivalent parameters are input into the simulation model for frequency response simulation test, and the simulation frequency curve is obtained.
  • Equivalent Parameters and Output Correction Equivalent Parameters.
  • the initial equivalent parameters include: the mass of the linear vibration motor, the electromagnetic force coefficient of the linear vibration motor, the initial DC parameters of the linear vibration motor, the The initial damping coefficient, the initial equivalent inductance of the linear vibration motor, the initial stiffness coefficient of the linear vibration motor, the mass of the touch suspension system, the initial stiffness coefficient of the touch suspension system, and the Control the initial damping coefficient of the suspension system; judge whether the second simulation frequency point is consistent with the second reference frequency point and whether the third simulation frequency point is consistent with the fourth reference frequency point, and the third simulation frequency point is consistent with the fourth reference frequency point.
  • correcting the initial equivalent parameter corresponding to the judgment item according to the preset correspondence, and generating the corrected equivalent parameter further includes: judging the second simulation frequency Whether the point is consistent with the second reference frequency point, and whether the third simulation frequency point is consistent with the third reference frequency point; when the second simulation frequency point is consistent with the second reference frequency point and all When the third simulation frequency point is consistent with the third reference frequency point, determine whether the first simulation curve is consistent with the first reference curve; when the second simulation frequency point is consistent with the second reference frequency point When inconsistent, correcting the initial stiffness coefficient of the linear vibration motor to generate a corrected stiffness coefficient of the linear vibration motor; and/or when the third simulation frequency point is inconsistent with the third reference frequency point, correcting The initial stiffness coefficient of the touch suspension system is used to generate the corrected stiffness coefficient
  • the third reference curve is consistent; when the first simulation curve is inconsistent with the first reference curve, correct the initial DC parameters of the linear vibration motor, and generate the corrected DC parameters of the linear vibration motor;
  • the third simulation curve determines whether the second simulation curve is consistent with the second reference curve; when the third simulation curve is inconsistent with the third reference curve, Correcting the initial equivalent inductance of the linear vibration motor to generate a corrected equivalent inductance of the linear vibration motor; when the second simulation curve is inconsistent with the second reference curve, correcting the initial damping of the linear vibration motor coefficient and the initial damping coefficient of the touch suspension system to generate the modified damping coefficient of the linear vibration motor and the modified damping coefficient of the touch suspension system.
  • modifying the initial stiffness coefficient of the linear vibration motor further includes: when the second simulation frequency point is inconsistent When the difference between the point value and the second reference frequency point value is greater than the first preset value, the first preset value is a positive number, and the initial stiffness coefficient of the linear vibration motor is subtracted from the first value.
  • the initial stiffness coefficient is increased by a second value to generate a corrected stiffness coefficient of the linear vibration motor; and/or, when the third simulation frequency point is inconsistent with the third reference frequency point, modifying the touch suspension system
  • the initial stiffness coefficient further includes: when the difference between the third simulation frequency point value and the third reference frequency point value is greater than a second preset value, the second preset value is a positive number, and the The initial stiffness coefficient of the touch suspension system is subtracted by a third value to generate a modified stiffness coefficient of the touch suspension system; when the difference between the value of the third simulation frequency point and the value of the third reference frequency point is less than the value of the third When the two values are the opposite of the preset value, the initial stiffness coefficient of the touch suspension system is increased by a fourth value to generate a modified stiffness coefficient of the touch suspension system.
  • the first numerical value and the second numerical value are equal to the difference between the reference stiffness coefficient of the linear vibration motor and the simulated stiffness coefficient of the linear vibration motor; the third numerical value and The fourth value is equal to the difference between the reference stiffness coefficient of the touch suspension system and the simulated stiffness coefficient of the touch suspension system.
  • revising the initial DC parameter of the linear vibration motor further includes: when the first simulation curve is inconsistent with the first reference curve When the deviation between the first reference curves is greater than the third preset value, the initial DC parameter of the linear vibration motor is increased by a fifth value to generate the corrected DC parameter of the linear vibration motor, and the third preset value is is a positive number; or when the deviation between the first simulation curve and the first reference curve is less than the opposite number of the third preset value, reduce the initial DC parameter of the linear vibration motor by the third Six numerical values to generate the modified DC parameters of the linear vibration motor.
  • correcting the initial equivalent inductance of the linear vibration motor further comprising: when the third simulation curve is inconsistent with the third reference curve When the deviation between the third reference curves is greater than the fourth preset value, the initial equivalent inductance of the linear vibration motor is increased by a seventh value to generate the corrected equivalent inductance of the linear vibration motor, and the fourth preset value is Set the value to a positive number; or when the deviation between the third simulation curve and the third reference curve is less than the opposite number of the fourth preset value, reduce the initial DC parameter of the linear vibration motor The eighth numerical value is used to generate the corrected DC parameter of the linear vibration motor.
  • correcting the initial damping coefficient of the linear vibration motor and the initial damping coefficient of the touch suspension system further comprising: when all the When the deviation between the second simulation curve and the second reference curve is greater than the fifth preset value, the initial damping coefficient of the linear vibration motor and the initial damping coefficient of the touch suspension system are respectively increased by a ninth value to generate the The modified damping coefficient of the linear vibration motor and the modified damping coefficient of the touch suspension system, the fifth preset value is a positive number; or when the deviation between the second simulation curve and the second reference curve is less than the fifth preset value When setting the opposite value of the value, the initial damping coefficient of the linear vibration motor and the initial damping coefficient of the touch suspension system are respectively reduced by a tenth value to generate the corrected damping coefficient of the linear vibration motor and the correction of the touch suspension system damping coefficient.
  • an embodiment of the present invention provides an equivalent parameter correction system for a touch suspension system with a linear vibration motor, including: a frequency response test module for the touch suspension system, which is used to perform a frequency response test for the touch suspension system with a linear vibration motor.
  • the touch suspension system of the motor conducts the frequency response test to obtain the reference frequency curve;
  • the simulation module is used to input the initial equivalent parameters into the simulation model for frequency response simulation test and obtain the simulation frequency curve;
  • the judgment unit is used to judge the Whether the second simulation frequency point is consistent with the second reference frequency point, whether the third simulation frequency point is consistent with the fourth reference frequency point, whether the first simulation curve is consistent with the first reference curve, and the third simulation curve is consistent with the third Whether the reference curve is consistent, and whether the second simulation curve is consistent with the second reference curve;
  • the correction unit is used to correct according to the preset correspondence when the judgment result of any judgment item in the judgment results of the above five judgment items is inconsistent an initial equivalent parameter corresponding to the judgment item; and an output unit for outputting the corrected equivalent parameter.
  • an embodiment of the present invention provides a computer-readable storage medium, where the storage medium stores a computer program, and the computer program is used to execute the aforementioned touch control device with a linear vibration motor Equivalent parameter correction method of suspension system.
  • an embodiment of the present invention provides an electronic device, the electronic device includes: a processor; a memory for storing executable instructions of the processor; wherein the processor is used for The above-mentioned equivalent parameter correction method of a touch suspension system with a linear vibration motor is implemented.
  • a method, system, medium, and electronic device for correcting the equivalent parameters of a suspension system taken the actual frequency response curve of the actual touch suspension system with a linear vibration motor as a reference, and according to the actual frequency response curve of the touch suspension system with a linear vibration motor
  • the simulation frequency response curve of the control suspension system which corrects the equivalent parameters in sections, provides accurate simulation parameters for the simulation modeling of the touch suspension system with a linear vibration motor, so as to make the simulation frequency response curve and the actual frequency response curve.
  • the maximum possible approximation improves the simulation accuracy of the short signal of the linear vibration motor.
  • FIG. 1 is a flowchart of an equivalent parameter correction method of a touch suspension system with a linear vibration motor according to an embodiment of the present invention
  • FIGS. 2a and 2b are flowcharts of an equivalent parameter correction method of a touch suspension system with a linear vibration motor provided by another embodiment of the present invention
  • 3a, 3b and 3c are flowcharts of an equivalent parameter correction method of a touch suspension system with a linear vibration motor provided by another embodiment of the present invention.
  • FIG. 4 is a flowchart of an equivalent parameter correction method of a touch suspension system with a linear vibration motor provided by another embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an equivalent parameter correction system of a touch suspension system with a linear vibration motor according to an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of an equivalent parameter correction method of a touch suspension system with a linear vibration motor provided by an embodiment of the present invention. As shown in FIG. 1 , the touch suspension system with a linear vibration motor The equivalent parameter correction method includes the following steps:
  • Step S101 Perform a frequency response test on the touch suspension system with a linear vibration motor, and obtain a reference frequency curve.
  • the reference frequency curve includes a first reference curve and a second reference frequency point in sequence. , the second reference curve, the third reference frequency point and the third reference curve;
  • Step S102 Input the initial equivalent parameters into the simulation model to perform a frequency response simulation test, and obtain a simulation frequency curve.
  • the simulation frequency curve sequentially includes a first simulation curve, a second simulation frequency point, the second simulation curve, the third simulation frequency point and the third simulation curve;
  • Step S103 Judging in turn whether the second simulation frequency point is consistent with the second reference frequency point, whether the third simulation frequency point is consistent with the fourth reference frequency point, whether the first simulation curve is consistent with the first reference curve, and whether the third simulation curve is consistent Whether it is consistent with the third reference curve, and whether the second simulation curve is consistent with the second reference curve, when the judgment result of any judgment item in the judgment results of the above five judgment items is inconsistent, correct and judge according to the preset corresponding relationship
  • the initial equivalent parameters corresponding to the project, and the modified equivalent parameters are generated;
  • the corresponding preset relationship is the corresponding relationship between each judgment item and the equivalent parameter, for example, the second simulation frequency point and the third simulation frequency point correspond to the initial stiffness coefficient K1 of the linear vibration motor in the equivalent parameters, touch Control the initial stiffness coefficient k2 of the suspension system; the first simulation curve corresponds to the initial DC parameter Ri of the linear vibration motor.
  • Step S104 output the corrected equivalent parameter.
  • the equivalent parameters output in step S104 can be divided into two types: one is when the judgment results of the above five judgment items are all consistent, that is to say, no correction is made to the initial equivalent parameters, and the output is the initial etc. The other is when the result of at least one of the above five judgment items is inconsistent, that is to say, the initial equivalent parameter has been corrected at least once, and the output equivalent parameter is the corrected equivalent parameter.
  • the output corrected equivalent parameters include both corrected parameters and uncorrected parameters.
  • An embodiment of the present invention provides a method for correcting the equivalent parameters of a touch suspension system with a linear vibration motor.
  • the actual frequency response curve of the actual touch suspension system with a linear vibration motor is used as a reference.
  • the simulation frequency response curve of the control suspension system which corrects the equivalent parameters in sections, provides accurate simulation parameters for the simulation modeling of the touch suspension system with a linear vibration motor, so as to make the simulation frequency response curve and the actual frequency response curve. The maximum possible approximation improves the simulation accuracy of the short signal of the linear vibration motor.
  • the initial equivalent parameters include: the mass m1 of the linear vibration motor, the electromagnetic force coefficient BL of the linear vibration motor, the initial DC parameter Ri of the linear vibration motor, the initial damping coefficient C1 of the linear vibration motor, the linear vibration
  • the initial equivalent inductance Li of the motor specifically includes the following steps:
  • Step S1031 Determine whether the second simulation frequency point is consistent with the second reference frequency point, and whether the third simulation frequency point is consistent with the third reference frequency point;
  • the value of the second simulation frequency point is the simulated resonance frequency of the linear vibration motor
  • the value of the third simulation frequency point is the simulated natural frequency of the touch suspension system
  • the value of the second reference frequency point is the reference resonance frequency of the linear vibration motor
  • the value of the third reference frequency point is the reference natural frequency of the touch suspension system.
  • Step S1032 when the second simulation frequency point is consistent with the second reference frequency point and the third simulation frequency point is consistent with the third reference frequency point, determine whether the first simulation curve is consistent with the first reference curve;
  • Step S1033 when the second simulation frequency point is inconsistent with the second reference frequency point, correct the initial stiffness coefficient K1 of the linear vibration motor, and generate the corrected stiffness coefficient K1 of the linear vibration motor; and/or when the third simulation frequency point is consistent with When the third reference frequency points are inconsistent, correct the initial stiffness coefficient k2 of the touch suspension system, and generate the corrected stiffness coefficient k2 of the touch suspension system;
  • Step S1034 when the first simulation curve is consistent with the first reference curve, determine whether the third simulation curve is consistent with the third reference curve;
  • Step S1035 when the first simulation curve is inconsistent with the first reference curve, correct the initial DC parameter Ri of the linear vibration motor, and generate the corrected DC parameter Ri of the linear vibration motor;
  • Step S1036 when the third simulation curve is consistent with the third reference curve, determine whether the second simulation curve is consistent with the second reference curve;
  • Step S1037 when the third simulation curve is inconsistent with the third reference curve, correct the initial equivalent inductance Li of the linear vibration motor, and generate the corrected equivalent inductance Li of the linear vibration motor;
  • Step S1038 When the second simulation curve is inconsistent with the second reference curve, correct the initial damping coefficient C1 of the linear vibration motor and the initial damping coefficient C2 of the touch suspension system, and generate the corrected damping coefficient C1 of the linear vibration motor and the touch suspension system The modified damping coefficient C2.
  • An embodiment of the present invention provides a method for correcting the equivalent parameters of a touch suspension system with a linear vibration motor.
  • the initial DC value of the linear vibration motor in the initial equivalent parameters is correspondingly corrected.
  • parameter Ri when the second simulation frequency point is inconsistent with the second reference simulation frequency point, the initial stiffness coefficient K1 of the linear vibration motor in the initial equivalent parameters is correspondingly corrected; when the third simulation frequency point is inconsistent with the third reference frequency point, Correspondingly corrects the initial stiffness coefficient k2 of the touch suspension system in the initial equivalent parameters; when the second simulation curve is inconsistent with the second reference curve, correspondingly corrects the initial damping coefficient C1 of the linear vibration motor in the initial equivalent parameters and the touch The initial damping coefficient C2 of the suspension system; when the third simulation curve is inconsistent with the third reference curve, the initial equivalent inductance Li of the linear vibration motor is correspondingly corrected.
  • the corresponding equivalent parameters in the equivalent parameters are corrected, which improves the accuracy of the correction, and provides accurate simulation parameters for the simulation modeling of the touch suspension system with a linear vibration motor, so as to make the simulation frequency response curve and the actual frequency response curve.
  • the maximum possible approximation improves the simulation accuracy of the short signal of the linear vibration motor.
  • step S1031 determine whether the second simulation frequency point and the second reference frequency point are consistent, and whether the third simulation frequency point and the third reference frequency point are consistent Whether it is consistent, specifically including the following steps:
  • Step S10311 Determine whether the absolute value of the difference between the second simulation frequency point value f 1 1 and the second reference frequency point value f 1, that is,
  • step S10312 is executed: that is, it is determined that the value f 2 1 of the third simulation frequency point is consistent with the The absolute value of the difference between the value f 2 of the third reference frequency point , that is, whether
  • Step S10313 When
  • step S10331 subtract the first value from the initial stiffness coefficient K1 of the linear vibration motor to generate the corrected stiffness coefficient K1 1 of the linear vibration motor;
  • step S10331 the first numerical value
  • the calculation formula is:
  • step S10332 is performed at this time: the linear vibration motor
  • the initial stiffness coefficient K1 is increased by a second value to generate the corrected stiffness coefficient K1 1 of the linear vibration motor;
  • the calculation method of the second numerical value is the same as the calculation method of the first numerical value, which is not repeated here.
  • Step S10312 Determine whether the absolute value of the difference between the third simulation frequency point value f 2 1 and the third reference frequency point value f 2 , that is,
  • step S1032 determine whether the first simulation curve is consistent with the first reference curve
  • Step S10314 When
  • step S10333 subtract the third value from the initial stiffness coefficient K2 of the touch suspension system to generate the corrected stiffness coefficient K2 1 of the touch suspension system;
  • step S10334 is performed at this time: the touch suspension system
  • the initial stiffness coefficient K2 of 1 is increased by a fourth value to generate the corrected stiffness coefficient K2 1 of the touch suspension system;
  • the calculation method of the fourth numerical value is the same as the calculation method of the third numerical value, which will not be repeated here.
  • Steps S10331 to S10334 are specific parameter correction steps of step S1033.
  • step S1031 are to specifically introduce the specific process of whether the second simulation frequency point is consistent with the second reference frequency point, and whether the third simulation frequency point is consistent with the third reference frequency point, and step S1033 is when the second simulation frequency point is consistent.
  • step S1033 is when the second simulation frequency point is consistent.
  • step S1032 is executed: that is, it is determined whether the first simulation curve is consistent with the first reference curve; and Step S1032 specifically includes the following steps:
  • Step S10321 Determine whether the absolute value of the deviation between the first simulation curve and the first reference curve is greater than a third preset value (the third preset value is a positive number);
  • step S1034 is executed: judging that the third simulation curve is the same as the first reference curve. Whether the third benchmark curve is consistent;
  • Step S10322 when the absolute value of the deviation between the first simulation curve and the first reference curve is greater than the third preset value, that is, the first simulation curve and the first reference curve are inconsistent, determine the first simulation curve and the first reference curve Whether the deviation between them is greater than the third preset value;
  • step S10351 is performed: increasing the initial DC parameter Ri of the linear vibration motor by a fifth value to generate the corrected DC parameter Ri 1 of the linear vibration motor;
  • step S10352 is performed: the linear vibration
  • the initial DC parameter Ri of the motor is reduced by a sixth value to generate the corrected DC parameter Ri 1 of the linear vibration motor;
  • step S10351 and step S10352 are specific steps of step S1035, that is, the initial DC parameter Ri of the linear vibration motor is corrected according to different situations.
  • step S1032 is to specifically introduce the specific process of whether the first simulation curve is consistent with the first reference curve
  • step S1035 is the specific process of correcting the equivalent parameters when the first simulation curve is inconsistent with the first reference curve.
  • step S1034 is executed, that is, it is determined whether the third simulation curve is consistent with the third reference curve; step S1034 specifically includes the following steps:
  • Step S10341 Determine whether the absolute value of the deviation between the third simulation curve and the third reference curve is greater than a fourth preset value (the fourth preset value is a positive number);
  • step S1036 is executed: it is determined that the second simulation curve is the same as the third reference curve. Whether the second benchmark curve is consistent;
  • Step S10342 when the absolute value of the deviation between the third simulation curve and the third reference curve is greater than the fourth preset value, that is, the third simulation curve and the third reference curve are inconsistent, determine the third simulation curve and the third reference curve Whether the deviation between them is greater than the fourth preset value;
  • step S10371 is executed: the initial equivalent inductance Li of the linear vibration motor is increased by a seventh value to generate the corrected equivalent inductance Li of the linear vibration motor 1 ;
  • step S10372 is executed: the linear vibration
  • the initial equivalent inductance Li of the motor is reduced by the eighth value to generate the corrected equivalent inductance Li 1 of the linear vibration motor;
  • step S10371 and step S10372 are specific steps of step S1037, that is, the initial equivalent inductance Li of the linear vibration motor is corrected according to different situations.
  • step S1034 is to specifically introduce the specific process of whether the third simulation curve is consistent with the third reference curve
  • step S1037 is the specific process of correcting the equivalent parameters when the third simulation curve is inconsistent with the third reference curve.
  • step S1036 is executed, that is, it is determined whether the second simulation curve is consistent with the second reference curve; step S1036 specifically includes the following steps:
  • Step S10361 Determine whether the absolute value of the deviation between the second simulation curve and the second reference curve is greater than the fifth preset value
  • step S10362 is executed: judging the second simulation curve and the second reference Whether the deviation between the curves is greater than the fifth preset value;
  • step S103181 is executed: the initial damping coefficient C1 of the linear vibration motor and the initial damping coefficient C2 of the touch suspension system are respectively increased by a ninth value, generate a linear vibration motor correction damping coefficient C1 1 and the correction damping coefficient of the suspension system of the touch C2 1;
  • step S10382 is executed: the linear vibration the initial motor damping coefficient C1 and C2 touch initial damping of the suspension system are reduced ninth value, the correction damping coefficient of the linear vibration motor to generate a correction damping coefficient C1. 1 and the touch of the suspension system C2. 1;
  • step S10381 and step S10382 are specific steps of step S1038, ie, the initial damping coefficient C1 of the linear vibration motor and the initial damping coefficient C2 of the touch suspension system are corrected according to different situations.
  • step S1036 is to specifically introduce the specific process of whether the second simulation curve is consistent with the second reference curve
  • step S1038 is the specific process of correcting the equivalent parameters when the second simulation curve is inconsistent with the second reference curve.
  • the output correction parameters may all be the initial equivalent parameters (that is, all of the five judgment items are consistent), or some of them may be initial equivalent parameters, and some may be corrections, etc. effect parameters, such as output a correction parameter: the correction damping coefficient of the linear vibration motor C1 1, the correction damping coefficient of the suspension system of the touch C2 1, the correction of the linear vibration motor equivalent inductance Li 1, the correction parameter Ri DC linear vibration motor 1.
  • the corrected stiffness coefficient K1 1 of the linear vibration motor, the corrected stiffness coefficient K2 1 of the touch suspension system, the mass m1 of the linear vibration motor, the electromagnetic force coefficient BL of the linear vibration motor, and the mass m2 of the touch suspension system namely Among the initial equivalent parameters, the initial DC parameter Ri of the linear vibration motor, the initial damping coefficient C1 of the linear vibration motor, the initial equivalent inductance Li of the linear vibration motor, the initial stiffness coefficient K1 of the linear vibration motor, the The initial stiffness coefficient k2 and the initial damping coefficient C2 of the touch suspension system are all revised.
  • the modified equivalent parameters When the modified equivalent parameters are output, when the modified equivalent parameters are input into the simulation model for simulation test, there may still be deviations between the simulated system response frequency response curve and the actual structure frequency response curve, so in order to try to Reduce the deviation and improve the simulation accuracy of the subsequent short signal of the linear vibration motor.
  • the correction of the equivalent parameters is completed once, that is, after all steps S101-S104 are completed, the correction is performed again, that is, the corrected equivalent parameters are output in step S104.
  • the corrected equivalent parameters are input into the simulation model for simulation testing, that is, step S10 is performed to perform the second equivalent parameter correction.
  • the number of corrections for equivalent parameters can be selected according to the actual situation. For example, when the third correction is performed after the second correction is completed, the five judgment items are all consistent, that is, the process of the third correction has not been completed. Corrections have been made to the equivalent parameters so that a fourth correction is not necessary. However, after the second correction is completed, when the third correction is performed, there are still more than three judgment items out of the five judgment items that are inconsistent, then after the third correction, a fourth correction is required.
  • step S1032 is not performed first: that is, it is determined whether the first simulation curve is consistent with the first reference curve; instead, the corrected stiffness coefficient K2 1 of the modified touch suspension system and the corrected stiffness coefficient of the linear vibration motor are used. K1 1 and the mass m1 of the linear vibration motor, the electromagnetic force coefficient BL of the linear vibration motor, the initial DC parameter Ri of the linear vibration motor, the initial damping coefficient C1 of the linear vibration motor, the mass m2 of the touch suspension system, and the touch suspension system.
  • the initial damping coefficient C2 is input into the simulation model again for simulation testing, and the simulation curve is obtained, that is, step S102 is performed, and then step S1031 in step S103 is performed: it is determined whether the second simulation frequency point is consistent with the second reference frequency point, and the first Whether the three simulation frequency points are consistent with the third reference frequency point; then proceed to the subsequent steps.
  • the other equivalent parameters are corrected until the second simulation frequency point is consistent with the second reference frequency point, and the third simulation frequency point is consistent with the third reference frequency point.
  • FIG. 5 is a schematic structural diagram of an equivalent parameter correction system of a touch suspension system with a linear vibration motor provided by an embodiment of the present invention.
  • the equivalent parameter correction system of the touch suspension system of the vibration motor includes: a frequency response test module 1 for the touch suspension system, which is used to test the frequency response of the touch suspension system with a linear vibration motor to obtain a reference frequency curve;
  • the model 2 is used to input the initial equivalent parameters into the simulation model for frequency response simulation test, and the simulation frequency curve is obtained;
  • the judgment unit 3 is used to respectively judge whether the second simulation frequency point is consistent with the second reference frequency point and the third Whether the simulation frequency point is consistent with the fourth reference frequency point, whether the first simulation curve is consistent with the first reference curve, whether the third simulation curve is consistent with the third reference curve, and whether the second simulation curve is consistent with the second reference curve;
  • the unit 4 is used to correct the initial equivalent parameter corresponding to the judgment item according to the preset correspondence when the judgment result of any one judgment item in the judgment results of the above
  • An equivalent parameter correction system of a suspension system takes the actual frequency response curve of the touch suspension system with a linear vibration motor as a reference, and according to the simulation frequency response of the touch suspension system with a linear vibration motor Curve, segmentally corrects the equivalent parameters, providing accurate simulation parameters for the simulation modeling of the touch suspension system with a linear vibration motor, so that the simulated frequency response curve is as close to the actual frequency response curve as possible, and the linearity is improved. Simulation accuracy for short signals of vibration motors.
  • an embodiment of the present invention further provides an electronic device, including one or more processors and a memory.
  • the processor may be a central processing unit (CPU) or other form of processing unit having data processing capabilities and/or instruction execution capabilities, and may control other components in the electronic device to perform desired functions.
  • CPU central processing unit
  • the processor may control other components in the electronic device to perform desired functions.
  • the memory may include one or more computer program products, which may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include, for example, random access memory (RAM) and/or cache memory (cache).
  • the non-volatile memory may include, for example, a read only memory (ROM), a hard disk, a flash memory, and the like.
  • One or more computer program instructions may be stored on the computer-readable storage medium, and the processor may execute the above-mentioned program instructions to realize a suspension system equivalent parameter of the above-mentioned various embodiments of the present application Corrected methods and/or other desired functionality.
  • Various contents such as input signals, signal components, noise components, etc. may also be stored in the computer-readable storage medium.
  • embodiments of the present application may also be computer program products comprising computer program instructions that, when executed by a processor, cause the processor to perform the methods described in this specification according to the present application.
  • the computer program product can write program codes for performing the operations of the embodiments of the present application in any combination of one or more programming languages, including object-oriented programming languages, such as Java, C++, etc. , also includes conventional procedural programming languages, such as "C" language or similar programming languages.
  • the program code may execute entirely on the user computing device, partly on the user device, as a stand-alone software package, partly on the user computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • embodiments of the present application may also be computer-readable storage media having computer program instructions stored thereon, the computer program instructions, when executed by a processor, cause the processor to perform the above-mentioned "Example Method" section of this specification Steps in the power parameter adjustment method or the reinforcement learning model training method according to various embodiments of the present application described in .
  • the computer-readable storage medium may employ any combination of one or more readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • the readable storage medium may include, for example, but not limited to, electrical, magnetic, optical, electromagnetic, infrared, or semiconductor systems, apparatuses or devices, or a combination of any of the above. More specific examples (non-exhaustive list) of readable storage media include: electrical connections with one or more wires, portable disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • each component or each step can be decomposed and/or recombined. These disaggregations and/or recombinations should be considered as equivalents of the present application.

Abstract

一种带线性振动马达的触控悬浮系统等效参数修正方法及系统、介质、电子设备,以实际带线性振动马达的触控悬浮系统的实际频响曲线作为参考基准,根据带线性振动马达的触控悬浮系统的仿真频响曲线,分段式的对等效参数进行修正,为带线性振动马达的触控悬浮系统的仿真建模提供准确仿真参数,从而使得仿真频响曲线与实际频响曲线最大可能的接近,提高线性振动马达的短信号的仿真精度。

Description

悬浮系统等效参数修正方法及系统、介质、电子设备 技术领域
本发明涉及控制技术领域,尤其涉及悬浮系统等效参数修正方法及系统、介质、电子设备。
背景技术
线性振动马达(LRA)已成为中高端手机中的主流触觉反馈解决方案。但在汽车等触控显示装置上的应用还不成熟。这是由于因为该类触控交互设备需要手指感和表面振动,因此,需要对触控屏进行合理的悬浮结构设计,以保证在线振动马达的驱动下产生足够的振动量,从而为用户带来舒适的触觉反馈和振动体验。但是由于线性振动马达和触控悬浮结构之间存在着强烈的动力学耦合关系,而在实际应用中,线性振动马达的等效参数是基于马达单体仿真测试获得的,当采用该等效参数对线性振动马达的触控悬浮系统进行仿真建模时,往往会导致仿真的系统响应频响曲线与实际结构频响曲线存在偏差,降低了后续线性振动马达短信号的仿真精度。
技术问题
有鉴于此,本发明实施例提供了悬浮系统等效参数修正方法及系统、介质、电子设备,以实际带线性振动马达的触控悬浮系统的实际频响曲线作为参考基准,根据带线性振动马达的触控悬浮系统的仿真频响曲线,分段式的对等效参数进行修正,为带线性振动马达的触控悬浮系统的仿真建模提供准确仿真参数,从而使得仿真频响曲线与实际频响曲线最大可能的接近,提高线性振动马达的短信号的仿真精度。
技术解决方案
作为本发明的一方面,本发明一实施例提供了一种带线性振动马达的触控悬浮系统的等效参数修正方法,包括:对所述带线性振动马达的触控悬浮系统进行频响测试,获取基准频率曲线,在所述基准频率由小到大的方向上,所述基准频率曲线包括依次包括第一基准曲线、第二基准频率点、第二基准曲线、第三基准频率点以及第三基准曲线;将初始等效参数输入至仿真模型进行频响仿真测试,获取仿真频率曲线,在所述仿真频率由小到大的方向上,所述仿真频率曲线依次包括第一仿真曲线、第二仿真频率点、第二仿真曲线、第三仿真频率点以及第三仿真曲线;依次分别判断所述第二仿真频率点与所述第二基准频率点是否一致以及所述第三仿真频率点与所述第四基准频率点是否一致,所述第一仿真曲线与所述第一基准曲线是否一致,所述第三仿真曲线与所述第三基准曲线是否一致,以及所述第二仿真曲线与所述第二基准曲线是否一致,当上述五个判断项目的判断结果中任何一个判断项目的判断结果为不一致时,按照预设对应关系修正与所述判断项目对应的初始等效参数,生成修正等效参数;以及输出修正等效参数。
在本发明一实施例中,所述初始等效参数包括:所述线性振动马达的质量、所述线性振动马达的电磁力系数、所述线性振动马达的初始直流参数,所述线性振动马达的初始阻尼系数、所述线性振动马达的初始等效电感、所述线性振动马达的初始劲度系数、所述触控悬浮系统的质量、所述触控悬浮系统的初始劲度系数以及所述触控悬浮系统的初始阻尼系数;依次分别判断所述第二仿真频率点与所述第二基准频率点是否一致以及所述第三仿真频率点与所述第四基准频率点是否一致,所述第一仿真曲线与所述第一基准曲线是否一致,所述第三仿真曲线与所述第三基准曲线是否一致,以及所述第二仿真曲线与所述第二基准曲线是否一致,当上述五个判断项目的判断结果中任何一个判断项目的判断结果为不一致时,按照预设对应关系修正与所述判断项目对应的初始等效参数,生成修正等效参数进一步包括:判断所述第二仿真频率点与所述第二基准频率点是否一致、以及所述第三仿真频率点与所述第三基准频率点是否一致;当所述第二仿真频率点与所述第二基准频率点一致以及所述第三仿真频率点与所述第三基准频率点一致时,判断所述第一仿真曲线与所述第一基准曲线是否一致;当所述第二仿真频率点与所述第二基准频率点不一致时,修正所述线性振动马达的初始劲度系数,生成所述线性振动马达的修正劲度系数;和/或当所述第三仿真频率点与所述第三基准频率点不一致时,修正所述触控悬浮系统的初始劲度系数,生成所述触控悬浮系统的修正劲度系数;当所述第一仿真曲线与所述第一基准曲线一致时,判断所述第三仿真曲线与所述第三基准曲线是否一致;当所述第一仿真曲线与所述第一基准曲线不一致时,修正所述线性振动马达的初始直流参数,生成所述线性振动马达的修正直流参数;当所述第三仿真曲线与所述第三基准曲线是一致时,判断所述第二仿真曲线与所述第二基准曲线是否一致;当所述第三仿真曲线与所述第三基准曲线不一致时,修正所述线性振动马达的初始等效电感,生成所述线性振动马达的修正等效电感;当所述第二仿真曲线与所述第二基准曲线不一致时,修正所述线性振动马达的初始阻尼系数以及触控悬浮系统的初始阻尼系数,生成所述线性振动马达的修正阻尼系数以及触控悬浮系统的修正阻尼系数。
在本发明一实施例中,所述当所述第二仿真频率点与所述第二基准频率点不一致时,修正所述线性振动马达的初始劲度系数进一步包括:当所述第二仿真频率点数值与所述第二基准频率点数值之差的大于第一预设值时,所述第一预设值为正数,将所述线性振动马达的初始劲度系数减去第一数值,生成线性振动马达的修正劲度系数;当所述第二仿真频率点数值与所述第二基准频率点数值之差小于所述第一预设值的相反数时,将所述线性振动马达的初始劲度系数增大第二数值,生成线性振动马达的修正劲度系数;和/或,当所述第三仿真频率点与所述第三基准频率点不一致时,修正所述触控悬浮系统的初始劲度系数进一步包括:当所述第三仿真频率点数值与所述第三基准频率点数值之差大于第二预设值时,所述第二预设值为正数,将所述触控悬浮系统的初始劲度系数减去第三数值,生成触控悬浮系统的修正劲度系数;当所述第三仿真频率点数值与所述第三基准频率点数值之差小于所述第二预设值的相反数时,将所述触控悬浮系统的初始劲度系数增加第四数值,生成触控悬浮系统的修正劲度系数。
在本发明一实施例中,所述第一数值以及所述第二数值等于所述线性振动马达的基准劲度系数与所述线性振动马达的仿真劲度系数之差;所述第三数值以及所述第四数值等于所述触控悬浮系统的基准劲度系数与所述触控悬浮系统的仿真劲度系数之差。
在本发明一实施例中,所述当所述第一仿真曲线与所述第一基准曲线不一致时,修正所述线性振动马达的初始直流参数,进一步包括:当所述第一仿真曲线与所述第一基准曲线之间的偏差大于第三预设值时,将所述线性振动马达的初始直流参数增大第五数值,生成所述线性振动马达的修正直流参数,所述第三预设值为正数;或当所述第一仿真曲线与所述第一基准曲线之间的偏差小于所述第三预设值的相反数时,将所述线性振动马达的初始直流参数减小第六数值,生成所述线性振动马达的修正直流参数。
在本发明一实施例中,当所述第三仿真曲线与所述第三基准曲线不一致时,修正所述线性振动马达的初始等效电感,进一步包括:当所述第三仿真曲线与所述第三基准曲线之间的偏差大于第四预设值时,将所述线性振动马达的初始等效电感增大第七数值,生成所述线性振动马达的修正等效电感,所述第四预设值为正数;或当所述第三仿真曲线与所述第三基准曲线之间的偏差小于所述第四预设值的相反数时,将所述线性振动马达的初始直流参数减小第八数值,生成所述线性振动马达的修正直流参数。
在本发明一实施例中,当所述第二仿真曲线与所述第二基准曲线不一致时,修正所述线性振动马达的初始阻尼系数以及触控悬浮系统的初始阻尼系数,进一步包括:当所述第二仿真曲线与第二基准曲线之间的偏差大于第五预设值时,将所述线性振动马达的初始阻尼系数以及触控悬浮系统的初始阻尼系数分别增大第九数值,生成所述线性振动马达的修正阻尼系数以及触控悬浮系统的修正阻尼系数,所述第五预设值为正数;或当所述第二仿真曲线与第二基准曲线之间的偏差小于第五预设值的相反数时,将所述线性振动马达的初始阻尼系数以及触控悬浮系统的初始阻尼系数分别减小第十数值,生成所述线性振动马达的修正阻尼系数以及触控悬浮系统的修正阻尼系数。
作为本发明的第二方面,本发明实施例提供了一种带线性振动马达的触控悬浮系统的等效参数修正系统,包括:触控悬浮系统进行频响测试模块,用于对带线性振动马达的触控悬浮系统进行频响测试,获取基准频率曲线;仿真模块,用于将初始等效参数输入至仿真模型进行频响仿真测试,获取仿真频率曲线;判断单元,用于依次分别判断所述第二仿真频率点与第二基准频率点是否一致以及第三仿真频率点与第四基准频率点是否一致,第一仿真曲线与所述第一基准曲线是否一致,第三仿真曲线与第三基准曲线是否一致,以及第二仿真曲线与第二基准曲线是否一致;修正单元,用于当上述五个判断项目的判断结果中任何一个判断项目的判断结果为不一致时,按照预设对应关系修正与所述判断项目对应的初始等效参数;以及输出单元,用于输出修正等效参数。
作为本发明的第三方面,本发明实施例提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行前述所述一种带线性振动马达的触控悬浮系统的等效参数修正方法。
作为本发明的第四方面,本发明实施例提供了一种电子设备,所述电子设备包括:处理器;用于存储所述处理器可执行指令的存储器;其中,所述处理器,用于执行前述所述的一种带线性振动马达的触控悬浮系统的等效参数修正方法。
有益效果
本发明实施例提供的一种悬浮系统等效参数修正方法及系统、介质、电子设备,以实际带线性振动马达的触控悬浮系统的实际频响曲线作为参考基准,根据带线性振动马达的触控悬浮系统的仿真频响曲线,分段式的对等效参数进行修正,为带线性振动马达的触控悬浮系统的仿真建模提供准确仿真参数,从而使得仿真频响曲线与实际频响曲线最大可能的接近,提高线性振动马达的短信号的仿真精度。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明一实施例提供的一种带线性振动马达的触控悬浮系统的等效参数修正方法的流程图;
图2a以及图2b为本发明另一实施例提供的一种带线性振动马达的触控悬浮系统的等效参数修正方法的流程图;
图3a、图3b以及图3c为本发明另一实施例提供的一种带线性振动马达的触控悬浮系统的等效参数修正方法的流程图;
图4为本发明另一实施例提供的一种带线性振动马达的触控悬浮系统的等效参数修正方法的流程图;
图5所示为本发明一实施例提供的一种带线性振动马达的触控悬浮系统的等效参数修正系统的结构示意图。
本发明的实施方式
为了更好的理解本发明的技术方案,下面结合附图对本发明实施例进行详细描述。
应当明确,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图1所示为本发明一实施例提供的一种带线性振动马达的触控悬浮系统的等效参数修正方法的流程示意图,如图1所示,该带线性振动马达的触控悬浮系统的等效参数修正方法包括如下步骤:
步骤S101:对带线性振动马达的触控悬浮系统进行频响测试,获取基准频率曲线,在基准频率由小到大的方向上,基准频率曲线包括依次包括第一基准曲线、第二基准频率点、第二基准曲线、第三基准频率点以及第三基准曲线;
步骤S102:将初始等效参数输入至仿真模型进行频响仿真测试,获取仿真频率曲线,在仿真频率由小到大的方向上,仿真频率曲线依次包括第一仿真曲线、第二仿真频率点、第二仿真曲线、第三仿真频率点以及第三仿真曲线;
步骤S103:依次分别判断第二仿真频率点与第二基准频率点是否一致以及第三仿真频率点与第四基准频率点是否一致,第一仿真曲线与第一基准曲线是否一致,第三仿真曲线与第三基准曲线是否一致,以及第二仿真曲线与第二基准曲线是否一致,当上述五个判断项目的判断结果中任何一个判断项目的判断结果为不一致时,按照预设对应关系修正与判断项目对应的初始等效参数,生成修正等效参数;
其中,对应预设关系为每个判断项目与等效参数之间的对应关系,例如第二仿真频率点以及第三仿真频率点对应等效参数中的线性振动马达的初始劲度系数K1、触控悬浮系统的初始劲度系数k2;第一仿真曲线对应的为线性振动马达的初始直流参数Ri。
步骤S104:输出修正等效参数。
步骤S104中输出的等效参数可以分为两种:一种是上述五个判断项目的判断结果均是一致时,也就是说对初始等效参数并没有进行任何修正,输出的即为初始等效参数;另一中是上述五个判断项目中的至少一个判断项目的结果是不一致时,也就是说对初始等效参数进行了至少一次修正,输出的等效参数为修正等效参数,该输出的修正等效参数包括修正的参数也包括未修正的参数。
本发明实施例提供的一种带线性振动马达的触控悬浮系统等效参数修正方法,以实际带线性振动马达的触控悬浮系统的实际频响曲线作为参考基准,根据带线性振动马达的触控悬浮系统的仿真频响曲线,分段式的对等效参数进行修正,为带线性振动马达的触控悬浮系统的仿真建模提供准确仿真参数,从而使得仿真频响曲线与实际频响曲线最大可能的接近,提高线性振动马达的短信号的仿真精度。
在本发明一实施例中,初始等效参数包括:线性振动马达的质量m1、线性振动马达的电磁力系数BL、线性振动马达的初始直流参数Ri,线性振动马达的初始阻尼系数C1、线性振动马达的初始等效电感Li、线性振动马达的初始劲度系数K1、触控悬浮系统的质量m2、触控悬浮系统的初始劲度系数k2以及触控悬浮系统的初始阻尼系数C2;如图2a以及图2b所示,步骤S103具体包括如下步骤:
步骤S1031:判断第二仿真频率点与第二基准频率点是否一致、以及第三仿真频率点与第三基准频率点是否一致;
其中,第二仿真频率点的数值为线性振动马达的仿真谐振频率,第三仿真频率点的数值为触控悬浮系统的仿真固有频率;第二基准频率点的数值为线性振动马达的基准谐振频率,第三基准频率点的数值为触控悬浮系统的基准固有频率。
步骤S1032:当第二仿真频率点与第二基准频率点一致以及第三仿真频率点与第三基准频率点一致时,判断第一仿真曲线与第一基准曲线是否一致;
步骤S1033:当第二仿真频率点与第二基准频率点不一致时,修正线性振动马达的初始劲度系数K1,生成线性振动马达的修正劲度系数K1;和/或当第三仿真频率点与第三基准频率点不一致时,修正触控悬浮系统的初始劲度系数k2,生成触控悬浮系统的修正劲度系数k2;
步骤S1034:当第一仿真曲线与第一基准曲线一致时,判断第三仿真曲线与第三基准曲线是否一致;
步骤S1035:当第一仿真曲线与第一基准曲线不一致时,修正线性振动马达的初始直流参数Ri,生成线性振动马达的修正直流参数Ri;
步骤S1036:当第三仿真曲线与第三基准曲线是一致时,判断第二仿真曲线与第二基准曲线是否一致;
步骤S1037:当第三仿真曲线与第三基准曲线不一致时,修正线性振动马达的初始等效电感Li,生成线性振动马达的修正等效电感Li;
步骤S1038:当第二仿真曲线与第二基准曲线不一致时,修正线性振动马达的初始阻尼系数C1以及触控悬浮系统的初始阻尼系数C2,生成线性振动马达的修正阻尼系数C1以及触控悬浮系统的修正阻尼系数C2。
本发明实施例提供的一种带线性振动马达的触控悬浮系统等效参数修正方法,当第一仿真曲线与第一基准曲线不一致时,对应修正初始等效参数中的线性振动马达的初始直流参数Ri;第二仿真频率点与第二基准仿真频率点不一致时,对应修正初始等效参数中的线性振动马达的初始劲度系数K1;第三仿真频率点与第三基准频率点不一致时,对应修正初始等效参数中的触控悬浮系统的初始劲度系数k2;第二仿真曲线与第二基准曲线不一致时,对应修正初始等效参数中的线性振动马达的初始阻尼系数C1以及触控悬浮系统的初始阻尼系数C2;第三仿真曲线与第三基准曲线不一致时,对应修正线性振动马达的初始等效电感Li,采用分段式对等效参数进行修正的同时,还针对性的对等效参数中的对应的等效参数进行修正,提高了修正的准确率,为带线性振动马达的触控悬浮系统的仿真建模提供准确仿真参数,从而使得仿真频响曲线与实际频响曲线最大可能的接近,提高线性振动马达的短信号的仿真精度。
在本发明一实施例中,如图3a、图3b以及图3c所示,步骤S1031:判断第二仿真频率点与第二基准频率点是否一致、以及第三仿真频率点与第三基准频率点是否一致,具体包括如下步骤:
步骤S10311:判断第二仿真频率点数值 f1 1与所述第二基准频率点数值 f1之差的绝对值,即| f1 1- f1|是否大于第一预设值(第一预设值为正数);
当| f1 1- f1|小于或者等于第一预设值,即第二仿真频率点与第二基准频率点一致,执行步骤S10312:即判断第三仿真频率点数值 f2 1与所述第三基准频率点数值 f2之差的绝对值,即| f2 1- f2|是否大于第二预设值(第二预设值为正数);
步骤S10313:当| f1 1- f1|大于第一预设值时,即第二仿真频率点与第二基准频率点不一致,那么判断第二仿真频率点数值 f1 1与所述第二基准频率点数值 f1之差 f1 1- f1是否大于第一预设值,即判断第二仿真频率点是否高于第二基准频率点;
f1 1- f1大于第一预设值,由于第一预设值为正数,那么 f1 1- f1大于第一预设值时,即为第二仿真频率点高于第二基准频率点,那么此时执行步骤S10331:将线性振动马达的初始劲度系数K1减去第一数值,生成线性振动马达的修正劲度系数K1 1
其中,在步骤S10331中,第一数值
Figure dest_path_image001
的计算公式为:
Figure dest_path_image002
f1 1- f1不大于第一预设值,由于第一预设值为正数,且| f1 1- f1|大于第一预设值, f1 1- f1小于第一预设值的相反数,因此 f1 1- f1不大于第一预设值时,即为第二仿真频率点低于第二基准频率点,那么此时执行步骤S10332:将线性振动马达的初始劲度系数K1增加第二数值,生成线性振动马达的修正劲度系数K1 1
其中,第二数值的计算方式如第一数值的计算方式相同,在此不再做赘述。
步骤S10312:判断第三仿真频率点数值 f2 1与所述第三基准频率点数值 f2之差的绝对值,即| f2 1- f2|是否大于第二预设值(第二预设值为正数);
当| f2 1- f2|小于或者等于第二预设值,即第三仿真频率点与第三基准频率点一致,执行步骤S1032:判断第一仿真曲线与第一基准曲线是否一致;
步骤S10314:当| f2 1- f2|大于第二预设值时,即第三仿真频率点与第三基准频率点不一致,那么判断第三仿真频率点数值 f2 1与所述第三基准频率点数值 f2之差 f2 1- f2是否大于第二预设值,即判断第三仿真频率点是否高于第三基准频率点;
f2 1- f2大于第一预设值,由于第二预设值为正数,那么 f2 1- f2大于第二预设值时,即为第三仿真频率点高于第三基准频率点,那么此时执行步骤S10333:将触控悬浮系统的初始劲度系数K2减去第三数值,生成触控悬浮系统的修正劲度系数K2 1
其中,第三数值
Figure dest_path_image003
的计算公式为:
Figure dest_path_image004
f2 1- f2不大于第一预设值,由于第二预设值为正数,| f2 1- f2|大于第二预设值,因此 f2 1- f2小于第二预设值的相反数,那么 f2 1- f2不大于第二预设值时,即为第三仿真频率点低于第三基准频率点,那么此时执行步骤S10334:将触控悬浮系统的初始劲度系数K2增加第四数值,生成触控悬浮系统的修正劲度系数K2 1
其中,第四数值的计算方式如第三数值的计算方式相同,在此不再做赘述。
其中步骤S10331-步骤S10334为步骤S1033的具体参数修正步骤。
步骤S1031具体步骤是具体介绍了第二仿真频率点与第二基准频率点是否一致,以及第三仿真频率点与第三基准频率点是否一致的具体过程,而步骤S1033是当第二仿真频率点与第二基准频率点不一致,以及第三仿真频率点与第三基准频率点不一致时,修正等效参数的具体过程。
而当第二仿真频率点与第二基准频率点一致,以及第三仿真频率点与第三基准频率点一致时,则执行步骤S1032:即判断第一仿真曲线与第一基准曲线是否一致;而步骤S1032具体包括以下步骤:
步骤S10321:判断第一仿真曲线与第一基准曲线之间的偏差的绝对值是否大于第三预设值(第三预设值为正数);
当第一仿真曲线与第一基准曲线之间的偏差的绝对值小于或者等于第三预设值时,即第一仿真曲线与第一基准曲线一致,即执行步骤S1034:判断第三仿真曲线与第三基准曲线是否一致;
步骤S10322:当第一仿真曲线与第一基准曲线之间的偏差的绝对值大于第三预设值时,即第一仿真曲线与第一基准曲线不一致,判断第一仿真曲线与第一基准曲线之间的偏差是否大于第三预设值;
当第一仿真曲线与第一基准曲线之间的偏差大于第三预设值时,由于第三预设值为正数,且第一仿真曲线与第一基准曲线之间的偏差绝对值大于第三预设值时,即为第一仿真曲线高于第一基准曲线,那么执行步骤S10351:将线性振动马达的初始直流参数Ri增大第五数值,生成线性振动马达的修正直流参数Ri 1
当第一仿真曲线与第一基准曲线之间的偏差小于第三预设值时,由于第三预设值为正数,且第一仿真曲线与第一基准曲线之间的偏差绝对值大于第三预设值时,因此第一仿真曲线与第一基准曲线之间的偏差小于第三预设值的相反数,即第一仿真曲线低于第一基准曲线,那么执行步骤S10352:将线性振动马达的初始直流参数Ri减小第六数值,生成线性振动马达的修正直流参数Ri 1
其中,步骤S10351以及步骤S10352为步骤S1035的具体步骤,即根据不同的情况针对性的修正线性振动马达的初始直流参数Ri。
步骤S1032具体步骤是具体介绍了第一仿真曲线与第一基准曲线是否一致的具体过程,而步骤S1035是当第一仿真曲线与第一基准曲线不一致时,修正等效参数的具体过程。
当步骤S1032中第一仿真曲线与第一基准曲线一致时,执行步骤S1034,即判断第三仿真曲线与第三基准曲线是否一致;步骤S1034的具体包括以下步骤:
步骤S10341:判断第三仿真曲线与第三基准曲线之间的偏差的绝对值是否大于第四预设值(第四预设值为正数);
当第三仿真曲线与第三基准曲线之间的偏差的绝对值小于或者等于第四预设值时,即第三仿真曲线与第三基准曲线一致,即执行步骤S1036:判断第二仿真曲线与第二基准曲线是否一致;
步骤S10342:当第三仿真曲线与第三基准曲线之间的偏差的绝对值大于第四预设值时,即第三仿真曲线与第三基准曲线不一致,判断第三仿真曲线与第三基准曲线之间的偏差是否大于第四预设值;
当第三仿真曲线与第三基准曲线之间的偏差大于第四预设值时,由于第四预设值为正数,且第三仿真曲线与第三基准曲线之间的偏差绝对值大于第四预设值时,即为第三仿真曲线高于第三基准曲线,那么执行步骤S10371:将线性振动马达的初始等效电感Li增大第七数值,生成线性振动马达的修正等效电感Li 1
当第三仿真曲线与第三基准曲线之间的偏差小于第四预设值时,由于第四预设值为正数,且第三仿真曲线与第三基准曲线之间的偏差绝对值大于第四预设值时,因此第三仿真曲线与第三基准曲线之间的偏差小于第四预设值的相反数,即第三仿真曲线低于第三基准曲线,那么执行步骤S10372:将线性振动马达的初始等效电感Li减小第八数值,生成线性振动马达的修正等效电感Li 1
其中,步骤S10371以及步骤S10372为步骤S1037的具体步骤,即根据不同的情况针对性的修正线性振动马达的初始等效电感Li。
步骤S1034具体步骤是具体介绍了第三仿真曲线与第三基准曲线是否一致的具体过程,而步骤S1037是当第三仿真曲线与第三基准曲线不一致时,修正等效参数的具体过程。
当步骤S1034中第三仿真曲线与第三基准曲线一致时,执行步骤S1036,即判断第二仿真曲线与第二基准曲线是否一致;步骤S1036的具体包括以下步骤:
步骤S10361:判断第二仿真曲线与第二基准曲线之间的偏差的绝对值是否大于第五预设值;
当第二仿真曲线与第二基准曲线之间的偏差的绝对值大于第五预设值时,即第二仿真曲线与第二基准曲线不一致,执行步骤S10362:判断第二仿真曲线与第二基准曲线之间的偏差是否大于第五预设值;
当第二仿真曲线与第二基准曲线之间的偏差大于第五预设值时,由于第五预设值为正数,且第二仿真曲线与第二基准曲线之间的偏差绝对值大于第五预设值时,即为第二仿真曲线高于第二基准曲线,那么执行步骤S103181:将线性振动马达的初始阻尼系数C1以及触控悬浮系统的初始阻尼系数C2分别增大第九数值,生成线性振动马达的修正阻尼系数C1 1以及触控悬浮系统的修正阻尼系数C2 1
当第二仿真曲线与第二基准曲线之间的偏差小于第五预设值时,由于第五预设值为正数,且第二仿真曲线与第二基准曲线之间的偏差绝对值大于第五预设值时,因此第二仿真曲线与第二基准曲线之间的偏差小于第五预设值的相反数,即第二仿真曲线低于第二基准曲线,那么执行步骤S10382:将线性振动马达的初始阻尼系数C1以及触控悬浮系统的初始阻尼系数C2分别减小第九数值,生成线性振动马达的修正阻尼系数C1 1以及触控悬浮系统的修正阻尼系数C2 1
其中,步骤S10381以及步骤S10382为步骤S1038的具体步骤,即根据不同的情况针对性的修正线性振动马达的初始阻尼系数C1以及触控悬浮系统的初始阻尼系数C2。
步骤S1036具体步骤是具体介绍了第二仿真曲线与第二基准曲线是否一致的具体过程,而步骤S1038是当第二仿真曲线与第二基准曲线不一致时,修正等效参数的具体过程。
当完成对初始等效参数进行修正之后,输出的修正参数可能全部为初始等效参数(即五个判断项目中全部都是一致的),也有可能为部分为初始等效参数,部分为修正等效参数,例如输出的修正参数为:线性振动马达的修正阻尼系数C1 1、触控悬浮系统的修正阻尼系数C2 1、线性振动马达的修正等效电感Li 1、线性振动马达的修正直流参数Ri 1、线性振动马达的修正劲度系数K1 1、触控悬浮系统的修正劲度系数K2 1、线性振动马达的质量m1、线性振动马达的电磁力系数BL、触控悬浮系统的质量m2,即初始等效参数中的线性振动马达的初始直流参数Ri,线性振动马达的初始阻尼系数C1、线性振动马达的初始等效电感Li、线性振动马达的初始劲度系数K1、、触控悬浮系统的初始劲度系数k2以及触控悬浮系统的初始阻尼系数C2全部进行了修正。
当输出修正后的等效参数时,当将修正后的等效参数输入仿真模型中进行仿真测试时,仿真的系统响应频响曲线与实际结构频响曲线可能依然存在偏差,那么为了尽可能的降低偏差,提高后续线性振动马达短信号的仿真精度,当完成一次对等效参数的修正后,即步骤S101-步骤S104全部完成后,再一次进行修正,即步骤S104输出修正等效参数后再将修正等效参数输入仿真模型中进行仿真测试,即执行步骤S10,进行第二次的等效参数修正。
至于等效参数的修正次数可以根据实际情况来进行选择,例如当修正第二次完毕之后,进行第三次的修正时,五个判断项目均是一致,即第三次修正的过程已经不会对等效参数进行修正了,因此也不必再进行第四次修正了。但是修正第二次完毕之后,进行第三次的修正时,五个判断项目中依然有三个以上判断项目为不一致,那么当第三次修正之后,还需要再进行一次第四次修正。
当然,对等效参数进行多次修正时,可以当等效参数全部修正一次之后再进行一次统一修正,也可以为:当每一项等效参数修正一次之后即可返回进行第二次修正,直到该项的等效参数修正后的判断项目为一致时,再进行下一项的等效参数的修正,如图4所示:
当第二仿真频率点与第二基准频率点不一致,以及第三仿真频率点与第三基准频率点不一致时,对触控悬浮系统的初始劲度系数K2以及线性振动马达的初始劲度系数K1完成修正之后,先不执行步骤S1032:即判断第一仿真曲线与第一基准曲线是否一致;而是将修正后的触控悬浮系统的修正劲度系数K2 1以及线性振动马达的修正劲度系数K1 1与线性振动马达的质量m1、线性振动马达的电磁力系数BL、线性振动马达的初始直流参数Ri,线性振动马达的初始阻尼系数C1、触控悬浮系统的质量m2以及触控悬浮系统的初始阻尼系数C2再一次输入仿真模型中进行仿真测试,获取仿真曲线,即执行步骤S102,然后再执行步骤S103中的步骤S1031:判断第二仿真频率点与第二基准频率点是否一致、以及第三仿真频率点与第三基准频率点是否一致;然后再继续进行执行后续步骤。直到第二仿真频率点与第二基准频率点一致、以及第三仿真频率点与第三基准频率点一致时再进行修正其他等效参数。
作为本发明的第二面,图5所示为本发明一实施例提供的一种带线性振动马达的触控悬浮系统的等效参数修正系统的结构示意图,如图5所示,该带线性振动马达的触控悬浮系统的等效参数修正系统,包括:触控悬浮系统进行频响测试模块1,用于对带线性振动马达的触控悬浮系统进行频响测试,获取基准频率曲线;仿真模型2,用于将初始等效参数输入至仿真模型进行频响仿真测试,获取仿真频率曲线;判断单元3,用于依次分别判断第二仿真频率点与第二基准频率点是否一致以及第三仿真频率点与第四基准频率点是否一致,第一仿真曲线与第一基准曲线是否一致,第三仿真曲线与第三基准曲线是否一致,以及第二仿真曲线与第二基准曲线是否一致;修正单元4,用于当上述五个判断项目的判断结果中任何一个判断项目的判断结果为不一致时,按照预设对应关系修正与判断项目对应的初始等效参数;以及输出单元5,用于输出修正等效参数。
本发明实施例提供的一种悬浮系统等效参数修正系统,以实际带线性振动马达的触控悬浮系统的实际频响曲线作为参考基准,根据带线性振动马达的触控悬浮系统的仿真频响曲线,分段式的对等效参数进行修正,为带线性振动马达的触控悬浮系统的仿真建模提供准确仿真参数,从而使得仿真频响曲线与实际频响曲线最大可能的接近,提高线性振动马达的短信号的仿真精度。
示例性电子设备
作为本发明的第三方面,本发明实施例还提供了一种电子设备,包括一个或多个处理器和存储器。
处理器可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备中的其他组件以执行期望的功能。
存储器可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器可以运行上述所述程序指令,以实现上文所述的本申请的各个实施例的一种悬浮系统等效参数修正的方法以及/或者其他期望的功能。在所述计算机可读存储介质中还可以存储诸如输入信号、信号分量、噪声分量等各种内容。
示例性计算机程序产品和计算机可读存储介质
除了上述方法和设备以外,本申请的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书中描述的根据本申请图1至图5所示实施例的一种悬浮系统等效参数修正的方法的步骤。
所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
此外,本申请的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性方法”部分中描述的根据本申请各种实施例的功率参数调整方法或强化学习模型的训练方法中的步骤。
所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。
以上结合具体实施例描述了本申请的基本原理,但是,需要指出的是,在本申请中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本申请的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本申请为必须采用上述具体的细节来实现。
本申请中涉及的器件、装置、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、装置、设备、系统。
还需要指出的是,在本申请的装置、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本申请的等效方案。
提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本申请。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本申请的范围。因此,本申请不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (10)

  1. 一种带线性振动马达的触控悬浮系统的等效参数修正方法,其特征在于,包括:
    对所述带线性振动马达的触控悬浮系统进行频响测试,获取基准频率曲线,在所述基准频率由小到大的方向上,所述基准频率曲线包括依次包括第一基准曲线、第二基准频率点、第二基准曲线、第三基准频率点以及第三基准曲线;
    将初始等效参数输入至仿真模型进行频响仿真测试,获取仿真频率曲线,在所述仿真频率由小到大的方向上,所述仿真频率曲线依次包括第一仿真曲线、第二仿真频率点、第二仿真曲线、第三仿真频率点以及第三仿真曲线;
    依次分别判断所述第二仿真频率点与所述第二基准频率点是否一致以及所述第三仿真频率点与所述第四基准频率点是否一致,所述第一仿真曲线与所述第一基准曲线是否一致,所述第三仿真曲线与所述第三基准曲线是否一致,以及所述第二仿真曲线与所述第二基准曲线是否一致,当上述五个判断项目的判断结果中任何一个判断项目的判断结果为不一致时,按照预设对应关系修正与所述判断项目对应的初始等效参数,生成修正等效参数;以及
    输出修正等效参数。
  2. 根据权利要求1所述的修正方法,其特征在于,所述初始等效参数包括:所述线性振动马达的质量、所述线性振动马达的电磁力系数、所述线性振动马达的初始直流参数,所述线性振动马达的初始阻尼系数、所述线性振动马达的初始等效电感、所述线性振动马达的初始劲度系数、所述触控悬浮系统的质量、所述触控悬浮系统的初始劲度系数以及所述触控悬浮系统的初始阻尼系数;
    依次分别判断所述第二仿真频率点与所述第二基准频率点是否一致以及所述第三仿真频率点与所述第四基准频率点是否一致,所述第一仿真曲线与所述第一基准曲线是否一致,所述第三仿真曲线与所述第三基准曲线是否一致,以及所述第二仿真曲线与所述第二基准曲线是否一致,当上述五个判断项目的判断结果中任何一个判断项目的判断结果为不一致时,按照预设对应关系修正与所述判断项目对应的初始等效参数,生成修正等效参数进一步包括:
    判断所述第二仿真频率点与所述第二基准频率点是否一致、以及所述第三仿真频率点与所述第三基准频率点是否一致;
    当所述第二仿真频率点与所述第二基准频率点一致以及所述第三仿真频率点与所述第三基准频率点一致时,判断所述第一仿真曲线与所述第一基准曲线是否一致;
    当所述第二仿真频率点与所述第二基准频率点不一致时,修正所述线性振动马达的初始劲度系数,生成所述线性振动马达的修正劲度系数;和/或当所述第三仿真频率点与所述第三基准频率点不一致时,修正所述触控悬浮系统的初始劲度系数,生成所述触控悬浮系统的修正劲度系数;
    当所述第一仿真曲线与所述第一基准曲线一致时,判断所述第三仿真曲线与所述第三基准曲线是否一致;
    当所述第一仿真曲线与所述第一基准曲线不一致时,修正所述线性振动马达的初始直流参数,生成所述线性振动马达的修正直流参数;
    当所述第三仿真曲线与所述第三基准曲线是一致时,判断所述第二仿真曲线与所述第二基准曲线是否一致;
    当所述第三仿真曲线与所述第三基准曲线不一致时,修正所述线性振动马达的初始等效电感,生成所述线性振动马达的修正等效电感;
    当所述第二仿真曲线与所述第二基准曲线不一致时,修正所述线性振动马达的初始阻尼系数以及触控悬浮系统的初始阻尼系数,生成所述线性振动马达的修正阻尼系数以及触控悬浮系统的修正阻尼系数。
  3. 根据权利要求2所述的修正方法,其特征在于,
    所述当所述第二仿真频率点与所述第二基准频率点不一致时,修正所述线性振动马达的初始劲度系数进一步包括:
    当所述第二仿真频率点数值与所述第二基准频率点数值之差的大于第一预设值时,所述第一预设值为正数,将所述线性振动马达的初始劲度系数减去第一数值,生成线性振动马达的修正劲度系数;
    当所述第二仿真频率点数值与所述第二基准频率点数值之差小于所述第一预设值的相反数时,将所述线性振动马达的初始劲度系数增大第二数值,生成线性振动马达的修正劲度系数;
    和/或,
    当所述第三仿真频率点与所述第三基准频率点不一致时,修正所述触控悬浮系统的初始劲度系数进一步包括:
    当所述第三仿真频率点数值与所述第三基准频率点数值之差大于第二预设值时,所述第二预设值为正数,将所述触控悬浮系统的初始劲度系数减去第三数值,生成触控悬浮系统的修正劲度系数;
    当所述第三仿真频率点数值与所述第三基准频率点数值之差小于所述第二预设值的相反数时,将所述触控悬浮系统的初始劲度系数增加第四数值,生成触控悬浮系统的修正劲度系数。
  4. 根据权利要求3所述的修正方法,其特征在于,所述第一数值以及所述第二数值等于所述线性振动马达的基准劲度系数与所述线性振动马达的仿真劲度系数之差;
    所述第三数值以及所述第四数值等于所述触控悬浮系统的基准劲度系数与所述触控悬浮系统的仿真劲度系数之差。
  5. 根据权利要求2所述的修正方法,其特征在于,
    所述当所述第一仿真曲线与所述第一基准曲线不一致时,修正所述线性振动马达的初始直流参数,进一步包括:
    当所述第一仿真曲线与所述第一基准曲线之间的偏差大于第三预设值时,将所述线性振动马达的初始直流参数增大第五数值,生成所述线性振动马达的修正直流参数,所述第三预设值为正数;或
    当所述第一仿真曲线与所述第一基准曲线之间的偏差小于所述第三预设值的相反数时,将所述线性振动马达的初始直流参数减小第六数值,生成所述线性振动马达的修正直流参数。
  6. 根据权利要求2所述的修正方法,其特征在于,所述
    当所述第三仿真曲线与所述第三基准曲线不一致时,修正所述线性振动马达的初始等效电感,进一步包括:
    当所述第三仿真曲线与所述第三基准曲线之间的偏差大于第四预设值时,将所述线性振动马达的初始等效电感增大第七数值,生成所述线性振动马达的修正等效电感,所述第四预设值为正数;或
    当所述第三仿真曲线与所述第三基准曲线之间的偏差小于所述第四预设值的相反数时,将所述线性振动马达的初始直流参数减小第八数值,生成所述线性振动马达的修正直流参数。
  7. 根据权利要求2所述的修正方法,其特征在于,所述
    当所述第二仿真曲线与所述第二基准曲线不一致时,修正所述线性振动马达的初始阻尼系数以及触控悬浮系统的初始阻尼系数,进一步包括:
    当所述第二仿真曲线与第二基准曲线之间的偏差大于第五预设值时,将所述线性振动马达的初始阻尼系数以及触控悬浮系统的初始阻尼系数分别增大第九数值,生成所述线性振动马达的修正阻尼系数以及触控悬浮系统的修正阻尼系数,所述第五预设值为正数;或
    当所述第二仿真曲线与第二基准曲线之间的偏差小于第五预设值的相反数时,将所述线性振动马达的初始阻尼系数以及触控悬浮系统的初始阻尼系数分别减小第十数值,生成所述线性振动马达的修正阻尼系数以及触控悬浮系统的修正阻尼系数。
  8. 一种带线性振动马达的触控悬浮系统的等效参数修正系统,其特征在于,包括:
    触控悬浮系统进行频响测试模块,用于对带线性振动马达的触控悬浮系统进行频响测试,获取基准频率曲线;
    仿真模块,用于将初始等效参数输入至仿真模型进行频响仿真测试,获取仿真频率曲线;
    判断单元,用于依次分别判断所述第二仿真频率点与第二基准频率点是否一致以及第三仿真频率点与第四基准频率点是否一致,第一仿真曲线与所述第一基准曲线是否一致,第三仿真曲线与第三基准曲线是否一致,以及第二仿真曲线与第二基准曲线是否一致;
    修正单元,用于当上述五个判断项目的判断结果中任何一个判断项目的判断结果为不一致时,按照预设对应关系修正与所述判断项目对应的初始等效参数;以及
    输出单元,用于输出修正等效参数。
  9. 一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行前述所述的权利要求1-7任一项所述的一种带线性振动马达的触控悬浮系统的等效参数修正方法。
  10. 一种电子设备,其特征在于,所述电子设备包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器,用于执行前述所述的权利要求1-7任一项所述的一种带线性振动马达的触控悬浮系统的等效参数修正方法。
PCT/CN2020/128833 2020-06-28 2020-11-13 悬浮系统等效参数修正方法及系统、介质、电子设备 WO2022000936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010601721.3A CN111931335B (zh) 2020-06-28 2020-06-28 悬浮系统等效参数修正方法及系统、介质、电子设备
CN202010601721.3 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022000936A1 true WO2022000936A1 (zh) 2022-01-06

Family

ID=73317483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128833 WO2022000936A1 (zh) 2020-06-28 2020-11-13 悬浮系统等效参数修正方法及系统、介质、电子设备

Country Status (2)

Country Link
CN (1) CN111931335B (zh)
WO (1) WO2022000936A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114722689A (zh) * 2022-06-09 2022-07-08 淄博高新技术产业开发区Mems研究院 Mems悬臂梁器件结构优化方法、装置和计算机设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112433635B (zh) * 2020-11-24 2022-07-01 瑞声新能源发展(常州)有限公司科教城分公司 车载触控装置的线性参数的测试方法及装置
CN116341171A (zh) * 2021-12-24 2023-06-27 武汉市聚芯微电子有限责任公司 一种马达工装振动的评估方法及系统
CN116341169A (zh) * 2021-12-24 2023-06-27 武汉市聚芯微电子有限责任公司 一种马达驱动波形的设计方法及装置
CN116880687B (zh) * 2023-06-07 2024-03-19 黑龙江科技大学 一种基于单目多算法的悬浮触控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140028221A1 (en) * 2012-07-24 2014-01-30 Apple Inc. Method of Adaptively Tuning Motor Speed
US20150137713A1 (en) * 2013-11-19 2015-05-21 Texas Instruments Incorporated Adaptive linear resonance actuator controller
CN109163794A (zh) * 2018-08-15 2019-01-08 瑞声科技(新加坡)有限公司 线性振动马达带宽的检测方法
CN110058679A (zh) * 2018-12-29 2019-07-26 瑞声科技(新加坡)有限公司 一种马达的激励信号搜索方法及电子设备
CN110146810A (zh) * 2019-04-23 2019-08-20 瑞声科技(新加坡)有限公司 一种线性马达测试参数的确定方法及装置
CN110531852A (zh) * 2019-08-21 2019-12-03 维沃移动通信有限公司 信息处理方法及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140028221A1 (en) * 2012-07-24 2014-01-30 Apple Inc. Method of Adaptively Tuning Motor Speed
US20150137713A1 (en) * 2013-11-19 2015-05-21 Texas Instruments Incorporated Adaptive linear resonance actuator controller
CN109163794A (zh) * 2018-08-15 2019-01-08 瑞声科技(新加坡)有限公司 线性振动马达带宽的检测方法
CN110058679A (zh) * 2018-12-29 2019-07-26 瑞声科技(新加坡)有限公司 一种马达的激励信号搜索方法及电子设备
CN110146810A (zh) * 2019-04-23 2019-08-20 瑞声科技(新加坡)有限公司 一种线性马达测试参数的确定方法及装置
CN110531852A (zh) * 2019-08-21 2019-12-03 维沃移动通信有限公司 信息处理方法及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114722689A (zh) * 2022-06-09 2022-07-08 淄博高新技术产业开发区Mems研究院 Mems悬臂梁器件结构优化方法、装置和计算机设备
CN114722689B (zh) * 2022-06-09 2022-09-20 淄博高新技术产业开发区Mems研究院 Mems悬臂梁器件结构优化方法、装置和计算机设备

Also Published As

Publication number Publication date
CN111931335A (zh) 2020-11-13
CN111931335B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
WO2022000936A1 (zh) 悬浮系统等效参数修正方法及系统、介质、电子设备
Langtangen et al. Finite difference computing with PDEs: a modern software approach
CN111095259A (zh) 使用n-gram机器的自然语言处理
US11080330B2 (en) Generation of digital content navigation data
WO2021196680A1 (zh) 基于位移呈现触觉效果的方法及装置、存储介质及设备
CN108701253A (zh) 使用规范化的目标输出训练神经网络
WO2019137444A1 (zh) 用于执行机器学习的特征工程的方法及系统
Kumar et al. Model order reduction of interval systems using Mihailov criterion and factor division method
US20240152674A1 (en) Quick simulation method and apparatus for integrated circuit, and storage medium
CN115146875B (zh) 基于历史数据的工艺参数推荐方法、设备、系统及介质
US20120072820A1 (en) Systems and Computer Program Products for Conducting Multi-Window Multi-Aspect Processing and Calculations
Jayasekera et al. Assembly validation in virtual reality—a demonstrative case
JP2021174511A (ja) クエリを解析する方法、装置、電子機器、プログラム及び可読記憶媒体
Kumar Future for scientific computing using Python
US20190164083A1 (en) Categorical Data Transformation and Clustering for Machine Learning using Natural Language Processing
Marriott et al. Qoca: A constraint solving toolkit for interactive graphical applications
WO2023174178A1 (zh) 基于启发式搜索的周期纳米结构形貌参数测量方法及装置
WO2023213094A1 (zh) 应用于集成电路器件的数据区域动态选取方法、系统、设备和计算机可读存储介质
US11915370B2 (en) Method and system for 3D modeling based on irregular-shaped sketch
Allen Ruratae: a physics-based audio engine
US10821604B2 (en) Computer-implemented method for robot posture detection and robot
KR20220030088A (ko) 질의에 대한 응답 결정 장치, 방법 및 시스템
Fang et al. Performance identification and compensation of simulator motion cueing delays
US9842177B1 (en) Behavioral modeling of jitter due to power supply noise for input/output buffers
Regimbal et al. Interpolating audio and haptic control spaces

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942911

Country of ref document: EP

Kind code of ref document: A1