WO2022000823A1 - 红外成像镜头 - Google Patents

红外成像镜头 Download PDF

Info

Publication number
WO2022000823A1
WO2022000823A1 PCT/CN2020/117243 CN2020117243W WO2022000823A1 WO 2022000823 A1 WO2022000823 A1 WO 2022000823A1 CN 2020117243 W CN2020117243 W CN 2020117243W WO 2022000823 A1 WO2022000823 A1 WO 2022000823A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
infrared imaging
focal length
curvature
ttl
Prior art date
Application number
PCT/CN2020/117243
Other languages
English (en)
French (fr)
Inventor
葛丛
张劭宇
刘杨赞
蔡斐欣
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2022000823A1 publication Critical patent/WO2022000823A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the embodiments of the present application relate to the field of optics, and more particularly, to an infrared imaging lens.
  • 3D depth detection has become a hot spot.
  • the 940nm light source is usually used as the signal light source in 3D depth detection.
  • One is to avoid the interference of the visible light band in the sunlight to the signal, and the other is that the water molecules in the air absorb less light of 940 nm.
  • infrared imaging lens is crucial to the accuracy and field of view in depth detection. Therefore, how to improve the performance of the infrared imaging lens has become an urgent problem to be solved.
  • an infrared imaging lens includes a diaphragm, a first lens, a second lens, a third lens and a fourth lens sequentially arranged from the object side to the image side, wherein:
  • the first lens has a convex surface in a paraxial region close to the object plane, and is concave in a paraxial region close to the image plane, and at least one of the two surfaces of the first lens is aspherical;
  • the second lens is a lens with positive refractive power.
  • the paraxial area of the second lens is convex on the side close to the object plane, and the paraxial area is concave on the side close to the image plane. At least one of the two surfaces is aspheric;
  • the third lens is a lens with positive refractive power, the paraxial area of the third lens is concave on the side close to the object plane, and the paraxial area is convex on the side close to the image plane. At least one of the two surfaces is aspheric;
  • the fourth lens is a lens with negative refractive power, the fourth lens is convex in the paraxial region near the object plane, and is concave in the paraxial region near the image plane, and the fourth lens is concave. At least one of the two faces is aspheric;
  • the parameters of the lens satisfy: 0 ⁇
  • the FOV of the lens satisfies: 68° ⁇ FOV ⁇ 85°. Further, it can satisfy: 71° ⁇ FOV ⁇ 85°.
  • the F-number of the lens satisfies: F-number ⁇ 1.2.
  • the central thickness CT1 of the first lens and the central thickness CT2 of the second lens satisfy: 0 ⁇ CT1/CT2 ⁇ 2.
  • the central thickness CT2 of the second lens and the central thickness CT3 of the third lens satisfy: 0 ⁇ CT2/CT3 ⁇ 2.
  • the central thickness CT3 of the third lens and the central thickness CT4 of the fourth lens satisfy: 0 ⁇ CT3/CT4 ⁇ 2.
  • the refractive index of the material of the first lens n 1 >1.6
  • the dispersion coefficient of the material of the first lens v 1 >20.0.
  • the refractive index of the material of the second lens n 2 >1.6
  • the dispersion coefficient of the material of the second lens v 2 >20.0.
  • the refractive index of the material of the third lens n 3 >1.6
  • the dispersion coefficient of the material of the third lens v 3 >20.0.
  • the refractive index of the material of the fourth lens n 4 >1.6
  • the dispersion coefficient of the material of the fourth lens v 4 >20.0.
  • the relationship between the focal length f 1 of the first lens and the focal length f of the lens satisfies: -5 ⁇ f 1 /f ⁇ 10.
  • the relationship between the focal length f 2 of the second lens and the focal length f of the lens satisfies: 0 ⁇ f 2 /f ⁇ 5.
  • the relationship between the focal length f 3 of the third lens and the focal length f of the lens satisfies: 0 ⁇ f 3 /f ⁇ 2.
  • the relationship between the focal length f 4 of the fourth lens and the focal length f of the lens satisfies: -5 ⁇ f 4 /f ⁇ 0.
  • the focal length f 1 of the first lens and the radius of curvature R1 of the paraxial region of the first lens on the side close to the object surface satisfy: -5 ⁇ f 1 /R1 ⁇ 15.
  • the focal length f 2 of the second lens and the radius of curvature R3 of the paraxial region of the second lens on the side close to the object surface satisfy: 0 ⁇ f 2 /R3 ⁇ 4 .
  • the focal length f 2 of the second lens and the radius of curvature R4 of the paraxial region of the second lens on the side of the image plane satisfies: 0 ⁇ f 2 /R4 ⁇ 2 .
  • the focal length f 3 of the third lens and the radius of curvature R5 of the paraxial region of the third lens on the side close to the object surface satisfy: -2 ⁇ f 3 /R5 ⁇ 0.
  • the focal length f 3 of the third lens and the radius of curvature R6 of the paraxial region of the third lens close to the image plane side satisfy: -5 ⁇ f 3 /R6 ⁇ 0.
  • the focal length f 4 of the fourth lens and the radius of curvature R7 of the paraxial region of the fourth lens on the side close to the object surface satisfy: -10 ⁇ f 4 /R7 ⁇ 0.
  • the radius of curvature R1 of the paraxial region of the first lens on the side close to the object plane and the radius of curvature R2 of the paraxial region of the first lens on the side of the image plane Satisfy: 0 ⁇ R1/R2 ⁇ 2.
  • the radius of curvature R7 of the paraxial region of the fourth lens on the side close to the object plane and the radius of curvature R8 of the paraxial region on the side of the fourth lens close to the image plane are between Satisfy: 1 ⁇ R7/R8 ⁇ 3.
  • the infrared imaging lens is used in depth detection.
  • the infrared imaging lens includes four lenses.
  • the focal length f of the lens, the maximum image height Y' on the imaging plane of the lens, and the longitudinal distance TTL of the lens along the optical axis satisfy 0 ⁇
  • FIG. 1 is a schematic structural diagram of an infrared imaging lens module according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an imaging optical path of a lens in the infrared imaging lens module shown in FIG. 1 .
  • FIG. 3 is a schematic diagram of an infrared imaging lens according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a layout of a lens according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an astigmatic aberration curve of the lens shown in FIG. 4 .
  • FIG. 6 is a schematic diagram of a distortion curve of the lens shown in FIG. 4 .
  • FIG. 7 is a schematic diagram of a contraction curve of the imaging quality of the lens shown in FIG. 4 .
  • FIG. 8 is a schematic diagram of another layout of a lens according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of an astigmatic aberration curve of the lens shown in FIG. 8 .
  • FIG. 10 is a schematic diagram of a distortion curve of the lens shown in FIG. 8 .
  • FIG. 11 is a schematic diagram of a collection curve of the imaging quality of the lens shown in FIG. 8 .
  • FIG. 12 is a schematic diagram of another layout of the lens according to the embodiment of the present application.
  • FIG. 13 is a schematic diagram of an astigmatic aberration curve of the lens shown in FIG. 12 .
  • FIG. 14 is a schematic diagram of a distortion curve of the lens shown in FIG. 12 .
  • FIG. 15 is a schematic diagram of a collection curve of the imaging quality of the lens shown in FIG. 12 .
  • FIG. 16 is a schematic diagram of another layout of the lens according to the embodiment of the present application.
  • FIG. 17 is a schematic diagram of the astigmatism curve of the lens shown in FIG. 16 .
  • FIG. 18 is a schematic diagram of a distortion curve of the lens shown in FIG. 16 .
  • FIG. 19 is a schematic diagram of the yoke curve of the imaging quality of the lens shown in FIG. 16 .
  • FIG. 20 is a schematic diagram of another layout of the lens according to the embodiment of the present application.
  • FIG. 21 is a schematic diagram of an astigmatic aberration curve of the lens shown in FIG. 20 .
  • FIG. 22 is a schematic diagram of a distortion curve of the lens shown in FIG. 20 .
  • FIG. 23 is a schematic diagram of a contraction curve of the imaging quality of the lens shown in FIG. 20 .
  • FIG. 1 is a schematic structural diagram of an infrared imaging lens module according to an embodiment of the present application.
  • the infrared imaging lens module 100 includes an infrared imaging lens (hereinafter referred to as a lens) 110 , a lens barrel 120 , a bracket 130 , a filter 140 , a photosensitive chip 150 , a circuit board 160 and a reinforcing steel plate 170 .
  • a lens infrared imaging lens
  • the lens 110 is the signal collection part and is the core component of the infrared imaging lens module 100. It can be an optical structure composed of a spherical surface or an aspherical surface, which is used to focus the incident light on the photosensitive chip, and the photosensitive chip collects the data collected by the lens through the photosensitive chip. Optical signals are converted into electrical signals.
  • the lens 110 may be formed by a combination of one or more lenses, and each lens may be, for example, injection-molded by using materials such as resin.
  • the lens barrel 120 (Barrel) is a non-light-absorbing support for fixing the lens 110 .
  • the bracket 130 (Holder) is a barrel-shaped structure with threads, and is mainly used to control the defocus and eccentricity of the lens 110 .
  • the embodiment of the present application does not limit the manufacturing method of the structural member 130 , for example, it can be made of metal stamping.
  • the filter 140 is an infrared band-pass filter, which is used to filter out light in non-target wavelength bands such as visible light and far-infrared.
  • the filter 140 can be formed by, for example, evaporating an infrared radiation (Infrared Radiation, IR) material coating on a blue crystal substrate.
  • IR Infrared Radiation
  • the photosensitive chip 150 is an integrated circuit composed of a photoelectric sensor, which can convert light energy into electrical signals and output them, and is used in conjunction with the lens 110 .
  • the circuit board 160 is a device that connects the circuit of the photosensitive chip 150 with the circuit of the electronic device, and may be, for example, a flexible printed circuit (Flexible Printed Circuit, FPC).
  • FPC Flexible Printed Circuit
  • the reinforcing steel plate 170 is used to increase the mechanical strength and reliability of the chip module.
  • the embodiment of the present application does not limit the composition of the reinforcing steel plate, for example, it may be composed of a steel sheet or a printed circuit board (Printed Circuit Board, PCB).
  • the structure of the infrared imaging lens module 100 shown in FIG. 1 is only an example, and the embodiment of the present application mainly improves the lens 110 therein, and does not limit the positions and parameters of other structures and devices.
  • the light emitted by the object point on the object side is converged by the lens 110, and the converged light is filtered by the filter 140 to filter out the signal interference of the non-target band, and finally
  • the photosensitive chip 150 converges into one image point. By imaging different object points on the object side one by one, an imaging picture can be finally obtained on the photosensitive chip 150 .
  • the embodiment of the present application designs an infrared imaging lens, which has a larger field of view and a smaller F-number, thus enabling the infrared imaging lens to have better imaging performance.
  • Field of View It is used to characterize the field of view of the lens. In the case of the same lens size, the larger the FOV of the lens, the more information the lens can obtain, that is, the lens can be used to obtain information more information.
  • Working F-number, or F-number that is, the reciprocal of the relative aperture of the lens, which is used to characterize the amount of light entering the photosensitive chip through the lens. The smaller the F-number, the greater the amount of light entering the lens.
  • TV Distortion It is used to measure the degree of visual distortion of the image. It can be understood that the smaller the TV distortion, the better the imaging effect.
  • the lens 110 in the infrared imaging lens module 100 shown in FIG. 1 is shown in FIG. 3 .
  • the lens 110 includes a first lens 111 , a second lens 112 , a third lens 113 and a fourth lens arranged in sequence from the object side to the image side lens 114 .
  • the paraxial area of the first lens 111 is convex on the side close to the object plane, and the paraxial area is concave on the side close to the image plane. At least one of the two surfaces of the first lens 111 is aspheric.
  • the second lens 112 is a lens with positive refractive power.
  • the paraxial region of the second lens 112 on the side close to the object surface is convex, and the paraxial region on the side close to the image plane is concave.
  • the two surfaces of the second lens 112 At least one of the faces is aspheric.
  • the third lens 113 is a lens with positive refractive power.
  • the paraxial area of the third lens 113 is concave on the side close to the object plane, and the paraxial area near the image plane is convex.
  • the two surfaces of the third lens 113 At least one of the faces is aspheric.
  • the fourth lens 114 is a lens with negative refractive power.
  • the paraxial area of the fourth lens 114 is convex on the side close to the object plane, and the paraxial area is concave on the side close to the image plane. At least one of the faces is aspheric.
  • the lens is in the paraxial region on the side close to the object plane
  • the lens can also be expressed as “the lens is on the object plane side of the paraxial region”; “the lens is on the side close to the image plane”; It can also be expressed as “the lens is on the image plane side of the paraxial region”.
  • the paraxial region of the first lens 111 near the object plane is convex, that is, the first lens 111 is convex on the object plane side of the paraxial region.
  • the "paraxial” or “paraxial region” of the lens may refer to the region of the paraxial light whose included angle with the optical axis is ⁇ , where ⁇ satisfies: ⁇ sin ⁇ .
  • may be less than 5°.
  • the first lens 111 , the second lens 112 , the third lens 113 and the fourth lens 114 can be injection-molded by using resin materials or other plastic materials, which are not limited here.
  • the focal length f of the lens 110, the maximum image height Y' on the image plane of the lens 110, and the distance from the object plane of the lens 110 to the image plane, that is, the total vertical length (Total Trace Length, TTL) of the lens 110 satisfy the predetermined conditions, so that the lens 110 has a larger FOV, a smaller F-number, and a smaller TV distortion.
  • the preset condition is for example: 0 ⁇
  • a 4-piece lens is used as the signal collecting device, and the lens includes four lenses.
  • the f, Y' and TTL of the lens meet the preset conditions, so as to have a large field of view FOV and a small F number without increasing the infrared
  • the vertical space occupied by the imaging lens when assembled in the electronic equipment improves the field of view and imaging accuracy of the infrared imaging lens under the condition of satisfying the increasingly tight size constraints of the electronic equipment.
  • the infrared imaging lens can be applied to depth detection, so as to realize the depth detection of the target by using infrared light.
  • the infrared imaging lens can be applied to, for example, a scene where the transmitting end is a surface light source, that is, when the infrared imaging lens is used as the receiving end (RX end), its corresponding transmitting end (TX end) can be the infrared light mode of the surface light source.
  • group such as an infrared light module or a near-infrared light module composed of a Vertical-Cavity Surface-Emitting Laser (VCSEL) light-emitting chip, a collimator (Collimator) and a diffuser (Diffuser).
  • VCSEL Vertical-Cavity Surface-Emitting Laser
  • Coldlimator collimator
  • Diffuser diffuser
  • the f, Y' and TTL of the lens affect the FOV and F number of the lens, and f, Y' and TTL also affect each other, so by controlling the preset relationship between f, Y' and TTL, the lens can be made 110 has a larger FOV and a smaller F-number to meet the imaging requirements of the lens, further enabling the photosensitive chip 150 to obtain more light carrying target information, maximizing the use of the effective photosensitive area of the photosensitive chip 150, thereby improving imaging. resolution to improve imaging accuracy.
  • the FOV and F number of the lens 110 can be made to meet the requirements.
  • the FOV satisfies: 68° ⁇ FOV ⁇ 85°, and further can be 71° ⁇ FOV ⁇ 85° or 72° ⁇ FOV ⁇ 85°, so as to achieve a balance between the accuracy requirements of depth detection and the field of view requirements
  • the size (TTL) of the lens 110 is relatively small, for example, TTL ⁇ 4.6mm, or even TTL ⁇ 4.2mm or TTL ⁇ 4.0mm.
  • the above preset conditions are the conditions that f, Y' and TTL should meet when designing the lens 110, so as to improve the imaging resolution and imaging accuracy of the lens 110 under the condition of ensuring the required FOV and F numbers, and The size of the lens 110 is reduced.
  • the preset condition can also be adjusted appropriately, for example, the preset condition can also include 0 ⁇
  • the above describes the conditions that the parameters of the lens 110 should meet as a whole, and the following describes the respective parameter designs of the first lens 111 , the second lens 112 , the third lens 113 and the fourth lens 114 in the lens 110 .
  • the FOV and F-number of the lens 110 may satisfy 68° ⁇ FOV ⁇ 85° and F-number ⁇ 1.2, respectively.
  • the focal length f 1 of the first lens 111 optionally, a certain relationship is satisfied between the focal length f 1 of the first lens 111 and the radius of curvature of the first lens 111 .
  • the relationship between the focal length f 1 and the radius of curvature R1 of the paraxial region of the first lens 111 close to the object surface side satisfies -5 ⁇ f 1 /R1 ⁇ 15; for another example, the focal length f 1 and the first lens 111 are close to each other.
  • the radius of curvature R2 of the paraxial region on the image plane side satisfies -10 ⁇ f 1 /R2 ⁇ 10.
  • the focal length f 2 of the second lens 112 optionally, a certain relationship is satisfied between the focal length f 2 of the second lens 112 and the radius of curvature of the second lens 112 .
  • the focal length f 2 between the lens 112 and the second radius of curvature R3 of the paraxial region close to the object surface side satisfies 0 ⁇ f 2 / R3 ⁇ 4 ;
  • the focal length f 2 of the second lens 112 is close to the image
  • the radius of curvature R4 of the paraxial region on the surface side satisfies 0 ⁇ f 2 /R4 ⁇ 2.
  • the focal length f 3 of the third lens 113 optionally, a certain relationship is satisfied between the focal length f 3 of the third lens 113 and the curvature radius of the third lens 113 .
  • the focal length f 4 of the fourth lens 114 optionally, a certain relationship is satisfied between the focal length f 4 of the fourth lens 114 and the curvature radius of the fourth lens 114 .
  • the focal length f 4 of the fourth lens 114 between the radius of curvature of the paraxial region close to the object surface side R7 satisfies -10 ⁇ f 4 / R7 ⁇ 0 ;
  • the focal length f 4 of the fourth lens 114 near The radius of curvature R8 of the paraxial region on the image plane side satisfies -15 ⁇ f 4 /R8 ⁇ -5.
  • each lens there are two surfaces respectively close to the object plane side and the image plane side.
  • a certain relationship is satisfied between the curvature radii of the two surfaces.
  • the radius of curvature R1 of the paraxial region of the first lens 111 on the side close to the object plane and the radius of curvature R2 of the paraxial region of the first lens 111 on the side of the image plane satisfies 0 ⁇ R1/R2 ⁇ 2;
  • the radius of curvature R3 of the paraxial region of the second lens 112 on the side close to the object plane and the radius of curvature R4 of the paraxial region of the second lens 112 on the side of the image plane satisfies 0 ⁇ R3/R4 ⁇ 2
  • the radius of curvature R5 of the paraxial region of the third lens 113 on the side close to the object plane and the radius of curvature R6 of the paraxial region of the third lens 113 on the side of the image plane satisfies 1 ⁇ R5/
  • the FOV of the lens 110 can meet the imaging requirements, and the length of the lens 110 can be effectively reduced, the aberration can be reduced, and the maximum imaging surface Y' can be increased, thereby effectively improving the lens. 110 image quality.
  • the sensitivity of the lens 110 can be reduced, and the product yield can be improved.
  • the second lens 112 and the third lens 113 are lenses with positive refractive power
  • the fourth lens 114 is a lens with negative refractive power.
  • the following relationship exists between the respective focal lengths of the first lens 111, the second lens 112, the third lens 113, and the fourth lens 114 and the focal length f of the lens 110, thereby reducing
  • the depth of field of the lens 110 improves the imaging quality of a specific surface, namely the object surface.
  • the relationship between the focal length f 1 of the first lens 111 and the focal length f of the lens 110 satisfies -5 ⁇ f 1 /f ⁇ 10; for another example, the relationship between the focal length f 2 of the second lens 112 and the focal length f of the lens 110 satisfies 0 ⁇ f 2 /f ⁇ 5; for another example, the relationship between the focal length f 3 of the third lens 113 and the focal length f of the lens 110 satisfies 0 ⁇ f 3 /f ⁇ 2; for another example, the focal length f 4 of the fourth lens 114 and the lens 110 satisfy 0 ⁇ f 3 /f ⁇ 2; The focal length f of 110 satisfies -5 ⁇ f 4 /f ⁇ 0.
  • the central thickness of the first lens 111, the second lens 112, the third lens 113 and the fourth lens 114 that is, the thickness of the lenses along the optical axis Design.
  • the central thickness CT1 of the first lens 111 and the central thickness CT2 of the second lens 112 satisfy 0 ⁇ CT1/CT2 ⁇ 2; for another example, the central thickness CT2 of the second lens 112 and the central thickness CT3 of the third lens 113
  • the relationship satisfies 0 ⁇ CT2/CT3 ⁇ 2; for another example, the center thickness CT3 of the third lens 113 and the center thickness CT4 of the fourth lens 114 satisfy 0 ⁇ CT3/CT4 ⁇ 2.
  • the refractive index and dispersion of the materials of the first lens 111 , the second lens 112 , the third lens 113 and the fourth lens 114 can also be adjusted. coefficients are designed.
  • the refractive index of the material of the third lens 113 is n3>1.6
  • the dispersion coefficient of the material of the third lens 113 is v3>20.0
  • the refractive index of the material of the fourth lens 114 is n4> 1.6
  • the dispersion coefficient v4 of the material of the fourth lens 114 is >20.0.
  • the lens 110 further includes a diaphragm 115, which may also be called an aperture.
  • the diaphragm 115 may be disposed, for example, on the side of the first lens 111 close to the object side.
  • the aperture 115 can be used to adjust the size of the light or imaging range. By setting the aperture 115 to adjust the light or imaging range, the light carrying the target information can be imaged on the photosensitive chip to the greatest extent, so that the photosensitive chip can obtain more The target information can further improve the analytical power of the depth detection of the target.
  • various components in the lens 110 can be controlled, such as the radius of curvature, thickness, material, effective diameter, and conic coefficient of the first lens, the second lens, the third lens, the fourth lens, and the diaphragm.
  • the physical parameters, and/or the even-order term in the aspheric high-order term coefficient of the aspheric lens in the lens 110, etc. make the parameters of the lens 110 satisfy the above-mentioned preset relationship, and then make the FOV of the lens 110 greater than 68° , the TV distortion is less than 5%, and the F-number is less than 1.25.
  • Embodiment 1, Embodiment 2, Embodiment 3, Embodiment 4 and Embodiment 5 will be described in detail by taking Embodiment 1, Embodiment 2, Embodiment 3, Embodiment 4 and Embodiment 5 as examples.
  • the lens 110 includes four lenses, and the layout of each lens is shown in FIG. 4 , wherein, from the object side to the image side, the order is: diaphragm 115 , first lens 111 , second lens 112 , third lens 113 , the fourth lens 114 , the filter 140 and the imaging surface 116 .
  • the object plane is denoted as S0
  • the diaphragm 115 is denoted as S1
  • the two surfaces of the first lens 111 are denoted as S2 and S3, respectively
  • the second lens 112 The two surfaces of the lens 113 are denoted as S4 and S5 respectively
  • the two surfaces of the third lens 113 are denoted as S6 and S7 respectively
  • the two surfaces of the fourth lens 114 are denoted as S8 and S9 respectively
  • the two surfaces of the filter 140 are respectively denoted as S8 and S9 It is denoted as S10 and S11
  • the imaging surface 116 is denoted as S12.
  • the lens 110 by setting at least one of the focal length, radius of curvature, center thickness, material, effective diameter, and conic coefficient of each lens in the lens 110, and the aspheric high-order coefficient of the aspheric lens in the lens 110, so that The FOV, F-number, size, TV distortion, etc. of the lens 110 meet the requirements.
  • Example 1 the settings of the relationship among the focal length, radius of curvature, and center thickness of each lens are shown in Table 1.
  • the settings of the curvature radius, thickness, material (n, v), effective diameter, conic coefficient, etc. of each surface in S0 to S12 are shown in Table 2.
  • the settings of the aspheric higher-order coefficients A2, A4, A6, A8, A10, A12, A14, A16, A18, and A20 of the aspheric surfaces in S2 to S9 are shown in Table 3, where the coefficients of A2 are all 0.
  • Table 2 in order to distinguish spherical and aspherical surfaces, the surface types of planes such as S10 and S11 are also denoted as spherical surfaces, whose curvature radius is infinite.
  • Y is the maximum object height.
  • FIG. 5 shows the aberration curve of the astigmatism of the lens 110
  • FIG. 6 shows the aberration curve of the distortion of the lens 110
  • Transfer Function, MTF Transfer Function
  • the lens 110 includes four lenses, and the layout of each lens is shown in FIG. 8 , wherein, from the object side to the image side, the order is: diaphragm 115 , first lens 111 , second lens 112 , third lens 113 , fourth lens Lens 114 , filter 140 and imaging surface 116 .
  • the object plane is denoted as S0
  • the diaphragm 115 is denoted as S1
  • the two surfaces of the first lens 111 are denoted as S2 and S3, respectively
  • the second lens 112 The two surfaces of the lens 113 are denoted as S4 and S5 respectively
  • the two surfaces of the third lens 113 are denoted as S6 and S7 respectively
  • the two surfaces of the fourth lens 114 are denoted as S8 and S9 respectively
  • the two surfaces of the filter 140 are respectively denoted as S8 and S9 It is denoted as S10 and S11
  • the imaging surface 116 is denoted as S12.
  • the lens 110 by setting at least one of the focal length, radius of curvature, center thickness, material, effective diameter, and conic coefficient of each lens in the lens 110, and the aspheric high-order coefficient of the aspheric lens in the lens 110, so that The FOV, F-number, size, TV distortion, etc. of the lens 110 meet the requirements.
  • Example 2 the settings of the relationship among the focal length, radius of curvature, and center thickness of each lens are shown in Table 4.
  • the settings of the curvature radius, thickness, material (n, v), effective diameter, conic coefficient, etc. of each surface in S0 to S12 are shown in Table 5.
  • the settings of the aspheric higher-order coefficients A2, A4, A6, A8, A10, A12, A14, and A16 of the aspheric surfaces in S2 to S9 are shown in Table 6, where the coefficients of A2 are all 0.
  • Table 5 in order to distinguish spherical and aspherical surfaces, the surface types of planes such as S10 and S11 are also denoted as spherical surfaces whose curvature radius is infinite.
  • Y is the maximum object height.
  • FIG. 9 shows the astigmatism curve of the lens 110 ;
  • FIG. 10 shows the distortion curve of the lens 110 ;
  • FIG. 11 shows the blur curve of the imaging quality of the lens 110 , that is, the MTF curve. It can be seen from the simulation diagrams shown in FIGS. 9 to 11 that when the parameters f, Y′ and TTL of the lens 110 meet the above preset conditions, the lens 110 has a larger FOV, a smaller working F number, Less TV distortion, and smaller lens size, and the lens performs better.
  • the lens 110 includes four lenses, and the layout of each lens is shown in FIG. 12 , wherein, from the object side to the image side, the order is: diaphragm 115 , first lens 111 , second lens 112 , third lens 113 , fourth lens Lens 114 , filter 140 and imaging surface 116 .
  • the object plane is denoted as S0
  • the diaphragm 115 is denoted as S1
  • the two surfaces of the first lens 111 are denoted as S2 and S3, respectively
  • the second lens 112 The two surfaces of the lens 113 are respectively marked as S4 and S5, the two surfaces of the third lens 113 are respectively marked as S6 and S7, the two surfaces of the fourth lens 114 are marked as S8 and S9 respectively, and the two surfaces of the filter 140 are respectively marked as S8 and S9.
  • the imaging surface 116 is denoted as S12.
  • the lens 110 by setting at least one of the focal length, radius of curvature, center thickness, material, effective diameter, and conic coefficient of each lens in the lens 110, and the aspheric high-order coefficient of the aspheric lens in the lens 110, so that The FOV, F-number, size, TV distortion, etc. of the lens 110 meet the requirements.
  • Example 3 the settings of the relationship among the focal length, curvature radius, and center thickness of each lens are shown in Table 7.
  • the settings of the curvature radius, thickness, material (n, v), effective diameter, and conic coefficient of each surface in S0 to S12 are shown in Table 8.
  • the settings of the aspheric high-order coefficients A2, A4, A6, A8, A10, A12, A14, and A16 of the aspheric surfaces in S2 to S9 are shown in Table 9, wherein the coefficients of A2 are all 0.
  • Table 8 in order to distinguish spherical and aspherical surfaces, the surface types of planes such as S10 and S11 are also denoted as spherical surfaces whose curvature radius is infinite.
  • Y is the maximum object height.
  • FIG. 13 shows the astigmatism curve of the lens 110
  • FIG. 14 shows the distortion curve of the lens 110
  • the lens 110 includes four lenses, as shown in the layout of each lens in FIG. 16 , in which, from the object side to the image side, the order is: diaphragm 115 , first lens 111 , second lens 112 , third lens 113 , fourth lens Lens 114 , filter 140 and imaging surface 116 .
  • the object plane is denoted as S0
  • the diaphragm 115 is denoted as S1
  • the two surfaces of the first lens 111 are denoted as S2 and S3, respectively
  • the second lens 112 The two surfaces of the lens 113 are respectively marked as S4 and S5, the two surfaces of the third lens 113 are respectively marked as S6 and S7, the two surfaces of the fourth lens 114 are marked as S8 and S9 respectively, and the two surfaces of the filter 140 are respectively marked as S8 and S9.
  • the imaging surface 116 is denoted as S12.
  • the lens 110 by setting at least one of the focal length, the radius of curvature, the center thickness, the material, the effective diameter, and the conic coefficient of each lens in the lens 110, and the aspheric high-order coefficient of the aspheric lens in the lens 110, so that The FOV, F-number, size, TV distortion, etc. of the lens 110 meet the requirements.
  • Example 4 the settings of the relationship among the focal length, curvature radius, and center thickness of each lens are shown in Table 10.
  • the settings of the curvature radius, thickness, material (n, v), effective diameter, conic coefficient, etc. of each surface in S0 to S12 are shown in Table 11.
  • the settings of the aspheric high-order term coefficients A2, A4, A6, A8, A10, A12, A14, and A16 of the aspheric surfaces in S2 to S9 are shown in Table 12, where the coefficient of A2 is 0.
  • Table 11 in order to distinguish spherical and aspherical surfaces, the surface types of planes such as S10 and S11 are also denoted as spherical surfaces whose curvature radius is infinite.
  • Y is the maximum object height.
  • FIG. 17 shows the astigmatism curve of the lens 110 ;
  • FIG. 18 shows the distortion curve of the lens 110 ;
  • FIG. 19 shows the blur curve of the imaging quality of the lens 110 , that is, the MTF curve. It can be seen from the simulation diagrams shown in FIGS. 17 to 19 that when the parameters f, Y′ and TTL of the lens 110 meet the above preset conditions, the lens 110 has a larger FOV, a smaller working F number, Less TV distortion, and a smaller lens size, and the lens performs better.
  • the lens 110 includes four lenses, as shown in the layout of each lens in FIG. 20 , in which, from the object side to the image side, the order is: diaphragm 115 , first lens 111 , second lens 112 , third lens 113 , fourth lens Lens 114 , filter 140 and imaging surface 116 .
  • the object plane is denoted as S0
  • the diaphragm 115 is denoted as S1
  • the two surfaces of the first lens 111 are denoted as S2 and S3, respectively
  • the second lens 112 The two surfaces of the lens 113 are denoted as S4 and S5 respectively
  • the two surfaces of the third lens 113 are denoted as S6 and S7 respectively
  • the two surfaces of the fourth lens 114 are denoted as S8 and S9 respectively
  • the two surfaces of the filter 140 are respectively denoted as S8 and S9 It is denoted as S10 and S11
  • the imaging surface 116 is denoted as S12.
  • the lens 110 by setting at least one of the focal length, radius of curvature, center thickness, material, effective diameter, and conic coefficient of each lens in the lens 110, and the aspheric high-order coefficient of the aspheric lens in the lens 110, so that The FOV, F-number, size, TV distortion, etc. of the lens 110 meet the requirements.
  • Example 3 the settings of the relationship among the focal length, radius of curvature, and center thickness of each lens are shown in Table 13.
  • the settings of the curvature radius, thickness, material (n, v), effective diameter, and conic coefficient of each surface in S0 to S12 are shown in Table 14.
  • the settings of the aspheric higher-order term coefficients A2, A4, A6, A8, A10, A12, A14, and A16 of the aspheric surfaces in S2 to S9 are shown in Table 15, where the coefficients of A2 are all 0.
  • Table 8 in order to distinguish spherical and aspherical surfaces, the surface types of planes such as S10 and S11 are also denoted as spherical surfaces whose curvature radius is infinite.
  • Y is the maximum object height.
  • FIG. 21 shows the astigmatism curve of the lens 110 ;
  • FIG. 22 shows the distortion curve of the lens 110 ;
  • FIG. 23 shows the blur curve of the imaging quality of the lens 110 , that is, the MTF curve. It can be seen from the simulation diagrams shown in FIGS. 21 to 23 that when the parameters f, Y′ and TTL of the lens 110 meet the above preset conditions, the lens 110 has a larger FOV, a smaller working F number, Less TV distortion, and a smaller lens size, and the lens performs better.
  • the Y', f, and TTL of the lens 110 affect the size, FOV, F-number, etc. of the lens.
  • the space size of the lens 110 that is, TTL, directly affects the design difficulty of the lens 110.
  • the lens 110 can have a smaller TTL, such as TTL ⁇ 4.51, even TTL ⁇ 4.2mm or TTL ⁇ 4.0mm.
  • TTL a smaller TTL
  • the object image distortion of the lens 110 is reduced, and the uniformity of the depth error of the lens 110 in the entire field of view is improved.
  • an appropriate lens can be selected according to the actual situation and under the condition that the lens parameters of the present application are satisfied.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种红外成像镜头(110),包括从物方到像方依次设置的光阑(115)、第一、第二、第三和第四透镜(111-114)。第二和第三透镜(112、113)为正光焦度,第四透镜(114)为负光焦度。第一透镜(111)在靠近物面的近轴区域为凸面,在靠近像面的近轴区域为凹面;第二透镜(112)在靠近物面的近轴区域为凸面,在靠近像面的近轴区域为凹面;第三透镜(113)在靠近物面的近轴区域为凹面,在靠近像面的近轴区域为凸面;第四透镜(114)在靠近物面的近轴区域为凸面,在靠近像面的近轴区域为凹面。每个透镜的两个面中至少有一个为非球面。镜头(110)满足:0<|Y'/(f*TTL)|<0.5,0.4<f/TTL<0.8,f为镜头(110)的焦距,Y'为镜头(110)的像面上的最大像高,TTL为镜头(110)的物面至像面的距离。

Description

红外成像镜头
本申请要求于2020年7月1日提交中国专利局、申请号为PCT/CN2020/099780、名称为“红外成像镜头”的PCT申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及光学领域,并且更具体地,涉及红外成像镜头。
背景技术
随着人脸识别、体感游戏和模式识别等领域的兴起,三维深度检测已成为热点。三维深度检测中通常采用940nm的光源作为信号光源,一是为避免太阳光中的可见光波段对信号的干扰,二是空气中的水分子对940nm的光线的吸收较小。红外成像镜头作为深度检测中的信号收集装置,对深度检测中的精度和视场至关重要。因此,如何改善红外成像镜头的性能,成为亟待解决的问题。
发明内容
本申请实施例提供一种红外成像镜头,具有较大的视场和较小的F数
第一方面,提供了一种红外成像镜头,所述镜头包括从物方到像方依次设置的光阑、第一透镜、第二透镜、第三透镜和第四透镜,其中:
所述第一透镜在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,所述第一透镜的两个面中至少有一个面为非球面;
所述第二透镜为正光焦度的透镜,所述第二透镜在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,所述第二透镜的两个面中至少有一个面为非球面;
所述第三透镜为正光焦度的透镜,所述第三透镜在靠近物面一侧的近轴区域为凹面,且在靠近像面一侧的近轴区域为凸面,所述第三透镜的两个面中至少有一个面为非球面;
所述第四透镜为负光焦度的透镜,所述第四透镜在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,所述第四透镜的两个面 中至少有一个面为非球面;
其中,所述镜头的参数满足:0<|Y’/(f*TTL)|<0.5,0.4<f/TTL<0.8,其中,f为所述镜头的焦距,Y’为所述镜头的像面上的最大像高,TTL为所述镜头的物面至像面之间的距离。
在一种可能的实现方式中,所述镜头的视场角FOV满足:68°<FOV<85°。进一步地,可以满足:71°<FOV<85°。
在一种可能的实现方式中,所述镜头的F数满足:F数<1.2。
在一种可能的实现方式中,|Y’/(f*TTL)|=0.203,f/TTL=0.630,F数=1.138,FOV=78°。
在一种可能的实现方式中,|Y’/(f*TTL)|=0.210,f/TTL=0.541,F数=1.14,FOV=85°。
在一种可能的实现方式中,|Y’/(f*TTL)|=0.179,f/TTL=0.700,F数=1.168,FOV=70°。
在一种可能的实现方式中,|Y’/(f*TTL)|=0.176,f/TTL=0.559,F数=1.12,FOV=78°。
在一种可能的实现方式中,|Y’/(f*TTL)|=0.203,f/TTL=0.631,F数=1.14,FOV=78°。
在一种可能的实现方式中,所述第一透镜的中心厚度CT1和所述第二透镜的中心厚度CT2之间满足:0<CT1/CT2<2。
在一种可能的实现方式中,所述第二透镜的中心厚度CT2和所述第三透镜的中心厚度CT3之间满足:0<CT2/CT3<2。
在一种可能的实现方式中,所述第三透镜的中心厚度CT3和所述第四透镜的中心厚度CT4之间满足:0<CT3/CT4<2。
在一种可能的实现方式中,所述第一透镜的材料的折射率n 1>1.6,所述第一透镜的材料的色散系数v 1>20.0。
在一种可能的实现方式中,所述第二透镜的材料的折射率n 2>1.6,所述第二透镜的材料的色散系数v 2>20.0。
在一种可能的实现方式中,所述第三透镜的材料的折射率n 3>1.6,所述第三透镜的材料的色散系数v 3>20.0。
在一种可能的实现方式中,所述第四透镜的材料的折射率n 4>1.6,所述第四透镜的材料的色散系数v 4>20.0。
在一种可能的实现方式中,所述第一透镜的焦距f 1与所述镜头的焦距f之间满足:-5<f 1/f<10。
在一种可能的实现方式中,所述第二透镜的焦距f 2与所述镜头的焦距f之间满足:0<f 2/f<5。
在一种可能的实现方式中,所述第三透镜的焦距f 3与所述镜头的焦距f之间满足:0<f 3/f<2。
在一种可能的实现方式中,所述第四透镜的焦距f 4与所述镜头的焦距f之间满足:-5<f 4/f<0。
在一种可能的实现方式中,所述第一透镜的焦距f 1与所述第一透镜在靠近物面一侧的近轴区域的曲率半径R1之间满足:-5<f 1/R1<15。
在一种可能的实现方式中,所述第一透镜的焦距f 1与所述第一透镜在靠近像面一侧的近轴区域的曲率半径R2之间满足:-10<f 1/R2<10。
在一种可能的实现方式中,所述第二透镜的焦距f 2与所述第二透镜在靠近物面一侧的近轴区域的曲率半径R3之间满足:0<f 2/R3<4。
在一种可能的实现方式中,所述第二透镜的焦距f 2与所述第二透镜在靠近像面一侧的近轴区域的曲率半径R4之间满足:0<f 2/R4<2。
在一种可能的实现方式中,所述第三透镜的焦距f 3与所述第三透镜在靠近物面一侧的近轴区域的曲率半径R5之间满足:-2<f 3/R5<0。
在一种可能的实现方式中,所述第三透镜的焦距f 3与所述第三透镜在靠近像面一侧的近轴区域的曲率半径R6之间满足:-5<f 3/R6<0。
在一种可能的实现方式中,所述第四透镜的焦距f 4与所述第四透镜在靠近物面一侧的近轴区域的曲率半径R7之间满足:-10<f 4/R7<0。
在一种可能的实现方式中,所述第四透镜的焦距f 4与所述第四透镜在靠近像面一侧的近轴区域的曲率半径R8之间满足:-15<f 4/R8<-5。
在一种可能的实现方式中,所述第一透镜在靠近物面一侧的近轴区域的曲率半径R1与所述第一透镜在靠近像面一侧的近轴区域的曲率半径R2之间满足:0<R1/R2<2。
在一种可能的实现方式中,所述第二透镜在靠近物面一侧的近轴区域的曲率半径R3与所述第二透镜在靠近像面一侧的近轴区域的曲率半径R4之间满足:0<R3/R4<1。
在一种可能的实现方式中,所述第三透镜在靠近物面一侧的近轴区域的 曲率半径R5与所述第三透镜在靠近像面一侧的近轴区域的曲率半径R6之间满足:1<R5/R6<3。
在一种可能的实现方式中,所述第四透镜在靠近物面一侧的近轴区域的曲率半径R7与所述第四透镜在靠近像面一侧的近轴区域的曲率半径R8之间满足:1<R7/R8<3。
在一种可能的实现方式中,所述红外成像镜头应用于深度检测中。
基于上述技术方案,红外成像镜头中包括四个透镜。通过对四个透镜的光焦度和形状进行设计,使得镜头的焦距f、镜头的成像面上的最大像高Y’、以及镜头沿光轴的纵向距离TTL满足0<|Y’/(f*TTL)|<0.5,0.4<f/TTL<0.8,从而具有较大的视场角FOV和较小的F数,进而改善该红外成像镜头的视场和成像精度。
附图说明
图1是本申请实施例的红外成像镜头模组的一种示意性结构图。
图2是图1所示红外成像镜头模组中的镜头的成像光路示意图。
图3是本申请实施例的红外成像镜头的示意图。
图4是本申请实施例的镜头的一种布局的示意图。
图5是图4所示的镜头的像散的收差曲线的示意图。
图6是图4所示的镜头的畸变的收差曲线的示意图。
图7是图4所示的镜头的成像质量的收差曲线的示意图。
图8是本申请实施例的镜头的另一种布局的示意图。
图9是图8所示的镜头的像散的收差曲线的示意图。
图10是图8所示的镜头的畸变的收差曲线的示意图。
图11是图8所示的镜头的成像质量的收差曲线的示意图。
图12是本申请实施例的镜头的另一种布局的示意图。
图13是图12所示的镜头的像散的收差曲线的示意图。
图14是图12所示的镜头的畸变的收差曲线的示意图。
图15是图12所示的镜头的成像质量的收差曲线的示意图。
图16是本申请实施例的镜头的另一种布局的示意图。
图17是图16所示的镜头的像散的收差曲线的示意图。
图18是图16所示的镜头的畸变的收差曲线的示意图。
图19是图16所示的镜头的成像质量的收差曲线的示意图。
图20是本申请实施例的镜头的另一种布局的示意图。
图21是图20所示的镜头的像散的收差曲线的示意图。
图22是图20所示的镜头的畸变的收差曲线的示意图。
图23是图20所示的镜头的成像质量的收差曲线的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例的红外成像镜头模组的一种示意性结构图。如图1所示,红外成像镜头模组100包括红外成像镜头(以下简称镜头)110、镜筒120、支架130、滤光片140、感光芯片150、电路板160和补强钢板170。
其中,镜头110为信号收集部分,是红外成像镜头模组100的核心部件,其可以是球面或者非球面构成的光学结构,用于聚焦入射光线至感光芯片上,通过感光芯片将镜头收集到的光信号转换为电信号。镜头110可由一个或多个透镜组合构成,每个透镜例如可以采用树脂等材料注塑而成。
镜筒120(Barrel)为不吸光的支撑件,用于固定镜头110。
支架130(Holder)为带螺纹的桶状结构,主要用于控制镜头110的离焦和偏心,本申请实施例对结构件130的制作方式不做限定,例如可以由金属冲压制成。
滤光片140(Filter)为红外带通滤光片,用于滤除可见光和远红外等非目标波段的光线。滤光片140例如可以在蓝水晶基底上蒸镀红外辐射(Infrared Radiation,IR)材料涂层而形成。
感光芯片150是由光电传感器构成的集成电路,可以将光能量转换成电信号并输出,其与镜头110搭配使用。
电路板160为连接感光芯片150的电路和电子设备的电路的装置,例如可以是柔性线路板(Flexible Printed Circuit,FPC)。
补强钢板170用于增加芯片模组的机械强度和可靠性,本申请实施例对补强钢板的组成不做限定,例如可以由钢片或者印刷电路板(Printed Circuit Board,PCB)板组成。
应理解,图1所示的红外成像镜头模组100的结构仅仅为示例,本申请实施例主要对其中的镜头110进行改进,而对其他结构和器件的位置和参数 不做任何限定。
如图2所示,以中心视场的光线为例,物方的物点发出的光线经过镜头110的会聚,会聚的光线经过滤光片140的过滤,滤除了非目标波段的信号干扰,最终在感光芯片150上会聚为一个像点。通过对物方不同的物点逐一成像,最后可以在感光芯片150上得到成像图片。
本申请实施例设计了一种红外成像镜头,该红外成像镜头具有较大的视场角和较小的F数,因此使得该红外成像镜头具有更优的成像性能。
为便于更好的理解,首先简单介绍本申请实施例中可能使用的用于评价该红外成像镜头的性能的参数指标。
视场角(Field of View,FOV):用来表征镜头的视野范围,在镜头尺寸相等的情况下,镜头的FOV越大,表示该镜头能获得更大区域的信息,即采用该镜头能够获得的信息量更大。
工作F数,或者F数(F-number,Fno):即镜头相对口径的倒数,用于表征透过镜头进入感光芯片的光线量。F数越小,表示进入镜头的光线量越多。
TV畸变(TV Distortion):用于度量图像的视觉畸变程度。可以理解,TV畸变越小,成像效果越好。
图1所示的红外成像镜头模组100中的镜头110如图3所示,镜头110包括从物方到像方依次设置的第一透镜111、第二透镜112、第三透镜113和第四透镜114。
第一透镜111在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,第一透镜111的两个面中至少有一个面为非球面。
第二透镜112为正光焦度的透镜,第二透镜112在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,第二透镜112的两个面中至少有一个面为非球面。
第三透镜113为正光焦度的透镜,第三透镜113在靠近物面一侧的近轴区域为凹面,且在靠近像面一侧的近轴区域为凸面,第三透镜113的两个面中至少有一个面为非球面。
第四透镜114为负光焦度的透镜,第四透镜114在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,第四透镜114的两个面中至少有一个面为非球面。
应理解,本申请实施例中所述的“透镜在靠近物面一侧的近轴区域”,也可以表述为“透镜在近轴区域的物面一侧”;“透镜在靠近像面一侧的近轴区域”,也可以表述为“透镜在近轴区域的像面一侧”。例如,第一透镜111在靠近物面一侧的近轴区域为凸面,也即,第一透镜111在近轴区域的物面一侧为凸面。
其中,透镜的“近轴”或者“近轴区域”可以是指,与光轴之间夹角为θ的近轴光线的区域,其中θ满足:θ≈sinθ。例如,θ可以小于5°。
第一透镜111、第二透镜112、第三透镜113和第四透镜114例如可以采用树脂材料或者其他塑胶材料注塑成型,这里不作限定。
其中,镜头110的焦距f、镜头110的像面上的最大像高Y’、以及镜头110的物面至像面之间的距离即镜头110的总纵向长度(Total Trace Length,TTL)满足预定条件,使得镜头110具有较大的视场角FOV、较小的F数、以及较小的TV畸变等。
该预设条件例如为:0<|Y’/(f*TTL)|<0.5和/或0.4<f/TTL<0.8。
本申请实施例中,采用4片式镜头作为信号收集装置,该镜头包括四个透镜。通过对四个透镜的光焦度和形状进行设计,使镜头的f、Y’和TTL满足预设条件,从而具有较大的视场角FOV和较小的F数,且不会增加该红外成像镜头装配于电子设备时所占用的纵向空间,在满足电子设备日益紧张的尺寸限制的情况下,改善了该红外成像镜头的视场和成像精度。
该红外成像镜头例如可以应用于深度检测中,以利用红外光线实现对目标的深度检测。
进一步地,该红外成像镜头例如可以应用于发射端为面光源的场景中,即该红外成像镜头作为接收端(RX端)时,其对应的发射端(TX端)可以是面光源红外光模组,比如由垂直共振腔面发射型激光(Vertical-Cavity Surface-Emitting Laser,VCSEL)发光芯片、准直镜(Collimator)和扩散片(Diffuser)组成的红外光模组或近红外光模组。
镜头的f、Y’和TTL影响镜头的FOV和F数,并且f、Y’和TTL之间也相互影响,因此通过控制f、Y’和TTL三者之间满足预设关系,能够使得镜头110具有较大的FOV和较小的F数以满足镜头的成像需求,进一步能够使感光芯片150获得更多的携带目标信息的光线,最大限度地利用感光芯片150的有效感光面积,从而提升成像分辨率,提高成像精度。
当镜头110的f、Y’和TTL满足该预设条件时,可以使镜头110的FOV和F数等满足需求。例如,使的FOV满足:68°<FOV<85°,进一步地还可以是71°<FOV<85°°或72°≤FOV<85°,以实现深度检测的精度需求和视场需求的平衡;又例如,使镜头110的F数满足:F数<1.2,以实现微弱信号的探测并缩短曝光时间;又例如,使镜头110的TV畸变满足:TV畸变<5%时,以避免目标的深度失真。
另外,基于上述设计,镜头110的尺寸(TTL)较小,例如TTL<4.6mm,甚至可以达到TTL<4.2mm或者TTL≤4.0mm。
应理解,上述的预设条件为设计镜头110时f、Y’和TTL应满足的条件,从而在保证所需的FOV和F数的情况下,提升镜头110的成像分辨率和成像精度,并减小镜头110的尺寸。在一些情况下,为了获得更好的镜头性能,该预设条件也可以进行适当调整,例如,该预设条件还可以包括0<|Y’/(f*TTL)|<0.49、0<|Y’/(f*TTL)|<0.44、0<|Y’/(f*TTL)|<0.39或者0<|Y’/(f*TTL)|<0.19;或者,该预设条件还可以包括0.4<f/TTL<0.68。
上面从整体上描述了镜头110的各个参数应满足的条件,下面针对镜头110中的第一透镜111、第二透镜112、第三透镜113和第四透镜114各自的参数设计分别进行描述。当各个透镜的各个参数之间满足以下条件中的部分或者全部时,可以使镜头110的FOV和F数分别满足68°<FOV<85°和F数<1.2。
对于第一透镜111,可选地,第一透镜111的焦距f 1与第一透镜111的曲率半径之间满足一定关系。例如,焦距f 1与第一透镜111在靠近物面一侧的近轴区域的曲率半径R1之间满足-5<f 1/R1<15;又例如,焦距f 1与第一透镜111在靠近像面一侧的近轴区域的曲率半径R2之间满足-10<f 1/R2<10。
对于第二透镜112,可选地,第二透镜112的焦距f 2与第二透镜112的曲率半径之间满足一定关系。例如,焦距f 2与第二透镜112在靠近物面一侧的近轴区域的曲率半径R3之间满足0<f 2/R3<4;又例如,焦距f 2与第二透镜112在靠近像面一侧的近轴区域的曲率半径R4之间满足0<f 2/R4<2。
对于第三透镜113,可选地,第三透镜113的焦距f 3与第三透镜113的曲率半径之间满足一定关系。例如,焦距f 3与第三透镜113在靠近物面一侧的近轴区域的曲率半径R5之间满足-2<f 3/R5<0;又例如,焦距f 3与第三透镜113在靠近像面一侧的近轴区域的曲率半径R6之间满足-5<f 3/R6<0。
对于第四透镜114,可选地,第四透镜114的焦距f 4与第四透镜114的曲率半径之间满足一定关系。例如,焦距f 4与第四透镜114在靠近物面一侧的近轴区域的曲率半径R7之间满足-10<f 4/R7<0;又例如,焦距f 4与第四透镜114在靠近像面一侧的近轴区域的曲率半径R8之间满足-15<f 4/R8<-5。
对于每个透镜而言,具有分别靠近物面一侧和像面一侧的两个表面,可选地,这两个表面的曲率半径之间满足一定关系。例如,第一透镜111在靠近物面一侧的近轴区域的曲率半径R1与第一透镜111在靠近像面一侧的近轴区域的曲率半径R2之间满足0<R1/R2<2;又例如,第二透镜112在靠近物面一侧的近轴区域的曲率半径R3与第二透镜112在靠近像面一侧的近轴区域的曲率半径R4之间满足0<R3/R4<2;又例如,第三透镜113在靠近物面一侧的近轴区域的曲率半径R5与第三透镜113在靠近像面一侧的近轴区域的曲率半径R6之间满足1<R5/R6<3;又例如,第四透镜114在靠近物面一侧的近轴区域的曲率半径R7与第四透镜114在靠近像面一侧的近轴区域的曲率半径R8之间满足1<R7/R8<3。
可见,通过对四个透镜各自的焦距和曲率半径进行设计,可以使镜头110的FOV满足成像需求,并有效降低镜头110的长度,同时降低像差以及增加最大成像面Y’,从而有效提高镜头110的成像质量。并且还可以降低镜头110的敏感度,提升产品良品率。
本申请实施例中,第二透镜112和第三透镜113为正光焦度的镜片,第四透镜114为负光焦度的镜片。具体地,对于透镜之间的光焦度分配,第一透镜111、第二透镜112、第三透镜113和第四透镜114各自的焦距与镜头110的焦距f之间存在以下关系,借此降低镜头110的景深,提升特定面即物面的成像质量。
例如,第一透镜111的焦距f 1与镜头110的焦距f之间满足-5<f 1/f<10;又例如,第二透镜112的焦距f 2与镜头110的焦距f之间满足0<f 2/f<5;又例如,第三透镜113的焦距f 3与镜头110的焦距f之间满足0<f 3/f<2;又例如,第四透镜114的焦距f 4与镜头110的焦距f之间满足-5<f 4/f<0。
为了使镜头110的结构更加坚固,提升镜头110的使用寿命,还可以对第一透镜111、第二透镜112、第三透镜113和第四透镜114的中心厚度,即透镜沿光轴方向的厚度进行设计。
例如,第一透镜111的中心厚度CT1和第二透镜112的中心厚度CT2 之间满足0<CT1/CT2<2;又例如,第二透镜112的中心厚度CT2和第三透镜113的中心厚度CT3之间满足0<CT2/CT3<2;又例如,第三透镜113的中心厚度CT3和第四透镜114的中心厚度CT4之间满足0<CT3/CT4<2。
此外,出于满足色散要求以及降低生产成本的考虑,以及提供合适的相差平衡,还可以对第一透镜111、第二透镜112、第三透镜113和第四透镜114的材料的折射率和色散系数进行设计。
例如,第一透镜111的材料的折射率n1>1.6,第一透镜111的材料的色散系数v1>20.0;又例如,第二透镜112的材料的折射率n2>1.6,第二透镜112的材料的色散系数v2>20.0;又例如,第三透镜113的材料的折射率n3>1.6,第三透镜113的材料的色散系数v3>20.0;又例如,第四透镜114的材料的折射率n4>1.6,第四透镜114的材料的色散系数v4>20.0。
可选地,在一些实现方式中,镜头110还包括光阑115,也可以称光圈。光阑115例如可以设置于第一透镜111的靠近物方的一侧。
光阑115可以用于调节光线或成像范围的大小,通过设置光阑115对光线或成像范围进行调整,使携带目标信息的光线能够最大程度地成像于感光芯片,使得该感光芯片能够获得更多的目标信息,进一步提升对目标的深度检测的解析力。
本申请实施例中,可以通过控制镜头110中的各个部件,例如第一透镜、第二透镜、第三透镜、第四透镜、光阑等的曲率半径、厚度、材料、有效直径和圆锥系数等物理参数,和/或,该镜头110中的非球面透镜的非球面高次项系数中的偶次项等,使镜头110的参数满足上述的预设关系,进而使得镜头110的FOV大于68°,TV畸变小于5%,F数小于1.25。以下,以实施例1、实施例2、实施例3、实施例4和实施例5作为示例,具体描述本申请实施例的镜头110的一些可能的具体形态。
实施例1
镜头110包括四个透镜,如图4所示的各个透镜的布局(layout),其中,从物方到像方依次为:光阑115、第一透镜111、第二透镜112、第三透镜113、第四透镜114、滤光片140和成像面116。
为便于区分和描述,按照从物方到像方的顺序,将物面记为S0,将光阑115记为S1,第一透镜111的两个表面分别记为S2和S3,第二镜头112的两个表面分别记为S4和S5,第三透镜113的两个表面分别记为S6和S7, 第四透镜114的两个表面分别记为S8和S9,滤光片140的两个表面分别记为S10和S11,成像面116记为S12。
进一步地,通过设置镜头110中各个透镜的焦距、曲率半径、中心厚度、材料、有效直径、圆锥系数中的至少一项,以及镜头110中的非球面透镜的非球面高次项系数,以使镜头110的FOV、F数、尺寸、TV畸变等满足要求。
在实施例1中,各个透镜的焦距、曲率半径、中心厚度之间关系的设置如表1所示。S0~S12中的每个面的曲率半径、厚度、材料(n、v)、有效直径、圆锥系数等的设置如表2所示。S2~S9中的非球面的非球面高次项系数A2、A4、A6、A8、A10、A12、A14、A16、A18、A20的设置如表3所示,其中A2的系数均为0。在表2中,为了区分球面和非球面,也将平面例如S10和S11的表面类型记作球面,其曲率半径为无限大。Y为最大物高。
表1
Figure PCTCN2020117243-appb-000001
Figure PCTCN2020117243-appb-000002
表2
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S0 物面 无限 600.000      
S1 光阑 无限 -0.132   1.091  
S2 非球面 2.121 0.587 1.642,26.3 1.092 -0.135
S3 非球面 2.551 0.108   1.108 -0.080
    无限 0.124   1.125  
S4 非球面 2.024 0.633 1.642,26.3 1.116 -6.076
S5 非球面 4.604 0.200   1.295 2.676
    无限 0.190   1.280  
S6 非球面 -2.606 0.548 1.642,26.3 1.266 -4.629
S7 非球面 -1.153 -0.253   1.288 -1.476
    无限 0.296   1.370  
S8 非球面 1.198 0.417 1.642,26.3 1.556 -0.869
S9 非球面 0.769 0.338   1.785 -0.981
S10 球面 无限 0.210 1.51,64.2 1.817  
S11 球面 无限 0.557   1.847  
S12 像面 无限 0.000   1.969  
表3
Figure PCTCN2020117243-appb-000003
Figure PCTCN2020117243-appb-000004
基于表1、表2和表3所示的参数,可以确定实施例1所示的镜头110的参数如下:TTL=4.0mm,f=2.493mm,F数=1.138,FOV=78°。
图5示出了镜头110的像散的收差曲线;图6示出了镜头110的畸变的收差曲线;图7示出了镜头110的成像质量的收差曲线,即调制传递函数(Modulation Transfer Function,MTF)曲线。从图5至图7所示的仿真图可以看出,在镜头110的参数TTL、f、Y’满足上述预设条件的情况下,镜头110具有较大的FOV、较小的工作F数、较小的TV畸变、以及较小的镜头尺寸(TTL),并且镜头的性能较好。
实施例2
镜头110包括四个透镜,如图8所示的各个透镜的布局,其中,从物方到像方依次为:光阑115、第一透镜111、第二透镜112、第三透镜113、第四透镜114、滤光片140和成像面116。
为便于区分和描述,按照从物方到像方的顺序,将物面记为S0,将光阑115记为S1,第一透镜111的两个表面分别记为S2和S3,第二镜头112 的两个表面分别记为S4和S5,第三透镜113的两个表面分别记为S6和S7,第四透镜114的两个表面分别记为S8和S9,滤光片140的两个表面分别记为S10和S11,成像面116记为S12。
进一步地,通过设置镜头110中各个透镜的焦距、曲率半径、中心厚度、材料、有效直径、圆锥系数中的至少一项,以及镜头110中的非球面透镜的非球面高次项系数,以使镜头110的FOV、F数、尺寸、TV畸变等满足要求。
在实施例2中,各个透镜的焦距、曲率半径、中心厚度之间关系的设置如表4所示。S0~S12中的每个面的曲率半径、厚度、材料(n、v)、有效直径、圆锥系数等的设置如表5所示。S2~S9中的非球面的非球面高次项系数A2、A4、A6、A8、A10、A12、A14、A16的设置如表6所示,其中A2的系数均为0。在表5中,为了区分球面和非球面,也将平面例如S10和S11的表面类型记作球面,其曲率半径为无限大。Y为最大物高。
表4
Figure PCTCN2020117243-appb-000005
Figure PCTCN2020117243-appb-000006
表5
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S0 物面 无限 520.000     0.000
S1 光阑 无限 -0.039   1.216 0.000
S2 非球面 2.944 0.519 1.642,26.3 1.003 1.529
S3 非球面 1.668 0.083   1.012 -8.783
    无限 0.028   1.053  
S4 非球面 1.481 0.857 1.642,26.3 1.042 -1.999
S5 非球面 18.064 0.123   1.377 -694.727
    无限 0.238   1.422  
S6 非球面 -2.539 0.750 1.642,26.3 1.433 -10.696
S7 非球面 -1.147 -0.550   1.422 -0.813
    无限 0.580   1.444  
S8 非球面 0.987 0.409 1.642,26.3 1.537 -10.477
S9 非球面 0.689 0.482   1.805 -3.565
S10 球面 无限 0.210 1.51,64.2 1.827  
S11 球面 无限 0.461   1.855  
S12 像面 无限     1.988  
表6
表面 A4 A6 A8 A10 A12 A14 A16
S2 -8.32E-02 2.32E-02 -6.87E-01 4.51E+00 -1.36E+01 2.24E+01 -2.11E+01
S3 -4.61E-01 2.21E+00 -9.06E+00 2.22E+01 -3.42E+01 3.33E+01 -1.97E+01
S4 -2.88E-01 2.84E-01 7.67E-01 -6.49E+00 1.59E+01 -2.06E+01 1.52E+01
S5 2.08E-01 -5.41E-01 1.30E+00 -2.51E+00 2.98E+00 -2.19E+00 9.67E-01
S6 2.06E-01 -4.91E-01 1.09E+00 -1.72E+00 1.82E+00 -1.25E+00 5.29E-01
S7 -3.06E-02 7.41E-01 -2.38E+00 4.26E+00 -4.69E+00 3.25E+00 -1.38E+00
S8 3.77E-01 -1.11E+00 1.67E+00 -1.67E+00 1.10E+00 -4.62E-01 1.17E-01
S9 8.29E-02 -3.28E-01 4.22E-01 -3.34E-01 1.70E-01 -5.54E-02 1.10E-02
基于表4、表5和表6所示的参数,可以确定实施例2所示的镜头110的参数如下:TTL=4.19mm,f=2.268mm,F数=1.14,FOV=85°。
图9示出了镜头110的像散的收差曲线;图10示出了镜头110的畸变的收差曲线;图11示出了镜头110的成像质量的收差曲线,即MTF曲线。从图9至图11所示的仿真图可以看出,在镜头110的参数f、Y’和TTL满足上述预设条件的情况下,镜头110具有较大的FOV、较小的工作F数、较小的TV畸变、以及较小的镜头尺寸,并且镜头的性能较好。
实施例3
镜头110包括四个透镜,如图12所示的各个透镜的布局,其中,从物方到像方依次为:光阑115、第一透镜111、第二透镜112、第三透镜113、第四透镜114、滤光片140和成像面116。
为便于区分和描述,按照从物方到像方的顺序,将物面记为S0,将光阑115记为S1,第一透镜111的两个表面分别记为S2和S3,第二镜头112的两个表面分别记为S4和S5,第三透镜113的两个表面分别记为S6和S7,第四透镜114的两个表面分别记为S8和S9,滤光片140的两个表面分别记为S10和S11,成像面116记为S12。
进一步地,通过设置镜头110中各个透镜的焦距、曲率半径、中心厚度、材料、有效直径、圆锥系数中的至少一项,以及镜头110中的非球面透镜的非球面高次项系数,以使镜头110的FOV、F数、尺寸、TV畸变等满足要求。
在实施例3中,各个透镜的焦距、曲率半径、中心厚度之间关系的设置 如表7所示。S0~S12中的每个面的曲率半径、厚度、材料(n、v)、有效直径、圆锥系数的设置如表8所示。S2~S9中的非球面的非球面高次项系数A2、A4、A6、A8、A10、A12、A14、A16的设置如表9所示,其中A2的系数均为0。在表8中,为了区分球面和非球面,也将平面例如S10和S11的表面类型记作球面,其曲率半径为无限大。Y为最大物高。
表7
项目 参数值
f1/f 6.505
f2/f 1.514
f3/f 1.440
f4/f -2.184
f 1/R1 9.585
f 1/R2 9.025
f 2/R3 2.459
f 2/R4 0.970
f 3/R5 -1.630
f 3/R6 -3.061
f 4/R7 -4.869
f 4/R8 -7.388
CT1/CT2 0.951
CT2/CT3 1.537
CT3/CT4 1.000
R1/R2 0.942
R3/R4 0.395
R5/R6 1.878
R7/R8 1.517
Y/f 0.714
Y/TTL 0.500
Y’/(f*TTL) 0.179
f/TTL 0.700
表8
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S0 物面 无限 600.000     0.000
S1 光阑 无限 -0.170   1.194  
S2 非球面 1.900 0.585 1.642,26.3 1.194 0.109
S3 非球面 2.018 0.113   1.220 -3.552
    无限 0.089   1.250  
S4 非球面 1.724 0.615 1.642,26.3 1.194 0.192
S5 非球面 4.368 0.210   1.256 1.024
    无限 0.426   1.230  
S6 非球面 -2.475 0.400 1.642,26.3 1.203 -0.927
S7 非球面 -1.318 -0.225   1.268 -0.903
    无限 0.311   1.331  
S8 非球面 1.256 0.400 1.642,26.3 1.650 -7.871
S9 非球面 0.828 0.311   1.836 -3.428
S10 球面 无限 0.210 1.51,64.2 1.870  
S11 球面 无限 0.558   1.900  
S12 像面 无限     2.067  
表9
表面 A4 A6 A8 A10 A12 A14 A16
S2 -1.48E-01 6.05E-01 -2.32E+00 5.17E+00 -7.13E+00 6.09E+00 -3.11E+00
S3 -1.81E-01 4.70E-01 -2.09E+00 4.50E+00 -5.68E+00 4.40E+00 -2.04E+00
S4 -1.26E-01 1.34E-01 -7.50E-01 1.26E+00 -1.40E+00 1.19E+00 -6.85E-01
S5 2.84E-02 4.57E-02 -2.78E-01 -6.78E-02 7.57E-01 -9.26E-01 5.25E-01
S6 4.49E-01 -1.61E+00 4.45E+00 -7.87E+00 8.61E+00 -5.81E+00 2.34E+00
S7 1.30E-01 1.12E-01 -9.31E-01 2.85E+00 -4.84E+00 4.82E+00 -2.79E+00
S8 -1.58E-01 1.64E-02 8.20E-02 -1.15E-01 8.33E-02 -3.43E-02 8.00E-03
S9 -2.39E-01 2.49E-01 -2.04E-01 1.13E-01 -4.06E-02 9.11E-03 -1.21E-03
基于表7、表8和表9所示的参数,可以确定实施例3所示的镜头110的参数如下:TTL=4.0mm,f=2.800mm,F数=1.168,FOV=70°。
图13示出了镜头110的像散的收差曲线;图14示出了镜头110的畸变的收差曲线;图15示出了镜头110的成像质量的收差曲线,即MTF曲线。从图13至图15所示的仿真图可以看出,在镜头110的参数f、Y’和TTL满足上述预设条件的情况下,镜头110具有较大的FOV、较小的工作F数、较小的TV畸变、以及较小的镜头尺寸,并且镜头的性能较好。
实施例4
镜头110包括四个透镜,如图16所示的各个透镜的布局,其中,从物方到像方依次为:光阑115、第一透镜111、第二透镜112、第三透镜113、第四透镜114、滤光片140和成像面116。
为便于区分和描述,按照从物方到像方的顺序,将物面记为S0,将光阑115记为S1,第一透镜111的两个表面分别记为S2和S3,第二镜头112的两个表面分别记为S4和S5,第三透镜113的两个表面分别记为S6和S7,第四透镜114的两个表面分别记为S8和S9,滤光片140的两个表面分别记为S10和S11,成像面116记为S12。
进一步地,通过设置镜头110中各个透镜的焦距、曲率半径、中心厚度、材料、有效直径、圆锥系数中的至少一项,以及镜头110中的非球面透镜的非球面高次项系数,以使镜头110的FOV、F数、尺寸、TV畸变等满足要求。
在实施例4中,各个透镜的焦距、曲率半径、中心厚度之间关系的设置如表10所示。S0~S12中的每个面的曲率半径、厚度、材料(n、v)、有效直径、圆锥系数等的设置如表11所示。S2~S9中的非球面的非球面高次项系数A2、A4、A6、A8、A10、A12、A14、A16的设置如表12所示,其中A2的系数为0。在表11中,为了区分球面和非球面,也将平面例如S10和S11的表面类型记作球面,其曲率半径为无限大。Y为最大物高。
表10
Figure PCTCN2020117243-appb-000007
Figure PCTCN2020117243-appb-000008
表11
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S0 物面 无限 600.000      
S1 光阑 无限 -0.116   1.122  
S2 非球面 3.032 0.835 1.642,26.3 1.123 3.741
S3 非球面 1.928 0.077   1.117 -5.767
    无限 0.041   1.135  
S4 非球面 1.538 0.756 1.642,26.3 1.140 -1.336
S5 非球面 11.934 0.139   1.433 0.000
    无限 0.255   1.461  
S6 非球面 -2.138 0.747 1.642,26.3 1.474 -13.088
S7 非球面 -1.137 -0.541   1.457 -0.867
    无限 0.571   1.463  
S8 非球面 1.086 0.400 1.642,26.3 1.614 -9.256
S9 非球面 0.758 0.469   1.850 -3.665
S10 球面 无限 0.210 1.51,64.2 1.885  
S11 球面 无限 0.546   1.917  
S12 像面 无限     2.045  
表12
表面 A4 A6 A8 A10 A12 A14 A16
S2 -1.57E-01 9.23E-01 -4.15E+00 1.08E+01 -1.73E+01 1.73E+01 -1.05E+01
S3 -2.11E-01 3.90E-01 -1.26E+00 1.84E+00 -1.02E+00 -6.41E-01 1.30E+00
S4 -4.97E-02 -8.19E-01 4.04E+00 -1.17E+01 1.96E+01 -2.01E+01 1.25E+01
S5 1.58E-01 -1.45E-01 2.72E-01 -9.14E-01 1.35E+00 -1.07E+00 4.87E-01
S6 1.39E-01 -3.43E-01 8.23E-01 -1.20E+00 1.08E+00 -6.27E-01 2.30E-01
S7 3.41E-02 5.80E-01 -2.18E+00 4.15E+00 -4.71E+00 3.31E+00 -1.40E+00
S8 2.32E-01 -5.08E-01 3.95E-01 1.62E-02 -3.38E-01 3.22E-01 -1.47E-01
S9 1.40E-02 -9.13E-02 7.11E-02 -3.44E-02 1.14E-02 -2.57E-03 2.88E-04
基于表10、表11和表12所示的参数,可以确定实施例4所示的镜头110的参数如下:TTL=4.507mm,f=2.521mm,F数=1.12,FOV=78°。
图17示出了镜头110的像散的收差曲线;图18示出了镜头110的畸变的收差曲线;图19示出了镜头110的成像质量的收差曲线,即MTF曲线。从图17至图19所示的仿真图可以看出,在镜头110的参数f、Y’和TTL满足上述预设条件的情况下,镜头110具有较大的FOV、较小的工作F数、较小的TV畸变、以及较小的镜头尺寸,并且镜头的性能较好。
实施例5
镜头110包括四个透镜,如图20所示的各个透镜的布局,其中,从物方到像方依次为:光阑115、第一透镜111、第二透镜112、第三透镜113、第四透镜114、滤光片140和成像面116。
为便于区分和描述,按照从物方到像方的顺序,将物面记为S0,将光阑115记为S1,第一透镜111的两个表面分别记为S2和S3,第二镜头112的两个表面分别记为S4和S5,第三透镜113的两个表面分别记为S6和S7,第四透镜114的两个表面分别记为S8和S9,滤光片140的两个表面分别记为S10和S11,成像面116记为S12。
进一步地,通过设置镜头110中各个透镜的焦距、曲率半径、中心厚度、材料、有效直径、圆锥系数中的至少一项,以及镜头110中的非球面透镜的非球面高次项系数,以使镜头110的FOV、F数、尺寸、TV畸变等满足要求。
在实施例3中,各个透镜的焦距、曲率半径、中心厚度之间关系的设置如表13所示。S0~S12中的每个面的曲率半径、厚度、材料(n、v)、有效直径、圆锥系数的设置如表14所示。S2~S9中的非球面的非球面高次项系数A2、A4、A6、A8、A10、A12、A14、A16的设置如表15所示,其中A2的系数均为0。在表8中,为了区分球面和非球面,也将平面例如S10和S11的表面类型记作球面,其曲率半径为无限大。Y为最大物高。
表13
Figure PCTCN2020117243-appb-000009
Figure PCTCN2020117243-appb-000010
表14
表面 表面类型 曲率半径 厚度 材料 有效直径 圆锥系数
S0 物面 无限 600.000      
S1 光阑 无限 -0.132   1.091  
S2 非球面 2.121 0.587 1.642,26.3 1.092 -0.135
S3 非球面 2.551 0.108   1.108 -0.080
    无限 0.124   1.125  
S4 非球面 2.024 0.633 1.642,26.3 1.116 -6.076
S5 非球面 4.604 0.200   1.295 2.676
    无限 0.190   1.280  
S6 非球面 -2.606 0.548 1.642,26.3 1.266 -4.629
S7 非球面 -1.153 -0.253   1.288 -1.476
    无限 0.296   1.370  
S8 非球面 1.198 0.417 1.642,26.3 1.556 -0.869
S9 非球面 0.769 0.338   1.785 -0.981
S10 球面 无限 0.210 1.51,64.2 1.817  
S11 球面 无限 0.557   1.847  
S12 像面 无限 0.000   1.969  
表15
Figure PCTCN2020117243-appb-000011
基于表13、表14和表15所示的参数,可以确定实施例5所示的镜头110的参数如下:TTL=4.0mm,f=2.496mm,F数=1.14,FOV=78°。
图21示出了镜头110的像散的收差曲线;图22示出了镜头110的畸变的收差曲线;图23示出了镜头110的成像质量的收差曲线,即MTF曲线。从图21至图23所示的仿真图可以看出,在镜头110的参数f、Y’和TTL满足上述预设条件的情况下,镜头110具有较大的FOV、较小的工作F数、较小的TV畸变、以及较小的镜头尺寸,并且镜头的性能较好。
其中,表1至表15中的参数所对应的位置为空白,则表示无此参数或该参数的值为0。
镜头110的Y’、f和TTL影响镜头的尺寸、FOV、F数等。镜头110的 空间尺寸即TTL直接影响镜头110的设计难度,在本申请实施例中,通过设计Y’/(f*TTL)和f/TTL,可以使镜头110的具有较小的TTL,例如TTL≤4.51,甚至TTL<4.2mm或者TTL≤4.0mm。在保证镜头110具有较好的成像解析力的情况下,还能够实现在较小的空间尺寸内对较大区域的深度信息进行成像。并且通过校正畸变,减少了镜头110的物像失真,提升了镜头110在全视场内的深度误差的均匀性。
在实际应用中,可以根据实际情况,在满足本申请的镜头参数的情况下,选择合适的镜头。例如,在上述实施例1至实施例5的镜头中,实施例4中的镜头的F数可以达到1.12,具有更优的分辨率,但是镜头尺寸相较于其他实施例中而言会较大,即TTL=4.507mm;而实施例1、实施例3和实施例5中的镜头的尺寸可以达到TTL=4.0mm,但是F数会比实施例4中的镜头的F数略大。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
应理解,本申请实施例中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围,本领域技术人员可以在上述实施例的基础上进行各种改进和变形,而这些改进或者变形均落在本申请的保护范围内。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种红外成像镜头,其特征在于,所述镜头包括从物方到像方依次设置的光阑、第一透镜、第二透镜、第三透镜和第四透镜,其中:
    所述第一透镜在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,所述第一透镜的两个面中至少有一个面为非球面;
    所述第二透镜为正光焦度的透镜,所述第二透镜在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,所述第二透镜的两个面中至少有一个面为非球面;
    所述第三透镜为正光焦度的透镜,所述第三透镜在靠近物面一侧的近轴区域为凹面,且在靠近像面一侧的近轴区域为凸面,所述第三透镜的两个面中至少有一个面为非球面;
    所述第四透镜为负光焦度的透镜,所述第四透镜在靠近物面一侧的近轴区域为凸面,且在靠近像面一侧的近轴区域为凹面,所述第四透镜的两个面中至少有一个面为非球面;
    其中,所述镜头的参数满足:0<|Y’/(f*TTL)|<0.5,0.4<f/TTL<0.8,其中,f为所述镜头的焦距,Y’为所述镜头的像面上的最大像高,TTL为所述镜头的物面至像面之间的距离。
  2. 根据权利要求1所述的红外成像镜头,其特征在于,所述镜头的视场角FOV满足:68°<FOV<85°。
  3. 根据权利要求1或2所述的红外成像镜头,其特征在于,所述镜头的F数满足:F数<1.2。
  4. 根据权利要求1至3中任一项所述的红外成像镜头,其特征在于,|Y’/(f*TTL)|=0.203,f/TTL=0.630,F数=1.138,FOV=78°。
  5. 根据权利要求1至4中任一项所述的红外成像镜头,其特征在于,|Y’/(f*TTL)|=0.210,f/TTL=0.541,F数=1.14,FOV=85°。
  6. 根据权利要求1至5中任一项所述的红外成像镜头,其特征在于,|Y’/(f*TTL)|=0.179,f/TTL=0.700,F数=1.168,FOV=70°。
  7. 根据权利要求1至6中任一项所述的红外成像镜头,其特征在于,|Y’/(f*TTL)|=0.176,f/TTL=0.559,F数=1.12,FOV=78°。
  8. 根据权利要求1至7中任一项所述的红外成像镜头,其特征在于,|Y’/(f*TTL)|=0.203,f/TTL=0.631,F数=1.14,FOV=78°。
  9. 根据权利要求1至8中任一项所述的红外成像镜头,其特征在于,所述第一透镜的中心厚度CT1和所述第二透镜的中心厚度CT2之间满足:0<CT1/CT2<2。
  10. 根据权利要求1至9中任一项所述的红外成像镜头,其特征在于,所述第二透镜的中心厚度CT2和所述第三透镜的中心厚度CT3之间满足:0<CT2/CT3<2。
  11. 根据权利要求1至10中任一项所述的红外成像镜头,其特征在于,所述第三透镜的中心厚度CT3和所述第四透镜的中心厚度CT4之间满足:0<CT3/CT4<2。
  12. 根据权利要求1至11中任一项所述的红外成像镜头,其特征在于,所述第一透镜的材料的折射率n 1>1.6,所述第一透镜的材料的色散系数v 1>20.0。
  13. 根据权利要求1至12中任一项所述的红外成像镜头,其特征在于,所述第二透镜的材料的折射率n 2>1.6,所述第二透镜的材料的色散系数v 2>20.0。
  14. 根据权利要求1至13中任一项所述的红外成像镜头,其特征在于,所述第三透镜的材料的折射率n 3>1.6,所述第三透镜的材料的色散系数v 3>20.0。
  15. 根据权利要求1至14中任一项所述的红外成像镜头,其特征在于,所述第四透镜的材料的折射率n 4>1.6,所述第四透镜的材料的色散系数v 4>20.0。
  16. 根据权利要求1至15中任一项所述的红外成像镜头,其特征在于,所述第一透镜的焦距f 1与所述镜头的焦距f之间满足:-5<f 1/f<10。
  17. 根据权利要求1至16中任一项所述的红外成像镜头,其特征在于,所述第二透镜的焦距f 2与所述镜头的焦距f之间满足:0<f 2/f<5。
  18. 根据权利要求1至17中任一项所述的红外成像镜头,其特征在于,所述第三透镜的焦距f 3与所述镜头的焦距f之间满足:0<f 3/f<2。
  19. 根据权利要求1至18中任一项所述的红外成像镜头,其特征在于,所述第四透镜的焦距f 4与所述镜头的焦距f之间满足:-5<f 4/f<0。
  20. 根据权利要求1至19中任一项所述的红外成像镜头,其特征在于,所述第一透镜的焦距f 1与所述第一透镜在靠近物面一侧的近轴区域的曲率 半径R1之间满足:-5<f 1/R1<15。
  21. 根据权利要求1至20中任一项所述的红外成像镜头,其特征在于,所述第一透镜的焦距f 1与所述第一透镜在靠近像面一侧的近轴区域的曲率半径R2之间满足:-10<f 1/R2<10。
  22. 根据权利要求1至21中任一项所述的红外成像镜头,其特征在于,所述第二透镜的焦距f 2与所述第二透镜在靠近物面一侧的近轴区域的曲率半径R3之间满足:0<f 2/R3<4。
  23. 根据权利要求1至22中任一项所述的红外成像镜头,其特征在于,所述第二透镜的焦距f 2与所述第二透镜在靠近像面一侧的近轴区域的曲率半径R4之间满足:0<f 2/R4<2。
  24. 根据权利要求1至23中任一项所述的红外成像镜头,其特征在于,所述第三透镜的焦距f 3与所述第三透镜在靠近物面一侧的近轴区域的曲率半径R5之间满足:-2<f 3/R5<0。
  25. 根据权利要求1至24中任一项所述的红外成像镜头,其特征在于,所述第三透镜的焦距f 3与所述第三透镜在靠近像面一侧的近轴区域的曲率半径R6之间满足:-5<f 3/R6<0。
  26. 根据权利要求1至25中任一项所述的红外成像镜头,其特征在于,所述第四透镜的焦距f 4与所述第四透镜在靠近物面一侧的近轴区域的曲率半径R7之间满足:-10<f 4/R7<0。
  27. 根据权利要求1至26中任一项所述的红外成像镜头,其特征在于,所述第四透镜的焦距f 4与所述第四透镜在靠近像面一侧的近轴区域的曲率半径R8之间满足:-15<f 4/R8<-5。
  28. 根据权利要求1至27中任一项所述的红外成像镜头,其特征在于,所述第一透镜在靠近物面一侧的近轴区域的曲率半径R1与所述第一透镜在靠近像面一侧的近轴区域的曲率半径R2之间满足:0<R1/R2<2。
  29. 根据权利要求1至28中任一项所述的红外成像镜头,其特征在于,所述第二透镜在靠近物面一侧的近轴区域的曲率半径R3与所述第二透镜在靠近像面一侧的近轴区域的曲率半径R4之间满足:0<R3/R4<1。
  30. 根据权利要求1至29中任一项所述的红外成像镜头,其特征在于,所述第三透镜在靠近物面一侧的近轴区域的曲率半径R5与所述第三透镜在靠近像面一侧的近轴区域的曲率半径R6之间满足:1<R5/R6<3。
  31. 根据权利要求1至30中任一项所述的红外成像镜头,其特征在于,所述第四透镜在靠近物面一侧的近轴区域的曲率半径R7与所述第四透镜在靠近像面一侧的近轴区域的曲率半径R8之间满足:1<R7/R8<3。
  32. 根据权利要求1至31中任一项所述的红外成像镜头,其特征在于,所述红外成像镜头应用于深度检测中。
PCT/CN2020/117243 2020-07-01 2020-09-23 红外成像镜头 WO2022000823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/099780 2020-07-01
PCT/CN2020/099780 WO2022000381A1 (zh) 2020-07-01 2020-07-01 红外成像镜头

Publications (1)

Publication Number Publication Date
WO2022000823A1 true WO2022000823A1 (zh) 2022-01-06

Family

ID=79317343

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/099780 WO2022000381A1 (zh) 2020-07-01 2020-07-01 红外成像镜头
PCT/CN2020/117243 WO2022000823A1 (zh) 2020-07-01 2020-09-23 红外成像镜头
PCT/CN2020/117245 WO2022000824A1 (zh) 2020-07-01 2020-09-23 红外成像镜头

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099780 WO2022000381A1 (zh) 2020-07-01 2020-07-01 红外成像镜头

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117245 WO2022000824A1 (zh) 2020-07-01 2020-09-23 红外成像镜头

Country Status (1)

Country Link
WO (3) WO2022000381A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI763290B (zh) 2021-02-01 2022-05-01 大立光電股份有限公司 攝像光學鏡片系統、取像裝置及電子裝置
CN115079376B (zh) * 2022-05-24 2024-01-12 福建福光天瞳光学有限公司 一种低温漂车载镜头及其成像方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184880A1 (en) * 2012-12-31 2014-07-03 Kolen Co., Ltd. Photographic Lens Optical System
CN207473174U (zh) * 2017-08-24 2018-06-08 浙江舜宇光学有限公司 摄像透镜组
US20200018932A1 (en) * 2018-07-12 2020-01-16 Newmax Technology Co., Ltd. Four-piece infrared single wavelength lens system
CN111025544A (zh) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111142221A (zh) * 2019-12-23 2020-05-12 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111505809A (zh) * 2020-07-01 2020-08-07 深圳市汇顶科技股份有限公司 红外成像镜头
CN112099208A (zh) * 2020-09-23 2020-12-18 深圳市汇顶科技股份有限公司 红外成像镜头

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI588531B (zh) * 2016-07-21 2017-06-21 Tan Cian Technology Co Ltd Wide angle imaging lens group
DE102018111669A1 (de) * 2018-05-15 2019-11-21 Leica Camera Ag Optisches Linsensystem und Abbildungssystem
CN110174745B (zh) * 2019-03-07 2023-09-01 玉晶光电(厦门)有限公司 光学成像镜头
CN112099209B (zh) * 2020-09-23 2022-05-06 深圳市汇顶科技股份有限公司 红外成像镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184880A1 (en) * 2012-12-31 2014-07-03 Kolen Co., Ltd. Photographic Lens Optical System
CN207473174U (zh) * 2017-08-24 2018-06-08 浙江舜宇光学有限公司 摄像透镜组
US20200018932A1 (en) * 2018-07-12 2020-01-16 Newmax Technology Co., Ltd. Four-piece infrared single wavelength lens system
CN111025544A (zh) * 2019-12-23 2020-04-17 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111142221A (zh) * 2019-12-23 2020-05-12 瑞声通讯科技(常州)有限公司 摄像光学镜头
CN111505809A (zh) * 2020-07-01 2020-08-07 深圳市汇顶科技股份有限公司 红外成像镜头
CN112099208A (zh) * 2020-09-23 2020-12-18 深圳市汇顶科技股份有限公司 红外成像镜头

Also Published As

Publication number Publication date
WO2022000824A1 (zh) 2022-01-06
WO2022000381A1 (zh) 2022-01-06

Similar Documents

Publication Publication Date Title
CN111505809B (zh) 红外成像镜头
CN113625423B (zh) 一种成像系统、摄像头模组及电子设备
CN113484984B (zh) 光学镜头、摄像模组及电子设备
WO2022000823A1 (zh) 红外成像镜头
TW201839452A (zh) 廣角成像鏡片組
CN108592867B (zh) 光信号接收光学镜组
CN112099209B (zh) 红外成像镜头
CN111413783A (zh) 光学成像镜头及电子设备
CN110837159B (zh) 光学成像模块
CN110941064A (zh) 光学成像模块
CN110941066A (zh) 光学成像模块
CN110837163A (zh) 光学成像模块
CN112099208B (zh) 红外成像镜头
CN114265184B (zh) 光学镜头、摄像模组及电子设备
CN114509862B (zh) 光学系统、摄像模组和电子设备
CN113391429B (zh) 光学系统、摄像头模组及电子设备
CN114002832B (zh) 光学系统、镜头模组和电子设备
CN116107068A (zh) 鱼眼镜头
CN112904532B (zh) 光学镜头、摄像模组及电子设备
WO2022052133A1 (zh) 红外准直镜头和红外镜头模组
CN214845992U (zh) 成像光学系统、取像模组和电子装置
CN110941062A (zh) 光学成像模块
CN220188787U (zh) 一种摄远镜头及电子设备
CN115166942B (zh) 光学系统、摄像模组和电子设备
CN110941067A (zh) 光学成像模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943585

Country of ref document: EP

Kind code of ref document: A1