WO2022000640A1 - 一种变压器监测报警系统 - Google Patents

一种变压器监测报警系统 Download PDF

Info

Publication number
WO2022000640A1
WO2022000640A1 PCT/CN2020/104064 CN2020104064W WO2022000640A1 WO 2022000640 A1 WO2022000640 A1 WO 2022000640A1 CN 2020104064 W CN2020104064 W CN 2020104064W WO 2022000640 A1 WO2022000640 A1 WO 2022000640A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
transformer
oil
parameter information
dissolved
Prior art date
Application number
PCT/CN2020/104064
Other languages
English (en)
French (fr)
Inventor
赵振龙
侯荣涛
林静茹
孟伟南
朱新向
Original Assignee
南京东创信通物联网研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京东创信通物联网研究院有限公司 filed Critical 南京东创信通物联网研究院有限公司
Publication of WO2022000640A1 publication Critical patent/WO2022000640A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults

Definitions

  • the utility model relates to the technical field of transformer monitoring, in particular to a transformer monitoring and alarm system.
  • Transformer is the key equipment in the power system, it undertakes the heavy responsibility of voltage transformation, electric energy distribution and transfer, and its normal operation is the guarantee for the safe and reliable operation of the power system. Therefore, it is necessary to minimize or even prevent the occurrence of transformer faults. It is necessary to introduce transformer online monitoring systems to minimize the occurrence of faults through correct diagnosis and early prediction of faults.
  • the traditional online monitoring system for transformers usually only monitors the grounding condition of the core of the transformer or the magnetic flux leakage of the transformer to determine whether the transformer is faulty, but only the above single fault identification method is used. issues of misjudgment or misjudgment. It can be seen that the traditional transformer online monitoring system has few safety elements, and it is easy to miss or misjudge the transformer fault, and the detection accuracy is low.
  • the purpose of the utility model is to provide a transformer monitoring and alarming system, so as to solve the problems that the traditional transformer online monitoring system has few safety elements, is prone to miss or misjudge transformer faults, and has low detection accuracy.
  • the utility model provides the following scheme:
  • a transformer monitoring and alarming system includes a monitoring sensor group, a data acquisition station and a monitoring and analysis station;
  • the monitoring sensor group is used to collect the safety parameter information of the transformer and upload the safety parameter information to the data collection station;
  • the safety parameter information includes: thermal state distribution, corona discharge intensity, content of hydrogen dissolved in transformer oil, The content of carbon monoxide dissolved in transformer oil, the content of carbon dioxide dissolved in transformer oil, the content of methane dissolved in transformer oil, the content of acetylene dissolved in transformer oil, the content of ethylene dissolved in transformer oil, the content of ethane dissolved in transformer oil, the Ground leakage current, amplitude of discharge signal, polarity of discharge signal, phase of discharge signal, number of discharges, vibration amplitude of transformer winding, vibration amplitude of iron core, vibration amplitude of oil pump, vibration amplitude of fan, transformer The temperature of the winding and the temperature of the tank;
  • the data collection station is used for uploading the safety parameter information to the monitoring and analysis station;
  • the monitoring and analysis station is used for sending an alarm to the mobile phone according to the safety parameter information.
  • the monitoring sensor group specifically includes: an infrared thermal imager, an ultraviolet imager, a gas sensor group, a zero-flux iron core current sensor, an ultra-high frequency sensor, a resistance-type vibration sensor, and an optical fiber temperature sensor;
  • the infrared thermal imager is used to collect the thermal state distribution of the transformer; the ultraviolet imager is used to collect the corona discharge intensity of the transformer; the gas sensor group is used to collect hydrogen, carbon monoxide and carbon dioxide dissolved in the transformer oil , methane, acetylene, ethylene and ethane; the zero-flux iron core current sensor is used to collect the ground leakage current of the transformer; the ultra-high frequency sensor is used to collect the amplitude, polarity and phase of the transformer discharge signal and discharge times; the resistance type vibration sensor is used to collect the vibration amplitude of the transformer winding, iron core, oil pump and fan; the optical fiber temperature sensor is used to collect the temperature of the transformer winding and the oil tank.
  • the data collection station specifically includes: a dissolved gas monitoring device in oil, an iron core grounding current monitoring device, a partial discharge monitoring device, a vibration measuring device, and a fiber grating temperature measuring device;
  • the device for monitoring dissolved gas in oil is connected to the gas sensor group, and the device for monitoring dissolved gas in oil is used to measure the content of hydrogen, carbon monoxide, carbon dioxide, methane, acetylene, ethylene and ethane dissolved in the transformer oil transmitting to the monitoring and analysis station;
  • the iron core grounding current monitoring device is connected to the zero-flux iron core current sensor, and the iron core grounding current monitoring device is used for transmitting the grounding leakage current to the monitoring and analysis station;
  • the partial discharge monitoring device is connected with the ultra-high frequency sensor, and the partial discharge monitoring device is used for sending the amplitude, polarity, phase and number of discharges of the discharge signal to the monitoring and analysis station;
  • the vibration The measuring device is connected with the resistance type vibration sensor, and the vibration measuring device is used to send the vibration amplitude of the transformer winding, iron core, oil pump and fan to the monitoring and analysis station;
  • the fiber grating temperature measuring device is connected to the The optical fiber temperature sensor is connected, and the optical
  • the data collection station uploads the security parameter information to the data collection station through a switch.
  • the monitoring and analysis station includes an edge computing gateway;
  • the edge computing gateway includes a 4G communication module and a large-capacity storage;
  • the large-capacity storage is used for storing the security parameter information; the edge computing gateway sends an alarm to the mobile phone through the 4G communication module according to the security parameter information.
  • the edge computing gateway when the corona discharge intensity exceeds a first threshold, the edge computing gateway sends an alarm to the mobile phone; when the carbon monoxide content dissolved in the transformer oil exceeds the second threshold, the edge computing gateway sends an alarm to the mobile phone. alarm; when the ground leakage current exceeds the third threshold, the edge computing gateway sends an alarm to the mobile phone; when the amplitude of the discharge signal exceeds the fourth threshold, the edge computing gateway sends an alarm to the mobile phone; when all the When the vibration amplitude of the transformer winding exceeds the fifth threshold, the edge computing gateway sends an alarm to the mobile phone; when the temperature of the transformer winding exceeds the sixth threshold, the edge computing gateway sends an alarm to the mobile phone.
  • the edge computing gateway is configured to send the security parameter information to the monitoring background for real-time viewing by maintenance personnel.
  • the present utility model discloses the following technical effects:
  • the utility model discloses a transformer monitoring and alarming system, which comprises a monitoring sensor group, a data collection station and a monitoring analysis station; the safety parameter information of the transformer is collected by adopting the monitoring sensor group and the safety parameter information is uploaded through the data collection station to the monitoring and analysis station; the safety parameter information includes thermal state distribution, corona discharge intensity, hydrogen dissolved in transformer oil, carbon monoxide, carbon dioxide, methane, acetylene, ethylene and ethane content, ground leakage current, discharge signal Amplitude, polarity, phase and number of discharges, vibration amplitude of transformer winding, iron core, oil pump and fan, temperature of transformer winding and oil tank; the monitoring and analysis station monitors and alarms the transformer according to the safety parameter information.
  • the utility model collects the safety parameter information of the transformer by monitoring the sensor group, so that the safety elements of the transformer monitored by the utility model are comprehensive, thereby improving the accuracy of transformer fault detection.
  • Fig. 1 is the transformer monitoring and alarm system provided by the utility model.
  • Monitoring sensor group 1 infrared thermal imager 1-1, ultraviolet imager 1-2, gas sensor group 1-3, zero-flux iron core current sensor 1-4, ultra-high frequency sensor 1-5, resistance vibration Sensor 1-6, Optical Fiber Temperature Sensor 1-7, Data Acquisition Station 2, Oil Dissolved Gas Monitoring Device 2-1, Iron Core Grounding Current Monitoring Device 2-2, Partial Discharge Monitoring Device 2-3, Vibration Measuring Device 2-4 , fiber grating temperature measurement device 2-5, monitoring and analysis station 3, large-capacity storage 3-1, edge computing gateway 3-2, 4G communication module 3-3.
  • the purpose of the utility model is to provide a transformer monitoring and alarming system, so as to solve the problems that the traditional transformer online monitoring system has few safety elements, is prone to miss or misjudge transformer faults, and has low detection accuracy.
  • Fig. 1 is the transformer monitoring and alarm system provided by the utility model.
  • a transformer monitoring and alarm system includes a monitoring sensor group 1, a data acquisition station 2 and a monitoring and analysis station 3;
  • the monitoring sensor group 1 is used to collect the safety parameter information of the transformer and upload the safety parameter information to the data collection station 2;
  • the safety parameter information includes: thermal state distribution, corona discharge intensity, and hydrogen dissolved in transformer oil.
  • Content content of carbon monoxide dissolved in transformer oil, content of carbon dioxide dissolved in transformer oil, content of methane dissolved in transformer oil, content of acetylene dissolved in transformer oil, content of ethylene dissolved in transformer oil, content of ethane dissolved in transformer oil , ground leakage current, amplitude of discharge signal, polarity of discharge signal, phase of discharge signal, number of discharges, vibration amplitude of transformer winding, vibration amplitude of iron core, vibration amplitude of oil pump, vibration amplitude of fan , the temperature of the transformer winding and the temperature of the oil tank;
  • the data collection station 2 is used for uploading the safety parameter information to the monitoring and analysis station 3;
  • the monitoring and analysis station 3 is used for sending an alarm to the mobile phone according to the safety parameter information.
  • the monitoring sensor group 1 specifically includes: an infrared thermal imager 1-1, an ultraviolet imager 1-2, a gas sensor group 1-3, a zero-flux iron core current sensor 1-4, and an ultra-high frequency sensor 1-5 , resistive vibration sensor 1-6 and optical fiber temperature sensor 1-7;
  • the infrared thermal imager 1-1 is preferably an MR-9000 type
  • the ultraviolet imager 1-2 is preferably a UV100 solar-blind ultraviolet imager
  • the gas-sensing sensor groups 1-3 are preferably TDC-type gas-sensing sensor groups
  • the zero-flux iron-core current sensors 1-4 are preferably CSA101-P030T01 zero-flux iron-core current sensors
  • the ultra-high frequency sensor 1-5 is preferably a PDU-T1 type ultra-high frequency sensor
  • the resistance type vibration sensor 1-6 is preferably a JZR-1-200 type resistance type vibration sensor
  • the optical fiber temperature sensor 1-7 is preferably a BGK-FBG4700S type Fiber
  • the infrared thermal imager 1-1 is used to collect the thermal state distribution of the transformer; the ultraviolet imager 1-2 is used to collect the corona discharge intensity of the transformer; the ultraviolet imager monitors the corona intensity of the high voltage discharge of the transformer, Generally, each transformer is equipped with one infrared thermal imager and one ultraviolet imager. If conditions permit, multiple transformers can be equipped with one infrared thermal imager and one ultraviolet imager.
  • the gas-sensitive sensor group 1-3 is used to collect the content of dissolved hydrogen, carbon monoxide, carbon dioxide, methane, acetylene, ethylene and ethane in the transformer oil; Composition and growth rate of H 2 , CO, CO 2 , CH 4 , C 2 H 2 , C 2 H 4 , and C 2 H 6 .
  • the zero-flux iron-core current sensors 1-4 are used to collect the grounding leakage current of the transformer. When the transformer is in normal operation, there is an electric field around the windings, and metal components such as iron cores and clips are in the electric field, and the field strength varies. Different, if the iron core is not reliably grounded, it will cause charging and discharging, which will damage its solid and oil insulation.
  • each transformer needs to be equipped with one.
  • the UHF sensors 1-5 are used to collect the amplitude, polarity, phase and discharge times of the transformer discharge signal; the resistance-type vibration sensors 1-6 are used to collect the vibrations of the transformer windings, iron cores, oil pumps and fans Its function is mainly used to monitor the vibration of the transformer.
  • the vibration of the transformer winding, iron core and accessories such as oil pump and fan causes the overall vibration.
  • the optical fiber temperature sensors 1-7 are used to collect the temperature of the transformer winding and the oil tank. Generally, multiple optical fiber temperature sensors are connected in series for temperature monitoring of multiple transformers.
  • the data acquisition station 2 is composed of various measurement devices, and is mainly responsible for collecting the data of the monitoring sensor group 1, and uploading the collected data to the monitoring and analysis station 3;
  • the circuit design is also different. Dissolved gas monitoring devices in oil, iron core grounding current monitoring devices, partial discharge monitoring devices, vibration measuring devices, fiber grating temperature measuring devices, etc. collect signals frequently, and high-performance microprocessors or digital signal processors are required for data collection , and uses the Ethernet interface as its data upload interface.
  • the data acquisition station 2 specifically includes: a dissolved gas in oil monitoring device 2-1, an iron core grounding current monitoring device 2-2, a partial discharge monitoring device 2-3, a vibration measurement device 2-4 and a fiber grating temperature measurement device 2- 5;
  • the oil dissolved gas monitoring device 2-1 is preferably an NPM801 oil dissolved gas monitoring device
  • the iron core grounding current monitoring device 2-2 is preferably an NPM821-TX iron core grounding current monitoring device
  • the partial discharge monitoring device 2-3 is preferably an NPM802-T partial discharge monitoring device
  • the vibration measuring device 2-4 is preferably an NPM961-V vibration measuring device
  • the fiber grating temperature measuring device 2-5 is preferably an NPM842-FT fiber grating temperature measuring device .
  • the oil-dissolved gas monitoring device 2-1 is connected to the gas sensor group 1-3, and the oil-dissolved gas monitoring device 2-1 is used for dissolving hydrogen, carbon monoxide, carbon dioxide, and methane in the transformer oil.
  • the contents of acetylene, ethylene and ethane are sent to the monitoring and analysis station 3;
  • the iron core grounding current monitoring device 2-2 is connected to the zero-flux iron core current sensor 1-4, 2-2 is used to transmit the ground leakage current to the monitoring and analysis station 3;
  • the partial discharge monitoring device 2-3 is connected to the ultra-high frequency sensor 1-5, and the partial discharge monitoring device 2-3 Used to send the amplitude, polarity, phase and number of discharges of the discharge signal to the monitoring and analysis station 3;
  • the vibration measurement devices 2-4 are connected to the resistance type vibration sensors 1-6, and the vibration The measuring device 2-4 is used to send the vibration amplitude of the transformer winding, iron core, oil pump and fan to the monitoring and analysis station 3;
  • the data collection station 2 uploads the security parameter information to the data collection station 2 through a switch.
  • the monitoring and analysis station 3 includes an edge computing gateway 3-2; the edge computing gateway 3-2 includes a 4G communication module 3-3 and a large-capacity storage 3-1; the edge computing gateway 3-2 adopts the model AIR -300 edge computing gateways.
  • the core of monitoring and analysis station 3 is an edge computing gateway, which needs to have the following functions:
  • Rich communication interfaces at least 2 100M Ethernet ports, 1 for system configuration and communication with the backup background, and the other for communication with the measurement device of the Ethernet port; at least 1 4G communication module is used to push alarm information .
  • Powerful computing power used to calculate and analyze the data sent by each data acquisition device
  • the edge computing gateway needs to save the collected data for at least one month, so that it can export and analyze the historical data after a fault occurs.
  • the edge computing gateway communicates with the mobile phone through the 4G communication module 3-3.
  • the edge computing gateway has rich communication interfaces, which can be connected to various sensor measurement devices that support standard protocols, so as to realize the modularization of data collection.
  • the monitoring system can be equipped with various types of monitoring sensors according to the type of motor and the actual needs of the site, so that various monitoring elements can be connected to the system on demand.
  • the large-capacity storage 3-1 is used to store the security parameter information; the edge computing gateway 3-2 sends an alarm to the mobile phone through the 4G communication module 3-3 according to the security parameter information.
  • the edge computing gateway 3-2 is also connected to the controlled device through the isolation DO; the controlled device is an audible and visual alarm; the edge computing gateway 3-2 controls the controlled device to issue an alarm according to the security parameter information.
  • the edge computing gateway 3-2 When the corona discharge intensity exceeds the first threshold, the edge computing gateway 3-2 sends an alarm to the mobile phone; when the carbon monoxide content dissolved in the transformer oil exceeds the second threshold, the edge computing gateway 3-2 sends an alarm to the mobile phone.
  • the mobile phone sends an alarm; when the ground leakage current exceeds the third threshold, the edge computing gateway 3-2 sends an alarm to the mobile phone; when the amplitude of the discharge signal exceeds the fourth threshold, the edge computing gateway 3-2 2.
  • the edge computing gateway 3-2 is used to send the safety parameter information to the monitoring background for real-time viewing by maintenance personnel.
  • the maintenance personnel can check the status of the transformer according to the safety parameter information displayed in the monitoring background, and use It is used to realize the judgment of the cause of transformer failure.
  • the utility model discloses a transformer monitoring and alarming system, which comprises a monitoring sensor group, a data acquisition station and a monitoring and analysis station.
  • the system is mainly composed of various monitoring sensors, data monitoring devices, switches, monitoring and analysis stations, monitoring backgrounds and monitoring mobile phones; the monitoring sensor group mainly converts the monitored quantities on the transformer into measurable electrical signals, mainly including gas sensors. Sensor group, zero-flux iron wire current sensor, ultra-high frequency sensor, resistive vibration sensor, optical fiber temperature sensor.
  • the data acquisition station consists of various data measurement devices with different measurement principles to form an electrical cabinet. It is mainly responsible for digitizing the electrical signals of various monitoring sensors and sending them to the monitoring and analysis station through Ethernet. When the number of monitoring station network ports is not enough, A switch is required for data forwarding.
  • the data measurement device includes a dissolved gas monitoring device in oil, an iron core grounding current monitoring device, a partial discharge monitoring device, a vibration measurement device, and a fiber grating measurement device.
  • a dedicated sensor cable is used to connect the monitoring sensor and the measuring device.
  • the monitoring and analysis station is used to summarize the data of each data collection device in the data collection station, and send an alarm to the mobile phone according to the collected data through the built-in edge computing gateway. When the monitoring and analysis station has monitoring information, it will send the security parameter information to the monitoring background through the network port.
  • the utility model collects the safety parameter information of the transformer by monitoring the sensor group, so that the safety elements of the transformer monitored by the utility model are comprehensive, thereby improving the accuracy of transformer fault detection.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

一种变压器监测报警系统,包括监测传感器组(1)、数据采集站(2)和监测分析站(3);采用监测传感器组(1)采集变压器的安全参数信息并将安全参数信息经数据采集站(2)上传到监测分析站(3);安全参数信息包括热状态分布、电晕放电强度、变压器油溶解的氢气、一氧化碳、二氧化碳、甲烷、乙炔、乙烯和乙烷的含量、接地漏电流、放电信号的幅值、极性、相位和放电次数、变压器绕组、铁芯、油泵和风机的振动幅值、变压器绕组和油箱的温度;监测分析站(3)根据安全参数信息对变压器进行监测报警。该系统通过监测传感器组(1)来采集变压器的安全参数信息,使得该系统监测的变压器安全要素全面,从而提高了对变压器故障检测的精度。

Description

一种变压器监测报警系统
本申请要求于2020年06月28日提交中国专利局、申请号为202021219887.0、发明名称为“一种变压器监测报警系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本实用新型涉及变压器监测技术领域,特别是涉及一种变压器监测报警系统。
背景技术
变压器是电力系统中关键设备,它承担着电压变换,电能分配和转移的重任,其正常运行是电力系统安全、可靠运行的保证。因此必须最大限度地减少、甚至防止变压器故障的发生,有必要引入变压器在线监测系统,通过对故障的正确诊断和及早预测,最大限度地减少故障的发生。
传统变压器在线监测系统,通常只监测变压器的铁心接地情况或者变压器的漏磁量,来判断变压器是否发生故障,但仅采用上述单一的故障判别方式,由于监测的安全要素少,容易发生变压器故障漏判或误判的问题。可见传统变压器在线监测系统监测的安全要素少,容易对变压器故障产生漏判或者误判,检测精度低。
发明内容
本实用新型的目的是提供一种变压器监测报警系统,以解决传统变压器在线监测系统监测的安全要素少,容易对变压器故障产生漏判或者误判,检测精度低的问题。
为实现上述目的,本实用新型提供了如下方案:
一种变压器监测报警系统,包括监测传感器组、数据采集站和监测分析站;
监测传感器组用于采集变压器的安全参数信息并将所述安全参数信息上传到所述数据采集站;所述安全参数信息包括:热状态分布、电晕放 电强度、变压器油溶解的氢气的含量、变压器油溶解的一氧化碳的含量、变压器油溶解的二氧化碳的含量、变压器油溶解的甲烷的含量、变压器油溶解的乙炔的含量、变压器油溶解的乙烯的含量、变压器油溶解的乙烷的含量、接地漏电流、放电信号的幅值、放电信号的极性、放电信号的相位、放电次数、变压器绕组的振动幅值、铁芯的振动幅值、油泵的振动幅值、风机的振动幅值、变压器绕组的温度和油箱的温度;
所述数据采集站用于将所述安全参数信息上传到所述监测分析站;
所述监测分析站用于根据所述安全参数信息,向手机发送警报。
可选的,所述监测传感器组具体包括:红外热成像仪、紫外成像仪、气敏传感器组、零磁通铁芯电流传感器、超高频传感器、电阻型振动传感器和光纤温度传感器;
所述红外热成像仪用于采集变压器的所述热状态分布;所述紫外成像仪用于采集变压器的电晕放电强度;所述气敏传感器组用于采集变压器油溶解的氢气、一氧化碳、二氧化碳、甲烷、乙炔、乙烯和乙烷的含量;所述零磁通铁芯电流传感器用于采集变压器的接地漏电流;所述超高频传感器用于采集变压器放电信号的幅值、极性、相位和放电次数;所述电阻型振动传感器用于采集变压器绕组、铁芯、油泵和风机的振动幅值;所述光纤温度传感器用于采集变压器绕组和油箱的温度。
可选的,所述数据采集站具体包括:油中溶解气体监测装置、铁心接地电流监测装置、局部放电监测装置、振动测量装置和光纤光栅测温装置;
所述油中溶解气体监测装置与所述气敏传感器组连接,所述油中溶解气体监测装置用于将所述变压器油溶解的氢气、一氧化碳、二氧化碳、甲烷、乙炔、乙烯和乙烷的含量传送到所述监测分析站;所述铁心接地电流监测装置与所述零磁通铁芯电流传感器连接,所述铁心接地电流监测装置用于将所述接地漏电流传送到所述监测分析站;所述局部放电监测装置与所述超高频传感器连接,所述局部放电监测装置用于将所述放电信号的幅值、极性、相位和放电次数发送到所述监测分析站;所述振动测量装置与所述电阻型振动传感器连接,所述振动测量装置用于将所述变压器绕组、铁芯、油泵和风机的振动幅值发送到所述监测分析站;所述光纤光栅测温 装置与所述光纤温度传感器连接,所述光纤光栅测温装置用于将所述变压器绕组和油箱的温度发送到所述监测分析站。
可选的,所述数据采集站通过交换机将所述安全参数信息上传到所述数据采集站。
可选的,所述监测分析站包括边缘计算网关;所述边缘计算网关包括4G通信模块和大容量储存器;
所述大容量储存器用于储存所述安全参数信息;所述边缘计算网关根据所述安全参数信息通过所述4G通信模块向手机发送警报。
可选的,当所述电晕放电强度超过第一阈值时,所述边缘计算网关向手机发送警报;当所述变压器油溶解的一氧化碳含量超过第二阈值时,所述边缘计算网关向手机发送警报;当所述接地漏电流超过第三阈值时,所述边缘计算网关向手机发送警报;当所述放电信号的幅值超过第四阈值时,所述边缘计算网关向手机发送警报;当所述变压器绕组的振动幅值超过第五阈值时,所述边缘计算网关向手机发送警报;当所述变压器绕组的温度超过第六阈值时,所述边缘计算网关向手机发送警报。
可选的,所述边缘计算网关用于将所述安全参数信息发送到监控后台,用于维修人员实时查看。
根据本实用新型提供的具体实施例,本实用新型公开了以下技术效果:
本实用新型公开了一种变压器监测报警系统,包括监测传感器组、数据采集站和监测分析站;通过采用监测传感器组采集变压器的安全参数信息并将所述安全参数信息经所述数据采集站上传到所述监测分析站;所述安全参数信息包括热状态分布、电晕放电强度、变压器油溶解的氢气、一氧化碳、二氧化碳、甲烷、乙炔、乙烯和乙烷的含量、接地漏电流、放电信号的幅值、极性、相位和放电次数、变压器绕组、铁芯、油泵和风机的振动幅值、变压器绕组和油箱的温度;所述监测分析站根据所述安全参数信息对变压器进行监测报警。本实用新型通过监测传感器组来采集变压器的安全参数信息,使得本实用新型监测的变压器安全要素全面,从而提高了对变压器故障检测的精度。
说明书附图
下面结合附图对本实用新型作进一步说明:
图1为本实用新型提供的变压器监测报警系统。
符号说明:
监测传感器组1、红外热成像仪1-1、紫外成像仪1-2、气敏传感器组1-3、零磁通铁芯电流传感器1-4、超高频传感器1-5、电阻型振动传感器1-6、光纤温度传感器1-7、数据采集站2、油中溶解气体监测装置2-1、铁心接地电流监测装置2-2、局部放电监测装置2-3、振动测量装置2-4、光纤光栅测温装置2-5、监测分析站3、大容量储存器3-1、边缘计算网关3-2、4G通信模块3-3。
具体实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
本实用新型的目的是提供一种变压器监测报警系统,以解决传统变压器在线监测系统监测的安全要素少,容易对变压器故障产生漏判或者误判,检测精度低的问题。
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本实用新型作进一步详细的说明。
图1为本实用新型提供的变压器监测报警系统。如图1所示,一种变压器监测报警系统,包括监测传感器组1、数据采集站2和监测分析站3;
监测传感器组1用于采集变压器的安全参数信息并将所述安全参数信息上传到所述数据采集站2;所述安全参数信息包括:热状态分布、电晕放电强度、变压器油溶解的氢气的含量、变压器油溶解的一氧化碳的含量、变压器油溶解的二氧化碳的含量、变压器油溶解的甲烷的含量、变压器油溶解的乙炔的含量、变压器油溶解的乙烯的含量、变压器油溶解的乙烷的含量、接地漏电流、放电信号的幅值、放电信号的极性、放电信号的 相位、放电次数、变压器绕组的振动幅值、铁芯的振动幅值、油泵的振动幅值、风机的振动幅值、变压器绕组的温度和油箱的温度;
所述数据采集站2用于将所述安全参数信息上传到所述监测分析站3;
所述监测分析站3用于根据所述安全参数信息,向手机发送警报。
所述监测传感器组1具体包括:红外热成像仪1-1、紫外成像仪1-2、气敏传感器组1-3、零磁通铁芯电流传感器1-4、超高频传感器1-5、电阻型振动传感器1-6和光纤温度传感器1-7;所述红外热成像仪1-1优选为MR-9000型、所述紫外成像仪1-2优选为UV100日盲型紫外成像仪、所述气敏传感器组1-3优选为TDC型气敏传感器组、所述零磁通铁芯电流传感器1-4优选为CSA101-P030T01型零磁通铁芯电流传感器、所述超高频传感器1-5优选为PDU-T1型超高频传感器、所述电阻型振动传感器1-6优选为JZR-1-200型电阻型振动传感器;所述光纤温度传感器1-7优选为BGK-FBG4700S型光纤温度传感器。
所述红外热成像仪1-1用于采集变压器的所述热状态分布;所述紫外成像仪1-2用于采集变压器的电晕放电强度;紫外成像仪监测变压器高压放电的电晕强度,一般每台变压器配置1台红外热成像仪和1台紫外成像仪,条件允许的情况下可多台变压器配置1台红外热成像仪、1台紫外成像仪。所述气敏传感器组1-3用于采集变压器油溶解的氢气、一氧化碳、二氧化碳、甲烷、乙炔、乙烯和乙烷的含量;所述气敏传感器还可以用于快速地感知变压器油中溶解的H 2、CO、CO 2、CH 4、C 2H 2、C 2H 4、C 2H 6的成分及增长率。所述零磁通铁芯电流传感器1-4用于采集变压器的接地漏电流,变压器在正常运行时,绕组周围存在电场,而铁芯和夹件等金属构件处于该电场中,且场强各异,若铁芯不可靠接地,就会产生充放电现象,损坏其固体和油绝缘。一般每台变压器需配备1个。所述超高频传感器1-5用于采集变压器放电信号的幅值、极性、相位和放电次数;所述电阻型振动传感器1-6用于采集变压器绕组、铁芯、油泵和风机的振动幅值其功能主要用于监测变压器的振动情况,变压器绕组、铁芯及附件诸如油泵、风机的振动引起了整体的振动当绕组的压紧力下降时,变压器整体的振动特性也将发生变化。所述光纤温度传感器1-7用于采集变压器绕组和 油箱的温度。一般将多个光纤温度传感器串接起来用于多个变压器的温度监测。
数据采集站2由各种不同的测量装置组成,主要负责采集监测传感器组1的数据,并将采集的数据上送给监测分析站3;因传感器的输出信号不同,数据采集装置的传感器信号采集电路设计也不同。油中溶解气体监测装置、铁心接地电流监测装置、局部放电监测装置、振动测量装置、光纤光栅测温装置等采集信号的频次较高,需要采用高性能微处理器或数字信号处理器进行数据采集,并采用以太网接口作为其数据上送接口。所述数据采集站2具体包括:油中溶解气体监测装置2-1、铁心接地电流监测装置2-2、局部放电监测装置2-3、振动测量装置2-4和光纤光栅测温装置2-5;所述油中溶解气体监测装置2-1优选为NPM801油中溶解气体监测装置、所述铁心接地电流监测装置2-2优选为NPM821-TX铁心接地电流监测装置、所述局部放电监测装置2-3优选为NPM802-T局部放电监测装置、所述振动测量装置2-4优选为NPM961-V振动测量装置;所述光纤光栅测温装置2-5优选为NPM842-FT光纤光栅测温装置。
所述油中溶解气体监测装置2-1与所述气敏传感器组1-3连接,所述油中溶解气体监测装置2-1用于将所述变压器油溶解的氢气、一氧化碳、二氧化碳、甲烷、乙炔、乙烯和乙烷的含量传送到所述监测分析站3;所述铁心接地电流监测装置2-2与所述零磁通铁芯电流传感器1-4连接,所述铁心接地电流监测装置2-2用于将所述接地漏电流传送到所述监测分析站3;所述局部放电监测装置2-3与所述超高频传感器1-5连接,所述局部放电监测装置2-3用于将所述放电信号的幅值、极性、相位和放电次数发送到所述监测分析站3;所述振动测量装置2-4与所述电阻型振动传感器1-6连接,所述振动测量装置2-4用于将所述变压器绕组、铁芯、油泵和风机的振动幅值发送到所述监测分析站3;所述光纤光栅测温装置2-5与所述光纤温度传感器1-7连接,所述光纤光栅测温装置2-5用于将所述变压器绕组和油箱的温度发送到所述监测分析站3。
所述数据采集站2通过交换机将所述安全参数信息上传到所述数据采集站2。
所述监测分析站3包括边缘计算网关3-2;所述边缘计算网关3-2包 括4G通信模块3-3和大容量储存器3-1;所述边缘计算网关3-2采用型号为AIR-300的边缘计算网关。监测分析站3的核心是边缘计算网关,该边缘计算网关需要具备以下功能:
1)丰富的通信接口:至少2路100M以太网口,1路用于系统配置和与备用后台通信,另外一路与以太网口的测量装置进行通信;至少1路4G通信模块用于推送报警信息。
2)丰富的规约库支持:系统默认采用Modbus TCP与测量装置通信,采用Modbus TCP或IEC61850规约与后台通信。
3)强大的计算能力:用于对各数据采集装置上送的数据进行计算,分析;
一定的存储能力:边缘计算网关需要保存采集数据至少1个月,以便于在发生故障后,能够将历史数据导出并进行分析。边缘计算网关通过4G通信模块3-3与手机进行通信。通过现地部署边缘计算网关,用户不需要额外的服务器,通过手机就可以管理监测系统,确保第一时间就能获得系统推送的报警信息。边缘计算网关具有丰富的通信接口,可接入支持标准规约的各种传感器测量装置,实现数据采集的模块化。监测系统可根据电动机类型和现场实际需求选配各种类型的监测传感器,实现多种监测要素按需接入系统。
所述大容量储存器3-1用于储存所述安全参数信息;所述边缘计算网关3-2根据所述安全参数信息通过所述4G通信模块3-3向手机发送警报。所述边缘计算网关3-2还通过隔离DO与受控设备连接;所述受控设备为声光报警器;所述边缘计算网关3-2根据所述安全参数信息控制受控设备发出警报。
当所述电晕放电强度超过第一阈值时,所述边缘计算网关3-2向手机发送警报;当所述变压器油溶解的一氧化碳含量超过第二阈值时,所述边缘计算网关3-2向手机发送警报;当所述接地漏电流超过第三阈值时,所述边缘计算网关3-2向手机发送警报;当所述放电信号的幅值超过第四阈值时,所述边缘计算网关3-2向手机发送警报;当所述变压器绕组的振动幅值超过第五阈值时,所述边缘计算网关3-2向手机发送警报;当所述变压器绕组的温度超过第六阈值时,所述边缘计算网关3-2向手机发送警 报。
所述边缘计算网关3-2用于将所述安全参数信息发送到监控后台,用于维修人员实时查看,维修人员可以根据监控后台显示的所述安全参数信息,对变压器的状态进行查看,用于实现对变压器故障原因的判断。
本实用新型公开了一种变压器监测报警系统,包括监测传感器组、数据采集站和监测分析站。系统主要由各种监测用传感器、数据监测装置、交换机、监测分析站、监控后台和监控用手机组成;监测传感器组主要将变压器上的被监测量转换被可测量的电信号,主要包含气敏传感器组、零磁通铁线电流传感器、超高频传感器、电阻型振动传感器、光纤温度传感器。数据采集站由各种不同测量原理的数据测量装置组成电气柜,主要负责采集各个监测用传感器的电信号数字化,并通过以太网上送给监测分析站,在监测站网口数量不够的情况下,需要采用交换机进行数据转发。数据测量装置包含油中溶解气体监测装置、铁心接地电流监测装置、局部放电监测装置、振动测量装置、光纤光栅测量装置。监测用传感器与测量装置间采用专用传感器线缆连接。监测分析站用于汇总数据采集站内各个数据采集装置的数据,通过内置的边缘计算网关根据采集的数据向手机发送警报。监测分析站在有监测信息时,现地通过网口将安全参数信息发送到监控后台。本实用新型通过监测传感器组来采集变压器的安全参数信息,使得本实用新型监测的变压器安全要素全面,从而提高了对变压器故障检测的精度。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本实用新型的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本实用新型的方法及其核心思想;同时,对于本领域的一般技术人员,依据本实用新型的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本实用新型的限制。

Claims (7)

  1. 一种变压器监测报警系统,其特征在于,包括监测传感器组、数据采集站和监测分析站;
    监测传感器组用于采集变压器的安全参数信息并将所述安全参数信息上传到所述数据采集站;所述安全参数信息包括:热状态分布、电晕放电强度、变压器油溶解的氢气的含量、变压器油溶解的一氧化碳的含量、变压器油溶解的二氧化碳的含量、变压器油溶解的甲烷的含量、变压器油溶解的乙炔的含量、变压器油溶解的乙烯的含量、变压器油溶解的乙烷的含量、接地漏电流、放电信号的幅值、放电信号的极性、放电信号的相位、放电次数、变压器绕组的振动幅值、铁芯的振动幅值、油泵的振动幅值、风机的振动幅值、变压器绕组的温度和油箱的温度;
    所述数据采集站用于将所述安全参数信息上传到所述监测分析站;
    所述监测分析站用于根据所述安全参数信息,向手机发送警报。
  2. 根据权利要求1所述的变压器监测报警系统,其特征在于,所述监测传感器组具体包括:红外热成像仪、紫外成像仪、气敏传感器组、零磁通铁芯电流传感器、超高频传感器、电阻型振动传感器和光纤温度传感器;
    所述红外热成像仪用于采集变压器的所述热状态分布;所述紫外成像仪用于采集变压器的电晕放电强度;所述气敏传感器组用于采集变压器油溶解的氢气、一氧化碳、二氧化碳、甲烷、乙炔、乙烯和乙烷的含量;所述零磁通铁芯电流传感器用于采集变压器的接地漏电流;所述超高频传感器用于采集变压器放电信号的幅值、极性、相位和放电次数;所述电阻型振动传感器用于采集变压器绕组、铁芯、油泵和风机的振动幅值;所述光纤温度传感器用于采集变压器绕组和油箱的温度。
  3. 根据权利要求2所述的变压器监测报警系统,其特征在于,所述数据采集站具体包括:油中溶解气体监测装置、铁心接地电流监测装置、局部放电监测装置、振动测量装置和光纤光栅测温装置;
    所述油中溶解气体监测装置与所述气敏传感器组连接,所述油中溶解气体监测装置用于将所述变压器油溶解的氢气、一氧化碳、二氧化碳、甲烷、乙炔、乙烯和乙烷的含量传送到所述监测分析站;所述铁心接地电流 监测装置与所述零磁通铁芯电流传感器连接,所述铁心接地电流监测装置用于将所述接地漏电流传送到所述监测分析站;所述局部放电监测装置与所述超高频传感器连接,所述局部放电监测装置用于将所述放电信号的幅值、极性、相位和放电次数发送到所述监测分析站;所述振动测量装置与所述电阻型振动传感器连接,所述振动测量装置用于将所述变压器绕组、铁芯、油泵和风机的振动幅值发送到所述监测分析站;所述光纤光栅测温装置与所述光纤温度传感器连接,所述光纤光栅测温装置用于将所述变压器绕组和油箱的温度发送到所述监测分析站。
  4. 根据权利要求1所述的变压器监测报警系统,其特征在于,所述数据采集站通过交换机将所述安全参数信息上传到所述数据采集站。
  5. 根据权利要求1所述的变压器监测报警系统,其特征在于,所述监测分析站包括边缘计算网关;所述边缘计算网关包括4G通信模块和大容量储存器;
    所述大容量储存器用于储存所述安全参数信息;所述边缘计算网关根据所述安全参数信息通过所述4G通信模块向手机发送警报。
  6. 根据权利要求5所述的变压器监测报警系统,其特征在于,当所述电晕放电强度超过第一阈值时,所述边缘计算网关向手机发送警报;当所述变压器油溶解的一氧化碳含量超过第二阈值时,所述边缘计算网关向手机发送警报;当所述接地漏电流超过第三阈值时,所述边缘计算网关向手机发送警报;当所述放电信号的幅值超过第四阈值时,所述边缘计算网关向手机发送警报;当所述变压器绕组的振动幅值超过第五阈值时,所述边缘计算网关向手机发送警报;当所述变压器绕组的温度超过第六阈值时,所述边缘计算网关向手机发送警报。
  7. 根据权利要求5所述的变压器监测报警系统,其特征在于,所述边缘计算网关用于将所述安全参数信息发送到监控后台,用于维修人员实时查看。
PCT/CN2020/104064 2020-06-28 2020-07-24 一种变压器监测报警系统 WO2022000640A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021219887.0 2020-06-28
CN202021219887.0U CN212646846U (zh) 2020-06-28 2020-06-28 一种变压器监测报警系统

Publications (1)

Publication Number Publication Date
WO2022000640A1 true WO2022000640A1 (zh) 2022-01-06

Family

ID=74785211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104064 WO2022000640A1 (zh) 2020-06-28 2020-07-24 一种变压器监测报警系统

Country Status (2)

Country Link
CN (1) CN212646846U (zh)
WO (1) WO2022000640A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114531619A (zh) * 2022-02-15 2022-05-24 广州伏羲智能科技有限公司 一种基于边缘计算的施工工地监测方法及系统
CN114609267A (zh) * 2022-01-26 2022-06-10 国网江苏省电力有限公司电力科学研究院 一种有效减小环境误差的油中溶解气体分析装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390461A (zh) * 2021-06-04 2021-09-14 广西电网有限责任公司北海供电局 一种基于变压器监测的变压器动态增容系统
CN113945838A (zh) * 2021-10-21 2022-01-18 国电青山热电有限公司 一种在线变压器及升压站智能监测方法及系统
CN114492636B (zh) * 2022-01-26 2023-11-24 上海交通大学 一种变压器绕组状态信号的采集系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484034A (zh) * 2002-09-18 2004-03-24 新疆特变电工股份有限公司 变压器在线智能监测系统及其智能分析诊断方法
EP1786083A1 (en) * 2005-11-15 2007-05-16 Union Fenosa Distribucion, S.A. Method and system for monitoring power transformers
CN108614170A (zh) * 2018-04-28 2018-10-02 国网山东省电力公司淄博供电公司 一种电力变压器综合监护系统
CN110221139A (zh) * 2019-05-05 2019-09-10 新奥数能科技有限公司 一种干式变压器的故障预测方法、装置及系统
CN210426758U (zh) * 2019-08-14 2020-04-28 杭州柯林电气股份有限公司 一种变压器机械稳定故障监测诊断系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1484034A (zh) * 2002-09-18 2004-03-24 新疆特变电工股份有限公司 变压器在线智能监测系统及其智能分析诊断方法
EP1786083A1 (en) * 2005-11-15 2007-05-16 Union Fenosa Distribucion, S.A. Method and system for monitoring power transformers
CN108614170A (zh) * 2018-04-28 2018-10-02 国网山东省电力公司淄博供电公司 一种电力变压器综合监护系统
CN110221139A (zh) * 2019-05-05 2019-09-10 新奥数能科技有限公司 一种干式变压器的故障预测方法、装置及系统
CN210426758U (zh) * 2019-08-14 2020-04-28 杭州柯林电气股份有限公司 一种变压器机械稳定故障监测诊断系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU ZHANGWEI, DONG XIANG; HAN XIAOKUN: "Intelligent Operating and Repair Mode Suited to Transformer Based on IOT Application", RURAL ELECTRIFICATION, no. 8, 31 August 2019 (2019-08-31), pages 30 - 34, XP055884141, ISSN: 1003-0867, DOI: 10.13882/j.cnki.ncdqh.2019.08.007 *
WANG SHAOHUA, YE ZI-QIANG,MEI BING-XIAO: "Application Status of Online Monitoring and Live Detection Technologies of Transmission and Distribution Equipment in Electric Network", GAOYA-DIANQI = HIGH VOLTAGE APPARATUS, CN, vol. 47, no. 4, 30 April 2011 (2011-04-30), CN , pages 84 - 90, XP055884144, ISSN: 1001-1609, DOI: 10.13296/j.1001-1609.hva.2011.04.017 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114609267A (zh) * 2022-01-26 2022-06-10 国网江苏省电力有限公司电力科学研究院 一种有效减小环境误差的油中溶解气体分析装置及方法
CN114531619A (zh) * 2022-02-15 2022-05-24 广州伏羲智能科技有限公司 一种基于边缘计算的施工工地监测方法及系统

Also Published As

Publication number Publication date
CN212646846U (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2022000640A1 (zh) 一种变压器监测报警系统
EP2985613B1 (en) Method and system for detecting and locating single-phase ground fault on low current grounded power-distribution network
US8861155B2 (en) High-impedance fault detection and isolation system
CN102937675B (zh) 配电网实时数据采集和故障定位系统的工作方法
CN104865489B (zh) 架空线路故障定位监测系统及方法
CN203084097U (zh) 一种氧化锌避雷器状态在线监测装置
CN201965191U (zh) 电容器智能化装置
CN204243896U (zh) 用于配电网的开关状态监测装置
CN103606909A (zh) 一种配电网线路保护系统和方法
CN202854252U (zh) 一种配电网实时数据采集和故障定位系统
CN106771840A (zh) 一种干式空心电抗器匝间短路故障在线检测方法
CN107144757B (zh) 一种瓦斯继电器油流流速在线监测装置及方法
KR101452980B1 (ko) 전력계통 축소형 고장 기록 장치 및 이를 포함한 고장 기록 시스템
CN103234576A (zh) 一种用于智能变电站中电力设备的状态监测系统
CN202794300U (zh) 输电线路避雷器在线监测装置
CN106597181A (zh) 一种高压电力变压器运行监测系统及方法
WO2019084947A1 (zh) 直流开关柜及其监控系统和监控方法
CN112629684A (zh) 一种用于开关柜的温度在线监测与预警预测系统
CN209446711U (zh) 高压电缆交叉互联及绝缘在线监测系统
CN104360138A (zh) 输电线路避雷器在线监测无线远传系统
CN203164360U (zh) 一种变电设备绝缘在线监测系统
CN204256059U (zh) 一种10kV并联电抗器投切操作试验系统
CN209979076U (zh) 一种开关柜无线测温监控装置
CN205622318U (zh) 用电监测系统及配电网络
CN105046908A (zh) 一种移动式油气监测数据远程传输系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942714

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20942714

Country of ref document: EP

Kind code of ref document: A1