WO2019084947A1 - 直流开关柜及其监控系统和监控方法 - Google Patents

直流开关柜及其监控系统和监控方法 Download PDF

Info

Publication number
WO2019084947A1
WO2019084947A1 PCT/CN2017/109490 CN2017109490W WO2019084947A1 WO 2019084947 A1 WO2019084947 A1 WO 2019084947A1 CN 2017109490 W CN2017109490 W CN 2017109490W WO 2019084947 A1 WO2019084947 A1 WO 2019084947A1
Authority
WO
WIPO (PCT)
Prior art keywords
switchgear
cabinet
signal
switch cabinet
database
Prior art date
Application number
PCT/CN2017/109490
Other languages
English (en)
French (fr)
Inventor
王兆拓
吴鲲
杨进
Original Assignee
华东泓泽机电设备(昆山)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华东泓泽机电设备(昆山)有限公司 filed Critical 华东泓泽机电设备(昆山)有限公司
Priority to PCT/CN2017/109490 priority Critical patent/WO2019084947A1/zh
Priority to JP2019600017U priority patent/JP3229238U/ja
Publication of WO2019084947A1 publication Critical patent/WO2019084947A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Definitions

  • This embodiment relates to the field of electronic circuit technologies, for example, to a DC switch cabinet, a monitoring system thereof, and a monitoring method.
  • the DC traction power supply system is an important component of the rail transit traction equipment
  • the DC switch equipment is the core of the DC traction power supply equipment.
  • the DC switchgear mainly includes a DC switchgear, a DC breaker, a DC microcomputer integrated measurement and control protection device, and an isolating switch.
  • the main function of the switchgear of the DC switchgear is to open, close, control and protect the electrical equipment during the power generation, transmission, distribution and power conversion of the power system, mainly by the circuit breaker, the isolating switch, the load switch and the operating mechanism.
  • the DC circuit breaker is a guarantee for the safe operation of the DC power supply system, and the mechanism of the DC circuit breaker is required to operate quickly.
  • the main function is to protect the primary current of the positive loop of the DC traction power supply system.
  • the DC microcomputer integrated measurement and control protection device adopts multiple powerful microprocessors to realize measurement, protection and control functions. It is a DC control and protection relay, which can be applied to trams, urban rail transit and other places to meet DC disconnection. The measurement and control needs of the device.
  • the present embodiment provides a DC switch cabinet, a monitoring system thereof, and a monitoring method thereof, which solves the problem that the DC switch cabinet and its monitoring system are not intelligent enough to perform DC control in time.
  • Technical problems with switchgear are not intelligent enough to perform DC control in time.
  • a DC switch cabinet comprising a positive cabinet, a negative cabinet, a circuit breaker and an isolating switch
  • the first end of the circuit breaker is disposed to be connected to the busbar of the positive cabinet, the second end of the circuit breaker is connected to the first end of the isolating switch, and the circuit breaker is set to be in the DC switch When the cabinet fails, disconnect the positive cabinet from the busbar of the positive cabinet;
  • the second end of the isolating switch is connected to a contact network, and the isolating switch is configured to isolate or conduct a voltage signal between the DC switchgear and the contact net.
  • the circuit breaker is a DC circuit breaker.
  • a monitoring system for a DC switchgear for monitoring a DC switchgear comprising: a signal acquisition device, a server, a communication device, and a processor;
  • the first input end of the signal acquisition device is connected to the busbar of the positive cabinet of the DC switch cabinet, and is configured to collect the busbar signal of the positive cabinet, the second input end of the signal acquisition device and the DC
  • the busbar connection of the negative cabinet of the switchgear cabinet is set to collect the busbar signal of the negative cabinet, and the third input end of the signal acquisition device is connected with the second end of the circuit breaker of the DC switchgear, and is set to be collected.
  • An input end of the communication device is connected to an output end of the signal acquisition device, a first transmission end of the communication device is connected to the server, and a second transmission end of the communication device and a control end of the processor Connected, the communication device is configured to transmit an acquisition signal collected by the signal acquisition device to the server, and perform communication transmission between the server and the processor;
  • the server is configured to integrate the collected signals collected by the signal collecting device to create a database, and perform real-time monitoring on the collected signals collected by the signal collecting device, and transmit signals to the processor through the communication device. ;
  • An output end of the processor is connected to a control end of the DC switch cabinet, and the processor is configured to Performing a protection action on the DC switch cabinet according to a signal transmitted by the server.
  • the method further includes: a shunt;
  • a first end of the shunt is connected to a second end of the circuit breaker of the DC switch cabinet, and a second end of the shunt is connected to a first end of the disconnect switch of the DC switch cabinet, the shunt
  • the signal is output to limit the signal output by the circuit breaker, so that the signal collecting device collects the current signal after the current limiting.
  • the current splitter includes a current detecting end and a voltage detecting end; and the third input end of the signal collecting device includes a current collecting end and a voltage collecting end;
  • the current collecting end of the signal collecting device is connected to the current detecting end of the shunt, and is configured to detect the current of the current detecting end, and the voltage collecting end is connected to the voltage detecting end of the shunt, and is configured to detect the voltage.
  • the voltage at the detection terminal is connected to the current detecting end of the shunt, and is configured to detect the current of the current detecting end.
  • the signal acquisition device comprises a fiber optic isolation amplifier.
  • the method further includes: a host computer;
  • the upper computer is connected to the server through the communication device, and is configured to store and display a database established by the server and data monitored in real time by the signal acquisition device, and receive an external control command to be transmitted to the communication device through the communication device
  • the server ;
  • the server is further configured to transmit a signal to the processor via the communication device in accordance with the external control command.
  • a monitoring method for a DC switchgear is performed by a monitoring system of a DC switchgear according to any of the above, the monitoring method comprising:
  • the real-time detection of the electrical signal of the DC switch cabinet according to the database determines the operating parameters of the DC switch cabinet, including:
  • the current change of the DC switch cabinet is tracked in real time, and the operating parameters of the DC switch cabinet are determined.
  • the performing calculation on the electrical signals stored in the database includes:
  • the tuning calculation is performed according to the parameter value calculated by the tuning and the electrical signal stored in the database.
  • the method further includes:
  • the quality assessment of the DC switch cabinet according to the database and the operating parameter includes:
  • it also includes:
  • the whole process of recording data of the electrical signal in the DC switch cabinet is periodically collected, and the data information stored in the database is updated.
  • performing the DC switch cabinet according to the database and the operating parameter Before the quality assessment it also includes:
  • the maintenance standard of the DC switchgear is set according to the number of trips/trips of the circuit breaker and basic parameters.
  • the quality assessment of the DC switch cabinet according to the database and the operating parameter includes:
  • the quality of the DC switchgear is evaluated according to the maintenance standard of the DC switchgear, the failure rate, and the fault interval.
  • the DC switchgear and the monitoring system and the monitoring method thereof provided by the embodiment solve the technical problem that the control and the monitoring of the DC switchgear in the related art are not timely and not intelligent enough.
  • the monitoring system is used to monitor the running status of the DC switch cabinet, and the circuit breaker and the isolating switch are arranged in the DC switch cabinet to disconnect the DC switch cabinet from the busbar/power supply device when the fault occurs. It can intelligently monitor and protect the DC switchgear to ensure the safety of personnel and property.
  • FIG. 1 is a schematic structural view of a DC switch cabinet according to Embodiment 1;
  • FIG. 2 is a schematic structural view of a DC switchgear provided in Embodiment 2;
  • FIG. 3 is a schematic structural diagram of a monitoring system of a DC switchgear provided in Embodiment 3;
  • Embodiment 4 is a flow chart of a method for monitoring a DC switchgear provided in Embodiment 4;
  • Embodiment 5 is a flow chart of a method for monitoring a DC switchgear provided in Embodiment 5;
  • FIG. 6 is a flow chart of a method for monitoring a DC switchgear provided in Embodiment 6;
  • Embodiment 7 is a flow chart of a method for monitoring a DC switchgear provided in Embodiment 7.
  • FIG. 1 is a schematic structural diagram of a DC switch cabinet according to Embodiment 1.
  • the DC switch cabinet 10 provided in this embodiment includes a positive cabinet 11 , a negative cabinet 12 , a circuit breaker 13 , and an isolating switch 14 .
  • the first end of the circuit breaker 13 is connected to the busbar DC+ of the positive cabinet 11, and the second end of the circuit breaker 13 is connected to the first end of the isolating switch 14.
  • the circuit breaker 13 is used to break when the circuit fails.
  • the positive electrode cabinet 11 is connected to its busbar DC+; the second end of the isolating switch 14 is connected to the contact net 15 for isolating the voltage signal between the DC switchgear and the contact net 15.
  • the rail transit power supply system in the related art is rectified to a DC voltage of 1500 V by the AC high voltage value of the main substation of the traction substation, and then is supplied to the contact network through the DC switch cabinet. .
  • the cabinet of the DC switch cabinet 10 provided in this embodiment includes a positive cabinet 11 and a negative cabinet 12 , and may also include other feeder cabinets and a jump cabinet.
  • the corresponding DC switchgear 10 also includes a circuit breaker 13 and an isolating switch 13.
  • the circuit breaker 13 can disconnect the positive cabinet 11 and the busbar DC+ of the positive cabinet 11 when the DC switch cabinet 10 fails to ensure that the positive cabinet and the corresponding equipment are not damaged by the short circuit current.
  • the DC switchgear 10 and the contact net 15 are electrically isolated by an isolating switch 14 in series with the circuit breaker 13.
  • the alternating high voltage value may be 2400 volts or 3600 volts.
  • the circuit breaker 13 of the DC switchgear 10 provided in this embodiment may be a DC circuit breaker.
  • the DC circuit breaker has a high breaking capacity and current limiting characteristics, thereby ensuring that the circuit breaker 13 is not damaged under this short-circuit current condition and can shorten the safety distance based on the higher breaking capacity.
  • the DC switch cabinet provided in this embodiment controls the connection between the positive cabinet and the busbar through the circuit breaker, and isolates the electrical equipment in the DC switch cabinet and the contact net by using the isolating switch, so that the DC switch cabinet can be quickly disconnected when a fault occurs.
  • the connection of the busbar or catenary to ensure the safety of people and property.
  • the monitoring system of the DC switchgear provided in this embodiment is applicable to an application scenario in which the operation of the DC switchgear in the rail transit power supply system is monitored.
  • 2 is a schematic structural view of a DC switchgear provided in Embodiment 2.
  • the monitoring system of the DC switchgear provided in this embodiment is applicable to the DC switchgear provided in this embodiment.
  • the monitoring system includes a signal acquisition device 20, a server 30, a communication device 40, and a processor 50.
  • the first input end of the signal collecting device 20 is connected to the bus bar of the positive cabinet 11 of the DC switch cabinet 10, and the second input end of the signal collecting device 20 is connected to the bus bar of the negative cabinet 12 of the DC switch cabinet 10, and the signal is collected.
  • the third input end of the device 20 is connected to the second end of the circuit breaker 13 of the DC switch cabinet 10 for separately collecting the busbar signal of the positive cabinet 11, the busbar signal of the negative cabinet 12, and the electrical signal output by the circuit breaker 13;
  • the input end of the communication device 40 is connected to the output end of the signal acquisition device 20, the first transmission end of the communication device 40 is connected to the server 30, and the second transmission end of the communication device 40 is connected to the control end of the processor 50.
  • the server 30 is configured to integrate the signals collected by the signal acquisition device 20 to create a database, and The signal collected by the signal acquisition device 20 is monitored in real time, and the signal is transmitted to the processor 50 through the communication device 40; the output end of the processor 50 is connected to the control end of the DC switch cabinet 10, The signal transmitted to the server 30, the DC switch The cabinet 10 performs a protective action.
  • the DC switchgear is the core of its power supply equipment.
  • the probability of failure of the DC1500V DC system is uncertain due to uncertainties such as harsh environment and aging equipment.
  • Common types of faults include contact network load overload, transmitter fault, rectifier chamber and high pressure chamber alarm. Therefore, relevant personnel are required to pay attention to the temperature and humidity changes of the equipment. If there is any abnormality, it needs to be reported in time. After the relevant personnel have analyzed the type of failure, the maintenance is carried out. In this way, the method of fault detection and analysis by personnel inspection is not intelligent enough, and the output of the personnel is limited, so the detection of the fault is not timely enough, which may cause loss of personnel and property.
  • the present embodiment provides a monitoring system for a DC switch device, which collects the busbar signals of the positive cabinet 11 and the busbar signals of the negative cabinet 12 and the output of the circuit breaker 13 through the signal acquisition device 20.
  • the electrical signal is transmitted to the server 30 through the communication device 40, so that the server 30 can integrate the signals collected by the signal acquisition device 20, establish a corresponding database, and perform real-time on the collected signals. Monitoring, realizing the whole process of recording the relevant rail transit operation of the DC switchgear 10 and the contact net 15.
  • the communication device 40 can also perform communication transmission between the server 30 and the processor 50, so that the processor 50 can issue a corresponding control signal according to the database established in the server 30 and the real-time signal collected by the signal acquisition device 20, Protection measures are implemented for the associated rail transit equipment in the DC switchgear cabinet 10 and the contact network 15.
  • the monitoring system of the DC switchgear provided by the embodiment can establish a corresponding database after the whole process of the operation of the DC switchgear and the contact network, and timely judge the current fault by monitoring the operation of the DC switchgear and the catenary network in real time.
  • the situation enables intelligent and timely monitoring of DC switchgear and catenary to ensure the safety of personnel and property.
  • FIG. 3 is a schematic structural view of a monitoring system of a DC switchgear provided in Embodiment 3.
  • the monitoring system provided in this embodiment includes: a signal collecting device 20, a server 30, a communication device 40, a processor 50, and a shunt 60.
  • the first end of the shunt 60 is connected to the second end of the circuit breaker 13 of the DC switchgear cabinet 10.
  • the second end of the shunt 60 is connected to the first end of the disconnecting switch 14 of the DC switchgear cabinet 10 for disconnecting
  • the signal output by the device 13 is limited, so that the electrical signal collected by the signal acquisition device 20 is more accurate.
  • the shunt 60 includes a current detecting end and a voltage detecting end.
  • the third input end of the signal collecting device 20 may include a current collecting end and a voltage collecting end.
  • the current collecting end of the signal collecting device 20 is connected to the current detecting end of the shunt 60.
  • the voltage collecting end of the signal collecting device 20 is connected to the voltage detecting end of the shunt 60 for respectively detecting the current and voltage of the current detecting end of the shunt 60. The voltage at the detection terminal.
  • the shunt can measure the current flowing through the shunt by connecting a DC shunt in a high-voltage DC loop.
  • the signal collecting device 20 can accurately collect the electrical signals outputted from the output end of the circuit breaker 13 by collecting the voltage and current values at both ends of the shunt 60.
  • the signal acquisition device 20 includes a fiber optic isolation amplifier.
  • the electrical signals collected by the signal acquisition device 20 through the shunt can be converted to digital signals and transmitted over the optical fiber for electrical isolation.
  • a fiber optic isolation amplifier is used for signal transmission, which can have higher measurement accuracy and measurement range.
  • the monitoring system of the DC switchgear provided by this embodiment further includes a host computer 70.
  • the upper computer 70 is connected to the server 30 through the communication device 40, and is used for storing and displaying the database established by the server 30 and the data monitored by the signal collection device 20 in real time, and receiving external control commands transmitted to the server 30 through the communication device 40; 30. Also for transmitting a signal to the processor 50 via the communication device 40 in accordance with an external control command.
  • the host computer 70 can be configured to communicate with the server 30 through the communication device 40 in the monitoring system of the DC switch cabinet, so that the host computer 70 can intuitively display and store the data integrated in the server, and also An electrical signal collected by the signal acquisition device 20 in real time can be received.
  • the technician observes the data displayed in the host computer 70 to predict the possibility of occurrence of the fault, thereby inputting relevant control commands in the host computer 70, so that the control commands can be transmitted to the processor 50 through the communication device 40, so that The processor 50 controls the DC switchgear 10 to perform a protection action.
  • the signal collecting device collects the electric signal after being outputted from the circuit breaker and is limited by the shunt, so that the electric signal collected by the signal collecting device is more accurate. Further realize the accurate monitoring of the operation of the DC switchgear.
  • This embodiment provides a monitoring method for a DC switch cabinet, and the monitoring method is applicable to a scenario in which a full-range recording of a DC switch cabinet is performed.
  • the method is applicable to monitoring the DC switch cabinet provided in this embodiment, and is performed by the monitoring system provided in this embodiment.
  • 4 is a flow chart of a method for monitoring a DC switchgear provided in Embodiment 4. As shown in FIG. 4, the monitoring method provided in this embodiment includes: S410-S420.
  • the nominal operating voltage of the DC switchgear is generally 1500V DC and below. It can be installed in the indoors, and has a metal-enclosed complete set of air-insulated equipment, which can be divided into multiple functional rooms.
  • the DC switchgear as mentioned in this embodiment can be divided into a positive cabinet, a negative cabinet, and a circuit breaker handcart.
  • the main function of the DC switchgear is for the DC traction power supply system to distribute DC power to provide power to the catenary or contact rail.
  • various faults may occur due to the operating environment or operation, so the DC switchgear needs to be monitored in real time. However, different DC switchgear faults are different. Therefore, it is necessary to first collect the electrical signals transmitted in the DC switchgear, obtain the full-range recorded data of the DC switchgear electrical signals, and establish a corresponding database to obtain the DC switch. Cabinet failure monitoring standards.
  • the operating parameters of the DC switchgear are determined according to the database and real-time detection of the electrical signals of the DC switchgear.
  • the monitoring standard of the DC switchgear is obtained, that is, the change of the electrical signal of the DC switchgear at the fault point, and then the real-time acquisition of the electrical signal during the operation of the DC switchgear is performed.
  • the information stored in the database is compared, so that the actual operating parameters of the DC switchgear, that is, the fault that may occur, can be known.
  • the fault condition that may occur may be the probability of failure of the DC switchgear and the degree of damage of the fault.
  • the monitoring method of the DC switchgear provided by the embodiment provides a corresponding database by recording the electrical signals in the DC switch cabinet, and detects the running condition of the DC switch cabinet in real time according to the database, thereby implementing the DC switch cabinet. Intelligent and timely monitoring to ensure the safety of personnel and property when the DC switchgear is in operation.
  • the monitoring method of the DC switch cabinet in this embodiment may further include: S430.
  • the database of the DC switch cabinet is obtained from the full-range recorded data of the DC switch cabinet electrical signal, and the change of the electrical signals of the plurality of fault points in the DC switch cabinet can be known. And by comparing the electrical signals in the actual operation of the DC switchgear with the information stored in the database, the DC open is obtained. The actual operating parameters of the cabinet can be used to obtain the probability and damage degree of the fault in the actual operation of the DC switchgear. As a result, the quality of the DC switchgear can be evaluated.
  • the monitoring method further includes: periodically collecting the entire recorded magnetic data of the electrical signal in the DC switch cabinet, and updating the data information stored in the database.
  • the information stored in its database is updated in real time.
  • the information in the data can be re-integrated, thereby realizing the real-time updating of the stored information in the database.
  • FIG. 5 is a flowchart of a method for monitoring a DC switch cabinet according to Embodiment 5. As shown in FIG. 5, the monitoring method of the DC switchgear provided by this embodiment includes: S501-S504.
  • a tuning calculation is performed on the electrical signal stored in the database, and the operating condition of the DC switchgear is analyzed.
  • the operating condition refers to a theoretical operating state.
  • the trend of the line current in the DC switchgear can be known, thereby obtaining different operations of the rail transit using the DC switchgear.
  • the method for performing the tuning calculation on the electrical signal stored in the database may be to analyze the current variation of the DC switch cabinet according to the full-range recorded data in the database. Potential, determining the parameter value of the tuning calculation; performing a tuning calculation according to the parameter value calculated by the tuning and the electrical signal stored in the database.
  • the operating condition of the obtained DC switch cabinet is the theoretical operation of the DC switch cabinet, which provides a theoretical basis for determining the actual operating parameters of the DC switch cabinet. Therefore, by monitoring the DC supply current in the DC switchgear in real time, the current changes in some special time periods can be tracked back and forth, for example, the boundary conditions of the protection start, so as to obtain a detailed current curve for protection, refusal, misoperation or The cause of the action is accurately analyzed to determine the actual operating parameters of the DC switchgear.
  • the monitoring method of the DC switchgear obtaineds the theoretical operation state of the DC switchgear by combining the data information stored in the database established by the whole process of the DC switch cabinet, and combines the actual current change trend. Determine the operating parameters of the DC switchgear to accurately analyze the protection actions in the DC switchgear, and further realize the intelligent and timely monitoring of the DC switchgear.
  • FIG. 6 is a flow chart of a method for monitoring a DC switchgear provided in Embodiment 6. As shown in FIG. 6, the monitoring method of the DC switch cabinet provided by this embodiment includes: S601-S606.
  • the electrical signal of the DC switch cabinet is detected in real time, and the operating parameters of the DC switch cabinet are determined.
  • the data in the database is extracted from the DC component and the harmonic component to establish a data pattern.
  • an alternating current signal is usually rectified to obtain a corresponding DC voltage, and then a power distribution is performed through a DC switch cabinet.
  • the large-capacity non-linear load of the rectification technology consumes a large amount of reactive power, resulting in the generation of harmonic current.
  • harmonic components and DC components in the power supply system it will cause certain harm to the power supply system.
  • the presence of the DC component and the harmonic component of the DC switch cabinet electrical signal will have an influence on the judgment of the DC switch cabinet operating parameters. Therefore, by extracting the DC component and the harmonic component thereof, a corresponding number chart can be established, and the data graph can be a combination of a data report and a histogram or a proportional distribution map, so as to facilitate visual display and judgment.
  • the data component stored in the database is extracted by the DC component and the harmonic component, and the corresponding data pattern is established, and then combined with the running state and the operating environment of the rail transit controlled by the DC switch cabinet, thereby forming corresponding
  • the time period power distribution comparison table shows the influence trend of the power distribution and operation of the DC switchgear under multiple operating conditions, and the corresponding operation law is obtained. According to the operation law, the DC switchgear can be determined. Operating parameters.
  • the monitoring method of the DC switchgear provided by the embodiment provides a corresponding data graph by extracting the DC component and the harmonic component in the database established by the full-range recording data of the DC switch cabinet electrical signal. Shape, combined with the operating parameters of the DC switchgear under various operating conditions, obtain the power distribution of the DC switchgear to determine the operating parameters of the DC switchgear, and then evaluate the quality of the DC switchgear to achieve Intelligent and timely monitoring of DC switchgear.
  • This embodiment is modified in the technical manner of the foregoing embodiment, and provides a method for monitoring a DC switchgear, further comprising a method for setting a maintenance standard for the DC switchgear, wherein the DC is performed according to the database and the operating parameter.
  • the quality assessment of the switchgear includes: obtaining the number of trips/trips of the circuit breaker of the protection device in the DC switchgear and basic parameters; setting the DC switch according to the number of trips/trips of the circuit breaker and basic parameters Cabinet maintenance standards.
  • FIG. 7 is a flowchart of a monitoring method of a DC switch cabinet according to Embodiment 7. As shown in FIG. 7, the monitoring method of the DC switchgear provided by this embodiment includes: S701-S704.
  • an electrical signal of the DC switch cabinet is detected in real time, and an operating parameter of the DC switch cabinet is determined.
  • the circuit breaker opening/tripping times and basic parameters in the DC switch cabinet are obtained.
  • the circuit breaker in the DC switchgear can disconnect the busbar of the positive cabinet and the DC switchgear in the DC switchgear in the event of a fault, thereby ensuring that the positive cabinet and the corresponding equipment are not damaged.
  • the breaking capacity and current limiting characteristics of the circuit breaker are the key characteristics for evaluating the speed of the circuit breaker under short-circuit current conditions.
  • the circuit breaker in the DC switchgear will be opened/tripped according to the current in the actual operating conditions. Therefore, when monitoring the DC switchgear, the basic parameters of the circuit breaker and the actual opening of the circuit breaker should be combined. / Trip situation.
  • the maintenance standard of the DC switchgear is set according to the number of trips/trips of the circuit breaker and basic parameters.
  • the circuit breaker by monitoring the actual opening/tripping condition of the circuit breaker, it is possible to know the node of the current in the circuit of the opening/tripping of the circuit breaker during the actual operation, and then combine the basic operating parameters of the circuit breaker.
  • the classification and statistics of the opening/tripping in the circuit breaker can be performed, thereby obtaining the DC current when the DC switchgear performs the protection action, thereby setting corresponding maintenance standards for the DC switchgear, so that the DC switchgear is in the Maintenance can be performed automatically when the same or similar situation occurs.
  • the monitoring method of the DC switchgear sets the maintenance standard of the DC switchgear according to the number of trips/trips of the circuit breaker in the DC switchgear and the basic operating parameters of the circuit breaker, so that the same or similar situation is Underneath, the instructions for maintaining the DC switchgear can be automatically issued, thereby realizing the intelligent and timely monitoring of the DC switchgear, thereby ensuring the safety of personnel and property.
  • the DC switchgear and the monitoring system and the monitoring method thereof provided by the embodiment solve the technical problems of the control and the monitoring of the DC switchgear in the related art are not timely and not intelligent enough.
  • the monitoring system is used to monitor the running status of the DC switch cabinet, and the circuit breaker and the isolating switch are arranged in the DC switch cabinet to disconnect the DC switch cabinet from the busbar and/or the power supply device when a fault occurs. Therefore, the DC switchgear can be intelligently monitored and protected in time to ensure the safety of personnel and property.

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Gas-Insulated Switchgears (AREA)

Abstract

一种直流开关柜,包括正极柜、负极柜、断路器以及隔离开关;所述断路器的第一端设置为与所述正极柜的母排连接,所述断路器的第二端与所述隔离开关的第一端连接,所述断路器设置为在所述直流开关柜出现故障时,断开所述正极柜与所述正极柜的母排的连接;所述隔离开关的第二端与接触网连接,所述隔离开关设置为隔离或导通所述直流开关柜与接触网之间的电压信号。

Description

直流开关柜及其监控系统和监控方法 技术领域
本实施例涉及电子电路技术领域,例如涉及一种直流开关柜及其监控系统和监控方法。
背景技术
相关技术中,直流牵引供电系统是轨道交通牵引设备的重要组成部分,直流开关设备是直流牵引供电设备的核心。通常直流开关设备主要包括直流开关柜、直流断路器、直流微机综合测控保护装置以及隔离开关。随着我轨道交通的快速发展,国内自主设计的轨道交通直流开关设备亟待发展。
直流开关设备的开关柜主要作用是在电力系统进行发电、输电、配电和电能转换的过程中,进行开合、控制和保护用电设备,主要由断路器、隔离开关、负荷开关、操作机构、互感器以及多个种保护装置等组成;而直流断路器是直流供电系统安全运行的保证,要求直流断路器的机构能够快速动作,主要作用为保护直流牵引供电系统正极回路供电的一次电流的开断;直流微机综合测控保护装置采用多个功能强大的微处理器,实现测量、保护和控制功能,是一种直流控制和保护继电器,可应用于电车、城市轨道交通等场所,满足直流断路器的包括的测控需求。
但是,相关技术中的直流开关柜及其监控系统不够智能化,无法进行及时地控制,因此不适用于日益智能化的轨道交通控制系统。
发明内容
有鉴于此,本实施例提供了一种直流开关柜及其监控系统和监控方法,解决了相关技术中直流开关柜及其监控系统不够智能化,无法进行及时控制直流 开关柜的技术问题。
一种直流开关柜,包括正极柜、负极柜、断路器以及隔离开关;
所述断路器的第一端设置为与所述正极柜的母排连接,所述断路器的第二端与所述隔离开关的第一端连接,所述断路器设置为在所述直流开关柜出现故障时,断开所述正极柜与所述正极柜的母排的连接;
所述隔离开关的第二端与接触网连接,所述隔离开关设置为隔离或导通所述直流开关柜与接触网之间的电压信号。
可选的,所述断路器为直流断路器。
一种直流开关柜的监控系统,用于对上述任一项所述的直流开关柜进行监控,所述监控系统包括:信号采集装置、服务器、通信装置以及处理器;
所述信号采集装置的第一输入端与所述直流开关柜的正极柜的母排连接,设置为采集所述正极柜的母排信号,所述信号采集装置的第二输入端与所述直流开关柜的负极柜的母排连接,设置为采集所述负极柜的母排信号,所述信号采集装置的第三输入端与所述直流开关柜的断路器的第二端连接,设置为采集保护装置中断路器输出的电信号;
所述通信装置的输入端与所述信号采集装置的输出端连接,所述通信装置的第一传输端与所述服务器连接以及所述通信装置的第二传输端与所述处理器的控制端连接,所述通信装置设置为将所述信号采集装置采集的采集信号传输至所述服务器,并在所述服务器与所述处理器之间的进行通信传输;
所述服务器,设置为对所述信号采集装置采集的采集信号进行整合以创建数据库,并对所述信号采集装置采集的采集信号进行实时监控,并通过所述通信装置向所述处理器传输信号;
所述处理器的输出端与所述直流开关柜的控制端连接,所述处理器设置为 根据所述服务器传输的信号,对所述直流开关柜实施保护动作。
可选的,还包括:分流器;
所述分流器的第一端与所述直流开关柜的断路器的第二端连接,所述分流器的第二端与所述直流开关柜的隔离开关的第一端连接,所述分流器设置为对所述断路器输出的信号进行限流,使所述信号采集装置对限流后的电信号进行采集。
可选的,所述分流器包括电流检测端和电压检测端;所述信号采集装置的第三输入端包括电流采集端和电压采集端;
所述信号采集装置的电流采集端与所述分流器的电流检测端连接,设置为检测所述电流检测端的电流,电压采集端与所述分流器的电压检测端连接,设置为检测所述电压检测端的电压。
可选的,所述信号采集装置包括光纤隔离放大器。
可选的,还包括:上位机;
所述上位机通过所述通信装置与所述服务器连接,设置为存储和显示所述服务器建立的数据库以及对所述信号采集装置实时监控的数据,并接收外部控制指令通过所述通信装置传输至所述服务器;
所述服务器,还设置为根据所述外部控制指令,通过所述通信装置向所述处理器传输信号。
一种直流开关柜的监控方法,由如上述任一所述直流开关柜的监控系统执行,所述监控方法包括:
获取所述直流开关柜中电信号的全程录波数据,并建立数据库;以及
根据所述数据库以及通过对所述直流开关柜的电信号实时检测获取的采集信号,确定所述直流开关柜的运行参数。
可选的,所述根据所述数据库,对所述直流开关柜的电信号实时检测,确定所述直流开关柜的运行参数,包括:
对所述数据库中存储的电信号进行整定计算,分析所述直流开关柜的运行状况:
根据所述运行状况,对所述直流开关柜的电流变化实时跟踪,确定所述直流开关柜的运行参数。
可选的,所述对所述数据库中存储的电信号进行整定计算,包括:
根据所述数据库中的全程录波数据,分析所述直流开关柜的电流变化趋势,确定所述整定计算的参数值;
根据所述整定计算的参数值和所述数据库中存储的电信号进行整定计算。
可选的,在确定所述直流开关柜的运行参数之后,还包括:
根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估。
可选的,所述根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估,包括:
对所述数据库中的数据进行直流分量和谐波分量的提取,建立数据图形;
根据所述数据图形和多个运行工况下的运行参数,确定所述直流开关柜多个运行工况下的电量分配情况;
根据所述电量分配情况,获取所述直流开关柜的运行规律,确定所述直流开关柜的运行参数。
可选的,还包括:
定时采集所述直流开关柜中电信号的全程录波数据,更新所述数据库中存储的数据信息。
可选的,在所述根据所述数据库和所述运行参数,对所述直流开关柜进行 品质评估之前,还包括:
获取所述直流开关柜中断路器分闸/跳闸次数和基本参数;
根据所述断路器的分闸/跳闸次数和基本参数,设定所述直流开关柜的维护标准。
可选的,所述根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估,包括:
根据所述数据库和所述运行参数,实时分析所述直流开关柜的故障率、及故障间隔时间;
根据所述直流开关柜的维护标准、故障率以及故障间隔时间,评估所述直流开关柜的品质。
本实施例提供的一种直流开关柜及其监控系统和监控方法,解决了相关技术中对直流开关柜的控制以及监控不及时且不够智能化的技术问题。本实施例采用监控系统对直流开关柜的运行状况进行监控,并在直流开关柜中设置断路器和隔离开关,以在产生故障时,断开直流开关柜与母排/供电设备的连接,从而能够对直流开关柜进行智能化的及时监控和保护,保证人员和财产的安全。
附图说明
图1是实施例一提供的一种直流开关柜的结构示意图;
图2是实施例二提供的一种直流开关柜的结构示意图;
图3是实施例三提供的一种直流开关柜的监控系统的结构示意图;
图4是实施例四提供的一种直流开关柜的监控方法的流程图;
图5是实施例五提供的一种直流开关柜的监控方法的流程图;
图6是实施例六提供的一种直流开关柜的监控方法的流程图;
图7是实施例七提供的一种直流开关柜的监控方法的流程图。
具体实施方式
实施例一
本实施例提供的直流开关柜可以适用于轨道交通供电系统的应用场景。图1是本实施例一提供的一种直流开关柜的结构示意图。如图1所示,本实施例提供的直流开关柜10包括正极柜11、负极柜12、断路器13和隔离开关14。其中,断路器13的第一端与正极柜11的母排DC+连接,断路器13的第二端与隔离开关14的第一端连接,所述断路器13用于在电路出现故障时,断开正极柜11与其母排DC+的连接;隔离开关14的第二端与接触网15连接,用于隔离直流开关柜与接触网15之间的电压信号。
示例性的,相关技术中的轨道交通供电系统由牵引变电所的主变电所的交流高压值经整流组降压后,通常整流为1500V的直流电压,再通过直流开关柜向接触网供电。但在实际投入使用过程中,电路中可能会出现短路故障等,这将不利于轨道交通的运行,因而需要设置相应的保护装置,以在产生故障时,能够对轨道交通实施保护。如图1所示,本实施例提供的直流开关柜10的柜体包括正极柜11和负极柜12组成,此外还可以是包括其它馈线柜以及联跳柜等。相应的直流开关柜10还包括断路器13和隔离开关13。断路器13能够在直流开关柜10发生故障时,断开正极柜11与所述正极柜11的母排DC+的连接,以确保正极柜及相应的设备不受短路电流的伤害。此外,还通过与断路器13串联的隔离开关14,对直流开关柜10与接触网15之间进行电气隔离。其中,所述交流高压值可以是为2400伏或3600伏。
可选的,本实施例提供的直流开关柜10的断路器13可以为直流断路器。直流断路器具有较高的分断能力和限流特性,从而能够确保断路器13在对此短路电流条件下不受伤害,并且能够在较高分断能力的基础上缩短安全距离。
本实施例提供的直流开关柜,通过断路器控制正极柜与母排的连接,采用隔离开关隔离直流开关柜和接触网中的电气设备,从而能够在产生故障时,迅速断开直流开关柜与母线或接触网的连接,进而确保人员和财产的安全。
实施例二
本实施例提供的直流开关柜的监控系统适用于轨道交通供电系统中直流开关柜的运行情况进行监控的应用场景。图2是实施例二提供的一种直流开关柜的结构示意图。本实施例提供的直流开关柜的监控系统适用于本实施例提供的直流开关柜中。如图2所示,该监控系统包括:信号采集装置20、服务器30、通信装置40以及处理器50。
其中,信号采集装置20的第一输入端与直流开关柜10的正极柜11的母排连接,信号采集装置20的第二输入端与直流开关柜10的负极柜12的母排连接,信号采集装置20的第三输入端与直流开关柜10的断路器13的第二端连接,用于分别采集正极柜11的母排信号、负极柜12的母排信号以及断路器13输出的电信号;通信装置40的输入端与信号采集装置20的输出端连接,通信装置40的第一传输端与服务器30连接,通信装置40的第二传输端与处理器50的控制端连接,通信装置40用于将信号采集装置20采集的信号传输至服务器30,并在服务器30与处理器50之间的进行通信传输;服务器30,用于对信号采集装置20采集的信号进行整合,以创建数据库,并对信号采集装置20采集的信号进行实时监控,并通过通信装置40向处理器50传输信号;处理器50的输出端与直流开关柜10的控制端连接,用于根据服务器30传输的信号,对直流开关 柜10实施保护动作。
示例性的,在轨道交通供电系统中,直流开关柜的是其供电设备的核心。在轨道交通的供电系统使用过程中,由于环境恶劣以及设备老化等不确定因素,对于DC1500V直流系统发生故障的概率具有不确定性。常见的故障类型包括接触网负荷过载、变送器故障、整流变室及高压室报警等,因而需要相关人员对设备的温度和湿度等参数变化进行时时关注,如有异常则需及时上报,再经相关人员进行故障类型的分析后,实施检修。此种,通过人员巡检进行故障检测及分析的方法不够智能化,且人员的输出有限,因而对故障的检测不够及时,很可能造成人员和财物的损失。
如图2所示,本实施例提供了一种直流开关设备的监控系统,通过信号采集装置20采集分别采集正极柜11的母排信号、负极柜12的母排信号以及断路器13输出端输出的电信号,并将所采集的电信号通过通信装置40上传至服务器30,以使服务器30能够对信号采集装置20采集的信号进行整合,建立相应的数据库,并对所述采集的信号进行实时监控,实现对直流开关柜10及接触网15的相关轨道交通运行情况的全程录波。此外,通信装置40还可在服务器30与处理器50之间进行通信传输,以使处理器50能够根据服务器30中建立的数据库以及信号采集装置20采集的实时信号,发出相应的控制信号,以对直流开关柜10及接触网15中相关的轨道交通设备实施保护措施。
本实施例提供的直流开关柜的监控系统,能够对直流开关柜及接触网的运行情况进行全程检测后建立相应的数据库,并通过实时监控直流开关柜和接触网的运行情况及时判断当前的故障情况,从而实现对直流开关柜及接触网智能化和及时地监控,以确保人员和财产的安全。
实施例三
本实施例在上述实施例的基础上进行了优化,提供了在上述实施例的基础上采用分流器对直流开关柜中断路器输出端输出的电信号进行检测。图3是实施例三提供的一种直流开关柜的监控系统的结构示意图。如图3所示,本实施例提供的监控系统包括:信号采集装置20、服务器30、通信装置40、处理器50以及分流器60。其中,分流器60的第一端与直流开关柜10的断路器13的第二端连接,分流器60的第二端与直流开关柜10的隔离开关14的第一端连接,用于对断路器13输出的信号进行限流,使信号采集装置20采集的电信号更加精准。
可选的,分流器60包括电流检测端和电压检测端,相应的,信号采集装置20的第三输入端可以是包括电流采集端和电压采集端。其中信号采集装置20的电流采集端与分流器60的电流检测端连接,信号采集装置20的电压采集端与分流器60的电压检测端连接,用于分别检测分流器60电流检测端的电流和电压检测端的电压。
示例性的,在轨道交通供电系统中,为保证高压直流开关柜能具有可靠的调节和保护功能,因而需要采用可靠的测量系统对直流开关柜中流通的电流信号。分流器作为一种可以通过大电流的精确电阻,能够通过在高压直流回路中串联直流分流器,从而测量出流过分流器的电流值。本实施例提供的监控系统中信号采集装置20可通过采集分流器60两端的电压和电流值,进而实现对断路器13输出端输出的电信号进行精确采集。
可选的,信号采集装置20包括光纤隔离放大器。对于信号采集装置20通过分流器采集的电信号,可转换为数字信号,并经光纤传输,以作为电气隔离。在信号采集装置20中采用光纤隔离放大器进行信号的传输,可具有更高的测量精度和测量范围。
可选的,如图3所示,在上述实施例的基础上,本实施例提供的直流开关柜的监控系统还包括上位机70。其中,上位机70通过通信装置40与服务器30连接,用于存储和显示服务器30建立的数据库以及对信号采集装置20实时监控的数据,并接收外部控制指令通过通信装置40传输至服务器30;服务器30,还用于根据外部控制指令,通过通信装置40向处理器50传输信号。
示例性的,在直流开关柜的监控系统中设置上位机70能够通过通信装置40实现与服务器30之间的通讯,使得上位机70能够对服务器中整合的数据进行直观的显示并存储,且还可以接收由信号采集装置20实时采集的电信号。同时,技术人员通过观察上位机70中显示的数据,预测故障发生的可能性,从而在上位机70中输入相关的控制指令,以使该控制指令能够通过通信装置40传输至处理器50,使得处理器50控制直流开关柜10实施保护动作。
本实施例提供的直流开关柜的监控系统,通过设置分流器,信号采集装置对从断路器输出后经过分流器限流后的电信号进行采集,从而使得信号采集装置采集的电信号更加精准,进一步实现对直流开关柜运行情况的精准监控。
实施例四
本实施例提供了一种直流开关柜的监控方法,该监控方法适用于对直流开关柜运行情况的全程录波的应用场景。该方法适用于对本实施例提供的直流开关柜进行监控,并由本实施例提供的监控系统执行。图4是实施例四提供的一种直流开关柜的监控方法的流程图。如图4所示,本实施例提供的监控方法,包括:S410-S420。
在S410中,获取所述直流开关柜中电信号的全程录波数据,并建立数据库。
示例性的,直流开关柜的标称工作电压一般为直流1500V及以下,可以是安装于户内,具有空气绝缘的金属封闭式成套设备,可以分为多个功能室,例 如本实施例中提到的直流开关柜可以分为正极柜、负极柜以及断路器手车室等。直流开关柜的主要作用为用于直流牵引供电系统,进行直流电能的分配,从而为接触网或接触轨提供电能。直流开关柜在使用过程中,可能会由于运行环境或认为操作等,产生多种故障,因而需要对该直流开关柜实时监测。而对于不同的直流开关柜故障情况不同,因此,需要首先对直流开关柜中传输的电信号进行采集,获得直流开关柜电信号的全程录波数据,并建立相应的数据库,以得到该直流开关柜的故障监测标准。
在S420中,根据所述数据库结合对所述直流开关柜的电信号实时检测,确定所述直流开关柜的运行参数。
示例性的,通过建立直流开关柜的数据库,获得该直流开关柜的监测标准,即直流开关柜在故障点时电信号的变化情况,再通过对直流开关柜运行过程中电信号进行实时的采集,与数据库中存储的信息进行比对,从而能够获知该直流开关柜实际的运行参数,即可能发生的故障的情况。其中,该可能发生的故障的情况可以为直流开关柜产生故障的概率及故障的危害程度等。
本实施例提供的直流开关柜的监控方法,通过对直流开关柜中电信号进行全程录波后,建立相应的数据库,并依据该数据库,实时检测直流开关柜的运行情况,从而实现直流开关柜智能化和及时地监控,以确保直流开关柜运行时人员和财产的安全。本实施例中所述直流开关柜的监控方法还可以是包括:S430。
在S430中,根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估。
示例性的,由直流开关柜电信号的全程录波数据获得该直流开关柜的数据库,可以获知该直流开关柜中多个故障点电信号的变化情况。以及通过将直流开关柜实际运行时的电信号与数据库中存储的信息进行比对后,得到该直流开 关柜的实际运行参数,可以获得该直流开关柜实际运行时故障产生的概率及危害程度。由此,可以对直流开关柜的优劣品质进行评估。
可选的,在上述实施例的基础上,所述监控方法还包括:定时采集所述直流开关柜中电信号的全程录波数据,更新所述数据库中存储的数据信息。
示例性的,直流开关柜实际运行过程中,受运行环境和人员操作等的影响,直流开关柜具体的运行信息与标准运行信息之间存在差异,因而故障点会相应的发生变化,因此需要对其数据库中存储的信息进行实时更新。通过对直流开关柜实际运行过程中电信号的全程录波数据进行实时的采集后,重新整合数据可中的信息,从而实现对数据库中存储信息的实时更新。
实施例五
本实施例在上述实施例的基础上进行了优化,提供了对直流开关柜电信号进行实时检测后确定该直流开关柜运行参数的方法。图5是本实施例五提供的一种直流开关柜的监控方法的流程图。如图5所示,本实施例提供的直流开关柜的监控方法包括:S501-S504。
在S501中,获取所述直流开关柜中电信号的全程录波数据,并建立数据库。
在S502中,对所述数据库中存储的电信号进行整定计算,分析所述直流开关柜的运行状况。所述运行状况是指理论运行状态。
示例性的,通过直流开关柜的全程录波数据,以及长时间大数据的累积和统计,可以获知该直流开关柜中线路电流的变化趋势,从而得到应用该直流开关柜的轨道交通的不同运行状态,以及不同运行图下机车启动的电流规律,以对该运行变化进行整定计算,从而获知轨道牵引供电系统中继电动作情况,即直流开关柜的运行状况。其中,对数据库中存储的电信号进行整定计算的方法可以为根据所述数据库中的全程录波数据,分析所述直流开关柜的电流变化趋 势,确定所述整定计算的参数值;根据所述整定计算的参数值和所述数据库中存储的电信号进行整定计算。
在S503中,根据所述运行状况,对所述直流开关柜的电流变化实时跟踪,确定所述直流开关柜的运行参数。
示例性的,通过对数据库中存储的数据信息进行整定计算后,所得直流开关柜的运行状况为该直流开关柜的理论运行情况,此为直流开关柜的实际运行参数的确定提供了理论依据。因此,通过对直流开关柜中直流供电电流进行实时监测,以对一些特殊时段电流变化进行前后跟踪,例如是保护启动的边界条件,从而获得详细的电流曲线,为保护、拒动、误动或动作的原因进行准确分析,从而确定该直流开关柜的实际运行参数。
在S504中,根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估。
本实施例提供的直流开关柜的监控方法,通过对直流开关柜全程录波数据所建立数据库中存储的数据信息进行整定计算,获得该直流开关柜的理论运行状态,并结合实际电流变化趋势,确定该直流开关柜的运行参数,从而对直流开关柜中保护动作进行准确分析,进一步实现直流开关柜智能化和及时地监控。
实施例六
本实施例在上述实施例的基础上进行了改变,提供了对直流开关柜进行品质评估的方法。图6是本实施例六提供的一种直流开关柜的监控方法的流程图。如图6所示,本实施例提供的直流开关柜的监控方法,包括:S601-S606。
在S601中,获取所述直流开关柜中电信号的全程录波数据,并建立数据库。
在S602中,根据所述数据库,对所述直流开关柜的电信号实时检测,确定所述直流开关柜的运行参数。
在S603中,对所述数据库中的数据进行直流分量和谐波分量的提取,建立数据图形。
示例性的,轨道交通供电系统中,通常将交流电信号进行整流,获得相应的直流电压,再通过直流开关柜进行电量分配。而由于整流技术的大容量非线性负载对大量无功功率的消耗,致使谐波电流的产生。对于供电系统中谐波分量与直流分量复杂性,将会对供电系统产生一定的危害。通过直流开关柜电信号的全程录波数据建立的数据库中,直流开关柜电信号的直流分量和谐波分量的存在将对直流开关柜运行参数的判断产生影响。因而,可通过对其直流分量和谐波分量进行提取后,建立相应的数形图,该数据图形可以是数据报表和柱状图或比例分配图等的结合,以便于直观的显示和判断。
在S604中,根据所述数据图形和多个运行工况下的运行参数,确定所述直流开关柜多个运行工况下的电量分配情况。
在S605中,根据所述电量分配情况,获取所述直流开关柜的运行规律,确定所述直流开关柜的运行参数。
示例性的,对数据库中存储的数据信息进行直流分量和谐波分量的提取后建立相应的数据图形,再结合该直流开关柜所控制的轨道交通多个时段运行状态及运行环境,从而形成相应的时间段电量分配对照表,得出直流开关柜在多个运行工况下的电量分配和运行情况的影响趋势,从而得到相应的运行规律,根据该运行规律,即可确定出该直流开关柜的运行参数。
在S606中,根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估。
本实施例提供的直流开关柜的监控方法,通过对直流开关柜电信号的全程录波数据建立的数据库中直流分量和谐波分量进行提取后,建立相应的数据图 形,并结合该直流开关柜多个运行工况下的运行参数,获得该直流开关柜的电量分配情况,以确定直流开关柜的运行参数,进而对该直流开关柜的品质进行评估,从而实现直流开关柜智能化和及时的监控。
实施例七
本实施例在上述实施例的技术上进行了改变,提供了直流开关柜的监控方法还包括对直流开关柜设置维护标准的方法,所述根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估包括:获取所述直流开关柜中保护装置的断路器的分闸/跳闸次数和基本参数;根据所述断路器的分闸/跳闸次数和基本参数,设定所述直流开关柜的维护标准。图7是本实施例七提供的一种直流开关柜的监控方法的流程图。如图7所示,本实施例提供的直流开关柜的监控方法,包括:S701-S704。
在S701中,获取所述直流开关柜中电信号的全程录波数据,并建立数据库;
在S702中,根据所述数据库,对所述直流开关柜的电信号实时检测,确定所述直流开关柜的运行参数。在S703中,获取所述直流开关柜中断路器分闸/跳闸次数和基本参数。
示例性的,直流开关柜中断路器能够在发生故障时,断开直流开关柜中正极柜与直流开关柜的母排的连接,从而确保正极柜及相应的设备不受损害。而断路器的分断能力和限流特性的好坏,是评定断路器在短路电流条件下动作快慢的关键特性。但在实际运行过程中,直流开关柜中的断路器会依据实际运行条件中电流的情况进行分闸/跳闸,因而再对直流开关柜进行监控时,应结合断路器的基本参数及实际分闸/跳闸的情况。
在S704中,根据所述断路器的分闸/跳闸次数和基本参数,设定所述直流开关柜的维护标准。
示例性的,通过对断路器实际分闸/跳闸情况的监测,能够得知该断路器在实际运行过程中,分闸/跳闸的电路中电流的节点,再结合该断路器的基本运行参数,可对该断路器中分闸/跳闸的情况进行分类统计,从而获得该直流开关柜实施保护动作时直流电流的情况,从而为该直流开关柜设置相应的维护标准,以使该直流开关柜在产生相同或类似情况时,能够自动实施维护。
本实施例提供的直流开关柜的监控方法,根据直流开关柜中断路器的分闸/跳闸次数及断路器的基本运行参数,设定该直流开关柜的维护标准,以使得在相同或类似情况下,能够自动发出维护该直流开关柜的指令,进而实现直流开关柜智能化和及时的监控,从而确保人员和财产的安全。
工业实用性
本实施例提供的一种直流开关柜及其监控系统和监控方法,解决了相关技术中对直流开关柜的控制以及监控不及时、不够智能化的技术问题。本实施例采用监控系统对直流开关柜的运行状况进行监控,并在直流开关柜中设置断路器和隔离开关,以在产生故障时,断开直流开关柜与母排和/供电设备的连接,从而能够对直流开关柜进行智能化的及时监控和保护,保证人员和财产的安全。

Claims (15)

  1. 一种直流开关柜,包括正极柜、负极柜、断路器以及隔离开关;
    所述断路器的第一端设置为与所述正极柜的母排连接,所述断路器的第二端与所述隔离开关的第一端连接,所述断路器设置为在所述直流开关柜出现故障时,断开所述正极柜与所述正极柜的母排的连接;
    所述隔离开关的第二端与接触网连接,所述隔离开关设置为隔离或导通所述直流开关柜与接触网之间的电压信号。
  2. 根据权利要求1所述的直流开关柜,其中,所述断路器为直流断路器。
  3. 一种直流开关柜的监控系统,用于对权利要求1~2任一项所述的直流开关柜进行监控,所述监控系统包括:信号采集装置、服务器、通信装置以及处理器;
    所述信号采集装置的第一输入端与所述直流开关柜的正极柜的母排连接,设置为采集所述正极柜的母排信号,所述信号采集装置的第二输入端与所述直流开关柜的负极柜的母排连接,设置为采集所述负极柜的母排信号,所述信号采集装置的第三输入端与所述直流开关柜的断路器的第二端连接,设置为采集保护装置中断路器输出的电信号;
    所述通信装置的输入端与所述信号采集装置的输出端连接,所述通信装置的第一传输端与所述服务器连接以及所述通信装置的第二传输端与所述处理器的控制端连接,所述通信装置设置为将所述信号采集装置采集的采集信号传输至所述服务器,并在所述服务器与所述处理器之间的进行通信传输;
    所述服务器,设置为对所述信号采集装置采集的采集信号进行整合以创建数据库,并对所述信号采集装置采集的采集信号进行实时监控,并通过所述通信装置向所述处理器传输信号;
    所述处理器的输出端与所述直流开关柜的控制端连接,所述处理器设置为 根据所述服务器传输的信号,对所述直流开关柜实施保护动作。
  4. 根据权利要求3所述的监控系统,还包括:分流器;
    所述分流器的第一端与所述直流开关柜的断路器的第二端连接,所述分流器的第二端与所述直流开关柜的隔离开关的第一端连接,所述分流器设置为对所述断路器输出的信号进行限流,使所述信号采集装置对限流后的电信号进行采集。
  5. 根据权利要求4所述的监控系统,其中,所述分流器包括电流检测端和电压检测端;所述信号采集装置的第三输入端包括电流采集端和电压采集端;
    所述信号采集装置的电流采集端与所述分流器的电流检测端连接,设置为检测所述电流检测端的电流,电压采集端与所述分流器的电压检测端连接,设置为检测所述电压检测端的电压。
  6. 根据权利要求3~5任一项所述的监控系统,其中,所述信号采集装置包括光纤隔离放大器。
  7. 根据权利要求3~6任一项所述的监控系统,还包括:上位机;
    所述上位机通过所述通信装置与所述服务器连接,设置为存储和显示所述服务器建立的数据库以及对所述信号采集装置实时监控的数据,并接收外部控制指令通过所述通信装置传输至所述服务器;
    所述服务器,还设置为根据所述外部控制指令,通过所述通信装置向所述处理器传输信号。
  8. 一种直流开关柜的监控方法,由如权3-7任一所述直流开关柜的监控系统执行,所述监控方法包括:
    获取所述直流开关柜中电信号的全程录波数据,并建立数据库;以及
    根据所述数据库以及通过对所述直流开关柜的电信号实时检测获取的采集 信号,确定所述直流开关柜的运行参数。
  9. 根据权利要求8所述的监控方法,其中,所述根据所述数据库,对所述直流开关柜的电信号实时检测,确定所述直流开关柜的运行参数,包括:
    对所述数据库中存储的电信号进行整定计算,分析所述直流开关柜的运行状况;
    根据所述运行状况,对所述直流开关柜的电流变化实时跟踪,确定所述直流开关柜的运行参数。
  10. 根据权利要求9所述的监控方法,其中,所述对所述数据库中存储的电信号进行整定计算,包括:
    根据所述数据库中的全程录波数据,分析所述直流开关柜的电流变化趋势,确定所述整定计算的参数值;
    根据所述整定计算的参数值和所述数据库中存储的电信号进行整定计算。
  11. 根据权利要求8所述的监控方法,其中,在确定所述直流开关柜的运行参数之后,还包括:
    根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估。
  12. 根据权利要求11所述的监控方法,其中,所述根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估,包括:
    对所述数据库中的数据进行直流分量和谐波分量的提取,建立数据图形;
    根据所述数据图形和多个运行工况下的运行参数,确定所述直流开关柜多个运行工况下的电量分配情况;
    根据所述电量分配情况,获取所述直流开关柜的运行规律,确定所述直流开关柜的运行参数。
  13. 根据权利要求8所述的监控方法,其中,还包括:
    定时采集所述直流开关柜中电信号的全程录波数据,更新所述数据库中存储的数据信息。
  14. 根据权利要求11所述的监控方法,其中,在所述根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估之前,还包括:
    获取所述直流开关柜中断路器分闸/跳闸次数和基本参数;
    根据所述断路器的分闸/跳闸次数和基本参数,设定所述直流开关柜的维护标准。
  15. 根据权利要求14所述的监控方法,其中,所述根据所述数据库和所述运行参数,对所述直流开关柜进行品质评估,包括:
    根据所述数据库和所述运行参数,实时分析所述直流开关柜的故障率、及故障间隔时间;
    根据所述直流开关柜的维护标准、故障率以及故障间隔时间,评估所述直流开关柜的品质。
PCT/CN2017/109490 2017-11-06 2017-11-06 直流开关柜及其监控系统和监控方法 WO2019084947A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/109490 WO2019084947A1 (zh) 2017-11-06 2017-11-06 直流开关柜及其监控系统和监控方法
JP2019600017U JP3229238U (ja) 2017-11-06 2017-11-06 直流スイッチボックス及びその監視システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/109490 WO2019084947A1 (zh) 2017-11-06 2017-11-06 直流开关柜及其监控系统和监控方法

Publications (1)

Publication Number Publication Date
WO2019084947A1 true WO2019084947A1 (zh) 2019-05-09

Family

ID=66332074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109490 WO2019084947A1 (zh) 2017-11-06 2017-11-06 直流开关柜及其监控系统和监控方法

Country Status (2)

Country Link
JP (1) JP3229238U (zh)
WO (1) WO2019084947A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854691A (zh) * 2019-11-01 2020-02-28 广东电网有限责任公司 一种具有自动检测功能的配电柜
CN111210702A (zh) * 2020-03-03 2020-05-29 广州株电交通设备有限公司 地铁牵引变电系统培训平台
CN112966955A (zh) * 2021-03-18 2021-06-15 广东电网有限责任公司广州供电局 一种基于物联网技术的开关柜质量综合评估系统和方法
CN117767551A (zh) * 2023-12-19 2024-03-26 淮阴工学院 基于数据分析的智能开关柜安全监控系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794986A (zh) * 2010-03-12 2010-08-04 镇江大全赛雪龙牵引电气有限公司 直流牵引供电开关柜线路测试装置及测试方法
CN105449795A (zh) * 2016-01-11 2016-03-30 中车青岛四方车辆研究所有限公司 有轨电车地面充电电源系统及充电控制方法
CN206452103U (zh) * 2017-02-17 2017-08-29 成都地铁运营有限公司 一种用于地铁牵引供电系统的框架保护装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794986A (zh) * 2010-03-12 2010-08-04 镇江大全赛雪龙牵引电气有限公司 直流牵引供电开关柜线路测试装置及测试方法
CN105449795A (zh) * 2016-01-11 2016-03-30 中车青岛四方车辆研究所有限公司 有轨电车地面充电电源系统及充电控制方法
CN206452103U (zh) * 2017-02-17 2017-08-29 成都地铁运营有限公司 一种用于地铁牵引供电系统的框架保护装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, YE: "SCADA System of Shanghai Light Rail Transit Xinmin Line", UNDERGROURD ENGINEERING AND TUNMELS, 15 November 2002 (2002-11-15), pages 44, ISSN: 2096-4323 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854691A (zh) * 2019-11-01 2020-02-28 广东电网有限责任公司 一种具有自动检测功能的配电柜
CN111210702A (zh) * 2020-03-03 2020-05-29 广州株电交通设备有限公司 地铁牵引变电系统培训平台
CN111210702B (zh) * 2020-03-03 2022-06-28 广州株电交通设备有限公司 地铁牵引变电系统培训平台
CN112966955A (zh) * 2021-03-18 2021-06-15 广东电网有限责任公司广州供电局 一种基于物联网技术的开关柜质量综合评估系统和方法
CN112966955B (zh) * 2021-03-18 2023-04-04 广东电网有限责任公司广州供电局 一种基于物联网技术的开关柜质量综合评估系统和方法
CN117767551A (zh) * 2023-12-19 2024-03-26 淮阴工学院 基于数据分析的智能开关柜安全监控系统

Also Published As

Publication number Publication date
JP3229238U (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2019084947A1 (zh) 直流开关柜及其监控系统和监控方法
RU2622473C2 (ru) Способ и устройство обслуживания электрической установки
KR102218268B1 (ko) 고장판단 및 고장복구 시나리오 자동생성 기능을 탑재한 변전소 자동화시스템 운영장치
US7961112B2 (en) Continuous condition monitoring of transformers
RU2743575C2 (ru) Беспроводная система контроля энергии в параллельной цепи
KR102145266B1 (ko) 전력계통 모니터링 시스템 및 그 방법
CN212646846U (zh) 一种变压器监测报警系统
US20090216573A1 (en) Method and device for automatic event detection and report generation
CN103995172A (zh) 变电站gis母线负荷电流在线监测方法
CN106597181A (zh) 一种高压电力变压器运行监测系统及方法
CN208043923U (zh) 一种配电箱的绝缘漏电自动检测装置
CN104391256A (zh) 一种直流电源环网故障诊断装置
Kawano et al. Intelligent protection relay system for smart grid
CN204256059U (zh) 一种10kV并联电抗器投切操作试验系统
CN102540012A (zh) 小电流接地系统单相接地故障的判定方法及其装置
CN115980438A (zh) 变电站双母线电能计量电压获取方法及系统
KR20210125314A (ko) 축소형 고장기록장치
CN106526291A (zh) 旁路作业低压快速转换装置及其监测、脱扣和显示方法
KR20070046445A (ko) 전력선통신을 이용한 분산전원 단독운전 방지장치 및 그를이용한 방법
CN109765040A (zh) 断路器的机械特性在线监测系统
KR20220087219A (ko) 전기패널의 안전감지 및 이상점검이 가능한 시스템
KR20210094786A (ko) 실시간 고장 분석 시스템 및 고장 판정 방법
Provči et al. A New Protection System Design of Active MV Distribution Network
CN109143088B (zh) 直流蓄电池监测装置
CN114899944B (zh) 通讯管理机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019600017

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17931033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17931033

Country of ref document: EP

Kind code of ref document: A1