WO2022000442A1 - 一种双极性csk调制复合电文信号播发方法及装置 - Google Patents

一种双极性csk调制复合电文信号播发方法及装置 Download PDF

Info

Publication number
WO2022000442A1
WO2022000442A1 PCT/CN2020/100018 CN2020100018W WO2022000442A1 WO 2022000442 A1 WO2022000442 A1 WO 2022000442A1 CN 2020100018 W CN2020100018 W CN 2020100018W WO 2022000442 A1 WO2022000442 A1 WO 2022000442A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
signal
spread spectrum
branch
modulation
Prior art date
Application number
PCT/CN2020/100018
Other languages
English (en)
French (fr)
Inventor
王盾
陈耀辉
李东俊
刘成
刘天雄
李申阳
陈思源
董启甲
Original Assignee
航天恒星科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 航天恒星科技有限公司 filed Critical 航天恒星科技有限公司
Priority to PCT/CN2020/100018 priority Critical patent/WO2022000442A1/zh
Priority to CN202080002400.XA priority patent/CN112105958B/zh
Publication of WO2022000442A1 publication Critical patent/WO2022000442A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/243Demodulation of navigation message
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/25Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS
    • G01S19/256Acquisition or tracking or demodulation of signals transmitted by the system involving aiding data received from a cooperating element, e.g. assisted GPS relating to timing, e.g. time of week, code phase, timing offset
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/29Acquisition or tracking or demodulation of signals transmitted by the system carrier including Doppler, related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/24Acquisition or tracking or demodulation of signals transmitted by the system
    • G01S19/30Acquisition or tracking or demodulation of signals transmitted by the system code related
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to a method and a device for broadcasting a composite message signal based on CSK modulation, which belong to the technical field of communication and navigation signal design.
  • the direct-sequence spread spectrum signal system is a common information modulation method in the fields of communication and navigation.
  • the BPSK-DSSS modulated signal has the advantages of simple reception and processing, self-acquisition of carrier synchronization information and modulation symbol synchronization information required for signal demodulation, and signal propagation time measurement while receiving data. It is widely used in the field of satellite navigation. For example, the GPS satellite navigation system of the United States and the Beidou satellite navigation system of China.
  • the CSK-DSSS modulated signal based on code shift keying has the disadvantages of complicated reception processing and difficulty in acquiring the carrier synchronization information and modulation symbol synchronization information required for signal demodulation by itself, it has higher information.
  • the complexity of signal reception is also greater. For example, for a 6-bit modulation symbol, 64 sets of correlation values need to be matched and received at the same time. If one more bit is added, 128 sets of correlation values need to be matched and received at the same time. Signal reception complexity increases exponentially with the number of modulation symbol bits.
  • One solution is to use the added 1-bit information to modulate the polarity of the CSK modulated signal, that is, superimpose BPSK-DSSS modulation on the CSK modulated signal to form a bipolar CSK (Antipodal CSK) modulated signal.
  • the K-bit bipolar CSK modulated signal Compared with the K+1-bit conventional CSK modulated signal, the K-bit bipolar CSK modulated signal has the same information transmission rate, the data demodulation threshold in the coherent demodulation mode is almost the same, and the signal receiving complexity can be reduced by half.
  • the full-bit data of the bipolar CSK modulated signal that is, K+1-bit data can only be received by coherent demodulation, and the non-coherent demodulation can only receive K bits of CSK modulation.
  • the conventional CSK modulated signal can receive K+1-bit information in a coherent demodulation manner, or can receive K+1-bit information in a non-coherent demodulation manner.
  • the coherent demodulation method has a lower demodulation threshold in the AGWN channel, which is suitable for a receiving environment with stable signals; the non-coherent demodulation method can receive signals without signal carrier phase synchronization, and is suitable for complex electromagnetic interference signals surroundings.
  • the demand for multi-rate composite message signal broadcast methods is also increasing.
  • a method and device for bipolar CSK modulation composite message signal broadcast are proposed. Under the premise that the complexity of receiving and processing is basically unchanged, the information transmission rate is further increased, and the performance of high-precision positioning services of the satellite navigation system is improved.
  • the present invention further improves the information transmission rate without increasing the complexity of signal reception and processing, and at the same time, the broadcast composite message signal also has the advantages of high efficiency, resistance to multipath interference and the like.
  • the technical problem to be solved by the present invention is, under the condition of limited signal power, how to further improve the information transmission efficiency while keeping the signal receiving and processing complexity basically unchanged, so as to provide a signal with good multipath interference suppression performance
  • the broadcasting method and device meet the needs of communication and navigation systems for broadcasting multi-type compound message services.
  • the present invention adopts the following technical solutions:
  • the present invention provides a method for broadcasting a bipolar CSK modulated composite message signal, comprising:
  • the basic message is modulated on the in-phase I branch, and the serial data stream on the channel-coded I branch is subjected to BPSK-DSSS direct-sequence spread spectrum to construct the in-phase I branch baseband signal;
  • the spread message is modulated on the quadrature Q branch, and 1 bit is arbitrarily selected from the modulation symbols of the channel-coded spread message to form a serial data stream on the Q branch, and the remaining bits form a parallel data stream on the Q branch.
  • the serial data stream on the road is subjected to BPSK-DSSS direct-sequence spread spectrum
  • the parallel data stream on the Q branch is subjected to CSK-DSSS direct-sequence spread spectrum.
  • IQ quadrature modulation is performed on the basic teletext baseband signal of the in-phase I branch and the extended teletext baseband signal of the quadrature Q branch to obtain a carrier signal, which is processed by power amplification and broadcast by the transmitting antenna.
  • the in-phase I branch baseband signal is constructed as follows:
  • the basic message spreading code clock cycle of the clock and timing generator Chip provided, the basic message is generated by the spreading code generator substantially message spreading code C B (t), the basic message corresponding to the obtained bit stream D B ( t) perform BPSK-DSSS direct-sequence spread spectrum modulation, and update the corresponding bit stream of the basic message as C B (t) D B (t);
  • the quadrature Q branch baseband signal is constructed as follows:
  • Channel coding is performed on the spread telegram to obtain the encoded spread telegram modulation symbol, and its data bit width is (K R +1) bits;
  • the K R bits constitute the parallel data stream DE, P (t), according to the spread telegram symbol clock provided by the timing generator, the phase selection module is based on the parallel data flow DE, P (t) K R bit information, and according to the preset phase mapping relationship, generate the corresponding spreading code phase offset of the K R bit information;
  • the initial phase generated by the extended message spread spectrum code generator is corresponding to the K R bit information.
  • the spread message spread spectrum code with the phase offset of obtains the CSK-DSSS direct-sequence spread spectrum signal modulated by the parallel data stream D E, P (t)
  • the remaining 1 bit constitutes the serial data stream DE,S (t), according to the spread message symbol clock provided by the timing generator , by the serial data stream DE,S (t) on the spread spectrum signal Perform BPSK-DSSS modulation, and update the bit stream corresponding to the modulation symbol of the extended message as
  • the extended message symbol clock includes:
  • the extended message symbol clock is synchronized with the extended message modulation symbol, and the extended message symbol clock period is equal to the extended message modulation symbol duration;
  • the extended message symbol clock is synchronized with the extended message code period clock, and the extended message symbol clock period is equal to N times the extended message code period, where N is an integer greater than or equal to 1;
  • the duration of the extended message modulation symbol is equal to the period of the extended message code, one modulation symbol corresponds to one cycle of the spread spectrum code sequence, and a conventional CSK-DSSS direct-sequence spread spectrum modulation signal is obtained;
  • the duration of the modulation symbol of the extended message is equal to N times the period of the extended message code, one modulation symbol corresponds to N cycles of the spreading code sequence, and the repeated phase-shifted CSK-DSSS direct-sequence spread spectrum modulation is obtained, that is, R-CSK-DSSS direct sequence spread spectrum modulation signal.
  • the phase selection module is configured with a spread spectrum code phase offset table, the number of phase offsets
  • Z is an integer greater than or equal to 1
  • the present invention also provides a device for broadcasting a bipolar CSK modulated composite message signal, comprising:
  • the first modulation unit is used to modulate the basic message on the in-phase I branch, and perform BPSK-DSSS direct-sequence spread spectrum on the serial data stream on the channel-coded I branch to construct the in-phase I branch baseband signal;
  • the second modulation unit is used to modulate the spread message on the quadrature Q branch, and arbitrarily select 1 bit from the channel-coded spread message modulation symbols to form a serial data stream on the Q branch, and the remaining bits form a serial data stream on the Q branch.
  • Parallel data stream, BPSK-DSSS direct-sequence spread spectrum is performed on the serial data stream on the Q branch, CSK-DSSS direct-sequence spread spectrum is performed on the parallel data stream on the Q branch, and the serial data stream on the Q branch of the direct-sequence spread
  • the data stream and the parallel data stream jointly construct the quadrature Q branch baseband signal;
  • the carrier modulation unit performs IQ quadrature modulation on the basic teletext baseband signal of the in-phase I branch and the extended teletext baseband signal of the quadrature Q branch to obtain a carrier signal;
  • the sending unit is used for power amplifying the carrier signal and broadcasting by the transmitting antenna.
  • the first modulation unit includes:
  • Coding sub-unit for performing channel coding for substantially messages encoded bit stream obtained after D B (t);
  • the first spread spectrum modulation subunit is used for generating the basic message spread spectrum code C B (t) from the basic message spread spectrum code generator according to the basic message spread spectrum code periodic clock and the Chip clock provided by the timing generator, and for all eligible basic message corresponding to a bit stream D B (t) for BPSK-DSSS direct sequence spread spectrum modulation, a basic message corresponding to the updated bit stream C B (t) ⁇ D B (t);
  • the second modulation unit includes:
  • the coding subunit is used for channel coding the spread telegram to obtain the encoded spread telegram modulation symbol, and its data bit width is (K R +1) bits;
  • the phase offset subunit is used to modulate symbols for the extended message, optionally wherein the K R bits form a parallel data stream DE, P (t), according to the extended message symbol clock provided by the timing generator, the phase selection module is based on the parallel data.
  • the K R bit information of the stream D E, P (t), and according to the preset phase mapping relationship, the spread spectrum code phase offset corresponding to the K R bit information is generated;
  • the second spread spectrum modulation sub-unit is used to generate the spread spectrum code generator by the spread spectrum code generator according to the spread spectrum code period clock, the Chip clock, and the spread spectrum code phase offset corresponding to the K R bit information provided by the timing generator. Generate the spread message spread spectrum code whose initial phase is the phase offset corresponding to the K R bit information, and obtain the CSK-DSSS direct-sequence spread spectrum signal modulated by the parallel data stream D E, P (t)
  • the third spread spectrum modulation subunit is used to modulate symbols for the spread telegram, remove the selected K R bits from the parallel data stream DE,P (t), and the remaining 1 bit constitutes the serial data stream DE,S (t), according to The spread message symbol clock provided by the timing generator, the spread spectrum signal is converted by the serial data stream DE, S (t) Perform BPSK-DSSS modulation, and update the bit stream corresponding to the modulation symbol of the extended message as
  • the baseband signal generation subunit is used for the power matching coefficient A Q based on the preset extension message, according to A quadrature Q-branch baseband signal S Q (t) is obtained.
  • (A I ) 2 +(A Q ) 2 1.
  • the extended message symbol clock includes:
  • the extended message symbol clock is synchronized with the extended message modulation symbol, and the extended message symbol clock period is equal to the extended message modulation symbol duration;
  • the extended message symbol clock is synchronized with the extended message code period clock, and the extended message symbol clock period is equal to N times the extended message code period, where N is an integer greater than or equal to 1;
  • the duration of the extended message modulation symbol is equal to the period of the extended message code, one modulation symbol corresponds to one cycle of the spread spectrum code sequence, and a conventional CSK-DSSS direct-sequence spread spectrum modulation signal is obtained;
  • the duration of the modulation symbol of the extended message is equal to N times the period of the extended message code, one modulation symbol corresponds to N cycles of the spreading code sequence, and the repeated phase-shifted CSK-DSSS direct-sequence spread spectrum modulation is obtained, that is, R-CSK-DSSS direct sequence spread spectrum modulation signal.
  • the phase selection module is configured with a spread spectrum code phase offset table, the number of phase offsets
  • Z is an integer greater than or equal to 1
  • the method for broadcasting a bipolar CSK modulated composite message signal of the present invention has the following excellent effects:
  • a method for broadcasting a bipolar CSK modulated composite message signal of the present invention adopts IQ two-way carrier quadrature modulation, wherein the baseband signal on the in-phase I branch is a BPSK-DSSS direct-sequence spread spectrum modulation signal, which can provide signal reception and processing.
  • the baseband signal on the quadrature Q branch is a bipolar CSK modulated signal that has undergone two-stage direct-sequence spread spectrum CSK-DSSS and BPSK-DSSS, which can provide higher broadcast signals.
  • Information transfer rate is provided.
  • the bipolar CSK-DSSS direct-sequence spread spectrum modulation signal adopted by the present invention has the advantage of halving the complexity of signal reception and processing, which can greatly reduce the cost of user receivers, which is conducive to the popularization of applications.
  • a bipolar CSK modulated composite message signal broadcasting method of the present invention can realize R-CSK-DSSS direct-sequence spread spectrum modulation with repeated phase shift.
  • the present invention has the advantages of lower signal reception data demodulation threshold or lower information reception processing complexity.
  • the method for broadcasting a bipolar CSK modulated composite message signal of the present invention can realize the phase non-continuous CSK-DSSS or R-CSK-DSSS direct sequence spread spectrum modulation.
  • the signal of the present invention does not produce a correlation peak side
  • the lobe interference can eliminate the inter-symbol interference problem caused by it, and has the advantage of improving the signal demodulation performance of the receiver.
  • the present invention can configure different power ratios for the basic message signal and the extended message signal with different message rates, thereby improving the signal broadcasting efficiency; because the IQ branches are orthogonal , the carrier phase differs by 90 degrees, which can effectively avoid the influence of the high-power extended text signal on the reception performance of the basic text signal; broadcast the BPSK signal on the I branch, which can not only provide the Q branch with the synchronization information required for CSK demodulation, but also It can effectively broadcast the basic message; since the basic message signal and the extended message signal have different spreading codes and the carrier is orthogonal, the system user who only needs to receive the basic message does not need to consider the existence of the extended message, which can simplify the design of the basic message receiver and reduce the number of basic messages. the cost of the receiver.
  • the method of the invention is suitable for the fields of communication, navigation system signal design and the like.
  • Fig. 1 is based on composite message signal broadcasting example 1 of the present invention
  • Fig. 2 is based on composite message signal broadcasting example 2 of the present invention
  • Fig. 3 is a schematic diagram of the timing relationship of I branch baseband signals
  • 4 is a schematic diagram of the mapping relationship between the CSK modulation symbol information and the initial phase of the spreading code sequence
  • FIG. 6 is a schematic diagram of a complex baseband signal constellation diagram
  • Fig. 7 is an example of a coherent receiver for composite message signals based on the present invention.
  • FIG. 8 is an example of a composite message signal incoherent receiver based on the present invention.
  • a method for broadcasting a bipolar CSK modulated composite message signal of the present invention in practical application, can use the composite message signal broadcasting example 1 based on the present invention shown in FIG.
  • Example 2 of the composite message signal broadcast of IQ two-way quadrature modulation is applied to realize the multi-rate composite message signal broadcast.
  • the basic message is modulated on the in-phase I branch, and the serial data stream on the channel-coded I branch is subjected to BPSK-DSSS direct-sequence spread spectrum to construct the in-phase I branch baseband signal;
  • the spread message is modulated on the quadrature Q branch, and 1 bit is arbitrarily selected from the modulation symbols of the channel-coded spread message to form a serial data stream on the Q branch, and the remaining bits form a parallel data stream on the Q branch.
  • the serial data stream on the road is subjected to BPSK-DSSS direct-sequence spread spectrum
  • the parallel data stream on the Q branch is subjected to CSK-DSSS direct-sequence spread spectrum.
  • in-phase I-branch baseband signal and the quadrature Q-branch baseband signal is implemented according to the following methods respectively.
  • the basic message spreading code clock cycle of the clock and timing generator Chip provided, the basic message is generated by the spreading code generator substantially message spreading code C B (t), the basic message corresponding to the obtained bit stream D B ( t) perform BPSK-DSSS direct-sequence spread spectrum modulation, and update the corresponding bit stream of the basic message as C B (t) D B (t);
  • the timing relationship of the baseband signal of the I branch is given.
  • the code rate of the basic message spreading code C B (t) is 10.23 MHz
  • the basic message spreading code cycle time length T BC 1 ms
  • the value is plus or minus 1.
  • the correspondence between the message and the pseudo-random sequence is 1->"PRN(0)+", -1->"PRN(0)-", where "PRN(0)+” represents a positive-polarity pseudo-random whose initial phase is 0. Random sequence, "PRN(0)-” represents a negative-polarity pseudo-random sequence with an initial phase of 0.
  • Channel coding is performed on the spread telegram to obtain the encoded spread telegram modulation symbol, and its data bit width is (K R +1) bits;
  • the K R bits constitute the parallel data stream DE, P (t), according to the spread telegram symbol clock provided by the timing generator, the phase selection module is based on the parallel data flow DE, P (t) K R bit information, and according to the preset phase mapping relationship, generate the corresponding spreading code phase offset of the K R bit information;
  • the initial phase generated by the extended message spread spectrum code generator is corresponding to the K R bit information.
  • the spread message spread spectrum code with the phase offset of obtains the CSK-DSSS direct-sequence spread spectrum signal modulated by the parallel data stream D E, P (t)
  • Figure 4 shows the mapping relationship between the CSK modulation symbol information and the initial phase of the spread spectrum code sequence, and the number of spread spectrum code phase offsets corresponding to the K R bit modulation symbol information
  • Z is an integer greater than or equal to 1
  • the generated phase offsets are discontinuous with each other, and the interval is Z, to obtain a CSK-DSSS direct-sequence spread spectrum modulation signal with discontinuous phase, or an R-CSK-DSSS direct-sequence spread modulation signal with discontinuous phase frequency modulated signal.
  • the remaining 1 bit constitutes the serial data stream DE,S (t), according to the spread message symbol clock provided by the timing generator , by the serial data stream DE,S (t) on the spread spectrum signal Perform BPSK-DSSS modulation, and update the bit stream corresponding to the modulation symbol of the extended message as
  • Figure 5 shows the timing relationship of the baseband signal of the Q branch.
  • the pseudo-random sequence PRN(i*Z) after direct-sequence spread spectrum modulation is based on the corresponding relationship 1->"PRN(i*Z)+", -1->"PRN(i*Z)-” to complete BPSK-DSSS modulation, where "PRN(i*Z)+” represents a positive-polarity pseudo-random sequence with an initial phase of i*Z, and "PRN(i*Z)-" represents a negative-polarity pseudo-random sequence with an initial phase of i*Z.
  • the extended message symbol clock is synchronized with the extended message modulation symbol, and the extended message symbol clock period is equal to the extended message modulation symbol duration;
  • the extended message symbol clock is synchronized with the extended message code period clock, and the extended message symbol clock period is equal to N times the extended message code period, where N is an integer greater than or equal to 1;
  • the duration of the spread telegram modulation symbol is equal to the period time of the spread telegram code, one modulation symbol corresponds to one period of the spread spectrum code sequence, and a conventional CSK-DSSS direct-sequence spread spectrum modulation signal is obtained;
  • the duration of the modulation symbol of the extended message is equal to N times the period of the extended message code, one modulation symbol corresponds to N cycles of the spreading code sequence, and the repeated phase-shifted CSK-DSSS direct-sequence spread spectrum modulation is obtained, that is, R-CSK-DSSS direct sequence spread spectrum modulation signal.
  • the phase interval Z is an integer greater than or equal to 1.
  • the generated phase offsets are discontinuous with each other, and the interval is Z, and a CSK-DSSS direct-sequence spread spectrum with discontinuous phase is obtained Modulation signal, or R-CSK-DSSS direct-sequence spread spectrum modulation signal with discontinuous phase.
  • a branch with a higher message rate is generally configured with a higher signal broadcasting power.
  • the two branches use different spreading code sequences.
  • the IQ branch can allocate different transmit powers, so that the basic message and the extended message received by the receiver have the same receiving performance.
  • the spreading codes and telegrams of the two channels of the broadcast signal IQ are kept in sync with each other.
  • the multi-rate composite message signal is handed over to the transmitting antenna for broadcasting.
  • the RF transmission signal of the multi-rate composite message signal is expressed as follows:
  • P s represents the total power of the radio frequency signal transmission of the composite text
  • f c represents the frequency of the transmitted signal
  • the basic telegram and the extended telegram are respectively placed on the orthogonal IQ branches.
  • the signal broadcast efficiency is improved; the IQ branches are orthogonal, and the carrier phase is different by 90 degrees, which can effectively avoid the influence of the high-power extended text signal on the receiving performance of the basic text signal; the BPSK signal broadcast on the I branch can be used for the Q branch.
  • use bipolar CSK to modulate composite text signals to further improve the information transmission rate and improve the high precision of satellite navigation systems on the premise of keeping the complexity of signal reception and processing basically unchanged Location service performance.
  • the present invention further designs and provides an example of a composite message signal receiver based on the present invention, including an example of a composite message signal coherent receiver based on the present invention, and an example of a composite message signal coherent receiver based on the present invention.
  • Example of a coherent receiver Example of a coherent receiver.
  • the RF carrier signal received by the receiver antenna is processed by the RF Front-End to output a digital intermediate frequency signal; the digital intermediate frequency signal is first mixed with the carrier copied by the carrier ring to output an orthogonal IQ two-way baseband signal, and the IQ two-way baseband signal Perform correlation operations with the basic message spread spectrum code copied by the basic message spread spectrum code generator to obtain two IQ correlation results; then, the two IQ correlation results are used as the input of the phase detection filter module, and the phase detection filter module calculates the carrier phase detection. Error and code phase detection error, and filter the phase detection error.
  • the filtering results are used to adjust the carrier NCO (Carrier NCO) and the code NCO (Code NCO) respectively, so that the carrier output by the Carrier NCO is consistent with the received carrier, and the The basic message spreading code copied by the basic message spreading code generator under the control of Code NCO is consistent with the basic message spreading code received, which ensures that the carrier and spreading code in the received signal at the next moment are still completely detected in the tracking loop. Stripping; at the same time, the correlation result output by the I branch correlator outputs the basic message data bits through polarity judgment and channel decoding.
  • the coherent demodulation method of the extended message is as follows:
  • the extended message spread spectrum code cycle clock and Chip clock obtained after synchronization are transmitted to the extended message spread spectrum code generator, and the extended message symbol clock and the extended message spread spectrum code cycle clock are transmitted. It is transmitted to the M-ary quadrature modulation signal coherent demodulation module, and the M-ary quadrature modulation signal coherent demodulation module under the control of the extended message symbol clock and the extended message spread spectrum code cycle clock, the received Q branch baseband.
  • the signal is correlated with the spread spectrum code generated by the spread spectrum code generator under the control of the spread spectrum code cycle clock and the Chip clock, and M correlation results r 0 , r 1 , ..., r M- 1 , output to the maximum absolute value selection module;
  • the channel decoding module performs decoding according to the sequence number j corresponding to the input maximum absolute value and the polarity a max of the absolute maximum correlation value to obtain the transmitted extended message data.
  • FIG. 8 An example of a composite message signal incoherent receiver based on the present invention is shown in Figure 8, wherein the basic message receiving method is as follows:
  • the RF carrier signal received by the receiver antenna is processed by the RF Front-End to output a digital intermediate frequency signal; the digital intermediate frequency signal is first mixed with the carrier copied by the carrier ring to output an orthogonal IQ two-way baseband signal, and the IQ two-way baseband signal Perform correlation operations with the basic message spread spectrum code copied by the basic message spread spectrum code generator to obtain two IQ correlation results; then, the two IQ correlation results are used as the input of the phase detection filter module, and the phase detection filter module calculates the carrier phase detection.
  • the filtering results are used to adjust the carrier NCO (Carrier NCO) and the code NCO (Code NCO) respectively, so that the carrier output by the Carrier NCO is consistent with the received carrier, and the The basic message spreading code copied by the basic message spreading code generator under the control of Code NCO is consistent with the basic message spreading code received, which ensures that the carrier and spreading code in the received signal at the next moment are still completely detected in the tracking loop. Stripping; at the same time, the correlation result output by the I branch correlator outputs the basic message data bits through polarity judgment and channel decoding.
  • the non-coherent demodulation method of the extended message is as follows:
  • the extended message spread spectrum code cycle clock and Chip clock obtained after synchronization are transmitted to the extended message spread spectrum code generator, and the extended message symbol clock and the extended message spread spectrum code cycle clock are transmitted. It is passed to the incoherent demodulation module of the M-ary quadrature modulation signal, and the non-coherent demodulation module of the M-ary quadrature modulation signal, under the control of the extended message symbol clock and the extended message spread spectrum code cycle clock, will receive the IQ two.
  • the baseband signal and the extended text spreading code generated by the extended text spreading code generator under the control of the extended text spreading code periodic clock and the chip clock are respectively calculated for correlation matching, and M correlation results of the IQ two channels are obtained. Take the modulo of the corresponding correlation results of the channel to obtain M correlation results r 0 , r 1 , ..., r M-1 , and output them to the maximum value selection module;
  • the channel decoding module performs decoding according to the input K R bit maximum value sequence number j to obtain the transmitted extended message data.
  • the method for broadcasting a bipolar CSK modulated composite message signal of the present invention has the following excellent effects:
  • a method for broadcasting a bipolar CSK modulated composite message signal of the present invention adopts IQ two-way carrier quadrature modulation, wherein the baseband signal on the in-phase I branch is a BPSK-DSSS direct-sequence spread spectrum modulation signal, which can provide signal reception and processing.
  • the required carrier synchronization and modulation symbol synchronization information; the baseband signal on the quadrature Q branch is a bipolar CSK modulated signal that has undergone CSK-DSSS and BPSK-DSSS two-stage direct sequence spread spectrum, which can provide higher broadcast signals.
  • Information transfer rate is IQ two-way carrier quadrature modulation, wherein the baseband signal on the in-phase I branch is a BPSK-DSSS direct-sequence spread spectrum modulation signal, which can provide signal reception and processing.
  • the required carrier synchronization and modulation symbol synchronization information; the baseband signal on the quadrature Q branch is a bipolar CSK modulated signal that has undergone CSK-DSSS and
  • the bipolar CSK-DSSS direct-sequence spread spectrum modulation signal adopted by the present invention has the advantage of halving the complexity of signal reception and processing, which can greatly reduce the cost of user receivers, which is conducive to the popularization of applications.
  • a bipolar CSK modulated composite message signal broadcasting method of the present invention can realize R-CSK-DSSS direct-sequence spread spectrum modulation with repeated phase shift.
  • the present invention has the advantages of lower signal reception data demodulation threshold or lower information reception processing complexity.
  • the method for broadcasting a bipolar CSK modulated composite message signal of the present invention can realize the phase non-continuous CSK-DSSS or R-CSK-DSSS direct sequence spread spectrum modulation.
  • the signal of the present invention does not produce a correlation peak side
  • the lobe interference can eliminate the inter-symbol interference problem caused by it, and has the advantage of improving the signal demodulation performance of the receiver.
  • the present invention can configure different power ratios for the basic message signal and the extended message signal with different message rates, thereby improving the signal broadcasting efficiency; because the IQ branches are orthogonal , the carrier phase differs by 90 degrees, which can effectively avoid the influence of the high-power extended text signal on the reception performance of the basic text signal; broadcast the BPSK signal on the I branch, which can not only provide the Q branch with the synchronization information required for CSK demodulation, but also It can effectively broadcast the basic message; since the basic message signal and the extended message signal have different spreading codes and the carrier is orthogonal, the system user who only needs to receive the basic message does not need to consider the existence of the extended message, which can simplify the design of the basic message receiver and reduce the number of basic messages. the cost of the receiver.
  • the method of the invention is suitable for the fields of communication, navigation system signal design and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种基于双极性CSK调制的复合电文信号播发方法及装置,所述方法包括:将基本电文在同相I支路上进行调制,对信道编码后的I支路上的串行数据流进行BPSK-DSSS直序扩频,构建同相I支路基带信号;将扩展电文在正交Q支路上进行调制,从信道编码后的扩展电文调制符号中任取1比特构成Q支路上的串行数据流,其余比特构成Q支路上的并行数据流,对Q支路上的串行数据流进行BPSK-DSSS直序扩频,对Q支路上的并行数据流进行CSK-DSSS直序扩频,二者共同构建正交Q支路基带信号。对同相I支路的基本电文基带信号与正交Q支路的扩展电文基带信号进行载波IQ正交调制,构成多速率复合电文信号并播发。

Description

一种双极性CSK调制复合电文信号播发方法及装置 技术领域
本发明涉及的基于CSK调制的复合电文信号播发方法及装置,属于通信、导航信号设计技术领域。
背景技术
在当代通信、导航系统设计中,根据应用需求的不同,往往需要在同一频点的信号中同时播发满足不同要求的复合电文。如:按一定信息速率播发基本电文,满足系统基本服务性能或公开服务性能的要求,同时播发信息速率相同或不同的扩展电文,满足系统附加服务性能或非公开服务性能的要求。由于扩展电文信号不一定完全公开,系统要求设计的复合电文信号,可保证基本电文用户在不知扩展电文信号存在与否的情况下,性能完好地接收复合电文信号中的基本电文。
直序扩频信号体制是通信、导航领域常见的信息调制方式。其中,BPSK-DSSS调制信号具备接收处理简单、可以自我获取信号解调所需的载波同步信息和调制符号同步信息、接收数据的同时可以完成信号传播时间测量等优点,广泛用于卫星导航领域。例如,美国的GPS卫星导航系统和中国的北斗卫星导航系统。与此对应,基于码移键控的CSK-DSSS调制信号,虽然有接收处理较为复杂、难以自我获取信号解调所需的载波同步信息和调制符号同步信息等缺点,但却有较高的信息传输效率,即所需的数据解调门限较低的优点。当代卫星导航系统,多频点多信号已成为设计主流。满足导航测距要求后,在信号播发功率受限的条件下,进一步提高信息的播发效率、即信息传输效率成为新的要求。为此,日本QZSS准天顶卫星导航系统引入了CSK-DSSS直序扩频调制信号,用于播发服务于高精 度定位的系统误差改正信息。
对于CSK-DSSS直序扩频调制信号,调制阶数越高、即扩频调制符号的比特数越多,信息传输效率越好。同时,信号接收的复杂度也越大。例如,对于6比特的调制符号,需要同时匹配接收64组相关值。如果再增加1比特,则需同时匹配接收128组相关值。信号接收复杂度随调制符号比特数的增加呈指数级增长。一种解决办法是将增加的1比特信息用于调制CSK调制信号的极性,即在已经CSK调制过的信号上再叠加上BPSK-DSSS调制,形成双极性CSK(Antipodal CSK)调制信号。
K比特双极性CSK调制信号与K+1比特常规CSK调制信号相比,信息传输速率相同,相干解调方式下的数据解调门限也几乎一致,信号接收复杂度可降低一半。但是,双极性CSK调制信号的全比特数据、即K+1比特数据只能采用相干解调方式接收,非相干解调方式只能接收CSK调制的K比特数。与此对应,常规CSK调制信号既可按相干解调方式接收K+1比特信息,也可按非相干解调方式接收K+1比特信息。一般说来,相干解调方式在AGWN信道下解调门限更低,适用于信号稳定的接收环境;非相干解调方式无需信号载波相位同步即可接收信号,适用于干扰信号较多的复杂电磁环境。
考虑到卫星导航系统高精度精密单点定位应用需求和应用场景,对多速率复合电文信号播发方式的需求也日趋强烈,提出一种双极性CSK调制复合电文信号播发方法和装置,在保持信号接收处理复杂度基本不变的前提下,进一步提高信息传输速率,提升卫星导航系统高精度定位服务性能。本发明在不增加信号接收处理复杂度的条件下进一步提高信息传输速率的同时,播发的复合电文信号还具备高效率、耐多径干扰等优点。
发明内容
本发明所要解决的技术问题是,在信号功率受限的条件下,如何进一步提升信息传输效率,同时保持信号接收处理复杂度基本不变的难题,提供一种具备良好多径干扰抑制性能的信号播发方法和装置,满足通信、导航系统播发多类型复合电文服务的需求。
为了解决上述技术问题,本发明采用以下技术方案:
本发明提供一种双极性CSK调制复合电文信号播发方法,包括:
将基本电文在同相I支路上进行调制,对信道编码后的I支路上的串行数据流进行BPSK-DSSS直序扩频,构建同相I支路基带信号;
将扩展电文在正交Q支路上进行调制,从信道编码后的扩展电文调制符号中任取1比特构成Q支路上的串行数据流,其余比特构成Q支路上的并行数据流,对Q支路上的串行数据流进行BPSK-DSSS直序扩频,对Q支路上的并行数据流进行CSK-DSSS直序扩频,直序扩频的Q支路上的串行数据流和并行数据流共同构建正交Q支路基带信号;
对同相I支路的基本电文基带信号与正交Q支路的扩展电文基带信号进行IQ正交调制,得到载波信号,经功率放大处理,由发射天线进行播发。
作为本发明的一种优选技术方案:上述一种双极性CSK调制复合电文信号播发方法中,同相I支路上,按如下方法构建同相I支路基带信号:
针对基本电文进行信道编码得到编码后的比特流D B(t);
根据时序发生器所提供的基本电文扩频码周期时钟和Chip时钟,由基本电文扩频码发生器产生基本电文扩频码C B(t),对所获基本电文对应的比特流D B(t)进行BPSK-DSSS直序扩频调制,更新基本电文所对应的比特流为C B(t)·D B(t);
基于预设基本电文的功率配比系数A I,按S I(t)=A I·C B(t)·D B(t),获 得同相I支路基带信号S I(t)。
作为本发明的一种优选技术方案:上述一种双极性CSK调制复合电文信号播发方法中,正交Q支路上,按如下方法构建正交Q支路基带信号:
针对扩展电文进行信道编码得到编码后扩展电文调制符号,其数据位宽为(K R+1)比特;
针对扩展电文调制符号,任选其中K R比特构成并行数据流D E,P(t),根据时序发生器提供的扩展电文符号时钟,由相位选择模块根据并行数据流D E,P(t)的K R比特信息,并按照预设的相位映射关系,产生K R比特信息所对应的扩频码相位偏移量;
根据时序发生器所提供的扩展电文码周期时钟、Chip时钟、以及K R比特信息所对应的扩频码相位偏移量,由扩展电文扩频码发生器产生初始相位为K R比特信息所对应的相位偏移量的扩展电文扩频码,获得经并行数据流D E,P(t)调制后的CSK-DSSS直序扩频信号
Figure PCTCN2020100018-appb-000001
针对扩展电文调制符号,除去并行数据流D E,P(t)已选K R比特后剩余1比特构成串行数据流D E,S(t),根据时序发生器所提供的扩展电文符号时钟,由串行数据流D E,S(t)对所述扩频信号
Figure PCTCN2020100018-appb-000002
进行BPSK-DSSS调制,更新扩展电文调制符号所对应的比特流为
Figure PCTCN2020100018-appb-000003
基于预设扩展电文的功率配比系数A Q,按
Figure PCTCN2020100018-appb-000004
获得正交Q支路基带信号S Q(t)。其中,(A I) 2+(A Q) 2=1。
作为本发明的一种优选技术方案:所述扩展电文符号时钟,包括:
扩展电文符号时钟与扩展电文调制符号同步,扩展电文符号时钟周期等于扩展电文调制符号持续时间;
扩展电文符号时钟与扩展电文码周期时钟同步,扩展电文符号时钟周期等于扩展电文码周期的N倍,其中,N为大于等于1的整数;
当N=1时,扩展电文调制符号持续时间与扩展电文码周期时间相等,一个调制符号对应一个周期的扩频码序列,获得常规CSK-DSSS直序扩频调制信号;
当N大于1时,扩展电文调制符号持续时间等于扩展电文码周期时间的N倍,一个调制符号对应N个周期的扩频码序列,获得重复移相的CSK-DSSS直序扩频调制、即R-CSK-DSSS直序扩频调制信号。
作为本发明的一种优选技术方案:所述相位选择模块,配置有扩频码相位偏移量表格,相位偏移量数目
Figure PCTCN2020100018-appb-000005
扩频码相位偏移量即产生扩频码序列的初始相位为φ i=i*Z,其中,Z为大于等于1的整数,i=0~M-1。当Z大于1时,所产生的相位偏移量彼此间非连续,间隔为Z,获得相位非连续的CSK-DSSS直序扩频调制信号、或相位非连续的R-CSK-DSSS直序扩频调制信号。
本发明还提供一种双极性CSK调制复合电文信号播发装置,包括:
第一调制单元,用于将基本电文在同相I支路上进行调制,对信道编码后的I支路上的串行数据流进行BPSK-DSSS直序扩频,构建同相I支路基带信号;
第二调制单元,用于将扩展电文在正交Q支路上进行调制,从信道编码后的扩展电文调制符号中任取1比特构成Q支路上的串行数据流,其余比特构成Q支路上的并行数据流,对Q支路上的串行数据流进行BPSK-DSSS直序扩频,对Q支路上的并行数据流进行CSK-DSSS直序扩频,直序扩频的Q支路上的串行数据流和并行数据流共同构建正交Q支路基带信号;
载波调制单元,对同相I支路的基本电文基带信号与正交Q支路的扩展电文基带信号进行IQ正交调制,得到载波信号;
发送单元,用于对载波信号经功率放大处理,由发射天线进行播发。
作为本发明的一种优选技术方案,本发明实施例的一种双极性CSK调制复合电文信号播发装置中,所述第一调制单元包括:
编码子单元,用于针对基本电文进行信道编码得到编码后的比特流D B(t);
第一扩频调制子单元,用于根据时序发生器所提供的基本电文扩频码周期时钟和Chip时钟,由基本电文扩频码发生器产生基本电文扩频码C B(t),对所获基本电文对应的比特流D B(t)进行BPSK-DSSS直序扩频调制,更新基本电文所对应的比特流为C B(t)·D B(t);
基带信号生成子单元,用于基于预设基本电文的功率配比系数A I,按S I(t)=A I·C B(t)·D B(t),获得同相I支路基带信号S I(t)。
作为本发明的一种优选技术方案,本发明实施例的一种双极性CSK调制复合电文信号播发装置中,所述第二调制单元包括:
编码子单元,用于针对扩展电文进行信道编码得到编码后扩展电文调制符号,其数据位宽为(K R+1)比特;
相位偏移子单元,用于针对扩展电文调制符号,任选其中K R比特构成并行数据流D E,P(t),根据时序发生器提供的扩展电文符号时钟,由相位选择模块根据并行数据流D E,P(t)的K R比特信息,并按照预设的相位映射关系,产生K R比特信息所对应的扩频码相位偏移量;
第二扩频调制子单元,用于根据时序发生器所提供的扩展电文码周期时钟、Chip时钟、以及K R比特信息所对应的扩频码相位偏移量,由扩展电文扩频码发生器产生初始相位为K R比特信息所对应的相位偏移量的扩展电文扩频码,获得经并行数据流D E,P(t)调制后的CSK-DSSS直序扩频信号
Figure PCTCN2020100018-appb-000006
第三扩频调制子单元,用于针对扩展电文调制符号,除去并行数据流 D E,P(t)已选K R比特后剩余1比特构成串行数据流D E,S(t),根据时序发生器所提供的扩展电文符号时钟,由串行数据流D E,S(t)对所述扩频信号
Figure PCTCN2020100018-appb-000007
进行BPSK-DSSS调制,更新扩展电文调制符号所对应的比特流为
Figure PCTCN2020100018-appb-000008
基带信号生成子单元,用于基于预设扩展电文的功率配比系数A Q,按
Figure PCTCN2020100018-appb-000009
获得正交Q支路基带信号S Q(t)。其中,(A I) 2+(A Q) 2=1。
作为本发明的一种优选技术方案,所述扩展电文符号时钟,包括:
扩展电文符号时钟与扩展电文调制符号同步,扩展电文符号时钟周期等于扩展电文调制符号持续时间;
扩展电文符号时钟与扩展电文码周期时钟同步,扩展电文符号时钟周期等于扩展电文码周期的N倍,其中,N为大于等于1的整数;
当N=1时,扩展电文调制符号持续时间与扩展电文码周期时间相等,一个调制符号对应一个周期的扩频码序列,获得常规CSK-DSSS直序扩频调制信号;
当N大于1时,扩展电文调制符号持续时间等于扩展电文码周期时间的N倍,一个调制符号对应N个周期的扩频码序列,获得重复移相的CSK-DSSS直序扩频调制、即R-CSK-DSSS直序扩频调制信号。
作为本发明的一种优选技术方案:所述相位选择模块,配置有扩频码相位偏移量表格,相位偏移量数目
Figure PCTCN2020100018-appb-000010
扩频码相位偏移量即产生扩频码序列的初始相位为φ i=i*Z,其中,Z为大于等于1的整数,i=0~M-1。当Z大于1时,所产生的相位偏移量彼此间非连续,间隔为Z,获得相位非连续的CSK-DSSS直序扩频调制信号、 或相位非连续的R-CSK-DSSS直序扩频调制信号。
本发明的一种双极性CSK调制复合电文信号播发方法与现有技术相比,具有以下优异效果:
本发明的一种双极性CSK调制复合电文信号播发方法,采用IQ两路载波正交调制,其中同相I支路上的基带信号为BPSK-DSSS直序扩频调制信号,可为信号接收处理提供所需的载波同步和调制符号同步信息;正交Q支路上的基带信号为经过CSK-DSSS和BPSK-DSSS两级直序扩频的双极性CSK调制信号,可为播发信号提供更高的信息传输速率。与单极性的常规CSK-DSSS直序扩频调制信号相比较,在同样的数据传输速率、同样的信号接收数据解调门限条件下,本发明采用的双极性CSK-DSSS直序扩频调制信号具备信号接收处理复杂度减半的优点,可大幅降低用户接收机的成本,利于应用普及。
通过配置扩展电文符号时钟周期与扩展电文码周期的倍数比例,本发明的一种双极性CSK调制复合电文信号播发方法可以实现重复移相的R-CSK-DSSS直序扩频调制。在信号播发功率频谱密度与数据传输速率相同的条件下,与单次移相的常规CSK-DSSS调制信号相比较,本发明具备信号接收数据解调门限低或信息接收处理复杂度低的优点。
通过配置相位选择模块中的扩频码相位偏移量表格,本发明的一种双极性CSK调制复合电文信号播发方法可以实现相位非连续的CSK-DSSS或R-CSK-DSSS直序扩频调制。与相位连续的常规CSK-DSSS或R-CSK-DSSS直序扩频调制相比较,当多径干扰信号的延迟时间处在两个指定相位之间时,本发明的信号不会产生相关峰旁瓣干扰,可消除由此引起的符号间干扰问题,具备提高接收机信号解调性能的优点。
本发明由于将基本电文和扩展电文分别放在正交的IQ支路上,可以为电文速率不同的基本电文信号和扩展电文信号配置不同的功率比,提高了 信号播发效率;由于IQ支路正交,载波相位相差90度,可有效避免大功率的扩展电文信号对基本电文信号接收性能的影响;在I支路上播发BPSK信号,既可为Q支路提供CSK解调所需的同步信息,又能有效播发基本电文;由于基本电文信号与扩展电文信号扩频码不同且载波正交,只需接收基本电文的系统用户无需考虑扩展电文的存在,可以简化基本电文接收机的设计,降低基本电文接收机的成本。
本发明方法适用于通信、导航系统信号设计等领域。
附图说明
图1为基于本发明的复合电文信号播发实例1;
图2为基于本发明的复合电文信号播发实例2;
图3为I支路基带信号时序关系示意图;
图4为CSK调制符号信息与扩频码序列初始相位映射关系示意图;
图5为Q支路基带信号时序关系示意图;
图6为复数基带信号星座图示意图;
图7为基于本发明的复合电文信号相干接收机实例;
图8为基于本发明的复合电文信号非相干接收机实例。
具体实施方式
下面结合说明书附图对本发明的具体实施方式作进一步详细的说明。
本发明的一种双极性CSK调制复合电文信号播发方法,在实际应用当中,可采用图1所示的基于本发明的复合电文信号播发实例1,也可采用图2所示的基于本发明的复合电文信号播发实例2,应用IQ两路正交调制,实现多速率复合电文信号的播发。
将基本电文在同相I支路上进行调制,对信道编码后的I支路上的串行 数据流进行BPSK-DSSS直序扩频,构建同相I支路基带信号;
将扩展电文在正交Q支路上进行调制,从信道编码后的扩展电文调制符号中任取1比特构成Q支路上的串行数据流,其余比特构成Q支路上的并行数据流,对Q支路上的串行数据流进行BPSK-DSSS直序扩频,对Q支路上的并行数据流进行CSK-DSSS直序扩频,直序扩频的Q支路上的串行数据流和并行数据流共同构建正交Q支路基带信号;
对于上述同相I支路基带信号与正交Q支路基带信号的构建,分别按如下各个方法实现。
其中,针对同相I支路基带信号的构建,具体方法如下:
针对基本电文进行信道编码得到编码后的串行数据流D B(t);
根据时序发生器所提供的基本电文扩频码周期时钟和Chip时钟,由基本电文扩频码发生器产生基本电文扩频码C B(t),对所获基本电文对应的比特流D B(t)进行BPSK-DSSS直序扩频调制,更新基本电文所对应的比特流为C B(t)·D B(t);
如图3所示,给出了I支路基带信号时序关系,基本电文时钟时间长度为T BS=1ms,基本电文的信息经分组编码和信道编码后形成速率R B=1/T BS=1kbps、取值正负1的比特流D B(t)。基本电文扩频码C B(t)码速率为10.23MHz,基本电文扩频码周期时间长度T BC=1ms,取值正负1。电文与伪随机序列的对应关系为1->“PRN(0)+”,-1->“PRN(0)-”,其中,“PRN(0)+”表示初始相位为0的正极性伪随机序列,“PRN(0)-”表示初始相位为0的负极性伪随机序列。
基于预设基本电文的功率配比系数A I,按S I(t)=A I·C B(t)·D B(t),获得同相I支路基带信号S I(t)。
针对正交Q支路基带信号的构建,具体方法如下:
针对扩展电文进行信道编码得到编码后扩展电文调制符号,其数据位 宽为(K R+1)比特;
针对扩展电文调制符号,任选其中K R比特构成并行数据流D E,P(t),根据时序发生器提供的扩展电文符号时钟,由相位选择模块根据并行数据流D E,P(t)的K R比特信息,并按照预设的相位映射关系,产生K R比特信息所对应的扩频码相位偏移量;
根据时序发生器所提供的扩展电文码周期时钟、Chip时钟、以及K R比特信息所对应的扩频码相位偏移量,由扩展电文扩频码发生器产生初始相位为K R比特信息所对应的相位偏移量的扩展电文扩频码,获得经并行数据流D E,P(t)调制后的CSK-DSSS直序扩频信号
Figure PCTCN2020100018-appb-000011
图4给出了CSK调制符号信息与扩频码序列初始相位映射关系,K R比特调制符号信息所对应的扩频码相位偏移量数目
Figure PCTCN2020100018-appb-000012
扩频码相位偏移量即产生扩频码序列的初始相位为φ i=i*Z,其中,Z为大于等于1的整数,i=0~M-1。当Z大于1时,所产生的相位偏移量彼此间非连续,间隔为Z,获得相位非连续的CSK-DSSS直序扩频调制信号、或相位非连续的R-CSK-DSSS直序扩频调制信号。不失一般性,为后续说明方便,图4中设定K R=6,间隔Z=64。
针对扩展电文调制符号,除去并行数据流D E,P(t)已选K R比特后剩余1比特构成串行数据流D E,S(t),根据时序发生器所提供的扩展电文符号时钟,由串行数据流D E,S(t)对所述扩频信号
Figure PCTCN2020100018-appb-000013
进行BPSK-DSSS调制,更新扩展电文调制符号所对应的比特流为
Figure PCTCN2020100018-appb-000014
图5给出了Q支路基带信号时序关系,扩展电文符号时钟时间长度T ES,R等于扩展电文扩频码周期时钟时间长度T EC的N倍,采用(K R+1)bit表示一个扩展电文调制符号,扩展电文信息播发速率R E,R=(K R+1)/T ES,R。不失 一般性,为后续说明方便,设定扩展电文扩频码周期时钟时间长度T EC=1ms,扩展电文符号时钟时间长度T ES,R等于扩展电文扩频码周期时钟时间长度T EC的2倍,即N=2,则扩展电文符号时钟时间长度T ES,R=2ms,采用7bit表示一个扩展电文调制符号(K R=6),则扩展电文信息播发速率R E,R=(K R+1)/T ES,R=7/T ES,R=3.5kbps,K Rbit电文取值范围为0~63,相位间隔Z=64码片,对应的相位偏移量即伪随机序列的初始相位φ i=i*64、i=0,1,…,63,以相同的相位重复调制2个相同的伪随机序列(即图5中6bit电文(i)与N个PRN(i*Z)对应),将2个相位偏移量相同的伪随机序列顺序连接,完成相位非连续的R-CSK-DSSS直序扩频调制;剩余1比特电文与经相位非连续的R-CSK-DSSS直序扩频调制后的伪随机序列PRN(i*Z)按对应关系1->“PRN(i*Z)+”,-1->“PRN(i*Z)-”,完成BPSK-DSSS调制,其中,“PRN(i*Z)+”表示初始相位为i*Z的正极性伪随机序列,“PRN(i*Z)-”表示初始相位为i*Z的负极性伪随机序列。
图5中6bit电文(i)与PRN(i*Z)对应只是本发明的一个实施例,也可以为其它对应关系。
基于预设扩展电文的功率配比系数A Q,按
Figure PCTCN2020100018-appb-000015
获得正交Q支路基带信号S Q(t)。其中,(A I) 2+(A Q) 2=1。
如图6所示,给出了当设定
Figure PCTCN2020100018-appb-000016
时,复数基带信号的星座图,这里只给出了一个示例,功率配比关系不限于此对应关系。
本发明实施例中,扩展电文符号时钟与扩展电文调制符号同步,扩展电文符号时钟周期等于扩展电文调制符号持续时间;
扩展电文符号时钟与扩展电文码周期时钟同步,扩展电文符号时钟周期等于扩展电文码周期的N倍,其中,N为大于等于1的整数;
当N=1时,扩展电文调制符号持续时间与扩展电文码周期时间相等, 一个调制符号对应一个周期的扩频码序列,获得常规CSK-DSSS直序扩频调制信号;
当N大于1时,扩展电文调制符号持续时间等于扩展电文码周期时间的N倍,一个调制符号对应N个周期的扩频码序列,获得重复移相的CSK-DSSS直序扩频调制、即R-CSK-DSSS直序扩频调制信号。
本发明实施例中,相位间隔Z为大于等于1的整数,当Z大于1时,所产生的相位偏移量彼此间非连续,间隔为Z,获得相位非连续的CSK-DSSS直序扩频调制信号、或相位非连续的R-CSK-DSSS直序扩频调制信号。
在本发明的示例中,不考虑基本电文和扩展电文信道编码差异的情况下,为保证在接收端获得同等的电文解调性能,一般对电文速率高的支路配置更高的信号播发功率。
两个支路采用不同的扩频码序列。当电文速率不同时,IQ支路可以分配不同的发射功率,使得接收端接收到的基本电文和扩展电文具有同等接收性能。播发信号IQ两路的扩频码和电文彼此保持同步。
则对于同相I支路基带信号S I(t)与正交Q支路基带信号S Q(t)的复数表达式如下:
S(t)=S I(t)+jS Q(t)
其中,j为虚数。
然后,针对同相I支路基带信号与正交Q支路基带信号,进行IQ正交调制得到中频载波信号,再针对中频载波信号进行上变频处理,获得射频载波信号,最后经功率放大处理,构成多速率复合电文信号,交由发射天线进行播发。
这里多速率复合电文信号的射频发射信号表达如下:
Figure PCTCN2020100018-appb-000017
Figure PCTCN2020100018-appb-000018
其中,P s表示复合电文射频信号发射总功率,f c表示发射信号频率。
本发明设计的一种双极性CSK调制复合电文信号播发方法中,将基本电文和扩展电文分别放在正交的IQ支路上,提升扩展电文的播发速率只需提升扩展电文信号的功率,提高了信号播发效率;IQ支路正交,载波相位相差90度,可有效避免大功率的扩展电文信号对基本电文信号接收性能的影响;在I支路上播发的BPSK信号,既可为Q支路提供CSK解调所需的同步信息,又能有效播发基本电文;采用多次重复、或重复零次即不重复移相的相位非连续配置码移键控调制技术,可以有效提升信息播发速率,进一步改进信号播发效率,同时有效抑制多径干扰信号;采用双极性CSK调制复合电文信号,在保持信号接收处理复杂度基本不变的前提下,进一步提高信息传输速率,提升卫星导航系统高精度定位服务性能。
针对上述设计的一种双极性CSK调制复合电文信号播发方法,本发明进一步设计给出了基于本发明的复合电文信号接收机实例,包括基于本发明的复合电文信号相干接收机实例、以及非相干接收机实例。
基于本发明的复合电文信号相干接收机实例如图7所示,其中,基本电文接收方法具体如下:
接收机天线接收的射频载波信号经过射频前端(RF Front-End)处理输出数字中频信号;数字中频信号首先与载波环复制的载波混频输出正交的IQ两路基带信号,IQ两路基带信号分别与基本电文扩频码发生器复制的基本电文扩频码做相关运算,获得IQ两路相关结果;随后,IQ两路相关结果作为鉴相滤波模块的输入,鉴相滤波模块计算载波鉴相误差和码鉴相误差,并对鉴相误差进行滤波,滤波结果分别用来调节载波NCO(Carrier NCO)和码NCO(Code NCO),使Carrier NCO所输出的载波与接收载波保持一致,以及使基本电文扩频码发生器在Code NCO控制下复制的基本电文扩 频码与接收基本电文扩频码保持一致,保证下一时刻接收信号中的载波和扩频码在跟踪环路中仍被彻底剥离;同时I支路相关器输出的相关结果经极性判决和信道译码输出基本电文数据比特。
其中,扩展电文相干解调方法具体如下:
在解调基本电文时,将同步后所获与接收信号同步的扩展电文扩频码周期时钟、Chip时钟传递给扩展电文扩频码发生器,将扩展电文符号时钟和扩展电文扩频码周期时钟传递给M进制正交调制信号相干解调模块,M进制正交调制信号相干解调模块在扩展电文符号时钟和扩展电文扩频码周期时钟的控制下,将接收到的Q支路基带信号与扩展电文扩频码发生器在扩展电文扩频码周期时钟和Chip时钟控制下生成的扩展电文扩频码进行相关匹配计算,得到M个相关结果r 0,r 1,…,r M-1,输出给最大绝对值选择模块;
然后,最大绝对值选择模块对输入的M个相关结果r 0,r 1,…,r M-1取绝对值,然后再从中选出M个相关结果绝对值的最大值,获取K R比特最大绝对值序号j,以及最大绝对值对应的原始相关结果的极性a max,将K R比特最大绝对值序号j、以及绝对值最大相关值极性a max输出给信道译码模块;
最后,信道译码模块根据输入的最大绝对值对应的序号j、以及绝对值最大相关值极性a max进行译码,得到传输的扩展电文数据。
基于本发明的复合电文信号非相干接收机实例如图8所示,其中,基本电文接收方法具体如下:
接收机天线接收的射频载波信号经过射频前端(RF Front-End)处理输出数字中频信号;数字中频信号首先与载波环复制的载波混频输出正交的IQ两路基带信号,IQ两路基带信号分别与基本电文扩频码发生器复制的基本电文扩频码做相关运算,获得IQ两路相关结果;随后,IQ两路相关结果作为鉴相滤波模块的输入,鉴相滤波模块计算载波鉴相误差和码鉴相误差, 并对鉴相误差进行滤波,滤波结果分别用来调节载波NCO(Carrier NCO)和码NCO(Code NCO),使Carrier NCO所输出的载波与接收载波保持一致,以及使基本电文扩频码发生器在Code NCO控制下复制的基本电文扩频码与接收基本电文扩频码保持一致,保证下一时刻接收信号中的载波和扩频码在跟踪环路中仍被彻底剥离;同时I支路相关器输出的相关结果经极性判决和信道译码输出基本电文数据比特。
其中,扩展电文非相干解调方法具体如下:
在解调基本电文时,将同步后所获与接收信号同步的扩展电文扩频码周期时钟、Chip时钟传递给扩展电文扩频码发生器,将扩展电文符号时钟和扩展电文扩频码周期时钟传递给M进制正交调制信号非相干解调模块,M进制正交调制信号非相干解调模块在扩展电文符号时钟和扩展电文扩频码周期时钟的控制下,将接收到的IQ两路基带信号分别与扩展电文扩频码发生器在扩展电文扩频码周期时钟和Chip时钟控制下生成的扩展电文扩频码进行相关匹配计算,得到IQ两路各M个相关结果,对IQ两路对应相关结果取模得到M个相关结果r 0,r 1,…,r M-1,输出给最大值选择模块;
然后,最大值选择模块对输入的M个相关结果r 0,r 1,…,r M-1中选出M个相关结果的最大值,获取K R比特最大值序号j,将K R比特最大值序号j输出给信道译码模块;
最后,信道译码模块根据输入的K R比特最大值序号j进行译码,得到传输的扩展电文数据。
本发明的一种双极性CSK调制复合电文信号播发方法与现有技术相比,具有以下优异效果:
本发明的一种双极性CSK调制复合电文信号播发方法,采用IQ两路载波正交调制,其中同相I支路上的基带信号为BPSK-DSSS直序扩频调制信号,可为信号接收处理提供所需的载波同步和调制符号同步信息;正交Q 支路上的基带信号为经过CSK-DSSS和BPSK-DSSS两级直序扩频的双极性CSK调制信号,可为播发信号提供更高的信息传输速率。与单极性的常规CSK-DSSS直序扩频调制信号相比较,在同样的数据传输速率、同样的信号接收数据解调门限条件下,本发明采用的双极性CSK-DSSS直序扩频调制信号具备信号接收处理复杂度减半的优点,可大幅降低用户接收机的成本,利于应用普及。
通过配置扩展电文符号时钟周期与扩展电文码周期的倍数比例,本发明的一种双极性CSK调制复合电文信号播发方法可以实现重复移相的R-CSK-DSSS直序扩频调制。在信号播发功率频谱密度与数据传输速率相同的条件下,与单次移相的常规CSK-DSSS调制信号相比较,本发明具备信号接收数据解调门限低或信息接收处理复杂度低的优点。
通过配置相位选择模块中的扩频码相位偏移量表格,本发明的一种双极性CSK调制复合电文信号播发方法可以实现相位非连续的CSK-DSSS或R-CSK-DSSS直序扩频调制。与相位连续的常规CSK-DSSS或R-CSK-DSSS直序扩频调制相比较,当多径干扰信号的延迟时间处在两个指定相位之间时,本发明的信号不会产生相关峰旁瓣干扰,可消除由此引起的符号间干扰问题,具备提高接收机信号解调性能的优点。
本发明由于将基本电文和扩展电文分别放在正交的IQ支路上,可以为电文速率不同的基本电文信号和扩展电文信号配置不同的功率比,提高了信号播发效率;由于IQ支路正交,载波相位相差90度,可有效避免大功率的扩展电文信号对基本电文信号接收性能的影响;在I支路上播发BPSK信号,既可为Q支路提供CSK解调所需的同步信息,又能有效播发基本电文;由于基本电文信号与扩展电文信号扩频码不同且载波正交,只需接收基本电文的系统用户无需考虑扩展电文的存在,可以简化基本电文接收机的设计,降低基本电文接收机的成本。
本发明方法适用于通信、导航系统信号设计等领域。
上面结合附图对本发明的实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (10)

  1. 一种双极性CSK调制复合电文信号播发方法,所述方法包括:
    将基本电文在同相I支路上进行调制,对信道编码后的I支路上的串行数据流进行BPSK-DSSS直序扩频,构建同相I支路基带信号;
    将扩展电文在正交Q支路上进行调制,从信道编码后的扩展电文调制符号中任取1比特构成Q支路上的串行数据流,其余比特构成Q支路上的并行数据流,对Q支路上的串行数据流进行BPSK-DSSS直序扩频,对Q支路上的并行数据流进行CSK-DSSS直序扩频,直序扩频的Q支路上的串行数据流和并行数据流共同构建正交Q支路基带信号;
    对同相I支路的基本电文基带信号与正交Q支路的扩展电文基带信号进行IQ正交调制,得到载波信号,经功率放大处理,由发射天线进行播发。
  2. 根据权利要求1所述的双极性CSK调制复合电文信号播发方法,其中,所述构建同相I支路基带信号,包括:
    针对基本电文进行信道编码得到编码后的串行数据流D B(t);
    根据时序发生器所提供的基本电文扩频码周期时钟和Chip时钟,由基本电文扩频码发生器产生基本电文扩频码C B(t),对所获基本电文对应的比特流D B(t)进行BPSK-DSSS直序扩频调制,更新基本电文所对应的比特流为C B(t)·D B(t);
    基于预设基本电文的功率配比系数A I,按S I(t)=A I·C B(t)·D B(t),获得同相I支路基带信号S I(t)。
  3. 根据权利要求1所述的双极性CSK调制复合电文信号播发方法,其中,所述构建正交Q支路基带信号,包括:
    针对扩展电文进行信道编码得到编码后扩展电文调制符号,其数据位宽为(K R+1)比特;
    针对扩展电文调制符号,任选其中K R比特构成并行数据流D E,P(t),根据时序发生器提供的扩展电文符号时钟,由相位选择模块根据并行数据流D E,P(t)的K R比特信息,并按照预设的相位映射关系,产生K R比特信息所对应的扩频码相位偏移量;
    根据时序发生器所提供的扩展电文码周期时钟、Chip时钟、以及K R比特信息所对应的扩频码相位偏移量,由扩展电文扩频码发生器产生初始相位为K R比特信息所对应的相位偏移量的扩展电文扩频码,获得经并行数据流D E,P(t)调制后的CSK-DSSS直序扩频信号
    Figure PCTCN2020100018-appb-100001
    针对扩展电文调制符号,除去并行数据流D E,P(t)已选K R比特后剩余1比特构成串行数据流D E,S(t),根据时序发生器所提供的扩展电文符号时钟,由串行数据流D E,S(t)对所述扩频信号
    Figure PCTCN2020100018-appb-100002
    进行BPSK-DSSS调制,更新扩展电文调制符号所对应的比特流为
    Figure PCTCN2020100018-appb-100003
    基于预设扩展电文的功率配比系数A Q,按
    Figure PCTCN2020100018-appb-100004
    获得正交Q支路基带信号S Q(t);其中,(A I) 2+(A Q) 2=1。
  4. 根据权利要求1或3所述的双极性CSK调制复合电文信号播发方法,其中,所述扩展电文符号时钟,包括:
    扩展电文符号时钟与扩展电文调制符号同步,扩展电文符号时钟周期等于扩展电文调制符号持续时间;
    扩展电文符号时钟与扩展电文码周期时钟同步,扩展电文符号时钟周期等于扩展电文码周期的N倍,其中,N为大于等于1的整数;
    当N=1时,扩展电文调制符号持续时间与扩展电文码周期时间相等,一个调制符号对应一个周期的扩频码序列,获得常规CSK-DSSS直序扩频调制信号;
    当N大于1时,扩展电文调制符号持续时间等于扩展电文码周期时间的 N倍,一个调制符号对应N个周期的扩频码序列,获得重复移相的CSK-DSSS直序扩频调制、即R-CSK-DSSS直序扩频调制信号。
  5. 根据权利要求1或3所述的双极性CSK调制复合电文信号播发方法,其中,所述相位选择模块,配置有扩频码相位偏移量表格,相位偏移量数目
    Figure PCTCN2020100018-appb-100005
    扩频码相位偏移量即产生扩频码序列的初始相位为φ i=i*Z,其中,Z为大于等于1的整数,i=0~M-1。
    当Z大于1时,所产生的相位偏移量彼此间非连续,间隔为Z,获得相位非连续的CSK-DSSS直序扩频调制信号、或相位非连续的R-CSK-DSSS直序扩频调制信号。
  6. 一种双极性CSK调制复合电文信号播发装置,所述装置包括:
    第一调制单元,用于将基本电文在同相I支路上进行调制,对信道编码后的I支路上的串行数据流进行BPSK-DSSS直序扩频,构建同相I支路基带信号;
    第二调制单元,用于将扩展电文在正交Q支路上进行调制,从信道编码后的扩展电文调制符号中任取1比特构成Q支路上的串行数据流,其余比特构成Q支路上的并行数据流,对Q支路上的串行数据流进行BPSK-DSSS直序扩频,对并行数据流进行CSK-DSSS直序扩频,直序扩频的Q支路上的串行数据流和并行数据流共同构建正交Q支路基带信号;
    载波调制单元,对同相I支路的基本电文基带信号与正交Q支路的扩展电文基带信号进行IQ正交调制,得到载波信号;
    发送单元,用于对载波信号经功率放大处理,由发射天线进行播发。
  7. 根据权利要求6所述的双极性CSK调制复合电文信号播发装置,其中,所述第一调制单元包括:
    编码子单元,用于针对基本电文进行信道编码得到编码后的比特流 D B(t);
    第一扩频调制子单元,用于根据时序发生器所提供的基本电文扩频码周期时钟和Chip时钟,由基本电文扩频码发生器产生基本电文扩频码C B(t),对所获基本电文对应的比特流D B(t)进行BPSK-DSSS直序扩频调制,更新基本电文所对应的比特流为C B(t)·D B(t);
    基带信号生成子单元,用于基于预设基本电文的功率配比系数A I,按S I(t)=A I·C B(t)·D B(t),获得同相I支路基带信号S I(t)。
  8. 根据权利要求6所述的双极性CSK调制复合电文信号播发装置,其中,所述第二调制单元包括:
    编码子单元,用于针对扩展电文进行信道编码得到编码后扩展电文调制符号,其数据位宽为(K R+1)比特;
    相位偏移子单元,用于针对扩展电文调制符号,任选其中K R比特构成并行数据流D E,P(t),根据时序发生器提供的扩展电文符号时钟,由相位选择模块根据并行数据流D E,P(t)的K R比特信息,并按照预设的相位映射关系,产生K R比特信息所对应的扩频码相位偏移量;
    第二扩频调制子单元,用于根据时序发生器所提供的扩展电文码周期时钟、Chip时钟、以及K R比特信息所对应的扩频码相位偏移量,由扩展电文扩频码发生器产生初始相位为K R比特信息所对应的相位偏移量的扩展电文扩频码,获得经并行数据流D E,P(t)调制后的CSK-DSSS直序扩频信号
    Figure PCTCN2020100018-appb-100006
    第三扩频调制子单元,用于针对扩展电文调制符号,除去并行数据流D E,P(t)已选K R比特后剩余1比特构成串行数据流D E,S(t),根据时序发生器所提供的扩展电文符号时钟,由串行数据流D E,S(t)对所述扩频信号
    Figure PCTCN2020100018-appb-100007
    进行BPSK-DSSS调制,更新扩展电文调制符号所对应的比特流为
    Figure PCTCN2020100018-appb-100008
    基带信号生成子单元,用于基于预设扩展电文的功率配比系数A Q,按
    Figure PCTCN2020100018-appb-100009
    获得正交Q支路基带信号S Q(t);其中,(A I) 2+(A Q) 2=1。
  9. 根据权利要求6或8所述的双极性CSK调制复合电文信号播发装置,其中,所述扩展电文符号时钟,包括:
    扩展电文符号时钟与扩展电文调制符号同步,扩展电文符号时钟周期等于扩展电文调制符号持续时间;
    扩展电文符号时钟与扩展电文码周期时钟同步,扩展电文符号时钟周期等于扩展电文码周期的N倍,其中,N为大于等于1的整数;
    当N=1时,扩展电文调制符号持续时间与扩展电文码周期时间相等,一个调制符号对应一个周期的扩频码序列,获得常规CSK-DSSS直序扩频调制信号;
    当N大于1时,扩展电文调制符号持续时间等于扩展电文码周期时间的N倍,一个调制符号对应N个周期的扩频码序列,获得重复移相的CSK-DSSS直序扩频调制、即R-CSK-DSSS直序扩频调制信号。
  10. 根据权利要求6或8所述的双极性CSK调制复合电文信号播发装置,其中,所述相位选择模块,配置有扩频码相位偏移量表格,相位偏移量数目
    Figure PCTCN2020100018-appb-100010
    扩频码相位偏移量即产生扩频码序列的初始相位为φ i=i*Z,其中,Z为大于等于1的整数,i=0~M-1。当Z大于1时,所产生的相位偏移量彼此间非连续,间隔为Z,获得相位非连续的CSK-DSSS直序扩频调制信号、或相位非连续的R-CSK-DSSS直序扩频调制信号。
PCT/CN2020/100018 2020-07-03 2020-07-03 一种双极性csk调制复合电文信号播发方法及装置 WO2022000442A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/100018 WO2022000442A1 (zh) 2020-07-03 2020-07-03 一种双极性csk调制复合电文信号播发方法及装置
CN202080002400.XA CN112105958B (zh) 2020-07-03 2020-07-03 一种双极性csk调制复合电文信号播发方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/100018 WO2022000442A1 (zh) 2020-07-03 2020-07-03 一种双极性csk调制复合电文信号播发方法及装置

Publications (1)

Publication Number Publication Date
WO2022000442A1 true WO2022000442A1 (zh) 2022-01-06

Family

ID=73785305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100018 WO2022000442A1 (zh) 2020-07-03 2020-07-03 一种双极性csk调制复合电文信号播发方法及装置

Country Status (2)

Country Link
CN (1) CN112105958B (zh)
WO (1) WO2022000442A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826325A (zh) * 2022-06-27 2022-07-29 浙江时空道宇科技有限公司 双频复合mcsk信号的接收方法、接收组件及存储介质
CN115426228A (zh) * 2022-08-10 2022-12-02 华中科技大学 一种使用多进制ldpc的编码调制和解调解码方法、通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114624746B (zh) * 2022-03-07 2023-01-17 北京凯芯微科技有限公司 一种csk调制符号解码方法、装置、芯片和卫星接收机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295326B1 (en) * 2008-06-12 2012-10-23 University Of South Florida Digital coding scheme for data transmission
CN109039975A (zh) * 2018-09-07 2018-12-18 航天恒星科技有限公司 一种多次重复移相的码移键控调制方法及其解调方法
CN109194362A (zh) * 2018-08-20 2019-01-11 航天恒星科技有限公司 一种双速率复合电文信号播发控制方法
CN109246041A (zh) * 2018-09-17 2019-01-18 航天恒星科技有限公司 一种r-csk双速率复合电文信号播发控制方法
CN110244328A (zh) * 2019-05-28 2019-09-17 西安空间无线电技术研究所 一种导航增强信号调制方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8295326B1 (en) * 2008-06-12 2012-10-23 University Of South Florida Digital coding scheme for data transmission
CN109194362A (zh) * 2018-08-20 2019-01-11 航天恒星科技有限公司 一种双速率复合电文信号播发控制方法
CN109039975A (zh) * 2018-09-07 2018-12-18 航天恒星科技有限公司 一种多次重复移相的码移键控调制方法及其解调方法
CN109246041A (zh) * 2018-09-17 2019-01-18 航天恒星科技有限公司 一种r-csk双速率复合电文信号播发控制方法
CN110244328A (zh) * 2019-05-28 2019-09-17 西安空间无线电技术研究所 一种导航增强信号调制方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANLING YIN; FENG ZHOU; GANG QIAO; SONGZUO LIU; YANG YU: "Burst mode hybrid spread spectrum technology for covert acoustic communication", 2013 OCEANS - SAN DIEGO, MTS, 23 September 2013 (2013-09-23), pages 1 - 8, XP032567655 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114826325A (zh) * 2022-06-27 2022-07-29 浙江时空道宇科技有限公司 双频复合mcsk信号的接收方法、接收组件及存储介质
CN114826325B (zh) * 2022-06-27 2022-11-25 浙江时空道宇科技有限公司 双频复合mcsk信号的接收方法、接收组件及存储介质
CN115426228A (zh) * 2022-08-10 2022-12-02 华中科技大学 一种使用多进制ldpc的编码调制和解调解码方法、通信装置
CN115426228B (zh) * 2022-08-10 2024-05-28 华中科技大学 一种使用多进制ldpc的编码调制和解调解码方法、通信装置

Also Published As

Publication number Publication date
CN112105958B (zh) 2023-09-29
CN112105958A (zh) 2020-12-18

Similar Documents

Publication Publication Date Title
WO2022000442A1 (zh) 一种双极性csk调制复合电文信号播发方法及装置
JP5481427B2 (ja) 伝送誤差を軽減する方法
KR100629701B1 (ko) 파일롯 감소를 위한 다경로 cdma 수신기
US5327455A (en) Method and device for multiplexing data signals
JP3108051B2 (ja) 通信信号プロセッサおよび通信装置により使用される多帯域多モードトランシーバ
WO2020056871A1 (zh) 一种r-csk双速率复合电文信号播发控制方法
WO2020047984A1 (zh) 一种多次重复移相的码移键控调制方法及其解调方法
WO2019153591A1 (zh) 基于混杂系统的相位分离差分混沌键控通信方法
JPH09172393A (ja) 短いバースト性ダイレクト取得、ダイレクトシーケンス拡張スペクトル・レシーバ
CN111565161A (zh) 一种基带发射机、基带接收机、调制解调系统和终端
CN102215047B (zh) 一种高速数据传输的软扩频多路复用方法
JP2007524267A (ja) 並列スペクトラム拡散通信システムおよび方法
CN112020830B (zh) 基于相位非连续r-csk调制的电文信号播发方法及装置
US11201769B2 (en) All digital non-conventional chaotic communication systems for resilient communications and signaling
JP2002344350A (ja) スペクトル拡散送信装置、スペクトル拡散受信装置及びスペクトル拡散通信システム
US11245434B2 (en) Low power long-range radio
CN1185839C (zh) 扩频通信系统中的偏移校正方法和系统
CN115085745A (zh) 一种基于vde-ter的数字分集通信系统
CN114465856A (zh) 一种基于cdma体制的信号多进制调制方法、解调方法及设备
JP2003530728A (ja) 発振器周波数訂正機構を有するスペクトラム拡散GMSK/M−ary無線
US20120114020A1 (en) De-spreading method for noncoherent receiver and receiver applying the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20942907

Country of ref document: EP

Kind code of ref document: A1