WO2022000283A1 - 一种示教器、机器人、控制机器人的方法和装置 - Google Patents

一种示教器、机器人、控制机器人的方法和装置 Download PDF

Info

Publication number
WO2022000283A1
WO2022000283A1 PCT/CN2020/099342 CN2020099342W WO2022000283A1 WO 2022000283 A1 WO2022000283 A1 WO 2022000283A1 CN 2020099342 W CN2020099342 W CN 2020099342W WO 2022000283 A1 WO2022000283 A1 WO 2022000283A1
Authority
WO
WIPO (PCT)
Prior art keywords
handle
robot
force
restoring
torque
Prior art date
Application number
PCT/CN2020/099342
Other languages
English (en)
French (fr)
Inventor
贺银增
高腾飞
陈颀潇
Original Assignee
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子(中国)有限公司 filed Critical 西门子(中国)有限公司
Priority to CN202080102242.5A priority Critical patent/CN115884851A/zh
Priority to PCT/CN2020/099342 priority patent/WO2022000283A1/zh
Publication of WO2022000283A1 publication Critical patent/WO2022000283A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators

Definitions

  • the present invention relates to the technical field of robots, and in particular, to a teaching pendant, a robot, and a method and device for controlling the robot.
  • a robot is a mechanical device that can perform work automatically. It can accept human command, run pre-programmed programs, and act according to principles and programs formulated with artificial intelligence technology.
  • Robots can include industrial robots, agricultural robots, domestic robots, medical robots, service robots, space robots, underwater robots, military robots, disaster relief robots, educational robots, entertainment robots, and so on.
  • An industrial robot is a multi-joint manipulator or a multi-degree-of-freedom mechanical device for the industrial field. It can perform work automatically and realize various functions by its own power and control capabilities.
  • the traditional method of operating a robotic arm is based on a traditional teach pendant containing multiple buttons.
  • the keys usually include: menu-related keys, jog-related keys, execution-related keys, edit-related keys, and other keys, and the like.
  • keys on the teach pendant are manually manipulated to control different movements of the robot.
  • it is difficult to control the movement of the robot by pressing the buttons because it requires a lot of training work by the user, and wrong operation can cause the robot to hit the object or the operator.
  • the main purpose of the embodiments of the present invention is to provide a teaching pendant, a robot, and a method and device for controlling the robot.
  • a method of controlling a robot comprising:
  • a restoring force and/or restoring torque is applied to the handle based on the contact force and/or contact torque.
  • the embodiment of the present invention realizes intuitive control of the robot based on the handle operation, which reduces the difficulty of the user's operation. Moreover, by applying restoring force and/or restoring torque to the handle, the user can intuitively feel the contact state between the end effector and the workpiece.
  • the collecting the spatial information input by the user based on the handle includes:
  • the moment of the user operating the handle is converted into attitude information.
  • the embodiment of the present invention can collect the spatial information of the robot including the position information of the robot and the attitude information of the robot.
  • the collecting the spatial information input by the user based on the handle includes:
  • the angular velocity parameter of the user's operating handle is collected
  • the embodiments of the present invention can collect spatial information including position information and attitude information based on the cooperation of the force sensor, the gyroscope and the handle.
  • the collecting the spatial information input by the user based on the handle includes:
  • the handle can be directly used to determine the space information including the three-dimensional space coordinate information and the rotation angle of the three-dimensional coordinate axis.
  • determining a motion control command for controlling the motion of the robot based on the spatial information includes:
  • the motion control command is determined based on joint coordinate system information of the robot.
  • the embodiment of the present invention can also conveniently determine the motion control command based on the coordinate transformation.
  • the applying restoring force and/or restoring torque to the handle based on the contact force and/or contact torque includes:
  • a motor coupled with the handle is driven to output the restoring force and the restoring torque to the handle.
  • a restoring force and/or restoring torque can be applied to the handle conveniently through the motor.
  • a device for controlling a robot comprising:
  • the spatial information collection module is used to collect the spatial information of the robot input by the user based on the handle;
  • a determining module for determining a motion control command for controlling the motion of the robot based on the spatial information
  • a contact force parameter acquisition module configured to acquire the contact force and/or contact moment between the end effector of the robot and the workpiece, which is collected during the process of executing the motion control command by the robot;
  • An applying module configured to apply a restoring force and/or restoring torque to the handle based on the contact force and/or contact torque.
  • the embodiment of the present invention realizes intuitive control of the robot based on the handle operation, which reduces the difficulty of the user's operation. Moreover, by applying restoring force and/or restoring torque to the handle, the user can intuitively feel the contact state between the end effector and the workpiece.
  • a spatial information acquisition module is configured to collect the force and/or torque of the user's operating handle based on the force and torque sensor coupled to the handle; convert the force of the user's operating handle into position information; The torque of the user's operating handle is converted into attitude information.
  • the embodiment of the present invention can collect the spatial information of the robot including the position information of the robot and the attitude information of the robot.
  • the spatial information acquisition module is configured to collect the force of the user operating the handle based on the force sensor coupled to the handle; collect the angular velocity parameter of the user operating handle based on the gyroscope coupled to the handle; The force of the user operating the handle is converted into position information; the angular velocity parameter is converted into attitude information.
  • the embodiments of the present invention can collect spatial information including position information and attitude information based on the cooperation of the force sensor, the gyroscope and the handle.
  • the spatial information acquisition module is configured to acquire the three-dimensional spatial coordinate information and the rotation angle of the three-dimensional coordinate axis in the Cartesian coordinate system input by the user based on the handle.
  • the handle can be directly used to determine the space information including the three-dimensional space coordinate information and the rotation angle of the three-dimensional coordinate axis.
  • a determination module is configured to convert the spatial information into joint coordinate system information of the robot based on an orthogonal inverse solution algorithm; and determine the motion control command based on the joint coordinate system information of the robot.
  • the embodiment of the present invention can also conveniently determine the motion control command based on the coordinate transformation.
  • an applying module is configured to map the contact force to a restoring force and map the contact torque to a restoring torque based on a predetermined mapping relationship; drive a motor coupled with the handle to the handle The restoring force and the restoring torque are output.
  • a restoring force and/or restoring torque can be applied to the handle conveniently through the motor.
  • a teaching pendant for a robot comprising:
  • a handle assembly including a handle, the handle assembly is used to collect the spatial information of the robot input by the user based on the handle;
  • a determining module for determining a motion control command for controlling the robot based on the spatial information
  • the wireless transmission module is used to send the motion control command to the robot based on the wireless communication connection with the robot, and receive from the robot based on the wireless communication connection, the data collected during the process of the robot executing the motion control command, the robot's motion control command.
  • the determining module is further configured to map the contact force to a restoring force and map the contact moment to a restoring torque based on a predetermined mapping relationship;
  • the handle assembly further includes: a driving mechanism for driving a motor coupled with the handle to output the restoring force and the restoring torque to the handle.
  • an embodiment of the present invention proposes a teaching pendant for intuitive remote control of a robot based on a handle operation. Moreover, by applying restoring force and/or restoring torque to the handle, the user can intuitively feel the contact state between the end effector and the workpiece.
  • a teaching pendant for a robot comprising:
  • a handle assembly including a handle, the handle assembly is used to collect the spatial information of the robot input by the user based on the handle;
  • a wireless transmission module for sending the spatial information to the robot based on a wireless communication connection with the robot, and receiving a restoring force and/or restoring torque from the robot based on the wireless communication connection, wherein the restoring force and/or restoring torque It is determined by the robot based on the contact force and/or contact torque between the end effector of the robot and the workpiece, which is collected during the execution of the motion control command, and the motion control command is determined by the robot based on the spatial information.
  • the handle assembly further includes: a driving mechanism for driving a motor coupled with the handle to output the restoring force and the restoring torque to the handle.
  • an embodiment of the present invention proposes a teaching pendant for intuitive remote control of a robot based on a handle operation. Moreover, by applying restoring force and/or restoring torque to the handle, the user can intuitively feel the contact state between the end effector and the workpiece.
  • a robot comprising:
  • a wireless transmission module for receiving motion control commands from the teach pendant based on a wireless communication connection with a teach pendant including a handle assembly, wherein the handle assembly includes a handle, the motion control commands being the teach pendant's robot-based spatial information It is determined that the spatial information is obtained by the handle assembly collecting the user's input based on the handle;
  • a force and torque sensor arranged in the end effector of the robot, is used to collect the contact force and/or contact moment between the end effector of the robot and the workpiece during the execution of the motion control command by the execution module;
  • the wireless transmission module is further configured to send a contact force and/or a contact moment to the teach pendant based on the wireless communication connection, so that the teach pendant maps the contact force to a restoring force based on a predetermined mapping relationship and The contact torque is mapped into a restoring torque, and a motor coupled with the handle is driven to output the restoring force and the restoring torque to the handle.
  • an embodiment of the present invention proposes a robot that can receive remote control based on handle-based operations.
  • a robot comprising:
  • a wireless transmission module for receiving spatial information of the robot from the teach pendant based on a wireless communication connection with a teach pendant including a handle assembly, wherein the handle assembly includes a handle, and the spatial information is that the handle assembly collects user input based on the handle obtained;
  • a determining module for determining a motion control command for controlling the motion of the robot based on the spatial information
  • a force and torque sensor arranged in the end effector of the robot, is used to collect the contact force and/or contact moment between the end effector of the robot and the workpiece during the execution of the motion control command by the execution module;
  • the determining module is further configured to map the contact force to a restoring force and map the contact moment to a restoring torque based on a predetermined mapping relationship;
  • the wireless transmission module is further configured to connect to a direction based on the wireless communication
  • the teach pendant transmits a restoring force and/or restoring torque, so that a motor coupled to the handle is driven by the teach pendant to output the restoring force and the restoring torque to the handle.
  • an embodiment of the present invention proposes a robot that can receive remote control based on handle-based operations.
  • a device for controlling a robot comprising: a memory; a processor; wherein an application program executable by the processor is stored in the memory, so as to cause the processor to execute the control robot according to any one of the above method.
  • the embodiments of the present invention also provide a device for controlling a robot with a memory-processor architecture, which can realize intuitive control of the robot based on a handle operation, thereby reducing the difficulty of user operation. Moreover, by applying restoring force and/or restoring torque to the handle, the user can intuitively feel the contact state between the end effector and the workpiece.
  • a computer-readable storage medium stores a computer program on the computer-readable storage medium, and when the computer program is executed by a processor, implements the method for controlling a robot according to any one of the above.
  • the embodiment of the present invention also provides a computer-readable storage medium, which can realize intuitive control of the robot based on the handle operation, which reduces the difficulty of the user's operation. Moreover, by applying restoring force and/or restoring torque to the handle, the user can intuitively feel the contact state between the end effector and the workpiece.
  • FIG. 1 is a flowchart of a method for controlling a robot according to an embodiment of the present invention.
  • FIG. 2 is a structural block diagram of an apparatus for controlling a robot according to an embodiment of the present invention.
  • FIG. 3 is a control flow chart of force and torque according to an embodiment of the present invention.
  • FIG. 4 is a first structural block diagram of a teaching pendant of a robot according to an embodiment of the present invention.
  • FIG. 5 is a second structural block diagram of the teaching pendant of the robot according to the embodiment of the present invention.
  • FIG. 6 is a first structural block diagram of a robot according to an embodiment of the present invention.
  • FIG. 7 is a second structural block diagram of the robot according to the embodiment of the present invention.
  • FIG. 8 is a first exemplary schematic diagram of controlling a robot according to an embodiment of the present invention.
  • FIG. 9 is a second exemplary schematic diagram of controlling a robot according to an embodiment of the present invention.
  • FIG. 10 is a third exemplary schematic diagram of controlling a robot according to an embodiment of the present invention.
  • FIG. 11 is a fourth exemplary schematic diagram of controlling a robot according to an embodiment of the present invention.
  • FIG. 12 is a block diagram showing the structure of an apparatus for controlling a robot according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for controlling a robot according to an embodiment of the present invention.
  • the method includes:
  • Step 101 Collect the spatial information of the robot input by the user based on the handle.
  • the spatial information of the robot includes position information of the robot and posture information of the robot.
  • the force and/or torque of the user's operating handle is collected based on a force and torque sensor coupled to the handle; the force of the user's operating handle is converted into position information of the robot; the torque of the user's operating handle is converted into the attitude of the robot information.
  • the force and torque sensors respectively collect the force and/or torque of the user's operating handle, wherein the force is converted into position information reflecting the position of the flange part of the robot end in the Cartesian coordinate system, and the torque is converted into the Cartesian coordinate system Attitude information reflecting the attitude of the flange part at the end of the robot.
  • the coupling method of the force and torque sensor and the handle includes: the force and torque sensor is built in the handle, or the force and torque sensor is installed on the handle.
  • the force of the user operating the handle is collected based on the force sensor coupled with the handle; the angular velocity parameter of the user operating handle is collected based on the gyroscope coupled with the handle; the force of the user operating the handle is converted into the position information of the robot; The angular velocity parameters are converted into the attitude information of the robot.
  • the force sensor collects the force of the user's operating handle
  • the gyroscope collects the angular velocity parameter of the user's operating handle
  • the force is converted into the position information reflecting the position of the flange part of the robot end in the Cartesian coordinate system
  • the angular velocity parameter is converted into The attitude information reflecting the attitude of the flange part of the robot end in the Cartesian coordinate system.
  • the coupling manner of the force sensor and the handle includes: the force sensor is built in the handle, or the force sensor is arranged on the handle.
  • the three-dimensional space coordinate information and the three-dimensional coordinate axis rotation angle in the Cartesian coordinate system where the robot is located and input by the user based on the handle are collected.
  • the handle does not need to arrange force and torque sensors, gyroscopes or force sensors, and the internal circuit of the handle can directly convert the user's operation on the handle into the three-dimensional space coordinate information and the three-dimensional coordinate axis rotation angle in the Cartesian coordinate system.
  • the three-dimensional space coordinate information includes X-axis, Y-axis, and Z-axis information
  • the three-dimensional coordinate axis rotation angle includes RX, RY, and RZ information.
  • the X-axis, Y-axis, and Z-axis are the three-dimensional space coordinate axes, and RX is the target end of the robot.
  • the rotation angle of the X axis, RY is the rotation angle of the robot target end around the Y axis, and RZ is the rotation angle of the robot target end around the Z axis.
  • the handle may be a three-dimensional handle.
  • Step 102 Determine a motion control command for controlling the motion of the robot based on the spatial information.
  • the spatial information is converted into the joint coordinate system information of the robot based on the orthogonal inverse solution algorithm; the motion control commands are determined based on the joint coordinate system information of the robot.
  • the motion control command includes the drive quantity applied to each joint motor of the robot, or the drive quantity applied to the end effector.
  • the spatial information is converted into the joint coordinate system information of the robot, and then the motor of each joint is sent to the motor of each joint.
  • the drive quantification to control the movement of the robot to the target position.
  • Step 103 Acquire the contact force and/or the contact moment between the end effector of the robot and the workpiece, which is acquired during the process of executing the motion control command by the robot.
  • An end effector refers to any tool that is attached to the edge (joint) of the robot and has a certain function. This may include robotic grippers, robotic tool changers, robotic collision sensors, robotic rotary couplers, robotic pressure tools, compliance devices, robotic spray guns, robotic deburring tools, robotic arc welding torches, robotic arc welding torches, and more.
  • Robotic end-effectors are generally considered as peripherals of robots, accessories of robots, robotic tools, end-of-arm tools.
  • Most of the mechanical clamping end effectors used in industrial robots are two-finger claw type, which can be divided into translation type and rotary type according to the movement of the fingers. According to the mechanical clamping method, it can be divided into outer clamp type and inner support type. If it is classified according to the mechanical structure characteristics, it can be divided into electric (electromagnetic) type, hydraulic type and pneumatic type, and their combination with each other.
  • force and torque sensors are placed at the end effector.
  • the force and torque sensor collects the contact force and/or the contact torque between the end effector of the robot and the workpiece.
  • Step 104 Apply restoring force and/or restoring torque to the handle based on the contact force and/or contact torque.
  • the conversion relationship between the contact force and the restoring force may be a predetermined linear or nonlinear conversion relationship.
  • the conversion relationship between the contact torque and the restoring torque can also be a predetermined linear or nonlinear conversion relationship.
  • the restoring force and/or restoring torque is determined based on an interpolation between the force and/or torque of the user operating the handle and the contact force and/or contact torque acquired by a force and torque sensor coupled to the handle.
  • first determine the force coupled with the handle and the force of the user operating the handle collected by the torque sensor then calculate the difference between the force of the user operating the handle and the contact force, and then determine the restoring force based on the difference, for example, compare the difference with a predetermined coefficient
  • the product of is determined as the restoring force.
  • first determine the torque of the user operating the handle collected by the force and torque sensor coupled with the handle then calculate the difference between the torque of the user operating the handle and the contact torque, and then determine the restoring torque based on the difference, such as comparing the difference with the predetermined value.
  • the product of the coefficients is determined as the restoring torque.
  • a restoring force and/or restoring torque is applied to the handle through an execution structure such as a motor, so that the user can intuitively feel the contact force and/or contact torque between the end effector and the workpiece, wherein the direction of the restoring force is related to the user operating the handle The direction of the force is opposite, and the direction of the restoring moment is opposite to the direction of the moment of the user operating the handle.
  • an embodiment of the present invention also proposes a device for controlling a robot.
  • FIG. 2 is a structural block diagram of an apparatus for controlling a robot according to an embodiment of the present invention.
  • the apparatus 200 for controlling a robot includes:
  • the spatial information collection module 201 is used to collect the spatial information of the robot input by the user based on the handle;
  • a determination module 202 configured to determine a motion control command for controlling the motion of the robot based on the spatial information
  • the contact force parameter acquisition module 203 is used to acquire the contact force and/or contact moment between the end effector of the robot and the workpiece, which is collected during the process of executing the motion control command by the robot;
  • An applying module 204 is configured to apply a restoring force and/or restoring torque to the handle based on the contact force and/or the contact torque.
  • the spatial information collection module 201 is configured to collect the force and/or torque of the user's operating handle based on the force and torque sensor coupled to the handle; convert the force of the user's operating handle into position information; The moment is converted into attitude information.
  • the spatial information collection module 201 is configured to collect the force of the user operating the handle based on the force sensor coupled with the handle; collect the angular velocity parameter of the user operating handle based on the gyroscope coupled to the handle; Convert to position information; convert angular velocity parameters to attitude information.
  • the spatial information acquisition module 201 is configured to acquire the three-dimensional spatial coordinate information and the rotation angle of the three-dimensional coordinate axis in the Cartesian coordinate system input by the user based on the handle.
  • the determining module 202 is configured to convert the spatial information into the joint coordinate system information of the robot based on the orthogonal inverse solution algorithm; and determine the motion control command based on the joint coordinate system information of the robot.
  • the applying module 204 is configured to map the contact force to the restoring force and the contact torque to the restoring torque based on a predetermined mapping relationship; drive the motor coupled with the handle to output the restoring force and all the restoring force to the handle. Describe the restoring torque.
  • the handle sends spatial information to the robot based on the wireless communication connection, so that the robot determines and executes motion control commands based on the spatial information.
  • the handle sends the motion control command determined based on the spatial information to the robot based on the wireless communication connection, so that the robot executes the motion control command.
  • the handle receives the contact force and/or contact torque between the end effector and the workpiece from the robot, and the handle applies restoring force and/or restoration to the handle based on the contact force and/or contact torque. moment.
  • the handle receives a restoring force and/or restoring torque determined based on the contact force and/or contact torque from the robot based on the wireless communication connection.
  • the wireless communication connection may be implemented as a wireless communication method based on a third-generation wireless communication (3G) method, a fourth-generation wireless communication (3G) method, a fifth-generation wireless communication (5G) method, or a wireless broadband (WIFI) communication method. communication connection, etc.
  • 3G third-generation wireless communication
  • 4G fourth-generation wireless communication
  • 5G fifth-generation wireless communication
  • WIFI wireless broadband
  • the manipulation and teaching process for the remote robot can be realized.
  • the control handle drives the robot to operate in the required order, so that the robot can repeatedly reproduce the operation program stored through the teaching process.
  • control of the robot may be realized based on the force and/or torque of the user operating the handle.
  • FIG. 3 is a control flow chart of force and torque according to an embodiment of the present invention.
  • the expected value (Value1) of the contact force and contact torque between the end effector of the robot and the workpiece is determined and input to the calculator 301 .
  • the actual value (Value2) of the contact force and/or contact torque between the end effector and the workpiece collected by the force and torque sensor 305 arranged on the end effector is input to the calculator 301 .
  • the difference between the expected value and the actual value is calculated, and the difference is input to the PID adjustment module 302 to perform PID adjustment.
  • the kinematics conversion module 303 performs a kinematics conversion operation on the PID adjustment result output by the PID adjustment module 302 .
  • the position and attitude adjustment module 304 adjusts the position and attitude of the robot based on the calculation result of the kinematics conversion module 303 , thereby changing the contact force and/or contact torque detected by the force and torque sensor 305 .
  • an embodiment of the present invention also proposes a teaching pendant for a robot.
  • the teach pendant can be used to remotely control the robot (eg teach).
  • the handle in the teach pendant is manually moved to complete a series of specific actions, and the teach pendant records and saves the coordinate parameters of the trajectory path by itself, so that the robot repeats the previously manually taught motion path.
  • FIG. 4 is a first structural block diagram of a teaching pendant of a robot according to an embodiment of the present invention.
  • the teaching pendant 400 includes:
  • the handle assembly 401 includes a handle 41, and the handle assembly 401 is used to collect the spatial information of the robot input by the user based on the handle 41;
  • a determining module 402 configured to determine a motion control command for controlling the robot based on the spatial information
  • the wireless transmission module 403 is used to send motion control commands to the robot based on the wireless communication connection with the robot, and receive from the robot based on the wireless communication connection, the end effector and processing of the robot collected during the process of the robot executing the motion control commands. contact force and/or contact moment between objects;
  • the determining module 402 is further configured to map the contact force to the restoring force and the contact moment to the restoring torque based on the predetermined mapping relationship;
  • the handle assembly 401 further includes: a driving mechanism 42 for driving a motor coupled with the handle 41 to output restoring force and restoring torque to the handle 41 .
  • FIG. 5 is a second structural block diagram of the teaching pendant of the robot according to the embodiment of the present invention.
  • the teaching pendant 500 includes:
  • the handle assembly 501 includes a handle 51, and the handle assembly 501 is used to collect the spatial information of the robot input by the user based on the handle 51;
  • the wireless transmission module 502 is used for sending spatial information to the robot based on the wireless communication connection with the robot, and receiving restoring force and/or restoring torque from the robot based on the wireless communication connection, wherein the restoring force and/or restoring torque are based on the execution of the robot. Determined by the contact force and/or contact moment between the robot's end effector and the workpiece, collected during the motion control command, and the motion control command is determined by the robot based on spatial information;
  • the handle assembly 501 further includes: a driving mechanism 502 for driving a motor coupled with the handle 51 to output a restoring force and the restoring torque to the handle 51 .
  • Embodiments of the present invention also provide a robot that can accept remote control from a teach pendant.
  • FIG. 6 is a first structural block diagram of a robot according to an embodiment of the present invention.
  • the robot 600 includes:
  • the wireless transmission module 601 is configured to receive a motion control command from the teach pendant based on the wireless communication connection with the teach pendant including the handle assembly, wherein the handle assembly includes the handle, and the motion control command is determined by the teach pendant based on the spatial information of the robot , the spatial information is obtained by the handle component collecting the user's input based on the handle;
  • a force and torque sensor 603, arranged in the end effector of the robot, is used to collect the contact force and/or contact torque between the end effector of the robot and the workpiece during the execution of the motion control command by the execution module ;
  • the wireless transmission module 601 is further configured to send a contact force and/or a contact moment to the teach pendant based on the wireless communication connection, so that the teach pendant maps the contact force to a restoring force and converts the contact force to a restoring force based on a predetermined mapping relationship.
  • the contact torque is mapped to the restoring torque, and the motor coupled with the handle is driven to output the restoring force and the restoring torque to the handle
  • FIG. 7 is a second structural block diagram of the robot according to the embodiment of the present invention.
  • the robot 700 includes:
  • the wireless transmission module 701 is configured to receive spatial information of the robot from the teach pendant based on the wireless communication connection with the teach pendant including the handle assembly, wherein the handle assembly includes the handle, and the spatial information is the handle assembly to collect user input based on the handle obtained;
  • a determination module 702 configured to determine a motion control command for controlling the motion of the robot based on the spatial information
  • a force and torque sensor 704, arranged in the end effector of the robot, is used to collect the contact force and/or the contact moment between the end effector of the robot and the workpiece during the execution of the motion control command by the execution module ;
  • the determining module 702 is further configured to map the contact force to a restoring force and the contact moment to a restoring torque based on a predetermined mapping relationship; the wireless transmission module is further configured to connect based on the wireless communication A return force and/or return torque is sent to the teach pendant, so that the teach pendant drives a motor coupled to the handle to output the return force and the return torque to the handle.
  • FIG. 8 is a first exemplary schematic diagram of controlling a robot according to an embodiment of the present invention.
  • a force and torque sensor 82 is coupled to the handle 81 .
  • a force and torque sensor 83 for detecting a contact force and/or a contact moment between the end effector 84 and the workpiece is arranged on the end effector 84 .
  • the handle 81 has a wireless communication connection with the robot. For example, based on the wireless communication connection, the handle 81 can convert the force and torque collected by the force and torque sensor 82 to the user operating the handle into spatial information of the robot including the position information of the robot and the posture information of the robot, and send the spatial information to the The robot, so that the robot determines and executes motion control commands based on the spatial information.
  • the handle 81 sends the motion control command determined based on the spatial information to the robot based on the wireless communication connection, so that the robot executes the motion control command.
  • the handle 81 receives the contact force and/or contact torque between the end effector 84 and the workpiece from the robot based on the wireless communication connection, and applies a restoring force to the handle 81 based on the contact force and/or contact torque at the handle 81 and/or restoring torque.
  • the handle 81 receives a restoring force and/or restoring torque determined based on the contact force and/or contact torque from the robot based on the wireless communication connection, and applies the restoring force and/or restoring torque to the handle 81 at the handle 81 .
  • FIG. 9 is a second exemplary schematic diagram of controlling a robot according to an embodiment of the present invention.
  • the force sensor 94 is coupled with the handle 91
  • the gyroscope 92 is coupled with the handle 91 based on the connection 93 .
  • a force and torque sensor 96 for detecting the contact force and/or the contact moment between the end effector 95 and the workpiece is arranged on the end effector 95 .
  • the handle 91 has a wireless communication connection with the robot.
  • the handle 91 can convert the force collected by the force sensor 94 into the position information of the robot based on the wireless communication connection, convert the angular velocity parameter of the user operation handle collected by the gyroscope 92 into the attitude information of the robot, and convert the The position information and the attitude information are combined into the spatial information of the robot, and the spatial information is sent to the robot, so that the robot determines and executes motion control commands based on the spatial information.
  • the handle 91 sends the motion control command determined based on the spatial information to the robot based on the wireless communication connection, so that the robot executes the motion control command.
  • the handle 91 receives the contact force and/or contact torque between the end effector 95 and the workpiece from the robot based on the wireless communication connection, and applies a restoring force to the handle 91 based on the contact force and/or contact torque at the handle 91 and/or restoring torque.
  • the handle 91 receives a restoring force and/or restoring torque determined based on the contact force and/or contact torque from the robot based on the wireless communication connection, and applies the restoring force and/or restoring torque to the handle 91 at the handle 91 .
  • FIG. 10 is a third exemplary schematic diagram of controlling a robot according to an embodiment of the present invention.
  • a display screen 61 is arranged on the handle side, and a video capture module 64 is arranged on the robot side.
  • the video data on the robot side collected by the video collection module 64 is transmitted to the display screen 61 on the handle side based on the wireless communication connection, and displayed on the display screen 61 . Therefore, the user on the handle side can visually observe the scene scene on the robot side, and control the robot based on the handle 60 .
  • FIG. 11 is a fourth exemplary schematic diagram of controlling a robot according to an embodiment of the present invention.
  • the process of applying restoring force and/or restoring torque to the handle based on the deployment of force and torque sensors of the end effector of the robot is described.
  • the thrust 1101 output by the handle assembly 1100 is provided to a force to robot motion conversion module 1102 .
  • the force to robot motion conversion module 1102 outputs motion control commands 1107 based on the thrust force 1101 .
  • Robot 1109 executes motion control commands 1107 .
  • force and torque sensors disposed on the robot end effector detect contact resistance 1108 between the end effector and the workpiece.
  • the difference between the thrust force 1101 and the contact resistance 1108 is calculated, and the driving force 1104 is obtained.
  • the force to motor command conversion module 1105 generates motor drive commands based on the drive force 1104 .
  • the motor provides a restoring force to the handle assembly 1100 based on the motor drive command.
  • FIG. 12 is a structural block diagram of an apparatus for controlling a robot according to an embodiment of the present invention.
  • the apparatus 1200 includes a processor 1201 and a memory 1202;
  • An application program executable by the processor 1201 is stored in the memory 1202 for causing the processor 1201 to execute the method 100 of controlling a robot as shown in FIG. 1 .
  • the memory 1202 can be specifically implemented as a variety of storage media such as Electrically Erasable Programmable Read-Only Memory (EEPROM), Flash Memory (Flash memory), Programmable Program Read-Only Memory (PROM).
  • the processor 1201 may be implemented to include one or more central processing units or one or more field programmable gate arrays, wherein the field programmable gate arrays integrate one or more central processing unit cores.
  • a central processing unit or central processing unit core may be implemented as a CPU or an MCU.
  • the hardware modules in various embodiments may be implemented mechanically or electronically.
  • a hardware module may include specially designed permanent circuits or logic devices (eg, special purpose processors, such as FPGAs or ASICs) for performing specific operations.
  • Hardware modules may also include programmable logic devices or circuits (eg, including general-purpose processors or other programmable processors) temporarily configured by software for performing particular operations.
  • programmable logic devices or circuits eg, including general-purpose processors or other programmable processors
  • the present invention also provides a machine-readable storage medium storing instructions for causing a machine to perform a method as described herein.
  • a system or apparatus equipped with a storage medium may be provided, on which software program codes for realizing the functions of any one of the foregoing embodiments are stored, and the computer (or CPU or MPU) of the system or apparatus may be provided. ) to read and execute the program code stored in the storage medium.
  • the computer or CPU or MPU
  • a part or all of the actual operation can also be completed by an operating system or the like operating on the computer based on the instructions of the program code.
  • the program code read from the storage medium can also be written into the memory provided in the expansion board inserted into the computer or into the memory provided in the expansion unit connected to the computer, and then the instructions based on the program code make the device installed in the computer.
  • the CPU on the expansion board or the expansion unit or the like performs part and all of the actual operations, so as to realize the functions of any one of the above-mentioned embodiments.
  • Embodiments of storage media for providing program code include floppy disks, hard disks, magneto-optical disks, optical disks (eg, CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, DVD+RW), Magnetic tapes, non-volatile memory cards and ROMs.
  • the program code may be downloaded from a server computer or cloud over a communications network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种控制机器人的方法,包括:采集用户基于手柄输入的机器人的空间信息(101);基于空间信息确定用于控制机器人运动的运动控制命令(102);获取在机器人执行运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩(103);基于接触力和/或接触力矩对手柄施加回复力和/或回复力矩(104)。该方法可以利用手柄方便地控制机器人,还可以施加针对手柄的回复力与回复力矩。还涉及示教器、机器人、控制机器人的装置。

Description

一种示教器、机器人、控制机器人的方法和装置 技术领域
本发明涉及机器人技术领域,尤其涉及一种示教器、机器人、控制机器人的方法和装置。
背景技术
机器人(Robot)是能够自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,还可以根据以人工智能技术制定的原则纲领行动。机器人可以包括工业机器人、农业机器人、家用机器人、医用机器人、服务型机器人、空间机器人、水下机器人、军用机器人、排险救灾机器人、教育教学机器人、娱乐机器人,等等。工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,靠自身动力和控制能力来实现各种功能。
操作机器人臂的传统方法是基于包含多个按键的传统示教器(teach pendant)。比如,按键通常包括:与菜单相关的按键、与点动相关的按键、与执行相关的按键、与编辑相关的按键和其他按键,等等。
在现有技术中,手动操纵示教器上的按键以控制机器人的不同运动。但是,通过按键很难控制机器人的运动,因为这需要用户执行大量训练工作,而且错误的操作会导致机器人撞到物体或操作者。
发明内容
本发明实施方式的主要目的在于提出一种示教器、机器人、控制机器人的方法和装置。
本发明实施方式的技术方案是这样实现的:
一种控制机器人的方法,包括:
采集用户基于手柄输入的机器人的空间信息;
基于所述空间信息确定用于控制机器人运动的运动控制命令;
获取在机器人执行所述运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
基于所述接触力和/或接触力矩对所述手柄施加回复力和/或回复力矩。
可见,本发明实施方式基于手柄操作实现针对机器人的直观控制,降低了用户操作难度。而且,通过对手柄施加回复力和/或回复力矩,用户可以直观感觉到末端执行器与加工物之间的接触状况。
在一个实施方式中,所述采集用户基于手柄输入的空间信息包括:
基于与所述手柄耦合的力与力矩传感器采集用户操作手柄的力和/或力矩;
将所述用户操作手柄的力转换为位置信息;
将所述用户操作手柄的力矩转换为姿态信息。
因此,本发明实施方式基于力与力矩传感器与手柄的协作,可以采集包含机器人的位置信息和机器人 的姿态信息的机器人的空间信息。
在一个实施方式中,所述采集用户基于手柄输入的空间信息包括:
基于与所述手柄耦合的力传感器采集用户操作手柄的力;
基于与所述手柄耦合的陀螺仪,采集用户操作手柄的角速度参数;
将所述用户操作手柄的力转换为位置信息;
将所述角速度参数转换为姿态信息。
因此,本发明实施方式基于力传感器、陀螺仪与手柄的协作,可以采集包含位置信息和姿态信息的空间信息。
在一个实施方式中,所述采集用户基于手柄输入的空间信息包括:
采集用户基于手柄输入的、笛卡尔坐标系中的三维空间坐标信息和三维坐标轴旋转角度。
因此,本发明实施方式可以直接采用手柄确定包含三维空间坐标信息和三维坐标轴旋转角度的空间信息。
在一个实施方式中,基于所述空间信息确定用于控制机器人运动的运动控制命令包括:
基于正交逆解算法将所述空间信息转换为机器人的关节坐标系信息;
基于所述机器人的关节坐标系信息确定所述运动控制命令。
可见,本发明实施方式还可以基于坐标转换,便利地确定出运动控制命令。
在一个实施方式中,所述基于所述接触力和/或接触力矩对所述手柄施加回复力和/或回复力矩包括:
基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;
驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
因此,本发明实施方式通过电机,可以便利地对手柄施加回复力和/或回复力矩。
一种控制机器人的装置,包括:
空间信息采集模块,用于采集用户基于手柄输入的机器人的空间信息;
确定模块,用于基于所述空间信息确定用于控制机器人运动的运动控制命令;
接触力参数采集模块,用于获取在机器人执行所述运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
施加模块,用于基于所述接触力和/或接触力矩对所述手柄施加回复力和/或回复力矩。
因此,本发明实施方式基于手柄操作实现针对机器人的直观控制,降低了用户操作难度。而且,通过对手柄施加回复力和/或回复力矩,用户可以直观感觉到末端执行器与加工物之间的接触状况。
在一个实施方式中,空间信息采集模块,用于基于与所述手柄耦合的力与力矩传感器采集用户操作手柄的力和/或力矩;将所述用户操作手柄的力转换为位置信息;将所述用户操作手柄的力矩转换为姿态信息。
可见,本发明实施方式基于力与力矩传感器与手柄的协作,可以采集包含机器人的位置信息和机器人 的姿态信息的机器人的空间信息。
在一个实施方式中,空间信息采集模块,用于基于与所述手柄耦合的力传感器采集用户操作手柄的力;基于与所述手柄耦合的陀螺仪,采集用户操作手柄的角速度参数;将所述用户操作手柄的力转换为位置信息;将所述角速度参数转换为姿态信息。
因此,本发明实施方式基于力传感器、陀螺仪与手柄的协作,可以采集包含位置信息和姿态信息的空间信息。
在一个实施方式中,空间信息采集模块,用于采集用户基于手柄输入的、笛卡尔坐标系中的三维空间坐标信息和三维坐标轴旋转角度。
因此,本发明实施方式可以直接采用手柄确定包含三维空间坐标信息和三维坐标轴旋转角度的空间信息。
在一个实施方式中,确定模块,用于基于正交逆解算法将所述空间信息转换为机器人的关节坐标系信息;基于所述机器人的关节坐标系信息确定所述运动控制命令。
可见,本发明实施方式还可以基于坐标转换,便利地确定出运动控制命令。
在一个实施方式中,施加模块,用于基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
因此,本发明实施方式通过电机,可以便利地对手柄施加回复力和/或回复力矩。
一种机器人的示教器,包括:
手柄组件,包括手柄,所述手柄组件用于采集用户基于所述手柄输入的机器人的空间信息;
确定模块,用于基于所述空间信息确定用于控制机器人的运动控制命令;
无线传输模块,用于基于与机器人之间的无线通信连接向机器人发送所述运动控制命令,基于所述无线通信连接从机器人接收在机器人执行所述运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
其中所述确定模块,还用于基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;
其中该手柄组件还包括:驱动机构,用于驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
因此,本发明实施方式提出了一种基于手柄操作针对机器人的直观的远程控制的示教器。而且,通过对手柄施加回复力和/或回复力矩,用户可以直观感觉到末端执行器与加工物之间的接触状况。
一种机器人的示教器,包括:
手柄组件,包括手柄,所述手柄组件用于采集用户基于所述手柄输入的机器人的空间信息;
无线传输模块,用于基于与机器人之间的无线通信连接向机器人发送所述空间信息,基于所述无线通 信连接从机器人接收回复力和/或回复力矩,其中所述回复力和/或回复力矩是机器人基于在执行运动控制命令的过程中采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩所确定的,所述运动控制命令是机器人基于所述空间信息所确定的;
其中该手柄组件还包括:驱动机构,用于驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
因此,本发明实施方式提出了一种基于手柄操作针对机器人的直观的远程控制的示教器。而且,通过对手柄施加回复力和/或回复力矩,用户可以直观感觉到末端执行器与加工物之间的接触状况。
一种机器人,包括:
无线传输模块,用于基于与包含手柄组件的示教器之间的无线通信连接从示教器接收运动控制命令,其中手柄组件包含手柄,所述运动控制命令是示教器基于机器人的空间信息确定的,所述空间信息是手柄组件采集用户基于手柄的输入而获取的;
执行模块,用于执行所述运动控制命令;
力与力矩传感器,布置在机器人的末端执行器中,用于采集在执行模块执行所述运动控制命令的过程中的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
其中所述无线传输模块,还用于基于所述无线通信连接向示教器发送接触力和/或接触力矩,从而由示教器基于预先确定的映射关系将所述接触力映射为回复力且将所述接触力矩映射为回复力矩,并驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
因此,本发明实施方式提出了一种可以接收基于手柄操作的远程控制的机器人。
一种机器人,包括:
无线传输模块,用于基于与包含手柄组件的示教器之间的无线通信连接从示教器接收机器人的空间信息,其中手柄组件包含手柄,所述空间信息是手柄组件采集用户基于手柄的输入而获取的;
确定模块,用于基于所述空间信息确定用于控制机器人运动的运动控制命令;
执行模块,用于执行所述运动控制命令;
力与力矩传感器,布置在机器人的末端执行器中,用于采集在执行模块执行所述运动控制命令的过程中的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
其中确定模块,还用于基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;所述无线传输模块,还用于基于所述无线通信连接向示教器发送回复力和/或回复力矩,从而由示教器驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
因此,本发明实施方式提出了一种可以接收基于手柄操作的远程控制的机器人。
一种控制机器人的装置,包括:存储器;处理器;其中所述存储器中存储有可被所述处理器执行的应用程序,用于使得所述处理器执行如上任一项所述的控制机器人的方法。
可见,本发明实施方式还提出了一种具有存储器-处理器架构的控制机器人的装置,可以基于手柄操作实现针对机器人的直观控制,降低了用户操作难度。而且,通过对手柄施加回复力和/或回复力矩,用户可以直观感觉到末端执行器与加工物之间的接触状况。
一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上任一项所述的控制机器人的方法。
因此,本发明实施方式还提出了一种具计算机可读存储介质,可以基于手柄操作实现针对机器人的直观控制,降低了用户操作难度。而且,通过对手柄施加回复力和/或回复力矩,用户可以直观感觉到末端执行器与加工物之间的接触状况。
附图说明
图1为本发明实施方式控制机器人的方法流程图。
图2为本发明实施方式控制机器人的装置的结构框图。
图3为本发明实施方式的力与力矩的控制流程图。
图4为本发明实施方式机器人的示教器的第一结构框图。
图5为本发明实施方式机器人的示教器的第二结构框图。
图6为本发明实施方式机器人的第一结构框图。
图7为本发明实施方式机器人的第二结构框图。
图8为本发明实施方式控制机器人的第一示范性示意图。
图9为本发明实施方式控制机器人的第二示范性示意图。
图10为本发明实施方式控制机器人的第三示范性示意图。
图11为本发明实施方式控制机器人的第四示范性示意图。
图12为本发明实施方式控制机器人的装置的结构框图。
其中,附图标记如下:
100 控制机器人的方法
101~104 步骤
200 控制机器人的装置
201 空间信息采集模块
202 确定模块
203 接触力参数采集模块
204 施加模块
301 运算器
302 PID调节模块
303 运动学转换模块
304 位置和姿态调节模块
305 力与力矩传感器
400 示教器
401 手柄组件
402 确定模块
403 无线传输模块
41 手柄
42 电机
500 示教器
501 手柄组件
502 无线传输模块
51 手柄
52 电机
600 机器人
601 无线传输模块,
602 执行模块
603 力与力矩传感器
700 机器人
701 无线传输模块
702 确定模块
703 执行模块
704 力与力矩传感器
81 手柄
82 力与力矩传感器
83 力与力矩传感器
84 末端执行器
91 手柄
92 陀螺仪
93 连接件
94 力传感器
95 末端执行器
96 力与力矩传感器
61 显示屏
62 无线通信模块
63 无线通信模块
64 视频采集模块
1100 手柄组件
1101 推力
1102 力到机器人运动的转换模块
1103 运算器
1104 驱动力
1105 力到电机命令的转换模块
1106 电机
1107 运动控制命令
1108 接触阻力
1109 机器人
1200 控制机器人的装置
1201 存储器
1202 处理器
具体实施方式
为了使本发明的技术方案及优点更加清楚明白,以下结合附图及实施方式,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施方式仅仅用以阐述性说明本发明,并不用于限定本发明的保护范围。
为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本发明的方案进行阐述。实施方式中大量的细节仅用于帮助理解本发明的方案。但是很明显,本发明的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本发明的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
图1为本发明实施方式控制机器人的方法流程图。
如图1所示,该方法包括:
步骤101:采集用户基于手柄输入的机器人的空间信息。
优选的,机器人的空间信息包括机器人的位置信息和机器人的姿态信息。
在一个实施方式中,基于与手柄耦合的力与力矩传感器采集用户操作手柄的力和/或力矩;将用户操作手柄的力转换为机器人的位置信息;将用户操作手柄的力矩转换为机器人的姿态信息。具体地,力与力矩传感器分别采集到用户操作手柄的力和/或力矩,其中力被转换为笛卡尔坐标系中反映机器人末端法兰部分位置的位置信息,力矩被转换为笛卡尔坐标系中反映机器人末端法兰部分姿态的姿态信息。其中,力与力矩传感器与手柄的耦合方式包括:力与力矩传感器内置在手柄中,或者力与力矩传感器安装在手柄上。
在一个实施方式中,基于与手柄耦合的力传感器采集用户操作手柄的力;基于与手柄耦合的陀螺仪,采集用户操作手柄的角速度参数;将用户操作手柄的力转换为机器人的位置信息;将角速度参数转换为机器人的姿态信息。具体地,力传感器采集到用户操作手柄的力,陀螺仪采集到用户操作手柄的角速度参数,其中力被转换为笛卡尔坐标系中反映机器人末端法兰部分位置的位置信息,角速度参数被转换为笛卡尔坐标系中反映机器人末端法兰部分姿态的姿态信息。其中,力传感器与手柄的耦合方式包括:力传感器内置在手柄中,或者力传感器布置在手柄上。
在一个实施方式中,采集用户基于手柄输入的、机器人所在的笛卡尔坐标系中的三维空间坐标信息和三维坐标轴旋转角度。在这里,手柄无需布置力与力矩传感器、陀螺仪或力传感器,手柄内部电路可以直接将用户在手柄上的操作转换为笛卡尔坐标系中的三维空间坐标信息和三维坐标轴旋转角度。三维空间坐标信息包括X轴、Y轴、Z轴信息,三维坐标轴旋转角度包括RX、RY和RZ信息,其中X轴、Y轴、Z轴即为三维空间坐标轴,RX为机器人目标端绕X轴旋转的角度,RY为机器人目标端绕Y轴旋转的角度,RZ为机器人目标端绕Z轴旋转的角度。
优选地,手柄可以为三维手柄。
步骤102:基于空间信息确定用于控制机器人运动的运动控制命令。
在这里,基于正交逆解算法将空间信息转换为机器人的关节坐标系信息;基于机器人的关节坐标系信息确定运动控制命令。其中,运动控制命令包括施加给机器人各关节电机的驱动定量,或者施加给末端执行器的驱动定量。比如,以工业六轴机器人为例,在基于步骤101确定机器人目标位置的空间信息后,将空间信息转换为机器人的关节坐标系信息,然后向每个关节的电机分别输送基于关节坐标系信息确定的驱动定量以控制将机器人移动到目标位置。
步骤103:获取在机器人执行运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩。
末端执行器指的是任何一个连接在机器人边缘(关节)具有一定功能的工具。这可能包含机器人抓手,机器人工具快换装置、机器人碰撞传感器、机器人旋转连接器、机器人压力工具、顺从装置、机器人喷涂枪、机器人毛刺清理工具、机器人弧焊焊枪、机器人电焊焊枪等等。机器人末端执行器通常被认为是机器人的外围设备,机器人的附件,机器人工具,手臂末端工具。工业机器人中所应用的机械夹持式末端执行器多为双指头爪式,如果按手指的运动来分可以分为平移型和回转型。若按照机械夹持方式来分可以分为 外夹式和内撑式,若按照机械结构特性来进行分类的话,可以分为电动(电磁)式、液压式与气动式,以及它们相互的组合。
在这里,在末端执行器处布置有力与力矩传感器。在机器人执行运动控制命令的过程中,力与力矩传感器采集机器人的末端执行器与加工物之间的接触力和/或接触力矩。
步骤104:基于接触力和/或接触力矩对手柄施加回复力和/或回复力矩。
在这里,接触力与回复力的转换关系,可以为预定的线性或非线性转换关系。类似的,接触力矩与回复力矩的转换关系,也可以为预定的线性或非线性转换关系。优选地,基于与手柄耦合的力与力矩传感器采集的用户操作手柄的力和/或力矩与接触力和/或接触力矩之间的插值,确定回复力和/或回复力矩。比如,首先确定与手柄耦合的力与力矩传感器采集的用户操作手柄的力,然后计算用户操作手柄的力与接触力的差值,再基于该差值确定回复力,比如将差值与预定系数的乘积确定为回复力。再比如,首先确定与手柄耦合的力与力矩传感器采集的用户操作手柄的力矩,然后计算用户操作手柄的力矩与接触力矩的差值,再基于该差值确定回复力矩,比如将差值与预定系数的乘积确定为回复力矩。
然后,通过电机等执行结构向手柄施加回复力和/或回复力矩,从而用户可以直观感受到末端执行器与加工物之间的接触力和/或接触力矩,其中回复力的方向与用户操作手柄的力的方向相反,回复力矩的方向与用户操作手柄的力矩的方向相反。
基于上述描述,本发明实施方式还提出控制机器人的装置。
图2为本发明实施方式控制机器人的装置的结构框图。
如图2所示,控制机器人的装置200包括:
空间信息采集模块201,用于采集用户基于手柄输入的机器人的空间信息;
确定模块202,用于基于空间信息确定用于控制机器人运动的运动控制命令;
接触力参数采集模块203,用于获取在机器人执行运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
施加模块204,用于基于接触力和/或接触力矩对所述手柄施加回复力和/或回复力矩。
在一个实施方式中,空间信息采集模块201,用于基于与手柄耦合的力与力矩传感器采集用户操作手柄的力和/或力矩;将用户操作手柄的力转换为位置信息;将用户操作手柄的力矩转换为姿态信息。
在一个实施方式中,空间信息采集模块201,用于基于与手柄耦合的力传感器采集用户操作手柄的力;基于与手柄耦合的陀螺仪,采集用户操作手柄的角速度参数;将用户操作手柄的力转换为位置信息;将角速度参数转换为姿态信息。
在一个实施方式中,空间信息采集模块201,用于采集用户基于手柄输入的、笛卡尔坐标系中的三维空间坐标信息和三维坐标轴旋转角度。
在一个实施方式中,确定模块202,用于基于正交逆解算法将空间信息转换为机器人的关节坐标系信 息;基于机器人的关节坐标系信息确定运动控制命令。
在一个实施方式中,施加模块204,用于基于预先确定的映射关系,将接触力映射为回复力且将接触力矩映射为回复力矩;驱动与手柄耦合的电机向手柄输出所述回复力和所述回复力矩。
在本发明实施方式中,手柄与机器人之间优选具有无线通信连接,从而可以实现针对机器人的无线控制。比如,手柄基于该无线通信连接,将空间信息发送到机器人,从而由机器人基于该空间信息确定并执行运动控制命令。再比如,手柄基于该无线通信连接,将基于该空间信息确定的运动控制命令发送到机器人,以由机器人执行该运动控制命令。再比如,手柄基于该无线通信连接,从机器人接收末端执行器与加工物之间的接触力和/或接触力矩,并由手柄基于接触力和/或接触力矩对手柄施加回复力和/或回复力矩。再比如,手柄基于该无线通信连接,从机器人接收基于接触力和/或接触力矩而确定的回复力和/或回复力矩。
优选地,该无线通信连接可以实施为基于第三代无线通信(3G)方式、第四代无线通信(3G)方式、第五代无线通信(5G)方式或无线宽带(WIFI)通信方式的无线通信连接,等等。
以上示范性描述了手柄与机器人之间的无线通信方式,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
基于图1和图2,可以实现针对远程机器人的操控和示教过程。在示教过程中,控制手柄驱动机器人按需要的顺序进行操作,从而机器人可重复再现通过示教过程存储起来的作业程序。
在本发明实施方式中,可以基于用户操作手柄的力和/或力矩实现控制机器人。图3为本发明实施方式力与力矩的控制流程图。
如图3所示,基于手柄输入的力与力矩确定出机器人的末端执行器与加工物之间的接触力与接触力矩期望值(Value1)被输入到运算器301。而且,布置在末端执行器的力与力矩传感器305采集得到末端执行器与加工物之间的接触力和/或接触力矩的实际值(Value2)被输入到运算器301。在运算器301中,计算期望值与实际值的差值,并将差值输入到PID调节模块302以执行PID调节。运动学转换模块303针对PID调节模块302输出的PID调节结果执行运动学转换(kinematics conversion)运算。位置和姿态调节模块304基于运动学转换模块303的运算结果调整机器人的位置和姿态,从而改变力与力矩传感器305所检测到的接触力和/或接触力矩。
基于上述描述,本发明实施方式还提出了机器人的示教器。可以利用该示教器远程控制机器人(比如示教)。在示教中,通过人工移动示教器中的手柄以完成一系列特定动作,由示教器自行记录并保存轨迹路径的坐标参数,使机器人重复先前人工示教的运动路径。
图4为本发明实施方式机器人的示教器的第一结构框图。
如图4所示,该示教器400包括:
手柄组件401,包括手柄41,手柄组件401用于采集用户基于手柄41输入的机器人的空间信息;
确定模块402,用于基于空间信息确定用于控制机器人的运动控制命令;
无线传输模块403,用于基于与机器人之间的无线通信连接向机器人发送运动控制命令,基于无线通信连接从机器人接收在机器人执行运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
其中确定模块402,还用于基于预先确定的映射关系,将接触力映射为回复力且将接触力矩映射为回复力矩;
其中该手柄组件401还包括:驱动机构42,用于驱动与手柄41耦合的电机向手柄41输出回复力和回复力矩。
图5为本发明实施方式机器人的示教器的第二结构框图。
如图5所示,该示教器500包括:
手柄组件501,包括手柄51,手柄组件501用于采集用户基于手柄51输入的机器人的空间信息;
无线传输模块502,用于基于与机器人之间的无线通信连接向机器人发送空间信息,基于无线通信连接从机器人接收回复力和/或回复力矩,其中回复力和/或回复力矩是机器人基于在执行运动控制命令的过程中采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩所确定的,该运动控制命令是机器人基于空间信息所确定的;
其中该手柄组件501还包括:驱动机构502,用于驱动与手柄51耦合的电机向手柄51输出回复力和所述回复力矩。
本发明实施方式还提出一种机器人,可以接受示教器的远程遥控。
图6为本发明实施方式机器人的第一结构框图。
如图6所示,机器人600包括:
无线传输模块601,用于基于与包含手柄组件的示教器之间的无线通信连接从示教器接收运动控制命令,其中手柄组件包含手柄,运动控制命令是示教器基于机器人的空间信息确定的,该空间信息是手柄组件采集用户基于手柄的输入而获取的;
执行模块602,用于执行运动控制命令;
力与力矩传感器603,布置在机器人的末端执行器中,用于采集在执行模块执行所述运动控制命令的过程中的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
其中无线传输模块601,还用于基于无线通信连接向示教器发送接触力和/或接触力矩,从而由示教器基于预先确定的映射关系将所述接触力映射为回复力且将所述接触力矩映射为回复力矩,并驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩
图7为本发明实施方式机器人的第二结构框图。
如图7所示,机器人700包括:
无线传输模块701,用于基于与包含手柄组件的示教器之间的无线通信连接从示教器接收机器人的空间信息,其中手柄组件包含手柄,该空间信息是手柄组件采集用户基于手柄的输入而获取的;
确定模块702,用于基于该空间信息确定用于控制机器人运动的运动控制命令;
执行模块703,用于执行所述运动控制命令;
力与力矩传感器704,布置在机器人的末端执行器中,用于采集在执行模块执行所述运动控制命令的过程中的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
其中确定模块702,还用于基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;所述无线传输模块,还用于基于所述无线通信连接向示教器发送回复力和/或回复力矩,从而由示教器驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
图8为本发明实施方式控制机器人的第一示范性示意图。
在图8中,在手柄81处,力与力矩传感器82与手柄81耦合。在机器人处,在末端执行器84上布置有用于检测末端执行器84与加工物之间的接触力和/或接触力矩的力与力矩传感器83。手柄81与机器人具有无线通信连接。比如,手柄81可以基于该无线通信连接,将力与力矩传感器82采集到用户操作手柄的力与力矩转换为包括机器人的位置信息和机器人的姿态信息的机器人的空间信息,并将空间信息发送到机器人,从而由机器人基于该空间信息确定并执行运动控制命令。比如,手柄81基于该无线通信连接,将基于空间信息确定的运动控制命令发送到机器人,以由机器人执行该运动控制命令。比如,手柄81基于该无线通信连接,从机器人接收末端执行器84与加工物之间的接触力和/或接触力矩,并在手柄81处基于接触力和/或接触力矩对手柄81施加回复力和/或回复力矩。比如,手柄81基于该无线通信连接,从机器人接收基于接触力和/或接触力矩而确定的回复力和/或回复力矩,并在手柄81处对手柄81施加回复力和/或回复力矩。
图9为本发明实施方式控制机器人的第二示范性示意图。
在图9中,力传感器94与手柄91耦合,且陀螺仪92基于连接件93与手柄91耦合。在机器人处,在末端执行器95上布置有用于检测末端执行器95与加工物之间的接触力和/或接触力矩的力与力矩传感器96。手柄91与机器人具有无线通信连接。比如,手柄91可以基于该无线通信连接,将力传感器94采集到用户操作手柄的力转换为机器人的位置信息,将陀螺仪92采集到的用户操作手柄的角速度参数转换为机器人的姿态信息,将位置信息和姿态信息组合为机器人的空间信息,并将空间信息发送到机器人,从而由机器人基于该空间信息确定并执行运动控制命令。比如,手柄91基于该无线通信连接,将基于空间信息确定的运动控制命令发送到机器人,以由机器人执行该运动控制命令。比如,手柄91基于该无线通信连接,从机器人接收末端执行器95与加工物之间的接触力和/或接触力矩,并在手柄91处基于接触力和/或接触力矩对手柄91施加回复力和/或回复力矩。比如,手柄91基于该无线通信连接,从机器人接收基于接触力和/或接触力矩而确定的回复力和/或回复力矩,并在手柄91处对手柄91施加回复力和/或回复力矩。
图10为本发明实施方式控制机器人的第三示范性示意图。
在图10中,在手柄侧布置有显示屏61,在机器人侧布置有视频采集模块64。机器人侧的无线通信模块63与手柄侧的无线通信模块61之间具有无线通信连接。视频采集模块64采集的机器人侧的视频数据,基于该无线通信连接被传输到手柄侧的显示屏61,并在该显示屏61中被显示。从而,手柄侧的用户可以视觉观察到机器人侧的现场场景,并基于手柄60实现对机器人的控制。
图11为本发明实施方式控制机器人的第四示范性示意图。在图11中,描述了基于布置机器人的末端执行器的力与力矩传感器,实现对手柄施加回复力和/或回复力矩的过程。
在图11中,手柄组件1100输出的推力(thrust)1101被提供到力到机器人运动的转换模块1102。力到机器人运动的转换模块1102基于推力1101输出运动控制命令1107。机器人1109执行运动控制命令1107。在执行运动控制命令1107的过程中,布置在机器人末端执行器的力与力矩传感器检测到末端执行器与加工物之间的接触阻力1108。在运算器1103处,计算推力1101与接触阻力1108之间的差值,得到驱动力1104。力到电机命令的转换模块1105基于该驱动力1104生成电机驱动命令。电机基于该电机驱动命令针对手柄组件1100提供回复力。
图12为根据本发明实施方式的控制机器人的装置的结构框图。
如图12所示,装置1200包括处理器1201和存储器1202;
存储器1202中存储有可被处理器1201执行的应用程序,用于使得处理器1201执行如图1所示的控制机器人的方法100。
其中,存储器1202具体可以实施为电可擦可编程只读存储器(EEPROM)、快闪存储器(Flash memory)、可编程程序只读存储器(PROM)等多种存储介质。处理器1201可以实施为包括一或多个中央处理器或一或多个现场可编程门阵列,其中现场可编程门阵列集成一或多个中央处理器核。具体地,中央处理器或中央处理器核可以实施为CPU或MCU。
需要说明的是,上述各流程和各结构图中不是所有的步骤和模块都是必须的,可以根据实际的需要忽略某些步骤或模块。各步骤的执行顺序不是固定的,可以根据需要进行调整。各模块的划分仅仅是为了便于描述采用的功能上的划分,实际实现时,一个模块可以分由多个模块实现,多个模块的功能也可以由同一个模块实现,这些模块可以位于同一个设备中,也可以位于不同的设备中。
各实施方式中的硬件模块可以以机械方式或电子方式实现。例如,一个硬件模块可以包括专门设计的永久性电路或逻辑器件(如专用处理器,如FPGA或ASIC)用于完成特定的操作。硬件模块也可以包括由软件临时配置的可编程逻辑器件或电路(如包括通用处理器或其它可编程处理器)用于执行特定操作。至于具体采用机械方式,或是采用专用的永久性电路,或是采用临时配置的电路(如由软件进行配置)来实现硬件模块,可以根据成本和时间上的考虑来决定。
本发明还提供了一种机器可读的存储介质,存储用于使一机器执行如本文所述方法的指令。具体地, 可以提供配有存储介质的系统或者装置,在该存储介质上存储着实现上述实施例中任一实施方式的功能的软件程序代码,且使该系统或者装置的计算机(或CPU或MPU)读出并执行存储在存储介质中的程序代码。此外,还可以通过基于程序代码的指令使计算机上操作的操作系统等来完成部分或者全部的实际操作。还可以将从存储介质读出的程序代码写到插入计算机内的扩展板中所设置的存储器中或者写到与计算机相连接的扩展单元中设置的存储器中,随后基于程序代码的指令使安装在扩展板或者扩展单元上的CPU等来执行部分和全部实际操作,从而实现上述实施方式中任一实施方式的功能。
用于提供程序代码的存储介质实施方式包括软盘、硬盘、磁光盘、光盘(如CD-ROM、CD-R、CD-RW、DVD-ROM、DVD-RAM、DVD-RW、DVD+RW)、磁带、非易失性存储卡和ROM。可选择地,可以由通信网络从服务器计算机或云上下载程序代码。
以上所述,仅为本发明的较佳实施方式而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (18)

  1. 一种控制机器人的方法(100),其特征在于,包括:
    采集用户基于手柄输入的机器人的空间信息(101);
    基于所述空间信息确定用于控制机器人运动的运动控制命令(102);
    获取在机器人执行所述运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩(103);
    基于所述接触力和/或接触力矩对所述手柄施加回复力和/或回复力矩(104)。
  2. 根据权利要求1所述的控制机器人的方法(100),其特征在于,
    所述采集用户基于手柄输入的空间信息(101)包括:
    基于与所述手柄耦合的力与力矩传感器采集用户操作手柄的力和/或力矩;
    将所述用户操作手柄的力转换为位置信息;
    将所述用户操作手柄的力矩转换为姿态信息。
  3. 根据权利要求1所述的控制机器人的方法(100),其特征在于,
    所述采集用户基于手柄输入的空间信息(101)包括:
    基于与所述手柄耦合的力传感器采集用户操作手柄的力;
    基于与所述手柄耦合的陀螺仪,采集用户操作手柄的角速度参数;
    将所述用户操作手柄的力转换为位置信息;
    将所述角速度参数转换为姿态信息。
  4. 根据权利要求1所述的控制机器人的方法(100),其特征在于,
    所述采集用户基于手柄输入的空间信息(101)包括:
    采集用户基于手柄输入的、笛卡尔坐标系中的三维空间坐标信息和三维坐标轴旋转角度。
  5. 根据权利要求1-4中任一项所述的控制机器人的方法(100),其特征在于,
    基于所述空间信息确定用于控制机器人运动的运动控制命令(102)包括:
    基于正交逆解算法将所述空间信息转换为机器人的关节坐标系信息;
    基于所述机器人的关节坐标系信息确定所述运动控制命令。
  6. 根据权利要求1-4中任一项所述的控制机器人的方法(100),其特征在于,
    所述基于所述接触力和/或接触力矩对所述手柄施加回复力和/或回复力矩(104)包括:
    基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;
    驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
  7. 一种控制机器人的装置(200),其特征在于,包括:
    空间信息采集模块(201),用于采集用户基于手柄输入的机器人的空间信息;
    确定模块(202),用于基于所述空间信息确定用于控制机器人运动的运动控制命令;
    接触力参数采集模块(203),用于获取在机器人执行所述运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
    施加模块(204),用于基于所述接触力和/或接触力矩对所述手柄施加回复力和/或回复力矩。
  8. 根据权利要求7所述的控制机器人的装置(200),其特征在于,
    空间信息采集模块(201,用于基于与所述手柄耦合的力与力矩传感器采集用户操作手柄的力和/或力矩;将所述用户操作手柄的力转换为位置信息;将所述用户操作手柄的力矩转换为姿态信息。
  9. 根据权利要求7所述的控制机器人的装置(200),其特征在于,
    空间信息采集模块(201),用于基于与所述手柄耦合的力传感器采集用户操作手柄的力;基于与所述手柄耦合的陀螺仪,采集用户操作手柄的角速度参数;将所述用户操作手柄的力转换为位置信息;将所述角速度参数转换为姿态信息。
  10. 根据权利要求7所述的控制机器人的装置(200),其特征在于,
    空间信息采集模块(201),用于采集用户基于手柄输入的、笛卡尔坐标系中的三维空间坐标信息和三维坐标轴旋转角度。
  11. 根据权利要求7-10中任一项所述的控制机器人的装置(200),其特征在于,
    确定模块(202),用于基于正交逆解算法将所述空间信息转换为机器人的关节坐标系信息;基于所述机器人的关节坐标系信息确定所述运动控制命令。
  12. 根据权利要求7-10中任一项所述的控制机器人的装置(200),其特征在于,
    施加模块(204),用于基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
  13. 一种机器人的示教器(400),其特征在于,包括:
    手柄组件(401),包括手柄(41),所述手柄组件(401)用于采集用户基于所述手柄(41)输入的机器人的空间信息;
    确定模块(402),用于基于所述空间信息确定用于控制机器人的运动控制命令;
    无线传输模块(403),用于基于与机器人之间的无线通信连接向机器人发送所述运动控制命令,基于所述无线通信连接从机器人接收在机器人执行所述运动控制命令的过程中所采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
    其中所述确定模块(402),还用于基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;
    其中该手柄组件(401)还包括:驱动机构(42),用于驱动与所述手柄(41)耦合的电机向所述手柄(41)输出所述回复力和所述回复力矩。
  14. 一种机器人的示教器(500),其特征在于,包括:
    手柄组件(501),包括手柄(51),所述手柄组件(501)用于采集用户基于所述手柄(51)输入的机器人的空间信息;
    无线传输模块(502),用于基于与机器人之间的无线通信连接向机器人发送所述空间信息,基于所述无线通信连接从机器人接收回复力和/或回复力矩,其中所述回复力和/或回复力矩是机器人基于在执行运动控制命令的过程中采集的、机器人的末端执行器与加工物之间的接触力和/或接触力矩所确定的,所述运动控制命令是机器人基于所述空间信息所确定的;
    其中该手柄组件(501)还包括:驱动机构(52),用于驱动与所述手柄(51)耦合的电机向所述手柄(51)输出所述回复力和所述回复力矩。
  15. 一种机器人(600),其特征在于,包括:
    无线传输模块(601),用于基于与包含手柄组件的示教器之间的无线通信连接从示教器接收运动控制命令,其中手柄组件包含手柄,所述运动控制命令是示教器基于机器人的空间信息确定的,所述空间信息是手柄组件采集用户基于手柄的输入而获取的;
    执行模块(602),用于执行所述运动控制命令;
    力与力矩传感器(603),布置在机器人的末端执行器中,用于采集在执行模块(602)执行所述运动控制命令的过程中的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
    其中所述无线传输模块(601),还用于基于所述无线通信连接向示教器发送接触力和/或接触力矩,从而由示教器基于预先确定的映射关系将所述接触力映射为回复力且将所述接触力矩映射为回复力矩,并驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
  16. 一种机器人(700),其特征在于,包括:
    无线传输模块(701),用于基于与包含手柄组件的示教器之间的无线通信连接从示教器接收机器人的空间信息,其中手柄组件包含手柄,所述空间信息是手柄组件采集用户基于手柄的输入而获取的;
    确定模块(702),用于基于所述空间信息确定用于控制机器人运动的运动控制命令;
    执行模块(703),用于执行所述运动控制命令;
    力与力矩传感器(704),布置在机器人的末端执行器中,用于采集在执行模块(703)执行所述运动控制命令的过程中的、机器人的末端执行器与加工物之间的接触力和/或接触力矩;
    其中确定模块(702),还用于基于预先确定的映射关系,将所述接触力映射为回复力且将所述接触力矩映射为回复力矩;所述无线传输模块,还用于基于所述无线通信连接向示教器发送回复力和/或回复力矩,从而由示教器驱动与所述手柄耦合的电机向所述手柄输出所述回复力和所述回复力矩。
  17. 一种控制机器人的装置(1200),其特征在于,包括:存储器(1201);处理器(1202);其中所述存储器(1201)中存储有可被所述处理器(1202)执行的应用程序,用于使得所述处理器(1202)执行如权利要求1至6中任一项所述的控制机器人的方法(100)。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6中任一项所述的控制机器人的方法(100)。
PCT/CN2020/099342 2020-06-30 2020-06-30 一种示教器、机器人、控制机器人的方法和装置 WO2022000283A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080102242.5A CN115884851A (zh) 2020-06-30 2020-06-30 一种示教器、机器人、控制机器人的方法和装置
PCT/CN2020/099342 WO2022000283A1 (zh) 2020-06-30 2020-06-30 一种示教器、机器人、控制机器人的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/099342 WO2022000283A1 (zh) 2020-06-30 2020-06-30 一种示教器、机器人、控制机器人的方法和装置

Publications (1)

Publication Number Publication Date
WO2022000283A1 true WO2022000283A1 (zh) 2022-01-06

Family

ID=79317274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099342 WO2022000283A1 (zh) 2020-06-30 2020-06-30 一种示教器、机器人、控制机器人的方法和装置

Country Status (2)

Country Link
CN (1) CN115884851A (zh)
WO (1) WO2022000283A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106625653A (zh) * 2016-05-23 2017-05-10 北京卫星环境工程研究所 基于力反馈的工业机器人辅助装配柔性对接方法
CN106938470A (zh) * 2017-03-22 2017-07-11 华中科技大学 一种机器人力控示教模仿学习的装置及方法
CN108436913A (zh) * 2018-04-19 2018-08-24 南京航空航天大学 一种力协调的多臂机器人柔顺控制方法
US20180361576A1 (en) * 2017-06-15 2018-12-20 Fanuc Corporation Learning device, controller, and control system
JP2019055458A (ja) * 2017-09-21 2019-04-11 株式会社デンソーウェーブ ロボットの教示システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106625653A (zh) * 2016-05-23 2017-05-10 北京卫星环境工程研究所 基于力反馈的工业机器人辅助装配柔性对接方法
CN106938470A (zh) * 2017-03-22 2017-07-11 华中科技大学 一种机器人力控示教模仿学习的装置及方法
US20180361576A1 (en) * 2017-06-15 2018-12-20 Fanuc Corporation Learning device, controller, and control system
JP2019055458A (ja) * 2017-09-21 2019-04-11 株式会社デンソーウェーブ ロボットの教示システム
CN108436913A (zh) * 2018-04-19 2018-08-24 南京航空航天大学 一种力协调的多臂机器人柔顺控制方法

Also Published As

Publication number Publication date
CN115884851A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
Safeea et al. Kuka sunrise toolbox: Interfacing collaborative robots with matlab
JP5114019B2 (ja) エフェクタの軌道を制御するための方法
EP3342561B1 (en) Remote control robot system
KR20190075098A (ko) 로봇을 지시하는 시스템 및 방법
US20150273689A1 (en) Robot control device, robot, robotic system, teaching method, and program
KR102001214B1 (ko) 가상 현실 기반 양팔로봇 교시 장치 및 방법
CN111459274B (zh) 一种基于5g+ ar的针对非结构化环境的遥操作方法
CN106647529B (zh) 一种面向六轴工业机器人轨迹精确跟踪控制的智能示教系统
Richter et al. Augmented reality predictive displays to help mitigate the effects of delayed telesurgery
JP2018167334A (ja) 教示装置および教示方法
Chen et al. A framework of teleoperated and stereo vision guided mobile manipulation for industrial automation
CN114516060A (zh) 用于控制机器人装置的设备和方法
US20220105625A1 (en) Device and method for controlling a robotic device
CN115351780A (zh) 用于控制机器人设备的方法
Adjigble et al. An assisted telemanipulation approach: combining autonomous grasp planning with haptic cues
EP1671759A2 (en) Robot controller and robot control method
WO2022000283A1 (zh) 一种示教器、机器人、控制机器人的方法和装置
Lopez et al. Taichi algorithm: Human-like arm data generation applied on non-anthropomorphic robotic manipulators for demonstration
Bachmann et al. Using task-specific workspace maps to plan and execute complex robotic tasks in a flexible multi-robot setup
Cai et al. 6D image-based visual servoing for robot manipulators with uncalibrated stereo cameras
JPH05345291A (ja) ロボットの動作範囲制限方式
Hentout et al. A telerobotic human/robot interface for mobile manipulators: A study of human operator performance
Lang et al. Visual servoing with LQR control for mobile robots
Vahrenkamp et al. Planning and execution of grasping motions on a humanoid robot
KR20230138487A (ko) 객체 기반 로봇 제어

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943796

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943796

Country of ref document: EP

Kind code of ref document: A1