WO2021261676A1 - Elastic shape-memory polymer composite skin having zero poisson's ratio - Google Patents

Elastic shape-memory polymer composite skin having zero poisson's ratio Download PDF

Info

Publication number
WO2021261676A1
WO2021261676A1 PCT/KR2020/015251 KR2020015251W WO2021261676A1 WO 2021261676 A1 WO2021261676 A1 WO 2021261676A1 KR 2020015251 W KR2020015251 W KR 2020015251W WO 2021261676 A1 WO2021261676 A1 WO 2021261676A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory polymer
polymer composite
composite skin
shape memory
stretchable
Prior art date
Application number
PCT/KR2020/015251
Other languages
French (fr)
Korean (ko)
Inventor
권오현
노진호
배재성
Original Assignee
한국항공대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국항공대학교산학협력단 filed Critical 한국항공대학교산학협력단
Priority to DE112020007338.6T priority Critical patent/DE112020007338T5/en
Publication of WO2021261676A1 publication Critical patent/WO2021261676A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/26Construction, shape, or attachment of separate skins, e.g. panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/14Layered products comprising a layer of metal next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/04Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by at least one layer folded at the edge, e.g. over another layer ; characterised by at least one layer enveloping or enclosing a material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/18Aircraft

Definitions

  • Various embodiments relate to a stretchable shape memory polymer composite skin having a zero Poisson ratio.
  • variable geometry aircraft or morphing structure aircraft is being actively conducted.
  • the skin of the morphing structure which can change shape according to flight conditions, should be able to have flexible rigidity in the direction in which the shape is changed and strong rigidity in the direction in which aerodynamic forces are generated.
  • a typical morphing skin manufacturing method includes a method using a thin elastomer, a method using a corrugated structure, and a method using a cellular structure. These conventional methods have a characteristic that it is not easy to manufacture because the structure is complicated, or the required load is rapidly increased at a strain rate above a certain level.
  • Various embodiments of the present invention provide a stretchable shape memory polymer composite skin having a zero Poisson ratio that does not have a complex structure and does not rapidly increase the load required for deformation to solve the problems of the prior art.
  • a stretchable shape memory polymer composite skin having a zero Poisson ratio includes a body made of conductive fibers, a plurality of metal frames disposed under the body to transmit power to the body, and the plurality of metals and a plurality of reinforcing materials coupled to a lower portion of the main body at a distance from the frame, and the main body may change in temperature based on electric power transmitted from the plurality of metal frames.
  • the plurality of metal frames and the plurality of reinforcing materials according to various embodiments of the present disclosure may be formed to cross the width of the main body along the width direction of the main body, respectively.
  • the length of the main body according to various embodiments of the present disclosure is increased by an external force applied to the main body at a reference temperature or higher, and when there is no external force, the original length of the main body may be restored.
  • the length of the body according to various embodiments of the present disclosure may be maintained in a deformed state below the reference temperature.
  • Each of the body and the plurality of metal frames according to various embodiments of the present disclosure may be formed in a 'C' shape with one side open.
  • Each of the plurality of metal frames according to various embodiments of the present disclosure may be connected to a wire for receiving power from the outside.
  • An adhesive layer for bonding to a morphing aircraft wing may be formed on one side of each of the plurality of metal frames according to various embodiments of the present disclosure.
  • both ends of the main body in the width direction may be bent to cover the lower portion of the morphing aircraft wing.
  • the skin proposed in the present disclosure is a shape memory polymer composite skin in which a shape memory polymer is impregnated into a stretchable and conductive fabric. have.
  • the skin proposed in the present disclosure may be used as a skin of a morphing wing having a variable shape and a sheet material of a space structure having a variable shape.
  • the skin proposed in the present disclosure can maintain a deformed shape without external force, and since it has a zero-Poisson ratio, it has less aerodynamic loss compared to the existing morphing skin, so that when applied to a morphing aircraft, low power and long flight time can be maintained. can do.
  • FIG. 1 is a diagram schematically illustrating a process of manufacturing the body 110 of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
  • FIG 3 is a view showing a rear view of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
  • FIG. 4 is a view showing a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio in which the overall length is deformed, according to an embodiment of the present invention.
  • 5A and 5B are views illustrating a rear view of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
  • FIG. 6 is a perspective view of a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio coupled to a morphing aircraft wing 200 according to an embodiment of the present invention.
  • FIGS. 7A to 7C are cross-sectional views illustrating a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio coupled to a morphing aircraft wing 200 according to an embodiment of the present invention.
  • FIG. 1 is a diagram schematically illustrating a process of manufacturing the body 110 of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
  • the body 110 of the stretchable shape memory polymer composite skin 100 is impregnated with a shape memory polymer (SMP) liquid in which a conductive powder is mixed with a fabric such as nylon fiber having stretchability and conductive properties.
  • SMP shape memory polymer
  • the shape memory polymer (SMP) has the characteristic of memorizing the initial shape of the main body 110 by thermo-mechanical properties, so that it becomes flexible when the glass temperature (Tg) or higher, and the shape before deformation is remembered to be restored. Conversely, below the glass transition temperature (Tg), it may have a characteristic to maintain a deformed shape. That is, the body 110 may change the strength of the fabric depending on the properties of the shape memory polymer (SMP) above the glass transition temperature (Tg), and may be freely deformed in shape using this. In addition, the body 110 can maintain a deformed shape below the glass transition temperature (Tg) due to the properties of the shape memory polymer (SMP).
  • the body 110 may be made of a fabric of heat-generating fibers that generate heat using electric power applied from the outside.
  • the temperature of the body 110 may increase or decrease depending on the amount of power applied from the outside, and the shape may be deformed or maintained at a specific temperature by the properties of the shape memory polymer (SMP).
  • the body 110 is filled with a shape memory polymer (SMP) solution mixed with conductive powder, or a shape memory polymer (SMP) composite material using a metal mesh is formed, or heating paint. can be applied.
  • the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio is coupled to a wing of a morphing aircraft having a variable shape, a space structure having a variable shape, etc. to affect the deformation of each structure
  • the main feature is to maintain a zero-Poisson's ratio without affecting
  • Poisson's ratio refers to the rate at which a material expands or contracts in another axial direction with respect to an axial stress, and a zero Poisson's ratio has no deformation in another axial direction due to an axial strain applied by the stress.
  • the stretchable shape memory polymer composite skin 100 capable of solving problems such as deformation of a structure and loss of aerodynamic force based on such a zero Poisson ratio will be described in more detail.
  • FIGS. 2 and 3 show a perspective view and a rear view, respectively, of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
  • the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio is a body 110 and a metal frame 120 and a reinforcing material 130 coupled to the lower portion of the body 110, respectively. can be configured.
  • the body 110 may be manufactured by impregnating a liquid shape memory polymer (SMP) liquid in which a conductive powder is mixed with a fabric such as nylon fiber having elasticity and conductivity.
  • SMP liquid shape memory polymer
  • the temperature of the body 110 may increase or decrease by power supplied from the outside, and the shape may be deformed or maintained at a specific temperature.
  • the shape when the body 110 becomes above a preset glass temperature (Tg) by electric power supplied from the outside, the shape may be easily deformed by the properties of the shape memory polymer (SMP). . That is, the body 110 may be deformed in a direction in which a load acts by decreasing the stiffness (or strength) of the fabric above the glass transition temperature (Tg).
  • Tg glass temperature
  • SMP shape memory polymer
  • the main body 110 when power is not supplied to the main body 110 , when the main body 110 is below the glass transition temperature (Tg), the deformed shape may be maintained. In addition, when power is supplied from the outside and the main body 110 becomes above the glass transition temperature (Tg), the main body 110 restores to the initial shape by the property of the shape memory polymer (SMP) to return to the memorized shape.
  • SMP shape memory polymer
  • the metal frame 120 may transmit power supplied from the outside to the body 110 .
  • the metal frame 120 may be made of a metal aluminum material that transmits power to the body 110 made of conductive fiber, and the lower portion of the body 110 corresponds to the width in the horizontal direction of the body 110 . can be coupled to In this case, a wire for receiving power from the outside may be connected to both ends of the metal frame 120 .
  • a plurality of metal frames 120 may be provided.
  • the plurality of metal frames 120 may be disposed with a predetermined interval across the width of the body 110 , and preferably may be respectively coupled to the lower portion of the body 110 .
  • the magnitude of the power supplied to the plurality of metal frames 120 may be set differently, and the tensile strength of the main body 110 may be set differently for each region using this.
  • the reinforcing material 130 may be coupled to the body 110 at a distance from the metal frame 120 .
  • the reinforcing material 130 may be made of a light and strong material of synthetic resin or plastic material (eg, FRP material, ABS material, etc.).
  • a plurality of reinforcing materials 130 may be provided and disposed under the body 110 in parallel to the metal frame 120 .
  • the thickness of the reinforcing material 130 may be formed to be thicker than the thickness of the metal frame 120 .
  • Tg glass transition temperature
  • FIG. 4 is a view showing a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio in which the overall length is deformed, according to an embodiment of the present invention.
  • the stretchable shape memory polymer composite skin 100 when electric power is applied from the outside, the stretchable shape memory polymer composite skin 100 is deformed in shape due to a decrease in stiffness (or strength) above a preset reference temperature (eg, glass transition temperature). Alternatively, it may be restored to its initial shape.
  • a preset reference temperature eg, glass transition temperature
  • a plurality of reinforcing materials 130 in the width (W) direction of the stretchable shape memory polymer composite skin 100 may be coupled to the lower portion of the stretchable shape memory polymer composite skin 100 at regular intervals, through which the stretchable shape
  • the memory polymer composite skin 100 may be made only by tensile deformation in the length (L) direction without deformation in the width (W) direction. That is, the stretchable shape memory polymer composite skin 100 may have an overall length (L+ ⁇ L) increased without a sharp increase in the load above the glass transition temperature (Tg).
  • the stretchable shape memory polymer composite skin 100 becomes below a preset reference temperature (eg, glass transition temperature), and in this case, the shape is changed due to the shape memory polymer (SMP) properties. can be maintained
  • a preset reference temperature eg, glass transition temperature
  • the stretchable shape memory polymer composite skin 100 has a memorized shape Due to the nature of the shape memory polymer (SMP) to return to its original shape, it can be restored to its initial shape.
  • 5A and 5B are views illustrating a rear view of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
  • FIGS. 1 to 5B refer to the same terms and reference numerals, and in order to avoid repeated description, reference is made to the descriptions of FIGS. 1 to 4 described above. Hereinafter, only differences between the embodiments will be described.
  • the body 110 constituting the stretchable shape memory polymer composite skin 100 has a metal frame 120 and a reinforcing material 130 across the width of the body 110, the body 110 may be coupled to the lower surface of the In this case, the metal frame 120 and the reinforcing material 130 may be formed in plurality.
  • the first metal frame 120-1 to the fifth metal frame 120-5, and the first reinforcing material 130-1 and the second reinforcing material 130-2 Each may be disposed to be spaced apart from the lower surface of the main body 110 at regular intervals.
  • the first metal frame 120-1 to the fourth metal frame 120-4 may be sequentially disposed from one end to the other end direction of the body 110 and coupled thereto, and the fourth metal frame 120-4 may be coupled thereto.
  • a first reinforcing material 130 - 1 and a second reinforcing material 130 - 2 may be respectively disposed between and coupled to the fifth metal frame 120 - 5 .
  • the first reinforcing material 130-1 is disposed between the first metal frame 120-1 and the second metal frame 120-2.
  • the second reinforcing material 130-2 is positioned between the second metal frame 120-2 and the third metal frame 120-3, and the second metal frame 120-3 and the fourth metal frame ( 120-4) may be coupled such that the third reinforcing member 130-3 and the fourth reinforcing member 130-4 are disposed between them.
  • a load required to increase the length of the main body 110 may be formed differently for each region of the main body 110 .
  • the embodiment of the present invention is not limited thereto, and the plurality of metal frames 120 and the plurality of reinforcing materials 130 may be coupled to the lower portion of the body 110 in various forms.
  • FIGS. 7A to 7C are According to an embodiment of the present invention, it is a view showing a cross-sectional view of a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio coupled to a morphing aircraft wing 200 .
  • the body 110 and the metal frame 120 of the stretchable shape memory polymer composite skin 100 are bent at both ends to form a 'C'-shaped structure in cross section.
  • the body 110 may be coupled to closely contact the outer surface of the metal frame 120 coupled from one open side. That is, the body 110 may be coupled while surrounding the outside of the metal frame 120 .
  • the adhesive layer 121 may be applied to the inner surface of the metal frame 120 to strengthen the bonding with the morphing aircraft structure.
  • the metal frame ( 120 may be a metal frame 120 disposed in the middle region A in the longitudinal direction of the front and rear of the morphing aircraft wing 200 .
  • the adhesive layer 121 is applied to the inner surface of the metal frame 120 coupled to the lower portion of the body 110 corresponding to the middle region A of the morphing aircraft wing 200 .
  • the embodiment of the present invention is not limited thereto, and the adhesive layer 121 is applied and formed on the inner surface of each of the plurality of metal frames 120 disposed under the main body 110, so that the morphing aircraft wing 200 is formed. ) and the bonding state can be maintained more firmly.
  • the external force acting on the stretchable shape memory polymer composite skin 100 may be applied along the longitudinal direction of the stretchable shape memory polymer composite skin 100 while the morphing aircraft wing 200 is deformed.
  • the morphing aircraft wing 200 is stretched and unfolded above the glass transition temperature (Tg)
  • Tg glass transition temperature
  • an external force is applied to both ends of the stretchable shape memory polymer skin 100 coupled to the morphing aircraft wing 200 in the longitudinal direction.
  • Tg glass transition temperature
  • both ends of the main body 110 of the stretchable shape memory polymer composite skin 100 wrap around and support the lower part of the morphing aircraft wing 200 . It may be formed to extend to be curved in the inward direction so as to be able to do so.
  • the morphing aircraft wing 200 may be implemented as a structure in which a hollow is formed therein, as shown in FIG. 7C , and in this case, the body 110 of the stretchable shape memory polymer composite skin 100 is a morphing aircraft In order to support the wing 200 more stably, both ends may be formed to be bent toward the inside.
  • the skin proposed in the present disclosure increases or decreases the temperature of the skin in a simple way of controlling the power flowing through the conductive fabric as a shape memory polymer composite skin by impregnating the stretchable and conductive fabric with a shape memory polymer. It can be easily deformed.
  • the skin proposed in the present disclosure may be used as a skin of a morphing wing having a variable shape and a sheet material of a space structure having a variable shape.
  • the skin proposed in the present disclosure can maintain a deformed shape without external force, and since it has a zero-Poisson ratio, it has less aerodynamic loss compared to the existing morphing skin, so that when applied to a morphing aircraft, low power and long flight time can be maintained. can do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

Disclosed is an elastic shape-memory polymer composite skin having a zero Poisson's ratio. The elastic shape-memory polymer composite skin comprises: a body formed of conductive fibers; a plurality of metal frames that are disposed on a lower portion of the body and deliver electrical power to the body; and a plurality of reinforcement members that are coupled to the lower portion of the body so as to be spaced from the plurality of metal frames, wherein the body may change temperature on the basis of the electrical power delivered from the plurality of metal frames. Accordingly, low-power, long-duration flight in a morphing aircraft can be maintained due to low aerodynamic loss.

Description

제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨Stretchable Shape Memory Polymer Composite Skin with Zero Poisson Ratio
다양한 실시 예들은 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨에 관한 것이다.Various embodiments relate to a stretchable shape memory polymer composite skin having a zero Poisson ratio.
항공기의 효율을 높이고 다양한 운용 조건을 충족시키기 위한 해결 방안으로 가변 형상 항공기 또는 모핑 구조 항공기에 대한 연구가 활발하게 진행되고 있다.As a solution to improve aircraft efficiency and satisfy various operating conditions, research on variable geometry aircraft or morphing structure aircraft is being actively conducted.
특히, 비행 상황에 따라 형상을 변형할 수 있는 모핑 구조물의 스킨은 형상이 변하는 방향으로는 유연한 강성을 가지면서 공력이 발생하는 방향으로는 강한 강성을 가질 수 있어야 한다.In particular, the skin of the morphing structure, which can change shape according to flight conditions, should be able to have flexible rigidity in the direction in which the shape is changed and strong rigidity in the direction in which aerodynamic forces are generated.
대표적인 모핑 스킨 제작 방식은 얇은 엘라스토머를 이용하는 방식, 골판지 구조(corrugated structure)를 이용하는 방식 및 세포 구조(cellular structure)를 이용하는 방식 등이 있다. 이러한 종래의 방식들은 구조가 복잡하여 제작이 쉽지 않거나 일정 수준 이상의 변형률에서는 필요한 하중이 급격이 증가하는 특성이 있다.A typical morphing skin manufacturing method includes a method using a thin elastomer, a method using a corrugated structure, and a method using a cellular structure. These conventional methods have a characteristic that it is not easy to manufacture because the structure is complicated, or the required load is rapidly increased at a strain rate above a certain level.
본 발명의 다양한 실시 예는 종래 기술의 문제점을 해결하기 위한 것으로 복잡한 구조를 가지지 않고 변형에 필요한 하중이 급격히 증가하지 않도록 하는 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨을 제공한다.Various embodiments of the present invention provide a stretchable shape memory polymer composite skin having a zero Poisson ratio that does not have a complex structure and does not rapidly increase the load required for deformation to solve the problems of the prior art.
본 문서에서 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The technical problems to be achieved in this document are not limited to the technical problems mentioned above, and other technical problems not mentioned can be clearly understood by those of ordinary skill in the art to which the present invention belongs from the description below. There will be.
본 개시의 다양한 실시 예들에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨은 전도성 섬유로 이루어진 본체, 상기 본체의 하부에 배치되어, 상기 본체로 전력을 전달하는 복수의 금속 프레임 및 상기 복수의 금속 프레임과 각각 간격을 두고 상기 본체의 하부에 결합되는 복수의 보강재를 포함하고, 상기 본체는 상기 복수의 금속 프레임으로부터 전달된 전력에 기초하여 온도가 변할 수 있다.A stretchable shape memory polymer composite skin having a zero Poisson ratio according to various embodiments of the present disclosure includes a body made of conductive fibers, a plurality of metal frames disposed under the body to transmit power to the body, and the plurality of metals and a plurality of reinforcing materials coupled to a lower portion of the main body at a distance from the frame, and the main body may change in temperature based on electric power transmitted from the plurality of metal frames.
본 개시의 다양한 실시 예들에 따른 상기 복수의 금속 프레임 및 상기 복수의 보강재는 각각 상기 본체의 폭 방향을 따라 상기 본체의 폭을 가로질러 형성될 수 있다.The plurality of metal frames and the plurality of reinforcing materials according to various embodiments of the present disclosure may be formed to cross the width of the main body along the width direction of the main body, respectively.
본 개시의 다양한 실시 예들에 따른 상기 본체는 기준온도 이상에서, 상기 본체에 작용된 외력에 의해 길이가 증가되고, 외력이 없는 경우에는 상기 본체의 원래 길이로 복원될 수 있다.The length of the main body according to various embodiments of the present disclosure is increased by an external force applied to the main body at a reference temperature or higher, and when there is no external force, the original length of the main body may be restored.
본 개시의 다양한 실시 예들에 따른 상기 본체는 기준온도 미만에서 변형된 상태로 길이가 유지될 수 있다.The length of the body according to various embodiments of the present disclosure may be maintained in a deformed state below the reference temperature.
본 개시의 다양한 실시 예들에 따른 상기 본체 및 상기 복수의 금속 프레임은 각각 일 측이 개방된 'ㄷ'자 형상으로 형성될 수 있다.Each of the body and the plurality of metal frames according to various embodiments of the present disclosure may be formed in a 'C' shape with one side open.
본 개시의 다양한 실시 예들에 따른 상기 복수의 금속 프레임은 각각 외부로부터 전력을 공급받기 위한 와이어가 연결되어 있을 수 있다.Each of the plurality of metal frames according to various embodiments of the present disclosure may be connected to a wire for receiving power from the outside.
본 개시의 다양한 실시 예들에 따른 상기 복수의 금속 프레임 각각의 일측면에는 모핑 항공기 날개와의 결합을 위한 점착층이 형성될 수 있다.An adhesive layer for bonding to a morphing aircraft wing may be formed on one side of each of the plurality of metal frames according to various embodiments of the present disclosure.
본 개시의 다양한 실시 예들에 따라 상기 모핑 항공기 날개의 하부를 커버하도록 상기 본체의 폭 방향 양단이 굴곡되어 형성될 수 있다.According to various embodiments of the present disclosure, both ends of the main body in the width direction may be bent to cover the lower portion of the morphing aircraft wing.
본 개시에서 제안하는 스킨은 신축성과 전도성이 있는 직물에 형상기억 폴리머를 함침시킨 형상기억 폴리머 복합재 스킨으로써 전도성 직물에 흐르는 전력을 조절하는 간단한 방법으로 스킨의 온도를 증가 또는 감소시켜 용이하게 변형될 수 있다.The skin proposed in the present disclosure is a shape memory polymer composite skin in which a shape memory polymer is impregnated into a stretchable and conductive fabric. have.
이와 같은 용이한 변형에 기초하여 본 개시에서 제안하는 스킨은 가변 형상을 가지는 모핑 날개의 스킨, 가변 형상을 가지는 우주 구조물의 시트 재료로 사용될 수 있다.Based on such easy deformation, the skin proposed in the present disclosure may be used as a skin of a morphing wing having a variable shape and a sheet material of a space structure having a variable shape.
또한, 본 개시에서 제안하는 스킨은 변형된 형상을 외력없이 유지할 수 있고, 제로-포아송 비를 갖기 때문에 기존의 모핑 스킨에 비해 공력 손실이 적어 모핑 항공기에 적용되면 저전력의 긴 비행 시간을 유지할 수 있도록 할 수 있다.In addition, the skin proposed in the present disclosure can maintain a deformed shape without external force, and since it has a zero-Poisson ratio, it has less aerodynamic loss compared to the existing morphing skin, so that when applied to a morphing aircraft, low power and long flight time can be maintained. can do.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Effects obtainable in the present disclosure are not limited to the above-mentioned effects, and other effects not mentioned may be clearly understood by those of ordinary skill in the art to which the present disclosure belongs from the description below. will be.
도 1은 본 발명의 일 실시 예에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 본체(110)를 제조하는 과정을 간략하게 도시한 도면이다.1 is a diagram schematically illustrating a process of manufacturing the body 110 of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
도 2는 본 발명의 일 실시 예에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 사시도를 도시한 도면이다.2 is a perspective view of a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
도 3은 본 발명의 일 실시 예에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 배면도를 도시한 도면이다.3 is a view showing a rear view of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
도 4는 본 발명의 일 실시 예에 따라, 전체 길이가 변형된 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)을 도시한 도면이다.4 is a view showing a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio in which the overall length is deformed, according to an embodiment of the present invention.
도 5a 및 도 5b는 본 발명의 일 실시 예에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 배면도를 도시한 도면이다.5A and 5B are views illustrating a rear view of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
도 6은 본 발명의 일 실시 예에 따라, 모핑 항공기 날개(200)에 결합된 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 사시도를 도시한 도면이다.6 is a perspective view of a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio coupled to a morphing aircraft wing 200 according to an embodiment of the present invention.
도 7a 내지 도 7c는 본 발명의 일 실시 예에 따라, 모핑 항공기 날개(200)에 결합된 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 단면도를 도시한 도면이다.7A to 7C are cross-sectional views illustrating a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio coupled to a morphing aircraft wing 200 according to an embodiment of the present invention.
도면의 설명과 관련하여, 동일 또는 유사한 구성요소에 대해서는 동일 또는 유사한 참조 부호가 사용될 수 있다.In connection with the description of the drawings, the same or similar reference numerals may be used for the same or similar components.
이하, 본 발명에 따른 실시예들은 첨부된 도면들을 참조하여 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 실시예들을 설명할 것이나, 본 발명의 기술적 사상은 이에 한정되거나 제한되지 않고 당업자에 의해 변형되어 다양하게 실시될 수 있다.Hereinafter, embodiments according to the present invention will be described with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same components are given the same reference numerals as much as possible even though they are indicated on different drawings. In addition, in describing the embodiment of the present invention, if it is determined that a detailed description of a related known configuration or function interferes with the understanding of the embodiment of the present invention, the detailed description thereof will be omitted. In addition, the embodiments of the present invention will be described below, but the technical spirit of the present invention is not limited thereto and may be variously implemented by those skilled in the art.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.Throughout the specification, when a part is "connected" with another part, this includes not only the case of being "directly connected" but also the case of being "indirectly connected" with another element interposed therebetween. . Throughout the specification, when a part "includes" a certain element, it means that other elements may be further included, rather than excluding other elements, unless otherwise stated. In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), (b), etc. may be used. These terms are only for distinguishing the component from other components, and the essence, order, or order of the component is not limited by the term.
도 1은 본 발명의 일 실시 예에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 본체(110)를 제조하는 과정을 간략하게 도시한 도면이다.1 is a diagram schematically illustrating a process of manufacturing the body 110 of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
도 1을 참조하면, 신축성 형상기억 폴리머 복합재 스킨(100)의 본체(110)는 신축성 및 전도성 성질을 가진 나일론 섬유 등의 직물에 전도성 분말을 섞은 형상기억 폴리머(shape memory polymer, SMP) 액상을 함침시켜 제조할 수 있다.Referring to FIG. 1 , the body 110 of the stretchable shape memory polymer composite skin 100 is impregnated with a shape memory polymer (SMP) liquid in which a conductive powder is mixed with a fabric such as nylon fiber having stretchability and conductive properties. can be manufactured by
형상기억 폴리머(SMP)는 열-기계적 특성에 의해 초기의 본체(110) 형상을 기억하여 유리전이온도(glass temperature, Tg) 이상이 되면 유연해지는 특성 및 변형 전의 형상을 기억하여 복원되려는 특성을 가질 수 있고, 반대로 유리전이온도(Tg) 이하에서는 변형된 형상을 유지하려는 특성을 가질 수 있다. 즉, 본체(110)는 유리전이온도(Tg) 이상에서 형상기억 폴리머(SMP)의 성질에 의해 직물의 강도(strength)가 변할 수 있으며, 이를 이용하여 형태가 자유롭게 변형될 수 있다. 또한, 본체(110)는 형상기억 폴리머(SMP)의 성질에 의해 유리전이온도(Tg) 이하에서는 변형된 형태를 유지할 수 있게 된다.The shape memory polymer (SMP) has the characteristic of memorizing the initial shape of the main body 110 by thermo-mechanical properties, so that it becomes flexible when the glass temperature (Tg) or higher, and the shape before deformation is remembered to be restored. Conversely, below the glass transition temperature (Tg), it may have a characteristic to maintain a deformed shape. That is, the body 110 may change the strength of the fabric depending on the properties of the shape memory polymer (SMP) above the glass transition temperature (Tg), and may be freely deformed in shape using this. In addition, the body 110 can maintain a deformed shape below the glass transition temperature (Tg) due to the properties of the shape memory polymer (SMP).
일 실시 예에서, 본체(110)는 외부로부터 인가되는 전력을 이용하여 열을 발생시키는 발열 섬유의 직물로 제조될 수 있다. 예를 들어, 본체(110)는 외부로부터 인가되는 전력의 크기에 따라 온도가 증가하거나 또는 감소할 수 있고, 특정 온도에서 형상기억 폴리머(SMP)의 성질에 의해 형태가 변형되거나, 유지될 수 있다. 이 경우, 본체(110)에는 전도성 분말을 섞은 형상기억 폴리머(SMP) 용액이 충진되거나, 또는 금속 메쉬(mesh)를 이용한 형상기억 폴리머(SMP) 복합재료가 형성되거나, 또는 히팅 페인트(heating paint)가 도포될 수 있다.In one embodiment, the body 110 may be made of a fabric of heat-generating fibers that generate heat using electric power applied from the outside. For example, the temperature of the body 110 may increase or decrease depending on the amount of power applied from the outside, and the shape may be deformed or maintained at a specific temperature by the properties of the shape memory polymer (SMP). . In this case, the body 110 is filled with a shape memory polymer (SMP) solution mixed with conductive powder, or a shape memory polymer (SMP) composite material using a metal mesh is formed, or heating paint. can be applied.
본 발명의 일 실시 예에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)은 가변 형상을 가지는 모핑(morphing) 항공기의 날개, 가변 형상을 가지는 우주 구조물 등에 결합되어 각 구조물의 변형에 영향을 미치지 않고, 제로 포아송 비(zero-poisson's ratio)를 유지하는 것을 주요 특징으로 한다. 여기서, 포아송 비(poisson's ratio)는 축 방향 응력에 대해 재료가 다른 축 방향으로 팽창 또는 수축하는 비율을 의미하며, 제로 포아송 비는 응력이 작용하는 축 방향 변형으로 인한 다른 축 방향으로의 변형이 없음을 의미할 수 있다. 이하에서는 이러한 제로 포아송 비를 기반으로 하여 구조물의 변형, 공력 손실 등의 문제를 해결할 수 있는 신축성 형상기억 폴리머 복합재 스킨(100)에 대해 보다 구체적으로 상술하기로 한다.The stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention is coupled to a wing of a morphing aircraft having a variable shape, a space structure having a variable shape, etc. to affect the deformation of each structure The main feature is to maintain a zero-Poisson's ratio without affecting Here, Poisson's ratio refers to the rate at which a material expands or contracts in another axial direction with respect to an axial stress, and a zero Poisson's ratio has no deformation in another axial direction due to an axial strain applied by the stress. can mean Hereinafter, the stretchable shape memory polymer composite skin 100 capable of solving problems such as deformation of a structure and loss of aerodynamic force based on such a zero Poisson ratio will be described in more detail.
도 2 및 도 3은 본 발명의 일 실시 예에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 사시도와 배면도를 각각 도시한다.2 and 3 show a perspective view and a rear view, respectively, of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
도 2 및 도 3을 참조하면, 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)은 본체(110)와 본체(110)의 하부에 각각 결합되는 금속 프레임(120) 및 보강재(130)로 구성될 수 있다.2 and 3, the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio is a body 110 and a metal frame 120 and a reinforcing material 130 coupled to the lower portion of the body 110, respectively. can be configured.
본체(110)는 상술한 바와 같이, 신축성 및 전도성을 가진 나일론 섬유 등의 직물에 전도성 분말을 섞은 형상기억 폴리머(shape memory polymer, SMP) 액상을 함침시켜 제조할 수 있다. 일 실시 예에서, 본체(110)는 외부로부터 공급되는 전력에 의해 온도가 증가하거나 감소할 수 있고, 특정 온도에서 형태가 변형되거나 유지될 수 있다.As described above, the body 110 may be manufactured by impregnating a liquid shape memory polymer (SMP) liquid in which a conductive powder is mixed with a fabric such as nylon fiber having elasticity and conductivity. In an embodiment, the temperature of the body 110 may increase or decrease by power supplied from the outside, and the shape may be deformed or maintained at a specific temperature.
예를 들어, 본체(110)는 외부로부터 공급된 전력에 의해 미리 설정된 유리전이온도(glass temperature, Tg) 이상이 되는 경우, 형상기억 폴리머(SMP)의 성질에 의해 형태가 용이하게 변형될 수 있다. 즉, 본체(110)는 유리전이온도(Tg) 이상에서 직물의 강성(또는 강도)이 감소하여 하중이 작용하는 방향으로 형상이 변형될 수 있다.For example, when the body 110 becomes above a preset glass temperature (Tg) by electric power supplied from the outside, the shape may be easily deformed by the properties of the shape memory polymer (SMP). . That is, the body 110 may be deformed in a direction in which a load acts by decreasing the stiffness (or strength) of the fabric above the glass transition temperature (Tg).
반대로, 본체(110)로 전력이 공급되지 않음으로써, 본체(110)가 유리전이온도(Tg) 이하가 되는 경우, 변형된 형상으로 유지될 수 있다. 또한, 외부로부터 전력이 공급되어 본체(110)가 유리전이온도(Tg) 이상이 되는 경우, 본체(110)는 기억된 형상으로 되돌아가려는 형상기억 폴리머(SMP)의 성질에 의해 다시 초기 형상으로 복원될 수 있다.Conversely, when power is not supplied to the main body 110 , when the main body 110 is below the glass transition temperature (Tg), the deformed shape may be maintained. In addition, when power is supplied from the outside and the main body 110 becomes above the glass transition temperature (Tg), the main body 110 restores to the initial shape by the property of the shape memory polymer (SMP) to return to the memorized shape. can be
금속 프레임(120)은 외부로부터 공급된 전력을 본체(110)로 전달할 수 있다. 예를 들어, 금속 프레임(120)은 전도성 섬유로 이루어진 본체(110)로 전력을 전달하는 금속의 알루미늄 소재로 제조될 수 있으며, 본체(110)의 가로 방향 폭에 대응하여 본체(110)의 하부에 결합될 수 있다. 이때, 금속 프레임(120)의 양단에는 외부로부터 전력을 공급받기 위한 와이어가 연결될 수 있다.The metal frame 120 may transmit power supplied from the outside to the body 110 . For example, the metal frame 120 may be made of a metal aluminum material that transmits power to the body 110 made of conductive fiber, and the lower portion of the body 110 corresponds to the width in the horizontal direction of the body 110 . can be coupled to In this case, a wire for receiving power from the outside may be connected to both ends of the metal frame 120 .
일 실시 예에서, 금속 프레임(120)은 복수 개로 구비될 수 있다. 복수의 금속 프레임(120)은 본체(110)의 폭을 가로질러 소정의 간격을 가지고 배치될 수 있으며, 바람직하게는 본체(110)의 하부에 각각 결합될 수 있다. 이 경우, 복수의 금속 프레임(120)에 공급되는 전력의 크기는 각각 달리 설정할 수 있고, 이를 이용하여 본체(110)의 인장강도를 영역별로 달리 설정할 수 있다.In an embodiment, a plurality of metal frames 120 may be provided. The plurality of metal frames 120 may be disposed with a predetermined interval across the width of the body 110 , and preferably may be respectively coupled to the lower portion of the body 110 . In this case, the magnitude of the power supplied to the plurality of metal frames 120 may be set differently, and the tensile strength of the main body 110 may be set differently for each region using this.
보강재(130)는 금속 프레임(120)과 간격을 두고 본체(110)에 결합될 수 있다. 예를 들어, 보강재(130)는 합성 수지 또는 플라스틱 소재(예를 들어, FRP 소재, ABS 소재, 등)의 가볍고, 견고한 재질로 제조될 수 있다. 일 실시 예에서, 보강재(130)는 복수 개로 구비되어 금속 프레임(120)과 평행하게 본체(110)의 하부에 배치될 수 있다.The reinforcing material 130 may be coupled to the body 110 at a distance from the metal frame 120 . For example, the reinforcing material 130 may be made of a light and strong material of synthetic resin or plastic material (eg, FRP material, ABS material, etc.). In an embodiment, a plurality of reinforcing materials 130 may be provided and disposed under the body 110 in parallel to the metal frame 120 .
또한, 일 실시 예에서, 보강재(130)의 두께는 금속 프레임(120)의 두께보다 두껍게 형성될 수 있다. 예컨대, 유리전이온도(Tg)에서 외력에 의해 본체(110)의 형태가 변형되는 경우, 보강재(130)는 본체(110)의 최대 변형률에는 영향을 주지 않으면서, 본체(110)의 가로 방향 변형률이 최소가 되도록 본체(110)를 보다 견고하게 고정 지지할 수 있다.In addition, in an embodiment, the thickness of the reinforcing material 130 may be formed to be thicker than the thickness of the metal frame 120 . For example, when the shape of the body 110 is deformed by an external force at the glass transition temperature (Tg), the reinforcing material 130 does not affect the maximum strain of the body 110, and the transverse strain of the body 110 The main body 110 can be fixed and supported more firmly so as to minimize this.
도 4는 본 발명의 일 실시 예에 따라, 전체 길이가 변형된 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)을 도시한 도면이다.4 is a view showing a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio in which the overall length is deformed, according to an embodiment of the present invention.
도 4를 참조하면, 외부로부터 전력이 인가되는 경우 신축성 형상기억 폴리머 복합재 스킨(100)은 미리 설정된 기준온도(예를 들어, 유리전이온도) 이상에서 강성(또는 강도)이 감소하여 형상이 변형되거나 또는 초기 형상으로 복원될 수 있다. 이때, 신축성 형상기억 폴리머 복합재 스킨(100)의 하부에는 신축성 형상기억 폴리머 복합재 스킨(100)의 폭(W) 방향으로 복수의 보강재(130)가 일정한 간격을 가지고 결합될 수 있으며, 이를 통해 신축성 형상기억 폴리머 복합재 스킨(100)은 폭(W) 방향의 변형없이 길이(L) 방향의 인장 변형만 이루어질 수 있다. 즉, 신축성 형상기억 폴리머 복합재 스킨(100)은 유리전이온도(Tg) 이상에서 하중의 급격한 증가 없이 전체 길이(L+ΔL)가 증가될 수 있다.Referring to FIG. 4 , when electric power is applied from the outside, the stretchable shape memory polymer composite skin 100 is deformed in shape due to a decrease in stiffness (or strength) above a preset reference temperature (eg, glass transition temperature). Alternatively, it may be restored to its initial shape. At this time, a plurality of reinforcing materials 130 in the width (W) direction of the stretchable shape memory polymer composite skin 100 may be coupled to the lower portion of the stretchable shape memory polymer composite skin 100 at regular intervals, through which the stretchable shape The memory polymer composite skin 100 may be made only by tensile deformation in the length (L) direction without deformation in the width (W) direction. That is, the stretchable shape memory polymer composite skin 100 may have an overall length (L+ΔL) increased without a sharp increase in the load above the glass transition temperature (Tg).
반대로, 외부로부터 전력이 공급되지 않은 경우 신축성 형상기억 폴리머 복합재 스킨(100)은 미리 설정된 기준온도(예를 들어, 유리전이온도) 이하가 되고, 이 경우 형상기억 폴리머(SMP) 성질에 의해 형상이 유지될 수 있다. 또한, 외부로부터 전력이 공급되어 신축성 형상기억 폴리머 복합재 스킨(100)이 다시 미리 설정된 기준온도(예를 들어, 유리전이온도) 이상이 되는 경우, 신축성 형상기억 폴리머 복합재 스킨(100)은 기억된 형상으로 되돌아가려는 형상기억 폴리머(SMP)의 성질에 의해 다시 초기 형상으로 복원될 수 있다.Conversely, when power is not supplied from the outside, the stretchable shape memory polymer composite skin 100 becomes below a preset reference temperature (eg, glass transition temperature), and in this case, the shape is changed due to the shape memory polymer (SMP) properties. can be maintained In addition, when electric power is supplied from the outside and the stretchable shape memory polymer composite skin 100 becomes above a preset reference temperature (eg, glass transition temperature) again, the stretchable shape memory polymer composite skin 100 has a memorized shape Due to the nature of the shape memory polymer (SMP) to return to its original shape, it can be restored to its initial shape.
도 5a 및 도 5b는 본 발명의 일 실시 예에 따른 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 배면도를 도시한 도면이다.5A and 5B are views illustrating a rear view of the stretchable shape memory polymer composite skin 100 having a zero Poisson ratio according to an embodiment of the present invention.
한편, 도 1 내지 도 5b의 동일한 구성은 동일한 용어 및 도면부호를 지칭하며, 반복 설명을 피하기 위해 전술한 도 1 내지 도 4의 설명을 참조한다. 하기에는 실시 예 간의 차이점에 대해서만 설명한다.Meanwhile, the same components in FIGS. 1 to 5B refer to the same terms and reference numerals, and in order to avoid repeated description, reference is made to the descriptions of FIGS. 1 to 4 described above. Hereinafter, only differences between the embodiments will be described.
도 5a 및 도 5b를 참조하면, 신축성 형상기억 폴리머 복합재 스킨(100)을 구성하는 본체(110)에는 금속 프레임(120)과 보강재(130)가 본체(110)의 폭을 가로질러 본체(110)의 하부면에 결합될 수 있다. 이 경우, 금속 프레임(120)과 보강재(130)는 복수 개로 형성될 수 있다.5A and 5B, the body 110 constituting the stretchable shape memory polymer composite skin 100 has a metal frame 120 and a reinforcing material 130 across the width of the body 110, the body 110 may be coupled to the lower surface of the In this case, the metal frame 120 and the reinforcing material 130 may be formed in plurality.
예를 들어, 도 5a에 도시되는 바와 같이, 제1 금속 프레임(120-1) 내지 제5 금속 프레임(120-5)과, 제1 보강재(130-1) 및 제2 보강재(130-2) 각각은 본체(110)의 하부면에 일정한 간격을 가지고 이격하여 배치될 수 있다. 이때, 제1 금속 프레임(120-1) 내지 제4 금속 프레임(120-4)은 본체(110)의 일단으로부터 타단 방향으로 순차적으로 배치되어 결합될 수 있고, 제4 금속 프레임(120-4)과 제5 금속 프레임(120-5) 사이에는 제1 보강재(130-1) 및 제2 보강재(130-2)가 각각 배치되어 결합될 수 있다.For example, as shown in FIG. 5A , the first metal frame 120-1 to the fifth metal frame 120-5, and the first reinforcing material 130-1 and the second reinforcing material 130-2 Each may be disposed to be spaced apart from the lower surface of the main body 110 at regular intervals. At this time, the first metal frame 120-1 to the fourth metal frame 120-4 may be sequentially disposed from one end to the other end direction of the body 110 and coupled thereto, and the fourth metal frame 120-4 may be coupled thereto. A first reinforcing material 130 - 1 and a second reinforcing material 130 - 2 may be respectively disposed between and coupled to the fifth metal frame 120 - 5 .
예컨대, 제1 금속 프레임(120-1) 내지 제4 금속 프레임(120-4)에 전력을 인가하여 본체(110)의 일단에서의 온도를 본체(110)의 타단에서의 온도보다 높게 형성함으로써, 본체(110)의 일단 방향으로의 길이 증가를 위한 하중을 감소시킬 수 있다.For example, by applying power to the first metal frame 120-1 to the fourth metal frame 120-4 to form a temperature at one end of the body 110 higher than the temperature at the other end of the body 110, It is possible to reduce the load for increasing the length in the direction of one end of the body 110 .
또한, 본 발명의 다른 일 실시 예에 따르면, 도 5b에 도시되는 바와 같이, 제1 금속 프레임(120-1)과 제2 금속 프레임(120-2) 사이에 제1 보강재(130-1)가 위치하고, 제2 금속 프레임(120-2)과 제3 금속 프레임(120-3) 사이에 제2 보강재(130-2)가 위치하며, 제2 금속 프레임(120-3)과 제4 금속 프레임(120-4) 사이에 제3 보강재(130-3) 및 제4 보강재(130-4)가 배치되도록 결합될 수 있다. 이를 통해, 본체(110)의 길이 증가를 위해 필요한 하중을 본체(110)의 영역별로 상이하게 형성할 수 있다. 다만, 본 발명의 실시 예는 이에 한정되는 것은 아니며, 복수의 금속 프레임(120) 및 복수의 보강재(130)는 본체(110)의 하부에 다양한 형태로 결합될 수 있다.In addition, according to another embodiment of the present invention, as shown in FIG. 5B , the first reinforcing material 130-1 is disposed between the first metal frame 120-1 and the second metal frame 120-2. The second reinforcing material 130-2 is positioned between the second metal frame 120-2 and the third metal frame 120-3, and the second metal frame 120-3 and the fourth metal frame ( 120-4) may be coupled such that the third reinforcing member 130-3 and the fourth reinforcing member 130-4 are disposed between them. Through this, a load required to increase the length of the main body 110 may be formed differently for each region of the main body 110 . However, the embodiment of the present invention is not limited thereto, and the plurality of metal frames 120 and the plurality of reinforcing materials 130 may be coupled to the lower portion of the body 110 in various forms.
도 6은 본 발명의 일 실시 예에 따라, 모핑 항공기 날개(200)에 결합된 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 사시도를 도시한 도면이고, 도 7a 내지 도 7c는 본 발명의 일 실시 예에 따라, 모핑 항공기 날개(200)에 결합된 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨(100)의 단면도를 도시한 도면이다.6 is a perspective view of a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio coupled to a morphing aircraft wing 200 according to an embodiment of the present invention, and FIGS. 7A to 7C are According to an embodiment of the present invention, it is a view showing a cross-sectional view of a stretchable shape memory polymer composite skin 100 having a zero Poisson ratio coupled to a morphing aircraft wing 200 .
먼저, 도 6 및 도 7a를 참조하면, 신축성 형상기억 폴리머 복합재 스킨(100)의 본체(110)와 금속 프레임(120)은 양끝단이 굴곡되어 단면이 'ㄷ'자 구조로 형성될 수 있다. 예컨대, 본체(110)는 개방된 일 측으로부터 결합된 금속 프레임(120)의 외측면과 밀착하도록 결합될 수 있다. 즉, 본체(110)는 금속 프레임(120)의 외측을 감싸며 결합될 수 있다. 이때, 금속 프레임(120)의 내측 일면에는 점착층(121)이 도포되어 모핑 항공기 구조물과의 결합을 강화시킬 수 있다.First, referring to FIGS. 6 and 7A , the body 110 and the metal frame 120 of the stretchable shape memory polymer composite skin 100 are bent at both ends to form a 'C'-shaped structure in cross section. For example, the body 110 may be coupled to closely contact the outer surface of the metal frame 120 coupled from one open side. That is, the body 110 may be coupled while surrounding the outside of the metal frame 120 . In this case, the adhesive layer 121 may be applied to the inner surface of the metal frame 120 to strengthen the bonding with the morphing aircraft structure.
일 실시 예에서, 모핑 항공기 날개(200)의 길이를 따라 복수의 금속 프레임(120)이 소정의 간격으로 각각 배치되는 경우, 복수의 금속 프레임(120) 중 점착층(121)이 형성된 금속 프레임(120)은 모핑 항공기 날개(200)의 전후 길이 방향에 있어서의 중간 영역(A)에 배치된 금속 프레임(120)일 수 있다.In one embodiment, when a plurality of metal frames 120 are respectively disposed at predetermined intervals along the length of the morphing aircraft wing 200, the metal frame ( 120 may be a metal frame 120 disposed in the middle region A in the longitudinal direction of the front and rear of the morphing aircraft wing 200 .
즉, 도 6에 도시되는 바와 같이, 모핑 항공기 날개(200)의 중간 영역(A)에 대응하는 본체(110) 하부에 결합된 금속 프레임(120)의 내측 일면에 점착층(121)이 도포되어 형성될 수 있다. 다만, 본 발명의 실시 예는 이에 한정되는 것은 아니며, 본체(110) 하부에 배치된 복수의 금속 프레임(120) 각각의 내측 일면에 점착층(121)이 도포되어 형성됨으로써, 모핑 항공기 날개(200)와의 결합상태를 보다 견고하게 유지시킬 수 있다.That is, as shown in FIG. 6 , the adhesive layer 121 is applied to the inner surface of the metal frame 120 coupled to the lower portion of the body 110 corresponding to the middle region A of the morphing aircraft wing 200 . can be formed. However, the embodiment of the present invention is not limited thereto, and the adhesive layer 121 is applied and formed on the inner surface of each of the plurality of metal frames 120 disposed under the main body 110, so that the morphing aircraft wing 200 is formed. ) and the bonding state can be maintained more firmly.
일 실시 예에서, 신축성 형상기억 폴리머 복합재 스킨(100)에 작용하는 외력은 모핑 항공기 날개(200)가 변형되면서 신축성 형상기억 폴리머 복합재 스킨(100)의 길이 방향을 따라 인가될 수 있다. 예를 들어, 유리전이온도(Tg) 이상에서 모핑 항공기 날개(200)가 늘어나면서 펼쳐지는 경우, 모핑 항공기 날개(200)에 결합된 신축성 형상기억 폴리머 스킨(100)의 길이 방향 양단에는 외력이 가해질 수 있다. 즉, 모핑 항공기 날개(200)의 변형에 의해 작용하는 외력에 따라, 신축성 형상기억 폴리머 복합재 스킨(100)의 길이가 가변될 수 있다.In one embodiment, the external force acting on the stretchable shape memory polymer composite skin 100 may be applied along the longitudinal direction of the stretchable shape memory polymer composite skin 100 while the morphing aircraft wing 200 is deformed. For example, when the morphing aircraft wing 200 is stretched and unfolded above the glass transition temperature (Tg), an external force is applied to both ends of the stretchable shape memory polymer skin 100 coupled to the morphing aircraft wing 200 in the longitudinal direction. can That is, according to the external force acting by the deformation of the morphing aircraft wing 200, the length of the stretchable shape memory polymer composite skin 100 may be varied.
반대로, 유리전이온도(Tg) 이상에서 신축성 형상기억 폴리머 복합재 스킨(100)에 외력이 작용하지 않는 경우, 신축성 형상기억 폴리머 복합재 스킨(100)은 형상기억 폴리머(SMP)의 성질에 의해 원래의 길이를 가진 초기 형상으로 복원될 수 있다.다음으로, 7b 및 7c를 참조하면, 신축성 형상기억 폴리머 복합재 스킨(100)의 본체(110)의 양끝단은 모핑 항공기 날개(200)의 하부를 감싸 지지할 수 있도록 내측 방향으로 굴곡지게 연장 형성될 수 있다. 예를 들어, 모핑 항공기 날개(200)는 도 7c에 도시되는 바와 같이, 내부에 중공이 형성된 구조물로 구현될 수도 있으며, 이 경우 신축성 형상기억 폴리머 복합재 스킨(100)의 본체(110)는 모핑 항공기 날개(200)를 보다 안정적으로 지지하기 위해 양끝단이 내측을 향하도록 굴곡지게 형성될 수 있다.Conversely, when an external force does not act on the stretchable shape memory polymer composite skin 100 above the glass transition temperature (Tg), the stretchable shape memory polymer composite skin 100 has the original length due to the properties of the shape memory polymer (SMP). It can be restored to its initial shape with. Next, referring to 7b and 7c, both ends of the main body 110 of the stretchable shape memory polymer composite skin 100 wrap around and support the lower part of the morphing aircraft wing 200 . It may be formed to extend to be curved in the inward direction so as to be able to do so. For example, the morphing aircraft wing 200 may be implemented as a structure in which a hollow is formed therein, as shown in FIG. 7C , and in this case, the body 110 of the stretchable shape memory polymer composite skin 100 is a morphing aircraft In order to support the wing 200 more stably, both ends may be formed to be bent toward the inside.
상술한 바와 같이, 본 개시에서 제안하는 스킨은 신축성과 전도성이 있는 직물에 형상기억 폴리머를 함침시켜 형상기억 폴리머 복합재 스킨으로써 전도성 직물에 흐르는 전력을 조절하는 간단한 방법으로 스킨의 온도를 증가 또는 감소시켜 용이하게 변형될 수 있다.As described above, the skin proposed in the present disclosure increases or decreases the temperature of the skin in a simple way of controlling the power flowing through the conductive fabric as a shape memory polymer composite skin by impregnating the stretchable and conductive fabric with a shape memory polymer. It can be easily deformed.
이와 같은 용이한 변형에 기초하여 본 개시에서 제안하는 스킨은 가변 형상을 가지는 모핑 날개의 스킨, 가변 형상을 가지는 우주 구조물의 시트 재료로 사용될 수 있다.Based on such easy deformation, the skin proposed in the present disclosure may be used as a skin of a morphing wing having a variable shape and a sheet material of a space structure having a variable shape.
또한, 본 개시에서 제안하는 스킨은 변형된 형상을 외력없이 유지할 수 있고, 제로-포아송 비를 갖기 때문에 기존의 모핑 스킨에 비해 공력 손실이 적어 모핑 항공기에 적용되면 저전력의 긴 비행 시간을 유지할 수 있도록 할 수 있다.In addition, the skin proposed in the present disclosure can maintain a deformed shape without external force, and since it has a zero-Poisson ratio, it has less aerodynamic loss compared to the existing morphing skin, so that when applied to a morphing aircraft, low power and long flight time can be maintained. can do.
이상에서와 같이 도면과 명세서에서 최적 실시예가 개시되었다. 여기서 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.As described above, an optimal embodiment has been disclosed in the drawings and the specification. Although specific terms are used herein, they are used only for the purpose of describing the present invention, and are not used to limit the meaning or scope of the present invention described in the claims. Therefore, it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible therefrom. Therefore, the true technical protection scope of the present invention should be determined by the technical spirit of the appended claims.

Claims (8)

  1. 제로 포아송 비를 갖는 신축성 형상기억 폴리머 복합재 스킨으로서,A stretchable shape memory polymer composite skin having a zero Poisson ratio, comprising:
    전도성 섬유로 이루어진 본체;a body made of conductive fibers;
    상기 본체의 하부에 배치되어, 상기 본체로 전력을 전달하는 복수의 금속 프레임; 및a plurality of metal frames disposed under the main body to transmit power to the main body; and
    상기 복수의 금속 프레임과 각각 간격을 두고 상기 본체의 하부에 결합되는 복수의 보강재를 포함하고,and a plurality of reinforcing materials coupled to the lower portion of the body at intervals from the plurality of metal frames, respectively;
    상기 본체는 상기 복수의 금속 프레임으로부터 전달된 전력에 기초하여 온도가 변하는, 신축성 형상기억 폴리머 복합재 스킨.The body is a stretchable shape memory polymer composite skin whose temperature changes based on the electric power transmitted from the plurality of metal frames.
  2. 제1항에 있어서,According to claim 1,
    상기 복수의 금속 프레임 및 상기 복수의 보강재는 각각 상기 본체의 폭 방향을 따라 상기 본체의 폭을 가로질러 형성되는, 신축성 형상기억 폴리머 복합재 스킨.The plurality of metal frames and the plurality of reinforcing materials are each formed across the width of the body along the width direction of the body, a stretchable shape memory polymer composite skin.
  3. 제1항에 있어서,According to claim 1,
    상기 본체는 기준온도 이상에서, 상기 본체에 작용된 외력에 의해 길이가 증가되고, 외력이 없는 경우의 상기 본체의 길이로 복원되는, 신축성 향상 기억 폴리머 복합재 스킨.The body is above the reference temperature, the length is increased by an external force applied to the body, and restored to the length of the body in the absence of an external force, stretch-improving memory polymer composite skin.
  4. 제1항에 있어서,According to claim 1,
    상기 본체는 기준온도 미만에서 변형된 길이를 가진 상태로 형상이 유지되는, 신축성 형상기억 폴리머 복합재 스킨.The body is a stretchable shape memory polymer composite skin in which the shape is maintained in a state with a deformed length below the reference temperature.
  5. 제1항에 있어서,According to claim 1,
    상기 본체 및 상기 복수의 금속 프레임은 각각 일 측이 개방된 'ㄷ'자 형상으로 형성되는, 신축성 형상기억 폴리머 복합재 스킨.The body and the plurality of metal frames are each formed in a 'C' shape with one open side, a stretchable shape memory polymer composite skin.
  6. 제1항에 있어서,According to claim 1,
    상기 복수의 금속 프레임은 각각 외부로부터 전력을 공급받기 위한 와이어가 연결되어 있는, 신축성 형상기억 폴리머 복합재 스킨.The plurality of metal frames are each connected to a wire for receiving power from the outside, a stretchable shape memory polymer composite skin.
  7. 제1항에 있어서,According to claim 1,
    상기 복수의 금속 프레임 각각의 일측면에는 모핑 항공기 날개와의 결합을 위한 점착층이 형성되는, 신축성 형상기억 폴리머 복합재 스킨.A stretchable shape memory polymer composite skin having an adhesive layer formed on one side of each of the plurality of metal frames for bonding with a morphing aircraft wing.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 모핑 항공기 날개의 하부를 커버하도록 상기 본체의 폭 방향 양단이 굴곡되어 형성되는, 신축성 형상기억 폴리머 복합재 스킨.A stretchable shape memory polymer composite skin that is formed by bending both ends of the body in the width direction to cover the lower portion of the morphing aircraft wing.
PCT/KR2020/015251 2020-06-23 2020-11-03 Elastic shape-memory polymer composite skin having zero poisson's ratio WO2021261676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020007338.6T DE112020007338T5 (en) 2020-06-23 2020-11-03 ZERO POISSON RATING STRETCHABLE SHAPE MEMORY POLYMER COMPOUND SKIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200076203A KR102343337B1 (en) 2020-06-23 2020-06-23 Stretchable shape memory polymer composite skin with zero-poisson ratio
KR10-2020-0076203 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261676A1 true WO2021261676A1 (en) 2021-12-30

Family

ID=79281463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/015251 WO2021261676A1 (en) 2020-06-23 2020-11-03 Elastic shape-memory polymer composite skin having zero poisson's ratio

Country Status (3)

Country Link
KR (1) KR102343337B1 (en)
DE (1) DE112020007338T5 (en)
WO (1) WO2021261676A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023112229B3 (en) 2023-05-10 2024-04-25 Hochschule Bremen, Körperschaft des öffentlichen Rechts Morphing structure with controllable degrees of freedom

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130089148A (en) * 2010-06-25 2013-08-09 더 보잉 컴파니 Composite structures having integrated stiffeners and method of making the same
KR20130117589A (en) * 2012-04-18 2013-10-28 한국과학기술원 Flap morphing wing
US20140255655A1 (en) * 2012-10-05 2014-09-11 The Procter & Gamble Company Fibrous paper structures utilizing waterborne shape memory polymers
KR20150056340A (en) * 2013-11-15 2015-05-26 인제대학교 산학협력단 Flap morphing wing using electroactive polymer
KR20180084383A (en) * 2017-01-17 2018-07-25 한국항공대학교산학협력단 Shape memory morphing structure using kirigami patterns

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045330B2 (en) * 2007-09-21 2012-10-10 東レ株式会社 Manufacturing method of fiber reinforced plastic structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130089148A (en) * 2010-06-25 2013-08-09 더 보잉 컴파니 Composite structures having integrated stiffeners and method of making the same
KR20130117589A (en) * 2012-04-18 2013-10-28 한국과학기술원 Flap morphing wing
US20140255655A1 (en) * 2012-10-05 2014-09-11 The Procter & Gamble Company Fibrous paper structures utilizing waterborne shape memory polymers
KR20150056340A (en) * 2013-11-15 2015-05-26 인제대학교 산학협력단 Flap morphing wing using electroactive polymer
KR20180084383A (en) * 2017-01-17 2018-07-25 한국항공대학교산학협력단 Shape memory morphing structure using kirigami patterns

Also Published As

Publication number Publication date
DE112020007338T5 (en) 2023-04-06
KR102343337B1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2021261676A1 (en) Elastic shape-memory polymer composite skin having zero poisson's ratio
US6076766A (en) Folding wing for an aircraft
CA2141525C (en) Smart skin array woven fiber optic ribbon and arrays and packaging thereof
US5256468A (en) Smart skin array woven fiber optic ribbon and arrays and packaging thereof
WO2010047526A2 (en) Method for producing thermoplastic/continuous fiber hybrid complex
US6052502A (en) Ribbon optical cable having improved strength
RU98113150A (en) TRANSMISSION TO MOVE THE PANELS SUPPLYED BY SOLAR ELEMENTS ON THE SPACE VEHICLE
WO2001075499A2 (en) Fiber optic cable having a strength member
CN111538126B (en) Resistance to compression optical cable
CN209281035U (en) A kind of symmetrical parallel butterfly optical cable
US5922446A (en) Structural members with large unidirectional rigidities
CN113703107A (en) Optical fiber ribbon cable
CN106240847A (en) A kind of even load of sun blanket, tensioning, displacement compensating mechanism
CN112109877A (en) Novel morphing wing based on piezoelectric drive
WO2018135739A1 (en) Shape memory morphing member using kirigami pattern
CN207944344U (en) One kind becoming expansion compensation device with bridge cable is differential
US10479478B2 (en) Composite material suitable for a morphing skin
US10788622B2 (en) Optically conductive hybrid cable
US20130316128A1 (en) Carbon-fiber-reinforced plastic structure
CN114406997B (en) Sequential rigidity adjusting bionic structure-perception soft folding paper bending module
EP2783981A1 (en) Bar of composite matrix material
JP2023530773A (en) Photoelectric composite cable and communication system
EP0475494A1 (en) Passive coupler for fibre-optics
CN212229254U (en) Oval optical cable with delta-shaped reinforcing ribs
CN215376972U (en) High-temperature-resistant anti-interference flexible control cable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942218

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20942218

Country of ref document: EP

Kind code of ref document: A1