JP5045330B2 - Manufacturing method of fiber reinforced plastic structure - Google Patents

Manufacturing method of fiber reinforced plastic structure Download PDF

Info

Publication number
JP5045330B2
JP5045330B2 JP2007244863A JP2007244863A JP5045330B2 JP 5045330 B2 JP5045330 B2 JP 5045330B2 JP 2007244863 A JP2007244863 A JP 2007244863A JP 2007244863 A JP2007244863 A JP 2007244863A JP 5045330 B2 JP5045330 B2 JP 5045330B2
Authority
JP
Japan
Prior art keywords
resin
reinforcing
reinforced plastic
fiber
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007244863A
Other languages
Japanese (ja)
Other versions
JP2009073070A5 (en
JP2009073070A (en
Inventor
隆造 木部
信雄 浅原
知行 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2007244863A priority Critical patent/JP5045330B2/en
Publication of JP2009073070A publication Critical patent/JP2009073070A/en
Publication of JP2009073070A5 publication Critical patent/JP2009073070A5/ja
Application granted granted Critical
Publication of JP5045330B2 publication Critical patent/JP5045330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

この発明は、例えば、航空機などの一次構造部材として好適に用いることができる、強化炭素繊維とマトリクス樹脂とからなる繊維強化プラスチック構造体の製造方法に関する。   The present invention relates to a method for manufacturing a fiber-reinforced plastic structure composed of reinforced carbon fibers and a matrix resin, which can be suitably used as a primary structure member such as an aircraft.

現在、繊維強化プラスチック製の複合材料が、各種産業分野で使用されている。特に、航空宇宙分野においては、構造設計に軽量化、高強度化が要求されるため、航空機の主翼(または尾翼)のリブなどに用いられる構造部材が、繊維強化プラスチック製の複合材料によって製造されることが多くなってきている。   Currently, fiber reinforced plastic composite materials are used in various industrial fields. In particular, in the aerospace field, since structural design requires weight reduction and high strength, structural members used for the ribs of the main wing (or tail wing) of aircraft are manufactured by composite materials made of fiber reinforced plastic. There is a lot to be done.

前記構造部材の板面と補強部材とを組み合わせ、座屈剛性を向上させる技術手段は知られている。構造部材に補強部材を取り付けるための従来の手法としては、
(1)構造部材と補強材とを別々に成形した後、構造部材の表面の適所にリベット打ちによって固定する手法、
(2)成型品形状に形成された型面を有する上下金型の下型所定位置にブラケットを配置し、しかる後、上下金型を型締加圧して成型品形状にプレス成形すると同時に、その所定位置にブラケットを一体化させる、特許文献1に記載の手法、
(3)成形型の上に強化繊維布帛と、樹脂拡散通路形成部材を配置して、成形面全体をバッグ材で覆い、注入した樹脂を硬化してスキン−ストリンガー構造部材を製造する、特許文献2に記載の手法、
(4)下型成形冶具の上に熱硬化性フィルムおよびドライプリフォームを積層する工程と、前記ドライプリフォームの上に熱硬化性の接着剤を介して、あらかじめ成形した補強部材を配置する工程と、前記補強部材の上から真空バッグフィルムを被せて、前記補強部材と前記熱硬化性樹脂フィルムと前記ドライプリフォームとを密封し、密封した部分から空気を排出する工程と、前記真空バッグフィルムで密封して空気を排出した部分を加熱する工程と、を含む特許文献3に記載の手法、
(5)成型冶具内に、2次元織物および3次元織物のいずれか一方である繊物部材と、この織物部材とは異なる他部材とを並べて、内部を密封する工程と、成型冶具内に樹脂を注入して織物部材に樹脂を含浸させる工程と、成型冶具を加熱することによって、樹脂を硬化して織物部材および他部材とを一体化させる工程と、を含む特許文献1に記載の手法、などが挙げられる。
A technical means for improving the buckling rigidity by combining the plate surface of the structural member and the reinforcing member is known. As a conventional method for attaching a reinforcing member to a structural member,
(1) A method in which the structural member and the reinforcing material are separately molded, and then fixed by riveting in place on the surface of the structural member.
(2) A bracket is disposed at a predetermined position of the lower mold of the upper and lower molds having the mold surface formed in the shape of the molded product, and then the upper and lower molds are clamped and pressed into the molded product shape, and at the same time, A method described in Patent Document 1 for integrating a bracket at a predetermined position,
(3) A reinforcing fiber fabric and a resin diffusion passage forming member are arranged on a mold, the entire molding surface is covered with a bag material, and the injected resin is cured to produce a skin-stringer structural member. 2, the method described in
(4) a step of laminating a thermosetting film and a dry preform on the lower mold jig, and a step of arranging a pre-formed reinforcing member via a thermosetting adhesive on the dry preform; Covering the reinforcing member with a vacuum bag film, sealing the reinforcing member, the thermosetting resin film, and the dry preform, and discharging air from the sealed portion; and sealing with the vacuum bag film Heating the portion from which the air has been discharged, and the method described in Patent Document 3,
(5) A step of arranging a fine member that is one of a two-dimensional fabric and a three-dimensional fabric in the molding jig and another member different from the textile member and sealing the inside, and a resin in the molding jig A method described in Patent Document 1, including a step of injecting a resin into a fabric member and heating the molding jig to cure the resin and integrate the fabric member and the other member, Etc.

前記(1)の手法においては、リベット打ちなどの作業は一般に煩雑になり、生産性を悪くしてしまう問題があった。前記リベット打ちなどの作業を無くすためには、補強部材を構造部材に自動でリベット打ちするなどの大がかりな設備が必要であり、このような設備が強化繊維プラスチック構造体の製造工程を複雑にし、製造コストを引き上げてしまう。   In the method (1), operations such as riveting are generally complicated, and there is a problem that productivity is deteriorated. In order to eliminate the work such as riveting, a large-scale equipment such as automatically riveting the reinforcing member to the structural member is necessary, and such equipment complicates the manufacturing process of the reinforced fiber plastic structure, Increase manufacturing costs.

前記(2)の手法においては、下型に合う上型を備える必要があり、大型構造物を製作した場合に、製造コスト面と重量面から多くの問題があった。   In the method (2), it is necessary to provide an upper mold that matches the lower mold, and there are many problems in terms of manufacturing cost and weight when a large structure is manufactured.

前記(3)、(4)の手法においては、前記補強部材と板状体成形材料、またはスキンとストリンガーとを密封する工程において、密封媒体が突っ張らないように注意し、密封媒体を補強部材形状、またはストリンガー形状に沿わせる必要があり、一般に作業時間が長くなり、生産性を悪くしてしまう。特に密封した部分から空気を排出する工程において、密封媒体を補強部材形状、またはストリンガー形状に正しく沿わせていないと、密封媒体が突っ張り破れてしまう問題がある。
前記(5)の手法においては、成形冶具内に織物部材および他部材を並べて配置する際に、お互いの部材どうしの位置を制御できない問題がある。また、可撓性のバッグによって織物を複雑形状に覆い、バッグの内部を密閉して複雑形状に沿わせる過程において、バッグ形状の制御が困難であるため、織物に皺が発生し、強度が著しく低下するという問題がある。
特開昭56−10413号公報 特開2003−53851号公報 特開2003−11231号公報 特許第3423657号公報
In the methods (3) and (4), in the step of sealing the reinforcing member and the plate-shaped body molding material, or the skin and the stringer, care is taken so that the sealing medium does not stretch, and the sealing medium is shaped into the reinforcing member. Or, it is necessary to follow the stringer shape, which generally increases the work time and deteriorates the productivity. In particular, in the step of exhausting air from the sealed portion, there is a problem that the sealing medium is stretched and broken if the sealing medium is not properly aligned with the reinforcing member shape or the stringer shape.
In the method (5), there is a problem that the positions of the members cannot be controlled when the woven member and the other member are arranged side by side in the forming jig. In addition, it is difficult to control the shape of the bag in the process of covering the fabric in a complicated shape with a flexible bag and sealing the inside of the bag so that the bag conforms to the complicated shape. There is a problem of lowering.
JP 56-10413 A JP 2003-53851 A JP 2003-11231 A Japanese Patent No. 3423657

従来の、構造部材に補強部材を取り付けるための手法において、
前記(1)の手法においては、リベット打ちなどの作業は一般に煩雑になり、生産性を悪くしてしまう、
前記(2)の手法においては、上下金型を型締加圧して成型品形状にプレス成形すると同時に、その所定位置にブラケットを一体化させるため、生産性は改善されるが、下型に合う上型を備える必要があり、大型構造物を製作した場合に、製造コストを引き上げてしまう、
前記(3)、(4)の手法においては、上下金型を使用しないため、製造コスト面と重量面からの問題は改善されるが、前記補強部材と板状体成形材料、またはスキンとストリンガーとを密封する工程において、密封媒体が突っ張らないように注意し、密封媒体を補強部材形状、またはストリンガー形状に沿わせる必要があり、一般に作業時間が長くなり、生産性を悪くしてしまう、
前記(5)の手法においては、成形冶具内に織物部材および他部材を並べて配置する際に、お互いの部材どうしの位置を制御できない問題がある。また、可撓性のバッグによって織物を複雑形状に覆う場合には、織物に皺が発生し、強度が著しく低下してしまう、
という問題があった。
In a conventional method for attaching a reinforcing member to a structural member,
In the method (1), the operation such as riveting is generally complicated and the productivity is deteriorated.
In the method (2), the upper and lower molds are pressed and pressed into a molded product shape, and at the same time, the bracket is integrated at the predetermined position, so the productivity is improved, but it fits the lower mold. It is necessary to provide an upper mold, and when manufacturing a large structure, the manufacturing cost will be increased.
In the methods (3) and (4), since the upper and lower molds are not used, the problems from the manufacturing cost and weight are improved. However, the reinforcing member and the plate-shaped body molding material, or the skin and the stringer are improved. In the process of sealing, it is necessary to make sure that the sealing medium does not stretch, and it is necessary to make the sealing medium conform to the shape of the reinforcing member or the stringer shape, which generally increases the work time and deteriorates the productivity.
In the method (5), there is a problem that the positions of the members cannot be controlled when the woven member and the other member are arranged side by side in the forming jig. In addition, when covering the woven fabric in a complicated shape with a flexible bag, wrinkles occur in the woven fabric, and the strength is significantly reduced.
There was a problem.

本発明は、かかる従来技術の背景に鑑み、例えば、航空機用一次構造部材として用いられ、信頼性に優れる繊維強化プラスチック構造体を、生産性良く、安価に製造することのできる製造方法を提供する。   In view of the background of such prior art, the present invention provides a manufacturing method that can be used as a primary structural member for an aircraft and that can manufacture a fiber-reinforced plastic structure excellent in reliability with high productivity and at low cost. .

上記課題を達成するために、本発明は以下の構成からなる。すなわち、
補強部材を有する繊維強化プラスチック構造体の製造方法において、次の(A)〜(F)の工程を含むことを特徴とする繊維強化プラスチック構造体の製造方法、
(A)補強部材を、凸型である成形型の上面に位置し凹型である切り欠き部分に配置する補強部材配置工程、
(B)表面に熱可塑性樹脂および/または熱硬化性樹脂を有する強化繊維布帛からなる積層体を、前記成形型の上面に、前記補強部材の少なくとも一部分を覆い被せて配置する強化繊維布帛積層体の配置工程、
(C)前記強化繊維布帛積層体を密閉媒体で覆い、密閉媒体の内部を真空吸引して減圧し、前記強化繊維布帛積層体に大気圧をかけて賦形する賦形工程、
(D)(C)賦形工程にて強化繊維布帛積層体に大気圧をかけた状態において加熱することにより、強化繊維布帛表面の熱可塑性樹脂および/または熱硬化性樹脂を介して、強化繊維布帛間を付着させてプリフォームを製造するホットコンパクション工程、
(E)プリフォームを密閉媒体で覆い、密閉媒体の内部を真空吸引して減圧し、密閉した状態において、大気圧を利用して、密閉媒体内の内部に、マトリックス樹脂を注入して、前記プリフォームにマトリックス樹脂を含浸させる樹脂注入含浸工程、
(F)前記プリフォームに含浸したマトリックス樹脂を加熱して硬化すると同時に、マトリックス樹脂を介して、前記補強部材とプリフォームから構成される繊維強化プラスチック構造体を接着一体化する樹脂硬化工程、
である。
In order to achieve the above object, the present invention has the following configuration. That is,
In the manufacturing method of the fiber reinforced plastic structure which has a reinforcement member, the manufacturing method of the fiber reinforced plastic structure characterized by including the process of following (A)-(F),
(A) a reinforcing member disposing step of disposing the reinforcing member on a notch portion that is a concave shape located on the upper surface of the convex mold ;
(B) A reinforced fiber fabric laminate in which a laminate made of a reinforced fiber fabric having a thermoplastic resin and / or a thermosetting resin on its surface is disposed on the upper surface of the mold so as to cover at least a part of the reinforcing member. Placement process,
(C) A shaping step of covering the reinforcing fiber fabric laminate with a sealing medium, vacuuming the inside of the sealing medium to reduce the pressure, and applying the atmospheric pressure to the reinforcing fiber fabric laminate,
(D) (C) Reinforcing fiber through the thermoplastic resin and / or thermosetting resin on the surface of the reinforcing fiber cloth by heating the reinforcing fiber cloth laminate in the forming step while applying atmospheric pressure. A hot compaction process for producing a preform by adhering between fabrics;
(E) The preform is covered with a sealing medium, the inside of the sealing medium is vacuumed to reduce the pressure, and in the sealed state, the matrix resin is injected into the inside of the sealing medium using atmospheric pressure, A resin injection impregnation step for impregnating a preform with a matrix resin,
(F) A resin curing step in which the matrix resin impregnated in the preform is heated and cured, and at the same time, the fiber reinforced plastic structure composed of the reinforcing member and the preform is bonded and integrated through the matrix resin.
It is.

本発明に係る、補強部材を有する繊維強化プラスチック構造体の製造方法によれば、前記補強部材と強化繊維布帛とを密閉する工程において、前記補強部材が成形型の切り欠き部分に配置されるため、前記補強部材形状に影響されることなく容易に密閉媒体を配置することができ、かつ前記補強部材の配置個所が成形型の切り欠き部分の位置精度により制御されるため、補強部材の接合位置を安定した品質で製造できる。   According to the method for manufacturing a fiber-reinforced plastic structure having a reinforcing member according to the present invention, in the step of sealing the reinforcing member and the reinforcing fiber fabric, the reinforcing member is disposed in the notch portion of the mold. Since the sealing medium can be easily arranged without being affected by the shape of the reinforcing member, and the location of the reinforcing member is controlled by the positional accuracy of the notch portion of the mold, the joining position of the reinforcing member Can be manufactured with stable quality.

また、強化繊維布帛積層体を型面の成形型形状に賦形した後に、前記補強部材と繊維強化繊維布帛とを樹脂硬化工程により一体化できるため、繊維強化プラスチック構造体を高い生産性をもって安価に製造することができる。   In addition, since the reinforcing member and the fiber reinforced fiber fabric can be integrated by a resin curing process after the reinforcing fiber fabric laminate is shaped into the mold shape of the mold surface, the fiber reinforced plastic structure can be manufactured with high productivity and low cost. Can be manufactured.

本発明に係る繊維強化プラスチック構造体の製造方法は、次の(A)〜(F)の工程を含むことを特徴とする。
(A)補強部材を、凸型である成形型の上面に位置し凹型である切り欠き部分に配置する補強部材配置工程。
(B)表面に熱可塑性樹脂および/または熱硬化性樹脂を有する強化繊維布帛からなる積層体を、前記成形型の上面に、前記補強部材の少なくとも一部分を覆い被せて配置する強化繊維布帛積層体の配置工程。
(C)前記強化繊維布帛積層体を密閉媒体で覆い、密閉媒体の内部を真空吸引して減圧し、前記強化繊維布帛積層体に大気圧をかけて賦形する賦形工程。
(D)(C)賦形工程にて強化繊維布帛積層体に大気圧をかけた状態において加熱することにより、強化繊維布帛表面の熱可塑性樹脂および/または熱硬化性樹脂を介して、強化繊維布帛間を付着させてプリフォームを製造するホットコンパクション工程。
(E)プリフォームを密閉媒体で覆い、密閉媒体の内部を真空吸引して減圧し、密閉した状態において、大気圧を利用して、密閉媒体内の内部に、マトリックス樹脂を注入して、前記プリフォームにマトリックス樹脂を含浸させる樹脂注入含浸工程。
(F)前記プリフォームに含浸したマトリックス樹脂を加熱して硬化すると同時に、マトリックス樹脂を介して、前記補強部材とプリフォームから構成される繊維強化プラスチック構造体を接着一体化する樹脂硬化工程。
The manufacturing method of the fiber reinforced plastic structure which concerns on this invention is characterized by including the process of following (A)-(F).
(A) The reinforcing member arrangement | positioning process which arrange | positions a reinforcing member in the notch part which is located in the upper surface of the shaping | molding die which is a convex type, and is a concave type .
(B) A reinforced fiber fabric laminate in which a laminate made of a reinforced fiber fabric having a thermoplastic resin and / or a thermosetting resin on its surface is disposed on the upper surface of the mold so as to cover at least a part of the reinforcing member. Placement process.
(C) A shaping step of covering the reinforcing fiber fabric laminate with a sealing medium, vacuuming the inside of the sealing medium to reduce the pressure, and applying the atmospheric pressure to the reinforcing fiber fabric laminate.
(D) (C) Reinforcing fiber through the thermoplastic resin and / or thermosetting resin on the surface of the reinforcing fiber cloth by heating the reinforcing fiber cloth laminate in the forming step while applying atmospheric pressure. A hot compaction process in which a preform is produced by adhering between fabrics.
(E) The preform is covered with a sealing medium, the inside of the sealing medium is vacuumed to reduce the pressure, and in the sealed state, the matrix resin is injected into the inside of the sealing medium using atmospheric pressure, A resin injection impregnation step in which a preform is impregnated with a matrix resin.
(F) A resin curing step in which the matrix resin impregnated in the preform is heated and cured, and at the same time, the fiber reinforced plastic structure composed of the reinforcing member and the preform is bonded and integrated through the matrix resin.

繊維強化プラスチックを構成する強化繊維としては、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩(バサルト)繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変成した天然繊維などを繊維として用いた強化繊維などが好ましく用いられる。その中でも、炭素繊維はこれら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品生にも優れていることから、軽量化が望まれる航空機の構造部材などの部材に好適である。さらに、炭素繊維の中でも、高強度の炭素繊維が得られやすいPAN系炭素繊維が特に好ましい。   Reinforcing fibers constituting fiber reinforced plastics include organic fibers such as aramid fibers, polyethylene fibers, polyparaphenylene benzoxador (PBO) fibers, glass fibers, carbon fibers, silicon carbide fibers, alumina fibers, tyrano fibers, basalts ( Basalt), inorganic fibers such as ceramic fibers, metal fibers such as stainless fibers and steel fibers, and other reinforcing fibers using boron fibers, natural fibers, modified natural fibers and the like as fibers are preferably used. Among them, carbon fiber is lighter among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and is also excellent in heat resistance and chemical resistance, so it is lightweight. It is suitable for a member such as a structural member of an aircraft that is desired. Furthermore, among carbon fibers, PAN-based carbon fibers from which high-strength carbon fibers can be easily obtained are particularly preferable.

また、繊維強化プラスチックを構成するマトリックス樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、エポキシアクリレート樹脂、ウレタンアクリレート樹脂、フェノキシ樹脂、アルキド樹脂、ウレタン樹脂、マレイミド樹脂、シアネート樹脂などの熱硬化性樹脂が好ましく用いられる。その中でも、エポキシ樹脂や不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、アクリル樹脂等や、それらの混合樹脂が好ましく、高靭性を付与するという点を考慮すると、エポキシ樹脂が特に好ましい。   In addition, the matrix resin constituting the fiber reinforced plastic includes epoxy resin, unsaturated polyester resin, vinyl ester resin, phenol resin, epoxy acrylate resin, urethane acrylate resin, phenoxy resin, alkyd resin, urethane resin, maleimide resin, cyanate resin. A thermosetting resin such as is preferably used. Among these, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, an acrylic resin, or a mixed resin thereof is preferable, and an epoxy resin is particularly preferable in view of imparting high toughness.

工程(A)の補強部材配置工程では、繊維強化プラスチック構造体を構成する補強部材が、凸型である成形型の上面に位置し凹型である切り欠き部分に配置される。ここで、繊維強化プラスチック構造体は、航空機の構造部材などに使用されるものであって、所定の形状に形成された繊維強化プラスチックと、これに一体的に固定された補強部材とを備えたものである。 In the reinforcing member arranging step of the step (A), the reinforcing member constituting the fiber reinforced plastic structure is located on the upper surface of the convex mold, and is arranged in the notched portion that is concave . Here, the fiber reinforced plastic structure is used for an aircraft structural member or the like, and includes a fiber reinforced plastic formed in a predetermined shape and a reinforcing member integrally fixed thereto. Is.

補強部材とは、繊維強化プラスチック構造体の強度上必要な形状をなした部材であって、その形状としては、T字形、L字形、台形、三角形、半円形などが挙げられる。また、補強部材の材質としては、金属、プラスチック、前記繊維強化プラスチックなどを挙げることができる、この中でも、繊維強化プラスチック構造体の他の部材と同様の材質、すなわち、前記繊維強化プラスチックが好ましい。   The reinforcing member is a member having a shape necessary for the strength of the fiber reinforced plastic structure, and examples of the shape include a T shape, an L shape, a trapezoid, a triangle, and a semicircle. Examples of the material of the reinforcing member include metals, plastics, and fiber reinforced plastics. Among these, the same material as other members of the fiber reinforced plastic structure, that is, the fiber reinforced plastic is preferable.

本発明で用いられる成形型は、繊維強化プラスチック構造体の所望の形状に合わせた形状をしており、形状としては凸型、凹型などの形態をなしている。かかる成形型の表面形状は、成形する繊維強化プラスチック構造体の表面形状と略同一の形状になるように構成されており、かつ、前記補強部材を配置できる切り欠き部分が設けられている。なお、後述する強化繊維布帛積層体の賦形性を考慮すると、成形型は凸型であり、かつ、切り欠き部分が凹型であり、また、補強部材配置工程の容易さを考慮すると、切り欠き部分は、成形型の上面に位置するように設けられていることが重要である。
The mold used in the present invention has a shape that matches the desired shape of the fiber-reinforced plastic structure, and the shape is a convex shape, a concave shape, or the like. The surface shape of such a mold is configured to be substantially the same as the surface shape of the fiber-reinforced plastic structure to be molded, and a cutout portion in which the reinforcing member can be disposed is provided. In consideration of the formability of the reinforcing fiber fabric laminate described later, the mold is a convex shape, and the notch portion is a concave shape . Also, considering the ease of the reinforcing member arranging step, the notch is notched. It is important that the portion is provided so as to be located on the upper surface of the mold .

かかる成形型の切り欠き部の断面形状は、繊維強化プラスチック構造体を補強する補強部材の形状と略同一の形状になるように構成されており、上述のとおり、T字形、L字形、台形、三角形、半円形などが挙げられる。なお、成形型の切り欠き部の数、および補強部材の数は、繊維強化プラスチック構造体に必要な強度に応じて適宜決めることができる。   The cross-sectional shape of the notch portion of the mold is configured to be substantially the same as the shape of the reinforcing member that reinforces the fiber-reinforced plastic structure, and as described above, a T-shape, an L-shape, a trapezoid, Examples include triangles and semicircles. In addition, the number of notch parts of a shaping | molding die and the number of reinforcement members can be suitably determined according to the intensity | strength required for a fiber reinforced plastic structure.

成形型の材質としてはスチール、アルミ、インバーなどの金属材料、木材、または繊維強化プラスチックを挙げることができ、後述する賦形工程(工程(C))による大気圧がかかっても変形しない剛性と、後述する樹脂硬化工程(工程(F))に耐え得る耐熱性とを兼ね備える必要があるが、このような特性を有する物であれば、その構造や材料に制限はない。また、成形型には、繊維強化プラスチック構造体を成型後に脱型するための脱型機構を設けても良い。   Examples of the material of the mold include steel, aluminum, invar and other metal materials, wood, and fiber reinforced plastic. Rigidity that does not deform even when atmospheric pressure is applied in the shaping process (step (C)) described later. Although it is necessary to combine heat resistance that can withstand a resin curing step (step (F)), which will be described later, there is no limitation on the structure or material as long as it has such characteristics. The mold may be provided with a demolding mechanism for demolding the fiber reinforced plastic structure after molding.

工程(B)の強化繊維布帛積層体の配置工程では、強化繊維布帛からなる積層体を、前記補強部材の少なくとも一部分を覆い被せるように前記成形型の上面に配置する。ここで、強化繊維布帛とは、強化繊維を織った織物を意味し、用いられる強化繊維としては、前述の繊維強化プラスチックを構成する強化繊維で列挙された強化繊維が好ましく用いられる。また、前述のとおり、炭素繊維はこれら強化繊維の中でも軽量であり、しかも比強度および比弾性率において特に優れた性質を有しており、さらに耐熱性や耐薬品性にも優れていることから、軽量化が望まれる航空機の構造部材などの部材に好適である。さらに、炭素繊維の中でも、高強度の炭素繊維が得られやすいPAN系炭素繊維が特に好ましい。   In the arranging step of the reinforcing fiber fabric laminate in the step (B), the laminate made of the reinforcing fiber fabric is arranged on the upper surface of the mold so as to cover at least a part of the reinforcing member. Here, the reinforcing fiber fabric means a woven fabric woven with reinforcing fibers, and as the reinforcing fibers used, the reinforcing fibers listed in the reinforcing fibers constituting the above-mentioned fiber-reinforced plastic are preferably used. In addition, as described above, carbon fiber is light among these reinforcing fibers, and has particularly excellent properties in specific strength and specific modulus, and also has excellent heat resistance and chemical resistance. It is suitable for a member such as a structural member of an aircraft for which weight reduction is desired. Furthermore, among carbon fibers, PAN-based carbon fibers from which high-strength carbon fibers can be easily obtained are particularly preferable.

強化繊維布帛からなる積層体とは、前記強化繊維布帛を所定の積層構成に基づいて複数枚積層して得られるものを意味し、最終成形品の形状を有するプリフォームとは異なり、プリフォームを作製するために用いる材料である。なお、積層体を形成する各強化繊維布帛の表面には、熱可塑性樹脂および/または熱硬化性樹脂を含んでいる。かかる熱硬化性樹脂としては、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂などを使用することができる。また、熱可塑性樹脂としては、ポリ酢酸ビニル、ポリカーボネイト、ポリアセタール、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリレート、ポリエステル、ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリアラミド、ポリベンゾイミダゾール、ポリエチレン、ポリプロピレン、酢酸セルロースなどを使用することができる。この中でも、強化繊維布帛積層体を賦形後に、強化繊維布帛間を加熱加圧により付着させること、硬化後にマトリックス樹脂と接着させることを考慮すると、マトリックス樹脂と接着性が良好な熱可塑性樹脂単独、もしくは熱可塑性樹脂と熱硬化性樹脂のブレンドを使用することが好ましい。   The laminate made of reinforcing fiber fabric means a product obtained by laminating a plurality of the reinforcing fiber fabrics based on a predetermined lamination configuration. Unlike the preform having the shape of the final molded product, It is a material used for manufacturing. In addition, the surface of each reinforcement fiber fabric which forms a laminated body contains a thermoplastic resin and / or a thermosetting resin. As such a thermosetting resin, an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, or the like can be used. The thermoplastic resins include polyvinyl acetate, polycarbonate, polyacetal, polyphenylene oxide, polyphenylene sulfide, polyarylate, polyester, polyamide, polyamideimide, polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polyaramid. Polybenzimidazole, polyethylene, polypropylene, cellulose acetate and the like can be used. Among these, in consideration of adhering between the reinforcing fiber fabrics by heating and pressing after shaping the reinforcing fiber fabric laminate, and adhering to the matrix resin after curing, the thermoplastic resin alone having good adhesion to the matrix resin Alternatively, it is preferable to use a blend of a thermoplastic resin and a thermosetting resin.

前記熱可塑性樹脂および/または熱硬化性樹脂の強化繊維布帛への付着形態は、点状、線状または不連続線状のいずれであっても良い。点状に付着させるためには、粒子状もしくは粉体状の熱可塑性樹脂および/または熱硬化性樹脂を強化繊維布帛の表面に散布して熱融着させると良い。また、線状または不連続線状に付着させるためには、不織布や織物などの連続繊維からなる布帛を強化繊維布帛の表面に貼り合わせた後に熱融着させると良い。かかる熱可塑性樹脂および/または熱硬化性樹脂は、強化繊維布帛の片面に設けても、両面に設けても良い。   The adhesion form of the thermoplastic resin and / or the thermosetting resin to the reinforcing fiber fabric may be any of dotted, linear or discontinuous linear. In order to make it adhere in a dot shape, it is preferable that a particulate or powdery thermoplastic resin and / or a thermosetting resin is sprayed on the surface of the reinforcing fiber fabric and thermally fused. Moreover, in order to make it adhere in linear or discontinuous linear form, it is good to heat-bond, after bonding the fabric which consists of continuous fibers, such as a nonwoven fabric and a textile fabric, on the surface of a reinforced fiber fabric. Such thermoplastic resin and / or thermosetting resin may be provided on one side or both sides of the reinforcing fiber fabric.

こうして得られる積層体を、前記補強部材の少なくとも一部分を覆い被せるようにして、前記成形型の上面に配置する。このとき、前記補強部材と前記強化繊維布帛との間に接着剤を配置することが好ましい。用いられる接着剤は、後述するホットコンパクション工程(工程(D))で、効率良く強化繊維布帛間を付着させることができ、後述する樹脂硬化工程(工程(F))で効果的に硬化させることができ、かつ高強度なものとすることができる、エポキシ樹脂系、フェノール樹脂系などの熱硬化性樹脂製の接着剤であることが好ましい。また、接着剤の態様は、フィルム状、液状、粉末状などとすることができるが、取り扱いやすく、品質の安定したフィルム状の態様とするのが好ましい。   The laminated body thus obtained is arranged on the upper surface of the mold so as to cover at least a part of the reinforcing member. At this time, it is preferable to arrange an adhesive between the reinforcing member and the reinforcing fiber fabric. The adhesive used can efficiently attach between the reinforcing fiber fabrics in the hot compaction step (step (D)) described later, and is effectively cured in the resin curing step (step (F)) described later. It is preferable that the adhesive is made of a thermosetting resin such as an epoxy resin or a phenol resin that can be used and can have high strength. The adhesive may be in the form of a film, liquid, powder, etc., but it is preferable that the adhesive is easy to handle and has a stable quality.

工程(C)の賦形工程では、前記強化繊維布帛積層体を密閉媒体で覆い、密閉媒体の内部を真空吸引して減圧し、前記強化繊維布帛積層体に大気圧をかけて賦形する。ここで密閉媒体とは、後述するホットコンパクション工程(工程(D))で、加熱された状態で密封媒体の内部を密閉に保つことができる耐久性を備える必要があり、密閉媒体の材質としては、ナイロン、フッ素、シリコン、アラミド、ポリイミド、ポリエチレンなどの高分子材料を挙げることができるが、このような特性を有する物であれば、その構造や材料に制限はない。なお、賦形工程で用いられる密閉媒体は、前記強化繊維布帛積層体の賦形形状に追従する点を考慮すると、ラバーシートを使用することが好ましい。   In the shaping step of step (C), the reinforcing fiber fabric laminate is covered with a sealed medium, the inside of the sealed medium is vacuumed to reduce the pressure, and the reinforcing fiber fabric laminate is shaped by applying atmospheric pressure. Here, the sealed medium needs to have durability capable of keeping the inside of the sealed medium sealed in a heated state in a hot compaction process (step (D)) to be described later. Examples thereof include polymer materials such as nylon, fluorine, silicon, aramid, polyimide, and polyethylene. However, the structure and material are not limited as long as the material has such characteristics. In addition, it is preferable to use a rubber sheet for the sealing medium used in the shaping step in consideration of following the shaping shape of the reinforcing fiber fabric laminate.

工程(D)のホットコンパクション工程では、賦形工程(工程(C))にて強化繊維布帛積層体に大気圧をかけた状態において加熱することにより、強化繊維布帛表面の熱可塑性樹脂および/または熱硬化性樹脂を介して、強化繊維布帛間を付着させてプリフォームを製造する。ここで、加熱方法としては、熱風加熱、熱媒加熱などが挙げられるが、温度制御が可能である加熱方法であれば、その加熱方法に制限はない。強化繊維布帛積層体の加熱温度は、強化繊維布帛表面の熱可塑性樹脂および/または熱硬化性樹脂のガラス転移温度以上200℃以下であることが好ましい。   In the hot compaction step of step (D), the reinforcing fiber fabric laminate is heated in a state where atmospheric pressure is applied to the reinforcing fiber fabric laminate in the shaping step (step (C)). A preform is manufactured by adhering between reinforcing fiber fabrics via a thermosetting resin. Here, examples of the heating method include hot air heating, heating medium heating, and the like, but the heating method is not limited as long as the temperature can be controlled. The heating temperature of the reinforcing fiber fabric laminate is preferably not less than the glass transition temperature of the thermoplastic resin and / or thermosetting resin on the surface of the reinforcing fiber fabric and not more than 200 ° C.

こうして得られたプリフォームは、強化繊維布帛の表面の熱可塑性樹脂および/または熱硬化性樹脂により強化繊維布帛間を付着させることが可能になり、プリフォーム形状保持性が向上するため好ましい。また、かかるプリフォームと前記補強部材を、強化繊維布帛の表面の熱可塑性樹脂または/および熱硬化性樹脂、または前記工程(B)で配置された接着剤を介して接着することが好ましい。   The preform obtained in this way is preferable because the thermoplastic fiber and / or thermosetting resin on the surface of the reinforcing fiber cloth can be adhered between the reinforcing fiber cloths and the preform shape retention is improved. Moreover, it is preferable to adhere | attach this preform and the said reinforcement member through the thermoplastic resin or / and thermosetting resin of the surface of a reinforced fiber fabric, or the adhesive agent arrange | positioned at the said process (B).

工程(E)の樹脂注入含浸工程では、前記プリフォームを密閉媒体で覆い、密閉媒体の内部を真空吸引して減圧し、密閉した状態において、大気圧を利用して、密閉媒体内の内部に、マトリックス樹脂を注入して、前記プリフォームにマトリックス樹脂を含浸させる。密封媒体内には、マトリックス樹脂の流路を確保するための副資材が配置されることが好ましい。このとき、密閉媒体内で樹脂の流動領域を考慮すると、前記補強部材と切り欠き部分との間が密閉されることが好ましく、また、密閉媒体内の密閉性を考慮すると、あらかじめ補強部材と切り欠き部分との間にシール材を配置しておき、密閉媒体で密閉したときに、補強部材と切り欠き部との間が密閉されることが好ましい。   In the resin injection impregnation step of the step (E), the preform is covered with a sealing medium, the inside of the sealing medium is vacuumed and depressurized, and in the sealed state, the atmospheric pressure is used to bring the inside into the sealing medium. The matrix resin is injected, and the preform is impregnated with the matrix resin. It is preferable that a secondary material for securing a flow path of the matrix resin is disposed in the sealing medium. At this time, it is preferable that the space between the reinforcing member and the cutout portion is sealed in consideration of the flow region of the resin in the sealed medium, and the reinforcing member is cut in advance in consideration of the sealing property in the sealed medium. It is preferable that a sealing material is disposed between the notch portion and the space between the reinforcing member and the notch portion is sealed when sealed with a sealing medium.

ここで密閉媒体とは、樹脂注入含浸工程(工程(E))と、後述する樹脂硬化工程(工程(F))で、加熱された状態で密封媒体の内部を密閉に保つことができる耐久性と、注入する樹脂に対する耐薬品性を備える必要があり、密閉媒体の材質としては、ナイロン、フッ素、シリコン、アラミド、ポリイミド、ポリエチレンなどの高分子材料を挙げることができるが、このような特性を有する物であれば、その構造や材料に制限はない。樹脂注入含浸工程(工程(E))と、後述する樹脂硬化工程(工程(F))で用いられる密閉媒体は、加熱時の耐久性に優れる点を考慮すると、ナイロンフィルムを使用することが好ましい。   Here, the sealing medium is a durability capable of keeping the inside of the sealing medium sealed in a heated state in a resin injection impregnation step (step (E)) and a resin curing step (step (F)) described later. It is necessary to provide chemical resistance to the resin to be injected, and examples of the material of the sealing medium include polymer materials such as nylon, fluorine, silicon, aramid, polyimide, and polyethylene. There is no limitation on the structure and materials as long as they have. The sealing medium used in the resin injection impregnation step (step (E)) and the resin curing step (step (F)), which will be described later, is preferably a nylon film in view of excellent durability during heating. .

工程(F)の樹脂硬化工程では、前記プリフォームに含浸したマトリックス樹脂を加熱して硬化すると同時に、マトリックス樹脂を介して、前記補強部材とプリフォームから構成される繊維強化プラスチック構造体を接着一体化する。ここで、前記マトリックス樹脂の加熱温度は、前記マトリックス樹脂の硬化温度まで昇温することが好ましく、繊維強化プラスチック構造体に求められる物性(例えば、耐久性など)に鑑みると、120℃以上200℃以下がより好ましい。なお、マトリックス樹脂の硬化温度は、繊維強化プラスチック構造体に、絶縁体のテープを介して熱電対を直接取り付ける、または、繊維強化プラスチック構造体温度を代表できる冶具に熱電対を取り付けることにより測定することができる。   In the resin curing step (F), the matrix resin impregnated in the preform is heated and cured, and at the same time, the fiber reinforced plastic structure composed of the reinforcing member and the preform is bonded and integrated through the matrix resin. Turn into. Here, the heating temperature of the matrix resin is preferably raised to the curing temperature of the matrix resin. In view of physical properties (for example, durability) required for the fiber-reinforced plastic structure, it is 120 ° C. or more and 200 ° C. The following is more preferable. The curing temperature of the matrix resin is measured by directly attaching a thermocouple to the fiber reinforced plastic structure via an insulating tape, or by attaching a thermocouple to a jig that can represent the fiber reinforced plastic structure temperature. be able to.

このようにして得られた繊維強化プラスチック構造体は、接合位置において品質の安定した補強部材を有し、高い生産性をもって安価に製造することができるので、特に、航空機などの一次構造部材として好適に用いることができる。   The fiber-reinforced plastic structure thus obtained has a reinforcing member with stable quality at the joining position, and can be manufactured with high productivity at low cost, and is particularly suitable as a primary structural member for an aircraft or the like. Can be used.

以下、本発明の実施例を、図面に用いてさらに詳細に説明する。なお、本発明が、図面に記載された態様に限定されるものではない。   Hereinafter, embodiments of the present invention will be described in more detail with reference to the drawings. In addition, this invention is not limited to the aspect described in drawing.

(実施例1)
図1に示す成形型1は、中空の凸部2と平板部3からなり、密閉工程において中空の凸部2と平板部3の設置部から空気の漏れがないよう、中空の凸部2と平板部3は溶接接合されている。成形型1の材質はSUS304から構成され、大気圧がかかっても変形しない剛性と、後述する樹脂硬化工程(工程(F))に耐え得る耐熱性とを兼ね備える条件で、成形型壁面の厚みは10〜40mmの領域内で設計されている。成形型1の切り欠き部分4は凹型で、成形型1の上面に位置している。また、切り欠き部分4の形状は、後述する補強部材配置工程(工程(B))で補強部材の形状と略同一のT型で構成されている。
Example 1
The mold 1 shown in FIG. 1 includes a hollow convex portion 2 and a flat plate portion 3, and the hollow convex portion 2 and the flat convex portion 2 are arranged so that no air leaks from the installation portion of the hollow convex portion 2 and the flat plate portion 3 in the sealing process. The flat plate part 3 is welded. The material of the mold 1 is made of SUS304, and the thickness of the mold wall is as long as it has both rigidity that does not deform even when atmospheric pressure is applied and heat resistance that can withstand the resin curing process (step (F)) described later. It is designed in the region of 10-40m. The cutout portion 4 of the mold 1 is a concave mold and is located on the upper surface of the mold 1. Moreover, the shape of the notch part 4 is comprised by the T shape substantially the same as the shape of a reinforcement member in the reinforcement member arrangement | positioning process (process (B)) mentioned later.

次いで、図8に示すように、補強部材5と切り欠き部分4との間にシール材13を配置した後に、図2に示すように、前記切り欠き部分4に補強部材5を配置した。補強部材5の材質はFRPからなり、FRPは強化繊維として炭素繊維から構成されている。補強部材5の形状は切り欠き部分4の形状と略同一のT型のものを使用した。   Next, as shown in FIG. 8, after the sealing material 13 was arranged between the reinforcing member 5 and the cutout portion 4, the reinforcing member 5 was arranged in the cutout portion 4 as shown in FIG. 2. The material of the reinforcing member 5 is made of FRP, and the FRP is made of carbon fiber as a reinforcing fiber. The shape of the reinforcing member 5 was a T-shape substantially the same as the shape of the cutout portion 4.

次いで、図7に示すように、補強部材5の上に接着剤6を介して、図3に示すように、強化繊維布帛積層体7を成形型1の上面にあらわれる補強部材5の面を覆い被せて配置した。接着剤6はエポキシ樹脂系フィルム状の接着剤を使用した。強化繊維布帛積層体7は、強化繊維として炭素繊維T800S(東レ社製)から構成される炭素繊維目付が190g/cmの一方向炭素繊維織物を使用した。該強化繊維織物は、その両面の表面にPESとエポキシ樹脂からなる高靭性化粒子を付着させてある。該強化繊維織物を疑似等方性配向になるように積層して、強化繊維布帛積層体7を準備した。 Next, as shown in FIG. 7, the reinforcing fiber fabric laminate 7 is covered with the adhesive 6 on the reinforcing member 5 so as to cover the surface of the reinforcing member 5 that appears on the upper surface of the mold 1 as shown in FIG. 3. Placed over. As the adhesive 6, an epoxy resin film adhesive was used. The reinforced fiber fabric laminate 7 was a unidirectional carbon fiber woven fabric having a carbon fiber basis weight of 190 g / cm 2 composed of carbon fibers T800S (manufactured by Toray Industries, Inc.) as reinforcing fibers. The reinforcing fiber fabric has toughening particles made of PES and epoxy resin attached to the surfaces of both surfaces thereof. The reinforcing fiber fabric laminate 7 was prepared by laminating the reinforcing fiber fabric so as to have a quasi-isotropic orientation.

次いで、図4、5に示すように、強化繊維布帛積層体7の上に副資材9を配置し、強化繊維布帛積層体7と副資材9を密閉媒体8で覆い、密閉媒体8内の内部を真空吸引して減圧し、強化繊維布帛積層体7に大気圧をかけて賦形した。密閉媒体8の材質はシリコンからなるラバーを使用した。   Next, as shown in FIGS. 4 and 5, the auxiliary material 9 is arranged on the reinforcing fiber fabric laminate 7, the reinforcing fiber fabric laminate 7 and the auxiliary material 9 are covered with the sealing medium 8, and the inside of the sealing medium 8 Was vacuumed to reduce the pressure, and the reinforcing fiber fabric laminate 7 was shaped by applying atmospheric pressure. The material of the sealing medium 8 was a rubber made of silicon.

次いで、ホットコンパクション工程において、強化繊維布帛積層体7に大気圧をかけた図5に示す状態を維持しつつ、オーブンにより80℃まで強化繊維布帛積層体7を加熱し、強化繊維布帛間を接着してプリフォーム9を製造した。こうして得られたプリフォーム9と補強部材5は、接着剤6を介して接着されていた。   Next, in the hot compaction process, while maintaining the state shown in FIG. 5 in which atmospheric pressure is applied to the reinforcing fiber fabric laminate 7, the reinforcing fiber fabric laminate 7 is heated to 80 ° C. in an oven to bond the reinforcing fiber fabrics. Thus, a preform 9 was manufactured. The preform 9 and the reinforcing member 5 thus obtained were bonded via an adhesive 6.

次いで、図6に示す樹脂注入含浸工程において、プリフォーム9を密閉媒体10で覆った。密封媒体内には、マトリックス樹脂の流路を確保するための副資材12aと、流量を安定させるための副資材12bと、密封媒体内へマトリックス樹脂を流すための副資材12cを配置した。密閉媒体10の材質はナイロンからなるフィルムを使用した。密閉媒体10の内部を真空吸引して減圧し、密閉媒体10の内部、および補強部材5と切り欠き部分4との間を密閉した状態において、大気圧を利用して、密閉媒体10内の内部に、マトリックス樹脂11を注入して、前記プリフォーム9にマトリックス樹脂11を含浸させた。マトリックス樹脂11の材料はエポキシ樹脂を使用した。樹脂注入含浸工程の間は、強化繊維布帛積層体7とマトリックス樹脂11の温度が70℃に保たれる様に加熱した。   Next, in the resin injection impregnation step shown in FIG. In the sealing medium, the auxiliary material 12a for securing the flow path of the matrix resin, the auxiliary material 12b for stabilizing the flow rate, and the auxiliary material 12c for flowing the matrix resin into the sealing medium are arranged. The material of the sealing medium 10 was a film made of nylon. The inside of the sealing medium 10 is depressurized by vacuum suction, and the inside of the sealing medium 10 is utilized using atmospheric pressure in a state where the inside of the sealing medium 10 and the space between the reinforcing member 5 and the cutout portion 4 are sealed. Then, the matrix resin 11 was injected to impregnate the preform 9 with the matrix resin 11. The material of the matrix resin 11 was an epoxy resin. During the resin injection impregnation step, heating was performed so that the temperature of the reinforcing fiber fabric laminate 7 and the matrix resin 11 was maintained at 70 ° C.

次いで、樹脂硬化工程において、プリフォーム9に含浸したマトリックス樹脂11を加熱して硬化すると同時に、マトリックス樹脂11を介して、前記補強部材5とプリフォーム9とを接着一体化し、図10に示すような補強部材5が一体化された繊維強化プラスチック構造体14を製作した。なお、図10の断面図は、図9に示すとおりである。   Next, in the resin curing step, the matrix resin 11 impregnated in the preform 9 is heated and cured, and at the same time, the reinforcing member 5 and the preform 9 are bonded and integrated through the matrix resin 11, as shown in FIG. A fiber-reinforced plastic structure 14 in which a reinforcing member 5 was integrated was manufactured. The cross-sectional view of FIG. 10 is as shown in FIG.

(比較例1)
実施例1で用いた成形型から、補強部材配置用の切り欠き部分を除いた以外は、同一の成形型を使用した。補強部材と接着剤を配置する工程を除いた以外は、実施例1と同様の強化繊維布帛積層体の配置工程、賦形工程、ホットコンパクション工程、樹脂注入含浸工程、樹脂硬化工程を行い、繊維強化プラスチック部材を成形した。成形した繊維強化プラスチック部材の補強部材取り付け位置表面をサンディングし、実施例1で用いた接着剤を介してT型の補強部材形状のプリフォームを配置した。次いで、補強部材を、補強部材の形状に沿わせて密閉媒体で覆い、実施例1と同様の樹脂注入含浸工程、樹脂硬化工程を行い、補強部材と強化繊維プラスチック部材を接着一体化し、補強部材が一体化された繊維強化プラスチック構造体を製作した。
(Comparative Example 1)
The same mold was used except that the notch for reinforcing member arrangement was removed from the mold used in Example 1. Except for the step of placing the reinforcing member and the adhesive, the same steps as the placement step of the reinforcing fiber fabric laminate, the shaping step, the hot compaction step, the resin injection impregnation step, and the resin curing step are performed. A reinforced plastic member was molded. The reinforcing member attachment position surface of the molded fiber reinforced plastic member was sanded, and a T-shaped reinforcing member-shaped preform was placed through the adhesive used in Example 1. Next, the reinforcing member is covered with a sealing medium along the shape of the reinforcing member, the resin injection impregnation step and the resin curing step similar to those in Example 1 are performed, the reinforcing member and the reinforcing fiber plastic member are bonded and integrated, and the reinforcing member Fabricated fiber reinforced plastic structure.

補強部材を配置する工程において、補強部材を配置しただけでは、補強部材を取り付け位置に固定できないことを確認した。また、補強部材を密閉媒体で覆った後、補強部材が取り付け位置より外れることを確認した。補強部材を取り付け位置に固定するために、補強部材固定用の冶具を要した。   In the step of arranging the reinforcing member, it was confirmed that the reinforcing member could not be fixed at the mounting position only by arranging the reinforcing member. Moreover, after covering the reinforcing member with the sealing medium, it was confirmed that the reinforcing member was detached from the attachment position. In order to fix the reinforcing member at the mounting position, a jig for fixing the reinforcing member is required.

補強部材を密閉媒体で覆う工程において、密閉媒体を補強部材形状に沿わせないと、密閉媒体が突っ張り、突っ張った部分より密閉媒体が破損することを確認した。また、補強部材の形状に密閉媒体を沿わせるのに要した作業時間は60分であった。   In the step of covering the reinforcing member with the sealing medium, it was confirmed that if the sealing medium did not follow the shape of the reinforcing member, the sealing medium was stretched and the sealing medium was damaged from the stretched portion. Further, the work time required for placing the sealing medium along the shape of the reinforcing member was 60 minutes.

本発明は、航空機、船舶、自動車に限らず、産業用途やスポーツ用途などにも応用することができるが、その応用範囲が、これらに限られるものではない。   The present invention can be applied not only to airplanes, ships, and automobiles, but also to industrial uses and sports uses, but the application range is not limited thereto.

本発明の成形型を示す図である。It is a figure which shows the shaping | molding die of this invention. 本発明の補強部材配置工程(工程(A))を示す図である。It is a figure which shows the reinforcement member arrangement | positioning process (process (A)) of this invention. 本発明の強化繊維布帛積層体の配置工程(工程(B))を示す図である。It is a figure which shows the arrangement | positioning process (process (B)) of the reinforced fiber fabric laminated body of this invention. 本発明の賦形工程(工程(C))を開始する段階を示す図である。It is a figure which shows the step which starts the shaping process (process (C)) of this invention. 本発明の賦形工程(工程(C))を終了する段階を示す図である。It is a figure which shows the step which complete | finishes the shaping process (process (C)) of this invention. 本発明の樹脂注入含浸工程(工程(E))を示す図である。It is a figure which shows the resin injection | pouring impregnation process (process (E)) of this invention. 本発明の接着材の配置位置を示す強化繊維布帛積層体の配置工程(工程(B))の図である。It is a figure of the arrangement | positioning process (process (B)) of the reinforced fiber fabric laminated body which shows the arrangement position of the adhesive material of this invention. 本発明のシール材の配置工程を示す図である。It is a figure which shows the arrangement | positioning process of the sealing material of this invention. 本発明の繊維強化プラスチック構造体を示す図である。It is a figure which shows the fiber reinforced plastic structure of this invention. 本発明の繊維強化プラスチック構造体の補強部材幅方向の断面を示す図である。It is a figure which shows the cross section of the reinforcement member width direction of the fiber reinforced plastic structure of this invention.

符号の説明Explanation of symbols


1:成形型
2:凸部
3:平板部
4:成形型の切り欠き部分
5:補強部材
6:接着剤
7:強化繊維布帛積層体
8:密閉媒体
9:プリフォーム
10:密閉媒体
11:マトリックス樹脂
12a〜12c:副資材
13:シール材
14:繊維強化プラスチック構造体
:
DESCRIPTION OF SYMBOLS 1: Molding die 2: Convex part 3: Flat plate part 4: Notch part of shaping | molding die 5: Reinforcing member 6: Adhesive 7: Reinforcement fiber fabric laminated body 8: Sealing medium 9: Preform 10: Sealing medium 11: Matrix Resins 12a to 12c: Sub-material 13: Sealing material 14: Fiber reinforced plastic structure

Claims (7)

補強部材を有する繊維強化プラスチック構造体の製造方法において、次の(A)〜(F)の工程を含むことを特徴とする繊維強化プラスチック構造体の製造方法。
(A)補強部材を、凸型である成形型の上面に位置し凹型である切り欠き部分に配置する補強部材配置工程。
(B)表面に熱可塑性樹脂および/または熱硬化性樹脂を有する強化繊維布帛からなる積層体を、前記成形型の上面に、前記補強部材の少なくとも一部分を覆い被せて配置する強化繊維布帛積層体の配置工程。
(C)前記強化繊維布帛積層体を密閉媒体で覆い、密閉媒体の内部を真空吸引して減圧し、前記強化繊維布帛積層体に大気圧をかけて賦形する賦形工程。
(D)(C)賦形工程にて強化繊維布帛積層体に大気圧をかけた状態において加熱することにより、強化繊維布帛表面の熱可塑性樹脂および/または熱硬化性樹脂を介して、強化繊維布帛間を付着させてプリフォームを製造するホットコンパクション工程。
(E)プリフォームを密閉媒体で覆い、密閉媒体の内部を真空吸引して減圧し、密閉した状態において、大気圧を利用して、密閉媒体内の内部に、マトリックス樹脂を注入して、前記プリフォームにマトリックス樹脂を含浸させる樹脂注入含浸工程。
(F)前記プリフォームに含浸したマトリックス樹脂を加熱して硬化すると同時に、マトリックス樹脂を介して、前記補強部材とプリフォームから構成される繊維強化プラスチック構造体を接着一体化する樹脂硬化工程。
In the manufacturing method of the fiber reinforced plastic structure which has a reinforcement member, the manufacturing method of the fiber reinforced plastic structure characterized by including the process of following (A)-(F).
(A) The reinforcing member arrangement | positioning process which arrange | positions a reinforcing member in the notch part which is located in the upper surface of the shaping | molding die which is a convex type, and is a concave type .
(B) A reinforced fiber fabric laminate in which a laminate made of a reinforced fiber fabric having a thermoplastic resin and / or a thermosetting resin on its surface is disposed on the upper surface of the mold so as to cover at least a part of the reinforcing member. Placement process.
(C) A shaping step of covering the reinforcing fiber fabric laminate with a sealing medium, vacuuming the inside of the sealing medium to reduce the pressure, and applying the atmospheric pressure to the reinforcing fiber fabric laminate.
(D) (C) Reinforcing fiber through the thermoplastic resin and / or thermosetting resin on the surface of the reinforcing fiber cloth by heating the reinforcing fiber cloth laminate in the forming step while applying atmospheric pressure. A hot compaction process in which a preform is produced by adhering between fabrics.
(E) The preform is covered with a sealing medium, the inside of the sealing medium is vacuumed to reduce the pressure, and in the sealed state, the matrix resin is injected into the inside of the sealing medium using atmospheric pressure, A resin injection impregnation step in which a preform is impregnated with a matrix resin.
(F) A resin curing step in which the matrix resin impregnated in the preform is heated and cured, and at the same time, the fiber reinforced plastic structure composed of the reinforcing member and the preform is bonded and integrated through the matrix resin.
(B)配置工程において、前記補強部材と前記強化繊維布帛との間に接着剤を配置する、請求項1に記載の繊維強化プラスチック構造体の製造方法。 (B) The manufacturing method of the fiber reinforced plastic structure of Claim 1 which arrange | positions an adhesive agent between the said reinforcement member and the said reinforced fiber fabric in an arrangement | positioning process. (D)ホットコンパクション工程において、補強部材とプリフォームを、強化繊維布帛の表面の熱可塑性樹脂または/および熱硬化性樹脂、または前記接着剤を介して接着する、請求項1または2に記載の繊維強化プラスチック構造体の製造方法。 (D) The hot compaction step, wherein the reinforcing member and the preform are bonded via a thermoplastic resin or / and a thermosetting resin on the surface of the reinforcing fiber fabric, or the adhesive. A method for producing a fiber reinforced plastic structure. (E)樹脂注入含浸工程において、密閉媒体で密封したときに、補強部材と切り欠き部分との間が密閉される、請求項1〜3のいずれかに記載の繊維強化プラスチック構造体の製造方法。 (E) The method for producing a fiber-reinforced plastic structure according to any one of claims 1 to 3, wherein a space between the reinforcing member and the cutout portion is sealed when sealed with a sealing medium in the resin injection impregnation step. . (E)樹脂注入含浸工程において、あらかじめ補強部材と切り欠き部分との間にシール材を配置しておき、密閉媒体で密閉したときに、補強部材と切り欠き部との間が密閉される、請求項1〜4のいずれかに記載の繊維強化プラスチック構造体の製造方法。 (E) In the resin injection impregnation step, when a sealing material is arranged in advance between the reinforcing member and the cutout portion and sealed with a sealing medium, the space between the reinforcing member and the cutout portion is sealed. The manufacturing method of the fiber reinforced plastic structure in any one of Claims 1-4. 前記補強部材が繊維強化プラスチックである、請求項1〜5のいずれかに記載の繊維強化プラスチック構造体の製造方法。 The manufacturing method of the fiber reinforced plastic structure in any one of Claims 1-5 whose said reinforcement member is a fiber reinforced plastic. (C)賦形工程で用いられる密閉媒体がラバーシートである、請求項1〜のいずれかに記載の繊維強化プラスチック構造体の製造方法。 (C) The manufacturing method of the fiber reinforced plastic structure in any one of Claims 1-6 whose sealing medium used at a shaping process is a rubber sheet.
JP2007244863A 2007-09-21 2007-09-21 Manufacturing method of fiber reinforced plastic structure Expired - Fee Related JP5045330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007244863A JP5045330B2 (en) 2007-09-21 2007-09-21 Manufacturing method of fiber reinforced plastic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007244863A JP5045330B2 (en) 2007-09-21 2007-09-21 Manufacturing method of fiber reinforced plastic structure

Publications (3)

Publication Number Publication Date
JP2009073070A JP2009073070A (en) 2009-04-09
JP2009073070A5 JP2009073070A5 (en) 2010-10-28
JP5045330B2 true JP5045330B2 (en) 2012-10-10

Family

ID=40608545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007244863A Expired - Fee Related JP5045330B2 (en) 2007-09-21 2007-09-21 Manufacturing method of fiber reinforced plastic structure

Country Status (1)

Country Link
JP (1) JP5045330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106514937A (en) * 2016-10-18 2017-03-22 无锡山秀科技有限公司 Preparation method of thermoplastic composite material plate with structural part

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568388B2 (en) * 2010-06-24 2014-08-06 三光合成株式会社 Fiber-reinforced resin molded product with good appearance
US8871127B2 (en) 2011-03-08 2014-10-28 Toyota Jidosha Kabushiki Kaisha Method of producing a fiber-reinforced resin member
JP6281865B2 (en) * 2014-01-31 2018-02-21 三菱重工業株式会社 FRP forming jig and FRP structure forming method
KR101573750B1 (en) 2014-03-24 2015-12-03 동화에이.시.엠. 주식회사 How to make the aircraft's fuselage stringer are integrated
KR102343337B1 (en) * 2020-06-23 2021-12-23 한국항공대학교산학협력단 Stretchable shape memory polymer composite skin with zero-poisson ratio

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106514937A (en) * 2016-10-18 2017-03-22 无锡山秀科技有限公司 Preparation method of thermoplastic composite material plate with structural part
CN106514937B (en) * 2016-10-18 2018-11-09 无锡山秀科技有限公司 A kind of preparation method of the Thermoplastic Laminates with structural member

Also Published As

Publication number Publication date
JP2009073070A (en) 2009-04-09

Similar Documents

Publication Publication Date Title
US10596730B2 (en) Hybrid lay-up mold
JP4856327B2 (en) Method for manufacturing composite panel
JP6966848B2 (en) Composite structure with reinforcing material and its manufacturing method
JP5045330B2 (en) Manufacturing method of fiber reinforced plastic structure
US20060048890A1 (en) Production method of annular, fiber-reinforced composite structure, and annular frame constituted by such structure for aircraft fuselages
US20100038030A1 (en) Advanced composite aerostructure article having a braided co-cured fly away hollow mandrel and method for fabrication
KR20150065669A (en) Composite structure having a stabilizing element
JP6273804B2 (en) Manufacturing method of fiber reinforced plastic molding
RU2647031C1 (en) Equipment for forming fibro-reinforced plastics and method for forming structure of fibro-reinforced plastics
US20140186574A1 (en) Method for producing and connecting fibre-reinforced components and aircraft or spacecraft
JP4805375B2 (en) Method for manufacturing FRP structure
US10807325B2 (en) Methods for combining components of varying stages of cure
JP2003071864A (en) Method for manufacturing composite material reinforced panel
US20160075105A1 (en) Automotive vehicle exterior laminate component and method of forming same
JP2005022171A (en) Core for composite material sandwich panel, composite material sandwich panel and its manufacturing method
JP4338550B2 (en) Method for manufacturing FRP structure
JP4713780B2 (en) Reinforcing panel manufacturing method
JP2014015159A (en) Propeller blade body and method of manufacturing the same
US9987768B2 (en) Composite tools and methods for fabricating composite tools
JP2009126056A (en) Fiber-reinforced composite material
JP2004130599A (en) Manufacturing process for fiber reinforced resin molded object
JP7474070B2 (en) Manufacturing method of composite material, and composite material
JP2023065897A (en) Composite member
JP2023065898A (en) Composite member
JP2008080749A (en) Laminate and bonnet for automobile using it

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5045330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees