WO2021261647A1 - Virus detecting device using dielectric spectroscopy and detecting method therefor - Google Patents

Virus detecting device using dielectric spectroscopy and detecting method therefor Download PDF

Info

Publication number
WO2021261647A1
WO2021261647A1 PCT/KR2020/008965 KR2020008965W WO2021261647A1 WO 2021261647 A1 WO2021261647 A1 WO 2021261647A1 KR 2020008965 W KR2020008965 W KR 2020008965W WO 2021261647 A1 WO2021261647 A1 WO 2021261647A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
sample
present
complex permittivity
electromagnetic wave
Prior art date
Application number
PCT/KR2020/008965
Other languages
French (fr)
Korean (ko)
Inventor
조영식
여선주
Original Assignee
원광대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원광대학교산학협력단 filed Critical 원광대학교산학협력단
Publication of WO2021261647A1 publication Critical patent/WO2021261647A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses

Definitions

  • the present invention relates to an apparatus for detecting a virus using genome spectroscopy and a method for detecting the same, and more particularly, to an apparatus and method for detecting a specific virus by measuring the complex dielectric constant spectra of the virus.
  • Viruses are infectious agents that are smaller than bacteria. It is composed of the genetic material RNA or DNA and the protein surrounding the genetic material. Viruses can be classified into plant viruses, animal viruses, and bacterial viruses (phages) according to the type of host. However, in most cases, according to the type of nucleic acid, it is divided into DNA virus subfamily and RNA virus subfamily, which are further subdivided into classes, orders, and families.
  • Viruses are divided into three types of high pathogenicity, low pathogenicity, and non-pathogenicity according to their pathogenicity. is being studied extensively.
  • These highly pathogenic viruses may include not only infectious viruses such as avian influenza or foot-and-mouth disease that cause disease in animals, but also infectious viruses such as corona, MERS, SARS or swine flu that cause acute and serious diseases in the human body. Since these infectious viruses spread to a large number of individuals within a short period of time due to population densification and an increase in group breeding, causing a lot of damage, it is desirable to prevent further spread through a prompt response as possible when these viruses appear.
  • the individual when collecting from such an individual, the individual is infected with the disease and can be detected after the onset in most cases.
  • serological tests include hemagglutination inhibitory reaction (HI), agar sedimentation reaction (AGP), and enzyme immunoassay (ELISA).
  • HI hemagglutination inhibitory reaction
  • AGP agar sedimentation reaction
  • ELISA enzyme immunoassay
  • the ELISA (Enzyme Immunoassay) method has the disadvantage of requiring laboratory equipment such as a spectrophotometer. Although it is very sensitive, it has the disadvantage of low specificity.
  • the present inventor completed the present invention by confirming that a specific virus can be detected by measuring the complex permittivity spectra of the genome while studying genome spectroscopy for virus detection.
  • Dielectric spectroscopy is a type of impedance method and measures the dielectric properties of an electrolyte over a high frequency region of several tens of GHz. Through this, dielectric spectroscopy can provide information on the types and concentrations of various polar chemical species present in the electrolyte, ie, free solvents and ion pairs having a dipole moment.
  • the present invention aims to provide an apparatus and a method for detecting a specific virus quickly and accurately by measuring the complex permittivity spectra of the virus through an electrochemical method even with a small amount of sample, and a method for detecting the same do.
  • a virus detection apparatus includes a sample unit 100 for injecting a sample to be measured; a probe unit 200 for irradiating a broadband electromagnetic wave to the sample; a measuring unit 300 for measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and a detection unit 400 for detecting a virus from the complex dielectric constant.
  • the probe unit 200 may include an open coaxial line probe.
  • the frequency of the broadband electromagnetic wave may be within the range of 0.1 to 50 GHz.
  • the measurement unit 300 may include a vector network analyzer.
  • the measurement unit 300 may measure a real part value, an imaginary part value, and a dielectric relaxation frequency with respect to the complex dielectric constant of the sample.
  • the detection unit 400 may detect the virus in the sample through a real part, an imaginary part, and a dielectric relaxation frequency for the complex dielectric constant of the sample.
  • the display unit for displaying the detected virus on the display screen may further include.
  • a virus detection method includes a first step of injecting a sample to be measured; a second step of irradiating a broadband electromagnetic wave to the sample; a third step of measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and a fourth step of detecting the virus from the complex dielectric constant.
  • the frequency of the broadband electromagnetic wave may be within the range of 0.1 to 50 GHz.
  • a fifth step of displaying the detected virus on a display screen may be further included.
  • the virus detection apparatus and the detection method of the present invention can quickly and accurately detect a specific virus by measuring the complex dielectric constant spectra of the virus through an electrochemical method even with a small amount of sample.
  • FIG. 1 schematically shows each configuration of a virus detection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing an overall configuration in which each configuration of the virus detection apparatus according to an embodiment of the present invention is organically combined.
  • FIG. 3 is a photograph showing the actual state of the virus detection apparatus of the present invention including an open coaxial probe corresponding to the probe unit of the present invention and a vector network analyzer corresponding to the measuring unit of the present invention.
  • FIG. 4 is a flowchart illustrating a virus detection method according to an embodiment of the present invention for each step.
  • FIG. 5 is a diagram illustrating an experiment for measuring the complex permittivity of a sample in an aqueous solution state by using the virus detection apparatus according to an embodiment of the present invention.
  • FIG. 6 is a graph showing the scattering parameter response characteristics of a sample in an aqueous solution state using the virus detection apparatus according to an embodiment of the present invention.
  • FIG. 7 is a graph showing the complex dielectric constant spectra of a sample in an aqueous solution state by using the virus detection apparatus according to an embodiment of the present invention.
  • a virus detection apparatus includes a sample unit 100 for injecting a sample to be measured; a probe unit 200 for irradiating a broadband electromagnetic wave to the sample; a measuring unit 300 for measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and a detection unit 400 for detecting a virus from the complex dielectric constant.
  • sample can be of any type as long as it can contain a virus.
  • the sample can be used in a non-purified or non-concentrated state before being put into the sample unit 100 according to the present invention, and if necessary, it is dissolved in a solution or buffer such as purified water to adjust the concentration or to make it into a liquid phase so that detection is easy. It may be desirable to pre-treat for ease.
  • a solution or buffer such as purified water
  • the large particles can be removed by filtering using an appropriate filter.
  • the present inventors have devised the following invention as a result of research in order to solve the above-mentioned problem.
  • the present specification includes a sample unit 100 for injecting a sample to be measured; a probe unit 200 for irradiating a broadband electromagnetic wave to the sample; a measuring unit 300 for measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and a detection unit 400 for detecting a virus from the complex dielectric constant. Matters related to the virus detection method of the present invention are in accordance with the ⁇ Virus detection method of the present invention> described below. Hereinafter, in relation to the virus detection device of the present invention, it will be described in detail by configuration of each device.
  • the virus detection apparatus 10 includes a sample unit 100 for injecting a sample to be measured, a probe unit 200 for irradiating a broadband electromagnetic wave to the sample, and the irradiation. It can be seen that the measuring unit 300 for measuring the complex permittivity of the sample with respect to the broadband electromagnetic wave and the detecting unit 400 for detecting the virus from the complex permittivity are included.
  • the sample unit 100 is responsible for injecting a sample to be measured, and while a specific virus (dielectric) in the sample to be detected is stored in the sample unit 100 for a certain period of time, a broadband electromagnetic wave is generated. It may be to provide a space to be irradiated.
  • the shape of the sample unit 100 of the present invention may be a cylinder, a plate, a cube, a cuboid, a regular polyhedron, a polygonal prism, or a sphere, but is not limited thereto.
  • the probe unit 200 plays a role of irradiating a broadband electromagnetic wave to the sample injected into the sample unit 100 of the present invention.
  • the probe unit 200 of the present invention may include an open-ended coaxial probe.
  • the open coaxial line probe of the present invention can measure the reflection coefficient at the interface between the coaxial line probe and the sample, and more specifically, the complex permittivity spectra of a virus (dielectric) submerged in a liquid or liquid state. It has the advantage of being useful in some cases.
  • the diameter of the open coaxial probe of the present invention is preferably within the range of 1.0 to 10.0 mm, more preferably within the range of 1.5 to 3.0 mm.
  • the diameter of the open coaxial line probe of the present invention may be changed according to the characteristics of the sample and is not limited to the above numerical range.
  • the length of the open coaxial line probe of the present invention is preferably within the range of 100 to 500 mm, but is not limited thereto.
  • a wide frequency band of a radio-frequency band may be applied to the probe unit 200 of the present invention. More specifically, the frequency band of the broadband electromagnetic wave may be applied to the open coaxial line probe submerged in the sample.
  • the frequency of the broadband electromagnetic wave irradiated to the sample host to the sample unit 100 of the present invention is preferably within the range of 0.1 to 50 GHz, and more preferably within the range of 0.1 to 26.5 GHz.
  • the measuring unit 300 serves to measure the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave. More specifically, in the virus detection device of the present invention, the measuring unit 300 measures the complex permittivity spectra of the virus (dielectric) in the sample for a specific frequency band from the scattering parameter response (S-parameter response) characteristic. It may be to provide a space to be That is, in the measuring unit 300 of the present invention, the complex permittivity spectra of the virus (genome) may be extracted from the scattering parameter response characteristics. Since each specific virus (genome) has its own scattering parameter response characteristics, this means that each specific virus (genome) has its own complex permittivity spectra.
  • the measuring unit 300 of the present invention may include a vector network analyzer (VNA).
  • VNA vector network analyzer
  • a broadband electromagnetic wave irradiated to the sample is generated by the vector network analyzer, and the vector network analyzer may measure a scattering parameter (S-parameter) in a high frequency region.
  • the scattering parameter refers to a ratio of an input voltage to an output voltage at a specific frequency, and thus, physical properties such as a reflection coefficient and a transmission coefficient of a sample can be measured through a vector network analyzer.
  • the vector network analyzer of the present invention may use a 1-port network system or a 2-port network system, but is not limited thereto.
  • FIG. 2 is a view showing an overall configuration in which each configuration of the virus detection apparatus according to an embodiment of the present invention is organically combined. More specifically, FIG. 2A shows an open-ended coaxial probe corresponding to the probe unit 200 of the present invention and a vector network analyzer (VNA) corresponding to the measuring unit 300 of the present invention. ) shows the virus detection apparatus of the present invention, and FIG. 2B shows a detailed configuration of an open-ended coaxial probe corresponding to the probe unit 200 of the present invention.
  • VNA vector network analyzer
  • a broadband electromagnetic wave is irradiated to a sample from an open coaxial line probe connected to a vector network analyzer, scattering parameter response of a specific virus (genome) in the sample, complex permittivity spectra, etc. It can be confirmed that it can be measured.
  • FIG. 2B it can be seen that the detailed configuration of the open coaxial line probe of the present invention and the broadband electromagnetic wave from the open coaxial line probe of the present invention are irradiated to the sample to form an electric field.
  • FIG. 3 is a photograph showing the actual state of the virus detection apparatus of the present invention including an open coaxial probe corresponding to the probe unit 200 of the present invention and a vector network analyzer corresponding to the measuring unit 300 of the present invention. will be.
  • a broadband electromagnetic wave is irradiated to a sample from an open coaxial line probe connected to a vector network analyzer, scattering parameter response of a specific virus (genome) in the sample, complex permittivity spectra, etc. It can be confirmed that it can be measured.
  • the measuring unit 300 of the present invention may measure a real part value, an imaginary part value, and a dielectric relaxation frequency for the complex dielectric constant of the sample.
  • the complex permittivity of the sample can be considered to mean the complex permittivity spectra of the virus (genome) in the sample.
  • the complex permittivity spectra of the virus (genome) in the sample measured by the measuring unit 300 of the present invention can be theoretically obtained from the following Equation (1).
  • ⁇ r,0 is the static relative permittivity at frequency
  • is the relaxation time
  • is the distribution (relaxation time) parameter.
  • the real part value of the complex permittivity of the sample measured by the measuring unit 300 of the present invention is a value representing the degree of polarization of the virus (dielectric) in the sample when irradiating the sample with a broadband electromagnetic wave. If the sample is not irradiated with electromagnetic waves, the atoms of the virus (dielectric) maintain a spherical shape as the nucleus and electrons are equidistant from the sample. will be done. In addition, in the polarization process, a dipole moment occurs and a torque is generated inside the atoms of the virus (dielectric). Since electrons are shared between the atoms of the virus (dielectric), friction occurs during the polarization process between them. do.
  • the imaginary part value for the complex permittivity is a numerical value representing the loss of virus (dielectric) due to friction. Since the real part value and the imaginary part value for the complex permittivity have different values for each virus (genome), they can be used as a means of discriminating a specific virus (genome).
  • the dielectric relaxation frequency (f c ) with respect to the complex permittivity is a value measured for the mobility of the virus (dielectric).
  • the imaginary part of the complex permittivity increases and decreases based on the peak value.
  • This frequency is called dielectric relaxation frequency. That is, when the value of the imaginary part of the complex permittivity is maximum, the corresponding frequency can be regarded as the dielectric relaxation frequency.
  • the correlation between relaxation time ( ⁇ ) is as shown in Equation 2 below.
  • the dielectric relaxation frequency for the complex permittivity also has a different value for each virus (genome), it can be used as a means for discriminating a specific virus (genome).
  • is the relaxation time (seconds)
  • f c is the dielectric relaxation frequency (Hz).
  • the detection unit 400 of the present invention may detect the virus in the sample through a real part value, an imaginary part value, and a dielectric relaxation frequency for the complex dielectric constant of the sample.
  • the complex permittivity of the sample can be considered to mean the complex permittivity spectra of the virus (genome) in the sample.
  • the known complex permittivity from the complex permittivity of the sample measured by the virus detection device of the present invention is compared.
  • Virus (genome) can be specified.
  • the dielectric relaxation frequency of the known complex permittivity can be obtained through Equation 2 above.
  • the display unit for displaying the virus in the sample detected by the detection unit 400 of the present invention on the display screen may further include.
  • the display unit of the present invention may display a detected specific virus together with a predetermined value or may display a currently set mode.
  • the present specification is a first step of injecting a sample to be measured; a second step of irradiating a broadband electromagnetic wave to the sample; a third step of measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; And a fourth step of detecting the virus from the complex dielectric constant; it further discloses a virus detection method comprising a. Matters overlapping with those relating to the virus detection device of the present invention will be omitted.
  • each method will be described in detail by step.
  • the virus detection method of the present invention includes a first step of injecting a sample to be measured (S100), a second step of irradiating the sample with a broadband electromagnetic wave (S200), and a complex sample with respect to the irradiated broadband electromagnetic wave. It can be seen that the third step (S300) of measuring the dielectric constant and the fourth step (S400) of detecting the virus from the complex dielectric constant are included.
  • a specific virus (genome) to be determined may be included in the sample.
  • the broadband electromagnetic wave may be irradiated to the sample through the probe unit 200 of the present invention.
  • the probe unit 200 of the present invention may include an open-ended coaxial probe.
  • a wide frequency band of a radio-frequency band may be applied to the probe unit 200 of the present invention. More specifically, the frequency band of the broadband electromagnetic wave may be applied to the open coaxial line probe submerged in the sample.
  • the frequency of the broadband electromagnetic wave irradiated to the sample host to the sample unit 100 of the present invention is preferably within the range of 0.1 to 50 GHz, and more preferably within the range of 0.1 to 26.5 GHz.
  • the complex permittivity spectra of the virus (dielectric) for a specific frequency band may be measured from the scattering parameter response.
  • a real part value, an imaginary part value, and a dielectric relaxation frequency for the complex dielectric constant of the sample may be measured.
  • the complex permittivity of the sample can be seen as meaning the complex permittivity spectra of the virus (genome) in the sample.
  • the real part value of the complex dielectric constant of the sample measured in the third step of measuring the complex dielectric constant of the sample with respect to the irradiated broadband electromagnetic wave of the present invention is the polarization of the virus (dielectric) in the sample when the sample is irradiated with broadband electromagnetic waves ) is a numerical value indicating the degree. If the sample is not irradiated with electromagnetic waves, the atoms of the virus (dielectric) maintain a spherical shape as the nucleus and electrons are equidistant from the sample. will be done In addition, in the polarization process, a dipole moment occurs and a torque is generated inside the atoms of the virus (dielectric).
  • the imaginary part value for the complex permittivity is a numerical value representing the loss of virus (dielectric) due to friction. Since the real part value and the imaginary part value for the complex permittivity have different values for each virus (genome), they can be used as a means of discriminating a specific virus (genome).
  • the dielectric relaxation frequency (f c ) for the complex permittivity is a value that measures the mobility of the virus (dielectric).
  • the peak value is As a reference, the imaginary part of the complex permittivity increases and decreases.
  • the frequency at which the reference peak value is located is called the dielectric relaxation frequency. That is, when the value of the imaginary part of the complex dielectric is maximum, the frequency can be regarded as a dielectric relaxation frequency.
  • the virus in the sample can be detected through the real part value, the imaginary part value, and the dielectric relaxation frequency of the complex dielectric constant of the sample measured in the third step.
  • the complex permittivity of the sample can be considered to mean the complex permittivity spectra of the virus (genome) in the sample.
  • the real part value, the imaginary part value, and the dielectric relaxation frequency of the complex permittivity of a specific virus (genome) are determined as intrinsic values, from the complex permittivity of the sample measured in the virus detection method of the present invention, the known complex permittivity is compared. Virus (genome) can be specified. At this time, the dielectric relaxation frequency of the known complex permittivity can be obtained through Equation 2 above.
  • the virus detection method of the present invention may further include; a fifth step of displaying the detected virus on a display screen (not shown).
  • the fifth step in the virus detection method of the present invention may include displaying a detected specific virus with a predetermined value or displaying a currently set mode.
  • the nucleoprotein gene of RSV (Respiratory syncytial virus) was cloned, and the cloned RSV nucleoprotein gene was expressed in Escherichia coli and purified at a concentration of 100 ⁇ g/mL in DI water (hereinafter referred to as 'RSV rNP'). ).
  • a monoclonal antibody targeting RSV rNP was bound to RSV rNP and purified at a concentration of 100 ⁇ g/mL in DI water (hereinafter referred to as 'RSV rNP + Antibody')
  • Bovine serum albumin which corresponds to a negative control, was purified in DI water at a concentration of 100 ⁇ g/mL (hereinafter referred to as 'BSA').
  • the purified RSV rNP, RSV rNP + Antibody, and BSA are each injected into the sample unit 100 of the present invention in the state of an aqueous solution, and the frequency of the broadband electromagnetic wave has an operating bandwidth within the range of 0.1 to 26.5 GHz of the present invention
  • the complex permittivity of each sample was measured in a virus detection device.
  • the broadband electromagnetic wave was irradiated through the probe unit 200 of the present invention, and the complex permittivity of each sample with respect to the irradiated broadband electromagnetic wave was measured through the measuring unit 300 of the present invention.
  • the virus was detected from the complex dielectric constant of each sample measured through the detection unit 400 of the present invention.
  • FIG. 5 is a diagram illustrating an experiment for measuring the complex permittivity of a sample in an aqueous solution state by using the virus detection apparatus according to an embodiment of the present invention.
  • RSV rNP, RSV rNP + Antibody and BSA purified according to Experimental Example 1 were injected into the sample unit 100 of the present invention in an aqueous solution state, respectively, corresponding to the probe unit 200 of the present invention. It can be seen that a broadband electromagnetic wave is irradiated through an open coaxial line probe.
  • FIG. 6 is a graph showing the scattering parameter response characteristics of a sample in an aqueous solution state using the virus detection apparatus according to an embodiment of the present invention.
  • the complex permittivity spectra of the virus (genome) can be extracted from the scattering parameter response characteristics. Since each specific virus (genome) has its own scattering parameter response characteristics, this means that each specific virus (genome) has its own complex permittivity spectra.
  • FIG. 7 is a graph showing the complex dielectric constant spectra of a sample in an aqueous solution state by using the virus detection apparatus according to an embodiment of the present invention. More specifically, FIG. 7a is a graph showing the measurement of the real part value of the complex permittivity according to the frequency of broadband electromagnetic waves for RSV rNP, RSV rNP + Antibody, and BSA purified according to Experimental Example 1, and FIG. 7b is a graph showing the The imaginary part of the complex permittivity according to the frequency of broadband electromagnetic waves for RSV rNP, RSV rNP + Antibody, and BSA purified according to Experimental Example 1 was measured and shown as a graph.
  • FIG. 7 includes complex permittivity spectra of DI water.
  • the real part value ( ⁇ r ') of the complex permittivity spectra of BSA is 63 at 1 GHz, and this value is 14 smaller than the value of DI water at the same frequency. This result is because the degree of polarization was reduced by the BSA molecule.
  • the imaginary part value ( ⁇ r ") of the complex permittivity spectra of BSA in the frequency range of interest it can be confirmed that the loss due to friction caused by the polarization process is smaller than that of DI water.
  • the dielectric relaxation of BSA the frequency (f c) is 20.9 GHz
  • the dielectric relaxation frequency of DI water (f c) and the value is very similar
  • the complex dielectric constant of the imaginary part values of the spectra of the BSA in a 20.9 GHz frequency ( ⁇ r ") is about 32 , and this value is smaller by 4 compared to the value of DI water at the same frequency.
  • the complex dielectric constant real part values of the spectra of BSA ( ⁇ r at 1GHz real part value of the complex dielectric constant spectra of RSV rNP ( ⁇ r)') is 63 .
  • FIG. 7A it can be seen that the difference between the real part values of the complex permittivity spectra remains the same in the frequency band of 1 to 26.5 GHz.
  • the real part value ( ⁇ r ') of the complex permittivity spectra of RSV rNP + Antibody is 78 at 1 GHz, which is 12 higher than the value of RSV rNP at the same frequency.
  • FIG. 7A it can be seen that the difference between the real part values of the complex permittivity spectra remains the same in the frequency band of 1 to 26.5 GHz.
  • the reason that the real part value of the complex permittivity spectra of RSV rNP + Antibody ( ⁇ r ') is larger than the real part value of the complex permittivity spectra of RSV rNP ( ⁇ r ') is the antigen-antibody interaction between RSV rNP antigen and RSV rNP antibody.
  • the low-frequency dispersion of the real part value ( ⁇ r ') of the complex permittivity spectra of RSV rNP and RSV rNP + Antibody in the frequency band below 0.6 GHz is caused by the different permittivity and conductivity of the bio-particles and the surrounding medium.
  • the imaginary part value ( ⁇ r ") of the complex permittivity spectra is a value representing the loss due to friction caused by the polarization process of the virus (dielectric) when the sample is irradiated with broadband electromagnetic waves.
  • dielectric loss ⁇ rd
  • ionic loss ⁇ r ⁇ "
  • ⁇ r ′′ is the total dielectric loss
  • ⁇ rd ′′ is the dipole loss
  • ⁇ r ⁇ ′′ is the ion loss
  • RSV rNP, RSV rNP + Antibody can confirm the predominance of ionic loss ( ⁇ r ⁇ ") of less than 1 GHz.
  • This dominant tendency is a nucleic acid (DNA or RNA) ), which is typically observed in biological substances related to , that is, from this, it can be confirmed that RSV rNP is structurally related to nucleic acids.
  • BSA has negligible ionic loss ( ⁇ r ⁇ "), but dipole loss ( ⁇ rd ”) contributes to the total dielectric loss of BSA.
  • ⁇ r ⁇ dipole loss
  • BSA has little ionic loss ( ⁇ r ⁇ ") is that BSA is composed of oval protein molecules containing 607 amino acids and alanine.
  • RSV rNP, RSV rNP + antibody can be distinguished from BSA in ionic loss ( ⁇ r ⁇ ”) from these two tendencies of ion loss and dipole loss.
  • each virus has a unique dielectric relaxation frequency (f c )
  • f c dielectric relaxation frequency
  • the dielectric relaxation frequency (f c ) is a measure indicating the mobility of dipoles generated in the polarization process of a virus (genome) and is related to the relaxation time ( ⁇ ).
  • the dielectric relaxation frequency (f c ) and relaxation time ( ⁇ ) have different values for each virus (genome). That is, the genome relaxation frequency (f c ) of the virus (genome) can also serve as a key indicator for virus detection.
  • the virus detection apparatus of the present invention using genome spectroscopy is a technology using the principle that each virus (genome) has its own complex permittivity spectra, and unlike fluorescent antibody labeling technology, it does not go through a separate labeling process. It has the effect of increasing the convenience and speed of the
  • the virus detection apparatus and the detection method of the present invention according to the present invention can detect a specific virus quickly and accurately by measuring the complex dielectric constant spectra of the virus through an electrochemical method even with a small amount of sample.

Abstract

The present invention relates to a virus detecting device using dielectric spectroscopy and a detecting method therefor and, more specifically, to a device for detecting specific viruses by measuring complex permittivity spectra and a detecting method therefor. The virus detecting device and the detecting method according to the present invention can detect specific viruses quickly and accurately from even a small amount of samples by measuring complex permittivity spectra of viruses through electrochemical methods.

Description

유전체 분광법을 이용한 바이러스 검출 장치 및 그 검출 방법Virus detection apparatus using genome spectroscopy and detection method therefor
본 발명은 유전체 분광법을 이용한 바이러스 검출 장치 및 그 검출 방법에 관한 것으로, 보다 구체적으로 바이러스의 복소 유전율 스펙트라를 측정하여 특정 바이러스를 검출하는 장치 및 그 검출 방법에 관한 것이다.The present invention relates to an apparatus for detecting a virus using genome spectroscopy and a method for detecting the same, and more particularly, to an apparatus and method for detecting a specific virus by measuring the complex dielectric constant spectra of the virus.
바이러스는 세균보다 크기가 작은 전염성 병원체이다. 유전물질인 RNA 또는 DNA와 그 유전물질을 둘러싸고 있는 단백질로 구성된다. 바이러스는 숙주의 종류에 따라서 식물 바이러스, 동물 바이러스 및 세균 바이러스(파지)로 구분할 수 있다. 그러나, 대부분의 경우 핵산의 종류에 따라 DNA 바이러스 아문과 RNA 바이러스 아문으로 나뉘며, 이들은 다시 강, 목,과로 세분화된다.Viruses are infectious agents that are smaller than bacteria. It is composed of the genetic material RNA or DNA and the protein surrounding the genetic material. Viruses can be classified into plant viruses, animal viruses, and bacterial viruses (phages) according to the type of host. However, in most cases, according to the type of nucleic acid, it is divided into DNA virus subfamily and RNA virus subfamily, which are further subdivided into classes, orders, and families.
바이러스는 병원성에 따라 고병원성, 저병원성 및 비병원성의 3종류로 구분되며, 최근 인체 또는 가축 등을 통해 전염되는 고병원성 바이러스가 다양하게 나타남에 따라, 이러한 고병원성 바이러스의 전파를 예방하기 위한 방법, 장치 등이 다양하게 연구되고 있다. Viruses are divided into three types of high pathogenicity, low pathogenicity, and non-pathogenicity according to their pathogenicity. is being studied extensively.
이러한 고병원성 바이러스는 크게는 동물에게 질병을 일으키는 조류 독감, 또는 구제역 등의 전염성 바이러스 뿐만 아니라, 인체에 급성 심각한 질병을 일으키는 코로나, 메르스, 사스 또는 신종 플루 등의 전염성 바이러스가 있을 수 있다. 이러한 전염성 바이러스는 인구의 밀집화 및 집단 사육의 증가로 단시간 내에 다수의 개체에 전파되어 많은 피해를 입히므로, 이러한 바이러스의 출현 시 가능한 신속한 대응을 통해 더 이상의 확산을 예방하는 것이 바람직하다.These highly pathogenic viruses may include not only infectious viruses such as avian influenza or foot-and-mouth disease that cause disease in animals, but also infectious viruses such as corona, MERS, SARS or swine flu that cause acute and serious diseases in the human body. Since these infectious viruses spread to a large number of individuals within a short period of time due to population densification and an increase in group breeding, causing a lot of damage, it is desirable to prevent further spread through a prompt response as possible when these viruses appear.
이러한 고병원성 바이러스의 발병을 조기에 감지하기 위하여 다양한 연구들이 수행되고 있다. 구체적으로, 키트 등을 이용하여 개체의 감염 여부를 확인하는 경우가 많으나, 이러한 경우 검출하고자 하는 개체로부터 혈액 등이 샘플을 직접 채취하여 하여 넓은 면적에 대하여 동시다발적 검출이 어려운 문제점이 있다. Various studies are being conducted to detect the onset of these highly pathogenic viruses at an early stage. Specifically, there are many cases of checking whether an individual is infected using a kit, etc., but in this case, there is a problem in that it is difficult to simultaneously detect a large area by directly collecting a sample of blood or the like from the individual to be detected.
나아가, 이러한 개체로부터 채취하는 경우, 개체가 해당 질병에 감염되어 발병 이후에 검출할 수 있는 경우가 대부분으로, 이러한 경우 공기를 통해 전파되는 고병원성 바이러스에 대해서는 발빠른 대응이 불가능한 문제점이 있다.Furthermore, when collecting from such an individual, the individual is infected with the disease and can be detected after the onset in most cases.
현재 이러한 고병원성 바이러스의 진단은 바이러스의 분리 및 혈청학적 검사에 의해 수행하고 있다. 이 중 혈청학적 검사법으로는 혈구응집억제반응(HI), 한천내침강반응(AGP), 효소면역측정법(ELISA) 등이 있다. Currently, the diagnosis of these highly pathogenic viruses is performed by virus isolation and serological tests. Among these, serological tests include hemagglutination inhibitory reaction (HI), agar sedimentation reaction (AGP), and enzyme immunoassay (ELISA).
그 중 ELISA(효소면역측정법)법은 분광광도계와 같은 실험실 장비를 갖추어야 하는 단점이 있다. 매우 민감도가 높지만(highly sensitive), 특이도(specificity)가 떨어지는 단점이 있다. Among them, the ELISA (Enzyme Immunoassay) method has the disadvantage of requiring laboratory equipment such as a spectrophotometer. Although it is very sensitive, it has the disadvantage of low specificity.
본 발명자는 바이러스 검출을 위한 유전체 분광법을 연구하던 중, 유전체의 복소 유전율 스펙트라를 측정하여 특정 바이러스를 검출할 수 있음을 확인하여 본 발명을 완성하였다.The present inventor completed the present invention by confirming that a specific virus can be detected by measuring the complex permittivity spectra of the genome while studying genome spectroscopy for virus detection.
유전체 분광법은 임피던스법의 일종으로서, 수십 GHz 수준의 높은 주파수 영역에 걸쳐 전해질의 유전 특성을 측정한다. 이를 통해, 유전체 분광법은 전해질 내 존재하는 다양한 극성 화학종, 즉 쌍극자 모멘트를 갖는 자유 용매 및 이온쌍의 종류와 농도 등에 대한 정보를 제공할 수 있다.Dielectric spectroscopy is a type of impedance method and measures the dielectric properties of an electrolyte over a high frequency region of several tens of GHz. Through this, dielectric spectroscopy can provide information on the types and concentrations of various polar chemical species present in the electrolyte, ie, free solvents and ion pairs having a dipole moment.
상술한 바와 같은 문제점을 해결하기 위하여, 본 발명은 적은 양의 시료이더라도 전기화학적 방법을 통해 바이러스의 복소 유전율 스펙트라를 측정하여 신속하고 정확하게 특정 바이러스를 검출하는 장치 및 그 검출 방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention aims to provide an apparatus and a method for detecting a specific virus quickly and accurately by measuring the complex permittivity spectra of the virus through an electrochemical method even with a small amount of sample, and a method for detecting the same do.
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 바이러스 검출 장치는 측정하고자 하는 시료를 주입하는 시료부(100); 상기 시료에 광대역 전자기파를 조사하는 프로브부(200); 상기 조사된 광대역 전자기파에 대한 상기 시료의 복소 유전율을 측정하는 측정부(300); 및 상기 복소 유전율로부터 바이러스를 검출하는 검출부(400);를 포함한다.In order to achieve the above object, a virus detection apparatus according to the present invention includes a sample unit 100 for injecting a sample to be measured; a probe unit 200 for irradiating a broadband electromagnetic wave to the sample; a measuring unit 300 for measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and a detection unit 400 for detecting a virus from the complex dielectric constant.
여기서, 상기 프로브부(200)는 개방 동축선로 프로브를 포함할 수 있다.Here, the probe unit 200 may include an open coaxial line probe.
여기서, 상기 광대역 전자기파의 주파수는 0.1 내지 50 GHz의 범위 이내일 수 있다.Here, the frequency of the broadband electromagnetic wave may be within the range of 0.1 to 50 GHz.
여기서, 상기 측정부(300)는 벡터 네트워크 분석기를 포함할 수 있다.Here, the measurement unit 300 may include a vector network analyzer.
여기서, 상기 측정부(300)는 상기 시료의 복소 유전율에 대한 실수부 값, 허수부 값 및 유전체 완화 주파수를 측정할 수 있다.Here, the measurement unit 300 may measure a real part value, an imaginary part value, and a dielectric relaxation frequency with respect to the complex dielectric constant of the sample.
여기서, 상기 검출부(400)는 상기 시료의 복소 유전율에 대한 실수부, 허수부 및 유전체 완화 주파수를 통해 상기 시료 내 바이러스를 검출할 수 있다.Here, the detection unit 400 may detect the virus in the sample through a real part, an imaginary part, and a dielectric relaxation frequency for the complex dielectric constant of the sample.
여기서, 상기 검출된 바이러스를 디스플레이 화면에 표시하는 표시부;를 더 포함할 수 있다.Here, the display unit for displaying the detected virus on the display screen; may further include.
본 발명에 따른 바이러스 검출 방법은 측정하고자 하는 시료를 주입하는 제1단계; 상기 시료에 광대역 전자기파를 조사하는 제2단계; 상기 조사된 광대역 전자기파에 대한 상기 시료의 복소 유전율을 측정하는 제3단계; 및 상기 복소 유전율로부터 바이러스를 검출하는 제4단계;를 포함한다.A virus detection method according to the present invention includes a first step of injecting a sample to be measured; a second step of irradiating a broadband electromagnetic wave to the sample; a third step of measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and a fourth step of detecting the virus from the complex dielectric constant.
여기서, 상기 광대역 전자기파의 주파수는 0.1 내지 50 GHz의 범위 이내일 수 있다.Here, the frequency of the broadband electromagnetic wave may be within the range of 0.1 to 50 GHz.
여기서, 상기 검출된 바이러스를 디스플레이 화면에 표시하는 제5단계;를 더 포함할 수 있다.Here, a fifth step of displaying the detected virus on a display screen may be further included.
상술한 바에 따른 본 발명의 바이러스 검출 장치 및 그 검출 방법은 적은 양의 시료이더라도 전기화학적 방법을 통해 바이러스의 복소 유전율 스펙트라를 측정하여 신속하고 정확하게 특정 바이러스를 검출할 수 있다.The virus detection apparatus and the detection method of the present invention according to the above-described method can quickly and accurately detect a specific virus by measuring the complex dielectric constant spectra of the virus through an electrochemical method even with a small amount of sample.
도 1은 본 발명의 일 실시예에 따른 바이러스 검출 장치의 각 구성을 도시적으로 나타낸 것이다. 1 schematically shows each configuration of a virus detection apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 바이러스 검출 장치의 각 구성이 유기적으로 결합한 전체 구성을 도시한 것이다. 2 is a view showing an overall configuration in which each configuration of the virus detection apparatus according to an embodiment of the present invention is organically combined.
도 3은 본 발명의 프로브부에 해당하는 개방 동축선로 프로브와 본 발명의 측정부에 해당하는 벡터 네트워크 분석기를 포함하는 본 발명의 바이러스 검출 장치의 실제 모습을 촬영하여 도시한 것이다. 3 is a photograph showing the actual state of the virus detection apparatus of the present invention including an open coaxial probe corresponding to the probe unit of the present invention and a vector network analyzer corresponding to the measuring unit of the present invention.
도 4는 본 발명의 일 실시예에 따른 바이러스 검출 방법을 각 단계별로 순서도로 도시한 것이다.4 is a flowchart illustrating a virus detection method according to an embodiment of the present invention for each step.
도 5는 본 발명의 일 실시예에 따른 바이러스 검출 장치를 이용하여 수용액 상태의 시료의 복소 유전율을 측정하는 실험을 실제 촬영하여 도시한 것이다.5 is a diagram illustrating an experiment for measuring the complex permittivity of a sample in an aqueous solution state by using the virus detection apparatus according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 바이러스 검출 장치를 이용하여 수용액 상태의 시료의 스캐터링 파라미터 응답 특성을 측정하여 그래프로 도시한 것이다.6 is a graph showing the scattering parameter response characteristics of a sample in an aqueous solution state using the virus detection apparatus according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 바이러스 검출 장치를 이용하여 수용액 상태의 시료의 복소 유전율 스펙트라를 측정하여 그래프로 도시한 것이다. 7 is a graph showing the complex dielectric constant spectra of a sample in an aqueous solution state by using the virus detection apparatus according to an embodiment of the present invention.
본 발명에 따른 바이러스 검출 장치는 측정하고자 하는 시료를 주입하는 시료부(100); 상기 시료에 광대역 전자기파를 조사하는 프로브부(200); 상기 조사된 광대역 전자기파에 대한 상기 시료의 복소 유전율을 측정하는 측정부(300); 및 상기 복소 유전율로부터 바이러스를 검출하는 검출부(400);를 포함한다.A virus detection apparatus according to the present invention includes a sample unit 100 for injecting a sample to be measured; a probe unit 200 for irradiating a broadband electromagnetic wave to the sample; a measuring unit 300 for measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and a detection unit 400 for detecting a virus from the complex dielectric constant.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 “포함하다” 또는 “구비하다”등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.The terms used in this application are only used to describe specific examples. Therefore, for example, a singular expression includes a plural expression unless the context clearly requires it to be singular. In addition, terms such as “include” or “include” as used in the present application are used to clearly indicate that the features, steps, functions, components, or combinations thereof described in the specification exist, and other features It should be noted that it is not intended to preliminarily exclude the existence of elements, steps, functions, components, or combinations thereof.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다.On the other hand, unless otherwise defined, all terms used herein should be regarded as having the same meaning as commonly understood by those of ordinary skill in the art to which the present invention belongs. Accordingly, unless explicitly defined herein, specific terms should not be construed in an unduly idealistic or formal sense.
본 명세서에서 사용되는 용어 "시료"는 바이러스를 함유할 수 있는 것이라면 어떠한 유형도 가능하다. 또한, 상기 시료는 본 발명에 따른 시료부(100)에 투입되기 전에 정제 또는 농축되지 않은 상태로 사용할 수 있고, 필요에 따라 정제수 등의 용액이나 완충액에 녹여 농도를 조절하거나 액상으로 되게 하여 검출이 용이하도록 전처리하는 것이 바람직할 수 있다. 한편, 상기 시료에 따라 입자가 지나치게 큰 경우, 예를 들어 수십 혹은 수백 ㎛ 이상의 크기를 가지는 입자가 포함되어 있는 경우 적절한 필터를 이용하여 여과함으로써 큰 입자를 제거할 수 있다.As used herein, the term "sample" can be of any type as long as it can contain a virus. In addition, the sample can be used in a non-purified or non-concentrated state before being put into the sample unit 100 according to the present invention, and if necessary, it is dissolved in a solution or buffer such as purified water to adjust the concentration or to make it into a liquid phase so that detection is easy. It may be desirable to pre-treat for ease. On the other hand, when the particles are too large depending on the sample, for example, when particles having a size of several tens or hundreds of μm or more are included, the large particles can be removed by filtering using an appropriate filter.
본 발명자들은 상술한 과제를 해결하기 위하여 연구한 결과, 하기와 같은 발명을 안출하기에 이르렀다. The present inventors have devised the following invention as a result of research in order to solve the above-mentioned problem.
<본 발명의 바이러스 검출 장치><Virus detection device of the present invention>
본 명세서는 측정하고자 하는 시료를 주입하는 시료부(100); 상기 시료에 광대역 전자기파를 조사하는 프로브부(200); 상기 조사된 광대역 전자기파에 대한 상기 시료의 복소 유전율을 측정하는 측정부(300); 및 상기 복소 유전율로부터 바이러스를 검출하는 검출부(400);를 포함하는, 바이러스 검출 장치(10)를 개시한다. 본 발명의 바이러스 검출 방법에 관한 사항은 하기 후술하는 <본 발명의 바이러스 검출 방법>에 따른다. 이하에서는 본 발명의 바이러스 검출 장치와 관련하여, 각 장치의 구성별로 세분화하여 서술하고자 한다.The present specification includes a sample unit 100 for injecting a sample to be measured; a probe unit 200 for irradiating a broadband electromagnetic wave to the sample; a measuring unit 300 for measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and a detection unit 400 for detecting a virus from the complex dielectric constant. Matters related to the virus detection method of the present invention are in accordance with the <Virus detection method of the present invention> described below. Hereinafter, in relation to the virus detection device of the present invention, it will be described in detail by configuration of each device.
도 1은 본 발명의 일 실시예에 따른 바이러스 검출 장치의 각 구성을 도시적으로 나타낸 것이다. 도 1을 참조하면, 본 발명의 일 실시예에 따른 바이러스 검출 장치(10)는 측정하고자 하는 시료를 주입하는 시료부(100), 상기 시료에 광대역 전자기파를 조사하는 프로브부(200), 상기 조사된 광대역 전자기파에 대한 상기 시료의 복소 유전율을 측정하는 측정부(300) 및 상기 복소 유전율로부터 바이러스를 검출하는 검출부(400)를 포함하는 것을 확인할 수 있다.1 schematically shows each configuration of a virus detection apparatus according to an embodiment of the present invention. Referring to FIG. 1 , the virus detection apparatus 10 according to an embodiment of the present invention includes a sample unit 100 for injecting a sample to be measured, a probe unit 200 for irradiating a broadband electromagnetic wave to the sample, and the irradiation. It can be seen that the measuring unit 300 for measuring the complex permittivity of the sample with respect to the broadband electromagnetic wave and the detecting unit 400 for detecting the virus from the complex permittivity are included.
본 발명의 바이러스 검출 장치에서 시료부(100)는 측정하고자 하는 시료를 주입하는 역할을 담당하며, 검출 대상인 시료 내 특정 바이러스(유전체)가 일정 기간 동안 상기 시료부(100)에 저장되면서 광대역 전자기파가 조사되는 공간을 제공하는 것일 수 있다. In the virus detection device of the present invention, the sample unit 100 is responsible for injecting a sample to be measured, and while a specific virus (dielectric) in the sample to be detected is stored in the sample unit 100 for a certain period of time, a broadband electromagnetic wave is generated. It may be to provide a space to be irradiated.
본 발명의 시료부(100)의 형상은 원통, 플레이트, 정육면체, 직육면체, 정다면체, 다각기둥 또는 구일 수 있으나, 이에 한정되는 것은 아니다. The shape of the sample unit 100 of the present invention may be a cylinder, a plate, a cube, a cuboid, a regular polyhedron, a polygonal prism, or a sphere, but is not limited thereto.
본 발명의 바이러스 검출 장치에서 프로브부(200)는 본 발명의 시료부(100)에 주입된 시료에 광대역 전자기파를 조사하는 역할을 담당한다.In the virus detection apparatus of the present invention, the probe unit 200 plays a role of irradiating a broadband electromagnetic wave to the sample injected into the sample unit 100 of the present invention.
본 발명의 프로브부(200)는 개방 동축선로 프로브(Open-ended coaxial probe)를 포함할 수 있다. 본 발명의 개방 동축선로 프로브는 동축선로 프로브와 시료 사이 경계면에서의 반사계수를 측정할 수 있고, 보다 구체적으로 액체 또는 액체 상태에 잠긴 바이러스(유전체)의 복소 유전율 스펙트라(complex permittivity spectra)를 측정하는 경우에 유용하다는 장점이 있다.The probe unit 200 of the present invention may include an open-ended coaxial probe. The open coaxial line probe of the present invention can measure the reflection coefficient at the interface between the coaxial line probe and the sample, and more specifically, the complex permittivity spectra of a virus (dielectric) submerged in a liquid or liquid state. It has the advantage of being useful in some cases.
본 발명의 개방 동축선로 프로브의 직경은 1.0 내지 10.0 mm의 범위 이내인 것이 바람직하고, 1.5 내지 3.0 mm의 범위 이내인 것이 더욱 바람직하다. 그러나, 본 발명의 개방 동축선로 프로브의 직경은 시료의 특성에 따라 변경될 수 있으며 상기 수치 범위에 한정되는 것은 아니다.The diameter of the open coaxial probe of the present invention is preferably within the range of 1.0 to 10.0 mm, more preferably within the range of 1.5 to 3.0 mm. However, the diameter of the open coaxial line probe of the present invention may be changed according to the characteristics of the sample and is not limited to the above numerical range.
또한, 본 발명의 개방 동축선로 프로브의 길이는 100 내지 500 mm의 범위 이내인 것이 바람직하나, 이에 한정되는 것은 아니다.In addition, the length of the open coaxial line probe of the present invention is preferably within the range of 100 to 500 mm, but is not limited thereto.
한편, 본 발명의 프로브부(200)에 라디오 주파수 영역(Radio-frequency band)의 넓은 주파수 대역이 적용될 수 있다. 보다 구체적으로 시료에 잠긴 개방 동축선로 프로브에 광대역 전자기파의 주파수 대역이 적용될 수 있다.Meanwhile, a wide frequency band of a radio-frequency band may be applied to the probe unit 200 of the present invention. More specifically, the frequency band of the broadband electromagnetic wave may be applied to the open coaxial line probe submerged in the sample.
본 발명의 시료부(100)에 주인된 시료에 조사되는 광대역 전자기파의 주파수는 0.1 내지 50 GHz의 범위 이내인 것이 바람직하고, 0.1 내지 26.5 GHz의 범위 이내인 것이 더욱 바람직하다.The frequency of the broadband electromagnetic wave irradiated to the sample host to the sample unit 100 of the present invention is preferably within the range of 0.1 to 50 GHz, and more preferably within the range of 0.1 to 26.5 GHz.
본 발명의 바이러스 검출 장치에서 측정부(300)는 조사된 광대역 전자기파에 대한 시료의 복소 유전율을 측정하는 역할을 담당한다. 보다 구체적으로, 본 발명의 바이러스 검출 장치에서 측정부(300)는 스캐터링 파라미터 응답(Scattering parameter response, S-parameter response) 특성으로부터 특정 주파수 대역에 대한 시료 내 바이러스(유전체)의 복소 유전율 스펙트라가 측정되는 공간을 제공하는 것일 수 있다. 즉, 본 발명의 측정부(300)에서 바이러스(유전체)의 복소 유전율 스펙트라는 스캐터링 파라미터 응답 특성으로부터 추출될 수 있다. 특정 바이러스(유전체)마다 고유의 스캐터링 파라미터 응답 특성을 가지고 있으므로, 이는 특정 바이러스(유전체)마다 고유의 복소 유전율 스펙트라를 가지고 있음을 의미한다.In the virus detection apparatus of the present invention, the measuring unit 300 serves to measure the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave. More specifically, in the virus detection device of the present invention, the measuring unit 300 measures the complex permittivity spectra of the virus (dielectric) in the sample for a specific frequency band from the scattering parameter response (S-parameter response) characteristic. It may be to provide a space to be That is, in the measuring unit 300 of the present invention, the complex permittivity spectra of the virus (genome) may be extracted from the scattering parameter response characteristics. Since each specific virus (genome) has its own scattering parameter response characteristics, this means that each specific virus (genome) has its own complex permittivity spectra.
본 발명의 측정부(300)는 벡터 네트워크 분석기(Vector network analyzer, VNA)를 포함할 수 있다. 상기 벡터 네트워크 분석기에서 시료에 조사되는 광대역 전자기파가 발생되며, 이러한 벡터 네트워크 분석기는 고주파 영역에서 스캐터링 파라미터(Scattering parameter, S-parameter)를 측정할 수 있다. 여기서, 스캐터링 파라미터는 특정 주파수에서 입력전압 대 출력전압의 비를 의미하고, 따라서 벡터 네트워크 분석기를 통해 시료의 반사계수, 투과계수와 같은 물성을 측정할 수 있다. 본 발명의 벡터 네트워크 분석기는 1-포트 네트워크 시스템(1-Port network system) 또는 2-포트 네트워크 시스템(2-Port network system)이 사용될 수 있으나, 이에 한정되는 것은 아니다. The measuring unit 300 of the present invention may include a vector network analyzer (VNA). A broadband electromagnetic wave irradiated to the sample is generated by the vector network analyzer, and the vector network analyzer may measure a scattering parameter (S-parameter) in a high frequency region. Here, the scattering parameter refers to a ratio of an input voltage to an output voltage at a specific frequency, and thus, physical properties such as a reflection coefficient and a transmission coefficient of a sample can be measured through a vector network analyzer. The vector network analyzer of the present invention may use a 1-port network system or a 2-port network system, but is not limited thereto.
도 2는 본 발명의 일 실시예에 따른 바이러스 검출 장치의 각 구성이 유기적으로 결합한 전체 구성을 도시한 것이다. 보다 구체적으로, 도 2a는 본 발명의 프로브부(200)에 해당하는 개방 동축선로 프로브(Open-ended coaxial probe)와 본 발명의 측정부(300)에 해당하는 벡터 네트워크 분석기(Vector network analyzer, VNA)를 포함하는 본 발명의 바이러스 검출 장치를 도시한 것이고, 도 2b는 본 발명의 프로브부(200)에 해당하는 개방 동축선로 프로브(Open-ended coaxial probe)의 세부 구성을 도시한 것이다.2 is a view showing an overall configuration in which each configuration of the virus detection apparatus according to an embodiment of the present invention is organically combined. More specifically, FIG. 2A shows an open-ended coaxial probe corresponding to the probe unit 200 of the present invention and a vector network analyzer (VNA) corresponding to the measuring unit 300 of the present invention. ) shows the virus detection apparatus of the present invention, and FIG. 2B shows a detailed configuration of an open-ended coaxial probe corresponding to the probe unit 200 of the present invention.
도 2a를 참조하면, 본 발명의 바이러스 검출 장치는 벡터 네트워크 분석기에 연결되어 있는 개방형 동축선로 프로브로부터 광대역 전자기파가 시료에 조사되어, 시료 내 특정 바이러스(유전체)의 스캐터링 파라미터 응답, 복소 유전율 스펙트라 등을 측정할 수 있음을 확인할 수 있다.Referring to FIG. 2A , in the virus detection device of the present invention, a broadband electromagnetic wave is irradiated to a sample from an open coaxial line probe connected to a vector network analyzer, scattering parameter response of a specific virus (genome) in the sample, complex permittivity spectra, etc. It can be confirmed that it can be measured.
또한, 도 2b를 참조하면, 본 발명의 개방형 동축선로 프로브의 세부 구성 및 본 발명의 개방형 동축선로 프로브로부터 광대역 전자기파가 시료에 조사되어 전기장을 형성하는 것을 확인할 수 있다.In addition, referring to FIG. 2B , it can be seen that the detailed configuration of the open coaxial line probe of the present invention and the broadband electromagnetic wave from the open coaxial line probe of the present invention are irradiated to the sample to form an electric field.
도 3은 본 발명의 프로브부(200)에 해당하는 개방 동축선로 프로브와 본 발명의 측정부(300)에 해당하는 벡터 네트워크 분석기를 포함하는 본 발명의 바이러스 검출 장치의 실제 모습을 촬영하여 도시한 것이다. 3 is a photograph showing the actual state of the virus detection apparatus of the present invention including an open coaxial probe corresponding to the probe unit 200 of the present invention and a vector network analyzer corresponding to the measuring unit 300 of the present invention. will be.
도 3을 참조하면, 본 발명의 바이러스 검출 장치는 벡터 네트워크 분석기에 연결되어 있는 개방형 동축선로 프로브로부터 광대역 전자기파가 시료에 조사되어, 시료 내 특정 바이러스(유전체)의 스캐터링 파라미터 응답, 복소 유전율 스펙트라 등을 측정할 수 있음을 확인할 수 있다. 3, in the virus detection device of the present invention, a broadband electromagnetic wave is irradiated to a sample from an open coaxial line probe connected to a vector network analyzer, scattering parameter response of a specific virus (genome) in the sample, complex permittivity spectra, etc. It can be confirmed that it can be measured.
또한, 본 발명의 측정부(300)는 상기 시료의 복소 유전율에 대한 실수부 값, 허수부 값 및 유전체 완화 주파수를 측정할 수 있다. 여기서 상기 시료의 복소 유전율이라 함은 결국 시료 내 바이러스(유전체)의 복소 유전율 스펙트라를 의미하는 것으로 볼 수 있다.Also, the measuring unit 300 of the present invention may measure a real part value, an imaginary part value, and a dielectric relaxation frequency for the complex dielectric constant of the sample. Here, the complex permittivity of the sample can be considered to mean the complex permittivity spectra of the virus (genome) in the sample.
본 발명의 측정부(300)에서 측정되는 시료 내 바이러스(유전체)의 복소 유전율 스펙트라는 이론적으로 하기 수학식 1로부터 구할 수 있다.The complex permittivity spectra of the virus (genome) in the sample measured by the measuring unit 300 of the present invention can be theoretically obtained from the following Equation (1).
Figure PCTKR2020008965-appb-img-000001
Figure PCTKR2020008965-appb-img-000001
여기서, ε r,0은 주파수 0에서 정적 비유전율(static relative permittivity), ε r,∞은 ω=∞에서의 비유전율(relative permittivity), τ는 완화 시간, α는 분포(완화 시간) 파라미터이다. where ε r,0 is the static relative permittivity at frequency 0, ε r,∞ is the relative permittivity at ω=∞, τ is the relaxation time, and α is the distribution (relaxation time) parameter. .
본 발명의 측정부(300)에서 측정된 시료의 복소 유전율에 대한 실수부 값은 시료에 광대역 전자기파를 조사할 때 시료 내 바이러스(유전체)의 분극화(Polarization) 정도를 수치로 나타낸 값이다. 시료에 전자기파를 조사하지 않으면 바이러스(유전체)의 원자는 핵과 전자가 등거리를 유지하여 구 형태를 유지하지만, 반대로 시료에 전자기파를 조사하면 바이러스(유전체)의 원자는 핵과 전자 사이의 거리가 멀어지면서 분극화가 이루어지게 된다. 또한, 상기 분극화 과정에서 쌍극자 모멘트가 발생하고 바이러스(유전체)의 원자 내부에 토크가 발생하게 되는데, 바이러스(유전체)의 원자와 원자 사이에 전자가 공유되고 있기 때문에 이들 사이의 분극화 과정에서 마찰이 발생한다. 복소 유전율에 대한 허수부 값은 발생된 마찰에 의한 바이러스(유전체)의 손실을 수치로 나타낸 값이다. 복소 유전율에 대한 실수부 값과 허수부 값은 바이러스(유전체)별로 서로 다른 값을 갖기 때문에 특정 바이러스(유전체)를 판별하는 수단으로 사용될 수 있다.The real part value of the complex permittivity of the sample measured by the measuring unit 300 of the present invention is a value representing the degree of polarization of the virus (dielectric) in the sample when irradiating the sample with a broadband electromagnetic wave. If the sample is not irradiated with electromagnetic waves, the atoms of the virus (dielectric) maintain a spherical shape as the nucleus and electrons are equidistant from the sample. will be done In addition, in the polarization process, a dipole moment occurs and a torque is generated inside the atoms of the virus (dielectric). Since electrons are shared between the atoms of the virus (dielectric), friction occurs during the polarization process between them. do. The imaginary part value for the complex permittivity is a numerical value representing the loss of virus (dielectric) due to friction. Since the real part value and the imaginary part value for the complex permittivity have different values for each virus (genome), they can be used as a means of discriminating a specific virus (genome).
한편, 복소 유전율에 대한 유전체 완화 주파수(dielectric relaxation frequency, f c)란 바이러스(유전체)의 이동성을 측정한 값이다. 시료에 광대역 전자기파를 조사할 때 저주파에서 고주파로 이동시 피크 값(peak value)을 기준으로 복소 유전율의 허수부 값이 증가와 감소 현상을 보이는데, 이 때 기준이 되는 피크 값(peak value)이 위치하는 해당 주파수를 유전체 완화 주파수라 한다. 즉, 복소 유전율의 허수부의 값이 최대일 때 해당 주파수를 유전체 완화 주파수로 볼 수 있다.On the other hand, the dielectric relaxation frequency (f c ) with respect to the complex permittivity is a value measured for the mobility of the virus (dielectric). When irradiating a broadband electromagnetic wave to a sample, when moving from low frequency to high frequency, the imaginary part of the complex permittivity increases and decreases based on the peak value. This frequency is called dielectric relaxation frequency. That is, when the value of the imaginary part of the complex permittivity is maximum, the corresponding frequency can be regarded as the dielectric relaxation frequency.
이러한 유전체 완화 주파수와 분극화 과정에서 발생하는 쌍극자의 이동성을 나타내는 측정치로써 완화 시간(Relaxation time, τ)의 상관 관계는 하기 수학식 2과 같다. 마찬가지로, 복소 유전율에 대한 유전체 완화 주파수도 바이러스(유전체)별로 서로 다른 값을 갖기 때문에 특정 바이러스(유전체)를 판별하는 수단으로 사용될 수 있다.As a measurement value indicating the dielectric relaxation frequency and mobility of dipoles generated in the polarization process, the correlation between relaxation time (τ) is as shown in Equation 2 below. Similarly, since the dielectric relaxation frequency for the complex permittivity also has a different value for each virus (genome), it can be used as a means for discriminating a specific virus (genome).
Figure PCTKR2020008965-appb-img-000002
Figure PCTKR2020008965-appb-img-000002
여기서, τ는 완화 시간(초), f c는 유전체 완화 주파수(Hz)이다.Here, τ is the relaxation time (seconds), and f c is the dielectric relaxation frequency (Hz).
본 발명의 검출부(400)는 상기 시료의 복소 유전율에 대한 실수부 값, 허수부 값 및 유전체 완화 주파수를 통해 상기 시료 내 바이러스를 검출할 수 있다. 여기서 상기 시료의 복소 유전율이라 함은 결국 시료 내 바이러스(유전체)의 복소 유전율 스펙트라를 의미하는 것으로 볼 수 있다.The detection unit 400 of the present invention may detect the virus in the sample through a real part value, an imaginary part value, and a dielectric relaxation frequency for the complex dielectric constant of the sample. Here, the complex permittivity of the sample can be considered to mean the complex permittivity spectra of the virus (genome) in the sample.
특정 바이러스(유전체)의 복소 유전율의 실수부 값, 허수부 값 및 유전체 완화 주파수는 고유의 값으로 정해져 있기 때문에, 본 발명의 바이러스 검출 장치에서 측정된 시료의 복소 유전율로부터 공지된 복소 유전율을 대비하여 바이러스(유전체)를 특정할 수 있다. 이 때 공지된 복소 유전율의 유전체 완화 주파수는 상기 수학식 2를 통하여 구할 수 있다.Since the real part value, the imaginary part value, and the dielectric relaxation frequency of the complex permittivity of a specific virus (genome) are determined as intrinsic values, the known complex permittivity from the complex permittivity of the sample measured by the virus detection device of the present invention is compared. Virus (genome) can be specified. At this time, the dielectric relaxation frequency of the known complex permittivity can be obtained through Equation 2 above.
한편, 본 발명의 검출부(400)에서 검출된 시료 내 바이러스를 디스플레이 화면에 표시하는 표시부;를 더 포함할 수 있다. 본 발명의 표시부는 검출된 특정 바이러스를 소정의 수치와 함께 표시하거나, 현재 설정된 모드를 표시할 수 있다.On the other hand, the display unit for displaying the virus in the sample detected by the detection unit 400 of the present invention on the display screen; may further include. The display unit of the present invention may display a detected specific virus together with a predetermined value or may display a currently set mode.
<본 발명의 바이러스 검출 방법><Virus detection method of the present invention>
한편, 본 명세서는 측정하고자 하는 시료를 주입하는 제1단계; 상기 시료에 광대역 전자기파를 조사하는 제2단계; 상기 조사된 광대역 전자기파에 대한 상기 시료의 복소 유전율을 측정하는 제3단계; 및 상기 복소 유전율로부터 바이러스를 검출하는 제4단계;를 포함하는, 바이러스 검출 방법을 추가로 개시한다. 본 발명의 바이러스 검출 장치에 관한 사항과 중복되는 사항은 생략한다. 이하에서는 본 발명의 바이러스 검출 방법과 관련하여, 각 방법의 단계별로 세분화하여 서술하고자 한다.On the other hand, the present specification is a first step of injecting a sample to be measured; a second step of irradiating a broadband electromagnetic wave to the sample; a third step of measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; And a fourth step of detecting the virus from the complex dielectric constant; it further discloses a virus detection method comprising a. Matters overlapping with those relating to the virus detection device of the present invention will be omitted. Hereinafter, in relation to the virus detection method of the present invention, each method will be described in detail by step.
도 4는 본 발명의 일 실시예에 따른 바이러스 검출 방법을 각 단계별로 순서도로 도시한 것이다. 도 4를 참조하면, 본 발명의 바이러스 검출 방법은 측정하고자 하는 시료를 주입하는 제1단계(S100), 시료에 광대역 전자기파를 조사하는 제2단계(S200), 조사된 광대역 전자기파에 대한 시료의 복소 유전율을 측정하는 제3단계(S300) 및 복소 유전율로부터 바이러스를 검출하는 제4단계(S400)를 포함하는 것을 확인할 수 있다.4 is a flowchart illustrating a virus detection method according to an embodiment of the present invention for each step. Referring to FIG. 4 , the virus detection method of the present invention includes a first step of injecting a sample to be measured (S100), a second step of irradiating the sample with a broadband electromagnetic wave (S200), and a complex sample with respect to the irradiated broadband electromagnetic wave. It can be seen that the third step (S300) of measuring the dielectric constant and the fourth step (S400) of detecting the virus from the complex dielectric constant are included.
본 발명의 측정하고자 하는 시료를 주입하는 제1단계에서, 상기 시료에 판별하고자 하는 특정 바이러스(유전체)가 포함될 수 있다.In the first step of injecting a sample to be measured according to the present invention, a specific virus (genome) to be determined may be included in the sample.
본 발명의 시료에 광대역 전자기파를 조사하는 제2단계에서 광대역 전자기파는 본 발명의 프로브부(200)를 통해 시료에 조사될 수 있다. 여기서, 본 발명의 프로브부(200)는 개방 동축선로 프로브(Open-ended coaxial probe)를 포함할 수 있다. In the second step of irradiating the broadband electromagnetic wave to the sample of the present invention, the broadband electromagnetic wave may be irradiated to the sample through the probe unit 200 of the present invention. Here, the probe unit 200 of the present invention may include an open-ended coaxial probe.
본 발명의 프로브부(200)에 라디오 주파수 영역(Radio-frequency band)의 넓은 주파수 대역이 적용될 수 있다. 보다 구체적으로 시료에 잠긴 개방 동축선로 프로브에 광대역 전자기파의 주파수 대역이 적용될 수 있다.A wide frequency band of a radio-frequency band may be applied to the probe unit 200 of the present invention. More specifically, the frequency band of the broadband electromagnetic wave may be applied to the open coaxial line probe submerged in the sample.
본 발명의 시료부(100)에 주인된 시료에 조사되는 광대역 전자기파의 주파수는 0.1 내지 50 GHz의 범위 이내인 것이 바람직하고, 0.1 내지 26.5 GHz의 범위 이내인 것이 더욱 바람직하다.The frequency of the broadband electromagnetic wave irradiated to the sample host to the sample unit 100 of the present invention is preferably within the range of 0.1 to 50 GHz, and more preferably within the range of 0.1 to 26.5 GHz.
본 발명의 조사된 광대역 전자기파에 대한 시료의 복소 유전율을 측정하는 제3단계에서, 스캐터링 파라미터 응답으로부터 특정 주파수 대역에 대한 바이러스(유전체)의 복소 유전율 스펙트라가 측정될 수 있다.In the third step of measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave of the present invention, the complex permittivity spectra of the virus (dielectric) for a specific frequency band may be measured from the scattering parameter response.
또한, 본 발명의 조사된 광대역 전자기파에 대한 시료의 복소 유전율을 측정하는 제3단계에서 상기 시료의 복소 유전율에 대한 실수부 값, 허수부 값 및 유전체 완화 주파수를 측정할 수 있다. 여기서 상기 시료의 복소 유전율이라 함은 시료 내 바이러스(유전체)의 복소 유전율 스펙트라를 의미하는 것으로 볼 수 있다.In addition, in the third step of measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave of the present invention, a real part value, an imaginary part value, and a dielectric relaxation frequency for the complex dielectric constant of the sample may be measured. Here, the complex permittivity of the sample can be seen as meaning the complex permittivity spectra of the virus (genome) in the sample.
본 발명의 조사된 광대역 전자기파에 대한 시료의 복소 유전율을 측정하는 제3단계에서 측정된 시료의 복소 유전율에 대한 실수부 값은 시료에 광대역 전자기파를 조사할 때 시료 내 바이러스(유전체)의 분극화(Polarization) 정도를 수치로 나타낸 값이다. 시료에 전자기파를 조사하지 않으면 바이러스(유전체)의 원자는 핵과 전자가 등거리를 유지하여 구 형태를 유지하지만, 반대로 시료에 전자기파를 조사하면 바이러스(유전체)의 원자는 핵과 전자 사이의 거리가 멀어지면서 분극화가 이루어지게 된다. 또한, 상기 분극화 과정에서 쌍극자 모멘트가 발생하고 바이러스(유전체)의 원자 내부에 토크가 발생하게 되는데, 바이러스(유전체)의 원자와 원자 사이에 전자가 공유되고 있기 때문에 이들 사이의 분극화 과정에서 마찰이 발생한다. 복소 유전율에 대한 허수부 값은 발생된 마찰에 의한 바이러스(유전체)의 손실을 수치로 나타낸 값이다. 복소 유전율에 대한 실수부 값과 허수부 값은 바이러스(유전체)별로 서로 다른 값을 갖기 때문에 특정 바이러스(유전체)를 판별하는 수단으로 사용될 수 있다.The real part value of the complex dielectric constant of the sample measured in the third step of measuring the complex dielectric constant of the sample with respect to the irradiated broadband electromagnetic wave of the present invention is the polarization of the virus (dielectric) in the sample when the sample is irradiated with broadband electromagnetic waves ) is a numerical value indicating the degree. If the sample is not irradiated with electromagnetic waves, the atoms of the virus (dielectric) maintain a spherical shape as the nucleus and electrons are equidistant from the sample. will be done In addition, in the polarization process, a dipole moment occurs and a torque is generated inside the atoms of the virus (dielectric). Since electrons are shared between the atoms of the virus (dielectric), friction occurs during the polarization process between them. do. The imaginary part value for the complex permittivity is a numerical value representing the loss of virus (dielectric) due to friction. Since the real part value and the imaginary part value for the complex permittivity have different values for each virus (genome), they can be used as a means of discriminating a specific virus (genome).
한편, 복소 유전율에 대한 유전체 완화 주파수(dielectric relaxation frequency, f c)란 바이러스(유전체)의 이동성을 측정한 값으로, 시료에 광대역 전자기파를 조사할 때 저주파에서 고주파로 이동시 피크 값(peak value)을 기준으로 복소 유전율의 허수부 값이 증가와 감소 현상을 보이는데, 이 때 기준이 되는 피크 값(peak value)이 위치하는 해당 주파수를 유전체 완화 주파수라 한다. 즉, 복소 유전을의 허수부의 값이 최대일 때 해당 주파수를 유전체 완화 주파수로 볼 수 있다.On the other hand, the dielectric relaxation frequency (f c ) for the complex permittivity is a value that measures the mobility of the virus (dielectric). When irradiating a broadband electromagnetic wave to the sample, the peak value is As a reference, the imaginary part of the complex permittivity increases and decreases. At this time, the frequency at which the reference peak value is located is called the dielectric relaxation frequency. That is, when the value of the imaginary part of the complex dielectric is maximum, the frequency can be regarded as a dielectric relaxation frequency.
본 발명의 복소 유전율로부터 바이러스를 검출하는 제4단계는 상기 제3단계에서 측정된 시료의 복소 유전율에 대한 실수부 값, 허수부 값 및 유전체 완화 주파수를 통해 상기 시료 내 바이러스를 검출할 수 있다. 여기서 상기 시료의 복소 유전율이라 함은 결국 시료 내 바이러스(유전체)의 복소 유전율 스펙트라를 의미하는 것으로 볼 수 있다.In the fourth step of detecting the virus from the complex dielectric constant of the present invention, the virus in the sample can be detected through the real part value, the imaginary part value, and the dielectric relaxation frequency of the complex dielectric constant of the sample measured in the third step. Here, the complex permittivity of the sample can be considered to mean the complex permittivity spectra of the virus (genome) in the sample.
특정 바이러스(유전체)의 복소 유전율의 실수부 값, 허수부 값 및 유전체 완화 주파수는 고유의 값으로 정해져 있기 때문에, 본 발명의 바이러스 검출 방법에서 측정된 시료의 복소 유전율로부터 공지된 복소 유전율을 대비하여 바이러스(유전체)를 특정할 수 있다. 이 때 공지된 복소 유전율의 유전체 완화 주파수는 상기 수학식 2를 통하여 구할 수 있다.Since the real part value, the imaginary part value, and the dielectric relaxation frequency of the complex permittivity of a specific virus (genome) are determined as intrinsic values, from the complex permittivity of the sample measured in the virus detection method of the present invention, the known complex permittivity is compared. Virus (genome) can be specified. At this time, the dielectric relaxation frequency of the known complex permittivity can be obtained through Equation 2 above.
또한, 본 발명의 바이러스 검출 방법은 상기 검출된 바이러스를 디스플레이 화면에 표시하는 제5단계;를 더 포함할 수 있다(미도시). 본 발명의 바이러스 검출 방법에서 제5단계는 검출된 특정 바이러스를 소정의 수치와 함께 표시하거나, 현재 설정된 모드를 표시하는 단계를 포함할 수 있다.In addition, the virus detection method of the present invention may further include; a fifth step of displaying the detected virus on a display screen (not shown). The fifth step in the virus detection method of the present invention may include displaying a detected specific virus with a predetermined value or displaying a currently set mode.
이하, 첨부한 도면 및 실시예들을 참조하여 본 명세서가 청구하는 바에 대하여 더욱 자세히 설명한다. 다만, 본 명세서에서 제시하고 있는 도면 내지 실시예 등은 통상의 기술자에게 의하여 다양한 방식으로 변형되어 여러 가지 형태를 가질 수 있는 바, 본 명세서의 기재사항은 본 발명을 특정 개시 형태에 한정되는 것이 아니고 본 발명의 사상 및 기술 범위에 포함되는 모든 균등물 내지 대체물을 포함하고 있는 것으로 보아야 한다. 또한, 첨부된 도면은 본 발명을 통상의 기술자로 하여금 더욱 정확하게 이해할 수 있도록 돕기 위하여 제시되는 것으로서 실제보다 과장되거나 축소되어 도시될 수 있다.Hereinafter, with reference to the accompanying drawings and embodiments will be described in more detail with respect to what the present specification claims. However, the drawings and examples presented in this specification may be modified in various ways by those skilled in the art to have various forms, and the description of the present specification is not intended to limit the present invention to a specific disclosed form. It should be considered to include all equivalents or substitutes included in the spirit and scope of the present invention. In addition, the accompanying drawings are presented to help those of ordinary skill in the art to more accurately understand the present invention, and may be exaggerated or reduced than in reality.
{실시예 및 평가}{Examples and Evaluation}
실험예 1. 본 발명의 바이러스 검출 장치를 통한 복소 유전율의 측정Experimental Example 1. Measurement of complex permittivity using the virus detection device of the present invention
RSV(Respiratory syncytial virus)의 핵단백질(Nucleoprotein) 유전자를 클로닝하고 클로닝된 RSV의 핵단백질 유전자를 Escherichia coli에서 발현 후 DI water에서 100 μg/mL의 농도로 정제하였다(이하, 'RSV rNP'이라 한다).The nucleoprotein gene of RSV (Respiratory syncytial virus) was cloned, and the cloned RSV nucleoprotein gene was expressed in Escherichia coli and purified at a concentration of 100 μg/mL in DI water (hereinafter referred to as 'RSV rNP'). ).
RSV rNP에 RSV rNP를 표적으로 하는 모노클로날 항체를 결합하여 DI water에서 100 μg/mL의 농도로 정제하였다(이하, 'RSV rNP + Antibody'이라 한다)A monoclonal antibody targeting RSV rNP was bound to RSV rNP and purified at a concentration of 100 μg/mL in DI water (hereinafter referred to as 'RSV rNP + Antibody')
음성 대조군에 해당하는, BSA(Bovine serum albumin)를 DI water에서 100 μg/mL의 농도로 정제하였다(이하, 'BSA'이라 한다).Bovine serum albumin (BSA), which corresponds to a negative control, was purified in DI water at a concentration of 100 μg/mL (hereinafter referred to as 'BSA').
상기 정제된 RSV rNP, RSV rNP + Antibody 및 BSA를 수용액의 상태로 각각 본 발명의 시료부(100)에 주입하고, 광대역 전자기파의 주파수가 0.1 내지 26.5 GHz의 범위 이내의 작동 대역폭을 갖는 본 발명의 바이러스 검출 장치에서 각 시료의 복소 유전율을 측정하였다. 이 때 본 발명의 프로브부(200)를 통하여 상기 광대역 전자기파를 조사하고, 본 발명의 측정부(300)를 통하여 상기 조사된 광대역 전자기파에 대한 각 시료의 복소 유전율을 측정하였다. 또한, 본 발명의 검출부(400)를 통해 상기 측정된 각 시료의 복소 유전율로부터 바이러스를 검출하였다.The purified RSV rNP, RSV rNP + Antibody, and BSA are each injected into the sample unit 100 of the present invention in the state of an aqueous solution, and the frequency of the broadband electromagnetic wave has an operating bandwidth within the range of 0.1 to 26.5 GHz of the present invention The complex permittivity of each sample was measured in a virus detection device. At this time, the broadband electromagnetic wave was irradiated through the probe unit 200 of the present invention, and the complex permittivity of each sample with respect to the irradiated broadband electromagnetic wave was measured through the measuring unit 300 of the present invention. In addition, the virus was detected from the complex dielectric constant of each sample measured through the detection unit 400 of the present invention.
평가 1. 본 발명의 바이러스 검출 장치를 통한 바이러스의 검출 Evaluation 1. Detection of virus through the virus detection device of the present invention
도 5는 본 발명의 일 실시예에 따른 바이러스 검출 장치를 이용하여 수용액 상태의 시료의 복소 유전율을 측정하는 실험을 실제 촬영하여 도시한 것이다.5 is a diagram illustrating an experiment for measuring the complex permittivity of a sample in an aqueous solution state by using the virus detection apparatus according to an embodiment of the present invention.
도 5를 참조하면, 상기 실험예 1에 따라 정제된 RSV rNP, RSV rNP + Antibody 및 BSA를 수용액 상태로 각각 본 발명의 시료부(100)에 주입하여 본 발명의 프로브부(200)에 해당하는 개방 동축선로 프로브를 통해 광대역 전자기파를 조사하는 것을 확인할 수 있다.5, RSV rNP, RSV rNP + Antibody and BSA purified according to Experimental Example 1 were injected into the sample unit 100 of the present invention in an aqueous solution state, respectively, corresponding to the probe unit 200 of the present invention. It can be seen that a broadband electromagnetic wave is irradiated through an open coaxial line probe.
도 6은 본 발명의 일 실시예에 따른 바이러스 검출 장치를 이용하여 수용액 상태의 시료의 스캐터링 파라미터 응답 특성을 측정하여 그래프로 도시한 것이다. 6 is a graph showing the scattering parameter response characteristics of a sample in an aqueous solution state using the virus detection apparatus according to an embodiment of the present invention.
도 6을 참조하면, 상기 실험예 1에 따라 정제된 RSV rNP, RSV rNP + Antibody 및 BSA에 대한 스캐터링 파라미터 응답의 크기와 위상 특성이 각각 상당히 구별되는 것을 확인할 수 있다.Referring to FIG. 6 , it can be seen that the magnitude and phase characteristics of the scattering parameter responses to RSV rNP, RSV rNP + Antibody, and BSA purified according to Experimental Example 1 are significantly different from each other.
상술한 바와 같이 바이러스(유전체)의 복소 유전율 스펙트라는 스캐터링 파라미터 응답 특성으로부터 추출될 수 있다. 특정 바이러스(유전체)마다 고유의 스캐터링 파라미터 응답 특성을 가지고 있으므로, 이는 특정 바이러스(유전체)마다 고유의 복소 유전율 스펙트라를 가지고 있음을 의미한다.As described above, the complex permittivity spectra of the virus (genome) can be extracted from the scattering parameter response characteristics. Since each specific virus (genome) has its own scattering parameter response characteristics, this means that each specific virus (genome) has its own complex permittivity spectra.
도 7은 본 발명의 일 실시예에 따른 바이러스 검출 장치를 이용하여 수용액 상태의 시료의 복소 유전율 스펙트라를 측정하여 그래프로 도시한 것이다. 보다 구체적으로 도 7a는 상기 실험예 1에 따라 정제된 RSV rNP, RSV rNP + Antibody 및 BSA에 대한 광대역 전자기파의 주파수에 따른 복소 유전율의 실수부 값을 측정하여 그래프로 도시한 것이고, 도 7b는 상기 실험예 1에 따라 정제된 RSV rNP, RSV rNP + Antibody 및 BSA에 대한 광대역 전자기파의 주파수에 따른 복소 유전율의 허수부 값을 측정하여 그래프로 도시한 것이다. 참고적으로, 도 7은 DI water의 복소 유전율 스펙트라를 포함한다.7 is a graph showing the complex dielectric constant spectra of a sample in an aqueous solution state by using the virus detection apparatus according to an embodiment of the present invention. More specifically, FIG. 7a is a graph showing the measurement of the real part value of the complex permittivity according to the frequency of broadband electromagnetic waves for RSV rNP, RSV rNP + Antibody, and BSA purified according to Experimental Example 1, and FIG. 7b is a graph showing the The imaginary part of the complex permittivity according to the frequency of broadband electromagnetic waves for RSV rNP, RSV rNP + Antibody, and BSA purified according to Experimental Example 1 was measured and shown as a graph. For reference, FIG. 7 includes complex permittivity spectra of DI water.
도 7을 참조하면, 상기 실험예 1에 따라 정제된 RSV rNP, RSV rNP + Antibody 및 BSA에 대한 복소 유전율 스펙트라가 각각 상당히 구별되는 것을 확인할 수 있다.Referring to FIG. 7 , it can be seen that the complex permittivity spectra of RSV rNP, RSV rNP + Antibody, and BSA purified according to Experimental Example 1 are significantly different from each other.
먼저 BSA와 DI water의 복소 유전율 스펙트라를 비교하면, BSA의 복소 유전율 스펙트라의 실수부 값(ε r')은 1GHz 에서 63이고, 이 값은 동일 주파수에서 DI water의 값에 비해 14 만큼 작다. 이러한 결과는 BSA 분자에 의해 분극의 정도가 감소되었기 때문이다. 또한, 관심 주파수 범위에서 BSA의 복소 유전율 스펙트라의 허수부 값(ε r")의 결과로부터 DI water에 비하여 분극화 과정에 의해 발생하는 마찰에 의한 손실이 적은 것을 확인할 수 있다. 나아가, BSA의 유전체 완화 주파수(f c)는 20.9 GHz이며, DI water의 유전체 완화 주파수(f c)와 그 값이 매우 유사하지만, 20.9 GHz의 주파수에서 BSA의 복소 유전율 스펙트라의 허수부 값(ε r")은 약 32이고, 이 값은 동일 주파수에서 DI water의 값에 비해 4 만큼 작다.First, comparing the complex permittivity spectra of BSA and DI water, the real part value (ε r ') of the complex permittivity spectra of BSA is 63 at 1 GHz, and this value is 14 smaller than the value of DI water at the same frequency. This result is because the degree of polarization was reduced by the BSA molecule. In addition, from the result of the imaginary part value (ε r ") of the complex permittivity spectra of BSA in the frequency range of interest, it can be confirmed that the loss due to friction caused by the polarization process is smaller than that of DI water. Furthermore, the dielectric relaxation of BSA the frequency (f c) is 20.9 GHz, and the dielectric relaxation frequency of DI water (f c) and the value is very similar, but the complex dielectric constant of the imaginary part values of the spectra of the BSA in a 20.9 GHz frequency (ε r ") is about 32 , and this value is smaller by 4 compared to the value of DI water at the same frequency.
RSV rNP와 BSA의 복소 유전율 스펙트라를 비교하면, 1GHz 에서 RSV rNP의 복소 유전율 스펙트라의 실수부 값(ε r')은 66이고, BSA의 복소 유전율 스펙트라의 실수부 값(ε r')은 63이다. 도 7a를 참조하면, 이러한 복소 유전율 스펙트라의 실수부 값의 차이는 1 ~ 26.5 GHz의 주파수 대역에서 동일하게 유지되는 것을 확인할 수 있다.Comparing the complex dielectric constant spectra of RSV rNP with BSA, 'and 66, the complex dielectric constant real part values of the spectra of BSA (ε r at 1GHz real part value of the complex dielectric constant spectra of RSV rNP (ε r)') is 63 . Referring to FIG. 7A , it can be seen that the difference between the real part values of the complex permittivity spectra remains the same in the frequency band of 1 to 26.5 GHz.
또한, RSV rNP + Antibody의 복소 유전율 스펙트라의 실수부 값(ε r')은 1GHz 에서 78이고, 이 값은 동일 주파수에서 RSV rNP의 값에 비해 12 만큼 크다. 도 7a를 참조하면, 이러한 복소 유전율 스펙트라의 실수부 값의 차이는 1 ~ 26.5 GHz의 주파수 대역에서 동일하게 유지되는 것을 확인할 수 있다. RSV rNP + Antibody의 복소 유전율 스펙트라의 실수부 값(ε r')이 RSV rNP의 복소 유전율 스펙트라의 실수부 값(ε r')에 비하여 큰 이유는 RSV rNP 항원과 RSV rNP 항체의 항원-항체 상호작용으로 인하여 부산물로써 또 다른 생물학적 물질이 생성되었기 때문이다. 한편, 0.6 GHz 미만의 주파수 대역에서 RSV rNP와 RSV rNP + Antibody의 복소 유전율 스펙트라의 실수부 값(ε r')의 저주파 분산은 바이오 입자 및 주변 매질의 상이한 유전율 및 전도율로 인해 발생한다. In addition, the real part value (ε r ') of the complex permittivity spectra of RSV rNP + Antibody is 78 at 1 GHz, which is 12 higher than the value of RSV rNP at the same frequency. Referring to FIG. 7A , it can be seen that the difference between the real part values of the complex permittivity spectra remains the same in the frequency band of 1 to 26.5 GHz. The reason that the real part value of the complex permittivity spectra of RSV rNP + Antibody (ε r ') is larger than the real part value of the complex permittivity spectra of RSV rNP (ε r ') is the antigen-antibody interaction between RSV rNP antigen and RSV rNP antibody. This is because the action produced another biological material as a by-product. On the other hand, the low-frequency dispersion of the real part value (ε r ') of the complex permittivity spectra of RSV rNP and RSV rNP + Antibody in the frequency band below 0.6 GHz is caused by the different permittivity and conductivity of the bio-particles and the surrounding medium.
한편, 도 7b를 통해 복소 유전율 스펙트라의 실수부 값(ε r')의 구별뿐만 아니라, RSV rNP, RSV rNP + Antibody 및 BSA의 복소 유전율 스펙트라의 허수부 값(ε r")도 상당히 구별되는 것을 확인할 수 있다. 상술한 바와 같이, 복소 유전율 스펙트라의 허수부 값(ε r")은 시료에 광대역 전자기파를 조사하는 경우 바이러스(유전체)의 분극화 과정에 의해 발생하는 마찰에 의한 손실을 나타내는 값으로서, 여기에는 쌍극자 손실(dipole loss, ε rd")과 이온 손실(ionic loss, ε ")이라는 두 가지 유형의 유전체 손실 메커니즘이 존재한다. 총 유전 손실은 아래 수학식 3과 같이 쌍극자 손실과 이온 손실을 더하여 간단히 계산할 수 있다.On the other hand, through FIG. 7B, not only the real part value (ε r ') of the complex permittivity spectra, but also the imaginary part values (ε r ") of the complex permittivity spectra of RSV rNP, RSV rNP + Antibody and BSA are significantly distinguished. As described above, the imaginary part value (ε r ") of the complex permittivity spectra is a value representing the loss due to friction caused by the polarization process of the virus (dielectric) when the sample is irradiated with broadband electromagnetic waves, There are two types of dielectric loss mechanisms: dipole loss (ε rd ") and ionic loss (ε rσ "). The total dielectric loss can be calculated simply by adding the dipole loss and the ion loss as shown in Equation 3 below.
Figure PCTKR2020008965-appb-img-000003
Figure PCTKR2020008965-appb-img-000003
여기서, ε r"은 총 유전 손실, ε rd"은 쌍극자 손실, ε "은 이온 손실이다.where ε r ″ is the total dielectric loss, ε rd ″ is the dipole loss, and ε ″ is the ion loss.
도 7b를 참조하면, RSV rNP, RSV rNP + Antibody에 대한 1GHz 미만의 이온 손실(ionic loss, ε ")의 우세도를 확인할 수 있다. 이러한 우세적 경향은 DNA 또는 RNA와 같은 핵산(nucleic acid)과 관련된 생물학적 물질에서 전형적으로 관찰되는 특성이다. 즉, 이로부터 RSV rNP는 구조적으로 핵산과 관련된 생물학적 물질인 것을 확인할 수 있다.Referring to Figure 7b, RSV rNP, RSV rNP + Antibody can confirm the predominance of ionic loss (ε rσ ") of less than 1 GHz. This dominant tendency is a nucleic acid (DNA or RNA) ), which is typically observed in biological substances related to , that is, from this, it can be confirmed that RSV rNP is structurally related to nucleic acids.
반면에, BSA는 무시할 수 있는 이온 손실(ionic loss, ε ")을 갖지만, 쌍극자 손실(dipole loss, ε rd")은 BSA의 총 유전 손실에 기여한다. BSA가 이온 손실(ionic loss, ε ")을 거의 갖지 않는 이유는 BSA는 607 아미노산과 알라닌(alanine)을 포함하는 타원형 단백질 분자로 구성되어 있기 때문이다.On the other hand, BSA has negligible ionic loss (ε "), but dipole loss (ε rd ") contributes to the total dielectric loss of BSA. The reason BSA has little ionic loss (ε ") is that BSA is composed of oval protein molecules containing 607 amino acids and alanine.
이러한 이온 손실(ionic loss, ε ")과 쌍극자 손실(dipole loss, ε rd")의 경향성은 바이러스 물질이 NP로 인해 이온 손실을 발생시키지만, 비바이러스 물질은 이온 손실을 거의 발생시키지 않고 쌍극자 손실만을 발생시키기 때문이며, 이로부터 바이러스(유전체)의 복소 유전율 스펙트라의 허수부 값(ε r")도 바이러스 검출을 위한 주요 지표 역할을 하는 것을 확인할 수 있다. This tendency of ionic loss (ε rσ ") and dipole loss (ε rd ") is that viral materials cause ion losses due to NPs, whereas non-viral materials cause little ion loss and dipole losses. It can be confirmed that the imaginary part value (ε r ") of the complex permittivity spectra of the virus (genome) also serves as a major indicator for virus detection.
따라서, 이러한 이온 손실 및 쌍극자 손실이라는 두 경향성으로부터 RSV rNP, RSV rNP + Antibody가 이온 손실(ionic loss, ε ")에 있어 BSA와 구별할 수 있음을 확인할 수 있다.Therefore, it can be confirmed that RSV rNP, RSV rNP + antibody can be distinguished from BSA in ionic loss (ε rσ ") from these two tendencies of ion loss and dipole loss.
또한, 상술한 바와 같이 각각의 바이러스(유전체)는 고유의 유전체 완화 주파수(f c)를 가지므로, 하기 표 1의 RSV rNP, RSV rNP + Antibody 및 BSA의 각각의 유천제 완화 주파수로부터 세 물질을 구별할 수도 있다.In addition, as described above, since each virus (genome) has a unique dielectric relaxation frequency (f c ), three substances from each of the inducing agent relaxation frequencies of RSV rNP, RSV rNP + Antibody and BSA in Table 1 below can also be distinguished.
시료 물질(material)sample material 유전체 완화 주파수(f c, GHz)Dielectric relaxation frequency (f c , GHz)
RSV rNP + AntibodyRSV rNP + Antibody 18.618.6
RSV rNPRSV rNP 22.722.7
BSABSA 20.920.9
상술한 바와 같이, 유전체 완화 주파수(f c)는 바이러스(유전체)의 분극화 과정에서 발생하는 쌍극자의 이동성을 나타내는 측정치로써 완화 시간(τ)과 관련이 있다. 도 7b을 참조하면, RSV rNP의 피크 값은 DI water의 피크 값보다 감소된 것을 확인할 수 있다. 이는 상당한 양의 물 분자가 강하게 하전된 핵산(nucleic acid)인 NP에 결합하기 때문인 것으로 추정할 수 있다. 이러한 경향성에 따라, 유전체 완화 주파수(f c)와 완화 시간(τ)은 각각의 바이러스(유전체)마다 다른 값을 갖게 된다. 즉, 바이러스(유전체)의 유전체 완화 주파수(f c)도 바이러스 검출을 위한 주요 지표 역할을 할 수 있다. As described above, the dielectric relaxation frequency (f c ) is a measure indicating the mobility of dipoles generated in the polarization process of a virus (genome) and is related to the relaxation time (τ). Referring to FIG. 7b , it can be confirmed that the peak value of RSV rNP is reduced than the peak value of DI water. This is presumably because a significant amount of water molecules bind to NPs, which are strongly charged nucleic acids. According to this tendency, the dielectric relaxation frequency (f c ) and relaxation time (τ) have different values for each virus (genome). That is, the genome relaxation frequency (f c ) of the virus (genome) can also serve as a key indicator for virus detection.
이처럼 유전체 분광법을 이용한 본 발명의 바이러스 검출 장치는 각각의 바이러스(유전체)가 고유의 복소 유전율 스펙트라를 갖는 원리를 이용한 기술로써, 형광 항체 표지 기술과 달리 별도 표지 과정(labeling process)을 거치지 않으므로 바이러스 검출의 편의성 및 신속성이 증대되는 효과가 있다.As such, the virus detection apparatus of the present invention using genome spectroscopy is a technology using the principle that each virus (genome) has its own complex permittivity spectra, and unlike fluorescent antibody labeling technology, it does not go through a separate labeling process. It has the effect of increasing the convenience and speed of the
상술한 바에 따른 본 발명의 바이러스 검출 장치 및 그 검출 방법은 적은 양의 시료이더라도 전기화학적 방법을 통해 바이러스의 복소 유전율 스펙트라를 측정하여 신속하고 정확하게 특정 바이러스를 검출할 수 있다.The virus detection apparatus and the detection method of the present invention according to the present invention can detect a specific virus quickly and accurately by measuring the complex dielectric constant spectra of the virus through an electrochemical method even with a small amount of sample.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.The above description is merely illustrative of the technical spirit of the present invention, and various modifications and variations will be possible without departing from the essential characteristics of the present invention by those skilled in the art to which the present invention pertains.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical spirit of the present invention, but to explain, and the scope of the technical spirit of the present invention is not limited by these embodiments. The protection scope of the present invention should be construed by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (10)

  1. 측정하고자 하는 시료를 주입하는 시료부;a sample unit for injecting a sample to be measured;
    상기 시료에 광대역 전자기파를 조사하는 프로브부; a probe unit irradiating a broadband electromagnetic wave to the sample;
    상기 조사된 광대역 전자기파에 대한 상기 시료의 복소 유전율을 측정하는 측정부; 및a measuring unit measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and
    상기 복소 유전율로부터 바이러스를 검출하는 검출부;를 포함하는, 바이러스 검출 장치.A virus detection device comprising a; a detection unit for detecting the virus from the complex dielectric constant.
  2. 제1항에 있어서,The method of claim 1,
    상기 프로브부는 개방 동축선로 프로브(Open-ended coaxial probe)를 포함하는, 바이러스 검출 장치.The probe unit includes an open-ended coaxial probe (open-ended coaxial probe), virus detection device.
  3. 제1항에 있어서,The method of claim 1,
    상기 광대역 전자기파의 주파수는 0.1 내지 50 GHz의 범위 이내인 것을 특징으로 하는, 바이러스 검출 장치.The frequency of the broadband electromagnetic wave is characterized in that within the range of 0.1 to 50 GHz, virus detection device.
  4. 제1항에 있어서,According to claim 1,
    상기 측정부는 벡터 네트워크 분석기(Vector network analyzer)를 포함하는, 바이러스 검출 장치.The measuring unit comprises a vector network analyzer (Vector network analyzer), virus detection device.
  5. 제1항에 있어서,According to claim 1,
    상기 측정부는 상기 시료의 복소 유전율에 대한 실수부 값, 허수부 값 및 유전체 완화 주파수를 측정하는 것을 특징으로 하는, 바이러스 검출 장치.Wherein the measuring unit measures a real part value, an imaginary part value, and a dielectric relaxation frequency with respect to the complex permittivity of the sample, the virus detection device.
  6. 제1항에 있어서,According to claim 1,
    상기 검출부는 상기 시료의 복소 유전율에 대한 실수부, 허수부 및 유전체 완화 주파수를 통해 상기 시료 내 바이러스를 검출하는 것을 특징으로 하는, 바이러스 검출 장치.The detection unit, the virus detection device, characterized in that for detecting the virus in the sample through a real part, an imaginary part, and a dielectric relaxation frequency with respect to the complex dielectric constant of the sample.
  7. 제1항에 있어서,According to claim 1,
    상기 검출된 바이러스를 디스플레이 화면에 표시하는 표시부;를 더 포함하는, 바이러스 검출 장치.The virus detection device further comprising; a display unit for displaying the detected virus on a display screen.
  8. 측정하고자 하는 시료를 주입하는 제1단계;A first step of injecting a sample to be measured;
    상기 시료에 광대역 전자기파를 조사하는 제2단계;a second step of irradiating a broadband electromagnetic wave to the sample;
    상기 조사된 광대역 전자기파에 대한 상기 시료의 복소 유전율을 측정하는 제3단계; 및a third step of measuring the complex permittivity of the sample with respect to the irradiated broadband electromagnetic wave; and
    상기 복소 유전율로부터 바이러스를 검출하는 제4단계;를 포함하는, 바이러스 검출 방법.A virus detection method comprising a; a fourth step of detecting the virus from the complex dielectric constant.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 광대역 전자기파의 주파수는 0.1 내지 50 GHz의 범위 이내인 것을 특징으로 하는, 바이러스 검출 방법.The frequency of the broadband electromagnetic wave is characterized in that within the range of 0.1 to 50 GHz, virus detection method.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 검출된 바이러스를 디스플레이 화면에 표시하는 제5단계;를 더 포함하는, 바이러스 검출 방법.A fifth step of displaying the detected virus on a display screen; further comprising, a virus detection method.
PCT/KR2020/008965 2020-06-25 2020-07-08 Virus detecting device using dielectric spectroscopy and detecting method therefor WO2021261647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200077770A KR102456455B1 (en) 2020-06-25 2020-06-25 Virus detection device using dielectric spectroscopy and detection method thereof
KR10-2020-0077770 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261647A1 true WO2021261647A1 (en) 2021-12-30

Family

ID=79281440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008965 WO2021261647A1 (en) 2020-06-25 2020-07-08 Virus detecting device using dielectric spectroscopy and detecting method therefor

Country Status (2)

Country Link
KR (1) KR102456455B1 (en)
WO (1) WO2021261647A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449914B1 (en) * 2001-08-24 2004-09-22 대한민국 Cancer Cells Detection System and Method in a Sentinel Lymph Node of a Patient Using Microwave Technology
EP2259045A1 (en) * 2009-06-05 2010-12-08 Koninklijke Philips Electronics N.V. Multi-frequency impedance method and apparatus for discriminating and counting particles expressing a specific marker
KR20110103990A (en) * 2009-01-09 2011-09-21 소니 주식회사 Flow path device, complex dielectric constant measurement device, and dielectric cytometry device
JP6299609B2 (en) * 2013-02-08 2018-03-28 ソニー株式会社 Fine particle analyzer and fine particle analysis system
JP2019095398A (en) * 2017-11-28 2019-06-20 日本電信電話株式会社 Component concentration measuring method and component concentration measuring apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201207583D0 (en) 2012-05-01 2012-06-13 Isis Innovation Electrochemical detection method and related aspects
KR101985459B1 (en) * 2017-09-27 2019-06-03 한국과학기술연구원 Method and apparatus for measuring dielectric property of material using open ended coaxial probe
KR102001423B1 (en) * 2018-10-18 2019-10-01 서울과학기술대학교 산학협력단 Apparatus for measuring broadband complex permittivity using open-ended coaxial probe and method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100449914B1 (en) * 2001-08-24 2004-09-22 대한민국 Cancer Cells Detection System and Method in a Sentinel Lymph Node of a Patient Using Microwave Technology
KR20110103990A (en) * 2009-01-09 2011-09-21 소니 주식회사 Flow path device, complex dielectric constant measurement device, and dielectric cytometry device
EP2259045A1 (en) * 2009-06-05 2010-12-08 Koninklijke Philips Electronics N.V. Multi-frequency impedance method and apparatus for discriminating and counting particles expressing a specific marker
JP6299609B2 (en) * 2013-02-08 2018-03-28 ソニー株式会社 Fine particle analyzer and fine particle analysis system
JP2019095398A (en) * 2017-11-28 2019-06-20 日本電信電話株式会社 Component concentration measuring method and component concentration measuring apparatus

Also Published As

Publication number Publication date
KR102456455B1 (en) 2022-10-19
KR20220000155A (en) 2022-01-03

Similar Documents

Publication Publication Date Title
US5205917A (en) Fluorophore assisted carbohydrate electrophoresis diagnosis
US8143064B2 (en) Reagents and methods for classifying leukocytes
Wang et al. Cardiotoxicity and mechanism of particulate matter 2.5 (PM2. 5) exposure in offspring rats during pregnancy
WO2022188725A1 (en) Coronavirus and influenza virus test device and method
WO2021261647A1 (en) Virus detecting device using dielectric spectroscopy and detecting method therefor
WO2012144861A2 (en) Method for analyzing protein-protein interaction on single-molecule level in cell environment, and method for measuring density of protein activated in cytosol
WO2012002597A1 (en) Diagnostic primer for the hepatitis b virus, probe, kit including same, and method for diagnosing the hepatitis b virus using the kit
US20190078993A1 (en) Method of Characterization of Exosomes
WO2019221537A1 (en) Method for detecting mycoplasma using mitochondrial dna as internal control sample
McGrotty et al. Evaluation ofa rapid assay forcanine C-reactive protein
WO2020013590A1 (en) Microelectrode biosensor using dielectrophoresis and method for detecting biological material by using same
Valverde et al. The application of single cell gel electrophoresis or comet assay to human monitoring studies
AU2021104366A4 (en) KIT FOR DETECTING DUST MITE COMPONENT-SPECIFIC IMMUNOGLOBULIN E (sIgE)
WO2022119315A1 (en) Method and device for demagnetizing and dispersing magnetic particle
Salzman et al. Current and experimental methods of rapid microbial identification
Ikarashi et al. Application of sensitive mouse lymph node assay for detection of contact sensitization capacity of dyes
Kovács et al. Evaluation of goose serum amyloid A acute phase response by enzyme-linked immunosorbent assay
Ye et al. Real-time cell analysis for monitoring cholera toxin-induced human intestinal epithelial cell response
CN111257405A (en) Method for identifying genotoxic substance by using mass spectrometry quantitative technology
Johnston et al. Comparison of hemagglutination and hemadsorption tests for influenza detection
Parola et al. Activation of human lymphocytes by concanavalin A or purified protein derivative results in no alteration of fluorescence polarization of lipid probes although the electrophoretic mobility of the cells is changed
WO2024075941A1 (en) Super absorbent polymer-based surface fixation technology for extracellular vesicles or cells
WO2022075503A1 (en) Blocking agent, method for detecting analyte by using same, and kit for detecting analyte, comprising same
WO2016024690A1 (en) Apparatus for detecting particles
Vierra et al. Simultaneous Real-Time Measurement of the β-Cell Membrane Potential and Ca 2+ Influx to Assess the Role of Potassium Channels on β-Cell Function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941722

Country of ref document: EP

Kind code of ref document: A1