WO2021261585A1 - Adhesive composition for decorative film, and use thereof - Google Patents

Adhesive composition for decorative film, and use thereof Download PDF

Info

Publication number
WO2021261585A1
WO2021261585A1 PCT/JP2021/024138 JP2021024138W WO2021261585A1 WO 2021261585 A1 WO2021261585 A1 WO 2021261585A1 JP 2021024138 W JP2021024138 W JP 2021024138W WO 2021261585 A1 WO2021261585 A1 WO 2021261585A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
meth
sensitive adhesive
polymer
pressure
Prior art date
Application number
PCT/JP2021/024138
Other languages
French (fr)
Japanese (ja)
Inventor
祐介 橋本
伸幸 竹谷
聡子 安藤
絵美子 時田
Original Assignee
東亞合成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東亞合成株式会社 filed Critical 東亞合成株式会社
Publication of WO2021261585A1 publication Critical patent/WO2021261585A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F295/00Macromolecular compounds obtained by polymerisation using successively different catalyst types without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J153/00Adhesives based on block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J157/00Adhesives based on unspecified polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]

Definitions

  • the present disclosure relates to an adhesive composition for a decorative film and its use.
  • decorative films are attached or transferred to molded products, mainly for automobile interior / exterior parts and home appliances.
  • a molding method using a decorative film in-mold molding by injection molding, vacuum forming, vacuum pressure forming, and the like are used.
  • a decorative film to be bonded to a molded product a decorative film provided with an adhesive layer is known.
  • Patent Document 1 a vinyl polymer having a glass transition temperature of 30 ° C. or higher and 200 ° C. or lower and a number average molecular weight of 500 or higher and 10,000 or lower is randomly copolymerized with a (meth) acrylic monomer. It is disclosed that a pressure-sensitive adhesive composition containing an acrylic pressure-sensitive adhesive polymer is used to form a pressure-sensitive adhesive layer of a decorative film. Further, Patent Document 1 describes a pressure-sensitive adhesive layer that exhibits high adhesiveness even under high temperature conditions by keeping the glass transition temperature of the entire pressure-sensitive adhesive layer and the surface layer portion and the storage elastic modulus at 90 ° C. within a predetermined range. It is disclosed that you will get.
  • the acrylic pressure-sensitive adhesive polymer constituting the pressure-sensitive adhesive layer.
  • the viscosity of the pressure-sensitive adhesive composition increases, and the coatability decreases due to the high viscosity, or it becomes necessary to dilute to a viscosity suitable for coating. There is a concern that the handleability may be reduced.
  • the pressure-sensitive adhesive composition is diluted to ensure the coatability of the pressure-sensitive adhesive composition, the coating film thickness becomes thick, and the pressure-sensitive adhesive performance is deteriorated by the components remaining in the pressure-sensitive adhesive layer due to insufficient drying.
  • the acrylic adhesive polymer has a low molecular weight in order to reduce the viscosity of the pressure-sensitive adhesive composition, the heat resistance of the pressure-sensitive adhesive layer is lowered.
  • the adhesive layer of the decorative film has high adhesiveness and heat resistance under high temperature conditions, and is highly durable because it is less likely to be displaced, peeled off, or floated from the molded product due to temperature changes. Is required.
  • the present disclosure has been made in view of the above problems, and it is possible to form an adhesive layer having high adhesiveness under high temperature conditions and high heat resistance and durability against temperature changes while reducing the viscosity.
  • the main purpose is to provide a possible pressure-sensitive adhesive composition.
  • the present inventors have diligently studied in order to solve the above-mentioned problems, and have found that the above-mentioned problems can be solved by using a pressure-sensitive adhesive composition having a specific composition.
  • This disclosure has been completed based on these findings. According to the present disclosure, the following means are provided.
  • a block copolymer having a polymer block (A) and a (meth) acrylic polymer block (B) and a vinyl polymer (C) are contained, and the vinyl polymer (C) is The glass transition temperature is 30 ° C. or higher and 200 ° C. or lower, the number average molecular weight is 500 or higher and 10,000 or lower, and the content of the vinyl polymer (C) is 100 parts by mass of the block polymer.
  • a pressure-sensitive adhesive composition for a decorative film which is 0.5 parts by mass or more and 60 parts by mass or less.
  • the polymer block (A) is a polymer having a glass transition temperature of 100 ° C. or higher, and the (meth) acrylic polymer block (B) has a glass transition temperature of ⁇ 50 ° C. or higher to ⁇ 10 ° C.
  • the polymer block (A) contains at least one selected from the group consisting of a structural unit derived from an aromatic vinyl compound and a structural unit derived from an imide group-containing vinyl compound.
  • Adhesive composition for decorative film is a polymer having a glass transition temperature of 100 ° C. or higher, and the (meth) acrylic polymer block (B) has a glass transition temperature of ⁇ 50 ° C. or higher to ⁇ 10 ° C.
  • the pressure-sensitive adhesive composition for a decorative film according to the above [1] which is the following polymer.
  • the polymer block (A) contains at least one selected from the group consisting of a
  • the pressure-sensitive adhesive composition for a decorative film according to any one of the above [1] to [5], which further contains a cross-linking agent.
  • the vinyl polymer (C) has a glass transition temperature of 40 ° C. or higher and 140 ° C. or lower, and a number average molecular weight of 1,000 or more and 9,500 or lower. Adhesive composition for any of the decorative films. [8] Any of the above [1] to [7], wherein the content of the vinyl polymer (C) is 0.5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the block copolymer. Adhesive composition for decorative films.
  • the structural unit derived from the (meth) acrylic acid alkoxy ester compound is used as the total monomer unit of the (meth) acrylic polymer block (B).
  • a decorative film comprising an adhesive layer comprising the adhesive composition for a decorative film according to any one of the above [1] to [9].
  • the pressure-sensitive adhesive composition for decorative films of the present disclosure it is possible to obtain a pressure-sensitive adhesive layer having high adhesiveness under high temperature conditions, heat resistance and durability against temperature changes while reducing the viscosity. can.
  • (meth) acrylic means acrylic and / or methacrylic
  • (meth) acrylate means acrylate and / or methacrylate
  • (meth) acryloyl group means an acryloyl group and / or a methacryloyl group.
  • the pressure-sensitive adhesive composition for a decorative film of the present disclosure is a pressure-sensitive adhesive composition used as a pressure-sensitive adhesive for adhering or transferring a decorative film to a molded body.
  • the present pressure-sensitive adhesive composition comprises a block copolymer having a polymer block (A) and a (meth) acrylic polymer block (B) (hereinafter, also referred to as “block copolymer (P)”) and a vinyl weight. Contains the coalescence (C).
  • the block copolymer (P) and the vinyl polymer (C) to be blended in the pressure-sensitive adhesive composition, and the components to be blended as necessary will be described in detail.
  • the polymer block (A) and the (meth) acrylic polymer block (B) contained in the block copolymer (P) are segments having different monomer compositions from each other.
  • the polymer block (A) is preferably a segment having a higher glass transition temperature (Tg) than the (meth) acrylic polymer block (B).
  • the Tg of the polymer is a value measured by differential scanning calorimetry (DSC). The details of the measurement method follow the operations described in Examples described later.
  • the Tg of each polymer block is a value obtained by producing a polymer corresponding to the polymer block to be measured and obtaining the Tg of the produced polymer by DSC.
  • the Tg of the polymer can be arbitrarily selected by changing the type and composition of the constituent monomers.
  • the polymer block (A) can be obtained by polymerizing a vinyl monomer.
  • the polymer block (A) is a structural unit and an imide group derived from an aromatic vinyl compound in that it can form a polymer block having a sufficiently high Tg and can impart excellent heat resistance to the block copolymer (P). It is preferable to contain at least one selected from the group consisting of structural units derived from the contained vinyl compound (hereinafter, also referred to as “structural unit U1”).
  • aromatic vinyl compounds examples include styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, vinylxylene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene and p-ethyl.
  • Styrene pn-butyl styrene, p-isobutyl styrene, pt-butyl styrene, o-methoxy styrene, m-methoxy styrene, p-methoxy styrene, o-chloro styrene, m-chloro styrene, p-chloro styrene , P-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol, o-vinyl benzoic acid, m-vinyl benzoic acid, p-vinyl benzoic acid Examples thereof include styrene-based compounds such as acid and divinylbenzene, and vinylnaphthalene. Of these,
  • Examples of the imide group-containing vinyl compound include maleimide compounds such as maleimide and N-substituted maleimide compounds; N-methylitaconimide, N-ethylitaconimide, N-butylitaconimide, N-2-ethylhexylitaconimide, and N-cyclohexyl.
  • maleimide compounds such as maleimide and N-substituted maleimide compounds
  • N-methylitaconimide N-ethylitaconimide, N-butylitaconimide, N-2-ethylhexylitaconimide, and N-cyclohexyl.
  • Itaconimide compounds such as itaconimide; citraconimide compounds such as N-methylcitraconimide, N-ethylcitraconimide, N-butylcitraconimide, N-2-ethylhexylcitraconimide, and N-cyclohexylcitraconimide; N- (2- (2- (Meta) acryloyloxyethyl) succinate imide, N- (2- (meth) acryloyloxyethyl) maleimide, N- (2- (meth) acryloyloxyethyl) phthalate imide, and N- (4- (meth) Examples thereof include (meth) acrylicimide compounds such as acryloyloxybutyl) phthalateimide. Of these, maleimide compounds are preferable because they exhibit high copolymerizability with styrene-based compounds.
  • maleimide compound a maleimide and an N-substituted maleimide compound can be preferably used.
  • N-substituted maleimide compound include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, N-tert-butylmaleimide, and N.
  • -N-alkyl substituted maleimide compounds such as pentylmaleimide, N-hexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-laurylmaleimide, and N-stearylmaleimide; N such as N-cyclopentylmaleimide and N-cyclohexylmaleimide.
  • N-Cycloalkyl-substituted maleimide compounds such as N-benzylmaleimide; N-phenylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-acetylphenyl) maleimide, N- (4-) Examples thereof include N-aryl substituted maleimide compounds such as methoxyphenyl) maleimide, N- (4-ethoxyphenyl) maleimide, N- (4-chlorophenyl) maleimide, and N- (4-bromophenyl) maleimide.
  • the imide group-containing vinyl compound one or more of these can be used.
  • R 1 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a cyclohexyl group, a phenyl group, or a hydroxy group at an arbitrary position of the phenyl group, an alkoxy group having 1 to 2 carbon atoms, and acetyl. Represents a substituted phenyl group to which a group or a halogen atom is bonded.
  • the ratio of the structural units derived from the aromatic vinyl compound to all the monomer units of the polymer block (A) improves the cohesive force.
  • 1% by mass or more is preferable, 5% by mass or more is more preferable, 10% by mass or more is further preferable, and 20% by mass or more is further preferable.
  • the upper limit of the ratio of the structural unit derived from the aromatic vinyl compound it is preferably 90% by mass or less, more preferably 80% by mass or less, and 70% by mass, based on all the monomer units of the polymer block (A). The following is even more preferable, and 50% by mass or less is even more preferable.
  • the ratio of the structural units derived from the imide group-containing vinyl compound to the total monomer units of the polymer block (A) is the same as that of the block. From the viewpoint of sufficiently increasing the heat resistance of the polymer (P), 5% by mass or more is preferable, 10% by mass or more is more preferable, 20% by mass or more is further preferable, and 30% by mass or more is further preferable.
  • the upper limit of the ratio of the structural unit derived from the imide group-containing vinyl compound is preferably 95% by mass or less, more preferably 90% by mass or less, and more preferably 80% by mass, based on all the monomer units of the polymer block (A). % Or less is more preferable. When the ratio of the imide group-containing vinyl compound is 95% by mass or less, the adhesiveness of the block copolymer (P) can be sufficiently ensured, which is preferable.
  • Styrene compounds tend to improve the polymerizable properties of maleimide compounds. Therefore, when a maleimide compound is used as the monomer unit constituting the polymer block (A), it is preferable to improve the polymerizable property of the maleimide compound by using a styrene compound in combination.
  • the imide group-containing vinyl compound and the styrene-based compound are used in combination in the production of the polymer block (A), the styrene-based compound is used in the polymer block (A) with respect to 1 mol of the structural unit derived from the imide group-containing vinyl compound.
  • the ratio of the derived structural unit is preferably 0.01 to 100 mol, more preferably 0.1 to 10 mol, still more preferably 0.2 to 5 mol, still more preferably 0.5 to 1.5 mol. be.
  • the ratio of the structural unit U1 in the polymer block (A) is preferably 30% by mass or more, more preferably 50% by mass or more, and more preferably 60% by mass or more, based on the total monomer units of the polymer block (A). Is even more preferable, and 70% by mass or more is even more preferable.
  • the polymer block (A) is crosslinked by using a vinyl monomer having a crosslinkable functional group (hereinafter, also referred to as “crosslinkable group-containing monomer”).
  • the structure may have a sex structural unit. Since the polymer block (A) has a crosslinkable structural unit, the pressure-sensitive adhesive layer formed by using the present pressure-sensitive adhesive composition has adhesiveness under high temperature conditions, heat resistance, and durability against temperature changes (cold-heat cycle). It is preferable in that the characteristics) can be further improved.
  • the crosslinkable group-containing monomer is not particularly limited, and examples thereof include unsaturated carboxylic acid, unsaturated acid anhydride, hydroxy group-containing vinyl compound, epoxy group-containing vinyl compound, and reactive silicon group-containing vinyl compound. Be done.
  • crosslinkable group-containing monomer examples include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, cinnamon acid, and monoalkyl of unsaturated dicarboxylic acid as unsaturated carboxylic acids.
  • Esters (monoalkyl esters such as maleic acid, fumaric acid, itaconic acid, citraconic acid) and the like; as unsaturated acid anhydrides, for example, maleic anhydride, itaconic acid anhydride, citraconic acid anhydride and the like;
  • unsaturated acid anhydrides for example, maleic anhydride, itaconic acid anhydride, citraconic acid anhydride and the like;
  • hydroxy group-containing vinyl compounds 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) (Meta) hydroxyalkyl compounds of (meth) acrylate, such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and polyethylene glycol-
  • epoxy group-containing vinyl compound examples include epoxy group-containing (meth) acrylic acid ester compounds such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3,4-epoxycyclohexylmethyl (meth) acrylate.
  • a vinyl silane compound such as vinyl trimethoxysilane, vinyl tritoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane; trimethoxysilylpropyl (meth) acrylate, triethoxy (meth) acrylate.
  • Cyril group-containing (meth) acrylic acid ester compounds such as silylpropyl, methyldimethoxysilylpropyl (meth) acrylate and dimethylmethoxysilylpropyl (meth) acrylate
  • silyl group-containing vinyl ether compounds such as trimethoxysilylpropyl vinyl ether, and tri.
  • Examples thereof include silyl group-containing vinyl ester compounds such as methoxysilyl undecanoate vinyl and the like.
  • the crosslinkable group-containing monomer an oxazoline group-containing vinyl compound, an isocyanate group-containing vinyl compound, or the like may be used.
  • the polymer block (A) one kind or two or more kinds can be used as the crosslinkable group-containing monomer.
  • the crosslinkable structural unit is preferably a structural unit derived from the (meth) acrylic monomer among the above.
  • the crosslinkable structural unit is a group consisting of (meth) acrylic acid, (meth) acrylic acid hydroxyalkyl compound, epoxy group-containing (meth) acrylic acid ester compound, and silyl group-containing (meth) acrylic acid ester compound. It is preferably a structural unit derived from at least one monomer selected from, and particularly preferably a structural unit derived from a (meth) hydroxyalkyl acrylate compound.
  • the (meth) hydroxyalkyl acrylate compound a compound having a hydroxyalkyl group having 2 to 8 carbon atoms is preferable, and a compound having a hydroxyalkyl group having 2 to 4 carbon atoms is more preferable, from the viewpoint of adhesive performance.
  • the content of the crosslinkable structural unit is preferably 1% by mass or more, more preferably 1% by mass, based on all the monomer units of the polymer block (A). It is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the proportion of the crosslinkable structural unit in the polymer block (A) is 1% by mass or more, the crosslinkable structure is sufficiently formed by the polymer block (A), and the block has good heat resistance and durability against temperature changes. It becomes easy to obtain the polymer (P).
  • the upper limit of the content of the crosslinkable structural unit is not particularly limited, but from the viewpoint of maintaining a high Tg of the polymer block (A), the content of the polymer block (A) is relative to all the monomer units. It is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
  • the polymer block (A) is a monomer copolymerizable with at least one of an aromatic vinyl compound and an imide group-containing vinyl compound as long as the action of the block copolymer (P) is not impaired, and is aromatic. It may further contain a structural unit derived from a polymer different from the vinyl compound and the imide group-containing vinyl compound (hereinafter, also referred to as “other monomer A”). Examples of the other monomer A include the compound exemplified as the crosslinkable group-containing monomer, an alkyl (meth) acrylic acid compound, an aliphatic cyclic ester compound of (meth) acrylic acid, and (meth) acrylic.
  • Acid alkenyl ester compound (meth) acrylic acid aromatic ester compound, aliphatic vinyl compound, amino group-containing vinyl compound, amide group-containing vinyl compound, polyfunctional (meth) acrylate compound, polyfunctional alkenyl compound, nitrile group-containing Examples thereof include unsaturated compounds and dialkyl ester compounds of unsaturated dicarboxylic acids. Specific examples of these compounds include the compounds exemplified in the description of the (meth) acrylic polymer block (B) and the vinyl polymer (C) described later. As the other monomer A, only one kind may be used, or two or more kinds may be used.
  • the amount of the other monomer A used can be appropriately set within a range that does not impair the effects of the present disclosure.
  • the ratio of the structural units derived from the other monomer A to the total monomer units of the polymer block (A) is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferable. Is 30% by mass or less.
  • the Tg of the polymer block (A) is preferably 100 ° C. or higher.
  • the Tg of the polymer block (A) is 100 ° C. or higher, the effect of improving the cohesive force due to the pseudo-crosslinking formed by the microphase separation structure of the block copolymer (P) can be maintained even at a high temperature. Adhesion, heat resistance and durability against temperature changes can be imparted.
  • the Tg of the polymer block (A) is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 160 ° C. or higher, still more preferably 180 ° C. or higher, and more preferably 180 ° C. or higher. Particularly preferably, it is 200 ° C. or higher.
  • the Tg of the polymer block (A) is 350 ° C. or lower in that the degree of freedom of the constituent monomer units that can be used is high and that the heating temperature at the time of bonding can be suppressed from becoming too high. It is preferably 280 ° C. or lower, more preferably 270 ° C. or lower, and even more preferably 260 ° C. or lower.
  • the number average molecular weight (Mn) of the polymer block (A) is preferably in the range of 1,000 to 45,000. When Mn is 1,000 or more, the cohesive force of the block copolymer (P) can be sufficiently secured, and when it is 45,000 or less, the flexibility is maintained and the peel strength with respect to the adherend is increased. It is preferable in that it can be sufficiently high.
  • the Mn of the polymer block (A) is preferably 2,000 or more, more preferably 3,000 or more, still more preferably 5,000 or more, still more preferably 7,000 or more.
  • the upper limit of Mn of the polymer block (A) is preferably 40,000 or less, more preferably 35,000 or less, still more preferably 33,000 or less, still more preferably 30,000 or less. Is.
  • Mw and Mn of a polymer are standard polystyrene conversion values obtained by using gel permeation chromatography (GPC).
  • the weight average molecular weight (Mw) of the polymer block (A) is preferably in the range of 1,000 to 50,000.
  • the Mw of the polymer block (A) is preferably 2,000 or more, more preferably 3,000 or more, still more preferably 6,000 or more, still more preferably 9,000 or more.
  • the upper limit of Mw of the polymer block (A) is preferably 48,000 or less, more preferably 45,000 or less, still more preferably 40,000 or less, still more preferably 35,000 or less. Is.
  • the (meth) acrylic polymer block (B) is a polymer containing a (meth) acrylic monomer as a main monomer unit.
  • the monomer constituting the (meth) acrylic polymer block (B) the (meth) acrylic acid alkyl compound and the (meth) acrylic acid alkyl compound and the polymer block having a relatively low Tg and sufficient adhesiveness can be obtained.
  • At least one monomer selected from the group consisting of (meth) acrylic acid alkoxy ester compounds hereinafter, also referred to as “structural unit U2”
  • structural unit U2 As the monomer constituting the (meth) acrylic polymer block (B), one type may be used alone or two or more types may be used in combination.
  • the (meth) acrylic acid alkyl compound used for producing the (meth) acrylic polymer block (B) is a (meth) acrylic acid alkyl compound having an alkyl group having 1 to 10 carbon atoms in the alkyl ester moiety (-COOR). Is preferable. Specific examples thereof include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, n-butyl (meth) acrylic acid, and (meth) acrylic acid.
  • Isobutyl (meth) acrylic acid n-hexyl, (meth) acrylic acid n-octyl, (meth) acrylic acid isooctyl, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid n-nonyl, (meth) acrylic acid Examples thereof include isononyl, n-decyl (meth) acrylate, and lauryl (meth) acrylate.
  • preferred monomers include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, and n (meth) acrylate.
  • -Nonyl, isononyl (meth) acrylate and the like can be mentioned.
  • the (meth) acrylic acid alkoxyester compound used for producing the (meth) acrylic polymer block (B) is preferably a (meth) acrylic acid alkoxyalkyl compound having an alkoxyalkyl group having 2 to 12 carbon atoms.
  • Specific examples include methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, butoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, and (meth) acrylic acid.
  • examples thereof include butoxyethyl, methoxybutyl (meth) acrylate, ethoxybutyl (meth) acrylate, butoxybutyl (meth) acrylate and the like.
  • the content of the structural unit U2 is preferably 50% by mass or more with respect to all the monomer units of the (meth) acrylic polymerizable block (B). 70% by mass or more is more preferable, 80% by mass or more is further preferable, and 90% by mass or more is further preferable.
  • the ratio of the structural unit U2 is 30% by mass or more, the adhesive strength, initial adhesive strength (tack), low temperature adhesiveness, and the like of the obtained pressure-sensitive adhesive composition can be sufficiently increased.
  • the upper limit of the content of the structural unit U2 is not particularly limited.
  • the range of the content of the structural unit U2 is preferably 50% by mass or more and 100% by mass or less, more preferably 70% by mass, based on all the monomer units of the (meth) acrylic polymer block (B). % Or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less.
  • the vinyl polymer (C) tends to segregate on the surface layer in the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive composition is adhered under high and low temperature conditions while keeping the viscosity low.
  • a structural unit derived from the (meth) acrylic acid alkoxyester compound in that the property, heat resistance and durability against temperature changes can be improved.
  • the content of the structural unit derived from the (meth) acrylic acid alkoxy ester compound is 20% by mass or more with respect to the total monomer unit of the (meth) acrylic polymer block (B). It is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more.
  • the upper limit of the content of the structural unit derived from the (meth) acrylic acid alkoxy ester compound is not particularly limited, but from the viewpoint of sufficiently ensuring compatibility with the vinyl polymer (C) and high-temperature adhesiveness, (meth) acrylic. It is preferably 99% by mass or less, more preferably 90% by mass or less, based on all the monomer units of the system polymer block (B).
  • the range of the content of the structural unit derived from the (meth) acrylic acid alkoxy ester compound is preferably 20% by mass or more and 99% by mass or less, and more preferably 30% by mass or more and 95% by mass or less.
  • the (meth) acrylic polymer block (B) has 1 to 3 carbon atoms in the alkyl ester portion in that the vinyl polymer (C) easily segregates to the surface layer in the pressure-sensitive adhesive layer and further enhances heat resistance. It can also contain structural units derived from (meth) alkyl acrylate compounds having an alkyl group. By using such an alkyl (meth) acrylate compound in the production of the (meth) acrylic polymer block (B), the elastic modulus of the (meth) acrylic polymer block (B) can be increased. Effective for improving heat resistance.
  • the content of the structural unit derived from the (meth) acrylic acid ester having an alkyl group having 1 to 3 carbon atoms is from the viewpoint of ensuring the flexibility of the adhesive coating film. , 70% by mass or less, more preferably 40% by mass or less.
  • the (meth) acrylic polymer block (B) it is possible to use a compound which is a monomer unit of a homopolymer having a dissolution parameter (SP value) of 9.9 or more obtained by the Fedors method.
  • the vinyl polymer (C) is likely to segregate on the surface layer portion of the pressure-sensitive adhesive layer, which is preferable.
  • the monomer having an SP value of 9.9 or more in the homopolymer include methyl (meth) acrylate, ethyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, and 2-ethoxyethyl (meth) acrylate.
  • the (meth) acrylic polymer block (B) has a structural unit derived from such a monomer, preferably 15 mass by mass with respect to all the monomer units of the (meth) acrylic polymer block (B). % Or more, more preferably 25% by mass or more, still more preferably 30% by mass or more, still more preferably 50% by mass or more.
  • the (meth) acrylic polymer block (B) has a structure having a crosslinkable structural unit. be able to. Since the (meth) acrylic polymer block (B) has a crosslinkable structural unit, it is preferable in that the adhesiveness, heat resistance and durability of the pressure-sensitive adhesive layer under high temperature conditions can be further improved.
  • the block copolymer (P) has a crosslinkable structural unit, only one of the polymer block (A) and the (meth) acrylic polymer block (B) has a crosslinkable structural unit. Also, both the polymer block (A) and the (meth) acrylic polymer block (B) may have a crosslinkable structural unit.
  • the crosslinkable group-containing monomer used for producing the (meth) acrylic polymer block (B) is not particularly limited, but contains (meth) acrylic acid, a (meth) hydroxyalkyl compound acrylate, and an epoxy group (meth). It is preferably at least one selected from the group consisting of an acrylic acid ester compound and a silyl group-containing (meth) acrylic acid ester compound.
  • the (meth) acrylic acid hydroxyalkyl compound is preferable because the adhesive strength of the (meth) acrylic polymer block (B) tends to be high, and it has a hydroxyalkyl group having 2 to 8 carbon atoms.
  • Compounds are more preferable, and compounds having a hydroxyalkyl group having 2 to 4 carbon atoms are particularly preferable.
  • Specific examples of the (meth) acrylic acid hydroxyalkyl compound, the epoxy group-containing (meth) acrylic acid ester compound, and the silyl group-containing (meth) acrylic acid ester compound are exemplified in the description of the polymer block (A). Examples include compounds.
  • the content of the crosslinkable structural unit is relative to all the monomer units of the (meth) acrylic polymer block (B). It is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
  • the upper limit of the content of the crosslinkable structural unit is not particularly limited, but from the viewpoint of increasing the flexibility of the obtained pressure-sensitive adhesive layer, all the monomers of the (meth) acrylic polymer block (B) It is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 10% by mass or less with respect to the unit.
  • the (meth) acrylic polymer block (B) only one type of crosslinkable-containing monomer may be used, or two or more types may be used.
  • the (meth) acrylic polymer block (B) is a monomer copolymerizable with the above-mentioned monomer (hereinafter, “other monomer B”” as long as the adhesive performance is not impaired. Also called) may be used.
  • the other monomer B include an aliphatic cyclic ester compound of (meth) acrylic acid, an aromatic ester compound of (meth) acrylic acid, an aromatic vinyl compound, an imide group-containing vinyl compound, and an amino group-free compound. Examples thereof include saturated compounds, amide group-containing unsaturated compounds, cyano group-containing unsaturated compounds, and nitrile group-containing unsaturated compounds. Specific examples of these compounds include the compounds exemplified above and the compounds exemplified in the description of the vinyl polymer (C) described later.
  • the other monomer B may be used alone or in combination of two or more.
  • the amount of the other monomer B used can be appropriately set within a range that does not impair the effects of the present disclosure.
  • the ratio of the structural units derived from the other monomer B to the total monomer units of the (meth) acrylic polymer block (B) is preferably 20% by mass or less, more preferably 10% by mass or less. It is more preferably 5% by mass or less.
  • the Tg of the (meth) acrylic polymer block (B) is preferably in the range of ⁇ 50 ° C. or higher and ⁇ 10 ° C. or lower.
  • Tg of the polymer block (B) is ⁇ 50 ° C. or higher, the cohesive force of the pressure-sensitive adhesive layer obtained by the present pressure-sensitive adhesive composition can be sufficiently increased, and the adhesiveness tends to be sufficiently ensured.
  • Tg is ⁇ 10 ° C. or lower, sufficient adhesiveness and curved surface followability under low temperature conditions can be ensured. Further, even when the molded body to which the decorative film is bonded is used in an environment in which the base material layer of the decorative film thermally expands and contracts, the adhesive layer has good followability to the base material layer.
  • the Tg of the (meth) acrylic polymer block (B) is more preferably ⁇ 45 ° C. or higher.
  • the upper limit of Tg is more preferably ⁇ 15 ° C., and even more preferably ⁇ 20 ° C.
  • the range of Tg of the (meth) acrylic polymer block (B) is more preferably ⁇ 50 ° C. or higher and ⁇ 15 ° C. or lower, and further preferably ⁇ 45 ° C. or higher and ⁇ 20 ° C. or lower.
  • the polymer block (A) may have a property of phase separation from the (meth) acrylic polymer block (B). Having such a property is preferable in that the block copolymer (P) can easily form a microphase-separated structure.
  • a person skilled in the art can easily design a polymer block (A) that is phase-separated from the (meth) acrylic polymer block (B) based on the common general knowledge as of the filing of the present application. For example, when the SP value of the polymer block (A) calculated by a method for calculating the SP value, which is a known solubility parameter (for example, the Fedors method), is compared with the SP value of the (meth) acrylic polymer block (B).
  • a method for calculating the SP value which is a known solubility parameter (for example, the Fedors method
  • the difference ⁇ SP (absolute value) of is 0.01 or more.
  • the difference ⁇ SP may be, for example, 0.05 or more, for example 0.1 or more, for example 0.2 or more, or for example 0.5 or more.
  • the SP value is R.I. F. It can be calculated by the calculation method described in "Polymer Engineering and Science" 14 (2) and 147 (1974) written by Fedors.
  • the SP value can be easily estimated for the phase separation between blocks by observing the intended structure of the block copolymer (P) with an electron microscope, a scanning probe microscope, small-angle X-ray scattering, or the like. can.
  • the block copolymer (P) has the polymer block (A) and the (meth) acrylic polymer block (B), the number of blocks and the arrangement are not particularly limited.
  • Specific examples of the block copolymer (P) include a (AB) type diblock composed of a polymer block (A) and a (meth) acrylic polymer block (B), and a polymer block (A).
  • / (ABA) type triblock composed of (meth) acrylic polymer block (B) / polymer block (A), and (meth) acrylic polymer block (B) / polymer block (A) / Examples thereof include a (BAB) type triblock body composed of a (meth) acrylic polymer block (B).
  • the block copolymer (P) may further have a polymer block other than the polymer block (A) and the (meth) acrylic polymer block (B).
  • the block copolymer (P) preferably has a (ABA) type structure. With such a structure, the polymer block (A) and the (meth) acrylic polymer block (B) can easily form a pseudo-crosslinked structure, and the heat resistance and durability against temperature changes are improved as well as the adhesive physical properties.
  • the ratio of the polymer block (A) to the (meth) acrylic polymer block (B) in the block copolymer (P) (hereinafter, also referred to as “block ratio”) is the polymer block (A) / (meth). )
  • the mass ratio is preferably 1/99 to 20/80.
  • the block copolymer having a polymer block (A) that can form a hard segment and can be a cross-linking point and a (meth) acrylic polymer block (B) that can be a soft segment can be used. It is possible to obtain a pressure-sensitive adhesive composition having excellent heat resistance and durability while keeping the viscosity of the pressure-sensitive adhesive composition low.
  • the block ratio is more preferably 1/99 to 13/87, still more preferably 1/99 to 10/90, still more preferably 1/99 to 7/93, and even more. It is preferably 3/97 to 7/93.
  • the Mw of the block copolymer (P) is from the viewpoint of exhibiting sufficient cohesive force and good adhesiveness, and from the viewpoint of sufficiently segregating the vinyl polymer (C) on the surface layer portion of the pressure-sensitive adhesive layer. , 200,000 or more is preferable. When the Mw of the block copolymer (P) is 200,000 or more, sufficient adhesiveness can be ensured, heat resistance can be sufficiently increased, and floating and peeling of the pressure-sensitive adhesive layer due to temperature changes are sufficiently suppressed. can do.
  • the Mw of the block copolymer (P) is more preferably 230,000 or more, further preferably 250,000 or more, still more preferably 260,000 or more, and particularly preferably 280,000 or more. be.
  • the Mw of the block copolymer (P) is preferably 700,000 or less, more preferably 650,000 or less, further preferably 600,000 or less, and 550,000 or less. Is even more preferable.
  • the range of Mw of the block copolymer (P) is preferably 200,000 or more and 700,000 or less, more preferably 230,000 or more and 650,000 or less, and further preferably 250,000 or more and 600,000 or less. It is as follows.
  • the Mn of the block copolymer (P) is preferably 100,000 or more, more preferably 120,000 or more, still more preferably 130,000 or more, from the viewpoint of exhibiting good adhesiveness and sufficient cohesive force. , 150,000 or more are even more preferable.
  • the upper limit of Mn of the block copolymer (P) is preferably 500,000 or less, more preferably 400,000 or less, from the viewpoint of ease of production and good compatibility with the vinyl polymer (C). 300,000 or less is more preferable, and 200,000 or less is even more preferable.
  • the range of Mn of the block copolymer (P) is preferably 100,000 or more and 500,000 or less, and more preferably 120,000 or more and 400,000 or less.
  • the molecular weight distribution (Mw / Mn) expressed by the ratio of Mw and Mn makes it easy to obtain good adhesive strength and suppresses the increase in viscosity of the pressure-sensitive adhesive composition. From the point of view, 4.5 or less is preferable, 3.5 or less is more preferable, 3.3 or less is further preferable, 3.0 or less is further preferable, and 2.8 or less is particularly preferable.
  • the lower limit of Mw / Mn of the block copolymer (P) is not particularly limited and may be 1.0 or more.
  • the block copolymer (P) is not particularly limited in the production method as long as a polymer having the polymer block (A) and the (meth) acrylic polymer block (B) can be obtained. It can be obtained by a known production method.
  • Examples of the method for producing the block copolymer (P) include a method using various controlled polymerization methods such as living radical polymerization and living anionic polymerization, and a method of coupling polymers having functional groups with each other. .. Among these, the living radical polymerization method is preferable because it is easy to operate and can be applied to a wide range of monomers.
  • any process such as batch process, semi-batch process, dry continuous polymerization process, continuous stirring tank type process (CSPR) may be adopted.
  • the polymerization type can be applied to various aspects such as bulk polymerization using no solvent, solvent-based solution polymerization, aqueous emulsion polymerization, mini-emulsion polymerization or suspension polymerization.
  • RAFT method reversible addition-cleaving chain transfer polymerization method
  • NMP method nitroxy radical method
  • ATRP method atom transfer radical polymerization method
  • organic tellurium compounds organic tellurium compounds.
  • Various polymerization methods such as a polymerization method using (TERP method), a polymerization method using an organic antimony compound (SBRP method), a polymerization method using an organic bismuth compound (BIRP method), and an iodine transfer polymerization method can be adopted.
  • the RAFT method, the NMP method and the ATRP method are preferable from the viewpoint of controllability of polymerization and ease of implementation.
  • RAFT agent a specific polymerization control agent
  • RAFT agent various known RAFT agents such as a dithioester compound, a zantate compound, a trithiocarbonate compound and a dithiocarbamate compound can be used.
  • RAFT agent a monofunctional compound having only one active site may be used, or a bifunctional or higher functional compound may be used. It is preferable to use a bifunctional RAFT agent from the viewpoint that it is easy to efficiently obtain a block copolymer having 3 or more blocks.
  • the amount of the RAFT agent used is appropriately adjusted depending on the monomer used, the type of the RAFT agent, and the like.
  • radical polymerization initiators such as azo compounds, organic peroxides and persulfates can be used, but they are easy to handle for safety and are used during radical polymerization. Azo compounds are preferable because side reactions are unlikely to occur.
  • the azo compound examples include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1- Carbonitrile), 2,2'-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2'-azobis (N-butyl-2-methylpropionamide) and the like.
  • the polymerization initiator only one type may be used, or two or more types may be used in combination.
  • the proportion of the polymerization initiator used is not particularly limited, but the amount of the polymerization initiator used is 0. 1 per mol of the RAFT agent from the viewpoint of stably performing the polymerization reaction and obtaining a polymer having a smaller molecular weight distribution. It is preferably 01 mol or more and 0.5 mol or less, and more preferably 0.01 mol or more and 0.2 mol or less.
  • the reaction temperature during the polymerization reaction by the RAFT method is preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 45 ° C. or higher and 90 ° C. or lower, and further preferably 50 ° C. or higher and 80 ° C. or lower.
  • the reaction temperature is 40 ° C. or higher, the polymerization reaction can proceed smoothly, which is preferable.
  • the reaction temperature is 100 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed, which is preferable.
  • a specific alkoxyamine compound or the like having nitroxide is used as a living radical polymerization initiator, and the polymerization is allowed to proceed via the nitroxide radical derived from the living radical polymerization initiator.
  • the type of nitroxide radical is not particularly limited, and a commercially available nitroxide-based polymerization initiator can be used. From the viewpoint of polymerization controllability when polymerizing a monomer containing an acrylate, it is preferable to use a compound represented by the following formula (2) as the nitroxide compound.
  • R 1 is an alkyl group or a hydrogen atom having 1 to 2 carbon atoms
  • R 2 is an alkyl group or a nitrile group having 1 to 2 carbon atoms
  • R 3 is ⁇ (CH 2 ) m. -., m is an integer of 0 to 2
  • R 4 and R 5 are each independently an alkyl group having 1 to 4 carbon atoms
  • plurality of R 4 in formula are be the same or different from each other at best, a plurality of R 5 in the formula may be the same or different from each other.
  • the nitroxide compound represented by the above formula (2) undergoes a primary dissociation by heating at about 70 to 80 ° C. and causes an addition reaction with a vinyl-based monomer.
  • a polyfunctional polymerization precursor by adding a nitroxide compound to a vinyl-based monomer having two or more vinyl groups.
  • the vinyl-based monomer can be subjected to living polymerization by secondary dissociation of the polymerization precursor under heating.
  • the polymerization precursor since the polymerization precursor has two or more active sites in the molecule, a polymer having a narrower molecular weight distribution can be obtained.
  • the block copolymer (P) it is preferable to use a bifunctional polymerization precursor having two active sites in the molecule.
  • the amount of the nitroxide compound used is appropriately adjusted depending on the monomer used, the type of the nitroxide compound, and the like.
  • R 6 and R 7 are independently alkyl groups having 1 to 4 carbon atoms. A plurality of R 6s in the formula may be the same or different from each other , and a plurality of R 6 in the formula may be different from each other. R 7 may be the same or different from each other.
  • the time for the concentration of the nitroxide radical to reach a steady state can be shortened. This is preferable in that the polymerization can be controlled to a higher degree and a polymer having a narrower molecular weight distribution can be obtained. On the other hand, if the amount of nitroxide radical added is too large, the polymerization may not proceed.
  • a more preferable amount of the nitroxide radical added to 1 mol of the nitroxide compound is in the range of 0.01 to 0.5 mol, and a more preferable amount of addition is in the range of 0.05 to 0.2 mol.
  • the reaction temperature in the NMP method is preferably 50 ° C. or higher and 140 ° C. or lower, more preferably 60 ° C. or higher and 130 ° C. or lower, and further preferably 70 ° C. or higher and 120 ° C. or lower.
  • the reaction temperature is 50 ° C. or higher, the polymerization reaction can proceed smoothly.
  • the reaction temperature is 140 ° C. or lower, side reactions such as radical chain transfer tend to be suppressed.
  • an organic halide is generally used as an initiator, and a transition metal complex is used as a catalyst to carry out a polymerization reaction.
  • the organic halide used as an initiator may be a monofunctional compound or a bifunctional or higher functional compound. It is preferable to use a bifunctional compound in that the block copolymer (P) can be easily obtained efficiently.
  • the type of halogen bromide and chloride are preferable.
  • the reaction temperature in the ATRP method is preferably 20 ° C. or higher and 200 ° C. or lower, and more preferably 50 ° C. or higher and 150 ° C. or lower. When the reaction temperature is 20 ° C. or higher, the polymerization reaction can proceed smoothly, which is preferable.
  • each block is sequentially polymerized. You may obtain the block copolymer of interest.
  • the constituent monomers of the polymer block (A) are polymerized to obtain the polymer block (A).
  • the constituent monomers of the (meth) acrylic polymer block (B) are polymerized to obtain a (meth) acrylic polymer block (B).
  • the constituent monomers of the polymer block (A) are polymerized.
  • (ABA) type triblock copolymer can be obtained.
  • the polymerization initiator it is preferable to use the above-mentioned monofunctional polymerization initiator or polymerization precursor.
  • an ABA triblock copolymer is produced by a two-step polymerization step shown below using a bifunctional polymerization initiator or a polymerization precursor, the desired product can be obtained more efficiently.
  • the constituent monomers of the polymer block (A) are polymerized to obtain a polymer block (A), and then as a second polymerization step, a (meth) acrylic polymer block (B). ) Is polymerized.
  • (ABA) type triblock copolymer can be obtained.
  • the process can be simplified as compared with the case where each block is sequentially polymerized and manufactured.
  • the block copolymer (P) may be polymerized in the presence of a chain transfer agent, if necessary.
  • a chain transfer agent known ones can be used. Specifically, ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 1-hexanethiol, 2-hexanethiol, 2-butylbutane-1-thiol, 1,1-
  • alkylthiol compounds having an alkyl group having 2 to 20 carbon atoms such as dimethyl-1-pentanethiol, 1-dodecanethiol, tert-tetradecanethiol, 1-hexadecanethiol and 1-octadecanethiol, mercaptoacetic acid and mercaptopropionic acid. , 2-Mercaptoethanol and the like.
  • the chain transfer agent one or more of these can be used.
  • a known polymerization solvent can be used in living radical polymerization.
  • aromatic compounds such as benzene, toluene, xylene and anisole
  • ester compounds such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate
  • ketone compounds such as acetone and methyl ethyl ketone
  • dimethylformamide, acetonitrile, dimethylsulfoxide examples include alcohol and water. Further, it may be carried out in the form of bulk polymerization or the like without using a polymerization solvent.
  • the vinyl polymer (C) is a polymer having a glass transition temperature (Tg) of 30 ° C. or higher and 200 ° C. or lower.
  • Tg glass transition temperature
  • the Tg of the vinyl polymer (C) is less than 30 ° C., when the pressure-sensitive adhesive layer is formed by the present pressure-sensitive adhesive composition, the Tg of the surface layer portion of the pressure-sensitive adhesive layer is unlikely to be sufficiently high, and under high temperature conditions. Adhesive strength and heat resistance cannot be sufficiently ensured.
  • the Tg of the vinyl polymer (C) is generally 200 ° C. or lower due to restrictions on the raw material monomer and the like.
  • the Tg of the vinyl polymer (C) is preferably 40 ° C.
  • Tg is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, still more preferably 130 ° C. or lower, and even more preferably 120 ° C. or lower.
  • the range of Tg of the vinyl polymer (C) is preferably 40 ° C. or higher and 150 ° C. or lower, more preferably 40 ° C. or higher and 140 ° C. or lower, still more preferably 50 ° C. or higher and 130 ° C. or lower, and even more preferably. Is 60 ° C. or higher and 120 ° C. or lower.
  • the vinyl monomer constituting the vinyl polymer (C) various vinyl monomers having radical polymerizable properties can be used.
  • the vinyl monomer include a hydrocarbon ester compound of (meth) acrylic acid, an aromatic vinyl compound, an unsaturated carboxylic acid, an unsaturated acid anhydride, a hydroxy group-containing unsaturated compound, and an amino group-containing unsaturated compound.
  • examples thereof include compounds, amide group-containing unsaturated compounds, alkoxy group-containing unsaturated compounds, nitrile group-containing unsaturated compounds, and maleimide-based compounds. These compounds may be used alone or in combination of two or more.
  • hydrocarbon ester compound of (meth) acrylic acid examples include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth) acrylic acid.
  • n-butyl isobutyl (meth) acrylate, tert-butyl (meth) acrylate, amyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, (meth) acrylate
  • Alkyl (meth) acrylate compounds such as ethylhexyl, n-dodecyl (meth) acrylate, n-octadecyl (meth) acrylate; cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, tert (meth) acrylate.
  • -(Meta) acrylics such as butylcyclohexyl, cyclododecyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, etc.
  • An aliphatic cyclic ester compound of an acid; an aromatic ester compound of (meth) acrylic acid such as phenyl (meth) acrylic acid and benzyl (meth) acrylic acid can be mentioned.
  • amino group-containing unsaturated compound examples include dimethylaminomethyl (meth) acrylate, diethylaminomethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, and 2-diethylaminoethyl (meth) acrylate, (.
  • 2- (Di-n-propylamino) ethyl (meth) acrylate 2-dimethylaminopropyl (meth) acrylate, 2-diethylaminopropyl (meth) acrylate, 2- (di-n-propyl) (meth) acrylate
  • Examples thereof include amino) propyl, 3-dimethylaminopropyl (meth) acrylate, 3-diethylaminopropyl (meth) acrylate, and 3- (di-n-propylamino) propyl (meth) acrylate.
  • Examples of the amide group-containing unsaturated compound include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N-methylol (meth) acrylamide and the like.
  • Examples of the alkoxy group-containing unsaturated compound include (meth) acrylic acid 2-methoxyethyl, (meth) acrylic acid 2-ethoxyethyl, (meth) acrylic acid 2- (n-propoxy) ethyl, and (meth) acrylic acid.
  • nitrile group-containing unsaturated compound examples include cyanomethyl (meth) acrylate, 1-cyanoethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, 1-cyanopropyl (meth) acrylate, and (meth) acrylic.
  • 2-cyanopropyl acid 3-cyanopropyl (meth) acrylic acid, 4-cyanobutyl (meth) acrylic acid, 6-cyanohexyl (meth) acrylic acid, 2-ethyl-6-cyanohexyl (meth) acrylic acid, ( Examples thereof include 8-cyanooctyl acrylate, (meth) acrylonitrile, ⁇ -ethylacrylonitrile, ⁇ -isopropylacrylonitrile, ⁇ -chloroacrylonitrile, and ⁇ -fluoroacrylonitrile.
  • the aromatic vinyl compound unsaturated carboxylic acid, unsaturated acid anhydride, hydroxy group-containing unsaturated compound and maleimide-based compound
  • the compounds exemplified in the description of the block copolymer (P) can be exemplified.
  • unsaturated dicarboxylic acid dialkyl esters, vinyl ester compounds, vinyl ether compounds and the like can also be used.
  • the vinyl polymer (C) is a polymer containing a structural unit derived from a hydrocarbon-based ester compound of (meth) acrylic acid in that it has appropriate compatibility with the block copolymer (P). It is preferable to have.
  • the content of the structural unit derived from the hydrocarbon-based ester compound of (meth) acrylic acid is 30% by mass or more with respect to the total monomer unit of the vinyl polymer (C). A range of 100% by mass or less is preferable.
  • the content of the structural unit derived from the hydrocarbon-based ester compound of (meth) acrylic acid is more preferably 50% by mass or more, still more preferably 50% by mass, based on all the monomer units of the vinyl polymer (C). It is 70% by mass or more, and more preferably 80% by mass or more.
  • the vinyl polymer (C) it is preferable to use an aliphatic cyclic ester compound of (meth) acrylic acid because Tg can be relatively high and the adhesive strength under high temperature conditions can be high.
  • the content of the structural unit derived from the aliphatic cyclic ester compound of (meth) acrylic acid is 1% by mass with respect to all the monomer units of the vinyl polymer (C). The above is preferable, 5% by mass or more is more preferable, 10% by mass or more is further preferable, and 15% by mass or more is further preferable.
  • the upper limit of the content of the structural unit derived from the aliphatic cyclic ester compound of (meth) acrylic acid is preferably 90% by mass or less, preferably 80% by mass or less, based on all the monomer units of the vinyl polymer (C). It is more preferably mass% or less, and further preferably 70% by mass or less.
  • the content range of the structural unit is preferably 1% by mass or more and 90% by mass or less, more preferably 5% by mass or more and 80% by mass or less, and further preferably 10% by mass or more and 70% by mass or less.
  • Tg can be set high, and the vinyl polymer (C) is easily segregated on the surface when the pressure-sensitive adhesive layer is formed, and has good heat resistance.
  • At least one selected from the group consisting of isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate and adamantyl (meth) acrylate is preferable in that It can be used, and among them, isobornyl (meth) acrylate can be more preferably used.
  • the Mn of the vinyl polymer (C) is 500 or more and 10,000 or less. When Mn exceeds 10,000, segregation of the vinyl polymer (C) is not sufficient in the pressure-sensitive adhesive layer, and the adhesiveness and heat resistance under high temperature conditions are lowered, or the vinyl polymer (P) is combined with the block copolymer (P). Compatibility is reduced. Further, in order to produce a polymer having a Mn of less than 500, it is necessary to use a large amount of a polymerization initiator and a chain transfer agent, and there is a concern that productivity may decrease.
  • the Mn of the vinyl polymer (C) is preferably 1,000 or more, more preferably 1,500 or more, still more preferably 2,000 or more.
  • the upper limit of Mn of the vinyl polymer (C) is preferably 9,500 or less, more preferably 9,000 or less, still more preferably 7,000 or less, still more preferably 5,000 or less. Is.
  • the range of Mn of the vinyl polymer (C) is preferably 1,000 or more and 9,500 or less, more preferably 1,000 or more and 9,000 or less, and further preferably 1,500 or more and 7, It is 000 or less, and more preferably 1,500 or more and 5,000 or less.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of Mw and Mn is preferably 3.0 or less in that good adhesive strength can be easily obtained.
  • Mw / Mn is more preferably 2.5 or less, still more preferably 2.0 or less.
  • the lower limit of Mw / Mn of the vinyl polymer (C) is not particularly limited and is 1.0 or more.
  • the vinyl polymer (C) has a property of phase separation from the block copolymer (P). Having such a property makes it easy for the vinyl polymer (C) to segregate on the surface layer portion in the pressure-sensitive adhesive layer formed by using the present pressure-sensitive adhesive composition, and when the pressure-sensitive adhesive composition has a relatively low viscosity. Is also suitable in that it can form a pressure-sensitive adhesive layer having high heat resistance and durability against temperature changes.
  • the SP value of the vinyl polymer (C) calculated by the method for calculating the SP value which is a known solubility parameter (for example, the Fedors method), was compared with the SP value of the block copolymer (P).
  • the vinyl polymer (C) phase-separated from the block copolymer (P) can be designed by adjusting the difference ⁇ SP (absolute value) to be appropriately large.
  • the vinyl polymer (C) can be obtained by polymerizing the above-mentioned monomer by adopting a known radical polymerization method such as a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and a bulk polymerization method. ..
  • a known radical polymerization method such as a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and a bulk polymerization method. ..
  • a known radical polymerization method such as a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and a bulk polymerization method. ..
  • a known radical polymerization method such as a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and a bulk polymerization method. ..
  • a polymerization initiator is added, and the mixture is heated to 50 to 300 ° C. for copolymerization to obtain
  • the method for charging each raw material containing a monomer may be a batch-type initial batch charging in which all raw materials are collectively charged, or a semi-continuous charging method in which at least a part of the raw materials is continuously supplied into the reactor.
  • a continuous polymerization method may be used in which all the raw materials are continuously supplied and the produced resin is continuously extracted from the reactor at the same time.
  • the vinyl polymer (C) may be used as the polymer solution dissolved in the organic solvent, or the organic solvent may be distilled off by heat reduction treatment or the like. ..
  • An organic hydrocarbon compound is suitable as the organic solvent used in the solution polymerization method.
  • the organic hydrocarbon compound include cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbon compounds such as benzene, toluene and xylene, esters such as ethyl acetate and butyl acetate, and ketones such as acetone, methyl ethyl ketone and cyclohexanone. , Methyl orthostate, methyl orthoacetate, methanol, ethanol, isopropanol and other alcohols can be exemplified.
  • the organic solvent one or more of these can be used.
  • the amount of the organic solvent used is such that the total amount of the monomers used for the polymerization is, for example, 1 to 50% by mass with respect to the total amount of the organic solvent and the monomer.
  • the polymerization initiator known radical polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, and are not particularly limited. Further, as the polymerization initiator, a redox-type polymerization initiator composed of a known oxidizing agent and reducing agent may be used. Furthermore, a known chain transfer agent can be used in combination with the polymerization initiator. Of these, an azo compound can be preferably used as the polymerization initiator. Specific examples of the azo compound include compounds exemplified as azo compounds that may be used in the production of the block copolymer (P). In the production of the vinyl polymer (C), the amount of the polymerization initiator used is, for example, 0.01 to 20 parts by mass with respect to 100 parts by mass of all the monomers used for the polymerization.
  • the present pressure-sensitive adhesive composition contains the vinyl polymer (C) in a range of 0.5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the block copolymer (P) in terms of solid content.
  • the content of the vinyl polymer (C) is less than 0.5 parts by mass, the amount of the vinyl polymer (C) on the surface layer portion of the pressure-sensitive adhesive layer is small, and the adhesive strength under high temperature conditions is lowered.
  • the content of the vinyl polymer (C) exceeds 60 parts by mass, the flexibility of the pressure-sensitive adhesive layer is lowered, the pressure-sensitive adhesive layer becomes hard and brittle, the adhesiveness is lowered, and the transparency is lowered. There is a risk of doing so.
  • the lower limit of the content of the vinyl polymer (C) is preferably 1 part by mass or more, more preferably 1.5 parts by mass or more with respect to 100 parts by mass of the block copolymer (P). Yes, more preferably 2 parts by mass or more.
  • the upper limit of the content of the vinyl polymer (C) is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 25 parts by mass with respect to 100 parts by mass of the block copolymer (P). It is not less than parts by mass, and more preferably 15 parts by mass or less.
  • the content range of the vinyl polymer (C) is preferably 0.5 parts by mass or more and 40 parts by mass or less, more preferably 0.5 parts by mass, based on 100 parts by mass of the block copolymer (P). It is 5 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 25 parts by mass or less, and further preferably 1 part by mass or more and 25 parts by mass or less.
  • the present pressure-sensitive adhesive composition may contain only the block copolymer (P) and the vinyl polymer (C), but if necessary, the block copolymer (P) and the vinyl polymer (C). It may contain components such as polymers and additives other than the above (hereinafter, also referred to as “other components”). Hereinafter, other components that may be blended in the pressure-sensitive adhesive composition will be described.
  • Crosslinking agent When the block copolymer (P) has a crosslinkable functional group, the adhesiveness, heat resistance and temperature under high temperature conditions can be obtained by blending a crosslinking agent capable of reacting with the crosslinkable functional group into the pressure-sensitive adhesive composition. It is preferable in that the durability against changes can be further improved.
  • cross-linking agent examples include a glycidyl compound having two or more glycidyl groups, an isocyanate compound having two or more isocyanate groups, an aziridine compound having two or more aziridinyl groups, an oxazoline compound having an oxazoline group, and a metal chelate compound.
  • examples thereof include a butylated melamine compound.
  • isocyanate compounds are preferable because they have excellent adhesive properties under high temperature conditions.
  • examples of the glycidyl compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and tetraglycidyl xylene diamine.
  • 1,3-Bis (N, N-diglycidyl aminomethyl) cyclohexane, trimethylolpropane polyglycidyl ether and other polyfunctional glycidyl compounds can be mentioned.
  • isocyanate compound examples include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), naphthalene diisocyanate (NDI), p-phenylenedi isocyanate (PPDI), xylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), and trizine diisocyanate.
  • MDI diphenylmethane diisocyanate
  • TDI tolylene diisocyanate
  • NDI naphthalene diisocyanate
  • PPDI p-phenylenedi isocyanate
  • XDI xylene diisocyanate
  • TMXDI tetramethylxylylene diisocyanate
  • trizine diisocyanate examples include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), naphthalen
  • Aromatic isocyanate compounds such as (TODI); aliphatic isocyanate compounds such as hexamethylene diisocyanate (HDI) and lysine diisocyanate (LDI); isophorone diisocyanate (IPDI), cyclohexyldiisocyanate (CHDI), hydrogenated XDI (H6XDI), And alicyclic isocyanate compounds such as hydrogenated MDI (H12MDI); urethane modified, dimer, trimer, carbodiimide modified, urea modified, isocyanurate modified, oxazolidone modified, and isocyanate group-terminated pre. Examples thereof include modified isocyanate compounds such as polymers.
  • aziridine compound examples include 1,6-bis (1-aziridinylcarbonylamino) hexane, 1,1'-(methylene-di-p-phenylene) bis-3,3-aziridylurea, and ethylenebis- (2-).
  • Aziridinyl propionate 2,4,6-triaziridinyl-1,3,5-triazine, trimethylpropan-tris (2-aziridinylpropionate) and the like.
  • the content of the cross-linking agent in the pressure-sensitive adhesive composition is not particularly limited, but is usually 0.01 to 10% by mass with respect to the content of the block copolymer (P). It is preferably 0.03 to 5% by mass, and more preferably 0.05 to 2% by mass.
  • the present pressure-sensitive adhesive composition may further contain a pressure-sensitive adhesive.
  • a pressure-sensitive adhesive examples include rosin derivatives such as rosin ester, gum rosin, tall oil rosin, hydrogenated rosin ester, maleated rosin, and disproportionated rosin ester; terpene phenol resin, ⁇ -pinene, ⁇ -pinene, or. Terpene-based resins mainly composed of rosinen and the like; kumaron-inden-based resins, hydride aromatic copolymers, phenol-based resins and the like can be mentioned.
  • the tackifier may be used alone or in combination of two or more.
  • the content of the tackifier is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, based on the total amount of the block copolymer (P) and the vinyl polymer (C). More preferably, it is 0 to 5% by mass.
  • the present pressure-sensitive adhesive composition may contain a plasticizer.
  • the plasticizer include phthalates such as din-butylphthalate, din-octylphthalate, bis (2-ethylhexyl) phthalate and din-decylphthalate; bis (2-ethylhexyl) adipate and din-octyl adipate.
  • Adipic acid esters such as; sevacinic acid esters; azelaic acid esters; paraffins such as chlorinated paraffin; glycols such as polypropylene glycol; epoxy-modified vegetable oils such as epoxidized soybean oil and epoxidized linseed oil; trioctyl Phthalate esters such as phosphate and triphenyl phosphate; Ester oligomers such as esters of adipic acid and 1,3-butylene glycol; low molecular weight polybutene, low molecular weight poly Low molecular weight polymers such as isobutylene and low molecular weight polyisoprene; oils such as process oils and naphthenic oils can be mentioned.
  • the content of the plasticizer is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, still more preferably 0 to 5% by mass, based on the total amount of the block copolymer (P). be.
  • additives to be blended in the pressure-sensitive adhesive composition include, for example, antioxidants, ultraviolet absorbers, antioxidants, flame retardants, fungicides, silane coupling agents, fillers, colorants and the like. Be done.
  • the content of the additive can be appropriately set according to various compounds as long as the effects of the present disclosure are not impaired.
  • the present pressure-sensitive adhesive composition may be a liquid composition in which the block copolymer (P), the vinyl polymer (C), and the additive component to be blended as necessary are dissolved or dispersed in a solvent. good.
  • a solvent used for preparing the pressure-sensitive adhesive composition
  • an organic solvent capable of dissolving the block copolymer (P) and the vinyl polymer (C), or the block copolymer (P) and the vinyl polymer (C) can be used. Examples include dispersible aqueous media.
  • Specific examples of the organic solvent include aprotonic polar solvent, phenol solvent, alcohol solvent, ester solvent, ketone solvent, ether solvent, hydrocarbon solvent and the like.
  • the organic solvent may be one of these or a mixed solvent of two or more.
  • the present pressure-sensitive adhesive composition is not particularly limited in its form as long as it contains the block copolymer (P) and the vinyl polymer (C).
  • a solvent-type pressure-sensitive adhesive composition can be obtained.
  • Obtainable by dispersing the block copolymer (P) and the vinyl polymer (C) in an aqueous medium, an emulsion-type pressure-sensitive adhesive composition can be obtained.
  • the present pressure-sensitive adhesive composition contains monofunctional and / or polyfunctional (meth) acrylic monomers, photopolymerization initiators, and the like.
  • the composition may be a so-called syrup-type active energy ray-curable pressure-sensitive adhesive composition that is cured by active energy rays such as ultraviolet rays.
  • the composition may contain a solvent such as an organic solvent, but is usually used as a solvent-free type containing no solvent.
  • the solid content concentration in the pressure-sensitive adhesive composition (that is, the ratio of the mass of the non-solvent component in the pressure-sensitive adhesive composition to the total mass of the pressure-sensitive adhesive composition) is not particularly limited. However, it is preferably 1 to 70% by mass. When the solid content concentration is 1% by mass or more, a pressure-sensitive adhesive layer having a sufficient thickness can be formed. Further, when the solid content concentration is 70% by mass or less, good coatability can be ensured, and a pressure-sensitive adhesive layer having a uniform thickness can be easily formed.
  • the solid content concentration in the pressure-sensitive adhesive composition is more preferably 5 to 50% by mass, still more preferably 10 to 45% by mass.
  • the viscosity of the pressure-sensitive adhesive composition is preferably 500 mPa ⁇ s or more and 10,000 mPa ⁇ s or less. When the viscosity is 10,000 mPa ⁇ s or less, good coatability can be ensured. Further, when coating, it can be used as it is without diluting to a viscosity suitable for coating, and the handleability is good. From this point of view, the viscosity of the pressure-sensitive adhesive composition is more preferably 8,000 mPa ⁇ s or less, further preferably 6,000 mPa ⁇ s or less, and even more preferably 5,000 mPa ⁇ s or less.
  • the lower limit of the viscosity of the pressure-sensitive adhesive composition is more preferably 1,000 mPa ⁇ s or more, still more preferably 1,500 mPa ⁇ s or more, from the viewpoint of suppressing the film thickness from becoming too thin. Even more preferably, it is 2,000 mPa ⁇ s or more.
  • the viscosity range of the pressure-sensitive adhesive composition is more preferably 1,000 mPa ⁇ s or more and 8,000 mPa ⁇ s or less, further preferably 1,000 mPa ⁇ s or more and 6,000 mPa ⁇ s or less, and further preferably 1,500 mPa ⁇ s. More than 5,000 mPa ⁇ s or less is more preferable.
  • the viscosity of the pressure-sensitive adhesive composition is a value measured at 25 ° C. using a pressure-sensitive adhesive composition having a solid content concentration of 25% using a B-type viscometer.
  • the pressure-sensitive adhesive composition preferably contains, as a solvent, at least one organic solvent selected from the group consisting of ethyl acetate, butyl acetate, ethyl methyl ketone and toluene.
  • the pressure-sensitive adhesive layer can be formed by applying the pressure-sensitive adhesive composition to a separator or the like and drying it if necessary.
  • a resin film made of various resin materials can be used as the separator.
  • the resin material include polyester resins such as polyethylene terephthalate, polyether sulfone resins, acetate resins, polycarbonate resins, and polyolefin resins.
  • the pressure-sensitive adhesive composition is applied to a separator by a known coating method, and the solvent is removed by a drying treatment such as heating.
  • the heating temperature and heating time for forming the pressure-sensitive adhesive layer may be set as long as the solvent can be removed, and can be appropriately set according to the type of the solvent, the solid content concentration, and the like.
  • the thickness of the pressure-sensitive adhesive layer is, for example, 2 to 200 ⁇ m.
  • the pressure-sensitive adhesive layer may be formed by laminating a plurality of layers.
  • the pressure-sensitive adhesive layer formed by using the present pressure-sensitive adhesive composition has a storage elastic modulus (G') at 110 ° C. in that it can form a pressure-resistant and durable pressure-sensitive adhesive layer particularly in a high-temperature environment. It is preferably 5 ⁇ 10 4 Pa or more.
  • the storage elastic modulus is more preferably 2.0 ⁇ 10 4 Pa or more, further preferably 2.5 ⁇ 10 4 Pa or more, still more preferably 3.0 ⁇ 10 4 Pa or more, and further preferably. Is 4.0 ⁇ 10 4 Pa or more.
  • the upper limit of the storage elastic modulus is not particularly limited, but may be, for example, 50.0 ⁇ 10 4 Pa or less, and may be 20.0 ⁇ 10 4 Pa or less.
  • the storage elastic modulus at 110 ° C. measures the shear viscoelasticity of a pressure-sensitive adhesive layer having a thickness of 0.8 mm under the conditions of a heating rate of 2 ° C./min, a strain of 0.1%, and a measurement frequency of 1 Hz. It is a value obtained by doing.
  • the method described in Examples described later can be adopted.
  • the storage elastic modulus can be arbitrarily adjusted by adjusting the composition of the block copolymer (P), the ratio of the polymer block (A) to the acrylic polymer block (B), the degree of cross-linking, and the like. ..
  • a (meth) acrylic acid alkyl compound having an alkyl group having 1 to 4 carbon atoms and an alkoxyalkyl group having 2 to 4 carbon atoms (meth) acrylic acid alkoxy as a constituent monomer of the block copolymer (P).
  • the storage elasticity can be adjusted by using one or more of the alkyl compounds and adjusting the type and amount of these monomers.
  • the gel fraction of the pressure-sensitive adhesive layer made of the present pressure-sensitive adhesive composition is preferably 50% or more. By setting the gel fraction to 50% or more, the heat resistance of the pressure-sensitive adhesive layer and the durability against temperature changes can be sufficiently enhanced.
  • the gel fraction of the pressure-sensitive adhesive layer is preferably 55% or more, more preferably 58% or more.
  • the upper limit of the gel fraction is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less.
  • the gel fraction of the pressure-sensitive adhesive layer is the ratio of the mass W2 of the residue of the pressure-sensitive adhesive layer remaining after immersion in the solvent to the initial mass W1 of the pressure-sensitive adhesive layer. The details follow the measurement method of the examples described later.
  • the peeling strength to the plate is preferably 15 N / 25 mm or more from the viewpoint of obtaining a decorative film that is less likely to float or peel from the molded body at room temperature.
  • the peel strength at 23 ° C. is more preferably 20 N / 25 mm or more, still more preferably 25 N / 25 mm or more.
  • the peeling strength with respect to the ABS plate at 80 ° C. and a peeling speed of 300 mm / min is high.
  • it is preferably 10 N / 25 mm or more.
  • the peel strength at 80 ° C. is more preferably 15 N / 25 mm or more, further preferably 20 N / 25 mm or more, and even more preferably 25 N / 25 mm or more.
  • the details of the method for measuring the peel strength follow the measuring method of Examples described later.
  • the characteristic that the pressure-sensitive adhesive layer according to the present pressure-sensitive adhesive composition exhibits high adhesiveness even under high temperature conditions is based on the Tg composition (distribution) of the pressure-sensitive adhesive layer generated by segregation of the vinyl polymer (C). It can have high adhesiveness under high temperature conditions regardless of the type of material of the adherend.
  • the decorative film of the present disclosure (hereinafter, also referred to as "the present decorative film”) includes a pressure-sensitive adhesive layer made of the present pressure-sensitive adhesive composition. For this reason, this decorative film does not easily peel off from the molded product even when exposed to a high temperature of 100 ° C. or higher after being bonded to the molded product, has excellent high-temperature adhesiveness, and has excellent heat resistance and temperature change. Has excellent durability against.
  • One aspect of the present decorative film is a laminate in which the pressure-sensitive adhesive layer, the decoration layer, and the base material layer made of the present pressure-sensitive adhesive composition are laminated in this order.
  • the decorative film having such a structure can be preferably used in a laminating method for obtaining a decorative molded body by laminating the decorative film with the molded body.
  • the base material layer is located on the outermost layer of the decorative molded body after the molded body is decorated with the decorative film, and functions as a protective layer of the decorative molded body.
  • the material constituting the base material layer may be any material having flexibility, and a resin material is preferable. More preferably, it is a thermoplastic resin.
  • the thermoplastic resin is not particularly limited, and examples thereof include vinyl chloride (PVC) resin, polyester resin, acrylic resin, ABS resin, polycarbonate resin, polypropylene resin, and polyethylene resin. Of these, the base material layer is preferably formed of at least one selected from the group consisting of PVC resin, polyester resin and ABS resin.
  • the thickness of the base material layer is preferably 25 ⁇ m to 500 ⁇ m, more preferably 50 ⁇ m to 400 ⁇ m, and further preferably 100 to 300 ⁇ m.
  • an injection molding method also referred to as an insert molding method
  • a vacuum forming method a vacuum pressure pneumatic molding method, etc.
  • Shape followability and handleability are improved.
  • the decorative layer is an ink layer to which patterns and patterns such as texts, figures and trademarks are added by printing or the like.
  • This decorative layer gives the decorative film a design.
  • the design and pattern of the decorative layer can be formed by known printing methods such as gravure printing with printing ink, offset printing, silk screen printing, transfer printing from a transfer sheet, sublimation transfer printing, and inkjet printing.
  • the thickness of the decorative layer is preferably 1 to 40 ⁇ m, more preferably 1 to 30 ⁇ m. When the thickness of the decorative layer is within the above range, it is possible to secure a sufficient thickness for expressing a complicated design such as a gradation.
  • the surface of the decorative film may be provided with an uneven pattern.
  • the uneven pattern can be formed, for example, by transferring the uneven pattern with an embossing roller.
  • the decorative film may further have a release layer on the outermost layer on the adhesive layer side.
  • the peeling layer prevents unintended adhesion and is peeled off when the present decorative film is adhered to the molded body.
  • the material constituting the release layer is not particularly limited, but for example, polyester such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and resin materials such as polypropylene and polyolefin such as polyethylene; glassin paper, kraft paper, clay coat paper, and the like. Paper material can be used.
  • the thickness of the release layer can be about 10 to 400 ⁇ m.
  • the present decorative film may be configured to include a hard coat layer (protective layer), a decorative layer, and an adhesive layer on the release layer of the release film provided with the release layer.
  • the decorative film having such a structure can be suitably used as a transfer film.
  • a decorative molded body can be obtained by a transfer method of transferring from the hard coat layer to the pressure-sensitive adhesive layer to the molded body. In the case of the above laminating method, it is necessary to remove the excess film by trimming after the decorative molding, but the transfer method does not require a trimming process, which is advantageous in terms of production efficiency.
  • the hardcourt layer is in a tack-free state before being transferred, and is composed of a material that can be cured and / or crosslinked by irradiation with active energy rays or the like after being transferred to a molded product.
  • the material constituting the hard coat layer include a polymer or oligomer having a (meth) acryloyl group, an active energy ray-curable composition irradiated with an appropriate amount of active energy rays to make it in a semi-cured state, or active energy.
  • examples thereof include a linear curable resin composition in which an isocyanate compound, a polyol resin and the like are blended and appropriately crosslinked.
  • the thickness of the hard coat layer is not particularly limited, but can be about 1 to 50 ⁇ m, preferably about 2 to 40 ⁇ m.
  • a decorative molded body (hereinafter, also referred to as “main decorative molded body”) including the present decorative film is provided. Since the decorative molded body is decorated with a decorative film provided with an adhesive layer obtained by using the adhesive composition, the decorative film is less likely to float or peel off even under high temperature conditions, and is heat resistant. It has excellent properties and durability.
  • the molded body to which the decorative film is adhered is not particularly limited, and any article such as a resin product, a metal product, a ceramic product, a glass product, etc., to which the decorative film can be adhered may be used.
  • various home appliances such as household appliances, kitchen appliances, health appliances, seasonal home appliances; interior / exterior members of housing equipment such as toilets, bathrooms, doors, walls; bumpers, dashboards, doors, roofs, etc.
  • Automotive interiors and exteriors such as bonnets; various miscellaneous goods such as household goods and daily necessities; electronic parts; nursing and medical supplies; interior and exterior parts of ships and aircraft.
  • a vacuum forming method, a vacuum pressure pneumatic molding method, an injection molding method, or the like can be used for manufacturing this decorative molded body.
  • the decorative film is stretched while being heated and softened, and the space on the molded body side of the decorative film is depressurized, so that the decorative film is bonded while being molded along the surface shape of the molded body. ..
  • the space on the opposite side is further pressed to bond the decorative film while forming along the surface shape of the molded body.
  • Examples of the vacuum compressed air molding machine include a hot plate type pressure reducing coating molding machine TFH series manufactured by Asano Laboratories, a TOM molding machine NGF series manufactured by Fuse Vacuum, and a NATS air transfer machine manufactured by Navitas.
  • the decorative film is set in the mold cavity of the injection molding machine, and injection molding is performed to bond the decorative film along the surface shape of the molded body.
  • ⁇ Mass ratio of (A) / (B) of block copolymer> The mass ratio (block ratio) of (A) / (B) of the block copolymer was identified and calculated by 1 H-NMR measurement.
  • a measuring device a Bruker Ascend TM 400 nuclear magnetic resonance measuring device was used. Measurement was performed at 25 ° C. using tetramethylsilane as a standard substance and deuterated chloroform as a solvent.
  • GC Made by Agilent Technologies (7820A GC System), Detector: FID, Column: 100% dimethylsiloxane (CP-Sil 5CB) Column length 30 m, Column inner diameter 0.32 mm, Calculation method: Internal standard method
  • the glass transition temperature (Tg) of the polymer was determined from the intersection of the baseline of the heat flux curve obtained using a differential scanning calorimeter and the tangent at the inflection.
  • the heat flux curve shows that about 10 mg of the sample is cooled to -50 ° C, held for 5 minutes, then heated to 300 ° C at 10 ° C / min, subsequently cooled to -50 ° C, held for 5 minutes, and then 10 ° C. It was obtained under the condition that the temperature was raised to 350 ° C. at / min.
  • Measuring equipment DSC6220 manufactured by SII Nanotechnology Co., Ltd.
  • MMA methyl methacrylate
  • IBXMA isobornyl methacrylate
  • V-601 17 parts by mass
  • butyl acetate 90 parts by mass
  • Polymerization was carried out by dropping a mixed solution consisting of (part by mass) from the dropping funnel into the flask over 5 hours. After completion of the dropping, the polymerization solution was added dropwise to a mixed solvent consisting of methanol (4800 parts by mass) and water (1200 parts by mass) to isolate the vinyl polymer in the polymerization solution to obtain the polymer C-1. ..
  • MMA Methyl Methacrylate
  • IBXMA Isobornyl Methacrylic Acid
  • ADMA -1-adamantyl Methacrylic Acid
  • DCP Dicyclopentanyl Methacrylate
  • BMA n-Butyl Methacrylate
  • ABS-E 2,2'-azobis (2-methylbutyronitrile)
  • ABS-E 2,2'-azobis (2-methylbutyronitrile
  • St styrene as a monomer
  • PhMI N-phenylmaleimide
  • ethyl acetate 233 parts by mass
  • the above polymerization solution was reprecipitated and purified from methanol and vacuum dried to obtain polymer block A-1.
  • the analysis results of the random copolymer P-14 are shown in Table 6.
  • Example 1 The vinyl polymer C-1 obtained in Synthesis Example 1 was dissolved in ethyl acetate to prepare a polymer C-1 solution having a solid content concentration of 30% by mass.
  • the polymer C-1 solution (4 parts by mass) and the block copolymer P-1 solution (100 parts by mass) obtained in Synthesis Example 8 having a solid content concentration of 30% by mass are mixed to obtain a pressure-sensitive adhesive composition. Obtained.
  • This pressure-sensitive adhesive composition was applied onto a PET separator having a thickness of 50 ⁇ m so that the thickness of the pressure-sensitive adhesive layer after drying was 50 ⁇ 2.0 ⁇ m. Ethyl acetate is removed by drying the pressure-sensitive adhesive composition at 80 ° C. for 4 minutes, a PET separator having a thickness of 38 ⁇ m, which has a different peeling power from the above separator, is attached, and the mixture is allowed to stand at 40 ° C. for 5 days for aging. By (aging), an adhesive film sample with a double-sided separator was obtained. The obtained adhesive film sample was subjected to various measurements and evaluations by the following methods. The results of measurement and evaluation are shown in Table 4.
  • ⁇ Measurement of storage elastic modulus at 110 ° C> A 50 ⁇ m thick pressure-sensitive adhesive film sample was laminated until the thickness became 0.8 mm to obtain an evaluation pressure-sensitive adhesive sheet. This is punched into a circle with a diameter of 8 mm, and a strain is applied at a frequency of 1 Hz while raising the temperature from -50 ° C to 150 ° C at 2 ° C / min using a shear viscoelastic device (Physica MCR-301 manufactured by Anton Pearl). Dynamic viscoelasticity was measured at 0.1% and the shear storage modulus at 110 ° C. was read. A parallel plate of 8 mm ⁇ was used for the measurement.
  • the pressure-sensitive adhesive film sample was transferred to a PET film (100 ⁇ m) that had been easily bonded to obtain a pressure-sensitive adhesive sheet for evaluation.
  • the adherend is an ABS plate (manufactured by TP Giken Co., Ltd., 2 mm thick), the above-mentioned adhesive sheet for evaluation is attached, and a precision heating and pressurizing device (manufactured by Shinto Kogyo Co., Ltd.) is used at 0.8 MPa, 120 ° C. It was crimped for 20 seconds under the conditions of.
  • a vinyl chloride decorative film (manufactured by Nippon Wave Rock Co., Ltd., 200 ⁇ m thickness) was attached to the adhesive film sample to prepare a decorative film with an adhesive layer.
  • This decorative film with an adhesive layer was stretched at a stretch ratio of 200% and bonded to an ABS plate for molding.
  • the decorative film was bonded to the ABS plate using a vacuum compressed air molding machine (NATS-0612B type manufactured by Navitas) under the conditions of a film heating temperature of 120 ° C. and a compressed air of 0.2 MPa. Then, a cross cut was put into the molded decorative film with a cutter, and the mixture was left at 110 ° C. for 15 hours.
  • Example 2 a pressure-sensitive adhesive composition was prepared by substituting the types and blending ratios of the vinyl polymer and the copolymer as shown in Tables 4 to 6.
  • Examples 10 to 27 and Comparative Example 7 Takenate D-110N (solid content concentration 75% by mass, manufactured by Mitsui Kagaku Co., Ltd.) was used as a cross-linking agent, and the solid content concentration ratios shown in Tables 4 to 6 (that is, that is, It was added so as to be the ratio of the cross-linking agent (solid content) to 100 parts by mass of the solid content of the block copolymer or the random copolymer.
  • the same measurement and evaluation as in Example 1 were carried out using the obtained pressure-sensitive adhesive composition. The results of measurement and evaluation are shown in Tables 4-6.
  • the viscosity of the 25% pressure-sensitive adhesive composition was as low as 8000 mPa ⁇ s or less, but the peel strength at 80 ° C. with respect to the ABS plate was 10 N / 25 mm. The above was high, and the adhesiveness under high temperature conditions was good. Further, in Examples 1 to 27, the evaluation of the cold heat cycle characteristics and the 110 ° C. heat resistance after the decorative film was bonded was " ⁇ ", " ⁇ " or " ⁇ ", which were good. In particular, Examples 10 to 27 containing the cross-linking agent improved the peel strength at 80 ° C., the thermal cycle characteristics and the heat resistance at 110 ° C. with respect to the ABS plate, and showed excellent characteristics.
  • Comparative Examples 1 and 2 containing no vinyl polymer (C) having a Tg of 30 to 200 ° C. and a Mn of 500 to 10,000, and Comparative Example 3 in which the Mn of the vinyl polymer was larger than 10,000.
  • Comparative Example 4 in which the Tg of the vinyl polymer was less than 30 ° C., the peel strength at 80 ° C. with respect to the ABS plate was lower than that in Examples 1 to 27.
  • Comparative Examples 1 to 4 both the thermal cycle characteristics and the 110 ° C. heat resistance were evaluated as “x”.
  • Comparative Examples 5 to 8 in which the random copolymer was contained instead of the block copolymer, at least one of the cold cycle characteristics and the heat resistance at 110 ° C. was evaluated as "x”.

Abstract

An adhesive composition for a decorative film contains a block copolymer having a polymer block (A) and a (meth)acrylic polymer block (B), and a vinyl polymer (C). The vinyl polymer (C) has a glass transition temperature of 30 to 200°C inclusive and a number average molecular weight of 500 to 10,000 inclusive. In the adhesive composition for a decorative film, the content of the vinyl polymer (C) is 0.5 to 60 mass parts inclusive per 100 mass parts of the block copolymer.

Description

加飾フィルム用粘着剤組成物及びその用途Adhesive composition for decorative films and its uses 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年6月26日に出願された日本特許出願番号2020-110666号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2020-110666 filed on June 26, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、加飾フィルム用粘着剤組成物及びその用途に関する。 The present disclosure relates to an adhesive composition for a decorative film and its use.
 意匠性の向上や、VOC(Volatile Organic Compounds)対策等を目的として、自動車内外装部品や家電製品等を中心に、成形品に加飾フィルムを貼合又は転写することが行われている。加飾フィルムによる成形方法としては、射出成形によるインモールド成形、真空成形、真空圧空成形等が用いられている。また、成形品に貼り合わせる加飾フィルムとしては、粘着剤層を備える加飾フィルムが知られている。 For the purpose of improving design and measures against VOC (Volatile Organic Compounds), decorative films are attached or transferred to molded products, mainly for automobile interior / exterior parts and home appliances. As a molding method using a decorative film, in-mold molding by injection molding, vacuum forming, vacuum pressure forming, and the like are used. Further, as a decorative film to be bonded to a molded product, a decorative film provided with an adhesive layer is known.
 加飾フィルムにより成形品に意匠性を付与する際、加飾フィルムを延伸しながら成形品に貼り合わせる技術が注目されている。延伸された状態で成形品に貼り合わされた加飾フィルムは、高温条件下で成形品からのずれや剥がれ、浮き等を生じやすく、これにより外観不良を起こす場合がある。特に自動車分野では、加飾フィルムが貼り合わされた製品に100℃を超える環境下での耐熱性が要求されることがあり、この要求を満たすべく種々の加飾フィルムが提案されている(例えば、特許文献1参照)。 When giving a design to a molded product with a decorative film, attention is being paid to a technique of stretching the decorative film and attaching it to the molded product. The decorative film attached to the molded product in the stretched state is liable to be displaced from the molded product, peeled off, or floated under high temperature conditions, which may cause an appearance defect. Especially in the field of automobiles, a product to which a decorative film is bonded may be required to have heat resistance in an environment exceeding 100 ° C., and various decorative films have been proposed to meet this requirement (for example,). See Patent Document 1).
 特許文献1には、ガラス転移温度が30℃以上200℃以下であり、数平均分子量が500以上10,000以下であるビニル重合体と、(メタ)アクリル系単量体がランダム共重合されたアクリル系粘着性ポリマーとを含む粘着剤組成物を用いて、加飾フィルムの粘着剤層を形成することが開示されている。また、特許文献1には、粘着剤層全体及び表層部分のガラス転移温度、並びに90℃における貯蔵弾性率を所定範囲内とすることにより、高温条件下においても高い接着性を示す粘着剤層を得ることが開示されている。 In Patent Document 1, a vinyl polymer having a glass transition temperature of 30 ° C. or higher and 200 ° C. or lower and a number average molecular weight of 500 or higher and 10,000 or lower is randomly copolymerized with a (meth) acrylic monomer. It is disclosed that a pressure-sensitive adhesive composition containing an acrylic pressure-sensitive adhesive polymer is used to form a pressure-sensitive adhesive layer of a decorative film. Further, Patent Document 1 describes a pressure-sensitive adhesive layer that exhibits high adhesiveness even under high temperature conditions by keeping the glass transition temperature of the entire pressure-sensitive adhesive layer and the surface layer portion and the storage elastic modulus at 90 ° C. within a predetermined range. It is disclosed that you will get.
特開2019-112574号公報Japanese Unexamined Patent Publication No. 2019-11254
 粘着剤層の耐熱性を高めるためには、粘着剤層を構成するアクリル系粘着性ポリマーを高分子量化することが考えられる。しかしながら、アクリル系粘着性ポリマーを高分子量化すると粘着剤組成物の粘度が高くなり、高粘度化に起因して塗工性が低下したり、塗工に適した粘度まで希釈する必要が生じることによって取扱い性が低下したりすることが懸念される。また、粘着剤組成物の塗工性を確保するために粘着剤組成物を希釈した場合、塗工膜厚が厚くなり、乾燥不足により粘着剤層中に残存した成分によって粘着性能が低下したり、乾燥時に発泡が生じて外観不良を招いたりすることも考えられる。一方、粘着剤組成物の低粘度化を図るためにアクリル系粘着性ポリマーを低分子量化すると、粘着剤層の耐熱性が低下してしまう。 In order to increase the heat resistance of the pressure-sensitive adhesive layer, it is conceivable to increase the molecular weight of the acrylic pressure-sensitive adhesive polymer constituting the pressure-sensitive adhesive layer. However, when the acrylic adhesive polymer has a high molecular weight, the viscosity of the pressure-sensitive adhesive composition increases, and the coatability decreases due to the high viscosity, or it becomes necessary to dilute to a viscosity suitable for coating. There is a concern that the handleability may be reduced. Further, when the pressure-sensitive adhesive composition is diluted to ensure the coatability of the pressure-sensitive adhesive composition, the coating film thickness becomes thick, and the pressure-sensitive adhesive performance is deteriorated by the components remaining in the pressure-sensitive adhesive layer due to insufficient drying. It is also conceivable that foaming may occur during drying, resulting in poor appearance. On the other hand, if the acrylic adhesive polymer has a low molecular weight in order to reduce the viscosity of the pressure-sensitive adhesive composition, the heat resistance of the pressure-sensitive adhesive layer is lowered.
 また、自動車分野等において、加飾フィルムにより意匠性が付与された製品は、温度変化が激しい過酷な環境下で使用されることが想定される。こうした使用環境では、周囲の温度変化に伴い加飾フィルムの基材層が収縮と膨張とを繰り返すことによって、粘着剤層が成形品から剥がれたり、浮きが生じたりすることが懸念される。このため、加飾フィルムの粘着剤層には、高温条件下において高い接着性及び耐熱性を示すことに加え、温度変化に対する成形品からのずれや剥がれ、浮きが生じにくく、耐久性が高いことが求められる。 Also, in the automobile field, etc., products that have been given a design by a decorative film are expected to be used in a harsh environment where temperature changes are drastic. In such a usage environment, there is a concern that the adhesive layer may be peeled off from the molded product or floated due to repeated shrinkage and expansion of the base material layer of the decorative film due to changes in the ambient temperature. For this reason, the adhesive layer of the decorative film has high adhesiveness and heat resistance under high temperature conditions, and is highly durable because it is less likely to be displaced, peeled off, or floated from the molded product due to temperature changes. Is required.
 本開示は上記課題に鑑みてなされたものであり、低粘度化を図りながら、高温条件下での接着性が高く、かつ耐熱性及び温度変化に対する耐久性が高い粘着剤層を形成することができる粘着剤組成物を提供することを主たる目的とする。 The present disclosure has been made in view of the above problems, and it is possible to form an adhesive layer having high adhesiveness under high temperature conditions and high heat resistance and durability against temperature changes while reducing the viscosity. The main purpose is to provide a possible pressure-sensitive adhesive composition.
 本発明者らは、上記課題を解決するために鋭意検討し、特定の組成からなる粘着剤組成物を用いることで上記課題を解決できることを見出した。本開示は、こうした知見に基づいて完成したものである。本開示によれば以下の手段が提供される。 The present inventors have diligently studied in order to solve the above-mentioned problems, and have found that the above-mentioned problems can be solved by using a pressure-sensitive adhesive composition having a specific composition. This disclosure has been completed based on these findings. According to the present disclosure, the following means are provided.
〔1〕 重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)を有するブロック共重合体と、ビニル重合体(C)と、を含有し、前記ビニル重合体(C)は、ガラス転移温度が30℃以上200℃以下であり、かつ、数平均分子量が500以上10,000以下であり、前記ビニル重合体(C)の含有量が、前記ブロック共重合体100質量部に対して、0.5質量部以上60質量部以下である、加飾フィルム用粘着剤組成物。 [1] A block copolymer having a polymer block (A) and a (meth) acrylic polymer block (B) and a vinyl polymer (C) are contained, and the vinyl polymer (C) is The glass transition temperature is 30 ° C. or higher and 200 ° C. or lower, the number average molecular weight is 500 or higher and 10,000 or lower, and the content of the vinyl polymer (C) is 100 parts by mass of the block polymer. A pressure-sensitive adhesive composition for a decorative film, which is 0.5 parts by mass or more and 60 parts by mass or less.
〔2〕 前記重合体ブロック(A)は、ガラス転移温度が100℃以上の重合体であり、前記(メタ)アクリル系重合体ブロック(B)は、ガラス転移温度が-50℃以上-10℃以下の重合体である、上記〔1〕の加飾フィルム用粘着剤組成物。
〔3〕 前記重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位及びイミド基含有ビニル化合物に由来する構造単位よりなる群から選択される少なくとも1種を含む、上記〔1〕又は〔2〕の加飾フィルム用粘着剤組成物。
〔4〕 前記ブロック共重合体の重量平均分子量は、200,000以上700,000以下である、上記〔1〕~〔3〕のいずれかの加飾フィルム用粘着剤組成物。
〔5〕 前記ブロック共重合体は、数平均分子量に対する重量平均分子量の比で表される分子量分布(Mw/Mn)が3.5以下である、上記〔1〕~〔4〕のいずれかの加飾フィルム用粘着剤組成物。
[2] The polymer block (A) is a polymer having a glass transition temperature of 100 ° C. or higher, and the (meth) acrylic polymer block (B) has a glass transition temperature of −50 ° C. or higher to −10 ° C. The pressure-sensitive adhesive composition for a decorative film according to the above [1], which is the following polymer.
[3] The polymer block (A) contains at least one selected from the group consisting of a structural unit derived from an aromatic vinyl compound and a structural unit derived from an imide group-containing vinyl compound. [2] Adhesive composition for decorative film.
[4] The pressure-sensitive adhesive composition for a decorative film according to any one of the above [1] to [3], wherein the block copolymer has a weight average molecular weight of 200,000 or more and 700,000 or less.
[5] Any of the above [1] to [4], wherein the block copolymer has a molecular weight distribution (Mw / Mn) of 3.5 or less represented by the ratio of the weight average molecular weight to the number average molecular weight. Adhesive composition for decorative films.
〔6〕 架橋剤を更に含有する、上記〔1〕~〔5〕のいずれかの加飾フィルム用粘着剤組成物。
〔7〕 前記ビニル重合体(C)は、ガラス転移温度が40℃以上140℃以下であり、かつ、数平均分子量が1,000以上9,500以下である、上記〔1〕~〔6〕のいずれかの加飾フィルム用粘着剤組成物。
〔8〕 前記ビニル重合体(C)の含有量が、前記ブロック共重合体100質量部に対して、0.5質量部以上25質量部以下である、上記〔1〕~〔7〕のいずれかの加飾フィルム用粘着剤組成物。
[6] The pressure-sensitive adhesive composition for a decorative film according to any one of the above [1] to [5], which further contains a cross-linking agent.
[7] The vinyl polymer (C) has a glass transition temperature of 40 ° C. or higher and 140 ° C. or lower, and a number average molecular weight of 1,000 or more and 9,500 or lower. Adhesive composition for any of the decorative films.
[8] Any of the above [1] to [7], wherein the content of the vinyl polymer (C) is 0.5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the block copolymer. Adhesive composition for decorative films.
〔9〕 前記(メタ)アクリル系重合体ブロック(B)は、(メタ)アクリル酸アルコキシエステル化合物に由来する構造単位を、前記(メタ)アクリル系重合体ブロック(B)の全単量体単位に対して20質量%以上99質量%以下含む、上記〔1〕~〔8〕のいずれかの加飾フィルム用粘着剤組成物。
〔10〕 上記〔1〕~〔9〕のいずれかの加飾フィルム用粘着剤組成物からなる粘着層を備える、加飾フィルム。
〔11〕 上記〔10〕の加飾フィルムが成形体に貼着された加飾成形体。
[9] In the (meth) acrylic polymer block (B), the structural unit derived from the (meth) acrylic acid alkoxy ester compound is used as the total monomer unit of the (meth) acrylic polymer block (B). The pressure-sensitive adhesive composition for a decorative film according to any one of the above [1] to [8], which contains 20% by mass or more and 99% by mass or less with respect to the above.
[10] A decorative film comprising an adhesive layer comprising the adhesive composition for a decorative film according to any one of the above [1] to [9].
[11] A decorative molded body to which the decorative film of the above [10] is attached to the molded body.
 本開示の加飾フィルム用粘着剤組成物によれば、低粘度化を図りながら、高温条件下での接着性が高く、かつ耐熱性及び温度変化に対する耐久性が高い粘着剤層を得ることができる。 According to the pressure-sensitive adhesive composition for decorative films of the present disclosure, it is possible to obtain a pressure-sensitive adhesive layer having high adhesiveness under high temperature conditions, heat resistance and durability against temperature changes while reducing the viscosity. can.
 以下、本開示について詳しく説明する。なお、本明細書において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味し、「(メタ)アクリレート」とは、アクリレート及び/又はメタクリレートを意味する。また、「(メタ)アクリロイル基」とは、アクリロイル基及び/又はメタクリロイル基を意味する。 Hereinafter, this disclosure will be described in detail. In addition, in this specification, "(meth) acrylic" means acrylic and / or methacrylic, and "(meth) acrylate" means acrylate and / or methacrylate. Further, the “(meth) acryloyl group” means an acryloyl group and / or a methacryloyl group.
《加飾フィルム用粘着剤組成物》
 本開示の加飾フィルム用粘着剤組成物(以下、「本粘着剤組成物」ともいう)は、加飾フィルムを成形体に貼合又は転写するための粘着剤として使用される粘着剤組成物である。本粘着剤組成物は、重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)を有するブロック共重合体(以下、「ブロック共重合体(P)」ともいう)と、ビニル重合体(C)とを含有する。以下に、本粘着剤組成物に配合されるブロック共重合体(P)、ビニル重合体(C)、及び必要に応じて配合される成分について詳しく説明する。
<< Adhesive composition for decorative film >>
The pressure-sensitive adhesive composition for a decorative film of the present disclosure (hereinafter, also referred to as "the present pressure-sensitive adhesive composition") is a pressure-sensitive adhesive composition used as a pressure-sensitive adhesive for adhering or transferring a decorative film to a molded body. Is. The present pressure-sensitive adhesive composition comprises a block copolymer having a polymer block (A) and a (meth) acrylic polymer block (B) (hereinafter, also referred to as “block copolymer (P)”) and a vinyl weight. Contains the coalescence (C). Hereinafter, the block copolymer (P) and the vinyl polymer (C) to be blended in the pressure-sensitive adhesive composition, and the components to be blended as necessary will be described in detail.
<ブロック共重合体(P)>
 ブロック共重合体(P)が有する重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)は、単量体組成が互いに異なるセグメントである。ブロック共重合体(P)において、重合体ブロック(A)は、(メタ)アクリル系重合体ブロック(B)よりもガラス転移温度(Tg)が高いセグメントであることが好ましい。
<Block Copolymer (P)>
The polymer block (A) and the (meth) acrylic polymer block (B) contained in the block copolymer (P) are segments having different monomer compositions from each other. In the block copolymer (P), the polymer block (A) is preferably a segment having a higher glass transition temperature (Tg) than the (meth) acrylic polymer block (B).
 なお、本明細書において、重合体のTgは、示差走査熱量測定(DSC)によって測定した値である。測定方法の詳細は、後述する実施例に記載の操作に従う。各重合体ブロックのTgは、測定対象の重合体ブロックに対応する重合体を製造し、製造した重合体のTgをDSCにより求めた値である。重合体のTgは、構成単量体の種類や組成等を変えることにより任意に選択することができる。 In the present specification, the Tg of the polymer is a value measured by differential scanning calorimetry (DSC). The details of the measurement method follow the operations described in Examples described later. The Tg of each polymer block is a value obtained by producing a polymer corresponding to the polymer block to be measured and obtaining the Tg of the produced polymer by DSC. The Tg of the polymer can be arbitrarily selected by changing the type and composition of the constituent monomers.
(重合体ブロック(A))
 重合体ブロック(A)は、ビニル単量体を重合することにより得ることができる。Tgが十分に高い重合体ブロックを形成し、ブロック共重合体(P)に優れた耐熱性を付与できる点で、重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位及びイミド基含有ビニル化合物に由来する構造単位よりなる群から選択される少なくとも1種(以下、「構造単位U1」ともいう)を含むことが好ましい。
(Polymer block (A))
The polymer block (A) can be obtained by polymerizing a vinyl monomer. The polymer block (A) is a structural unit and an imide group derived from an aromatic vinyl compound in that it can form a polymer block having a sufficiently high Tg and can impart excellent heat resistance to the block copolymer (P). It is preferable to contain at least one selected from the group consisting of structural units derived from the contained vinyl compound (hereinafter, also referred to as “structural unit U1”).
 芳香族ビニル化合物としては、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルキシレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、o-エチルスチレン、m-エチルスチレン、p-エチルスチレン、p-n-ブチルスチレン、p-イソブチルスチレン、p-t-ブチルスチレン、o-メトキシスチレン、m-メトキシスチレン、p-メトキシスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレン、p-イソプロペニルフェノール、m-イソプロペニルフェノール、o-イソプロペニルフェノール、o-ビニル安息香酸、m-ビニル安息香酸、p-ビニル安息香酸及びジビニルベンゼン等のスチレン系化合物、並びに、ビニルナフタレン等が挙げられる。芳香族ビニル化合物は、これらのうちスチレン系化合物が好ましい。なお、芳香族ビニル化合物としては、これらのうちの1種又は2種以上を使用することができる。 Examples of aromatic vinyl compounds include styrene, α-methylstyrene, β-methylstyrene, vinylxylene, o-methylstyrene, m-methylstyrene, p-methylstyrene, o-ethylstyrene, m-ethylstyrene and p-ethyl. Styrene, pn-butyl styrene, p-isobutyl styrene, pt-butyl styrene, o-methoxy styrene, m-methoxy styrene, p-methoxy styrene, o-chloro styrene, m-chloro styrene, p-chloro styrene , P-hydroxystyrene, m-hydroxystyrene, o-hydroxystyrene, p-isopropenylphenol, m-isopropenylphenol, o-isopropenylphenol, o-vinyl benzoic acid, m-vinyl benzoic acid, p-vinyl benzoic acid Examples thereof include styrene-based compounds such as acid and divinylbenzene, and vinylnaphthalene. Of these, the aromatic vinyl compound is preferably a styrene compound. As the aromatic vinyl compound, one or more of these can be used.
 イミド基含有ビニル化合物としては、マレイミド及びN-置換マレイミド化合物等のマレイミド化合物;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、及びN-シクロヘキシルイタコンイミド等のイタコンイミド化合物;N-メチルシトラコンイミド、N-エチルシトラコンイミド、N-ブチルシトラコンイミド、N-2-エチルヘキシルシトラコンイミド、及びN-シクロヘキシルシトラコンイミド等のシトラコンイミド化合物;N-(2-(メタ)アクリロイルオキシエチル)コハク酸イミド、N-(2-(メタ)アクリロイルオキシエチル)マレイミド、N-(2-(メタ)アクリロイルオキシエチル)フタル酸イミド、及びN-(4-(メタ)アクリロイルオキシブチル)フタル酸イミド等の(メタ)アクリルイミド化合物等が挙げられる。これらのうち、スチレン系化合物との高い共重合性を示す点で、マレイミド化合物が好ましい。 Examples of the imide group-containing vinyl compound include maleimide compounds such as maleimide and N-substituted maleimide compounds; N-methylitaconimide, N-ethylitaconimide, N-butylitaconimide, N-2-ethylhexylitaconimide, and N-cyclohexyl. Itaconimide compounds such as itaconimide; citraconimide compounds such as N-methylcitraconimide, N-ethylcitraconimide, N-butylcitraconimide, N-2-ethylhexylcitraconimide, and N-cyclohexylcitraconimide; N- (2- (2- (Meta) acryloyloxyethyl) succinate imide, N- (2- (meth) acryloyloxyethyl) maleimide, N- (2- (meth) acryloyloxyethyl) phthalate imide, and N- (4- (meth) Examples thereof include (meth) acrylicimide compounds such as acryloyloxybutyl) phthalateimide. Of these, maleimide compounds are preferable because they exhibit high copolymerizability with styrene-based compounds.
 マレイミド化合物としては、マレイミド及びN-置換マレイミド化合物を好ましく使用することができる。N-置換マレイミド化合物としては、N-メチルマレイミド、N-エチルマレイミド、N-n-プロピルマレイミド、N-イソプロピルマレイミド、N-n-ブチルマレイミド、N-イソブチルマレイミド、N-tert-ブチルマレイミド、N-ペンチルマレイミド、N-ヘキシルマレイミド、N-ヘプチルマレイミド、N-オクチルマレイミド、N-ラウリルマレイミド、及びN-ステアリルマレイミド等のN-アルキル置換マレイミド化合物;N-シクロペンチルマレイミド及びN-シクロヘキシルマレイミド等のN-シクロアルキル置換マレイミド化合物;N-ベンジルマレイミド等のN-アラルキル置換マレイミド化合物;N-フェニルマレイミド、N-(4-ヒドロキシフェニル)マレイミド、N-(4-アセチルフェニル)マレイミド、N-(4-メトキシフェニル)マレイミド、N-(4-エトキシフェニル)マレイミド、N-(4-クロロフェニル)マレイミド、及びN-(4-ブロモフェニル)マレイミド等のN-アリール置換マレイミド化合物等が挙げられる。なお、イミド基含有ビニル化合物としては、これらのうちの1種又は2種以上を使用することができる。 As the maleimide compound, a maleimide and an N-substituted maleimide compound can be preferably used. Examples of the N-substituted maleimide compound include N-methylmaleimide, N-ethylmaleimide, Nn-propylmaleimide, N-isopropylmaleimide, Nn-butylmaleimide, N-isobutylmaleimide, N-tert-butylmaleimide, and N. -N-alkyl substituted maleimide compounds such as pentylmaleimide, N-hexylmaleimide, N-heptylmaleimide, N-octylmaleimide, N-laurylmaleimide, and N-stearylmaleimide; N such as N-cyclopentylmaleimide and N-cyclohexylmaleimide. -Cycloalkyl-substituted maleimide compounds; N-aralkyl-substituted maleimide compounds such as N-benzylmaleimide; N-phenylmaleimide, N- (4-hydroxyphenyl) maleimide, N- (4-acetylphenyl) maleimide, N- (4-) Examples thereof include N-aryl substituted maleimide compounds such as methoxyphenyl) maleimide, N- (4-ethoxyphenyl) maleimide, N- (4-chlorophenyl) maleimide, and N- (4-bromophenyl) maleimide. As the imide group-containing vinyl compound, one or more of these can be used.
 ブロック共重合体(P)の耐熱性及び接着性をより優れたものとすることができる点で、ブロック共重合体(P)の製造に使用するイミド基含有ビニル化合物は、上記の中でも、下記式(1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000001
(式(1)中、Rは水素原子、炭素数1~3のアルキル基、シクロヘキシル基、フェニル基、又は、フェニル基の任意の位置にヒドロキシ基、炭素数1~2のアルコキシ基、アセチル基又はハロゲン原子が結合した置換フェニル基を表す。)
Among the above, the imide group-containing vinyl compound used for producing the block copolymer (P) is described below in that the heat resistance and adhesiveness of the block copolymer (P) can be further improved. The compound represented by the formula (1) is preferable.
Figure JPOXMLDOC01-appb-C000001
(In the formula (1), R 1 is a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a cyclohexyl group, a phenyl group, or a hydroxy group at an arbitrary position of the phenyl group, an alkoxy group having 1 to 2 carbon atoms, and acetyl. Represents a substituted phenyl group to which a group or a halogen atom is bonded.)
 重合体ブロック(A)の製造に際し芳香族ビニル化合物を使用する場合、重合体ブロック(A)の全単量体単位に対する、芳香族ビニル化合物に由来する構造単位の割合は、凝集力を向上させる観点及び重合体ブロック(A)のTgを高める観点から、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、20質量%以上がより更に好ましい。芳香族ビニル化合物に由来する構造単位の割合の上限については、重合体ブロック(A)の全単量体単位に対して、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下が更に好ましく、50質量%以下がより更に好ましい。 When an aromatic vinyl compound is used in the production of the polymer block (A), the ratio of the structural units derived from the aromatic vinyl compound to all the monomer units of the polymer block (A) improves the cohesive force. From the viewpoint and from the viewpoint of increasing the Tg of the polymer block (A), 1% by mass or more is preferable, 5% by mass or more is more preferable, 10% by mass or more is further preferable, and 20% by mass or more is further preferable. Regarding the upper limit of the ratio of the structural unit derived from the aromatic vinyl compound, it is preferably 90% by mass or less, more preferably 80% by mass or less, and 70% by mass, based on all the monomer units of the polymer block (A). The following is even more preferable, and 50% by mass or less is even more preferable.
 重合体ブロック(A)の製造に際し、イミド基含有ビニル化合物を使用する場合、重合体ブロック(A)の全単量体単位に対する、イミド基含有ビニル化合物に由来する構造単位の割合は、ブロック共重合体(P)の耐熱性を十分に高くする観点から、5質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上が更に好ましく、30質量%以上がより更に好ましい。イミド基含有ビニル化合物に由来する構造単位の割合の上限については、重合体ブロック(A)の全単量体単位に対して、95質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下が更に好ましい。イミド基含有ビニル化合物の割合が95質量%以下であると、ブロック共重合体(P)の接着性を十分に確保することができるため好ましい。 When an imide group-containing vinyl compound is used in the production of the polymer block (A), the ratio of the structural units derived from the imide group-containing vinyl compound to the total monomer units of the polymer block (A) is the same as that of the block. From the viewpoint of sufficiently increasing the heat resistance of the polymer (P), 5% by mass or more is preferable, 10% by mass or more is more preferable, 20% by mass or more is further preferable, and 30% by mass or more is further preferable. The upper limit of the ratio of the structural unit derived from the imide group-containing vinyl compound is preferably 95% by mass or less, more preferably 90% by mass or less, and more preferably 80% by mass, based on all the monomer units of the polymer block (A). % Or less is more preferable. When the ratio of the imide group-containing vinyl compound is 95% by mass or less, the adhesiveness of the block copolymer (P) can be sufficiently ensured, which is preferable.
 スチレン系化合物は、マレイミド化合物の重合性を向上させる傾向がある。したがって、重合体ブロック(A)を構成する単量体単位としてマレイミド化合物を用いる場合、スチレン系化合物を併用することによって、マレイミド化合物の重合性を向上させることが好ましい。重合体ブロック(A)の製造に際し、イミド基含有ビニル化合物とスチレン系化合物とを併用する場合、重合体ブロック(A)において、イミド基含有ビニル化合物に由来する構造単位1molに対する、スチレン系化合物に由来する構造単位の割合は、好ましくは0.01~100molであり、より好ましくは0.1~10molであり、更に好ましくは0.2~5mol、より一層好ましくは0.5~1.5molである。 Styrene compounds tend to improve the polymerizable properties of maleimide compounds. Therefore, when a maleimide compound is used as the monomer unit constituting the polymer block (A), it is preferable to improve the polymerizable property of the maleimide compound by using a styrene compound in combination. When the imide group-containing vinyl compound and the styrene-based compound are used in combination in the production of the polymer block (A), the styrene-based compound is used in the polymer block (A) with respect to 1 mol of the structural unit derived from the imide group-containing vinyl compound. The ratio of the derived structural unit is preferably 0.01 to 100 mol, more preferably 0.1 to 10 mol, still more preferably 0.2 to 5 mol, still more preferably 0.5 to 1.5 mol. be.
 重合体ブロック(A)における構造単位U1の割合は、重合体ブロック(A)が有する全単量体単位に対して、30質量%以上が好ましく、50質量%以上がより好ましく、60質量%以上が更に好ましく、70質量%以上がより更に好ましい。 The ratio of the structural unit U1 in the polymer block (A) is preferably 30% by mass or more, more preferably 50% by mass or more, and more preferably 60% by mass or more, based on the total monomer units of the polymer block (A). Is even more preferable, and 70% by mass or more is even more preferable.
 重合体ブロック(A)の製造に際し、架橋性官能基を有するビニル単量体(以下、「架橋性基含有単量体」ともいう)を使用することにより、重合体ブロック(A)を、架橋性構造単位を有する構造としてもよい。重合体ブロック(A)が架橋性構造単位を有することにより、本粘着剤組成物を用いて形成される粘着剤層の高温条件下での接着性、耐熱性及び温度変化に対する耐久性(冷熱サイクル特性)を更に向上できる点で好ましい。架橋性基含有単量体としては、特に限定されないが、例えば、不飽和カルボン酸、不飽和酸無水物、ヒドロキシ基含有ビニル化合物、エポキシ基含有ビニル化合物、反応性ケイ素基含有ビニル化合物等が挙げられる。 In the production of the polymer block (A), the polymer block (A) is crosslinked by using a vinyl monomer having a crosslinkable functional group (hereinafter, also referred to as “crosslinkable group-containing monomer”). The structure may have a sex structural unit. Since the polymer block (A) has a crosslinkable structural unit, the pressure-sensitive adhesive layer formed by using the present pressure-sensitive adhesive composition has adhesiveness under high temperature conditions, heat resistance, and durability against temperature changes (cold-heat cycle). It is preferable in that the characteristics) can be further improved. The crosslinkable group-containing monomer is not particularly limited, and examples thereof include unsaturated carboxylic acid, unsaturated acid anhydride, hydroxy group-containing vinyl compound, epoxy group-containing vinyl compound, and reactive silicon group-containing vinyl compound. Be done.
 架橋性基含有単量体の具体例としては、不飽和カルボン酸として、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、シトラコン酸、桂皮酸、不飽和ジカルボン酸のモノアルキルエステル(マレイン酸、フマル酸、イタコン酸、シトラコン酸等のモノアルキルエステル)等を;不飽和酸無水物として、例えば無水マレイン酸、無水イタコン酸、無水シトラコン酸等を;
ヒドロキシ基含有ビニル化合物として、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシブチル、(メタ)アクリル酸3-ヒドロキシブチル及び(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル化合物、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート及びポリエチレングリコール-ポリプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート化合物、アリルアルコール等の不飽和アルコール、N-(4-ヒドロキシフェニル)マレイミド等のN-置換マレイミド化合物、並びにo-ヒドロキシスチレン、m-ヒドロキシスチレン及びp-ヒドロキシスチレン等の水酸基含有スチレン系化合物等を;
エポキシ基含有ビニル化合物として、(メタ)アクリル酸グリシジル、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等のエポキシ基含有(メタ)アクリル酸エステル化合物等を;
反応性ケイ素基含有ビニル化合物として、ビニルトリメトキシシラン、ビニルトリトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン等のビニルシラン化合物;(メタ)アクリル酸トリメトキシシリルプロピル、(メタ)アクリル酸トリエトキシシリルプロピル、(メタ)アクリル酸メチルジメトキシシリルプロピル及び(メタ)アクリル酸ジメチルメトキシシリルプロピル等のシリル基含有(メタ)アクリル酸エステル化合物、トリメトキシシリルプロピルビニルエーテル等のシリル基含有ビニルエーテル化合物、並びにトリメトキシシリルウンデカン酸ビニル等のシリル基含有ビニルエステル化合物等を、それぞれ挙げることができる。また、架橋性基含有単量体として、オキサゾリン基含有ビニル化合物、イソシアネート基含有ビニル化合物等を使用してもよい。重合体ブロック(A)の製造に際し、架橋性基含有単量体としては、1種又は2種以上を使用することができる。
Specific examples of the crosslinkable group-containing monomer include (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, citraconic acid, cinnamon acid, and monoalkyl of unsaturated dicarboxylic acid as unsaturated carboxylic acids. Esters (monoalkyl esters such as maleic acid, fumaric acid, itaconic acid, citraconic acid) and the like; as unsaturated acid anhydrides, for example, maleic anhydride, itaconic acid anhydride, citraconic acid anhydride and the like;
As hydroxy group-containing vinyl compounds, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, (meth) (Meta) hydroxyalkyl compounds of (meth) acrylate, such as 3-hydroxybutyl acrylate and 4-hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate and polyethylene glycol-polypropylene glycol mono ( Polyalkylene glycol mono (meth) acrylate compounds such as meta) acrylates, unsaturated alcohols such as allyl alcohol, N-substituted maleimide compounds such as N- (4-hydroxyphenyl) maleimide, and o-hydroxystyrene and m-hydroxystyrene. And hydroxyl group-containing styrene compounds such as p-hydroxystyrene;
Examples of the epoxy group-containing vinyl compound include epoxy group-containing (meth) acrylic acid ester compounds such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and 3,4-epoxycyclohexylmethyl (meth) acrylate. ;
As the reactive silicon group-containing vinyl compound, a vinyl silane compound such as vinyl trimethoxysilane, vinyl tritoxysilane, vinylmethyldimethoxysilane, vinyldimethylmethoxysilane; trimethoxysilylpropyl (meth) acrylate, triethoxy (meth) acrylate. Cyril group-containing (meth) acrylic acid ester compounds such as silylpropyl, methyldimethoxysilylpropyl (meth) acrylate and dimethylmethoxysilylpropyl (meth) acrylate, silyl group-containing vinyl ether compounds such as trimethoxysilylpropyl vinyl ether, and tri. Examples thereof include silyl group-containing vinyl ester compounds such as methoxysilyl undecanoate vinyl and the like. Further, as the crosslinkable group-containing monomer, an oxazoline group-containing vinyl compound, an isocyanate group-containing vinyl compound, or the like may be used. In the production of the polymer block (A), one kind or two or more kinds can be used as the crosslinkable group-containing monomer.
 重合体ブロック(A)が架橋性構造単位を有する場合、当該架橋性構造単位は、上記のうち、(メタ)アクリル系単量体に由来する構造単位であることが好ましい。架橋性構造単位は、これらの中でも、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシアルキル化合物、エポキシ基含有(メタ)アクリル酸エステル化合物、及びシリル基含有(メタ)アクリル酸エステル化合物よりなる群から選択される少なくとも1種の単量体に由来する構造単位であることが好ましく、(メタ)アクリル酸ヒドロキシアルキル化合物に由来する構造単位であることが特に好ましい。(メタ)アクリル酸ヒドロキシアルキル化合物としては、粘着性能の観点から、炭素数2~8のヒドロキシアルキル基を有する化合物が好ましく、炭素数2~4のヒドロキシアルキル基を有する化合物がより好ましい。 When the polymer block (A) has a crosslinkable structural unit, the crosslinkable structural unit is preferably a structural unit derived from the (meth) acrylic monomer among the above. Among these, the crosslinkable structural unit is a group consisting of (meth) acrylic acid, (meth) acrylic acid hydroxyalkyl compound, epoxy group-containing (meth) acrylic acid ester compound, and silyl group-containing (meth) acrylic acid ester compound. It is preferably a structural unit derived from at least one monomer selected from, and particularly preferably a structural unit derived from a (meth) hydroxyalkyl acrylate compound. As the (meth) hydroxyalkyl acrylate compound, a compound having a hydroxyalkyl group having 2 to 8 carbon atoms is preferable, and a compound having a hydroxyalkyl group having 2 to 4 carbon atoms is more preferable, from the viewpoint of adhesive performance.
 重合体ブロック(A)が架橋性構造単位を有する場合、架橋性構造単位の含有量は、重合体ブロック(A)の全単量体単位に対して、好ましくは1質量%以上であり、より好ましくは5質量%以上であり、更に好ましくは10質量%以上である。重合体ブロック(A)における架橋性構造単位の割合が1質量%以上であると、重合体ブロック(A)により十分に架橋構造が形成され、耐熱性及び温度変化に対する耐久性が良好なブロック共重合体(P)を得やすくなる。また、架橋性構造単位の含有量の上限は特に制限されるものではないが、重合体ブロック(A)のTgを高く維持する観点から、重合体ブロック(A)の全単量体単位に対して、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、更に好ましくは30質量%以下である。 When the polymer block (A) has a crosslinkable structural unit, the content of the crosslinkable structural unit is preferably 1% by mass or more, more preferably 1% by mass, based on all the monomer units of the polymer block (A). It is preferably 5% by mass or more, and more preferably 10% by mass or more. When the proportion of the crosslinkable structural unit in the polymer block (A) is 1% by mass or more, the crosslinkable structure is sufficiently formed by the polymer block (A), and the block has good heat resistance and durability against temperature changes. It becomes easy to obtain the polymer (P). The upper limit of the content of the crosslinkable structural unit is not particularly limited, but from the viewpoint of maintaining a high Tg of the polymer block (A), the content of the polymer block (A) is relative to all the monomer units. It is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
 重合体ブロック(A)は、ブロック共重合体(P)の作用を損なわない範囲で、芳香族ビニル化合物及びイミド基含有ビニル化合物の少なくともいずれかと共重合可能な単量体であって、芳香族ビニル化合物及びイミド基含有ビニル化合物とは異なる単量体(以下、「他の単量体A」ともいう)に由来する構造単位を更に含んでいてもよい。他の単量体Aとしては、架橋性基含有単量体として例示した化合物のほか、例えば、(メタ)アクリル酸アルキル化合物、(メタ)アクリル酸の脂肪族環式エステル化合物、(メタ)アクリル酸のアルケニルエステル化合物、(メタ)アクリル酸の芳香族エステル化合物、脂肪族ビニル化合物、アミノ基含有ビニル化合物、アミド基含有ビニル化合物、多官能(メタ)アクリレート化合物、多官能アルケニル化合物、ニトリル基含有不飽和化合物、不飽和ジカルボン酸のジアルキルエステル化合物等が挙げられる。これらの化合物の具体例としては、後述する(メタ)アクリル系重合体ブロック(B)及びビニル重合体(C)の説明で例示した化合物が挙げられる。他の単量体Aとしては、1種のみ使用してもよく、2種以上使用してもよい。 The polymer block (A) is a monomer copolymerizable with at least one of an aromatic vinyl compound and an imide group-containing vinyl compound as long as the action of the block copolymer (P) is not impaired, and is aromatic. It may further contain a structural unit derived from a polymer different from the vinyl compound and the imide group-containing vinyl compound (hereinafter, also referred to as “other monomer A”). Examples of the other monomer A include the compound exemplified as the crosslinkable group-containing monomer, an alkyl (meth) acrylic acid compound, an aliphatic cyclic ester compound of (meth) acrylic acid, and (meth) acrylic. Acid alkenyl ester compound, (meth) acrylic acid aromatic ester compound, aliphatic vinyl compound, amino group-containing vinyl compound, amide group-containing vinyl compound, polyfunctional (meth) acrylate compound, polyfunctional alkenyl compound, nitrile group-containing Examples thereof include unsaturated compounds and dialkyl ester compounds of unsaturated dicarboxylic acids. Specific examples of these compounds include the compounds exemplified in the description of the (meth) acrylic polymer block (B) and the vinyl polymer (C) described later. As the other monomer A, only one kind may be used, or two or more kinds may be used.
 重合体ブロック(A)の製造に際し、他の単量体Aの使用量は、本開示の効果を損なわない範囲内で適宜設定することができる。重合体ブロック(A)の全単量体単位に対する、他の単量体Aに由来する構造単位の割合は、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、更に好ましくは30質量%以下である。 In the production of the polymer block (A), the amount of the other monomer A used can be appropriately set within a range that does not impair the effects of the present disclosure. The ratio of the structural units derived from the other monomer A to the total monomer units of the polymer block (A) is preferably 50% by mass or less, more preferably 40% by mass or less, still more preferable. Is 30% by mass or less.
 重合体ブロック(A)のTgは、100℃以上であることが好ましい。重合体ブロック(A)のTgが100℃以上であると、ブロック共重合体(P)のミクロ相分離構造等により形成された疑似架橋による凝集力の向上効果を高温下でも維持できるため、高温接着性、耐熱性及び温度変化に対する耐久性を付与することができる。こうした観点から、重合体ブロック(A)のTgは、好ましくは120℃以上であり、より好ましくは150℃以上であり、更に好ましくは160℃以上であり、より更に好ましくは180℃以上であり、特に好ましくは200℃以上である。重合体ブロック(A)のTgは、使用可能な構成単量体単位の自由度が高い点、及び貼り合わせ時の加熱温度が高くなりすぎることを抑制できる点で、350℃以下であることが好ましく、280℃以下であることがより好ましく、270℃以下であることが更に好ましく、260℃以下であることがより更に好ましい。 The Tg of the polymer block (A) is preferably 100 ° C. or higher. When the Tg of the polymer block (A) is 100 ° C. or higher, the effect of improving the cohesive force due to the pseudo-crosslinking formed by the microphase separation structure of the block copolymer (P) can be maintained even at a high temperature. Adhesion, heat resistance and durability against temperature changes can be imparted. From this point of view, the Tg of the polymer block (A) is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, still more preferably 160 ° C. or higher, still more preferably 180 ° C. or higher, and more preferably 180 ° C. or higher. Particularly preferably, it is 200 ° C. or higher. The Tg of the polymer block (A) is 350 ° C. or lower in that the degree of freedom of the constituent monomer units that can be used is high and that the heating temperature at the time of bonding can be suppressed from becoming too high. It is preferably 280 ° C. or lower, more preferably 270 ° C. or lower, and even more preferably 260 ° C. or lower.
 重合体ブロック(A)の数平均分子量(Mn)は、1,000~45,000の範囲にあることが好ましい。Mnが1,000以上であると、ブロック共重合体(P)の凝集力を十分に確保することができ、45,000以下であると、柔軟性を維持し、被着体に対する剥離強度を十分に高くすることができる点で好ましい。重合体ブロック(A)のMnは、好ましくは2,000以上であり、より好ましくは3,000以上であり、更に好ましくは5,000以上であり、より更に好ましくは7,000以上である。重合体ブロック(A)のMnの上限については、好ましくは40,000以下であり、より好ましくは35,000以下であり、更に好ましくは33,000以下であり、より更に好ましくは30,000以下である。なお、本明細書において、重合体のMw及びMnは、ゲルパーミエーションクロマトグラフィー(GPC)を用いて得られた標準ポリスチレン換算値である。 The number average molecular weight (Mn) of the polymer block (A) is preferably in the range of 1,000 to 45,000. When Mn is 1,000 or more, the cohesive force of the block copolymer (P) can be sufficiently secured, and when it is 45,000 or less, the flexibility is maintained and the peel strength with respect to the adherend is increased. It is preferable in that it can be sufficiently high. The Mn of the polymer block (A) is preferably 2,000 or more, more preferably 3,000 or more, still more preferably 5,000 or more, still more preferably 7,000 or more. The upper limit of Mn of the polymer block (A) is preferably 40,000 or less, more preferably 35,000 or less, still more preferably 33,000 or less, still more preferably 30,000 or less. Is. In addition, in this specification, Mw and Mn of a polymer are standard polystyrene conversion values obtained by using gel permeation chromatography (GPC).
 重合体ブロック(A)の重量平均分子量(Mw)は、1,000~50,000の範囲にあることが好ましい。重合体ブロック(A)のMwは、好ましくは2,000以上であり、より好ましくは3,000以上であり、更に好ましくは6,000以上であり、より更に好ましくは9,000以上である。重合体ブロック(A)のMwの上限については、好ましくは48,000以下であり、より好ましくは45,000以下であり、更に好ましくは40,000以下であり、より更に好ましくは35,000以下である。 The weight average molecular weight (Mw) of the polymer block (A) is preferably in the range of 1,000 to 50,000. The Mw of the polymer block (A) is preferably 2,000 or more, more preferably 3,000 or more, still more preferably 6,000 or more, still more preferably 9,000 or more. The upper limit of Mw of the polymer block (A) is preferably 48,000 or less, more preferably 45,000 or less, still more preferably 40,000 or less, still more preferably 35,000 or less. Is.
 なお、ブロック共重合体(P)の1分子中に重合体ブロック(A)が複数個存在する場合、「重合体ブロック(A)のMn」及び「重合体ブロック(A)のMw」とは、ブロック共重合体(P)1分子が有する複数個の重合体ブロック(A)全体のMn、Mwを意味する。例えば、ブロック共重合体(P)が、重合体ブロック(A)/(メタ)アクリル系重合体ブロック(B)/重合体ブロック(A)からなる(ABA)型のトリブロック体である場合、当該トリブロック体における重合体ブロック(A)のMnは、2個の重合体ブロック(A)のMnを足し合わせた値である。 When a plurality of polymer blocks (A) are present in one molecule of the block copolymer (P), what are "Mn of the polymer block (A)" and "Mw of the polymer block (A)"? , Mn and Mw of the entire plurality of polymer blocks (A) possessed by one molecule of the block copolymer (P). For example, when the block copolymer (P) is a (ABA) type triblock composed of a polymer block (A) / (meth) acrylic polymer block (B) / polymer block (A). The Mn of the polymer block (A) in the triblock is a value obtained by adding the Mns of the two polymer blocks (A).
((メタ)アクリル系重合体ブロック(B))
 (メタ)アクリル系重合体ブロック(B)は、(メタ)アクリル系単量体を主要単量体単位として含む重合体である。(メタ)アクリル系重合体ブロック(B)を構成する単量体としては、Tgが比較的低く十分な粘着性を有する重合体ブロックを得ることができる点で、(メタ)アクリル酸アルキル化合物及び(メタ)アクリル酸アルコキシエステル化合物よりなる群から選択される少なくとも1種の単量体(以下、「構造単位U2」ともいう)を好ましく使用することができる。なお、(メタ)アクリル系重合体ブロック(B)を構成する単量体としては、1種を単独で又は2種以上を組み合わせて使用することができる。
((Meta) Acrylic Polymer Block (B))
The (meth) acrylic polymer block (B) is a polymer containing a (meth) acrylic monomer as a main monomer unit. As the monomer constituting the (meth) acrylic polymer block (B), the (meth) acrylic acid alkyl compound and the (meth) acrylic acid alkyl compound and the polymer block having a relatively low Tg and sufficient adhesiveness can be obtained. At least one monomer selected from the group consisting of (meth) acrylic acid alkoxy ester compounds (hereinafter, also referred to as “structural unit U2”) can be preferably used. As the monomer constituting the (meth) acrylic polymer block (B), one type may be used alone or two or more types may be used in combination.
 (メタ)アクリル系重合体ブロック(B)の製造に使用する(メタ)アクリル酸アルキル化合物は、アルキルエステル部分(-COOR)に炭素数1~10のアルキル基を有する(メタ)アクリル酸アルキル化合物が好ましい。その具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸n-デシル、(メタ)アクリル酸ラウリル等が挙げられる。これらのうち好ましい単量体としては、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸n-ノニル、(メタ)アクリル酸イソノニル等が挙げられる。 The (meth) acrylic acid alkyl compound used for producing the (meth) acrylic polymer block (B) is a (meth) acrylic acid alkyl compound having an alkyl group having 1 to 10 carbon atoms in the alkyl ester moiety (-COOR). Is preferable. Specific examples thereof include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, n-butyl (meth) acrylic acid, and (meth) acrylic acid. Isobutyl, (meth) acrylic acid n-hexyl, (meth) acrylic acid n-octyl, (meth) acrylic acid isooctyl, (meth) acrylic acid 2-ethylhexyl, (meth) acrylic acid n-nonyl, (meth) acrylic acid Examples thereof include isononyl, n-decyl (meth) acrylate, and lauryl (meth) acrylate. Of these, preferred monomers include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, isooctyl (meth) acrylate, and n (meth) acrylate. -Nonyl, isononyl (meth) acrylate and the like can be mentioned.
 (メタ)アクリル系重合体ブロック(B)の製造に使用する(メタ)アクリル酸アルコキシエステル化合物は、炭素数2~12のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキル化合物が好ましい。具体例としては、(メタ)アクリル酸メトキシメチル、(メタ)アクリル酸エトキシメチル、(メタ)アクリル酸ブトキシメチル、(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル、(メタ)アクリル酸ブトキシエチル、(メタ)アクリル酸メトキシブチル、(メタ)アクリル酸エトキシブチル、(メタ)アクリル酸ブトキシブチル等が挙げられる。 The (meth) acrylic acid alkoxyester compound used for producing the (meth) acrylic polymer block (B) is preferably a (meth) acrylic acid alkoxyalkyl compound having an alkoxyalkyl group having 2 to 12 carbon atoms. Specific examples include methoxymethyl (meth) acrylate, ethoxymethyl (meth) acrylate, butoxymethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, and (meth) acrylic acid. Examples thereof include butoxyethyl, methoxybutyl (meth) acrylate, ethoxybutyl (meth) acrylate, butoxybutyl (meth) acrylate and the like.
 (メタ)アクリル系重合体ブロック(B)において、構造単位U2の含有量は、(メタ)アクリル系重合性ブロック(B)が有する全単量体単位に対して、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましく、90質量%以上がより更に好ましい。構造単位U2の割合を30質量%以上とすることにより、得られる粘着剤組成物の粘着力、初期接着力(タック)及び低温粘着性等を十分に高くすることができる。構造単位U2の含有量の上限は特に限定されない。構造単位U2の含有量の範囲は、(メタ)アクリル系重合体ブロック(B)が有する全単量体単位に対して、好ましくは50質量%以上100質量%以下であり、より好ましくは70質量%以上100質量%以下であり、更に好ましくは80質量%以上100質量%以下である。 In the (meth) acrylic polymer block (B), the content of the structural unit U2 is preferably 50% by mass or more with respect to all the monomer units of the (meth) acrylic polymerizable block (B). 70% by mass or more is more preferable, 80% by mass or more is further preferable, and 90% by mass or more is further preferable. By setting the ratio of the structural unit U2 to 30% by mass or more, the adhesive strength, initial adhesive strength (tack), low temperature adhesiveness, and the like of the obtained pressure-sensitive adhesive composition can be sufficiently increased. The upper limit of the content of the structural unit U2 is not particularly limited. The range of the content of the structural unit U2 is preferably 50% by mass or more and 100% by mass or less, more preferably 70% by mass, based on all the monomer units of the (meth) acrylic polymer block (B). % Or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less.
 (メタ)アクリル系重合体ブロック(B)は特に、粘着剤層においてビニル重合体(C)が表層へ偏析しやすくなり、粘着剤組成物の粘度を低く抑えながら高温及び低温条件下での接着性、耐熱性並びに温度変化に対する耐久性を良好にできる点で、(メタ)アクリル酸アルコキシエステル化合物に由来する構造単位を含むことが好ましい。具体的には、(メタ)アクリル酸アルコキシエステル化合物に由来する構造単位の含有量は、(メタ)アクリル系重合体ブロック(B)が有する全単量体単位に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、50質量%以上であることがより更に好ましい。(メタ)アクリル酸アルコキシエステル化合物に由来する構造単位の含有量の上限は特に限定されないが、ビニル重合体(C)との相溶性及び高温接着性を十分に確保する観点から、(メタ)アクリル系重合体ブロック(B)が有する全単量体単位に対して、99質量%以下であることが好ましく、90質量%以下であることがより好ましい。(メタ)アクリル酸アルコキシエステル化合物に由来する構造単位の含有量の範囲は、好ましくは20質量%以上99質量%以下であり、より好ましくは30質量%以上95質量%以下である。 In the (meth) acrylic polymer block (B), in particular, the vinyl polymer (C) tends to segregate on the surface layer in the pressure-sensitive adhesive layer, and the pressure-sensitive adhesive composition is adhered under high and low temperature conditions while keeping the viscosity low. It is preferable to include a structural unit derived from the (meth) acrylic acid alkoxyester compound in that the property, heat resistance and durability against temperature changes can be improved. Specifically, the content of the structural unit derived from the (meth) acrylic acid alkoxy ester compound is 20% by mass or more with respect to the total monomer unit of the (meth) acrylic polymer block (B). It is preferably 30% by mass or more, more preferably 40% by mass or more, and further preferably 50% by mass or more. The upper limit of the content of the structural unit derived from the (meth) acrylic acid alkoxy ester compound is not particularly limited, but from the viewpoint of sufficiently ensuring compatibility with the vinyl polymer (C) and high-temperature adhesiveness, (meth) acrylic. It is preferably 99% by mass or less, more preferably 90% by mass or less, based on all the monomer units of the system polymer block (B). The range of the content of the structural unit derived from the (meth) acrylic acid alkoxy ester compound is preferably 20% by mass or more and 99% by mass or less, and more preferably 30% by mass or more and 95% by mass or less.
 (メタ)アクリル系重合体ブロック(B)は、粘着剤層においてビニル重合体(C)が表層へ偏析しやすくなり、さらに耐熱性をより高める点で、アルキルエステル部分に炭素数1~3のアルキル基を有する(メタ)アクリル酸アルキル化合物に由来する構造単位を含むこともできる。(メタ)アクリル系重合体ブロック(B)の製造に際し、このような(メタ)アクリル酸アルキル化合物を用いることで、(メタ)アクリル系重合体ブロック(B)の弾性率を高めることができ、耐熱性向上に有効である。これらの中でも、(メタ)アクリル酸メチル及び(メタ)アクリル酸エチルよりなる群から選択される1種が好ましく、(メタ)アクリル酸メチルがより好ましい。(メタ)アクリル系重合体ブロック(B)において、炭素数1~3のアルキル基を有する(メタ)アクリル酸エステルに由来する構造単位の含有量は、粘着塗膜の柔軟性を確保する観点から、70質量%以下であることが好ましく、40質量%以下であることがより好ましい。 The (meth) acrylic polymer block (B) has 1 to 3 carbon atoms in the alkyl ester portion in that the vinyl polymer (C) easily segregates to the surface layer in the pressure-sensitive adhesive layer and further enhances heat resistance. It can also contain structural units derived from (meth) alkyl acrylate compounds having an alkyl group. By using such an alkyl (meth) acrylate compound in the production of the (meth) acrylic polymer block (B), the elastic modulus of the (meth) acrylic polymer block (B) can be increased. Effective for improving heat resistance. Among these, one selected from the group consisting of methyl (meth) acrylate and ethyl (meth) acrylate is preferable, and methyl (meth) acrylate is more preferable. In the (meth) acrylic polymer block (B), the content of the structural unit derived from the (meth) acrylic acid ester having an alkyl group having 1 to 3 carbon atoms is from the viewpoint of ensuring the flexibility of the adhesive coating film. , 70% by mass or less, more preferably 40% by mass or less.
 (メタ)アクリル系重合体ブロック(B)の製造に際しては、Fedors法により求められる溶解パラメータ(SP値)が9.9以上となるホモポリマーの単量体単位となる化合物を用いることが、得られる粘着剤層の表層部分にビニル重合体(C)が偏析しやすくなるため好ましい。ホモポリマーのSP値が9.9以上となる単量体としては、(メタ)アクリル酸メチル、アクリル酸エチル、アクリル酸2-メトキシエチル、アクリル酸2-エトキシエチル、(メタ)アクリル酸2-ヒドロキシエチル、アクリロイルモルホリン、(メタ)アクリル酸、スチレン、メタクリル酸ベンジル等が挙げられる。(メタ)アクリル系重合体ブロック(B)は、こうした単量体に由来する構造単位を、(メタ)アクリル系重合体ブロック(B)が有する全単量体単位に対して、好ましくは15質量%以上、より好ましくは25質量%以上、更に好ましくは30質量%以上、より更に好ましくは50質量%以上有するものとするとよい。 In the production of the (meth) acrylic polymer block (B), it is possible to use a compound which is a monomer unit of a homopolymer having a dissolution parameter (SP value) of 9.9 or more obtained by the Fedors method. The vinyl polymer (C) is likely to segregate on the surface layer portion of the pressure-sensitive adhesive layer, which is preferable. Examples of the monomer having an SP value of 9.9 or more in the homopolymer include methyl (meth) acrylate, ethyl acrylate, 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, and 2-ethoxyethyl (meth) acrylate. Examples thereof include hydroxyethyl, acryloylmorpholine, (meth) acrylic acid, styrene, and benzyl methacrylate. The (meth) acrylic polymer block (B) has a structural unit derived from such a monomer, preferably 15 mass by mass with respect to all the monomer units of the (meth) acrylic polymer block (B). % Or more, more preferably 25% by mass or more, still more preferably 30% by mass or more, still more preferably 50% by mass or more.
 (メタ)アクリル系重合体ブロック(B)の製造に際し、架橋性基含有単量体を使用することにより、(メタ)アクリル系重合体ブロック(B)を、架橋性構造単位を有する構造とすることができる。(メタ)アクリル系重合体ブロック(B)が架橋性構造単位を有することにより、粘着剤層の高温条件下での接着性、耐熱性及び温度変化に対する耐久性を更に向上できる点で好ましい。なお、ブロック共重合体(P)が架橋性構造単位を有する場合、重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)のうち一方のみが架橋性構造単位を有していてもよく、重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)の両方が架橋性構造単位を有していてもよい。 By using a crosslinkable group-containing monomer in the production of the (meth) acrylic polymer block (B), the (meth) acrylic polymer block (B) has a structure having a crosslinkable structural unit. be able to. Since the (meth) acrylic polymer block (B) has a crosslinkable structural unit, it is preferable in that the adhesiveness, heat resistance and durability of the pressure-sensitive adhesive layer under high temperature conditions can be further improved. When the block copolymer (P) has a crosslinkable structural unit, only one of the polymer block (A) and the (meth) acrylic polymer block (B) has a crosslinkable structural unit. Also, both the polymer block (A) and the (meth) acrylic polymer block (B) may have a crosslinkable structural unit.
 (メタ)アクリル系重合体ブロック(B)の製造に使用する架橋性基含有単量体は特に限定されないが、(メタ)アクリル酸、(メタ)アクリル酸ヒドロキシアルキル化合物、エポキシ基含有(メタ)アクリル酸エステル化合物、及びシリル基含有(メタ)アクリル酸エステル化合物よりなる群から選択される少なくとも1種であることが好ましい。これらの中でも特に、(メタ)アクリル系重合体ブロック(B)の粘着力が高くなる傾向があることから、(メタ)アクリル酸ヒドロキシアルキル化合物が好ましく、炭素数2~8のヒドロキシアルキル基を有する化合物がより好ましく、炭素数2~4のヒドロキシアルキル基を有する化合物が特に好ましい。なお、(メタ)アクリル酸ヒドロキシアルキル化合物、エポキシ基含有(メタ)アクリル酸エステル化合物、及びシリル基含有(メタ)アクリル酸エステル化合物の具体例については、重合体ブロック(A)の説明で例示した化合物が挙げられる。 The crosslinkable group-containing monomer used for producing the (meth) acrylic polymer block (B) is not particularly limited, but contains (meth) acrylic acid, a (meth) hydroxyalkyl compound acrylate, and an epoxy group (meth). It is preferably at least one selected from the group consisting of an acrylic acid ester compound and a silyl group-containing (meth) acrylic acid ester compound. Among these, the (meth) acrylic acid hydroxyalkyl compound is preferable because the adhesive strength of the (meth) acrylic polymer block (B) tends to be high, and it has a hydroxyalkyl group having 2 to 8 carbon atoms. Compounds are more preferable, and compounds having a hydroxyalkyl group having 2 to 4 carbon atoms are particularly preferable. Specific examples of the (meth) acrylic acid hydroxyalkyl compound, the epoxy group-containing (meth) acrylic acid ester compound, and the silyl group-containing (meth) acrylic acid ester compound are exemplified in the description of the polymer block (A). Examples include compounds.
 (メタ)アクリル系重合体ブロック(B)が架橋性構造単位を有する場合、架橋性構造単位の含有量は、(メタ)アクリル系重合体ブロック(B)の全単量体単位に対して、好ましくは0.1質量%以上であり、より好ましくは0.5質量%以上であり、更に好ましくは1質量%以上である。(メタ)アクリル系重合体ブロック(B)における架橋性構造単位の含有量を0.1質量%以上とすることにより、良好な架橋構造を形成させ、より高い耐熱性及び耐久性を示すブロック共重合体(P)を得ることができる。架橋性構造単位の含有量の上限は特に制限されるものではないが、得られる粘着剤層の柔軟性を高くする観点から、(メタ)アクリル系重合体ブロック(B)が有する全単量体単位に対して、好ましくは30質量%以下であり、より好ましくは20質量%以下であり、更に好ましくは15質量%以下であり、特に好ましくは10質量%以下である。なお、(メタ)アクリル系重合体ブロック(B)の製造に際し、架橋性含有単量体を1種のみ使用してもよいし、2種以上使用してもよい。 When the (meth) acrylic polymer block (B) has a crosslinkable structural unit, the content of the crosslinkable structural unit is relative to all the monomer units of the (meth) acrylic polymer block (B). It is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and further preferably 1% by mass or more. By setting the content of the crosslinkable structural unit in the (meth) acrylic polymer block (B) to 0.1% by mass or more, a good crosslinked structure is formed, and both the blocks exhibiting higher heat resistance and durability. The polymer (P) can be obtained. The upper limit of the content of the crosslinkable structural unit is not particularly limited, but from the viewpoint of increasing the flexibility of the obtained pressure-sensitive adhesive layer, all the monomers of the (meth) acrylic polymer block (B) It is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and particularly preferably 10% by mass or less with respect to the unit. In the production of the (meth) acrylic polymer block (B), only one type of crosslinkable-containing monomer may be used, or two or more types may be used.
 (メタ)アクリル系重合体ブロック(B)は、上記以外にも、粘着性能を損なわない範囲において、上記の単量体と共重合可能な単量体(以下、「他の単量体B」ともいう)を使用してもよい。他の単量体Bとしては、例えば、(メタ)アクリル酸の脂肪族環式エステル化合物、(メタ)アクリル酸の芳香族エステル化合物、芳香族ビニル化合物、イミド基含有ビニル化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、シアノ基含有不飽和化合物、ニトリル基含有不飽和化合物等が挙げられる。これらの化合物の具体例については、上述で例示した化合物、及び後述するビニル重合体(C)の説明で例示の化合物が挙げられる。他の単量体Bについては、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 In addition to the above, the (meth) acrylic polymer block (B) is a monomer copolymerizable with the above-mentioned monomer (hereinafter, “other monomer B”” as long as the adhesive performance is not impaired. Also called) may be used. Examples of the other monomer B include an aliphatic cyclic ester compound of (meth) acrylic acid, an aromatic ester compound of (meth) acrylic acid, an aromatic vinyl compound, an imide group-containing vinyl compound, and an amino group-free compound. Examples thereof include saturated compounds, amide group-containing unsaturated compounds, cyano group-containing unsaturated compounds, and nitrile group-containing unsaturated compounds. Specific examples of these compounds include the compounds exemplified above and the compounds exemplified in the description of the vinyl polymer (C) described later. The other monomer B may be used alone or in combination of two or more.
 (メタ)アクリル系重合体ブロック(B)の製造に際し、他の単量体Bの使用量は、本開示の効果を損なわない範囲内で適宜設定することができる。(メタ)アクリル系重合体ブロック(B)の全単量体単位に対する、他の単量体Bに由来する構造単位の割合は、好ましくは20質量%以下であり、より好ましくは10質量%以下であり、更に好ましくは5質量%以下である。 In the production of the (meth) acrylic polymer block (B), the amount of the other monomer B used can be appropriately set within a range that does not impair the effects of the present disclosure. The ratio of the structural units derived from the other monomer B to the total monomer units of the (meth) acrylic polymer block (B) is preferably 20% by mass or less, more preferably 10% by mass or less. It is more preferably 5% by mass or less.
 (メタ)アクリル系重合体ブロック(B)のTgは、-50℃以上-10℃以下の範囲にあることが好ましい。重合体ブロック(B)のTgが-50℃以上であると、本粘着剤組成物により得られる粘着剤層の凝集力を十分に高くでき、接着性を十分に確保できる傾向がある。Tgが-10℃以下であると、低温条件下での接着性及び曲面追従性を十分に確保することができる。また、加飾フィルムが貼り合わされた成形体が加飾フィルムの基材層が熱膨張・熱収縮する環境下で使用される場合にも、粘着剤層の基材層への追従性が良好となり、温度変化に対する耐久性が高い加飾フィルムを得ることができる。(メタ)アクリル系重合体ブロック(B)のTgは、より好ましくは-45℃以上である。Tgの上限については、より好ましくは-15℃であり、更に好ましくは-20℃である。(メタ)アクリル系重合体ブロック(B)のTgの範囲は、より好ましくは-50℃以上-15℃以下の範囲であり、更に好ましくは-45℃以上-20℃以下の範囲である。 The Tg of the (meth) acrylic polymer block (B) is preferably in the range of −50 ° C. or higher and −10 ° C. or lower. When the Tg of the polymer block (B) is −50 ° C. or higher, the cohesive force of the pressure-sensitive adhesive layer obtained by the present pressure-sensitive adhesive composition can be sufficiently increased, and the adhesiveness tends to be sufficiently ensured. When Tg is −10 ° C. or lower, sufficient adhesiveness and curved surface followability under low temperature conditions can be ensured. Further, even when the molded body to which the decorative film is bonded is used in an environment in which the base material layer of the decorative film thermally expands and contracts, the adhesive layer has good followability to the base material layer. , A decorative film having high durability against temperature changes can be obtained. The Tg of the (meth) acrylic polymer block (B) is more preferably −45 ° C. or higher. The upper limit of Tg is more preferably −15 ° C., and even more preferably −20 ° C. The range of Tg of the (meth) acrylic polymer block (B) is more preferably −50 ° C. or higher and −15 ° C. or lower, and further preferably −45 ° C. or higher and −20 ° C. or lower.
 重合体ブロック(A)は、(メタ)アクリル系重合体ブロック(B)と相分離する性質を有しているとよい。かかる性質を有することで、ブロック共重合体(P)がミクロ相分離構造を形成しやすくなる点で好適である。本願出願時の技術常識に基づいて当業者であれば容易に、(メタ)アクリル系重合体ブロック(B)と相分離する重合体ブロック(A)を設計することができる。例えば、公知の溶解性パラメータであるSP値の算出方法(例えばFedors法)により計算した重合体ブロック(A)のSP値を(メタ)アクリル系重合体ブロック(B)のSP値と比較したときの差分ΔSP(絶対値)を0.01以上とする。差分ΔSPは、例えば0.05以上、また例えば0.1以上、また例えば0.2以上、また例えば0.5以上であってもよい。Fedors法による場合、SP値は、R.F.Fedorsにより著された「Polymer Engineering and Science」14(2),147(1974)に記載の計算方法によって算出することができる。また、SP値は、意図するブロック共重合体(P)の構造を電子顕微鏡、走査型プローブ顕微鏡又は小角X線散乱等で観察することにより、ブロック間の相分離性を容易に推測することもできる。 The polymer block (A) may have a property of phase separation from the (meth) acrylic polymer block (B). Having such a property is preferable in that the block copolymer (P) can easily form a microphase-separated structure. A person skilled in the art can easily design a polymer block (A) that is phase-separated from the (meth) acrylic polymer block (B) based on the common general knowledge as of the filing of the present application. For example, when the SP value of the polymer block (A) calculated by a method for calculating the SP value, which is a known solubility parameter (for example, the Fedors method), is compared with the SP value of the (meth) acrylic polymer block (B). The difference ΔSP (absolute value) of is 0.01 or more. The difference ΔSP may be, for example, 0.05 or more, for example 0.1 or more, for example 0.2 or more, or for example 0.5 or more. In the case of the Fedors method, the SP value is R.I. F. It can be calculated by the calculation method described in "Polymer Engineering and Science" 14 (2) and 147 (1974) written by Fedors. In addition, the SP value can be easily estimated for the phase separation between blocks by observing the intended structure of the block copolymer (P) with an electron microscope, a scanning probe microscope, small-angle X-ray scattering, or the like. can.
 ブロック共重合体(P)は、重合体ブロック(A)と(メタ)アクリル系重合体ブロック(B)とを有する限り、ブロック数や配列は特に限定されない。ブロック共重合体(P)の具体例としては、例えば重合体ブロック(A)と(メタ)アクリル系重合体ブロック(B)とからなる(AB)型のジブロック体、重合体ブロック(A)/(メタ)アクリル系重合体ブロック(B)/重合体ブロック(A)からなる(ABA)型のトリブロック体、及び(メタ)アクリル系重合体ブロック(B)/重合体ブロック(A)/(メタ)アクリル系重合体ブロック(B)からなる(BAB)型のトリブロック体等が挙げられる。また、ブロック共重合体(P)は、重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)以外の重合体ブロックを更に有するものであってもよい。これらのうち、ブロック共重合体(P)は、(ABA)型の構造であることが好ましい。かかる構造であると、重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)が疑似架橋構造を形成しやすく、粘着物性とともに、耐熱性及び温度変化に対する耐久性が向上する。 As long as the block copolymer (P) has the polymer block (A) and the (meth) acrylic polymer block (B), the number of blocks and the arrangement are not particularly limited. Specific examples of the block copolymer (P) include a (AB) type diblock composed of a polymer block (A) and a (meth) acrylic polymer block (B), and a polymer block (A). / (ABA) type triblock composed of (meth) acrylic polymer block (B) / polymer block (A), and (meth) acrylic polymer block (B) / polymer block (A) / Examples thereof include a (BAB) type triblock body composed of a (meth) acrylic polymer block (B). Further, the block copolymer (P) may further have a polymer block other than the polymer block (A) and the (meth) acrylic polymer block (B). Of these, the block copolymer (P) preferably has a (ABA) type structure. With such a structure, the polymer block (A) and the (meth) acrylic polymer block (B) can easily form a pseudo-crosslinked structure, and the heat resistance and durability against temperature changes are improved as well as the adhesive physical properties.
 ブロック共重合体(P)における重合体ブロック(A)と(メタ)アクリル系重合体ブロック(B)との比率(以下、「ブロック比」ともいう)は、重合体ブロック(A)/(メタ)アクリル系重合体ブロック(B)で表した場合に、質量比で、1/99~20/80であることが好ましい。ブロック比が上記範囲内であると、ハードセグメントを構成し架橋点となり得る重合体ブロック(A)と、ソフトセグメントとなり得る(メタ)アクリル系重合体ブロック(B)とを有するブロック共重合体により、粘着剤組成物の粘度を低く抑えながら、耐熱性及び耐久性に優れた粘着剤組成物を得ることができる。また、基材層の熱膨張に対する追従性に優れた粘着剤層を形成でき、高温条件下においても成形体から剥がれや浮きが生じにくい粘着剤層を得ることができる。こうした観点から、ブロック比は、より好ましくは1/99~13/87であり、更に好ましくは1/99~10/90であり、また更に好ましくは1/99~7/93であり、より更に好ましくは3/97~7/93である。 The ratio of the polymer block (A) to the (meth) acrylic polymer block (B) in the block copolymer (P) (hereinafter, also referred to as “block ratio”) is the polymer block (A) / (meth). ) When represented by the acrylic polymer block (B), the mass ratio is preferably 1/99 to 20/80. When the block ratio is within the above range, the block copolymer having a polymer block (A) that can form a hard segment and can be a cross-linking point and a (meth) acrylic polymer block (B) that can be a soft segment can be used. It is possible to obtain a pressure-sensitive adhesive composition having excellent heat resistance and durability while keeping the viscosity of the pressure-sensitive adhesive composition low. Further, it is possible to form a pressure-sensitive adhesive layer having excellent followability to thermal expansion of the base material layer, and it is possible to obtain a pressure-sensitive adhesive layer that is unlikely to peel off or float from the molded body even under high temperature conditions. From this point of view, the block ratio is more preferably 1/99 to 13/87, still more preferably 1/99 to 10/90, still more preferably 1/99 to 7/93, and even more. It is preferably 3/97 to 7/93.
 ブロック共重合体(P)のMwは、十分な凝集力と良好な接着性とを発揮するようにする観点、及び粘着剤層の表層部分にビニル重合体(C)を十分に偏析させる観点から、200,000以上であることが好ましい。ブロック共重合体(P)のMwが200,000以上であると、十分な接着性を確保できるとともに、耐熱性を十分に高くでき、かつ温度変化に対する粘着剤層の浮きや剥がれを十分に抑制することができる。ブロック共重合体(P)のMwは、より好ましくは230,000以上であり、更に好ましくは250,000以上であり、より更に好ましくは260,000以上であり、特に好ましくは280,000以上である。 The Mw of the block copolymer (P) is from the viewpoint of exhibiting sufficient cohesive force and good adhesiveness, and from the viewpoint of sufficiently segregating the vinyl polymer (C) on the surface layer portion of the pressure-sensitive adhesive layer. , 200,000 or more is preferable. When the Mw of the block copolymer (P) is 200,000 or more, sufficient adhesiveness can be ensured, heat resistance can be sufficiently increased, and floating and peeling of the pressure-sensitive adhesive layer due to temperature changes are sufficiently suppressed. can do. The Mw of the block copolymer (P) is more preferably 230,000 or more, further preferably 250,000 or more, still more preferably 260,000 or more, and particularly preferably 280,000 or more. be.
 その一方で、Mwが大きすぎると、粘着剤組成物の粘度が高くなりすぎ、塗工性及び取扱い性の低下を招いたり、製造上の扱いが困難となったりすることがある。このため、ブロック共重合体(P)のMwは、700,000以下であることが好ましく、650,000以下であることがより好ましく、600,000以下であることが更に好ましく、550,000以下であることがより更に好ましい。ブロック共重合体(P)のMwの範囲は、好ましくは200,000以上700,000以下であり、より好ましくは230,000以上650,000以下であり、更に好ましくは250,000以上600,000以下である。 On the other hand, if Mw is too large, the viscosity of the pressure-sensitive adhesive composition becomes too high, which may lead to deterioration in coatability and handleability, or may make it difficult to handle in manufacturing. Therefore, the Mw of the block copolymer (P) is preferably 700,000 or less, more preferably 650,000 or less, further preferably 600,000 or less, and 550,000 or less. Is even more preferable. The range of Mw of the block copolymer (P) is preferably 200,000 or more and 700,000 or less, more preferably 230,000 or more and 650,000 or less, and further preferably 250,000 or more and 600,000 or less. It is as follows.
 ブロック共重合体(P)のMnは、良好な接着性及び十分な凝集力を示すようにする観点から、100,000以上が好ましく、120,000以上がより好ましく、130,000以上が更に好ましく、150,000以上がより更に好ましい。ブロック共重合体(P)のMnの上限については、製造しやすさやビニル重合体(C)との相溶性を良好にする観点から、500,000以下が好ましく、400,000以下がより好ましく、300,000以下が更に好ましく、200,000以下がより更に好ましい。ブロック共重合体(P)のMnの範囲は、好ましくは100,000以上500,000以下であり、より好ましくは120,000以上400,000以下である。 The Mn of the block copolymer (P) is preferably 100,000 or more, more preferably 120,000 or more, still more preferably 130,000 or more, from the viewpoint of exhibiting good adhesiveness and sufficient cohesive force. , 150,000 or more are even more preferable. The upper limit of Mn of the block copolymer (P) is preferably 500,000 or less, more preferably 400,000 or less, from the viewpoint of ease of production and good compatibility with the vinyl polymer (C). 300,000 or less is more preferable, and 200,000 or less is even more preferable. The range of Mn of the block copolymer (P) is preferably 100,000 or more and 500,000 or less, and more preferably 120,000 or more and 400,000 or less.
 ブロック共重合体(P)につき、MwとMnとの比で表される分子量分布(Mw/Mn)は、良好な接着強度が得られやすい点、及び粘着剤組成物の高粘度化を抑制する点から、4.5以下が好ましく、3.5以下がより好ましく、3.3以下が更に好ましく、3.0以下がより更に好ましく、2.8以下が特に好ましい。ブロック共重合体(P)のMw/Mnの下限は特に限定されず、1.0以上とすることができる。 For the block copolymer (P), the molecular weight distribution (Mw / Mn) expressed by the ratio of Mw and Mn makes it easy to obtain good adhesive strength and suppresses the increase in viscosity of the pressure-sensitive adhesive composition. From the point of view, 4.5 or less is preferable, 3.5 or less is more preferable, 3.3 or less is further preferable, 3.0 or less is further preferable, and 2.8 or less is particularly preferable. The lower limit of Mw / Mn of the block copolymer (P) is not particularly limited and may be 1.0 or more.
<ブロック共重合体(P)の製造方法>
 ブロック共重合体(P)は、重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)を有する重合体を得ることができる限り、製造方法に特段の制限を受けるものではなく、公知の製造方法により得ることができる。ブロック共重合体(P)の製造方法としては、例えば、リビングラジカル重合及びリビングアニオン重合等の各種制御重合法を利用する方法や、官能基を有する重合体同士をカップリングする方法等が挙げられる。これらの中でも、操作が簡便であり、広い範囲の単量体に適用できる点で、リビングラジカル重合法が好ましい。
<Manufacturing method of block copolymer (P)>
The block copolymer (P) is not particularly limited in the production method as long as a polymer having the polymer block (A) and the (meth) acrylic polymer block (B) can be obtained. It can be obtained by a known production method. Examples of the method for producing the block copolymer (P) include a method using various controlled polymerization methods such as living radical polymerization and living anionic polymerization, and a method of coupling polymers having functional groups with each other. .. Among these, the living radical polymerization method is preferable because it is easy to operate and can be applied to a wide range of monomers.
 リビングラジカル重合は、バッチプロセス、セミバッチプロセス、乾式連続重合プロセス、連続攪拌槽型プロセス(CSTR)等のいずれのプロセスを採用してもよい。また、重合形式は、溶剤を用いないバルク重合、溶剤系の溶液重合、水系の乳化重合、ミニエマルション重合又は懸濁重合等の各種態様に適用することができる。 For living radical polymerization, any process such as batch process, semi-batch process, dry continuous polymerization process, continuous stirring tank type process (CSPR) may be adopted. Further, the polymerization type can be applied to various aspects such as bulk polymerization using no solvent, solvent-based solution polymerization, aqueous emulsion polymerization, mini-emulsion polymerization or suspension polymerization.
 リビングラジカル重合法の種類についても特段の制限はなく、可逆的付加-開裂連鎖移動重合法(RAFT法)、ニトロキシラジカル法(NMP法)、原子移動ラジカル重合法(ATRP法)、有機テルル化合物を用いる重合法(TERP法)、有機アンチモン化合物を用いる重合法(SBRP法)、有機ビスマス化合物を用いる重合法(BIRP法)及びヨウ素移動重合法等の各種重合方法を採用することができる。これらの中でも、重合の制御性と実施の簡便さの観点から、RAFT法、NMP法及びATRP法が好ましい。 There are no particular restrictions on the type of living radical polymerization method, such as reversible addition-cleaving chain transfer polymerization method (RAFT method), nitroxy radical method (NMP method), atom transfer radical polymerization method (ATRP method), and organic tellurium compounds. Various polymerization methods such as a polymerization method using (TERP method), a polymerization method using an organic antimony compound (SBRP method), a polymerization method using an organic bismuth compound (BIRP method), and an iodine transfer polymerization method can be adopted. Among these, the RAFT method, the NMP method and the ATRP method are preferable from the viewpoint of controllability of polymerization and ease of implementation.
 RAFT法では、特定の重合制御剤(RAFT剤)及び一般的なフリーラジカル重合開始剤の存在下、可逆的な連鎖移動反応を介して制御された重合が進行する。RAFT剤としては、ジチオエステル化合物、ザンテート化合物、トリチオカーボネート化合物及びジチオカーバメート化合物等、公知の各種RAFT剤を使用することができる。RAFT剤としては、活性点を1箇所のみ有する1官能の化合物を用いてもよいし、2官能以上の化合物を用いてもよい。ブロック数が3個以上のブロック共重合体を効率的に得やすい点では、2官能型のRAFT剤を用いることが好ましい。RAFT剤の使用量は、用いる単量体及びRAFT剤の種類等により適宜調整される。 In the RAFT method, controlled polymerization proceeds via a reversible chain transfer reaction in the presence of a specific polymerization control agent (RAFT agent) and a general free radical polymerization initiator. As the RAFT agent, various known RAFT agents such as a dithioester compound, a zantate compound, a trithiocarbonate compound and a dithiocarbamate compound can be used. As the RAFT agent, a monofunctional compound having only one active site may be used, or a bifunctional or higher functional compound may be used. It is preferable to use a bifunctional RAFT agent from the viewpoint that it is easy to efficiently obtain a block copolymer having 3 or more blocks. The amount of the RAFT agent used is appropriately adjusted depending on the monomer used, the type of the RAFT agent, and the like.
 RAFT法による重合の際に用いる重合開始剤としては、アゾ化合物、有機過酸化物及び過硫酸塩等の公知のラジカル重合開始剤を使用することができるが、安全上取り扱い易く、ラジカル重合時の副反応が起こりにくい点からアゾ化合物が好ましい。アゾ化合物の具体例としては、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)等が挙げられる。重合開始剤としては、1種類のみ使用してもよく、2種以上を併用してもよい。また、重合開始剤の使用割合は特に制限されないが、重合反応を安定的に行うとともに分子量分布がより小さい重合体を得る点から、RAFT剤1モルに対し、重合開始剤の使用量を0.01モル以上0.5モル以下とすることが好ましく、0.01モル以上0.2モル以下とすることがより好ましい。 As the polymerization initiator used in the polymerization by the RAFT method, known radical polymerization initiators such as azo compounds, organic peroxides and persulfates can be used, but they are easy to handle for safety and are used during radical polymerization. Azo compounds are preferable because side reactions are unlikely to occur. Specific examples of the azo compound include 2,2'-azobis (isobutyronitrile), 2,2'-azobis (2,4-dimethylvaleronitrile), and 2,2'-azobis (4-methoxy-2, 4-Dimethylvaleronitrile), dimethyl-2,2'-azobis (2-methylpropionate), 2,2'-azobis (2-methylbutyronitrile), 1,1'-azobis (cyclohexane-1- Carbonitrile), 2,2'-azobis [N- (2-propenyl) -2-methylpropionamide], 2,2'-azobis (N-butyl-2-methylpropionamide) and the like. As the polymerization initiator, only one type may be used, or two or more types may be used in combination. The proportion of the polymerization initiator used is not particularly limited, but the amount of the polymerization initiator used is 0. 1 per mol of the RAFT agent from the viewpoint of stably performing the polymerization reaction and obtaining a polymer having a smaller molecular weight distribution. It is preferably 01 mol or more and 0.5 mol or less, and more preferably 0.01 mol or more and 0.2 mol or less.
 RAFT法による重合反応の際の反応温度は、好ましくは40℃以上100℃以下であり、より好ましくは45℃以上90℃以下であり、更に好ましくは50℃以上80℃以下である。反応温度が40℃以上であると、重合反応を円滑に進めることができる点で好ましい。また、反応温度が100℃以下であると、副反応を抑制できるとともに、使用できる開始剤や溶剤に関する制限が緩和される点で好ましい。 The reaction temperature during the polymerization reaction by the RAFT method is preferably 40 ° C. or higher and 100 ° C. or lower, more preferably 45 ° C. or higher and 90 ° C. or lower, and further preferably 50 ° C. or higher and 80 ° C. or lower. When the reaction temperature is 40 ° C. or higher, the polymerization reaction can proceed smoothly, which is preferable. Further, when the reaction temperature is 100 ° C. or lower, side reactions can be suppressed and restrictions on the initiators and solvents that can be used are relaxed, which is preferable.
 NMP法では、ニトロキシドを有する特定のアルコキシアミン化合物等をリビングラジカル重合開始剤として用い、リビングラジカル重合開始剤に由来するニトロキシドラジカルを介して重合を進行させる。ブロック共重合体(P)の製造において、ニトロキシドラジカルの種類に特に制限はなく、商業的に入手可能のニトロキシド系重合開始剤を用いることができる。アクリレートを含む単量体を重合する際の重合制御性の観点から、ニトロキシド化合物として下記式(2)で表される化合物を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式(2)中、Rは炭素数1~2のアルキル基又は水素原子であり、Rは炭素数1~2のアルキル基又はニトリル基であり、Rは-(CH)m-であり、mは0~2の整数であり、R及びRは、それぞれ独立に炭素数1~4のアルキル基である。式中の複数のRは、互いに同一でも異なっていてもよく、式中の複数のRは、互いに同一でも異なっていてもよい。)
In the NMP method, a specific alkoxyamine compound or the like having nitroxide is used as a living radical polymerization initiator, and the polymerization is allowed to proceed via the nitroxide radical derived from the living radical polymerization initiator. In the production of the block copolymer (P), the type of nitroxide radical is not particularly limited, and a commercially available nitroxide-based polymerization initiator can be used. From the viewpoint of polymerization controllability when polymerizing a monomer containing an acrylate, it is preferable to use a compound represented by the following formula (2) as the nitroxide compound.
Figure JPOXMLDOC01-appb-C000002
(In the formula (2), R 1 is an alkyl group or a hydrogen atom having 1 to 2 carbon atoms, R 2 is an alkyl group or a nitrile group having 1 to 2 carbon atoms, and R 3 is − (CH 2 ) m. -., m is an integer of 0 to 2, R 4 and R 5 are each independently an alkyl group having 1 to 4 carbon atoms plurality of R 4 in formula are be the same or different from each other at best, a plurality of R 5 in the formula may be the same or different from each other.)
 上記式(2)で表されるニトロキシド化合物は、70~80℃程度の加熱により一次解離し、ビニル系単量体と付加反応を起こす。この際、2個以上のビニル基を有するビニル系単量体にニトロキシド化合物を付加することにより多官能性の重合前駆体を得ることが可能である。次いで、上記重合前駆体を加熱下で二次解離することにより、ビニル系単量体をリビング重合することができる。この場合、重合前駆体は分子内に2以上の活性点を有するため、より分子量分布の狭い重合体を得ることができる。ブロック共重合体(P)を効率的に得やすい観点から、分子内に活性点を2つ有する2官能型の重合前駆体を用いることが好ましい。ニトロキシド化合物の使用量は、用いる単量体及びニトロキシド化合物の種類等により適宜調整される。 The nitroxide compound represented by the above formula (2) undergoes a primary dissociation by heating at about 70 to 80 ° C. and causes an addition reaction with a vinyl-based monomer. At this time, it is possible to obtain a polyfunctional polymerization precursor by adding a nitroxide compound to a vinyl-based monomer having two or more vinyl groups. Next, the vinyl-based monomer can be subjected to living polymerization by secondary dissociation of the polymerization precursor under heating. In this case, since the polymerization precursor has two or more active sites in the molecule, a polymer having a narrower molecular weight distribution can be obtained. From the viewpoint of efficiently obtaining the block copolymer (P), it is preferable to use a bifunctional polymerization precursor having two active sites in the molecule. The amount of the nitroxide compound used is appropriately adjusted depending on the monomer used, the type of the nitroxide compound, and the like.
 ブロック共重合体(P)をNMP法により製造する場合、上記式(2)で表されるニトロキシド化合物1モルに対し、下記式(3)で表されるニトロキシドラジカルを0.001~0.2モルの範囲で添加して重合を行ってもよい。
Figure JPOXMLDOC01-appb-C000003
(式(3)中、R及びRは、それぞれ独立に炭素数1~4のアルキル基である。式中の複数のRは互いに同一でも異なっていてもよく、式中の複数のRは互いに同一でも異なっていてもよい。)
When the block copolymer (P) is produced by the NMP method, 0.001 to 0.2 of the nitroxide radical represented by the following formula (3) is added to 1 mol of the nitroxide compound represented by the above formula (2). Polymerization may be carried out by adding in the range of moles.
Figure JPOXMLDOC01-appb-C000003
(In the formula (3), R 6 and R 7 are independently alkyl groups having 1 to 4 carbon atoms. A plurality of R 6s in the formula may be the same or different from each other , and a plurality of R 6 in the formula may be different from each other. R 7 may be the same or different from each other.)
 上記式(3)で表されるニトロキシドラジカルを0.001モル以上添加することにより、ニトロキシドラジカルの濃度が定常状態に達する時間を短縮することができる。これにより、重合をより高度に制御することが可能となり、より分子量分布の狭い重合体を得ることができる点で好ましい。一方、ニトロキシドラジカルの添加量が多すぎると重合が進行しない場合がある。ニトロキシド化合物1モルに対するニトロキシドラジカルのより好ましい添加量は、0.01~0.5モルの範囲であり、更に好ましい添加量は0.05~0.2モルの範囲である。 By adding 0.001 mol or more of the nitroxide radical represented by the above formula (3), the time for the concentration of the nitroxide radical to reach a steady state can be shortened. This is preferable in that the polymerization can be controlled to a higher degree and a polymer having a narrower molecular weight distribution can be obtained. On the other hand, if the amount of nitroxide radical added is too large, the polymerization may not proceed. A more preferable amount of the nitroxide radical added to 1 mol of the nitroxide compound is in the range of 0.01 to 0.5 mol, and a more preferable amount of addition is in the range of 0.05 to 0.2 mol.
 NMP法における反応温度は、好ましくは50℃以上140℃以下であり、より好ましくは60℃以上130℃以下であり、更に好ましくは70℃以上120℃以下である。反応温度が50℃以上であれば、重合反応を円滑に進めることができる。一方、反応温度が140℃以下であれば、ラジカル連鎖移動等の副反応が抑制される傾向がある。 The reaction temperature in the NMP method is preferably 50 ° C. or higher and 140 ° C. or lower, more preferably 60 ° C. or higher and 130 ° C. or lower, and further preferably 70 ° C. or higher and 120 ° C. or lower. When the reaction temperature is 50 ° C. or higher, the polymerization reaction can proceed smoothly. On the other hand, if the reaction temperature is 140 ° C. or lower, side reactions such as radical chain transfer tend to be suppressed.
 ATRP法では、一般に有機ハロゲン化物を開始剤とし、触媒に遷移金属錯体を用いて重合反応が行われる。開始剤である有機ハロゲン化物は、1官能性の化合物であってもよいし、2官能以上の化合物であってもよい。ブロック共重合体(P)を効率的に得やすい点では、2官能性の化合物を用いることが好ましい。ハロゲンの種類としては、臭化物及び塩化物が好ましい。ATRP法における反応温度は、好ましくは20℃以上200℃以下であり、より好ましくは50℃以上150℃以下である。反応温度を20℃以上とすると、重合反応を円滑に進めることができる点で好ましい。 In the ATRP method, an organic halide is generally used as an initiator, and a transition metal complex is used as a catalyst to carry out a polymerization reaction. The organic halide used as an initiator may be a monofunctional compound or a bifunctional or higher functional compound. It is preferable to use a bifunctional compound in that the block copolymer (P) can be easily obtained efficiently. As the type of halogen, bromide and chloride are preferable. The reaction temperature in the ATRP method is preferably 20 ° C. or higher and 200 ° C. or lower, and more preferably 50 ° C. or higher and 150 ° C. or lower. When the reaction temperature is 20 ° C. or higher, the polymerization reaction can proceed smoothly, which is preferable.
 リビングラジカル重合法により重合体ブロック(A)/(メタ)アクリル系重合体ブロック(B)/重合体ブロック(A)からなるABAトリブロック共重合体を得る場合、各ブロックを順次重合することにより目的とするブロック共重合体を得てもよい。この場合、まず、第1重合工程として、重合体ブロック(A)の構成単量体を重合して重合体ブロック(A)を得る。次いで、第2重合工程として、(メタ)アクリル系重合体ブロック(B)の構成単量体を重合して(メタ)アクリル系重合体ブロック(B)を得る。さらに、第3重合工程として、重合体ブロック(A)の構成単量体を重合する。これにより、(ABA)型のトリブロック共重合体を得ることができる。重合開始剤としては、上記した1官能性の重合開始剤又は重合前駆体を用いることが好ましい。 When an ABA triblock copolymer composed of a polymer block (A) / (meth) acrylic polymer block (B) / polymer block (A) is obtained by the living radical polymerization method, each block is sequentially polymerized. You may obtain the block copolymer of interest. In this case, first, as the first polymerization step, the constituent monomers of the polymer block (A) are polymerized to obtain the polymer block (A). Next, as a second polymerization step, the constituent monomers of the (meth) acrylic polymer block (B) are polymerized to obtain a (meth) acrylic polymer block (B). Further, as a third polymerization step, the constituent monomers of the polymer block (A) are polymerized. Thereby, (ABA) type triblock copolymer can be obtained. As the polymerization initiator, it is preferable to use the above-mentioned monofunctional polymerization initiator or polymerization precursor.
 また、2官能性の重合開始剤又は重合前駆体を用いて以下に示す2段階の重合工程によりABAトリブロック共重合体を製造した場合には、より効率的に目的物を得ることができる。まず、第1重合工程として、重合体ブロック(A)の構成単量体を重合して重合体ブロック(A)を得た後、第2重合工程として、(メタ)アクリル系重合体ブロック(B)の構成単量体を重合する。これにより、(ABA)型のトリブロック共重合体を得ることができる。この方法によれば、各ブロックを順次重合して製造する場合と比較して工程を簡略化することができる。 Further, when an ABA triblock copolymer is produced by a two-step polymerization step shown below using a bifunctional polymerization initiator or a polymerization precursor, the desired product can be obtained more efficiently. First, as a first polymerization step, the constituent monomers of the polymer block (A) are polymerized to obtain a polymer block (A), and then as a second polymerization step, a (meth) acrylic polymer block (B). ) Is polymerized. Thereby, (ABA) type triblock copolymer can be obtained. According to this method, the process can be simplified as compared with the case where each block is sequentially polymerized and manufactured.
 ブロック共重合体(P)の重合は、必要に応じて連鎖移動剤の存在下で実施してもよい。連鎖移動剤としては公知のものを使用することができる。具体的には、エタンチオール、1-プロパンチオール、2-プロパンチオール、1-ブタンチオール、2-ブタンチオール、1-ヘキサンチオール、2-ヘキサンチオール、2-ブチルブタン-1-チオール、1,1-ジメチル-1-ペンタンチオール、1-ドデカンチオール、tert-テトラデカンチオール、1-ヘキサデカンチオール及び1-オクタデカンチオール等の炭素数2~20のアルキル基を有するアルキルチオール化合物の他、メルカプト酢酸、メルカプトプロピオン酸、2-メルカプトエタノール等が挙げられる。連鎖移動剤としては、これらのうちの1種又は2種以上を用いることができる。 The block copolymer (P) may be polymerized in the presence of a chain transfer agent, if necessary. As the chain transfer agent, known ones can be used. Specifically, ethanethiol, 1-propanethiol, 2-propanethiol, 1-butanethiol, 2-butanethiol, 1-hexanethiol, 2-hexanethiol, 2-butylbutane-1-thiol, 1,1- In addition to alkylthiol compounds having an alkyl group having 2 to 20 carbon atoms such as dimethyl-1-pentanethiol, 1-dodecanethiol, tert-tetradecanethiol, 1-hexadecanethiol and 1-octadecanethiol, mercaptoacetic acid and mercaptopropionic acid. , 2-Mercaptoethanol and the like. As the chain transfer agent, one or more of these can be used.
 ブロック共重合体(P)の製造に際しては、リビングラジカル重合において公知の重合溶媒を用いることができる。具体的には、ベンゼン、トルエン、キシレン及びアニソール等の芳香族化合物;酢酸メチル、酢酸エチル、酢酸プロピル及び酢酸ブチル等のエステル化合物;アセトン及びメチルエチルケトン等のケトン化合物;ジメチルホルムアミド、アセトニトリル、ジメチルスルホキシド、アルコール、水等が挙げられる。また、重合溶媒を使用せず、塊状重合等の態様で行ってもよい。 In the production of the block copolymer (P), a known polymerization solvent can be used in living radical polymerization. Specifically, aromatic compounds such as benzene, toluene, xylene and anisole; ester compounds such as methyl acetate, ethyl acetate, propyl acetate and butyl acetate; ketone compounds such as acetone and methyl ethyl ketone; dimethylformamide, acetonitrile, dimethylsulfoxide, Examples include alcohol and water. Further, it may be carried out in the form of bulk polymerization or the like without using a polymerization solvent.
<ビニル重合体(C)>
 ビニル重合体(C)は、30℃以上200℃以下のガラス転移温度(Tg)を有する重合体である。ビニル重合体(C)のTgが30℃未満であると、本粘着剤組成物により粘着剤層を形成した場合に、粘着剤層の表層部分のTgが十分に高くなりにくく、高温条件下での接着強度及び耐熱性を十分に確保できない。一方、原料単量体の制約等から、ビニル重合体(C)のTgは一般に200℃以下である。ビニル重合体(C)のTgは、好ましくは40℃以上であり、より好ましくは50℃以上であり、更に好ましくは60℃以上であり、より更に好ましくは70℃以上であり、特に好ましくは80℃以上である。Tgの上限については、好ましくは150℃以下であり、より好ましくは140℃以下であり、更に好ましくは130℃以下であり、より更に好ましくは120℃以下である。ビニル重合体(C)のTgの範囲は、好ましくは40℃以上150℃以下であり、より好ましくは40℃以上140℃以下であり、更に好ましくは50℃以上130℃以下であり、より更に好ましくは60℃以上120℃以下である。
<Vinyl polymer (C)>
The vinyl polymer (C) is a polymer having a glass transition temperature (Tg) of 30 ° C. or higher and 200 ° C. or lower. When the Tg of the vinyl polymer (C) is less than 30 ° C., when the pressure-sensitive adhesive layer is formed by the present pressure-sensitive adhesive composition, the Tg of the surface layer portion of the pressure-sensitive adhesive layer is unlikely to be sufficiently high, and under high temperature conditions. Adhesive strength and heat resistance cannot be sufficiently ensured. On the other hand, the Tg of the vinyl polymer (C) is generally 200 ° C. or lower due to restrictions on the raw material monomer and the like. The Tg of the vinyl polymer (C) is preferably 40 ° C. or higher, more preferably 50 ° C. or higher, still more preferably 60 ° C. or higher, still more preferably 70 ° C. or higher, and particularly preferably 80 ° C. or higher. It is above ℃. The upper limit of Tg is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, still more preferably 130 ° C. or lower, and even more preferably 120 ° C. or lower. The range of Tg of the vinyl polymer (C) is preferably 40 ° C. or higher and 150 ° C. or lower, more preferably 40 ° C. or higher and 140 ° C. or lower, still more preferably 50 ° C. or higher and 130 ° C. or lower, and even more preferably. Is 60 ° C. or higher and 120 ° C. or lower.
 ビニル重合体(C)を構成する単量体としては、ラジカル重合性を有する種々のビニル単量体を使用することができる。当該ビニル単量体としては、例えば、(メタ)アクリル酸の炭化水素系エステル化合物、芳香族ビニル化合物、不飽和カルボン酸、不飽和酸無水物、ヒドロキシ基含有不飽和化合物、アミノ基含有不飽和化合物、アミド基含有不飽和化合物、アルコキシ基含有不飽和化合物、ニトリル基含有不飽和化合物、マレイミド系化合物等が挙げられる。これらの化合物は単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 As the monomer constituting the vinyl polymer (C), various vinyl monomers having radical polymerizable properties can be used. Examples of the vinyl monomer include a hydrocarbon ester compound of (meth) acrylic acid, an aromatic vinyl compound, an unsaturated carboxylic acid, an unsaturated acid anhydride, a hydroxy group-containing unsaturated compound, and an amino group-containing unsaturated compound. Examples thereof include compounds, amide group-containing unsaturated compounds, alkoxy group-containing unsaturated compounds, nitrile group-containing unsaturated compounds, and maleimide-based compounds. These compounds may be used alone or in combination of two or more.
 (メタ)アクリル酸の炭化水素系エステル化合物としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸エチルヘキシル、(メタ)アクリル酸n-ドデシル、(メタ)アクリル酸n-オクタデシル等の(メタ)アクリル酸アルキル化合物;(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸tert-ブチルシクロヘキシル、(メタ)アクリル酸シクロドデシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンタニル等の(メタ)アクリル酸の脂肪族環式エステル化合物;(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸の芳香族エステル化合物が挙げられる。 Examples of the hydrocarbon ester compound of (meth) acrylic acid include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, n-propyl (meth) acrylic acid, isopropyl (meth) acrylic acid, and (meth) acrylic acid. n-butyl, isobutyl (meth) acrylate, tert-butyl (meth) acrylate, amyl (meth) acrylate, n-hexyl (meth) acrylate, n-octyl (meth) acrylate, (meth) acrylate Alkyl (meth) acrylate compounds such as ethylhexyl, n-dodecyl (meth) acrylate, n-octadecyl (meth) acrylate; cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, tert (meth) acrylate. -(Meta) acrylics such as butylcyclohexyl, cyclododecyl (meth) acrylate, isobornyl (meth) acrylate, adamantyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, etc. An aliphatic cyclic ester compound of an acid; an aromatic ester compound of (meth) acrylic acid such as phenyl (meth) acrylic acid and benzyl (meth) acrylic acid can be mentioned.
 アミノ基含有不飽和化合物としては、例えば、(メタ)アクリル酸ジメチルアミノメチル、(メタ)アクリル酸ジエチルアミノメチル、(メタ)アクリル酸2-ジメチルアミノエチル、(メタ)アクリル酸2-ジエチルアミノエチル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)エチル、(メタ)アクリル酸2-ジメチルアミノプロピル、(メタ)アクリル酸2-ジエチルアミノプロピル、(メタ)アクリル酸2-(ジ-n-プロピルアミノ)プロピル、(メタ)アクリル酸3-ジメチルアミノプロピル、(メタ)アクリル酸3-ジエチルアミノプロピル、(メタ)アクリル酸3-(ジ-n-プロピルアミノ)プロピル等が挙げられる。 Examples of the amino group-containing unsaturated compound include dimethylaminomethyl (meth) acrylate, diethylaminomethyl (meth) acrylate, 2-dimethylaminoethyl (meth) acrylate, and 2-diethylaminoethyl (meth) acrylate, (. 2- (Di-n-propylamino) ethyl (meth) acrylate, 2-dimethylaminopropyl (meth) acrylate, 2-diethylaminopropyl (meth) acrylate, 2- (di-n-propyl) (meth) acrylate Examples thereof include amino) propyl, 3-dimethylaminopropyl (meth) acrylate, 3-diethylaminopropyl (meth) acrylate, and 3- (di-n-propylamino) propyl (meth) acrylate.
 アミド基含有不飽和化合物としては、例えば、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド等が挙げられる。アルコキシ基含有不飽和化合物としては、例えば、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-(n-プロポキシ)エチル、(メタ)アクリル酸2-(n-ブトキシ)エチル、(メタ)アクリル酸3-メトキシプロピル、(メタ)アクリル酸3-エトキシプロピル、(メタ)アクリル酸2-(n-プロポキシ)プロピル、(メタ)アクリル酸2-(n-ブトキシ)プロピル等が挙げられる。 Examples of the amide group-containing unsaturated compound include (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N-methylol (meth) acrylamide and the like. Examples of the alkoxy group-containing unsaturated compound include (meth) acrylic acid 2-methoxyethyl, (meth) acrylic acid 2-ethoxyethyl, (meth) acrylic acid 2- (n-propoxy) ethyl, and (meth) acrylic acid. 2- (n-Butoxy) ethyl, (meth) acrylate 3-methoxypropyl, (meth) acrylate 3-ethoxypropyl, (meth) acrylate 2- (n-propoxy) propyl, (meth) acrylate 2- Examples thereof include (n-butoxy) propyl and the like.
 ニトリル基含有不飽和化合物としては、例えば、(メタ)アクリル酸シアノメチル、(メタ)アクリル酸1-シアノエチル、(メタ)アクリル酸2-シアノエチル、(メタ)アクリル酸1-シアノプロピル、(メタ)アクリル酸2-シアノプロピル、(メタ)アクリル酸3-シアノプロピル、(メタ)アクリル酸4-シアノブチル、(メタ)アクリル酸6-シアノヘキシル、(メタ)アクリル酸2-エチル-6-シアノヘキシル、(メタ)アクリル酸8-シアノオクチル、(メタ)アクリロニトリル、α-エチルアクリロニトリル、α-イソプロピルアクリロニトリル、α-クロロアクリロニトリル、α-フルオロアクリロニトリル等が挙げられる。 Examples of the nitrile group-containing unsaturated compound include cyanomethyl (meth) acrylate, 1-cyanoethyl (meth) acrylate, 2-cyanoethyl (meth) acrylate, 1-cyanopropyl (meth) acrylate, and (meth) acrylic. 2-cyanopropyl acid, 3-cyanopropyl (meth) acrylic acid, 4-cyanobutyl (meth) acrylic acid, 6-cyanohexyl (meth) acrylic acid, 2-ethyl-6-cyanohexyl (meth) acrylic acid, ( Examples thereof include 8-cyanooctyl acrylate, (meth) acrylonitrile, α-ethylacrylonitrile, α-isopropylacrylonitrile, α-chloroacrylonitrile, and α-fluoroacrylonitrile.
 芳香族ビニル化合物、不飽和カルボン酸、不飽和酸無水物、ヒドロキシ基含有不飽和化合物及びマレイミド系化合物については、ブロック共重合体(P)の説明で例示した化合物を例示できる。また、ビニル重合体(C)の製造では、上記化合物以外に、不飽和ジカルボン酸のジアルキルエステル、ビニルエステル化合物、ビニルエーテル化合物等を用いることもできる。 As for the aromatic vinyl compound, unsaturated carboxylic acid, unsaturated acid anhydride, hydroxy group-containing unsaturated compound and maleimide-based compound, the compounds exemplified in the description of the block copolymer (P) can be exemplified. Further, in the production of the vinyl polymer (C), in addition to the above compounds, unsaturated dicarboxylic acid dialkyl esters, vinyl ester compounds, vinyl ether compounds and the like can also be used.
 これらの中でも、ブロック共重合体(P)に対する適切な相溶性を有する点で、ビニル重合体(C)は、(メタ)アクリル酸の炭化水素系エステル化合物に由来する構造単位を含む重合体であることが好ましい。ビニル重合体(C)において、(メタ)アクリル酸の炭化水素系エステル化合物に由来する構造単位の含有量は、ビニル重合体(C)が有する全単量体単位に対して、30質量%以上100質量%以下の範囲が好ましい。(メタ)アクリル酸の炭化水素系エステル化合物に由来する構造単位の含有量は、ビニル重合体(C)の全単量体単位に対して、より好ましくは50質量%以上であり、更に好ましくは70質量%以上であり、より更に好ましくは80質量%以上である。 Among these, the vinyl polymer (C) is a polymer containing a structural unit derived from a hydrocarbon-based ester compound of (meth) acrylic acid in that it has appropriate compatibility with the block copolymer (P). It is preferable to have. In the vinyl polymer (C), the content of the structural unit derived from the hydrocarbon-based ester compound of (meth) acrylic acid is 30% by mass or more with respect to the total monomer unit of the vinyl polymer (C). A range of 100% by mass or less is preferable. The content of the structural unit derived from the hydrocarbon-based ester compound of (meth) acrylic acid is more preferably 50% by mass or more, still more preferably 50% by mass, based on all the monomer units of the vinyl polymer (C). It is 70% by mass or more, and more preferably 80% by mass or more.
 ビニル重合体(C)の製造に際しては、Tgを比較的高くでき、高温条件下での接着強度を高くできる点で、(メタ)アクリル酸の脂肪族環式エステル化合物を用いることが好ましい。ビニル重合体(C)において、(メタ)アクリル酸の脂肪族環式エステル化合物に由来する構造単位の含有量は、ビニル重合体(C)が有する全単量体単位に対して、1質量%以上が好ましく、5質量%以上がより好ましく、10質量%以上が更に好ましく、15質量%以上がより更に好ましい。(メタ)アクリル酸の脂肪族環式エステル化合物に由来する構造単位の含有量の上限については、ビニル重合体(C)が有する全単量体単位に対して、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下が更に好ましい。当該構造単位の含有量の範囲は、1質量%以上90質量%以下が好ましく、5質量%以上80質量%以下がより好ましく、10質量%以上70質量%以下が更に好ましい。 In the production of the vinyl polymer (C), it is preferable to use an aliphatic cyclic ester compound of (meth) acrylic acid because Tg can be relatively high and the adhesive strength under high temperature conditions can be high. In the vinyl polymer (C), the content of the structural unit derived from the aliphatic cyclic ester compound of (meth) acrylic acid is 1% by mass with respect to all the monomer units of the vinyl polymer (C). The above is preferable, 5% by mass or more is more preferable, 10% by mass or more is further preferable, and 15% by mass or more is further preferable. The upper limit of the content of the structural unit derived from the aliphatic cyclic ester compound of (meth) acrylic acid is preferably 90% by mass or less, preferably 80% by mass or less, based on all the monomer units of the vinyl polymer (C). It is more preferably mass% or less, and further preferably 70% by mass or less. The content range of the structural unit is preferably 1% by mass or more and 90% by mass or less, more preferably 5% by mass or more and 80% by mass or less, and further preferably 10% by mass or more and 70% by mass or less.
 (メタ)アクリル酸の脂肪族環式エステル化合物としては、これらの中でも、Tgを高く設定でき、粘着剤層を形成した際にビニル重合体(C)が表面に偏析しやすく、良好な耐熱性能を得ることができる点で、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸シクロヘキシル及び(メタ)アクリル酸アダマンチルよりなる群から選択される少なくとも1種を好ましく使用でき、その中でも(メタ)アクリル酸イソボルニルをより好ましく使用することができる。 Among these, as the aliphatic cyclic ester compound of (meth) acrylic acid, Tg can be set high, and the vinyl polymer (C) is easily segregated on the surface when the pressure-sensitive adhesive layer is formed, and has good heat resistance. At least one selected from the group consisting of isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, cyclohexyl (meth) acrylate and adamantyl (meth) acrylate is preferable in that It can be used, and among them, isobornyl (meth) acrylate can be more preferably used.
 ビニル重合体(C)のMnは、500以上10,000以下である。Mnが10,000を超えると、粘着剤層中においてビニル重合体(C)の偏析が十分でなく高温条件下での接着性及び耐熱性が低下したり、ブロック共重合体(P)との相溶性が低下したりする。また、Mnが500未満の重合体を製造するには、重合開始剤や連鎖移動剤を多量に用いる必要があり、生産性の低下が懸念される。ビニル重合体(C)のMnは、好ましくは1,000以上であり、より好ましくは1,500以上であり、更に好ましくは2,000以上である。ビニル重合体(C)のMnの上限については、好ましくは9,500以下であり、より好ましくは9,000以下であり、更に好ましくは7,000以下であり、より更に好ましくは5,000以下である。また、ビニル重合体(C)のMnの範囲は、好ましくは1,000以上9,500以下であり、より好ましくは1,000以上9,000以下であり、更に好ましくは1,500以上7,000以下であり、より更に好ましくは1,500以上5,000以下である。 The Mn of the vinyl polymer (C) is 500 or more and 10,000 or less. When Mn exceeds 10,000, segregation of the vinyl polymer (C) is not sufficient in the pressure-sensitive adhesive layer, and the adhesiveness and heat resistance under high temperature conditions are lowered, or the vinyl polymer (P) is combined with the block copolymer (P). Compatibility is reduced. Further, in order to produce a polymer having a Mn of less than 500, it is necessary to use a large amount of a polymerization initiator and a chain transfer agent, and there is a concern that productivity may decrease. The Mn of the vinyl polymer (C) is preferably 1,000 or more, more preferably 1,500 or more, still more preferably 2,000 or more. The upper limit of Mn of the vinyl polymer (C) is preferably 9,500 or less, more preferably 9,000 or less, still more preferably 7,000 or less, still more preferably 5,000 or less. Is. The range of Mn of the vinyl polymer (C) is preferably 1,000 or more and 9,500 or less, more preferably 1,000 or more and 9,000 or less, and further preferably 1,500 or more and 7, It is 000 or less, and more preferably 1,500 or more and 5,000 or less.
 ビニル重合体(C)において、MwとMnとの比で表される分子量分布(Mw/Mn)は、良好な接着強度が得られやすい点で、3.0以下が好ましい。Mw/Mnは、より好ましくは2.5以下であり、更に好ましくは2.0以下である。ビニル重合体(C)のMw/Mnの下限は特に限定されず、1.0以上である。 In the vinyl polymer (C), the molecular weight distribution (Mw / Mn) represented by the ratio of Mw and Mn is preferably 3.0 or less in that good adhesive strength can be easily obtained. Mw / Mn is more preferably 2.5 or less, still more preferably 2.0 or less. The lower limit of Mw / Mn of the vinyl polymer (C) is not particularly limited and is 1.0 or more.
 ビニル重合体(C)は、ブロック共重合体(P)と相分離する性質を有しているとよい。かかる性質を有することで、本粘着剤組成物を用いて形成された粘着剤層においてビニル重合体(C)が表層部分に偏析しやすくなり、粘着剤組成物を比較的低粘度とした場合にも、耐熱性及び温度変化に対する耐久性の高い粘着剤層を形成できる点で好適である。なお、上述したように、公知の溶解性パラメータであるSP値の算出方法(例えばFedors法)により計算したビニル重合体(C)のSP値をブロック共重合体(P)のSP値と比較したときの差分ΔSP(絶対値)が適度に大きくなるように調整することにより、ブロック共重合体(P)と相分離するビニル重合体(C)を設計することができる。 It is preferable that the vinyl polymer (C) has a property of phase separation from the block copolymer (P). Having such a property makes it easy for the vinyl polymer (C) to segregate on the surface layer portion in the pressure-sensitive adhesive layer formed by using the present pressure-sensitive adhesive composition, and when the pressure-sensitive adhesive composition has a relatively low viscosity. Is also suitable in that it can form a pressure-sensitive adhesive layer having high heat resistance and durability against temperature changes. As described above, the SP value of the vinyl polymer (C) calculated by the method for calculating the SP value, which is a known solubility parameter (for example, the Fedors method), was compared with the SP value of the block copolymer (P). The vinyl polymer (C) phase-separated from the block copolymer (P) can be designed by adjusting the difference ΔSP (absolute value) to be appropriately large.
 ビニル重合体(C)は、例えば、溶液重合法、懸濁重合法、乳化重合法、塊状重合等の公知のラジカル重合方法を採用して、上記単量体を重合することにより得ることができる。溶液重合法による場合、例えば、有機溶剤及び単量体を反応器に仕込み、重合開始剤を添加して、50~300℃に加熱して共重合することにより、目的とするビニル重合体(C)を得ることができる。単量体を含む各原料の仕込み方法は、全ての原料を一括して仕込むバッチ式の初期一括仕込みでもよく、少なくとも一部の原料を連続的に反応器中に供給するセミ連続仕込みでもよく、全原料を連続供給し、同時に反応器から連続的に生成樹脂を抜き出す連続重合方式でもよい。粘着剤組成物の調製の際には、有機溶剤に溶解された重合体溶液としてビニル重合体(C)を用いてもよいし、加熱減圧処理等により有機溶剤を留去して用いてもよい。 The vinyl polymer (C) can be obtained by polymerizing the above-mentioned monomer by adopting a known radical polymerization method such as a solution polymerization method, a suspension polymerization method, an emulsion polymerization method and a bulk polymerization method. .. In the case of the solution polymerization method, for example, an organic solvent and a monomer are charged in a reactor, a polymerization initiator is added, and the mixture is heated to 50 to 300 ° C. for copolymerization to obtain a target vinyl polymer (C). ) Can be obtained. The method for charging each raw material containing a monomer may be a batch-type initial batch charging in which all raw materials are collectively charged, or a semi-continuous charging method in which at least a part of the raw materials is continuously supplied into the reactor. A continuous polymerization method may be used in which all the raw materials are continuously supplied and the produced resin is continuously extracted from the reactor at the same time. When preparing the pressure-sensitive adhesive composition, the vinyl polymer (C) may be used as the polymer solution dissolved in the organic solvent, or the organic solvent may be distilled off by heat reduction treatment or the like. ..
 溶液重合法に使用する有機溶剤としては、有機炭化水素系化合物が適当である。有機炭化水素系化合物としては、テトラヒドロフラン及びジオキサン等の環状エーテル類、ベンゼン、トルエン及びキシレン等の芳香族炭化水素化合物、酢酸エチル及び酢酸ブチル等のエステル類、アセトン、メチルエチルケトン及びシクロヘキサノン等のケトン類等、オルトギ酸メチル、オルト酢酸メチル、メタノール、エタノール、イソプロパノール等のアルコール類を例示することができる。有機溶剤としては、これらの1種又は2種以上を用いることができる。有機溶剤の使用量は、重合に使用する単量体の合計量が、有機溶剤と単量体との合計量に対して、例えば1~50質量%となる量である。 An organic hydrocarbon compound is suitable as the organic solvent used in the solution polymerization method. Examples of the organic hydrocarbon compound include cyclic ethers such as tetrahydrofuran and dioxane, aromatic hydrocarbon compounds such as benzene, toluene and xylene, esters such as ethyl acetate and butyl acetate, and ketones such as acetone, methyl ethyl ketone and cyclohexanone. , Methyl orthostate, methyl orthoacetate, methanol, ethanol, isopropanol and other alcohols can be exemplified. As the organic solvent, one or more of these can be used. The amount of the organic solvent used is such that the total amount of the monomers used for the polymerization is, for example, 1 to 50% by mass with respect to the total amount of the organic solvent and the monomer.
 重合開始剤としては、アゾ化合物、有機過酸化物、無機過酸化物等の公知のラジカル重合開始剤を用いることができ、特に限定されるものではない。また、重合開始剤としては、公知の酸化剤及び還元剤からなるレドックス型重合開始剤を用いてもよい。また更に、重合開始剤と共に、公知の連鎖移動剤を併用することもできる。これらのうち、重合開始剤としてはアゾ化合物を好ましく用いることができる。なお、アゾ化合物の具体例としては、ブロック共重合体(P)の製造に使用してもよいアゾ化合物として例示した化合物が挙げられる。ビニル重合体(C)の製造に際し、重合開始剤の使用量は、重合に使用する全単量体100質量部に対して、例えば0.01~20質量部である。 As the polymerization initiator, known radical polymerization initiators such as azo compounds, organic peroxides, and inorganic peroxides can be used, and are not particularly limited. Further, as the polymerization initiator, a redox-type polymerization initiator composed of a known oxidizing agent and reducing agent may be used. Furthermore, a known chain transfer agent can be used in combination with the polymerization initiator. Of these, an azo compound can be preferably used as the polymerization initiator. Specific examples of the azo compound include compounds exemplified as azo compounds that may be used in the production of the block copolymer (P). In the production of the vinyl polymer (C), the amount of the polymerization initiator used is, for example, 0.01 to 20 parts by mass with respect to 100 parts by mass of all the monomers used for the polymerization.
 本粘着剤組成物は、ビニル重合体(C)を、固形分換算で、ブロック共重合体(P)100質量部に対して、0.5質量部以上60質量部以下の範囲で含有する。ビニル重合体(C)の含有量が0.5質量部未満であると、粘着剤層の表層部分のビニル重合体(C)が少なく、高温条件下での接着強度が低下する。また、ビニル重合体(C)の含有量が60質量部を超えると、粘着剤層の柔軟性が低下して、硬くて脆くなり、接着性が低下したり、更には透明性が低下したりするおそれがある。こうした観点から、ビニル重合体(C)の含有量の下限は、ブロック共重合体(P)100質量部に対して、好ましくは1質量部以上であり、より好ましくは1.5質量部以上であり、更に好ましくは2質量部以上である。ビニル重合体(C)の含有量の上限は、ブロック共重合体(P)100質量部に対して、好ましくは40質量部以下であり、より好ましくは30質量部以下であり、更に好ましくは25質量部以下であり、より更に好ましくは15質量部以下である。 The present pressure-sensitive adhesive composition contains the vinyl polymer (C) in a range of 0.5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the block copolymer (P) in terms of solid content. When the content of the vinyl polymer (C) is less than 0.5 parts by mass, the amount of the vinyl polymer (C) on the surface layer portion of the pressure-sensitive adhesive layer is small, and the adhesive strength under high temperature conditions is lowered. Further, when the content of the vinyl polymer (C) exceeds 60 parts by mass, the flexibility of the pressure-sensitive adhesive layer is lowered, the pressure-sensitive adhesive layer becomes hard and brittle, the adhesiveness is lowered, and the transparency is lowered. There is a risk of doing so. From this point of view, the lower limit of the content of the vinyl polymer (C) is preferably 1 part by mass or more, more preferably 1.5 parts by mass or more with respect to 100 parts by mass of the block copolymer (P). Yes, more preferably 2 parts by mass or more. The upper limit of the content of the vinyl polymer (C) is preferably 40 parts by mass or less, more preferably 30 parts by mass or less, and further preferably 25 parts by mass with respect to 100 parts by mass of the block copolymer (P). It is not less than parts by mass, and more preferably 15 parts by mass or less.
 また、ビニル重合体(C)の含有量の範囲は、ブロック共重合体(P)100質量部に対して、好ましくは0.5質量部以上40質量部以下であり、より好ましくは0.5質量部以上30質量部以下であり、更に好ましくは0.5質量部以上25質量部以下であり、より更に好ましくは1質量部以上25質量部以下である。 The content range of the vinyl polymer (C) is preferably 0.5 parts by mass or more and 40 parts by mass or less, more preferably 0.5 parts by mass, based on 100 parts by mass of the block copolymer (P). It is 5 parts by mass or more and 30 parts by mass or less, more preferably 0.5 parts by mass or more and 25 parts by mass or less, and further preferably 1 part by mass or more and 25 parts by mass or less.
<その他の成分>
 本粘着剤組成物は、ブロック共重合体(P)及びビニル重合体(C)のみを含有していてもよいが、必要に応じて、ブロック共重合体(P)及びビニル重合体(C)以外の重合体や添加剤等の成分(以下、「その他の成分」ともいう)を含有していてもよい。以下に、本粘着剤組成物に配合されてもよいその他の成分について説明する。
<Other ingredients>
The present pressure-sensitive adhesive composition may contain only the block copolymer (P) and the vinyl polymer (C), but if necessary, the block copolymer (P) and the vinyl polymer (C). It may contain components such as polymers and additives other than the above (hereinafter, also referred to as “other components”). Hereinafter, other components that may be blended in the pressure-sensitive adhesive composition will be described.
(架橋剤)
 ブロック共重合体(P)が架橋性官能基を有する場合、当該架橋性官能基と反応可能な架橋剤を粘着剤組成物に配合することにより、高温条件下での接着性、耐熱性及び温度変化に対する耐久性を更に向上させることができる点で好ましい。
(Crosslinking agent)
When the block copolymer (P) has a crosslinkable functional group, the adhesiveness, heat resistance and temperature under high temperature conditions can be obtained by blending a crosslinking agent capable of reacting with the crosslinkable functional group into the pressure-sensitive adhesive composition. It is preferable in that the durability against changes can be further improved.
 架橋剤(硬化剤)としては、グリシジル基を2つ以上有するグリシジル化合物、イソシアネート基を2つ以上有するイソシアネート化合物、アジリジニル基を2つ以上有するアジリジン化合物、オキサゾリン基を有するオキサゾリン化合物、金属キレート化合物、ブチル化メラミン化合物等が挙げられる。これらの中でも、高温条件下における粘着物性に優れる点でイソシアネート化合物が好ましい。 Examples of the cross-linking agent (hardener) include a glycidyl compound having two or more glycidyl groups, an isocyanate compound having two or more isocyanate groups, an aziridine compound having two or more aziridinyl groups, an oxazoline compound having an oxazoline group, and a metal chelate compound. Examples thereof include a butylated melamine compound. Among these, isocyanate compounds are preferable because they have excellent adhesive properties under high temperature conditions.
 架橋剤の具体例として、グリシジル化合物としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、テトラグリシジルキシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、トリメチロールプロパンポリグリシジルエーテル等の多官能グリシジル化合物が挙げられる。
イソシアネート化合物としては、ジフェニルメタンジイソシアネート(MDI)、トリレンジイソシアネート(TDI)、ナフタレンジイソシアネート(NDI)、p-フェニレンジイソシアネート(PPDI)、キシレンジイソシアネート(XDI)、テトラメチルキシリレンジイソシアネート(TMXDI)、及びトリジンジイソシアネート(TODI)等の芳香族イソシアネート化合物;ヘキサメチレンジイソシアネート(HDI)、及びリシンジイソシアネート(LDI)等の脂肪族イソシアネート化合物;イソホロンジイソシアネート(IPDI)、シクロヘキシルジイソシアネート(CHDI)、水添化XDI(H6XDI)、及び水添化MDI(H12MDI)等の脂環族イソシアネート化合物;ウレタン変性体、2量体、3量体、カルボジイミド変性体、ウレア変性体、イソシアヌレート変性体、オキサゾリドン変性体、及びイソシアネート基末端プレポリマー等の変性イソシアネート化合物等が挙げられる。
アジリジン化合物としては、1,6-ビス(1-アジリジニルカルボニルアミノ)ヘキサン、1,1’-(メチレン-ジ-p-フェニレン)ビス-3,3-アジリジル尿素、エチレンビス-(2-アジリジニルプロピオネート)、2,4,6-トリアジリジニル-1,3,5-トリアジン、トリメチロールプロパン-トリス(2-アジリジニルプロピオネート)等が挙げられる。
As a specific example of the cross-linking agent, examples of the glycidyl compound include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, and tetraglycidyl xylene diamine. , 1,3-Bis (N, N-diglycidyl aminomethyl) cyclohexane, trimethylolpropane polyglycidyl ether and other polyfunctional glycidyl compounds can be mentioned.
Examples of the isocyanate compound include diphenylmethane diisocyanate (MDI), tolylene diisocyanate (TDI), naphthalene diisocyanate (NDI), p-phenylenedi isocyanate (PPDI), xylene diisocyanate (XDI), tetramethylxylylene diisocyanate (TMXDI), and trizine diisocyanate. Aromatic isocyanate compounds such as (TODI); aliphatic isocyanate compounds such as hexamethylene diisocyanate (HDI) and lysine diisocyanate (LDI); isophorone diisocyanate (IPDI), cyclohexyldiisocyanate (CHDI), hydrogenated XDI (H6XDI), And alicyclic isocyanate compounds such as hydrogenated MDI (H12MDI); urethane modified, dimer, trimer, carbodiimide modified, urea modified, isocyanurate modified, oxazolidone modified, and isocyanate group-terminated pre. Examples thereof include modified isocyanate compounds such as polymers.
Examples of the aziridine compound include 1,6-bis (1-aziridinylcarbonylamino) hexane, 1,1'-(methylene-di-p-phenylene) bis-3,3-aziridylurea, and ethylenebis- (2-). Aziridinyl propionate), 2,4,6-triaziridinyl-1,3,5-triazine, trimethylpropan-tris (2-aziridinylpropionate) and the like.
 粘着剤組成物に架橋剤を配合する場合、粘着剤組成物における架橋剤の含有量は特に限定されないが、ブロック共重合体(P)の含有量に対して、通常0.01~10質量%であり、好ましくは0.03~5質量%、より好ましくは0.05~2質量%である。 When the cross-linking agent is blended in the pressure-sensitive adhesive composition, the content of the cross-linking agent in the pressure-sensitive adhesive composition is not particularly limited, but is usually 0.01 to 10% by mass with respect to the content of the block copolymer (P). It is preferably 0.03 to 5% by mass, and more preferably 0.05 to 2% by mass.
(粘着付与剤)
 本粘着剤組成物は、更に粘着付与剤を含有していてもよい。粘着付与剤としては、例えば、ロジンエステル、ガムロジン、トール油ロジン、水添ロジンエステル、マレイン化ロジン、及び不均化ロジンエステル等のロジン誘導体;テルペンフェノール樹脂、α-ピネン、β-ピネン、又はリモネン等を主体とするテルペン系樹脂;クマロン-インデン系樹脂、水素化芳香族コポリマー、フェノール系樹脂等が挙げられる。粘着付与剤は、1種単独で使用されてもよく、2種以上が併用されてもよい。粘着付与剤の含有量は、ブロック共重合体(P)及びビニル重合体(C)の合計量に対して、好ましくは0~20質量%であり、より好ましくは0~10質量%であり、更に好ましくは0~5質量%である。
(Adhesive)
The present pressure-sensitive adhesive composition may further contain a pressure-sensitive adhesive. Examples of the tackifier include rosin derivatives such as rosin ester, gum rosin, tall oil rosin, hydrogenated rosin ester, maleated rosin, and disproportionated rosin ester; terpene phenol resin, α-pinene, β-pinene, or. Terpene-based resins mainly composed of rosinen and the like; kumaron-inden-based resins, hydride aromatic copolymers, phenol-based resins and the like can be mentioned. The tackifier may be used alone or in combination of two or more. The content of the tackifier is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, based on the total amount of the block copolymer (P) and the vinyl polymer (C). More preferably, it is 0 to 5% by mass.
(可塑剤)
 本粘着剤組成物には、可塑剤が配合されていてもよい。可塑剤としては、ジn-ブチルフタレート、ジn-オクチルフタレート、ビス(2-エチルヘキシル)フタレート、ジn-デシルフタレート等のフタル酸エステル類;ビス(2-エチルヘキシル)アジペート、ジn-オクチルアジペート等のアジピン酸エステル類;セバシン酸エステル類;アゼライン酸エステル類;塩素化パラフィン等のパラフィン類;ポリプロピレングリコール等のグリコール類;エポキシ化大豆油、エポキシ化アマニ油等のエポキシ変性植物油類;トリオクチルホスフェート、トリフェニルホスフェート等のリン酸エステル類;トリフェニルホスファイト等の亜リン酸エステル類;アジピン酸と1,3-ブチレングリコールとのエステル化物等のエステルオリゴマー類;低分子量ポリブテン、低分子量ポリイソブチレン、低分子量ポリイソプレン等の低分子量重合体;プロセスオイル、ナフテン系オイル等のオイル類等が挙げられる。可塑剤の含有量は、ブロック共重合体(P)の全量に対して、好ましくは0~20質量%であり、より好ましくは0~10質量%であり、更に好ましくは0~5質量%である。
(Plasticizer)
The present pressure-sensitive adhesive composition may contain a plasticizer. Examples of the plasticizer include phthalates such as din-butylphthalate, din-octylphthalate, bis (2-ethylhexyl) phthalate and din-decylphthalate; bis (2-ethylhexyl) adipate and din-octyl adipate. Adipic acid esters such as; sevacinic acid esters; azelaic acid esters; paraffins such as chlorinated paraffin; glycols such as polypropylene glycol; epoxy-modified vegetable oils such as epoxidized soybean oil and epoxidized linseed oil; trioctyl Phthalate esters such as phosphate and triphenyl phosphate; Ester oligomers such as esters of adipic acid and 1,3-butylene glycol; low molecular weight polybutene, low molecular weight poly Low molecular weight polymers such as isobutylene and low molecular weight polyisoprene; oils such as process oils and naphthenic oils can be mentioned. The content of the plasticizer is preferably 0 to 20% by mass, more preferably 0 to 10% by mass, still more preferably 0 to 5% by mass, based on the total amount of the block copolymer (P). be.
 その他、本粘着剤組成物に配合される添加剤としては、例えば、酸化防止剤、紫外線吸収剤、老化防止剤、難燃剤、防かび剤、シランカップリング剤、充填剤、着色剤等が挙げられる。添加剤の含有量は、本開示の効果を損なわない範囲において、各種化合物に応じて適宜設定することができる。 Other additives to be blended in the pressure-sensitive adhesive composition include, for example, antioxidants, ultraviolet absorbers, antioxidants, flame retardants, fungicides, silane coupling agents, fillers, colorants and the like. Be done. The content of the additive can be appropriately set according to various compounds as long as the effects of the present disclosure are not impaired.
(溶剤)
 本粘着剤組成物は、ブロック共重合体(P)、ビニル重合体(C)、及び必要に応じて配合される添加剤成分が、溶剤に溶解又は分散された液状の組成物であってもよい。粘着剤組成物の調製に使用する溶剤としては、ブロック共重合体(P)及びビニル重合体(C)を溶解可能な有機溶媒、又はブロック共重合体(P)及びビニル重合体(C)を分散可能な水媒体が挙げられる。有機溶媒の具体例としては、例えば非プロトン性極性溶媒、フェノール系溶媒、アルコール系溶媒、エステル系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒等が挙げられる。有機溶媒は、これらの1種でもよく、2種以上の混合溶媒であってもよい。
(solvent)
The present pressure-sensitive adhesive composition may be a liquid composition in which the block copolymer (P), the vinyl polymer (C), and the additive component to be blended as necessary are dissolved or dispersed in a solvent. good. As the solvent used for preparing the pressure-sensitive adhesive composition, an organic solvent capable of dissolving the block copolymer (P) and the vinyl polymer (C), or the block copolymer (P) and the vinyl polymer (C) can be used. Examples include dispersible aqueous media. Specific examples of the organic solvent include aprotonic polar solvent, phenol solvent, alcohol solvent, ester solvent, ketone solvent, ether solvent, hydrocarbon solvent and the like. The organic solvent may be one of these or a mixed solvent of two or more.
<粘着剤組成物の調製>
 本粘着剤組成物は、ブロック共重合体(P)及びビニル重合体(C)を含むものであればその形態に特段の制約はない。例えば、ブロック共重合体(P)及びビニル重合体(C)を酢酸エチル、酢酸ブチル、エチルメチルケトン及びトルエンのうち1種以上の有機溶媒に溶解することにより、溶剤型の粘着剤組成物を得ることができる。また、ブロック共重合体(P)及びビニル重合体(C)を水媒体中に分散させることにより、エマルション型の粘着剤組成物を得ることができる。
<Preparation of adhesive composition>
The present pressure-sensitive adhesive composition is not particularly limited in its form as long as it contains the block copolymer (P) and the vinyl polymer (C). For example, by dissolving the block copolymer (P) and the vinyl polymer (C) in one or more organic solvents of ethyl acetate, butyl acetate, ethyl methyl ketone and toluene, a solvent-type pressure-sensitive adhesive composition can be obtained. Obtainable. Further, by dispersing the block copolymer (P) and the vinyl polymer (C) in an aqueous medium, an emulsion-type pressure-sensitive adhesive composition can be obtained.
 その他、本粘着剤組成物は、ブロック共重合体(P)及びビニル重合体(C)以外に、単官能及び/又は多官能の(メタ)アクリル系単量体、並びに光重合開始剤等を含む組成物とすることにより、紫外線等の活性エネルギー線によって硬化するいわゆるシロップ型の活性エネルギー線硬化型粘着剤組成物としてもよい。活性エネルギー線硬化型粘着剤組成物の場合、当該組成物は有機溶媒等の溶剤を含んでいてもよいが、通常、溶剤を含まない無溶剤型として用いられる。 In addition to the block copolymer (P) and vinyl polymer (C), the present pressure-sensitive adhesive composition contains monofunctional and / or polyfunctional (meth) acrylic monomers, photopolymerization initiators, and the like. The composition may be a so-called syrup-type active energy ray-curable pressure-sensitive adhesive composition that is cured by active energy rays such as ultraviolet rays. In the case of an active energy ray-curable pressure-sensitive adhesive composition, the composition may contain a solvent such as an organic solvent, but is usually used as a solvent-free type containing no solvent.
 溶剤型の粘着剤組成物の場合、粘着剤組成物における固形分濃度(すなわち、粘着剤組成物の全体質量に対する、粘着剤組成物中の溶剤以外の成分の質量の割合)は、特に限定されないが、好ましくは1~70質量%である。固形分濃度が1質量%以上であると、十分な厚みを有する粘着剤層を形成することができる。また、固形分濃度が70質量%以下であると、良好な塗工性を確保でき、また均一な厚みの粘着剤層を形成しやすい。粘着剤組成物における固形分濃度は、より好ましくは5~50質量%であり、更に好ましくは10~45質量%である。 In the case of a solvent-type pressure-sensitive adhesive composition, the solid content concentration in the pressure-sensitive adhesive composition (that is, the ratio of the mass of the non-solvent component in the pressure-sensitive adhesive composition to the total mass of the pressure-sensitive adhesive composition) is not particularly limited. However, it is preferably 1 to 70% by mass. When the solid content concentration is 1% by mass or more, a pressure-sensitive adhesive layer having a sufficient thickness can be formed. Further, when the solid content concentration is 70% by mass or less, good coatability can be ensured, and a pressure-sensitive adhesive layer having a uniform thickness can be easily formed. The solid content concentration in the pressure-sensitive adhesive composition is more preferably 5 to 50% by mass, still more preferably 10 to 45% by mass.
 本粘着剤組成物の粘度は、500mPa・s以上10,000mPa・s以下であることが好ましい。粘度が10,000mPa・s以下であると、良好な塗工性を確保することができる。また、塗工する際に塗工に適した粘度まで希釈せずにそのまま用いることができ、取扱い性が良好である。こうした観点から、本粘着剤組成物の粘度は、より好ましくは8,000mPa・s以下であり、更に好ましくは6,000mPa・s以下であり、より更に好ましくは5,000mPa・s以下である。また、本粘着剤組成物の粘度の下限は、膜厚が薄くなりすぎることを抑制する観点から、より好ましくは1,000mPa・s以上であり、更に好ましくは1,500mPa・s以上であり、より更に好ましくは2,000mPa・s以上である。また、本粘着剤組成物の粘度の範囲は、1,000mPa・s以上8,000mPa・s以下がより好ましく、1,000mPa・s以上6,000mPa・s以下が更に好ましく、1,500mPa・s以上5,000mPa・s以下がより更に好ましい。なお、粘着剤組成物の粘度は、B型粘度計を使用して、固形分濃度25%の粘着剤組成物を25℃で測定した値である。当該粘着剤組成物は、溶剤として、酢酸エチル、酢酸ブチル、エチルメチルケトン及びトルエンよりなる群から選択される少なくとも1種の有機溶媒を含むことが好ましい。 The viscosity of the pressure-sensitive adhesive composition is preferably 500 mPa · s or more and 10,000 mPa · s or less. When the viscosity is 10,000 mPa · s or less, good coatability can be ensured. Further, when coating, it can be used as it is without diluting to a viscosity suitable for coating, and the handleability is good. From this point of view, the viscosity of the pressure-sensitive adhesive composition is more preferably 8,000 mPa · s or less, further preferably 6,000 mPa · s or less, and even more preferably 5,000 mPa · s or less. Further, the lower limit of the viscosity of the pressure-sensitive adhesive composition is more preferably 1,000 mPa · s or more, still more preferably 1,500 mPa · s or more, from the viewpoint of suppressing the film thickness from becoming too thin. Even more preferably, it is 2,000 mPa · s or more. The viscosity range of the pressure-sensitive adhesive composition is more preferably 1,000 mPa · s or more and 8,000 mPa · s or less, further preferably 1,000 mPa · s or more and 6,000 mPa · s or less, and further preferably 1,500 mPa · s. More than 5,000 mPa · s or less is more preferable. The viscosity of the pressure-sensitive adhesive composition is a value measured at 25 ° C. using a pressure-sensitive adhesive composition having a solid content concentration of 25% using a B-type viscometer. The pressure-sensitive adhesive composition preferably contains, as a solvent, at least one organic solvent selected from the group consisting of ethyl acetate, butyl acetate, ethyl methyl ketone and toluene.
<粘着剤層>
 本粘着剤組成物をセパレーター等に塗布し、必要に応じて乾燥することにより粘着剤層を形成することができる。セパレーターとしては、各種樹脂材料からなる樹脂フィルムを用いることができる。当該樹脂材料としては、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリエーテルスルホン系樹脂、アセテート系樹脂、ポリカーボネート系樹脂、ポリオレフィン系樹脂等が挙げられる。例えば、液状の粘着剤組成物を用いて粘着剤層を形成するには、粘着剤組成物を公知の塗工方法によりセパレーターに塗布し、加熱等の乾燥処理により溶媒を除去することによって行う。なお、粘着剤層を形成する際の加熱温度及び加熱時間は、溶媒を除去可能であればよく、溶媒の種類や固形分濃度等に応じて適宜設定することができる。加飾フィルム用の粘着剤層の場合、粘着剤層の厚さは、例えば2~200μmである。また、加飾フィルムの粘着剤層を所望の厚さとするために、複数層を積層することにより粘着剤層を形成してもよい。
<Adhesive layer>
The pressure-sensitive adhesive layer can be formed by applying the pressure-sensitive adhesive composition to a separator or the like and drying it if necessary. As the separator, a resin film made of various resin materials can be used. Examples of the resin material include polyester resins such as polyethylene terephthalate, polyether sulfone resins, acetate resins, polycarbonate resins, and polyolefin resins. For example, in order to form a pressure-sensitive adhesive layer using a liquid pressure-sensitive adhesive composition, the pressure-sensitive adhesive composition is applied to a separator by a known coating method, and the solvent is removed by a drying treatment such as heating. The heating temperature and heating time for forming the pressure-sensitive adhesive layer may be set as long as the solvent can be removed, and can be appropriately set according to the type of the solvent, the solid content concentration, and the like. In the case of the pressure-sensitive adhesive layer for a decorative film, the thickness of the pressure-sensitive adhesive layer is, for example, 2 to 200 μm. Further, in order to make the pressure-sensitive adhesive layer of the decorative film a desired thickness, the pressure-sensitive adhesive layer may be formed by laminating a plurality of layers.
(貯蔵弾性率)
 本粘着剤組成物を用いて形成される粘着剤層は、特に高温環境下における耐熱性及び耐久性の高い粘着剤層を形成できる点で、110℃における貯蔵弾性率(G’)が1.5×10Pa以上であることが好ましい。貯蔵弾性率は、より好ましくは2.0×10Pa以上であり、更に好ましくは2.5×10Pa以上であり、より更に好ましくは3.0×10Pa以上であり、一層好ましくは4.0×10Pa以上である。貯蔵弾性率の上限は特に制限されるものではないが、例えば50.0×10Pa以下であり、20.0×10Pa以下であってもよい。
(Storage modulus)
The pressure-sensitive adhesive layer formed by using the present pressure-sensitive adhesive composition has a storage elastic modulus (G') at 110 ° C. in that it can form a pressure-resistant and durable pressure-sensitive adhesive layer particularly in a high-temperature environment. It is preferably 5 × 10 4 Pa or more. The storage elastic modulus is more preferably 2.0 × 10 4 Pa or more, further preferably 2.5 × 10 4 Pa or more, still more preferably 3.0 × 10 4 Pa or more, and further preferably. Is 4.0 × 10 4 Pa or more. The upper limit of the storage elastic modulus is not particularly limited, but may be, for example, 50.0 × 10 4 Pa or less, and may be 20.0 × 10 4 Pa or less.
 なお、本明細書において110℃の貯蔵弾性率は、昇温速度2℃/分、ひずみ0.1%、測定周波数1Hzの条件で、厚さ0.8mmの粘着剤層のずり粘弾性を測定することにより得られた値である。貯蔵弾性率の測定方法の詳細は、後述する実施例に記載の方法を採用することができる。貯蔵弾性率は、ブロック共重合体(P)の組成、重合体ブロック(A)とアクリル系重合体ブロック(B)との比率及び架橋の程度等を調整することにより任意に調整することができる。例えば、ブロック共重合体(P)の構成単量体として炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキル化合物及び炭素数2~4のアルコキシアルキル基を有する(メタ)アクリル酸アルコキシアルキル化合物のうちの1種又は2種以上使用し、これらの単量体の種類及び使用量を調整することによって貯蔵弾性率を調整することができる。 In the present specification, the storage elastic modulus at 110 ° C. measures the shear viscoelasticity of a pressure-sensitive adhesive layer having a thickness of 0.8 mm under the conditions of a heating rate of 2 ° C./min, a strain of 0.1%, and a measurement frequency of 1 Hz. It is a value obtained by doing. As for the details of the method for measuring the storage elastic modulus, the method described in Examples described later can be adopted. The storage elastic modulus can be arbitrarily adjusted by adjusting the composition of the block copolymer (P), the ratio of the polymer block (A) to the acrylic polymer block (B), the degree of cross-linking, and the like. .. For example, a (meth) acrylic acid alkyl compound having an alkyl group having 1 to 4 carbon atoms and an alkoxyalkyl group having 2 to 4 carbon atoms (meth) acrylic acid alkoxy as a constituent monomer of the block copolymer (P). The storage elasticity can be adjusted by using one or more of the alkyl compounds and adjusting the type and amount of these monomers.
(ゲル分率)
 本粘着剤組成物が架橋剤を含有する場合、本粘着剤組成物からなる粘着剤層のゲル分率は、50%以上であることが好ましい。ゲル分率を50%以上とすることにより、粘着剤層の耐熱性及び温度変化に対する耐久性を十分に高めることができる。粘着剤層のゲル分率は、好ましくは55%以上であり、より好ましくは58%以上である。ゲル分率の上限は、好ましくは95%以下であり、より好ましくは90%以下であり、更に好ましくは85%以下である。なお、本明細書において、粘着剤層のゲル分率は、粘着剤層の初期質量W1に対する、溶剤浸漬後に残った粘着剤層残分の質量W2の比率である。詳細は、後述する実施例の測定方法に従う。
(Gel fraction)
When the present pressure-sensitive adhesive composition contains a cross-linking agent, the gel fraction of the pressure-sensitive adhesive layer made of the present pressure-sensitive adhesive composition is preferably 50% or more. By setting the gel fraction to 50% or more, the heat resistance of the pressure-sensitive adhesive layer and the durability against temperature changes can be sufficiently enhanced. The gel fraction of the pressure-sensitive adhesive layer is preferably 55% or more, more preferably 58% or more. The upper limit of the gel fraction is preferably 95% or less, more preferably 90% or less, still more preferably 85% or less. In the present specification, the gel fraction of the pressure-sensitive adhesive layer is the ratio of the mass W2 of the residue of the pressure-sensitive adhesive layer remaining after immersion in the solvent to the initial mass W1 of the pressure-sensitive adhesive layer. The details follow the measurement method of the examples described later.
(剥離強度)
 本粘着剤組成物からなる膜厚50μmの粘着剤層を100μm厚のポリエチレンテレフタレート(PET)フィルム基材に備えた粘着剤シートについて、23℃、剥離速度300mm/分におけるアクリロニトリル・ブタジエン・スチレン(ABS)板に対する剥離強度は、常温において成形体に対し浮きや剥がれが生じにくい加飾フィルムを得る観点から、15N/25mm以上であることが好ましい。23℃における剥離強度は、より好ましくは20N/25mm以上であり、更に好ましくは25N/25mm以上である。
(Peeling strength)
Acrylonitrile-butadiene-styrene (ABS) at 23 ° C. and a peeling rate of 300 mm / min for a pressure-sensitive adhesive sheet provided with a pressure-sensitive adhesive layer having a thickness of 50 μm and a thickness of 100 μm on a polyethylene terephthalate (PET) film substrate. ) The peeling strength to the plate is preferably 15 N / 25 mm or more from the viewpoint of obtaining a decorative film that is less likely to float or peel from the molded body at room temperature. The peel strength at 23 ° C. is more preferably 20 N / 25 mm or more, still more preferably 25 N / 25 mm or more.
 また、本粘着剤組成物からなる膜厚50μmの粘着剤層を100μm厚のPETフィルム基材に備えた粘着剤シートについて、80℃、剥離速度300mm/分におけるABS板に対する剥離強度は、高温下においても成形体に対し浮きや剥がれが生じにくく、耐熱性及び耐久性の高い加飾フィルムを得る観点から、10N/25mm以上であることが好ましい。80℃における剥離強度は、より好ましくは15N/25mm以上であり、更に好ましくは20N/25mm以上であり、より更に好ましくは25N/25mm以上である。剥離強度の測定方法の詳細は、後述する実施例の測定方法に従う。なお、本粘着剤組成物による粘着剤層が、高温条件下においても高い接着性を示す特性は、ビニル重合体(C)の偏析によって生じる粘着剤層のTg組成(分布)に基づくものであり、被着体の材料の種類を問わずに高温条件下での高い接着性を備えることができる。 Further, for a pressure-sensitive adhesive sheet provided with a pressure-sensitive adhesive layer having a thickness of 50 μm made of the present pressure-sensitive adhesive composition on a PET film substrate having a thickness of 100 μm, the peeling strength with respect to the ABS plate at 80 ° C. and a peeling speed of 300 mm / min is high. However, from the viewpoint of obtaining a decorative film having high heat resistance and durability, which is less likely to cause floating or peeling from the molded body, it is preferably 10 N / 25 mm or more. The peel strength at 80 ° C. is more preferably 15 N / 25 mm or more, further preferably 20 N / 25 mm or more, and even more preferably 25 N / 25 mm or more. The details of the method for measuring the peel strength follow the measuring method of Examples described later. The characteristic that the pressure-sensitive adhesive layer according to the present pressure-sensitive adhesive composition exhibits high adhesiveness even under high temperature conditions is based on the Tg composition (distribution) of the pressure-sensitive adhesive layer generated by segregation of the vinyl polymer (C). It can have high adhesiveness under high temperature conditions regardless of the type of material of the adherend.
<加飾フィルム>
 本開示の加飾フィルム(以下、「本加飾フィルム」ともいう)は、本粘着剤組成物からなる粘着剤層を備える。このため、本加飾フィルムは、成形体に貼り合わせた後において、例えば100℃以上の高温下に晒された場合にも成形体から剥がれにくく、高温接着性に優れるとともに、耐熱性及び温度変化に対する耐久性に優れている。
<Decorative film>
The decorative film of the present disclosure (hereinafter, also referred to as "the present decorative film") includes a pressure-sensitive adhesive layer made of the present pressure-sensitive adhesive composition. For this reason, this decorative film does not easily peel off from the molded product even when exposed to a high temperature of 100 ° C. or higher after being bonded to the molded product, has excellent high-temperature adhesiveness, and has excellent heat resistance and temperature change. Has excellent durability against.
 本加飾フィルムの1つの態様は、本粘着剤組成物からなる粘着剤層と加飾層と基材層とがこの順に積層された積層体である。かかる構成の加飾フィルムは、成形体に貼合して加飾成形体を得るラミネート方式に好ましく用いることができる。 One aspect of the present decorative film is a laminate in which the pressure-sensitive adhesive layer, the decoration layer, and the base material layer made of the present pressure-sensitive adhesive composition are laminated in this order. The decorative film having such a structure can be preferably used in a laminating method for obtaining a decorative molded body by laminating the decorative film with the molded body.
 基材層は、加飾フィルムにより成形体が加飾された後には加飾成形体の最外層に位置し、加飾成形体の保護層として機能する。基材層を構成する材料は、柔軟性を有する材料であればよく、樹脂材料が好ましい。より好ましくは、熱可塑性樹脂である。熱可塑性樹脂としては、特に制限されるものではないが、塩化ビニル(PVC)樹脂、ポリエステル樹脂、アクリル樹脂、ABS樹脂、ポリカーボネート樹脂、ポリプロピレン樹脂及びポリエチレン樹脂等が挙げられる。これらのうち、基材層は、PVC樹脂、ポリエステル樹脂及びABS樹脂よりなる群から選択される少なくとも1種により形成されていることが好ましい。 The base material layer is located on the outermost layer of the decorative molded body after the molded body is decorated with the decorative film, and functions as a protective layer of the decorative molded body. The material constituting the base material layer may be any material having flexibility, and a resin material is preferable. More preferably, it is a thermoplastic resin. The thermoplastic resin is not particularly limited, and examples thereof include vinyl chloride (PVC) resin, polyester resin, acrylic resin, ABS resin, polycarbonate resin, polypropylene resin, and polyethylene resin. Of these, the base material layer is preferably formed of at least one selected from the group consisting of PVC resin, polyester resin and ABS resin.
 基材層の厚さは、好ましくは25μm~500μm、より好ましくは50μm~400μm、更に好ましくは100~300μmである。基材層の厚さが上記範囲内であることにより、加飾成形体を射出成形法(インサート成形法ともいう)、真空成形法、真空圧空成形法等により製造する際に、加工成形性、形状追従性及び取扱い性が良好となる。 The thickness of the base material layer is preferably 25 μm to 500 μm, more preferably 50 μm to 400 μm, and further preferably 100 to 300 μm. When the thickness of the base material layer is within the above range, when the decorative molded body is manufactured by an injection molding method (also referred to as an insert molding method), a vacuum forming method, a vacuum pressure pneumatic molding method, etc. Shape followability and handleability are improved.
 加飾層は、テキスト、図形及び商標等の図柄や模様が印刷等により付与されたインク層である。この加飾層により、加飾フィルムに意匠性が付与される。加飾層の図柄及び模様は、印刷インクによるグラビア印刷、オフセット印刷、シルクスクリーン印刷、転写シートからの転写印刷、昇華転写印刷、及びインクジェット印刷等の公知の印刷法により形成することができる。加飾層の厚さは、好ましくは1~40μm、より好ましくは1~30μmである。加飾層の厚さが上記範囲内であると、グラデーション等の複雑な意匠を表現するために十分な厚さを確保できる。また、加飾フィルム表面には、凹凸模様が付与されてもよい。凹凸模様は、例えばエンボスローラーにより凹凸模様を転写することにより形成することができる。 The decorative layer is an ink layer to which patterns and patterns such as texts, figures and trademarks are added by printing or the like. This decorative layer gives the decorative film a design. The design and pattern of the decorative layer can be formed by known printing methods such as gravure printing with printing ink, offset printing, silk screen printing, transfer printing from a transfer sheet, sublimation transfer printing, and inkjet printing. The thickness of the decorative layer is preferably 1 to 40 μm, more preferably 1 to 30 μm. When the thickness of the decorative layer is within the above range, it is possible to secure a sufficient thickness for expressing a complicated design such as a gradation. Further, the surface of the decorative film may be provided with an uneven pattern. The uneven pattern can be formed, for example, by transferring the uneven pattern with an embossing roller.
 本加飾フィルムは、粘着剤層側の最外層に剥離層を更に備えていてもよい。剥離層は、意図しない接着を防止するものであり、本加飾フィルムを成形体に接着する際に剥離される。剥離層を構成する材料は特に限定されないが、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、及びポリエチレンナフタレート等のポリエステル、ポリプロピレン及びポリエチレン等のポリオレフィン等の樹脂材料;グラシン紙、クラフト紙、クレーコート紙等の紙材料を用いることができる。剥離層の厚みは、10~400μm程度とすることができる。 The decorative film may further have a release layer on the outermost layer on the adhesive layer side. The peeling layer prevents unintended adhesion and is peeled off when the present decorative film is adhered to the molded body. The material constituting the release layer is not particularly limited, but for example, polyester such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, and resin materials such as polypropylene and polyolefin such as polyethylene; glassin paper, kraft paper, clay coat paper, and the like. Paper material can be used. The thickness of the release layer can be about 10 to 400 μm.
 その他、本加飾フィルムは、離型層を備えた剥離フィルムの当該離型層上に、ハードコート層(保護層)、加飾層及び粘着剤層を備える構成とすることもできる。かかる構成の加飾フィルムは、転写フィルムとして好適に用いることができる。この構成の加飾フィルムでは、ハードコート層から粘着剤層までを成形体に転写する転写方式により加飾成形体を得ることができる。上記ラミネート方式の場合、加飾成形後、余ったフィルムをトリミングにより除去する必要があるが、転写方式ではトリミング処理が不要であるため、生産効率の点で有利である。 In addition, the present decorative film may be configured to include a hard coat layer (protective layer), a decorative layer, and an adhesive layer on the release layer of the release film provided with the release layer. The decorative film having such a structure can be suitably used as a transfer film. In the decorative film having this configuration, a decorative molded body can be obtained by a transfer method of transferring from the hard coat layer to the pressure-sensitive adhesive layer to the molded body. In the case of the above laminating method, it is necessary to remove the excess film by trimming after the decorative molding, but the transfer method does not require a trimming process, which is advantageous in terms of production efficiency.
 上記ハードコート層は、転写される前の状態ではタックフリーの状態であり、成形体に転写した後には、活性エネルギー線の照射等により硬化及び/又は架橋反応を行うことができる材料から構成されていることが好ましい。ハードコート層を構成する材料としては、例えば、(メタ)アクリロイル基を有するポリマー若しくはオリゴマー、活性エネルギー線硬化型組成物に活性エネルギー線を適量照射して半硬化状態としたもの、又は、活性エネルギー線硬化型樹脂組成物にイソシアネート化合物及びポリオール樹脂等を配合して適度に架橋したもの等が挙げられる。ハードコート層の厚みは特に制限されないが、1~50μm程度とすることができ、好ましくは2~40μm程度である。 The hardcourt layer is in a tack-free state before being transferred, and is composed of a material that can be cured and / or crosslinked by irradiation with active energy rays or the like after being transferred to a molded product. Is preferable. Examples of the material constituting the hard coat layer include a polymer or oligomer having a (meth) acryloyl group, an active energy ray-curable composition irradiated with an appropriate amount of active energy rays to make it in a semi-cured state, or active energy. Examples thereof include a linear curable resin composition in which an isocyanate compound, a polyol resin and the like are blended and appropriately crosslinked. The thickness of the hard coat layer is not particularly limited, but can be about 1 to 50 μm, preferably about 2 to 40 μm.
<加飾成形体>
 本開示によれば、本加飾フィルムを備える加飾成形体(以下、「本加飾成形体」ともいう)が提供される。本加飾成形体は、本粘着剤組成物を用いて得られる粘着剤層を備える加飾フィルムにより加飾されているため、高温条件下においても加飾フィルムの浮きや剥がれが生じにくく、耐熱性及び耐久性に優れている。
<Decorative molded body>
According to the present disclosure, a decorative molded body (hereinafter, also referred to as “main decorative molded body”) including the present decorative film is provided. Since the decorative molded body is decorated with a decorative film provided with an adhesive layer obtained by using the adhesive composition, the decorative film is less likely to float or peel off even under high temperature conditions, and is heat resistant. It has excellent properties and durability.
 加飾フィルムが接着される成形体は特に限定されるものではなく、例えば樹脂製品、金属製品、セラミック製品、ガラス製品等といった、加飾フィルムを接着することが可能な物品であればよい。具体的には、例えば、生活家電、キッチン家電、健康家電、季節家電等の各種家電製品;トイレ、浴室、扉、壁等の住宅設備の内装・外装部材;バンパー、ダッシュボード、ドア、ルーフ、ボンネット等の自動車内装品及び自動車外装品;生活雑貨、日用雑貨等の各種雑貨品;電子部品;介護・医療用品;船舶や航空機の内外装品等が挙げられる。 The molded body to which the decorative film is adhered is not particularly limited, and any article such as a resin product, a metal product, a ceramic product, a glass product, etc., to which the decorative film can be adhered may be used. Specifically, for example, various home appliances such as household appliances, kitchen appliances, health appliances, seasonal home appliances; interior / exterior members of housing equipment such as toilets, bathrooms, doors, walls; bumpers, dashboards, doors, roofs, etc. Automotive interiors and exteriors such as bonnets; various miscellaneous goods such as household goods and daily necessities; electronic parts; nursing and medical supplies; interior and exterior parts of ships and aircraft.
 本加飾成形体の製造には、真空成形法、真空圧空成形法及び射出成形法等を用いることができる。真空成形法では、本加飾フィルムを加熱軟化しつつ展張し、本加飾フィルムの成形体側の空間を減圧することで、本加飾フィルムを成形体の表面形状に沿って成形しつつ接着する。真空圧空成形法では、真空成形法の成形工程後に、更に反対側の空間を加圧することにより、本加飾フィルムを成形体の表面形状に沿って成形しつつ接着する。真空圧空成形機の例としては、浅野研究所製の熱板式減圧被覆成形機TFHシリーズ、布施真空製TOM成形機NGFシリーズ、ナビタス製のNATS空気転写機が挙げられる。射出成形法では、射出成形機の金型キャビティに本加飾フィルムをセットし、射出成形を行うことにより、本加飾フィルムを成形体の表面形状に沿って接着する。これらの方法により、本加飾成形体を得ることができる。 A vacuum forming method, a vacuum pressure pneumatic molding method, an injection molding method, or the like can be used for manufacturing this decorative molded body. In the vacuum forming method, the decorative film is stretched while being heated and softened, and the space on the molded body side of the decorative film is depressurized, so that the decorative film is bonded while being molded along the surface shape of the molded body. .. In the vacuum forming method, after the forming step of the vacuum forming method, the space on the opposite side is further pressed to bond the decorative film while forming along the surface shape of the molded body. Examples of the vacuum compressed air molding machine include a hot plate type pressure reducing coating molding machine TFH series manufactured by Asano Laboratories, a TOM molding machine NGF series manufactured by Fuse Vacuum, and a NATS air transfer machine manufactured by Navitas. In the injection molding method, the decorative film is set in the mold cavity of the injection molding machine, and injection molding is performed to bond the decorative film along the surface shape of the molded body. By these methods, the present decorative molded article can be obtained.
 以下、実施例により本開示を具体的に説明する。ただし、本開示はこれらの実施例に限定されるものではない。なお、以下の記載において「部」は「質量部」を意味し、「%」は「質量%」を意味する。実施例及び比較例における各種分析は、以下に記載の方法により実施した。 Hereinafter, the present disclosure will be specifically described with reference to examples. However, the present disclosure is not limited to these examples. In the following description, "part" means "part by mass" and "%" means "% by mass". Various analyzes in Examples and Comparative Examples were carried out by the methods described below.
<分子量測定>
 ゲル浸透クロマトグラフ装置(型式名「HLC-8320」、東ソー社製)を用いて、下記の条件よりポリスチレン換算による数平均分子量(Mn)及び重量平均分子量(Mw)を得た。また、得られた値から分子量分布(Mw/Mn)を算出した。
○測定条件
カラム:東ソー社製TSKgel SuperMultiporeHZ-M×4本
カラム温度:40℃
溶離液:テトラヒドロフラン
検出器:RI
流速:600μL/min
<Molecular weight measurement>
Using a gel permeation chromatograph device (model name "HLC-8320", manufactured by Tosoh Corporation), a polystyrene-equivalent number average molecular weight (Mn) and a weight average molecular weight (Mw) were obtained under the following conditions. Moreover, the molecular weight distribution (Mw / Mn) was calculated from the obtained values.
○ Measurement conditions Column: Tosoh TSKgel SuperMultipore HZ-M x 4 Column temperature: 40 ° C
Eluent: Tetrahydrofuran detector: RI
Flow velocity: 600 μL / min
<ブロック共重合体の(A)/(B)の質量比>
 ブロック共重合体の(A)/(B)の質量比(ブロック比)はH-NMR測定より同定・算出した。測定装置にはBRUKER社製AscendTM400 核磁気共鳴測定装置を用いた。25℃で、テトラメチルシランを標準物質、重クロロホルムを溶媒として測定を行った。
<重合体のモノマー組成>
 重合体のモノマー組成は、モノマー仕込み量とガスクロマトグラフ(GC)測定によるモノマー消費量とから算出した。GC測定は以下の条件により実施した。
GC:Agilent Technolosies製(7820A GC System)、検出器:FID、カラム:100%ジメチルシロキサン(CP-Sil 5CB) カラム長さ30m、カラム内径0.32mm、算出方法:内部標準法
<Mass ratio of (A) / (B) of block copolymer>
The mass ratio (block ratio) of (A) / (B) of the block copolymer was identified and calculated by 1 H-NMR measurement. As a measuring device, a Bruker Ascend TM 400 nuclear magnetic resonance measuring device was used. Measurement was performed at 25 ° C. using tetramethylsilane as a standard substance and deuterated chloroform as a solvent.
<Polymer composition>
The monomer composition of the polymer was calculated from the amount of monomer charged and the amount of monomer consumed by gas chromatograph (GC) measurement. The GC measurement was carried out under the following conditions.
GC: Made by Agilent Technologies (7820A GC System), Detector: FID, Column: 100% dimethylsiloxane (CP-Sil 5CB) Column length 30 m, Column inner diameter 0.32 mm, Calculation method: Internal standard method
<ガラス転移温度(Tg)の測定>
 重合体のガラス転移温度(Tg)は、示差走査熱量計を用いて得られた熱流束曲線のベースラインと、変曲点での接線との交点から決定した。熱流束曲線は、試料約10mgを-50℃まで冷却し、5分間保持した後、10℃/minで300℃まで昇温し、引き続き-50℃まで冷却し、5分間保持した後、10℃/minで350℃まで昇温する条件で得た。
測定機器:エスアイアイ・ナノテクノロジー社製DSC6220
測定雰囲気:窒素雰囲気下
 なお、重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)(以下、単に「重合体ブロック(B)」と記す)のTgは、重合体ブロック(A)に対応する重合体及び重合体ブロック(B)に対応する重合体をそれぞれ製造し、上記の測定方法に従い示差走査熱量測定(DSC)を行うことによって求めた。
<Measurement of glass transition temperature (Tg)>
The glass transition temperature (Tg) of the polymer was determined from the intersection of the baseline of the heat flux curve obtained using a differential scanning calorimeter and the tangent at the inflection. The heat flux curve shows that about 10 mg of the sample is cooled to -50 ° C, held for 5 minutes, then heated to 300 ° C at 10 ° C / min, subsequently cooled to -50 ° C, held for 5 minutes, and then 10 ° C. It was obtained under the condition that the temperature was raised to 350 ° C. at / min.
Measuring equipment: DSC6220 manufactured by SII Nanotechnology Co., Ltd.
Measurement atmosphere: Under a nitrogen atmosphere The Tg of the polymer block (A) and the (meth) acrylic polymer block (B) (hereinafter, simply referred to as “polymer block (B)”) is the polymer block (A). ) And the polymer corresponding to the polymer block (B) were produced, respectively, and differential scanning calorimetry (DSC) was performed according to the above measurement method.
1.ビニル重合体の合成
〔合成例1〕重合体C-1の製造
 内容積1リットルの4つ口フラスコに、酢酸ブチル(200質量部)とジメチル-2,2’-アゾビス(2-メチルプロピオネート)(和光純薬工業社製、商品名「V-601」)(0.9質量部)からなる混合液を仕込み、この混合液を窒素ガスのバブリングにより十分に脱気し、混合液の内温を90℃に上昇した。別途、メタクリル酸メチル(以下、「MMA」という)(165質量部)、メタクリル酸イソボルニル(以下、「IBXMA」という)(44質量部)、V-601(17質量部)、及び酢酸ブチル(90質量部)からなる混合液を滴下ロートからフラスコ内に5時間かけて滴下することにより重合を行った。滴下終了後、重合溶液をメタノール(4800質量部)、水(1200質量部)からなる混合溶媒に滴下することにより、重合溶液中のビニル重合体を単離して、重合体C-1を得た。得られた重合体C-1のモノマー組成を仕込み量とGC測定によるモノマー消費量とから計算した結果、重合体C-1は、MMA 80質量%及びIBXMA 20質量%からなり、Mw=6700、Mn=4370、Mw/Mn=1.53であった。Tgは108℃であった。
1. 1. Synthesis of Vinyl Polymer [Synthesis Example 1] Production of Polymer C-1 In a four-necked flask with an internal volume of 1 liter, butyl acetate (200 parts by mass) and dimethyl-2,2'-azobis (2-methylpropio) Nate) (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-601") (0.9 parts by mass) was charged with a mixed solution, and this mixed solution was sufficiently degassed by bubbling nitrogen gas to form the mixed solution. The internal temperature was raised to 90 ° C. Separately, methyl methacrylate (hereinafter referred to as "MMA") (165 parts by mass), isobornyl methacrylate (hereinafter referred to as "IBXMA") (44 parts by mass), V-601 (17 parts by mass), and butyl acetate (90 parts by mass). Polymerization was carried out by dropping a mixed solution consisting of (part by mass) from the dropping funnel into the flask over 5 hours. After completion of the dropping, the polymerization solution was added dropwise to a mixed solvent consisting of methanol (4800 parts by mass) and water (1200 parts by mass) to isolate the vinyl polymer in the polymerization solution to obtain the polymer C-1. .. As a result of calculating the monomer composition of the obtained polymer C-1 from the charged amount and the monomer consumption by GC measurement, the polymer C-1 was composed of 80% by mass of MMA and 20% by mass of IBXMA, and Mw = 6700. It was Mn = 4370 and Mw / Mn = 1.53. Tg was 108 ° C.
〔合成例2〕重合体C-2の製造
 初期仕込みを酢酸ブチル(90質量部)とV-601(1.7質量部)に変更し、滴下する混合液をMMA(80質量部)、メタクリル酸-1-アダマンチル(以下「ADMAという」)(63質量部)、V-601(33質量部)及び酢酸ブチル(90質量部)に変更した以外は合成例1と同じ操作を行い、ビニル重合体C-2を得た。
〔合成例3〕重合体C-3の製造
 初期仕込みを酢酸ブチル(200質量部)とV-601(7.5質量部)に変更し、滴下する混合液をMMA(114質量部)、IBXMA(140質量部)、V-601(121質量部)及び酢酸ブチル(90質量部)に変更した以外は合成例1と同じ操作を行い、ビニル重合体C-3を得た。
[Synthesis Example 2] Production of Polymer C-2 The initial charge is changed to butyl acetate (90 parts by mass) and V-601 (1.7 parts by mass), and the mixed solution to be dropped is MMA (80 parts by mass) and methacryl. The same operation as in Synthesis Example 1 was performed except that the acid-1-adamantyl (hereinafter referred to as "ADAM") (63 parts by mass), V-601 (33 parts by mass) and butyl acetate (90 parts by mass) were changed to vinyl weight. Combined C-2 was obtained.
[Synthesis Example 3] Production of Polymer C-3 The initial charge was changed to butyl acetate (200 parts by mass) and V-601 (7.5 parts by mass), and the mixed solution to be dropped was MMA (114 parts by mass) and IBXMA. The same operation as in Synthesis Example 1 was carried out except that the components were changed to (140 parts by mass), V-601 (121 parts by mass) and butyl acetate (90 parts by mass) to obtain a vinyl polymer C-3.
〔合成例4〕重合体C-4の製造
 初期仕込みを酢酸ブチル(200質量部)とV-601(0.9質量部)に変更し、滴下する混合液をMMA(60質量部)、IBXMA(166質量部)、V-601(18質量部)及び酢酸ブチル(90質量部)に変更した以外は合成例1と同じ操作を行い、ビニル重合体C-4を得た。
〔合成例5〕重合体C-5の製造
 初期仕込みを酢酸ブチル(280質量部)とV-601(0.3質量部)に変更し、滴下する混合液をMMA(180質量部)、IBXMA(46質量部)、V-601(6.2質量部)及び酢酸ブチル(90質量部)に変更した以外は合成例1と同じ操作を行い、ビニル重合体C-5を得た。
[Synthesis Example 4] Production of Polymer C-4 The initial charge is changed to butyl acetate (200 parts by mass) and V-601 (0.9 parts by mass), and the mixed solution to be dropped is MMA (60 parts by mass), IBXMA. The same operation as in Synthesis Example 1 was carried out except that the components were changed to (166 parts by mass), V-601 (18 parts by mass) and butyl acetate (90 parts by mass) to obtain a vinyl polymer C-4.
[Synthesis Example 5] Production of Polymer C-5 The initial charge is changed to butyl acetate (280 parts by mass) and V-601 (0.3 parts by mass), and the mixed solution to be dropped is MMA (180 parts by mass), IBXMA. The same operation as in Synthesis Example 1 was carried out except that the components were changed to (46 parts by mass), V-601 (6.2 parts by mass) and butyl acetate (90 parts by mass) to obtain a vinyl polymer C-5.
〔合成例6〕重合体C-6の製造
 初期仕込みを酢酸ブチル(135質量部)とV-601(2.2質量部)に変更し、滴下する混合液をMMA(100質量部)、メタクリル酸ジシクロペンタニル(以下「DCPという」)(79質量部)、V-601(41質量部)及び酢酸ブチル(90質量部)に変更した以外は合成例1と同じ操作を行い、ビニル重合体C-6を得た。
〔合成例7〕重合体C-7の製造
 初期仕込みを酢酸ブチル(203質量部)とV-601(4.1質量部)に変更し、滴下する混合液をMMA(168質量部)、IBXMA(83質量部)、V-601(78質量部)及び酢酸ブチル(90質量部)に変更した以外は合成例1と同じ操作を行い、ビニル重合体C-7を得た。
[Synthesis Example 6] Production of Polymer C-6 The initial charge is changed to butyl acetate (135 parts by mass) and V-601 (2.2 parts by mass), and the mixed solution to be dropped is MMA (100 parts by mass) and methacryl. The same operation as in Synthesis Example 1 was performed except that the components were changed to dicyclopentanyl acid (hereinafter referred to as “DCP”) (79 parts by mass), V-601 (41 parts by mass) and butyl acetate (90 parts by mass), and the vinyl weight was increased. Combined C-6 was obtained.
[Synthesis Example 7] Production of Polymer C-7 The initial charge was changed to butyl acetate (203 parts by mass) and V-601 (4.1 parts by mass), and the mixed solution to be dropped was MMA (168 parts by mass) and IBXMA. The same operation as in Synthesis Example 1 was carried out except that the components were changed to (83 parts by mass), V-601 (78 parts by mass) and butyl acetate (90 parts by mass) to obtain a vinyl polymer C-7.
〔合成例8〕重合体C-8の製造
 初期仕込みを酢酸ブチル(280質量部)とV-601(0.3質量部)に変更し、滴下する混合液をMMA(233質量部)、IBXMA(26質量部)、V-601(5.1質量部)及び酢酸ブチル(90質量部)に変更した以外は合成例1と同じ操作を行い、ビニル重合体C-8を得た。
〔合成例9〕重合体C-9の製造
 初期仕込みを酢酸ブチル(221質量部)とV-601(3.2質量部)に変更し、滴下する混合液をMMA(34質量部)、メタクリル酸n-ブチル(以下「BMA」という)(215質量部)、V-601(60質量部)及び酢酸ブチル(90質量部)に変更した以外は合成例1と同じ操作を行い、ビニル重合体C-9を得た。
 重合体C-1~C-9の分析結果を表1に示す。
[Synthesis Example 8] Production of Polymer C-8 The initial charge was changed to butyl acetate (280 parts by mass) and V-601 (0.3 parts by mass), and the mixed solution to be dropped was MMA (233 parts by mass) and IBXMA. The same operation as in Synthesis Example 1 was carried out except that the components were changed to (26 parts by mass), V-601 (5.1 parts by mass) and butyl acetate (90 parts by mass) to obtain a vinyl polymer C-8.
[Synthesis Example 9] Production of Polymer C-9 The initial charge is changed to butyl acetate (221 parts by mass) and V-601 (3.2 parts by mass), and the mixed solution to be dropped is MMA (34 parts by mass) and methacryl. The same operation as in Synthesis Example 1 was carried out except that the components were changed to n-butyl acid (hereinafter referred to as "BMA") (215 parts by mass), V-601 (60 parts by mass) and butyl acetate (90 parts by mass) to obtain a vinyl polymer. Obtained C-9.
The analysis results of the polymers C-1 to C-9 are shown in Table 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1中のモノマーの略称は以下の通りである。
MMA:メタクリル酸メチル
IBXMA:メタクリル酸イソボルニル
ADMA:メタクリル酸-1-アダマンチル
DCP:メタクリル酸ジシクロペンタニル
BMA:メタクリル酸n-ブチル
The abbreviations of the monomers in Table 1 are as follows.
MMA: Methyl Methacrylate IBXMA: Isobornyl Methacrylic Acid ADMA: -1-adamantyl Methacrylic Acid DCP: Dicyclopentanyl Methacrylate BMA: n-Butyl Methacrylate
2.重合体ブロック(A)の合成
[合成例10]重合体ブロックA-1の製造
 攪拌機、温度計を装着した1Lフラスコに、RAFT剤としてジベンジルトリチオカーボネート(以下、「DBTTC」という)(1.91質量部)、重合開始剤として2,2’-アゾビス(2-メチルブチロニトリル)(以下、「ABN-E」という)(0.25質量部)、単量体としてスチレン(以下、「St」という)(38質量部)、及びN-フェニルマレイミド(以下、「PhMI」という)(62質量部)、溶媒として酢酸エチル(233質量部)を仕込み、窒素バブリングで十分脱気し、70℃の恒温槽で重合を開始した。2時間後、室温まで冷却して反応を停止した。上記重合溶液をメタノールから再沈殿精製、真空乾燥することで重合体ブロックA-1を得た。得られた重合体ブロックA-1は、Mw=14,400、Mn=10,900、Mw/Mn=1.32、Tg=206℃であった(表4参照)。
2. 2. Synthesis of Polymer Block (A) [Synthesis Example 10] Production of Polymer Block A-1 Dibenzyltrithiocarbonate (hereinafter referred to as "DBTTC") (hereinafter referred to as "DBTTC") as a RAFT agent in a 1 L flask equipped with a stirrer and a thermometer (1). .91 parts by mass), 2,2'-azobis (2-methylbutyronitrile) (hereinafter referred to as "ABN-E") (0.25 parts by mass) as a polymerization initiator, styrene as a monomer (hereinafter, "St") (38 parts by mass), N-phenylmaleimide (hereinafter referred to as "PhMI") (62 parts by mass), and ethyl acetate (233 parts by mass) as a polymer were charged and sufficiently degassed by nitrogen bubbling. Polymerization was started in a constant temperature bath at 70 ° C. After 2 hours, the reaction was stopped by cooling to room temperature. The above polymerization solution was reprecipitated and purified from methanol and vacuum dried to obtain polymer block A-1. The obtained polymer block A-1 had Mw = 14,400, Mn = 10,900, Mw / Mn = 1.32, and Tg = 206 ° C. (see Table 4).
〔合成例11~15〕重合体ブロックA-2~A-6の製造
 フラスコに仕込む原料の種類及び仕込み量、並びに反応条件を表2に記載の通りに変更した以外は、合成例10と同様の操作を行い、重合体ブロックA-2~A-6を得た。各重合体ブロックの分析結果を表4、5に示す。
[Synthesis Examples 11 to 15] Production of Polymer Blocks A-2 to A-6 Same as Synthesis Example 10 except that the types and amounts of raw materials charged into the flask and the reaction conditions were changed as shown in Table 2. The same operation was carried out to obtain polymer blocks A-2 to A-6. The analysis results of each polymer block are shown in Tables 4 and 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2中のモノマー、RAFT剤及び開始剤の略称は以下の通りである。
PhMI:N-フェニルマレイミド
St:スチレン
HEMA:メタクリル酸2-ヒドロキシエチル
DBTTC:ジベンジルトリチオカーボネート
ABN-E:2,2’-アゾビス(2-メチルブチロニトリル)
V-65:2,2’-アゾビス(2,4-ジメチルバレロニトリル)
The abbreviations for the monomers, RAFT agents and initiators in Table 2 are as follows.
PhMI: N-Phenylmaleimide St: Styrene HEMA: 2-Hydroxyethyl methacrylate DBTTC: Dibenzyltrithiocarbonate ABN-E: 2,2'-azobis (2-methylbutyronitrile)
V-65: 2,2'-azobis (2,4-dimethylvaleronitrile)
3.ブロック共重合体の合成
[合成例16]ブロック共重合体P-1の製造
 攪拌機、温度計を装着した1Lフラスコに、得られた重合体ブロックA-1(7質量部)、重合開始剤としてABN-E(0.013質量部)、単量体としてアクリル酸2-メトキシエチル(以下、「MEA」という)(78質量部)、アクリル酸n-ブチル(以下、「n-BA」という)(17質量部)、及びアクリル酸2-ヒドロキシエチル(以下、「HEA」という)(5質量部)、溶媒として酢酸エチル(60質量部)を仕込み、窒素バブリングで十分脱気し、70℃の恒温槽で重合を開始した。6時間後、室温まで冷却し、酢酸エチルを追加することで固形分濃度が30質量%になるように調整し、重合体ブロック(A)と重合体ブロック(B)と重合体ブロック(A)とからなる(ABA)型のトリブロック共重合体を含む粘着剤溶液を得た。得られたブロック共重合体P-1は、Mw=232,000、Mn=144,000、Mw/Mn=1.61であった。重合体ブロック(B)のTgは-35℃であった。
3. 3. Synthesis of Block Copolymer [Synthesis Example 16] Production of Block Copolymer P-1 In a 1 L flask equipped with a stirrer and a thermometer, the obtained polymer block A-1 (7 parts by mass) was used as a polymerization initiator. ABN-E (0.013 parts by mass), 2-methoxyethyl acrylate (hereinafter referred to as "MEA") (78 parts by mass) as a monomer, n-butyl acrylate (hereinafter referred to as "n-BA"). (17 parts by mass), 2-hydroxyethyl acrylate (hereinafter referred to as "HEA") (5 parts by mass), and ethyl acetate (60 parts by mass) as a polymer were charged, sufficiently degassed by nitrogen bubbling, and heated to 70 ° C. Polymerization was started in a constant temperature bath. After 6 hours, the mixture was cooled to room temperature, and the solid content concentration was adjusted to 30% by mass by adding ethyl acetate, and the polymer block (A), the polymer block (B), and the polymer block (A) were adjusted. A pressure-sensitive adhesive solution containing a (ABA) type triblock copolymer composed of (ABA) was obtained. The obtained block copolymer P-1 had Mw = 232,000, Mn = 144,000, and Mw / Mn = 1.61. The Tg of the polymer block (B) was −35 ° C.
〔合成例17~28〕ブロック共重合体P-2~P-13の製造
 フラスコに仕込む原料の種類及び仕込み量、並びに反応条件を表3に記載の通りに変更した以外は、合成例16と同様の操作を行い、ブロック共重合体P-2~P-13を得た。各ブロック共重合体の分析結果を表4、5に示す。
[Synthesis Examples 17 to 28] Production of Block Copolymers P-2 to P-13 With the exception of Synthesis Example 16 except that the types and amounts of raw materials to be charged into the flask and the reaction conditions were changed as shown in Table 3. The same operation was carried out to obtain block copolymers P-2 to P-13. The analysis results of each block copolymer are shown in Tables 4 and 5.
4.ランダム共重合体の合成
〔合成例29〕ランダム共重合体P-14の製造
 内容積2リットルの4つ口フラスコに、MEA(78質量部)、n-BA(17質量部)、HEA(5質量部)、及び酢酸エチル(185質量部)を仕込み、この混合液を窒素ガスのバブリングにより十分に脱気し、混合液の内温を40℃に昇温し、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製、V-65)(0.047質量部)を仕込み、重合を開始した。5時間後、酢酸エチルを固形分濃度30%になるように追加して、ランダム共重合体P-14の酢酸エチル溶液を得た。得られたランダム共重合体P-14は、MEA78質量%、BA17質量%、HEA5質量%からなり、Mw=572,000、Mn=160,000、Mw/Mn=3.58であった。Tgは-35℃であった。ランダム共重合体P-14の分析結果を表6に示す。
4. Synthesis of Random Copolymer [Synthesis Example 29] Production of Random Copolymer P-14 MEA (78 parts by mass), n-BA (17 parts by mass), HEA (5 by mass) in a four-necked flask with an internal volume of 2 liters. (Parts by mass) and ethyl acetate (185 parts by mass) were charged, the mixed solution was sufficiently degassed by bubbling with nitrogen gas, the internal temperature of the mixed solution was raised to 40 ° C., and 2,2'-azobis (2,2'-azobis) ( 2,4-Dimethylvaleronitrile) (manufactured by Wako Pure Chemical Industries, Ltd., V-65) (0.047 parts by mass) was charged and polymerization was started. After 5 hours, ethyl acetate was added to a solid content concentration of 30% to obtain an ethyl acetate solution of the random copolymer P-14. The obtained random copolymer P-14 consisted of 78% by mass of MEA, 17% by mass of BA, and 5% by mass of HEA, and had Mw = 572,000, Mn = 160,000, and Mw / Mn = 3.58. Tg was −35 ° C. The analysis results of the random copolymer P-14 are shown in Table 6.
〔合成例30、31〕ランダム共重合体P-15、P-16の製造
 フラスコに仕込む原料の種類及び仕込み量を表3に記載の通りに変更した以外は、合成例29と同様の操作を行い、ランダム共重合体P-15、P-16を得た。各ランダム共重合体の分析結果を表6に併せて示す。
[Synthesis Examples 30 and 31] Production of Random Copolymers P-15 and P-16 The same operation as in Synthesis Example 29 was performed except that the types and amounts of the raw materials charged in the flask were changed as shown in Table 3. This was carried out to obtain random copolymers P-15 and P-16. The analysis results of each random copolymer are also shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
5.粘着剤組成物の製造及び評価
〔実施例1〕
 上記合成例1で得られたビニル重合体C-1を酢酸エチルに溶解させ、固形分濃度30質量%の重合体C-1溶液を調製した。この重合体C-1溶液(4質量部)、上記合成例8で得られた固形分濃度30質量%のブロック共重合体P-1溶液(100質量部)を混合し、粘着剤組成物を得た。
5. Production and Evaluation of Adhesive Composition [Example 1]
The vinyl polymer C-1 obtained in Synthesis Example 1 was dissolved in ethyl acetate to prepare a polymer C-1 solution having a solid content concentration of 30% by mass. The polymer C-1 solution (4 parts by mass) and the block copolymer P-1 solution (100 parts by mass) obtained in Synthesis Example 8 having a solid content concentration of 30% by mass are mixed to obtain a pressure-sensitive adhesive composition. Obtained.
 この粘着剤組成物を、厚さ50μmのPET製セパレーター上に、乾燥後の粘着剤層の厚みが50±2.0μmとなるように塗布した。粘着剤組成物を80℃で4分間乾燥することで酢酸エチルを除去し、上記セパレーターとは剥離力の異なる厚さ38μmのPET製セパレーターを貼り合わせて、40℃で5日間静置して熟成(エージング)することにより、両面セパレーター付き粘着フィルム試料を得た。得られた粘着フィルム試料につき、次に示す方法により各種測定及び評価を行った。測定及び評価の結果を表4に示す。 This pressure-sensitive adhesive composition was applied onto a PET separator having a thickness of 50 μm so that the thickness of the pressure-sensitive adhesive layer after drying was 50 ± 2.0 μm. Ethyl acetate is removed by drying the pressure-sensitive adhesive composition at 80 ° C. for 4 minutes, a PET separator having a thickness of 38 μm, which has a different peeling power from the above separator, is attached, and the mixture is allowed to stand at 40 ° C. for 5 days for aging. By (aging), an adhesive film sample with a double-sided separator was obtained. The obtained adhesive film sample was subjected to various measurements and evaluations by the following methods. The results of measurement and evaluation are shown in Table 4.
<粘着剤溶液の粘度測定>
 上記の粘着剤組成物をエチルメチルケトンで希釈して固形分濃度25%の粘着剤溶液を調製し、B型粘度計を使用して、25℃で粘度(mPa・s)を測定した。
<ゲル分率>
 粘着フィルム試料から粘着剤を0.2g採取し、粘着剤の初期質量W1を秤量した。その粘着剤を50gの酢酸エチルに浸漬し、室温で16時間静置した。その後、200メッシュ金網でろ過し、メッシュに残った残分を80℃で3時間乾燥し、秤量した。初期質量W1に対する残分の質量W2の比率から粘着剤層のゲル分率(%)を算出した。
ゲル分率(%)=(W2/W1)×100
<Viscosity measurement of adhesive solution>
The above pressure-sensitive adhesive composition was diluted with ethyl methyl ketone to prepare a pressure-sensitive adhesive solution having a solid content concentration of 25%, and the viscosity (mPa · s) was measured at 25 ° C. using a B-type viscometer.
<Gel fraction>
0.2 g of the pressure-sensitive adhesive was collected from the pressure-sensitive adhesive film sample, and the initial mass W1 of the pressure-sensitive adhesive was weighed. The pressure-sensitive adhesive was immersed in 50 g of ethyl acetate and allowed to stand at room temperature for 16 hours. Then, the mixture was filtered through a 200 mesh wire mesh, and the residue remaining on the mesh was dried at 80 ° C. for 3 hours and weighed. The gel fraction (%) of the pressure-sensitive adhesive layer was calculated from the ratio of the residual mass W2 to the initial mass W1.
Gel fraction (%) = (W2 / W1) x 100
<110℃における貯蔵弾性率測定>
 50μm厚の粘着フィルム試料を0.8mm厚になるまで積層し、評価用粘着剤シートを得た。これを直径8mmの円状に打ち抜き、ずり粘弾性装置(アントンパール社製、Physica MCR-301)を用いて、-50℃から150℃まで2℃/minで昇温しながら、周波数1Hz、ひずみ0.1%で動的粘弾性を測定し、110℃のせん断貯蔵弾性率を読み取った。なお、測定には8mmφのパラレルプレートを使用した。
<Measurement of storage elastic modulus at 110 ° C>
A 50 μm thick pressure-sensitive adhesive film sample was laminated until the thickness became 0.8 mm to obtain an evaluation pressure-sensitive adhesive sheet. This is punched into a circle with a diameter of 8 mm, and a strain is applied at a frequency of 1 Hz while raising the temperature from -50 ° C to 150 ° C at 2 ° C / min using a shear viscoelastic device (Physica MCR-301 manufactured by Anton Pearl). Dynamic viscoelasticity was measured at 0.1% and the shear storage modulus at 110 ° C. was read. A parallel plate of 8 mmφ was used for the measurement.
<ABS板に対する剥離強度試験>
 粘着フィルム試料を易接着処理したPETフィルム(100μm)に転写して評価用の粘着剤シートを得た。被着体をABS板(TP技研社製、2mm厚)とし、上記評価用の粘着剤シートを貼り合わせ、精密加熱加圧装置(新東工業社製)を用いて、0.8MPa、120℃の条件下で20秒間圧着した。その後、恒温槽付き引張試験機ストログラフR型(東洋精機社製)を用いて、温度23℃、剥離速度300mm/minの条件で、JIS Z-0237「粘着テープ・粘着シート試験方法」に準じて粘着剤シートの180°剥離強度(N/25mm)を測定した。
 また剥離強度試験の温度を23℃から80℃に変更した以外は上記と同様の操作を行い、粘着剤シートの180°剥離強度(N/25mm)を測定した。
<Peeling strength test for ABS plate>
The pressure-sensitive adhesive film sample was transferred to a PET film (100 μm) that had been easily bonded to obtain a pressure-sensitive adhesive sheet for evaluation. The adherend is an ABS plate (manufactured by TP Giken Co., Ltd., 2 mm thick), the above-mentioned adhesive sheet for evaluation is attached, and a precision heating and pressurizing device (manufactured by Shinto Kogyo Co., Ltd.) is used at 0.8 MPa, 120 ° C. It was crimped for 20 seconds under the conditions of. After that, using a tensile tester Strograph R type (manufactured by Toyo Seiki Co., Ltd.) with a constant temperature bath, the temperature is 23 ° C. and the peeling speed is 300 mm / min, according to JIS Z-0237 "Adhesive Tape / Adhesive Sheet Test Method". The 180 ° peel strength (N / 25 mm) of the adhesive sheet was measured.
Further, the same operation as described above was performed except that the temperature of the peel strength test was changed from 23 ° C to 80 ° C, and the 180 ° peel strength (N / 25 mm) of the pressure-sensitive adhesive sheet was measured.
<冷熱サイクル特性試験(温度変化に対する耐久性試験)>
 5cm×6cmの粘着フィルム試料に塩化ビニル製加飾フィルム(日本ウェーブロック社製、200μm厚)を貼り合わせ、粘着剤層付き加飾フィルムを作製した。この粘着剤層付き加飾フィルムを延伸率200%で引き延ばしながらABS板に貼り合わせ成形した。ABS板への加飾フィルムの貼り合わせは、真空圧空成形機(ナビタス社製、NATS-0612B型)を用いて、フィルム加熱温度120℃、圧空0.2MPaの条件で行った。その後、成形された加飾フィルムにカッターでクロスカットを入れ、80℃/-30℃の冷熱サイクルを30サイクル(各温度での保持時間は30分)行った。冷熱サイクルの終了後、クロスカット部分の外観を目視で確認し、以下の基準に従って評価した。
◎:加飾フィルムの剥がれ又はズレが0.5mm以下
○:加飾フィルムの剥がれ又はズレが0.5mmよりも大きく1mm以下
△:加飾フィルムの剥がれ又はズレが1mmよりも大きく2mm以下
×:加飾フィルムの剥がれ又はズレが2mmよりも大きい
<Cold heat cycle characteristic test (durability test against temperature change)>
A vinyl chloride decorative film (manufactured by Nippon Wave Rock Co., Ltd., 200 μm thick) was attached to a 5 cm × 6 cm pressure-sensitive adhesive film sample to prepare a decorative film with an adhesive layer. This decorative film with an adhesive layer was stretched at a stretch ratio of 200% and bonded to an ABS plate for molding. The decorative film was bonded to the ABS plate using a vacuum compressed air molding machine (NATS-0612B type manufactured by Navitas) under the conditions of a film heating temperature of 120 ° C. and a compressed air of 0.2 MPa. Then, a cross cut was made in the molded decorative film with a cutter, and a cooling / heating cycle of 80 ° C./-30 ° C. was performed for 30 cycles (holding time at each temperature was 30 minutes). After the end of the cooling cycle, the appearance of the cross-cut portion was visually confirmed and evaluated according to the following criteria.
⊚: Peeling or misalignment of the decorative film is 0.5 mm or less ○: Peeling or misalignment of the decorative film is greater than 0.5 mm and 1 mm or less Δ: Peeling or misalignment of the decorative film is greater than 1 mm and 2 mm or less ×: Peeling or misalignment of decorative film is larger than 2 mm
<耐熱性試験>
 粘着フィルム試料に塩化ビニル製加飾フィルム(日本ウェーブロック社製、200μm厚)を貼り合わせ、粘着剤層付き加飾フィルムを作製した。この粘着剤層付き加飾フィルムを延伸率200%で引き延ばしながらABS板に貼り合わせ成形した。ABS板への加飾フィルムの貼り合わせは、真空圧空成形機(ナビタス社製、NATS-0612B型)を用いて、フィルム加熱温度120℃、圧空0.2MPaの条件で行った。その後、成形された加飾フィルムにカッターでクロスカットを入れ、110℃で15時間放置した。時間経過後、クロスカット部分の外観を目視で確認し、以下の基準に沿って評価した。
◎:加飾フィルムの剥がれ又はズレが0.5mm以下
○:加飾フィルムの剥がれ又はズレが0.5mmよりも大きく1mm以下
△:加飾フィルムの剥がれ又はズレが1mmよりも大きく2mm以下
×:加飾フィルムの剥がれ又はズレが2mmよりも大きい
<Heat resistance test>
A vinyl chloride decorative film (manufactured by Nippon Wave Rock Co., Ltd., 200 μm thickness) was attached to the adhesive film sample to prepare a decorative film with an adhesive layer. This decorative film with an adhesive layer was stretched at a stretch ratio of 200% and bonded to an ABS plate for molding. The decorative film was bonded to the ABS plate using a vacuum compressed air molding machine (NATS-0612B type manufactured by Navitas) under the conditions of a film heating temperature of 120 ° C. and a compressed air of 0.2 MPa. Then, a cross cut was put into the molded decorative film with a cutter, and the mixture was left at 110 ° C. for 15 hours. After a lapse of time, the appearance of the cross-cut portion was visually confirmed and evaluated according to the following criteria.
⊚: Peeling or misalignment of the decorative film is 0.5 mm or less ○: Peeling or misalignment of the decorative film is greater than 0.5 mm and 1 mm or less Δ: Peeling or misalignment of the decorative film is greater than 1 mm and 2 mm or less ×: Peeling or misalignment of decorative film is larger than 2 mm
〔実施例2~27及び比較例1~8〕
 実施例1において、ビニル重合体及び共重合体の種類及び配合割合を表4~6に示すように代えて粘着剤組成物を調製した。なお、実施例10~27及び比較例7については、架橋剤としてタケネートD-110N(固形分濃度75質量%、三井化学社製)を、表4~6に記載の固形分濃度比(すなわち、ブロック共重合体又はランダム共重合体の固形分100質量部に対する、架橋剤(固形分)の割合)となるように添加した。また、得られた粘着剤組成物を用いて、実施例1と同様の測定及び評価を行った。測定及び評価の結果を表4~6に示す。
[Examples 2 to 27 and Comparative Examples 1 to 8]
In Example 1, a pressure-sensitive adhesive composition was prepared by substituting the types and blending ratios of the vinyl polymer and the copolymer as shown in Tables 4 to 6. In Examples 10 to 27 and Comparative Example 7, Takenate D-110N (solid content concentration 75% by mass, manufactured by Mitsui Kagaku Co., Ltd.) was used as a cross-linking agent, and the solid content concentration ratios shown in Tables 4 to 6 (that is, that is, It was added so as to be the ratio of the cross-linking agent (solid content) to 100 parts by mass of the solid content of the block copolymer or the random copolymer. Moreover, the same measurement and evaluation as in Example 1 were carried out using the obtained pressure-sensitive adhesive composition. The results of measurement and evaluation are shown in Tables 4-6.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表4~6中のモノマーの略称及び架橋剤の詳細は以下の通りである。
PhMI:N-フェニルマレイミド
St:スチレン
HEMA:メタクリル酸2-ヒドロキシエチル
MEA:アクリル酸2-メトキシエチル
n-BA:アクリル酸n-ブチル
MA:アクリル酸メチル
HEA:アクリル酸2-ヒドロキシエチル
架橋剤:三井化学社製タケネートD-110N(イソシアネート系架橋剤、固形分濃度75質量%)
The abbreviations of the monomers and the details of the cross-linking agent in Tables 4 to 6 are as follows.
PhMI: N-Phenylmaleimide St: Styrene HEMA: 2-Hydroxyethyl methacrylate MEA: 2-Methyl acrylate n-BA: n-butyl acrylate MA: Methyl acrylate HEA: 2-Hydroxyethyl acrylate Crosslinker: Takenate D-110N manufactured by Mitsui Chemicals, Inc. (isocyanate-based cross-linking agent, solid content concentration 75% by mass)
 表4~6に示すように、実施例1~27はいずれも、25%粘着剤組成物の粘度が8000mPa・s以下と低粘度でありながら、ABS板に対する80℃の剥離強度は10N/25mm以上と高く、高温条件下での接着性が良好であった。また、実施例1~27は、加飾フィルムを貼り合わせた後の冷熱サイクル特性及び110℃耐熱性の評価が「◎」、「○」又は「△」であり、良好であった。特に、架橋剤を配合した実施例10~27は、ABS板に対する80℃での剥離強度、冷熱サイクル特性及び110℃耐熱性が良化し、優れた特性を示した。 As shown in Tables 4 to 6, in each of Examples 1 to 27, the viscosity of the 25% pressure-sensitive adhesive composition was as low as 8000 mPa · s or less, but the peel strength at 80 ° C. with respect to the ABS plate was 10 N / 25 mm. The above was high, and the adhesiveness under high temperature conditions was good. Further, in Examples 1 to 27, the evaluation of the cold heat cycle characteristics and the 110 ° C. heat resistance after the decorative film was bonded was "◎", "○" or "Δ", which were good. In particular, Examples 10 to 27 containing the cross-linking agent improved the peel strength at 80 ° C., the thermal cycle characteristics and the heat resistance at 110 ° C. with respect to the ABS plate, and showed excellent characteristics.
 これに対し、Tgが30~200℃かつMnが500~10,000であるビニル重合体(C)を含まない比較例1及び2、ビニル重合体のMnが10,000よりも大きい比較例3、並びにビニル重合体のTgが30℃未満である比較例4は、ABS板に対する80℃での剥離強度が実施例1~27よりも低かった。また、比較例1~4は、冷熱サイクル特性及び110℃耐熱性がいずれも「×」の評価であった。
 また、ブロック共重合体の代わりにランダム共重合体を含む比較例5~8は、冷熱サイクル特性及び110℃での耐熱性の少なくとも一方が「×」の評価であった。
On the other hand, Comparative Examples 1 and 2 containing no vinyl polymer (C) having a Tg of 30 to 200 ° C. and a Mn of 500 to 10,000, and Comparative Example 3 in which the Mn of the vinyl polymer was larger than 10,000. In Comparative Example 4 in which the Tg of the vinyl polymer was less than 30 ° C., the peel strength at 80 ° C. with respect to the ABS plate was lower than that in Examples 1 to 27. Further, in Comparative Examples 1 to 4, both the thermal cycle characteristics and the 110 ° C. heat resistance were evaluated as “x”.
Further, in Comparative Examples 5 to 8 in which the random copolymer was contained instead of the block copolymer, at least one of the cold cycle characteristics and the heat resistance at 110 ° C. was evaluated as "x".
 以上の結果から、本開示の粘着剤組成物によれば、低粘度化を図りながら、高温条件下での接着性が高く、かつ耐熱性及び温度変化に対する耐久性が高い粘着剤層を形成することができることが明らかとなった。 From the above results, according to the pressure-sensitive adhesive composition of the present disclosure, a pressure-sensitive adhesive layer having high adhesiveness under high temperature conditions and high heat resistance and durability against temperature changes is formed while reducing the viscosity. It became clear that it could be done.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples. The present disclosure also includes various variations and variations within a uniform range. In addition, various combinations and forms, as well as other combinations and forms containing only one element, more, or less, are within the scope and scope of the present disclosure.

Claims (11)

  1.  重合体ブロック(A)及び(メタ)アクリル系重合体ブロック(B)を有するブロック共重合体と、
     ビニル重合体(C)と、
    を含有し、
     前記ビニル重合体(C)は、ガラス転移温度が30℃以上200℃以下であり、かつ、数平均分子量が500以上10,000以下であり、
     前記ビニル重合体(C)の含有量が、前記ブロック共重合体100質量部に対して、0.5質量部以上60質量部以下である、加飾フィルム用粘着剤組成物。
    A block copolymer having a polymer block (A) and a (meth) acrylic polymer block (B),
    Vinyl polymer (C) and
    Contains,
    The vinyl polymer (C) has a glass transition temperature of 30 ° C. or higher and 200 ° C. or lower, and a number average molecular weight of 500 or higher and 10,000 or lower.
    A pressure-sensitive adhesive composition for a decorative film, wherein the content of the vinyl polymer (C) is 0.5 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the block copolymer.
  2.  前記重合体ブロック(A)は、ガラス転移温度が100℃以上の重合体であり、
     前記(メタ)アクリル系重合体ブロック(B)は、ガラス転移温度が-50℃以上-10℃以下の重合体である、請求項1に記載の加飾フィルム用粘着剤組成物。
    The polymer block (A) is a polymer having a glass transition temperature of 100 ° C. or higher.
    The pressure-sensitive adhesive composition for a decorative film according to claim 1, wherein the (meth) acrylic polymer block (B) is a polymer having a glass transition temperature of −50 ° C. or higher and −10 ° C. or lower.
  3.  前記重合体ブロック(A)は、芳香族ビニル化合物に由来する構造単位及びイミド基含有ビニル化合物に由来する構造単位よりなる群から選択される少なくとも1種を含む、請求項1又は2に記載の加飾フィルム用粘着剤組成物。 The polymer block (A) according to claim 1 or 2, wherein the polymer block (A) contains at least one selected from the group consisting of a structural unit derived from an aromatic vinyl compound and a structural unit derived from an imide group-containing vinyl compound. Adhesive composition for decorative films.
  4.  前記ブロック共重合体の重量平均分子量は、200,000以上700,000以下である、請求項1~3のいずれか1項に記載の加飾フィルム用粘着剤組成物。 The pressure-sensitive adhesive composition for a decorative film according to any one of claims 1 to 3, wherein the block copolymer has a weight average molecular weight of 200,000 or more and 700,000 or less.
  5.  前記ブロック共重合体は、数平均分子量に対する重量平均分子量の比で表される分子量分布(Mw/Mn)が3.5以下である、請求項1~4のいずれか1項に記載の加飾フィルム用粘着剤組成物。 The decoration according to any one of claims 1 to 4, wherein the block copolymer has a molecular weight distribution (Mw / Mn) represented by a ratio of a weight average molecular weight to a number average molecular weight of 3.5 or less. Adhesive composition for films.
  6.  架橋剤を更に含有する、請求項1~5のいずれか1項に記載の加飾フィルム用粘着剤組成物。 The pressure-sensitive adhesive composition for a decorative film according to any one of claims 1 to 5, further containing a cross-linking agent.
  7.  前記ビニル重合体(C)は、ガラス転移温度が40℃以上140℃以下であり、かつ、数平均分子量が1,000以上9,500以下である、請求項1~6のいずれか1項に記載の加飾フィルム用粘着剤組成物。 The vinyl polymer (C) has a glass transition temperature of 40 ° C. or higher and 140 ° C. or lower, and a number average molecular weight of 1,000 or higher and 9,500 or lower, according to any one of claims 1 to 6. The pressure-sensitive adhesive composition for a decorative film described.
  8.  前記ビニル重合体(C)の含有量が、前記ブロック共重合体100質量部に対して、0.5質量部以上25質量部以下である、請求項1~7のいずれか1項に記載の加飾フィルム用粘着剤組成物。 The item according to any one of claims 1 to 7, wherein the content of the vinyl polymer (C) is 0.5 parts by mass or more and 25 parts by mass or less with respect to 100 parts by mass of the block copolymer. Adhesive composition for decorative films.
  9.  前記(メタ)アクリル系重合体ブロック(B)は、(メタ)アクリル酸アルコキシエステル化合物に由来する構造単位を、前記(メタ)アクリル系重合体ブロック(B)の全単量体単位に対して20質量%以上99質量%以下含む、請求項1~8のいずれか1項に記載の加飾フィルム用粘着剤組成物。 The (meth) acrylic polymer block (B) contains structural units derived from the (meth) acrylic acid alkoxyester compound with respect to all the monomer units of the (meth) acrylic polymer block (B). The pressure-sensitive adhesive composition for a decorative film according to any one of claims 1 to 8, which comprises 20% by mass or more and 99% by mass or less.
  10.  請求項1~9のいずれか一項に記載の加飾フィルム用粘着剤組成物からなる粘着層を備える、加飾フィルム。 A decorative film comprising an adhesive layer comprising the adhesive composition for a decorative film according to any one of claims 1 to 9.
  11.  請求項10に記載の加飾フィルムが成形体に貼着された加飾成形体。 A decorative molded body to which the decorative film according to claim 10 is attached to the molded body.
PCT/JP2021/024138 2020-06-26 2021-06-25 Adhesive composition for decorative film, and use thereof WO2021261585A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020110666A JP2022007594A (en) 2020-06-26 2020-06-26 Adhesive composition for decorative film and use thereof
JP2020-110666 2020-06-26

Publications (1)

Publication Number Publication Date
WO2021261585A1 true WO2021261585A1 (en) 2021-12-30

Family

ID=79281428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/024138 WO2021261585A1 (en) 2020-06-26 2021-06-25 Adhesive composition for decorative film, and use thereof

Country Status (3)

Country Link
JP (1) JP2022007594A (en)
TW (1) TW202200648A (en)
WO (1) WO2021261585A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240109278A1 (en) * 2022-09-29 2024-04-04 Toppan Inc. Decorative sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190638A1 (en) * 2022-03-31 2023-10-05 王子ホールディングス株式会社 Adhesive composition and vacuum formation film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119619A (en) * 1995-06-07 2000-04-25 Nippon Shokubai Co Ltd Acrylic hot-melt adhesive composition
JP2016037524A (en) * 2014-08-06 2016-03-22 積水フーラー株式会社 Hot melt adhesive
JP2016065157A (en) * 2014-09-25 2016-04-28 日立化成株式会社 Adhesive composition
WO2016140285A1 (en) * 2015-03-03 2016-09-09 株式会社クラレ Decorative film
JP2019112574A (en) * 2017-12-26 2019-07-11 東亞合成株式会社 Decorative film and decorative molding having the same
WO2020004355A1 (en) * 2018-06-28 2020-01-02 東亞合成株式会社 Adhesive sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000119619A (en) * 1995-06-07 2000-04-25 Nippon Shokubai Co Ltd Acrylic hot-melt adhesive composition
JP2016037524A (en) * 2014-08-06 2016-03-22 積水フーラー株式会社 Hot melt adhesive
JP2016065157A (en) * 2014-09-25 2016-04-28 日立化成株式会社 Adhesive composition
WO2016140285A1 (en) * 2015-03-03 2016-09-09 株式会社クラレ Decorative film
JP2019112574A (en) * 2017-12-26 2019-07-11 東亞合成株式会社 Decorative film and decorative molding having the same
WO2020004355A1 (en) * 2018-06-28 2020-01-02 東亞合成株式会社 Adhesive sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240109278A1 (en) * 2022-09-29 2024-04-04 Toppan Inc. Decorative sheet

Also Published As

Publication number Publication date
TW202200648A (en) 2022-01-01
JP2022007594A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP6728356B2 (en) Block copolymers, compositions and films
US8710139B2 (en) Acrylic pressure-sensitive adhesive composition, acrylic pressure-sensitive adhesive layer, and acrylic pressure-sensitive adhesive tape
JP5959867B2 (en) Water-dispersed pressure-sensitive adhesive composition, pressure-sensitive adhesive, and pressure-sensitive adhesive sheet
US9605184B2 (en) Pressure-sensitive adhesive sheet
JP6564695B2 (en) Adhesive composition, method for producing the same, adhesive sheet and image display device
TWI732971B (en) Adhesive composition and its utilization
WO2021261585A1 (en) Adhesive composition for decorative film, and use thereof
JP2011231218A (en) Adhesive for decorative sheet and decorative sheet
JP7173144B2 (en) Decorative film and decorative molding
JPWO2018151034A1 (en) Adhesive composition and method for producing the same
JP2020176202A (en) Solvent type pressure sensitive adhesive composition and pressure sensitive adhesive sheet
CN108929639A (en) Adhesive composition used in bonding sheet and the bonding sheet
JP2007138014A (en) Adhesive sheet and decoration method using the same
JPWO2020256118A1 (en) Adhesive sheet for vacuum compressed air molding and its use
JP7230417B2 (en) Adhesive composition and its use
JP2023073503A (en) Solvent type pressure sensitive adhesive composition and pressure sensitive adhesive sheet
JPWO2020032163A1 (en) Adhesive composition and its uses
TWI789344B (en) Adhesive composition, adhesive member, optical member, and electronic member
JP7302159B2 (en) Tackifier and adhesive composition
JP2019218470A (en) Adhesive solution and adhesive sheet
JP6690761B1 (en) Adhesive and adhesive sheet
JP7375466B2 (en) Adhesive composition and laminate for fiber/elastomer bonding
JP7358932B2 (en) Adhesive composition for heating elements and its uses
JP2022143328A (en) Adhesive sheet and method for producing the same, and method for producing laminate
US20220025222A1 (en) Water-dispersed pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829282

Country of ref document: EP

Kind code of ref document: A1