WO2021261390A1 - Radio wave absorbing sheet and communication device - Google Patents

Radio wave absorbing sheet and communication device Download PDF

Info

Publication number
WO2021261390A1
WO2021261390A1 PCT/JP2021/023181 JP2021023181W WO2021261390A1 WO 2021261390 A1 WO2021261390 A1 WO 2021261390A1 JP 2021023181 W JP2021023181 W JP 2021023181W WO 2021261390 A1 WO2021261390 A1 WO 2021261390A1
Authority
WO
WIPO (PCT)
Prior art keywords
radio wave
conductor layer
dielectric layer
less
absorbing sheet
Prior art date
Application number
PCT/JP2021/023181
Other languages
French (fr)
Japanese (ja)
Inventor
直信 喜
真也 雨海
勇一 山本
太郎 石田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2021261390A1 publication Critical patent/WO2021261390A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the embodiment of the present disclosure relates to a radio wave absorbing sheet and a communication device.
  • a radio wave absorbing sheet that absorbs radio waves is used.
  • Patent Document 1 proposes that the thickness of the radio wave absorber for absorbing a radio wave of 6.4 GHz is 1005 ⁇ m to 1300 ⁇ m.
  • the embodiment of the present disclosure has been made in consideration of such a point, and an object thereof is to provide a radio wave absorbing sheet that can be easily made thinner.
  • One embodiment of the present disclosure comprises a first dielectric layer including a first surface and a second surface located on the opposite side of the first surface.
  • a second conductor layer located on the second surface is provided. It is a radio wave absorption sheet in which the occupancy rate of the first conductor layer on the first surface is 0.85 or less.
  • the dimension of the first conductor layer in the first direction may be less than 5.0 mm.
  • the thickness of the first dielectric layer may be 300 ⁇ m or less.
  • the relative permittivity of the first dielectric layer may be less than 20.
  • the dielectric loss tangent of the first dielectric layer may be 0.2 or less.
  • the thickness of the radio wave absorbing sheet may be 350 ⁇ m or less.
  • the radio wave absorption sheet according to the embodiment of the present disclosure may have a resonance frequency fr located in the range of 20 GHz or more and 110 GHz or less.
  • the first conductor layer is a circle having a radius r in a plan view.
  • the resonance frequency fr may be calculated based on the following equations (A1) and (A2).
  • c is the speed of light
  • ⁇ r is the relative permittivity of the first dielectric layer
  • h is the thickness of the first dielectric layer.
  • the ratio of N 2 R to 120 ⁇ is 0.8 or more and 1.2 or less.
  • N 2 and R may be calculated based on the following formulas (A3) and (A4).
  • P is the area of the unit cell
  • K is a constant
  • tan ⁇ is the dielectric loss tangent of the first dielectric layer.
  • the first conductor layer is a rectangle having a length L and a width W in a plan view, and the width W is a length L or less.
  • the resonance frequency fr may be calculated based on the following equations (B1), (B2), (B3), and (B4).
  • c is the speed of light
  • ⁇ r is the relative permittivity of the first dielectric layer
  • h is the thickness of the first dielectric layer.
  • the ratio of N 2 R to 120 ⁇ is 0.8 or more and 1.2 or less.
  • N 2 and R may be calculated based on the following equations (B5) and (B6).
  • P is the area of the unit cell
  • K is a constant
  • tan ⁇ is the dielectric loss tangent of the first dielectric layer.
  • the first conductor layer may include a plurality of openings.
  • the plurality of first conductor layers are a plurality of first shape layers and a plurality of second shape layers having a shape different from that of the first shape layer in a plan view. And may be included.
  • the second dielectric layer including the third surface and the fourth surface located on the opposite side of the third surface, A third conductor layer located on the fourth surface is provided.
  • the second conductor layer is located between the second surface of the first dielectric layer and the third surface of the second dielectric layer.
  • the occupancy rate of the second conductor layer on the second surface may be 0.85 or less.
  • One embodiment of the present disclosure is A communication mechanism that transmits or receives radio waves, A communication device including the above-mentioned radio wave absorbing sheet.
  • FIG. 6A It is a top view which shows one Embodiment of a radio wave absorption sheet. It is sectional drawing which shows the case where the radio wave absorption sheet of FIG. 1 is seen from the direction of II-II. It is a figure which shows the unit cell which constitutes the radio wave absorption sheet of FIG. It is a figure which shows the equivalent circuit of a radio wave absorption sheet. It is sectional drawing which shows an example of the manufacturing method of a radio wave absorption sheet. It is sectional drawing which shows an example of the manufacturing method of a radio wave absorption sheet. It is a figure which shows an example of the cross-sectional shape of the 1st conductor layer of FIG. 6A.
  • FIG. 6A It is a figure which shows an example of the cross-sectional shape of the 1st conductor layer of FIG. 6A. It is sectional drawing which shows an example of the communication apparatus provided with the electric wave absorption sheet. It is a top view which shows one Embodiment of a radio wave absorption sheet. It is a figure which shows the unit cell which constitutes the radio wave absorption sheet of FIG. It is a top view which shows one Embodiment of a radio wave absorption sheet. It is a top view which shows one Embodiment of a radio wave absorption sheet. It is a top view which shows one Embodiment of a radio wave absorption sheet. It is a top view which shows one Embodiment of a radio wave absorption sheet. It is a top view which shows one Embodiment of a radio wave absorption sheet. It is sectional drawing which shows the case where the radio wave absorption sheet of FIG.
  • radio waves in the frequency band of about 30 GHz or more and 300 GHz or less have begun to be used in various fields. Examples in the field are 5th generation mobile communication systems, mobiles, radars for collision prevention systems for automobiles, medical biosensing, and the like.
  • radio waves increases, there is concern that problems such as malfunction of electronic devices and deterioration of the communication environment will occur.
  • the radio wave absorption sheet is known as one of the products that solves these problems.
  • the radio wave absorption sheet can absorb noise and unnecessary radio waves emitted from electronic devices.
  • effects such as prevention of malfunction of electronic devices and improvement of communication environment can be expected.
  • the thickness of the conventional radio wave absorption sheet is large.
  • the radio wave absorbing sheet proposed in Patent Document 1 described above has a thickness of 1 mm or more. For this reason, it has not been easy to install a radio wave absorbing sheet in an electronic device that is required to be miniaturized and thinned. Further, in Patent Document 1, a frequency band of 6.4 GHz or less is assumed, and the frequency band of the millimeter wave band is not supported.
  • a radio wave absorption sheet that is easy to realize thinning and can correspond to the frequency band of the millimeter wave band.
  • FIG. 1 is a plan view showing an embodiment of the radio wave absorbing sheet 10.
  • FIG. 2 is a cross-sectional view showing a case where the radio wave absorbing sheet 10 of FIG. 1 is viewed from the II-II direction.
  • the radio wave absorbing sheet 10 includes a first dielectric layer 20 including a second surface 22 located on the opposite side of the first surface 21 and the first surface 21, and a plurality of first conductor layers 30 located on the first surface 21. And a second conductor layer 40 located on the second surface 22.
  • the radio wave absorbing sheet 10 absorbs radio waves incident on the radio wave absorbing sheet 10 from the first surface 21 side.
  • the radio wave absorbing sheet 10 absorbs radio waves by utilizing resonance.
  • the thickness of the radio wave absorbing sheet 10 can be made smaller than that of a conventional radio wave absorber.
  • the frequency of the radio wave targeted by the radio wave absorption sheet 10 is, for example, 20 GHz or more.
  • the frequency of the radio wave targeted by the radio wave absorbing sheet 10 is, for example, 110 GHz or less, and may be 80 GHz or less.
  • Such radio waves are used in 5th generation mobile communication systems, radar devices for automobiles, and the like.
  • the first dielectric layer 20 contains a material having an insulating property.
  • the insulating material may be an organic material or an inorganic material.
  • the insulating material may be a combination of an organic material and an inorganic material.
  • silicon oxide (SiO 2), silicon nitride (Si 3 N 4), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3), aluminum nitride (AlN), silicon carbide (SiC), Silicon nitride carbide (SiCN), carbon-added silicon oxide (SiCO), borosilicate glass, quartz glass and the like can be used.
  • Organic materials include polyimide, epoxy resin, benzocyclobutene resin, polyamide, phenol resin, fluororesin, liquid crystal polymer, polyamideimide, polybenzoxazole, cyanate resin, aramid resin, polyolefin, polyester, BT resin, polyacetal, and polybutylene. Telephthalate, syndiotactic polystyrene, polyphenylene sulfide, polyether ether ketone, polyether nitrile, polycarbonate, polyphenylene ether polysulfone, polyether sulfone, polyarylate, polyetherimide and the like can be used. Further, fibers, fillers and the like may be included in the layers of these organic materials.
  • the material of the fiber and the filler may be an insulating material such as glass, talc, mica, silicon oxide, aluminum oxide, titanium oxide, or a conductive material such as carbon or metal.
  • the material of the first dielectric layer 20 a compound or a mixture containing both an organic material and an inorganic material may be used.
  • examples are silicone resins, FR-4, FR-5 and the like.
  • the first dielectric layer 20 may have a heat resistance of about 150 ° C.
  • the glass transition point or the deflection temperature under load of the material of the first dielectric layer 20 may be 150 ° C. or higher.
  • the relative permittivity ⁇ r of the first dielectric layer 20 may be less than 20.0, may be 15.0 or less, may be 10.0 or less, and may be 5.0 or less. You may. By utilizing resonance, the first dielectric layer 20 can absorb radio waves even when the relative permittivity ⁇ r of the first dielectric layer 20 is lower than that of the conventional radio wave absorber.
  • the relative permittivity ⁇ r of the first dielectric layer 20 may be 2.0 or more, 3.0 or more, or 5.0 or more.
  • the dielectric loss tangent tan ⁇ of the first dielectric layer 20 may be 0.20 or less, 0.15 or less, 0.10 or less, or 0.05 or less. good.
  • the dielectric layer contains a filler having conductivity at a high density
  • the relative permittivity and the dielectric loss tangent of the dielectric layer increase.
  • the density of the filler is high, there may be a problem that the dielectric layer becomes brittle.
  • the distribution of the filler tends to be uneven. If the distribution of the filler becomes non-uniform, voids may be generated in the dielectric layer or the characteristics of the dielectric layer may vary.
  • the thickness h may be, for example, 300 ⁇ m or less, 250 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less.
  • the first dielectric layer 20 may be composed of a single layer or may be composed of a plurality of layers.
  • an open resonator method can be used as a method for measuring the relative permittivity ⁇ r and the dielectric loss tangent tan ⁇ of the first dielectric layer 20.
  • Measurement systems that perform the open resonator method include a network analyzer, a millimeter wave doubler, a millimeter wave detector, and a Fabry-Perot resonator.
  • the Fabry-Perot resonator FPR-40, FPR-50, FPR-60, FPR-75, PFR-90, FPR-110 and the like of Keycom Co., Ltd. can be used depending on the frequency.
  • a length measuring machine can be used, and for example, a Digimicro manufactured by Nikon Corporation can be used. If the thickness cannot be measured by the length measuring machine, the thickness of the first dielectric layer 20 may be calculated based on the image of the cross section of the sample of the radio wave absorbing sheet 10.
  • a scanning electron microscope can be used as a measuring instrument for measuring an image.
  • an insulating layer such as an adhesive layer may exist between the first surface 21 of the first dielectric layer 20 and the first conductor layer 30.
  • an insulating layer such as an adhesive layer may exist between the second surface 22 of the first dielectric layer 20 and the second conductor layer 40.
  • the interface between the first surface 21 of the first dielectric layer 20 and the first conductor layer 30 may be roughened.
  • the first surface 21 may include irregularities. This makes it possible to improve the adhesion between the first surface 21 and the first conductor layer 30.
  • Rough surface treatment includes wet etching, blasting, polishing, plating and the like.
  • the interface between the second surface 22 of the first dielectric layer 20 and the second conductor layer 40 may be roughened.
  • the second surface 22 may include irregularities.
  • the first conductor layer 30 contains a material having conductivity.
  • the first conductor layer 30 includes copper (Cu), gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), tin (Sn), aluminum (Al), and the like. It includes metals such as nickel (Ni), chromium (Cr), titanium (Ti), molybdenum (Mo), tungsten (W), and tantalum (Ta), or alloys using these.
  • the first conductor layer 30 may contain an organic conductor such as a conductive polymer, a conductive fiber such as a carbon nanotube (CNT), or the like.
  • the thickness T1 of the first conductor layer 30 may be 1 ⁇ m or more, or 5 ⁇ m or more.
  • the thickness of the first conductor layer 30 may be 50 ⁇ m or less, or 20 ⁇ m or less.
  • the first conductor layer 30 is a circle having a radius r in a plan view.
  • Plane view means to see the radio wave absorbing sheet 10 along the direction orthogonal to the in-plane direction of the first dielectric layer 20.
  • the plurality of first conductor layers 30 may be arranged in the in-plane direction of the first dielectric layer 20.
  • the plurality of first conductor layers 30 may be arranged in the first direction D1 in the first period P1.
  • the plurality of first conductor layers 30 may be arranged in the second direction D2 in the second period P2.
  • the second direction D2 is a direction different from the first direction D1, for example, a direction orthogonal to the first direction D1.
  • the first period P1 is the distance between the center points C0 of two adjacent first conductor layers 30 in the first direction D1.
  • the second period P2 is the distance between the center points C0 of the two adjacent first conductor layers 30 in the second direction D2.
  • the first period P1 and the second period P2 may be the same or different.
  • the cycles P1 and P2 are, for example, larger than 1.5 mm and may be 2.0 mm or more, or may be 2.5 mm or more.
  • the configuration of the plurality of first conductor layers 30 is determined so that resonance occurs at the frequency of the target radio wave.
  • the radius r, the periods P1 and P2 of the first conductor layer 30 are determined so that the occupancy rate of the first conductor layer 30 on the first surface 21 is 0.85 or less.
  • the occupancy rate may be 0.75 or less, 0.60 or less, 0.50 or less, or 0.30 or less.
  • the occupancy rate may be 0.05 or more, or 0.10 or more.
  • the occupancy rate may be calculated by dividing the total area of the plurality of first conductor layers 30 by the area of the region where the first conductor layers 30 are distributed.
  • the area of the region where the first conductor layer 30 is distributed may be the area of a quadrangle 35 surrounding the plurality of first conductor layers 30, as shown by reference numeral 35 in FIG. 1, for example.
  • FIG. 3 is a perspective view showing the unit cell 12.
  • the unit cell 12 includes one first conductor layer 30, a first dielectric layer 20, and a second conductor layer 40, and has an area corresponding to one first conductor layer 30.
  • the unit cell 12 is a quadrangle including a pair of first sides extending in the first direction D1 and a pair of second sides extending in the second direction D2 in a plan view.
  • the length of the first side is equal to the first period P1 and the length of the second side is equal to the second period P2.
  • the area of the unit cell 12 is P1 ⁇ P2.
  • the area of the first dielectric layer 20 is ⁇ r 2 . Therefore, the occupancy rate is ⁇ r 2 / (P1 ⁇ P2).
  • reference numeral S1 represents the dimension of the first conductor layer 30 in the first direction D1.
  • the dimension S1 is, for example, less than 5.0 mm, may be 4.0 mm or less, may be 3.0 mm or less, may be 2.0 mm or less, or may be 1.5 mm or less. It may be 1.0 mm or less.
  • Reference numeral S2 represents the dimension of the first conductor layer 30 in the second direction D2.
  • the dimension S2 is, for example, less than 5.0 mm, may be 4.0 mm or less, may be 3.0 mm or less, may be 2.0 mm or less, or may be 1.5 mm or less. It may be 1.0 mm or less. In the example shown in FIG.
  • the dimensions S1 and S2 are the diameters of the first conductor layer 30.
  • the conditions regarding the range of these dimensions may be satisfied by both dimensions S1 and S2, or may be satisfied by only one of them.
  • the dimension S1 may be less than 5.0 mm, but the dimension S2 may be 5.0 mm or more.
  • the above-mentioned conditions regarding the range of the period P1 and the period P2 may be satisfied by both the period P1 and the period P2, or may be satisfied by only one of them.
  • the second conductor layer 40 contains a material having conductivity.
  • the material exemplified by the first conductor layer 30 can be used.
  • the material of the second conductor layer 40 may be the same as or different from the material of the first conductor layer 30.
  • the thickness T2 of the second conductor layer 40 may be 1 ⁇ m or more, or 5 ⁇ m or more.
  • the thickness of the second conductor layer 40 may be 50 ⁇ m or less, or 20 ⁇ m or less.
  • the second conductor layer 40 faces the first conductor layer 30 in the thickness direction of the first dielectric layer 20. As a result, an electric field can be generated between the first conductor layer 30 and the second conductor layer 40.
  • the second conductor layer 40 may be spread so as to overlap the plurality of first conductor layers 30 in a plan view.
  • the second conductor layer 40 may be located over the entire second surface 22 of the first dielectric layer 20.
  • the second conductor layer 40 may have openings, slits, or the like.
  • the thickness of the entire radio wave absorbing sheet 10 is, for example, 350 ⁇ m or less, may be 300 ⁇ m or less, may be 250 ⁇ m or less, or may be 200 ⁇ m or less. Since the thickness h of the first dielectric layer 20 is small, the overall thickness of the radio wave absorbing sheet 10 is also small. The thickness of the entire radio wave absorbing sheet 10 may be 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, or 50 ⁇ m or more.
  • the radio wave absorbing sheet 10 By reducing the thickness of the entire radio wave absorbing sheet 10, restrictions on the installation location of the radio wave absorbing sheet 10 can be reduced. That is, the degree of freedom in the layout of the radio wave absorbing sheet 10 is increased. Further, the thermal resistance of the radio wave absorbing sheet 10 in the thickness direction can be reduced. Therefore, when the radio wave absorbing sheet 10 is installed in the electronic device, it is possible to suppress the temperature rise of the electronic component caused by the radio wave absorbing sheet 10. Thereby, for example, the radio wave absorbing sheet 10 can be installed in an electronic device including a component whose temperature rises to about 150 ° C.
  • FIG. 4 is a diagram showing an equivalent circuit of the radio wave absorption sheet 10.
  • the equivalent circuit includes a primary circuit 14, a secondary circuit 15, and a transformer 16 that connects the primary circuit 14 and the secondary circuit 15.
  • the primary circuit 14 represents a radio wave propagating in the atmosphere.
  • the primary circuit 14 has a characteristic impedance based on the permittivity of the atmosphere.
  • the secondary circuit 15 represents a resonance circuit composed of a first dielectric layer 20, a first conductor layer 30, and a second conductor layer 40.
  • Resonant circuits include, for example, resistors, capacitors and coils connected in parallel.
  • the transformer 16 is composed of a plurality of first conductor layers 30.
  • the resonance frequency fr of the resonance circuit is calculated based on the following equations (A1) and (A2).
  • c is the speed of light.
  • r eff is the effective radius of the first conductor layer 30 when the fringe effect at the end of the first conductor layer 30 is taken into consideration.
  • the frequency of the radio wave targeted by the radio wave absorbing sheet 10 is 20 GHz or more and 110 GHz or less.
  • the radio wave absorbing sheet 10 is configured so that the resonance frequency fr is 20 GHz or more and 110 GHz or less.
  • the radius r of the first conductor layer 30 is determined.
  • the radius r of the first conductor layer 30 is determined so that the resonance frequency fr becomes a desired value. As a result, the target radio wave can be absorbed by using resonance.
  • the characteristic impedance of the secondary circuit 15 is the same as or close to the characteristic impedance of the primary circuit 14.
  • the characteristic impedance of the secondary circuit 15 is N 2 R.
  • N is the turns ratio of the transformer 16.
  • R is the resonance resistance of the secondary circuit 15.
  • N 2 and R are calculated based on the following formulas (A3) and (A4).
  • P is the area of the unit cell 12.
  • K is a constant.
  • ⁇ r 2 / P in the formula (A3) represents the occupancy rate of the first conductor layer 30 on the first surface 21.
  • the formula (A3) means that the occupancy rate of the first conductor layer 30 and N 2 are in a proportional relationship.
  • the impedance of the primary circuit 14 is 120 ⁇ .
  • Wave absorbing sheet 10 is preferably arranged to N 2 R is the same as 120Pai, or approximate.
  • the dielectric loss tang tan ⁇ of the first dielectric layer 20, the radius r of the first conductor layer 30, and the area P of the unit cell 12 are set so that the ratio of N 2 R to 120 ⁇ is 0.8 or more and 1.2 or less. It is determined.
  • the area P of the unit cell 12 is set so that the ratio of N 2 R to 120 ⁇ becomes a desired value. It will be adjusted. For example, the first period P1 and the second period P2 of the first conductor layer 30 are adjusted. As a result, the radio wave absorbing sheet 10 can effectively absorb radio waves.
  • the ratio of N 2 R to 120 ⁇ may be 0.9 or more and 1.1 or less, or 0.95 or more and 1.05 or less.
  • 5 to 6B are views showing an example of a manufacturing process of the radio wave absorbing sheet 10.
  • the first dielectric layer 20 is prepared.
  • the first dielectric layer 20 may be a flexible member or a rigid member.
  • the first conductor layer 30 is formed on the first surface 21 of the first dielectric layer 20.
  • the second conductor layer 40 is formed on the second surface 22 of the first dielectric layer 20.
  • the method for forming the first conductor layer 30 and the second conductor layer 40 is not particularly limited.
  • the first conductor layer 30 and the second conductor layer 40 may be formed by a plating method, a vapor deposition method, a sputtering method, or the like.
  • the first conductor layer 30 and the second conductor layer 40 may be formed by attaching the metal foil to the first dielectric layer 20.
  • the first conductor layer 30 and the second conductor layer 40 may be formed by printing the conductive paste on the first dielectric layer 20.
  • the method for forming the first conductor layer 30 and the method for forming the second conductor layer 40 may be the same or different.
  • a patterning step of processing the first conductor layer 30 and dividing the first conductor layer 30 into the plurality of first conductor layers 30 described above is carried out.
  • a plurality of resist layers 37 are formed on the first conductor layer 30.
  • the positions of the plurality of resist layers 37 correspond to the positions of the plurality of first conductor layers 30 shown in FIGS. 1 and 2, respectively.
  • the first conductor layer 30 is processed by wet etching using the resist layer 37 as a mask.
  • FIG. 6A a plurality of first conductor layers 30 arranged in the in-plane direction of the first surface 21 can be obtained.
  • the first conductor layer 30 may include a portion whose dimensions decrease toward the first surface 21.
  • the first conductor layer 30 may include a portion whose dimensions increase toward the first surface 21.
  • the dimensions of the first conductor layer 30 may be constant regardless of the distance from the first surface 21. In any case, the dimension of the first conductor layer 30 at the position closest to the first surface 21 affects the absorption characteristics of the radio wave absorbing sheet 10. Therefore, the above-mentioned dimension S1 is measured at the position closest to the first surface 21.
  • the resist layer 37 is removed.
  • the radio wave absorbing sheet 10 including the first dielectric layer 20, the plurality of first conductor layers 30, and the second conductor layer 40 can be manufactured.
  • the thickness of the first dielectric layer 20 can be made smaller than that of the conventional radio wave absorber. Therefore, the thickness of the entire radio wave absorbing sheet 10 can be reduced. As a result, the radio wave absorbing sheet 10 becomes lighter.
  • FIG. 7 is a diagram showing an example of a communication device 100 provided with a radio wave absorbing sheet 10.
  • the communication device 100 includes a housing 110, a communication mechanism 120 located inside the housing 110 to transmit or receive radio waves, and a control mechanism 130 located inside the housing 110 to control the communication mechanism 120. To prepare for.
  • the communication mechanism 120 transmits or receives the radio wave E having the above-mentioned frequency targeted by the radio wave absorption sheet 10.
  • dotted lines with reference numerals 10A to 10F show an example of the arrangement of the radio wave absorbing sheet 10, respectively.
  • the radio wave absorbing sheet 10 may be arranged between the communication mechanism 120 and the control mechanism 130.
  • the radio wave absorbing sheet 10 may be arranged between the front surface 111 of the housing 110 and the communication mechanism 120.
  • the radio wave absorbing sheet 10 may be attached to the front surface 111 of the housing 110.
  • the radio wave absorbing sheet 10 may be arranged between the rear surface 112 of the housing 110 and the communication mechanism 120.
  • the radio wave absorbing sheet 10 may be attached to the rear surface 112 of the housing 110.
  • the radio wave absorbing sheet 10 may be attached to the side surface 113 of the housing 110.
  • the thickness of the radio wave absorbing sheet 10 is small, the degree of freedom in arranging the radio wave absorbing sheet 10 inside the housing 110 is high.
  • FIG. 8 is a plan view showing the radio wave absorbing sheet 10 according to the first modification.
  • the first conductor layer 30 may be a rectangle having a length L and a width W in a plan view.
  • the width W may be the same as the length L or may be smaller than the length L.
  • the side of the first conductor layer 30 having the length L extends in the first direction D1
  • the side of the first conductor layer 30 having the width W extends in the second direction D2. It is extended.
  • the side of the first conductor layer 30 having a length L may extend in a direction different from that of the first direction D1.
  • FIG. 9 is a perspective view showing the unit cell 12 in this modified example.
  • the unit cell 12 includes one rectangular first conductor layer 30.
  • the characteristics of the resonance circuit realized by the radio wave absorbing sheet 10 are determined based on the configuration of the unit cell 12.
  • the resonance frequency fr is calculated based on the following equations (B1), (B2), (B3), and (B4).
  • the ⁇ re (L) of the equation (B2) is calculated by substituting L for x of the equation (B3).
  • the ⁇ re (W) of the equation (B2) is calculated by substituting W for x in the equation (B3).
  • Le is the effective length of the first conductor layer 30 when the fringe effect at the end of the first conductor layer 30 is taken into consideration.
  • the frequency of the radio wave targeted by the radio wave absorbing sheet 10 is 20 GHz or more and 110 GHz or less.
  • the radio wave absorbing sheet 10 is configured so that the resonance frequency fr is 20 GHz or more and 110 GHz or less.
  • the length L and the width W of the first conductor layer 30 are determined.
  • the thickness h and the relative permittivity ⁇ r of the first dielectric layer 20 are predetermined, the length L and the width W of the first conductor layer 30 are determined so that the resonance frequency fr becomes a desired value. To. As a result, the target radio wave can be absorbed by utilizing resonance.
  • N 2 and R are calculated based on the following equations (B5) and (B6).
  • K is a constant.
  • the LW / P of the formula (B5) represents the occupancy rate of the first conductor layer 30 on the first surface 21.
  • the formula (B5) means that the occupancy rate of the first conductor layer 30 and N 2 are in a proportional relationship.
  • wave absorption sheet 10 of this modification preferably, configured so that N 2 R is the same as 120Pai, or approximate.
  • Area P is determined.
  • Area P is adjusted.
  • the radio wave absorbing sheet 10 can effectively absorb radio waves.
  • FIG. 10 is a plan view showing the radio wave absorbing sheet 10 according to the second modification.
  • the first conductor layer 30 may include a plurality of openings 33.
  • the radio wave absorbing sheet 10 becomes lighter. Further, a part of visible light can pass through the first conductor layer 30.
  • the specific configuration of the first conductor layer 30 including the opening 33 is arbitrary.
  • the first conductor layer 30 may be in the form of a so-called mesh, which is formed by combining a plurality of linear layers.
  • the second conductor layer 40 may also include a plurality of openings. As a result, a part of visible light can pass through the first conductor layer 30. When the first dielectric layer 20 is transparent, a part of visible light can pass through the radio wave absorbing sheet 10. As a result, it is possible to prevent the radio wave absorbing sheet 10 from being conspicuous.
  • FIG. 11 is a plan view showing the radio wave absorbing sheet 10 according to the third modification.
  • the shapes of the plurality of first conductor layers 30 may be different.
  • the plurality of first conductor layers 30 may include a plurality of first shape layers 31 and a plurality of second shape layers 32 having a shape different from that of the first shape layer 31 in a plan view. ..
  • the first shape layer 31 has a dimension S11 in the first direction D1 and a dimension S12 in the second direction D2.
  • the second shape layer 32 has a dimension S21 in the first direction D1 and a dimension S22 in the second direction D2.
  • the dimension S21 is larger than the dimension S11
  • the dimension S22 is larger than the dimension S12.
  • the unit cell 12 including the first shape layer 31 constitutes a resonance circuit having a first resonance frequency fr1.
  • the unit cell 12 including the second shape layer 32 constitutes a resonance circuit having a second resonance frequency fr2.
  • the second resonance frequency fr2 is different from the first resonance frequency fr1. According to this modification, since the radio wave absorbing sheet 10 has two resonance frequencies, the radio wave absorbing sheet 10 can have two absorption peaks.
  • FIG. 12 is a plan view showing the radio wave absorbing sheet 10 according to the fourth modification.
  • FIG. 13 is a cross-sectional view showing a case where the radio wave absorbing sheet of FIG. 12 is viewed from the XIII-XIII direction.
  • the radio wave absorbing sheet 10 includes a second dielectric layer 50 including a fourth surface 52 located on the opposite side of the third surface 51 and the third surface 51, and a third conductor layer 60 located on the fourth surface 52. May be provided.
  • the second dielectric layer 50 is a first dielectric so that the second conductor layer 40 is located between the second surface 22 of the first dielectric layer 20 and the third surface 51 of the second dielectric layer 50. It is laminated on the layer 20.
  • the third surface 51 of the second dielectric layer 50 may be in contact with the second conductor layer 40.
  • the third conductor layer 60 faces the first conductor layer 30 and the second conductor layer 40 in the thickness direction of the first dielectric layer 20.
  • the second conductor layer 40 may be divided into a plurality of pieces on the second surface 22 of the first dielectric layer 20.
  • the radio wave absorbing sheet 10 may include a plurality of second conductor layers 40 located on the second surface 22 of the first dielectric layer 20.
  • the second conductor layer 40 does not have to face the first conductor layer 30 in the thickness direction of the first dielectric layer 20.
  • the occupancy rate of the second conductor layer 40 on the second surface 22 is, for example, 0.85 or less, 0.75 or less, and 0.60 or less, as in the case of the first conductor layer 30. It may be 0.50 or less, or 0.30 or less.
  • the occupancy rate may be 0.05 or more, or 0.10 or more.
  • the occupancy rate of the second conductor layer 40 on the second surface 22 may be larger than the occupancy rate of the first conductor layer 30 on the first surface 21.
  • the second dielectric layer 50 contains a material having an insulating property.
  • the material exemplified by the first dielectric layer 20 can be used.
  • the material of the second dielectric layer 50 may be the same as or different from the material of the first dielectric layer 20.
  • the thickness h2 of the second dielectric layer 50 may be, for example, 300 ⁇ m or less, 250 ⁇ m or less, 200 ⁇ m or less, 150 ⁇ m or less, or 100 ⁇ m or less.
  • the thickness h2 may be 5 ⁇ m or more, 10 ⁇ m or more, 20 ⁇ m or more, or 50 ⁇ m or more.
  • the third conductor layer 60 contains a material having conductivity.
  • the material exemplified by the first conductor layer 30 can be used.
  • the material of the third conductor layer 60 may be the same as or different from the material of the first conductor layer 30.
  • the thickness T3 of the third conductor layer 60 may be 1 ⁇ m or more, or 5 ⁇ m or more.
  • the thickness of the third conductor layer 60 may be 50 ⁇ m or less, or 20 ⁇ m or less.
  • the first conductor layer 30 and the third conductor layer 60 which face each other with the first dielectric layer 20 and the second dielectric layer 50 interposed therebetween, constitute a first resonance circuit having a first resonance frequency. do. Further, the second conductor layer 40 and the third conductor layer 60, which face each other with the second dielectric layer 50 interposed therebetween, form a second resonance circuit having a second resonance frequency. Also in this modification, since the radio wave absorbing sheet 10 has two resonance frequencies, the radio wave absorbing sheet 10 can have two absorption peaks.
  • FIG. 14 is a plan view showing the radio wave absorbing sheet 10 according to the fifth modification.
  • FIG. 15 is a cross-sectional view showing a case where the radio wave absorbing sheet of FIG. 14 is viewed from the XV-XV direction.
  • first conductor layer 30 and the second conductor layer 40 show an example in which the first conductor layer 30 and the second conductor layer 40 do not overlap in the thickness direction of the first dielectric layer 20.
  • the present invention is not limited to this, and as shown in FIGS. 14 and 15, the first conductor layer 30 and the second conductor layer 40 may overlap in the thickness direction of the first dielectric layer 20. ..
  • the first conductor layer 30 has a dimension S1 in the first direction D1 and a dimension S2 in the second direction D2.
  • the second conductor layer 40 has a dimension S3 in the first direction D1 and a dimension S4 in the second direction D2.
  • the dimension S1 may be larger than the dimension S3.
  • the dimension S2 may be larger than the dimension S4.
  • the second conductor layer 40 may have a contour surrounding the first conductor layer 30 in a plan view.
  • the first conductor layer 30 and the second conductor layer 40 facing each other with the first dielectric layer 20 interposed therebetween constitute a first resonance circuit having a first resonance frequency.
  • the radio wave absorbing sheet 10 since the radio wave absorbing sheet 10 has two resonance frequencies, the radio wave absorbing sheet 10 can have two absorption peaks.
  • Example 1 a laminated board in which copper foils were provided on both sides of a glass epoxy base material was prepared.
  • the thickness of the glass epoxy base material was 100 ⁇ m, and the thickness of the copper foil was 12 ⁇ m.
  • the glass epoxy substrate functions as the first dielectric layer 20 described above.
  • the copper foil functions as the first conductor layer 30 and the second conductor layer 40 described above.
  • the relative permittivity of the glass epoxy substrate was 4.2, and the dielectric loss tangent was 0.02.
  • the above-mentioned plurality of resist layers 37 were formed on one of the copper foils.
  • the copper foil was processed by wet etching using the resist layer 37 as a mask.
  • the radio wave absorbing sheet including the first dielectric layer 20, the plurality of first conductor layers 30 located on the first surface 21, and the second conductor layer 40 located on the second surface 22. 10 was made.
  • the shape and arrangement of the first conductor layer 30 in a plan view are as follows. -Shape of the first conductor layer 30: Circular with a radius of 0.506 mm-First period P1: 2.712 mm ⁇ Second cycle P2: 2.712 mm
  • the occupancy rate of the first conductor layer 30 is 0.109.
  • the characteristic impedance N 2 R of the secondary circuit 15 is calculated to be 120 ⁇ .
  • the absorption characteristics of the radio wave absorption sheet 10 were evaluated. Specifically, the amount of reflection attenuation of the radio wave in the radio wave absorbing sheet 10 was measured by the free space method.
  • a vector network analyzer PNA N5222B manufactured by Keysight and a frequency multiplier WR12 manufactured by Virginia Diodes were used as a measuring instrument.
  • the WR12 is a device for expanding the frequency range of PNA N5222B.
  • the amount of reflection attenuation of the radio wave absorption sheet 10 was calculated based on the simulation.
  • the simulation software HFSS manufactured by ANSYS was used.
  • the measurement result by the free space method and the calculation result by the simulation were equivalent.
  • the result of the simulation is shown in FIG. In the graph of FIG. 16, the horizontal axis indicates the frequency f, and the vertical axis indicates the reflection attenuation amount d.
  • BW1 is the width of the absorption peak at the position where the reflection attenuation amount is ⁇ 15 dB.
  • the width BW1 was 0.56 GHz.
  • the depth H of the absorption peak was 57.6 dB.
  • Example 1B to Example 1G Under the condition that the cycles P1 and P2 of the first conductor layer 30 of Example 1A were changed, the absorption characteristics of the radio wave absorbing sheet 10 were evaluated based on the simulation.
  • the cycles P1, P2 in Examples 1B, 1C, 1D, 1E, 1F and 1G are 2.1 mm, 2.3 mm, 2.5 mm, 2.7 mm, 2.9 mm and 3.1 mm.
  • the shape of the first conductor layer 30 is the same as that of Example 1A. Therefore, the resonance frequency fr of the resonance circuit of the secondary circuit 15 is 79.4 GHz as in the case of Example 1A.
  • the characteristic impedance N 2 R of the secondary circuit 15 is different from that of Example 1A. Therefore, in the example of Examples 1B ⁇ Example 1G, the characteristic impedance N 2 R of the secondary circuit 15 does not coincide with the the characteristic impedance of the primary circuit 14 120 ⁇ .
  • Example 1A to Example 1G are summarized in FIG. Even when the characteristic impedance N 2 R of the secondary circuit 15 does not match the characteristic impedance 120 ⁇ of the primary circuit 14, an absorption peak occurs. The larger the deviation between the characteristic impedance N 2 R of the secondary circuit 15 and 120 ⁇ , the smaller the depth of the absorption peak.
  • Example 2 The absorption characteristics of the radio wave absorption sheet 10 configured under the following conditions were evaluated based on a simulation.
  • the material of the first dielectric layer 20, the first conductor layer 30, and the second conductor layer 40 glass epoxy, copper, and copper are assumed as in the case of Example 1.
  • the occupancy rate of the first conductor layer 30 is 0.403.
  • the characteristic impedance N 2 R of the secondary circuit 15 is calculated to be 120 ⁇ .
  • first conductor layer 30 12 ⁇ m -Shape of the first conductor layer 30: Circular with a radius of 1.49 mm-First period P1: 4.16 mm ⁇ Second cycle P2: 4.16 mm -Thickness of the second conductor layer 40: 12 ⁇ m -Thickness of the first dielectric layer 20: 100 ⁇ m Relative permittivity of the first dielectric layer 20: 4.2 Dielectric loss tangent of first dielectric layer 20: 0.02
  • the simulation results are shown in FIG.
  • the resonance frequency fr was 28.2 GHz.
  • the depth H of the absorption peak was 40.4 dB, and the width BW1 was 0.22 GHz.
  • Example 3 The absorption characteristics of the radio wave absorption sheet 10 configured under the following conditions were evaluated based on a simulation.
  • the material of the first dielectric layer 20, the first conductor layer 30, and the second conductor layer 40 glass epoxy, copper, and copper are assumed as in the case of Example 1.
  • the occupancy rate of the first conductor layer 30 is 0.102.
  • the characteristic impedance N 2 R of the secondary circuit 15 is calculated to be 120 ⁇ .
  • first conductor layer 30 12 ⁇ m -Shape of the first conductor layer 30: Square with a side length of 0.85 mm-First period P1: 2.66 mm ⁇ Second cycle P2: 2.66 mm -Thickness of the second conductor layer 40: 12 ⁇ m -Thickness of the first dielectric layer 20: 100 ⁇ m Relative permittivity of the first dielectric layer 20: 4.2 Dielectric loss tangent of first dielectric layer 20: 0.02
  • the simulation results are shown in FIG.
  • the resonance frequency fr was 79.35 GHz.
  • the depth H of the absorption peak was 44.09 dB, and the width BW1 was 0.6 GHz.
  • Radio wave absorbing sheet 12 Unit cell 14 Primary circuit 15 Secondary circuit 16 Transformer 20 First dielectric layer 21 First surface 22 Second surface 30 First conductor layer 31 First shape layer 32 Second shape layer 33 Opening 35 Distribution area 37 Resist layer 40 Second conductor layer 50 Second dielectric layer 51 Third surface 52 Fourth surface 60 Third conductor layer 100 Communication device 110 Housing 120 Communication mechanism 130 Control mechanism D1 First direction D2 Second Direction P1 1st cycle P2 2nd cycle

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

A radio wave absorbing sheet according to the present invention comprises: a first dielectric layer including a first surface and a second surface positioned on the reverse surface thereof to the first surface; a plurality of first conductor layers positioned on the first surface and aligned in a first direction; and a second conductor layer positioned on the second surface. The rate of occupancy of the first conductor layer on the first surface is 0.85 or less.

Description

電波吸収シート及び通信装置Radio wave absorption sheet and communication device
 本開示の実施形態は、電波吸収シート及び通信装置に関する。 The embodiment of the present disclosure relates to a radio wave absorbing sheet and a communication device.
 電子機器が電波の影響を受けることを抑制するため、例えば特許文献1に開示されているように、電波を吸収する電波吸収シートが利用されている。 In order to suppress the influence of radio waves on electronic devices, for example, as disclosed in Patent Document 1, a radio wave absorbing sheet that absorbs radio waves is used.
特許第6063631号公報Japanese Patent No. 6063631
 従来の電波吸収体においては、厚みの下限が、電波の波長に起因する制限を受けやすい。例えば特許文献1は、6.4GHzの電波を吸収するための電波吸収体の厚みを1005μm~1300μmにすることを提案している。 In the conventional radio wave absorber, the lower limit of the thickness is easily limited by the wavelength of the radio wave. For example, Patent Document 1 proposes that the thickness of the radio wave absorber for absorbing a radio wave of 6.4 GHz is 1005 μm to 1300 μm.
 本開示の実施形態は、このような点を考慮してなされたものであり、薄型化を実現しやすい電波吸収シートを提供することを目的とする。 The embodiment of the present disclosure has been made in consideration of such a point, and an object thereof is to provide a radio wave absorbing sheet that can be easily made thinner.
 本開示の一実施形態は、第1面及び前記第1面の反対側に位置する第2面を含む第1誘電体層と、
 前記第1面に位置し、第1方向に並ぶ複数の第1導電体層と、
 前記第2面に位置する第2導電体層と、を備え、
 前記第1面における前記第1導電体層の占有率が0.85以下である、電波吸収シートである。
One embodiment of the present disclosure comprises a first dielectric layer including a first surface and a second surface located on the opposite side of the first surface.
A plurality of first conductor layers located on the first surface and arranged in the first direction,
A second conductor layer located on the second surface is provided.
It is a radio wave absorption sheet in which the occupancy rate of the first conductor layer on the first surface is 0.85 or less.
 本開示の一実施形態による電波吸収シートにおいて、前記第1方向における前記第1導電体層の寸法は、5.0mm未満であってもよい。 In the radio wave absorbing sheet according to the embodiment of the present disclosure, the dimension of the first conductor layer in the first direction may be less than 5.0 mm.
 本開示の一実施形態による電波吸収シートにおいて、前記第1誘電体層の厚みは、300μm以下であってもよい。 In the radio wave absorbing sheet according to the embodiment of the present disclosure, the thickness of the first dielectric layer may be 300 μm or less.
 本開示の一実施形態による電波吸収シートにおいて、前記第1誘電体層の比誘電率は、20未満であってもよい。 In the radio wave absorbing sheet according to the embodiment of the present disclosure, the relative permittivity of the first dielectric layer may be less than 20.
 本開示の一実施形態による電波吸収シートにおいて、前記第1誘電体層の誘電正接は、0.2以下であってもよい。 In the radio wave absorbing sheet according to the embodiment of the present disclosure, the dielectric loss tangent of the first dielectric layer may be 0.2 or less.
 本開示の一実施形態による電波吸収シートにおいて、前記電波吸収シートの厚みは、350μm以下であってもよい。 In the radio wave absorbing sheet according to the embodiment of the present disclosure, the thickness of the radio wave absorbing sheet may be 350 μm or less.
 本開示の一実施形態による電波吸収シートは、20GHz以上110GHz以下の範囲内に位置する共振周波数frを有していてもよい。 The radio wave absorption sheet according to the embodiment of the present disclosure may have a resonance frequency fr located in the range of 20 GHz or more and 110 GHz or less.
 本開示の一実施形態による電波吸収シートにおいて、前記第1導電体層は、平面視において、半径rを有する円形であり、
 前記共振周波数frは、下記の式(A1)、(A2)に基づいて算出されてもよい。
Figure JPOXMLDOC01-appb-M000005
 cは光速であり、εrは前記第1誘電体層の比誘電率であり、hは前記第1誘電体層の厚みである。
In the radio wave absorbing sheet according to the embodiment of the present disclosure, the first conductor layer is a circle having a radius r in a plan view.
The resonance frequency fr may be calculated based on the following equations (A1) and (A2).
Figure JPOXMLDOC01-appb-M000005
c is the speed of light, ε r is the relative permittivity of the first dielectric layer, and h is the thickness of the first dielectric layer.
 本開示の一実施形態による電波吸収シートにおいて、120πに対するNRの比率が0.8以上1.2以下であり、
 N及びRは、下記の式(A3)、(A4)に基づいて算出されてもよい。
Figure JPOXMLDOC01-appb-M000006
 Pはユニットセルの面積であり、Kは定数であり、tanδは前記第1誘電体層の誘電正接である。
In the radio wave absorption sheet according to the embodiment of the present disclosure, the ratio of N 2 R to 120 π is 0.8 or more and 1.2 or less.
N 2 and R may be calculated based on the following formulas (A3) and (A4).
Figure JPOXMLDOC01-appb-M000006
P is the area of the unit cell, K is a constant, and tan δ is the dielectric loss tangent of the first dielectric layer.
 本開示の一実施形態による電波吸収シートにおいて、前記第1導電体層は、平面視において、長さL及び幅Wを有する長方形であり、幅Wは長さL以下であり、
 前記共振周波数frは、下記の式(B1)、(B2)、(B3)、(B4)に基づいて算出されてもよい。
Figure JPOXMLDOC01-appb-M000007
 cは光速であり、εrは前記第1誘電体層の比誘電率であり、hは前記第1誘電体層の厚みである。
In the radio wave absorbing sheet according to the embodiment of the present disclosure, the first conductor layer is a rectangle having a length L and a width W in a plan view, and the width W is a length L or less.
The resonance frequency fr may be calculated based on the following equations (B1), (B2), (B3), and (B4).
Figure JPOXMLDOC01-appb-M000007
c is the speed of light, ε r is the relative permittivity of the first dielectric layer, and h is the thickness of the first dielectric layer.
 本開示の一実施形態による電波吸収シートにおいて、120πに対するNRの比率が0.8以上1.2以下であり、
 N及びRは、下記の式(B5)、(B6)に基づいて算出されてもよい。
Figure JPOXMLDOC01-appb-M000008
 Pはユニットセルの面積であり、Kは定数であり、tanδは前記第1誘電体層の誘電正接である。
In the radio wave absorption sheet according to the embodiment of the present disclosure, the ratio of N 2 R to 120 π is 0.8 or more and 1.2 or less.
N 2 and R may be calculated based on the following equations (B5) and (B6).
Figure JPOXMLDOC01-appb-M000008
P is the area of the unit cell, K is a constant, and tan δ is the dielectric loss tangent of the first dielectric layer.
 本開示の一実施形態による電波吸収シートにおいて、前記第1導電体層は、複数の開口を含んでいてもよい。 In the radio wave absorbing sheet according to the embodiment of the present disclosure, the first conductor layer may include a plurality of openings.
 本開示の一実施形態による電波吸収シートにおいて、前記複数の第1導電体層は、複数の第1形状層と、平面視において前記第1形状層とは異なる形状を有する複数の第2形状層と、を含んでいてもよい。 In the radio wave absorbing sheet according to the embodiment of the present disclosure, the plurality of first conductor layers are a plurality of first shape layers and a plurality of second shape layers having a shape different from that of the first shape layer in a plan view. And may be included.
 本開示の一実施形態による電波吸収シートにおいて、第3面及び前記第3面の反対側に位置する第4面を含む第2誘電体層と、
 前記第4面に位置する第3導電体層と、を備え、
 前記第2導電体層は、前記第1誘電体層の前記第2面と前記第2誘電体層の前記第3面との間に位置し、
 前記第2面における前記第2導電体層の占有率が0.85以下であってもよい。
In the radio wave absorbing sheet according to the embodiment of the present disclosure, the second dielectric layer including the third surface and the fourth surface located on the opposite side of the third surface,
A third conductor layer located on the fourth surface is provided.
The second conductor layer is located between the second surface of the first dielectric layer and the third surface of the second dielectric layer.
The occupancy rate of the second conductor layer on the second surface may be 0.85 or less.
 本開示の一実施形態は、
 電波を送信又は受信する通信機構と、
 上記記載の電波吸収シートと、を備える、通信装置である。
One embodiment of the present disclosure is
A communication mechanism that transmits or receives radio waves,
A communication device including the above-mentioned radio wave absorbing sheet.
 本開示の実施形態によれば、薄型化を実現しやすい電波吸収シートを提供することができる。 According to the embodiment of the present disclosure, it is possible to provide a radio wave absorbing sheet that can be easily made thinner.
電波吸収シートの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a radio wave absorption sheet. 図1の電波吸収シートをII-II方向から見た場合を示す断面図である。It is sectional drawing which shows the case where the radio wave absorption sheet of FIG. 1 is seen from the direction of II-II. 図1の電波吸収シートを構成するユニットセルを示す図である。It is a figure which shows the unit cell which constitutes the radio wave absorption sheet of FIG. 電波吸収シートの等価回路を示す図である。It is a figure which shows the equivalent circuit of a radio wave absorption sheet. 電波吸収シートの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of a radio wave absorption sheet. 電波吸収シートの製造方法の一例を示す断面図である。It is sectional drawing which shows an example of the manufacturing method of a radio wave absorption sheet. 図6Aの第1導電体層の断面形状の一例を示す図である。It is a figure which shows an example of the cross-sectional shape of the 1st conductor layer of FIG. 6A. 図6Aの第1導電体層の断面形状の一例を示す図である。It is a figure which shows an example of the cross-sectional shape of the 1st conductor layer of FIG. 6A. 電波吸収シートを備える通信装置の一例を示す断面図である。It is sectional drawing which shows an example of the communication apparatus provided with the electric wave absorption sheet. 電波吸収シートの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a radio wave absorption sheet. 図8の電波吸収シートを構成するユニットセルを示す図である。It is a figure which shows the unit cell which constitutes the radio wave absorption sheet of FIG. 電波吸収シートの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a radio wave absorption sheet. 電波吸収シートの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a radio wave absorption sheet. 電波吸収シートの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a radio wave absorption sheet. 図12の電波吸収シートをXIII-XIII方向から見た場合を示す断面図である。It is sectional drawing which shows the case where the radio wave absorption sheet of FIG. 12 is seen from the XIII-XIII direction. 電波吸収シートの一実施形態を示す平面図である。It is a top view which shows one Embodiment of a radio wave absorption sheet. 図14の電波吸収シートをXV-XV方向から見た場合を示す断面図である。It is sectional drawing which shows the case where the radio wave absorption sheet of FIG. 14 is seen from the XV-XV direction. 例1Aの電波吸収シートの吸収特性を示す図である。It is a figure which shows the absorption characteristic of the radio wave absorption sheet of Example 1A. 例1A~1Gの電波吸収シートの吸収特性を示す図である。It is a figure which shows the absorption characteristic of the radio wave absorption sheet of Example 1A to 1G. 例2の電波吸収シートの吸収特性を示す図である。It is a figure which shows the absorption characteristic of the radio wave absorption sheet of Example 2. 例3の電波吸収シートの吸収特性を示す図である。It is a figure which shows the absorption characteristic of the radio wave absorption sheet of Example 3.
 以下、本開示の一実施形態に係る電波吸収シート10の構成について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。また、本明細書において、「基板」、「基材」、「シート」や「フィルム」など用語は、呼称の違いのみに基づいて、互いから区別されるものではない。例えば、「基板」や「基材」は、シートやフィルムと呼ばれ得るような部材も含む概念である。更に、本明細書において用いる、形状や幾何学的条件並びにそれらの程度を特定する、例えば、「平行」や「直交」等の用語や長さや角度の値等については、厳密な意味に縛られることなく、同様の機能を期待し得る程度の範囲を含めて解釈することとする。また、本実施形態で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号又は類似の符号を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なる場合や、構成の一部が図面から省略される場合がある。 Hereinafter, the configuration of the radio wave absorbing sheet 10 according to the embodiment of the present disclosure will be described in detail with reference to the drawings. It should be noted that the embodiments shown below are examples of the embodiments of the present disclosure, and the present disclosure is not construed as being limited to these embodiments. Further, in the present specification, terms such as "board", "base material", "sheet" and "film" are not distinguished from each other based only on the difference in names. For example, "base material" and "base material" are concepts including members that can be called sheets or films. Furthermore, the terms used herein, such as "parallel" and "orthogonal", and the values of length and angle, which specify the shape and geometric conditions and their degrees, are bound by a strict meaning. Instead, the interpretation shall be made to include the range in which similar functions can be expected. Further, in the drawings referred to in the present embodiment, the same parts or parts having similar functions may be designated by the same reference numerals or similar reference numerals, and the repeated description thereof may be omitted. Further, the dimensional ratio of the drawing may differ from the actual ratio for convenience of explanation, or a part of the configuration may be omitted from the drawing.
 以下、本開示の実施の形態について説明する。まず、背景について説明する。 Hereinafter, embodiments of the present disclosure will be described. First, the background will be described.
 近年、ミリ波と呼ばれる、およそ30GHz以上300GHz以下の周波数帯の電波が、様々な分野で活用され始めている。分野の例は、第5世代移動通信システムやモバイル、自動車用の衝突防止システムのレーダ、医療の生体センシングなどである。一方で、電波の活用が増えるにつれ、電子機器の誤作動、通信環境の悪化などの不具合が発生することが懸念されている。 In recent years, radio waves in the frequency band of about 30 GHz or more and 300 GHz or less, called millimeter waves, have begun to be used in various fields. Examples in the field are 5th generation mobile communication systems, mobiles, radars for collision prevention systems for automobiles, medical biosensing, and the like. On the other hand, as the use of radio waves increases, there is concern that problems such as malfunction of electronic devices and deterioration of the communication environment will occur.
 それらの不具合を解消する製品の1つとして、電波吸収シートが知られている。電波吸収シートは、電子機器から出るノイズや不要電波を吸収できる。電波吸収シートを用いることにより、電子機器の誤作動の防止、通信環境の改善などの効果が期待できる。 The radio wave absorption sheet is known as one of the products that solves these problems. The radio wave absorption sheet can absorb noise and unnecessary radio waves emitted from electronic devices. By using the radio wave absorbing sheet, effects such as prevention of malfunction of electronic devices and improvement of communication environment can be expected.
 一方、従来の電波吸収シートの厚みは大きい。例えば上述の特許文献1で提案されている電波吸収シートは、1mm以上の厚みを有する。このため、小型化、薄型化が要求される電子機器に電波吸収シートを設置することは容易ではなかった。また特許文献1では6.4GHz以下の周波数帯が想定されており、ミリ波帯の周波数帯には対応していない。 On the other hand, the thickness of the conventional radio wave absorption sheet is large. For example, the radio wave absorbing sheet proposed in Patent Document 1 described above has a thickness of 1 mm or more. For this reason, it has not been easy to install a radio wave absorbing sheet in an electronic device that is required to be miniaturized and thinned. Further, in Patent Document 1, a frequency band of 6.4 GHz or less is assumed, and the frequency band of the millimeter wave band is not supported.
 このような背景を考慮し、本実施の形態においては、薄型化を実現しやすく、且つミリ波帯の周波数帯に対応できる電波吸収シートを提案する。 In consideration of such a background, in this embodiment, we propose a radio wave absorption sheet that is easy to realize thinning and can correspond to the frequency band of the millimeter wave band.
 図1は、電波吸収シート10の一実施形態を示す平面図である。図2は、図1の電波吸収シート10をII-II方向から見た場合を示す断面図である。電波吸収シート10は、第1面21及び第1面21の反対側に位置する第2面22を含む第1誘電体層20と、第1面21に位置する複数の第1導電体層30と、第2面22に位置する第2導電体層40と、を備える。 FIG. 1 is a plan view showing an embodiment of the radio wave absorbing sheet 10. FIG. 2 is a cross-sectional view showing a case where the radio wave absorbing sheet 10 of FIG. 1 is viewed from the II-II direction. The radio wave absorbing sheet 10 includes a first dielectric layer 20 including a second surface 22 located on the opposite side of the first surface 21 and the first surface 21, and a plurality of first conductor layers 30 located on the first surface 21. And a second conductor layer 40 located on the second surface 22.
 電波吸収シート10は、第1面21側から電波吸収シート10に入射する電波を吸収する。例えば、電波吸収シート10は、共振を利用して電波を吸収する。共振を利用することにより、従来の電波吸収体に比べて、電波吸収シート10の厚みを小さくできる。 The radio wave absorbing sheet 10 absorbs radio waves incident on the radio wave absorbing sheet 10 from the first surface 21 side. For example, the radio wave absorbing sheet 10 absorbs radio waves by utilizing resonance. By utilizing resonance, the thickness of the radio wave absorbing sheet 10 can be made smaller than that of a conventional radio wave absorber.
 電波吸収シート10が対象とする電波の周波数は、例えば20GHz以上である。電波吸収シート10が対象とする電波の周波数は、例えば110GHz以下であり、80GHz以下であってもよい。このような電波は、第5世代移動通信システム、自動車用のレーダ装置などで利用される。 The frequency of the radio wave targeted by the radio wave absorption sheet 10 is, for example, 20 GHz or more. The frequency of the radio wave targeted by the radio wave absorbing sheet 10 is, for example, 110 GHz or less, and may be 80 GHz or less. Such radio waves are used in 5th generation mobile communication systems, radar devices for automobiles, and the like.
 電波吸収シート10の各構成要素について説明する。 Each component of the radio wave absorbing sheet 10 will be described.
 第1誘電体層20は、絶縁性を有する材料を含む。絶縁性を有する材料は、有機材料であってもよく、無機材料であってもよい。絶縁性を有する材料は、有機材料及び無機材料の組み合わせであってもよい。 The first dielectric layer 20 contains a material having an insulating property. The insulating material may be an organic material or an inorganic material. The insulating material may be a combination of an organic material and an inorganic material.
 無機材料としては、酸化シリコン(SiO)、窒化シリコン(Si)、酸窒化シリコン(SiON)、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、シリコンカーバイト(SiC)、窒化シリコンカーバイト(SiCN)、炭素添加シリコンオキサイド(SiCO)、ホウ珪酸ガラス、石英ガラスなどを用いることができる。 As the inorganic material, silicon oxide (SiO 2), silicon nitride (Si 3 N 4), silicon oxynitride (SiON), aluminum oxide (Al 2 O 3), aluminum nitride (AlN), silicon carbide (SiC), Silicon nitride carbide (SiCN), carbon-added silicon oxide (SiCO), borosilicate glass, quartz glass and the like can be used.
 有機材料としては、ポリイミド、エポキシ樹脂、ベンゾシクロブテン樹脂、ポリアミド、フェノール樹脂、フッ素樹脂、液晶ポリマー、ポリアミドイミド、ポリベンゾオキサゾール、シアネート樹脂、アラミド樹脂、ポリオレフィン、ポリエステル、BTレジン、ポリアセタール、ポリブチレンテレフタレート、シンジオタクチック・ポリスチレン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルニトリル、ポリカーボネート、ポリフェニレンエーテルポリサルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミドなどを用いることができる。また、これらの有機材料の層の中に、繊維、フィラーなどが包含されていてもよい。繊維、フィラーの材料は、ガラス、タルク、マイカ、酸化ケイ素、酸化アルミニウム、酸化チタン等の絶縁性を有する材料であってもよく、カーボン、金属などの導電性を有する材料であってもよい。 Organic materials include polyimide, epoxy resin, benzocyclobutene resin, polyamide, phenol resin, fluororesin, liquid crystal polymer, polyamideimide, polybenzoxazole, cyanate resin, aramid resin, polyolefin, polyester, BT resin, polyacetal, and polybutylene. Telephthalate, syndiotactic polystyrene, polyphenylene sulfide, polyether ether ketone, polyether nitrile, polycarbonate, polyphenylene ether polysulfone, polyether sulfone, polyarylate, polyetherimide and the like can be used. Further, fibers, fillers and the like may be included in the layers of these organic materials. The material of the fiber and the filler may be an insulating material such as glass, talc, mica, silicon oxide, aluminum oxide, titanium oxide, or a conductive material such as carbon or metal.
 第1誘電体層20の材料として、有機材料及び無機材料の両方を含む化合物又は混合物が用いられてもよい。例は、シリコーン樹脂、FR-4、FR-5などである。 As the material of the first dielectric layer 20, a compound or a mixture containing both an organic material and an inorganic material may be used. Examples are silicone resins, FR-4, FR-5 and the like.
 第1誘電体層20は、150℃程度の耐熱性を有していてもよい。例えば、第1誘電体層20の材料のガラス転移点あるいは荷重たわみ温度が150℃以上であってもよい。これにより、150℃程度まで温度が上昇する部品を備える電子機器に電波吸収シート10が設置される場合に、電波吸収シート10が適切に機能できる。 The first dielectric layer 20 may have a heat resistance of about 150 ° C. For example, the glass transition point or the deflection temperature under load of the material of the first dielectric layer 20 may be 150 ° C. or higher. As a result, when the radio wave absorbing sheet 10 is installed in an electronic device including a component whose temperature rises to about 150 ° C., the radio wave absorbing sheet 10 can function appropriately.
 第1誘電体層20の比誘電率εは、20.0未満であってもよく、15.0以下であってもよく、10.0以下であってもよく、5.0以下であってもよい。共振を利用することにより、第1誘電体層20の比誘電率εが従来の電波吸収体に比べて低い場合であっても、第1誘電体層20が電波を吸収できる。第1誘電体層20の比誘電率εは、2.0以上であってもよく、3.0以上であってもよく、5.0以上であってもよい。 The relative permittivity ε r of the first dielectric layer 20 may be less than 20.0, may be 15.0 or less, may be 10.0 or less, and may be 5.0 or less. You may. By utilizing resonance, the first dielectric layer 20 can absorb radio waves even when the relative permittivity ε r of the first dielectric layer 20 is lower than that of the conventional radio wave absorber. The relative permittivity ε r of the first dielectric layer 20 may be 2.0 or more, 3.0 or more, or 5.0 or more.
 第1誘電体層20の誘電正接tanδは、0.20以下であってもよく、0.15以下であってもよく、0.10以下であってもよく、0.05以下であってもよい。 The dielectric loss tangent tan δ of the first dielectric layer 20 may be 0.20 or less, 0.15 or less, 0.10 or less, or 0.05 or less. good.
 一般的に、誘電体層が、導電性を有するフィラーを高い密度で含むことによって、誘電体層の比誘電率及び誘電正接が増加する。一方、フィラーの密度が高くなると、誘電体層が脆くなるという課題などが生じ得る。また、フィラーの密度が高くなると、フィラーの分布が不均一になりやすい。フィラーの分布が不均一になると、誘電体層にボイドが発生したり、誘電体層の特性にばらつきが生じたりすることもある。 Generally, when the dielectric layer contains a filler having conductivity at a high density, the relative permittivity and the dielectric loss tangent of the dielectric layer increase. On the other hand, when the density of the filler is high, there may be a problem that the dielectric layer becomes brittle. Further, as the density of the filler increases, the distribution of the filler tends to be uneven. If the distribution of the filler becomes non-uniform, voids may be generated in the dielectric layer or the characteristics of the dielectric layer may vary.
 本実施の形態においては、共振を利用するので、上記のように第1誘電体層20の比誘電率ε及び誘電正接tanδが制限されている場合であっても、良好な電波吸収性能を発現できる。このため、フィラーの密度が高くなることによって生じる課題を回避できる。 In the present embodiment, since the use of resonance, even when the relative dielectric constant of the first dielectric layer 20 as described above epsilon r and the dielectric loss tangent tanδ is limited, the excellent radio wave absorption performance Can be expressed. Therefore, it is possible to avoid the problem caused by the high density of the filler.
 厚みhは、例えば300μm以下であり、250μm以下であってもよく、200μm以下であってもよく、150μm以下であってもよく、100μm以下であってもよい。共振を利用することにより、第1誘電体層20の厚みhが従来の電波吸収体に比べて小さい場合であっても、電波を吸収できる。 The thickness h may be, for example, 300 μm or less, 250 μm or less, 200 μm or less, 150 μm or less, or 100 μm or less. By utilizing resonance, radio waves can be absorbed even when the thickness h of the first dielectric layer 20 is smaller than that of the conventional radio wave absorber.
 第1誘電体層20は、単一の層で構成されていてもよく、複数の層で構成されていてもよい。 The first dielectric layer 20 may be composed of a single layer or may be composed of a plurality of layers.
 第1誘電体層20の比誘電率ε及び誘電正接tanδを測定する方法としては、開放型共振器法を利用できる。開放型共振器法を実行する測定システムは、ネットワークアナライザ、ミリ波てい倍器、ミリ波検波器、ファブリペロー共振器を含む。ファブリペロー共振器としては、キーコム株式会社のFPR-40、FPR-50、FPR-60、FPR-75、PFR-90、FPR-110などを、周波数に応じて用いることができる。第1誘電体層20の厚みを測定する測定器としては、測長機を利用でき、例えばニコン社製デジマイクロを用いることができる。測長機によっては厚みを測定できない場合、電波吸収シート10のサンプルの断面の画像に基づいて第1誘電体層20の厚みを算出してもよい。画像を測定する測定器としては、走査電子顕微鏡を用いることができる。 As a method for measuring the relative permittivity ε r and the dielectric loss tangent tan δ of the first dielectric layer 20, an open resonator method can be used. Measurement systems that perform the open resonator method include a network analyzer, a millimeter wave doubler, a millimeter wave detector, and a Fabry-Perot resonator. As the Fabry-Perot resonator, FPR-40, FPR-50, FPR-60, FPR-75, PFR-90, FPR-110 and the like of Keycom Co., Ltd. can be used depending on the frequency. As a measuring instrument for measuring the thickness of the first dielectric layer 20, a length measuring machine can be used, and for example, a Digimicro manufactured by Nikon Corporation can be used. If the thickness cannot be measured by the length measuring machine, the thickness of the first dielectric layer 20 may be calculated based on the image of the cross section of the sample of the radio wave absorbing sheet 10. A scanning electron microscope can be used as a measuring instrument for measuring an image.
 図示はしないが、第1誘電体層20の第1面21と第1導電体層30との間には、接着層などの絶縁層が存在していてもよい。同様に、第1誘電体層20の第2面22と第2導電体層40との間には、接着層などの絶縁層が存在していてもよい。 Although not shown, an insulating layer such as an adhesive layer may exist between the first surface 21 of the first dielectric layer 20 and the first conductor layer 30. Similarly, an insulating layer such as an adhesive layer may exist between the second surface 22 of the first dielectric layer 20 and the second conductor layer 40.
 図示はしないが、第1誘電体層20の第1面21と第1導電体層30との間の界面は、粗面処理されていてもよい。例えば、第1面21が凹凸を含んでいてもよい。これにより、第1面21と第1導電体層30との間の密着性を高めることができる。粗面処理は、ウェットエッチング、ブラスト、研磨、めっきなどである。同様に、第1誘電体層20の第2面22と第2導電体層40との間の界面は、粗面処理されていてもよい。例えば、第2面22が凹凸を含んでいてもよい。 Although not shown, the interface between the first surface 21 of the first dielectric layer 20 and the first conductor layer 30 may be roughened. For example, the first surface 21 may include irregularities. This makes it possible to improve the adhesion between the first surface 21 and the first conductor layer 30. Rough surface treatment includes wet etching, blasting, polishing, plating and the like. Similarly, the interface between the second surface 22 of the first dielectric layer 20 and the second conductor layer 40 may be roughened. For example, the second surface 22 may include irregularities.
 第1導電体層30について説明する。第1導電体層30は、導電性を有する材料を含む。例えば、第1導電体層30は、銅(Cu)、金(Au)、銀(Ag)、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、スズ(Sn)、アルミニウム(Al)、ニッケル(Ni)、クロム(Cr)、チタン(Ti)、モリブデン(Mo)、タングステン(W)、タンタル(Ta)等の金属又はこれらを用いた合金などを含む。第1導電体層30は、導電性ポリマーなどの有機導電体、カーボンナノチューブ(CNT)などの導電繊維などを含んでいてもよい。 The first conductor layer 30 will be described. The first conductor layer 30 contains a material having conductivity. For example, the first conductor layer 30 includes copper (Cu), gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), tin (Sn), aluminum (Al), and the like. It includes metals such as nickel (Ni), chromium (Cr), titanium (Ti), molybdenum (Mo), tungsten (W), and tantalum (Ta), or alloys using these. The first conductor layer 30 may contain an organic conductor such as a conductive polymer, a conductive fiber such as a carbon nanotube (CNT), or the like.
 第1導電体層30の厚みT1は、1μm以上であってもよく、5μm以上であってもよい。第1導電体層30の厚みは、50μm以下であってもよく、20μm以下であってもよい。 The thickness T1 of the first conductor layer 30 may be 1 μm or more, or 5 μm or more. The thickness of the first conductor layer 30 may be 50 μm or less, or 20 μm or less.
 次に、第1導電体層30の形状及び配置について説明する。図1に示す例において、第1導電体層30は、平面視において、半径rを有する円形である。「平面視」とは、第1誘電体層20の面内方向に直交する方向に沿って電波吸収シート10を見ることを意味する。 Next, the shape and arrangement of the first conductor layer 30 will be described. In the example shown in FIG. 1, the first conductor layer 30 is a circle having a radius r in a plan view. "Plane view" means to see the radio wave absorbing sheet 10 along the direction orthogonal to the in-plane direction of the first dielectric layer 20.
 図1に示すように、複数の第1導電体層30は、第1誘電体層20の面内方向に並んでいてもよい。例えば、複数の第1導電体層30は、第1周期P1で第1方向D1に並んでいてもよい。複数の第1導電体層30は、第2周期P2で第2方向D2に並んでいてもよい。第2方向D2は、第1方向D1とは異なる方向であり、例えば、第1方向D1に直交する方向である。第1周期P1は、第1方向D1において隣り合う2つの第1導電体層30の中心点C0の間の距離である。第2周期P2は、第2方向D2において隣り合う2つの第1導電体層30の中心点C0の間の距離である。第1周期P1と第2周期P2とは、同一であってもよく、異なっていてもよい。周期P1、P2は、例えば1.5mmよりも大きく、2.0mm以上であってもよく、2.5mm以上であってもよい。 As shown in FIG. 1, the plurality of first conductor layers 30 may be arranged in the in-plane direction of the first dielectric layer 20. For example, the plurality of first conductor layers 30 may be arranged in the first direction D1 in the first period P1. The plurality of first conductor layers 30 may be arranged in the second direction D2 in the second period P2. The second direction D2 is a direction different from the first direction D1, for example, a direction orthogonal to the first direction D1. The first period P1 is the distance between the center points C0 of two adjacent first conductor layers 30 in the first direction D1. The second period P2 is the distance between the center points C0 of the two adjacent first conductor layers 30 in the second direction D2. The first period P1 and the second period P2 may be the same or different. The cycles P1 and P2 are, for example, larger than 1.5 mm and may be 2.0 mm or more, or may be 2.5 mm or more.
 複数の第1導電体層30の構成は、対象とする電波の周波数において共振が生じるように決定されている。例えば、第1面21における第1導電体層30の占有率が0.85以下になるよう、第1導電体層30の半径r、周期P1、P2などが決定されている。占有率は、0.75以下であってもよく、0.60以下であってもよく、0.50以下であってもよく、0.30以下であってもよい。占有率は、0.05以上であってもよく、0.10以上であってもよい。 The configuration of the plurality of first conductor layers 30 is determined so that resonance occurs at the frequency of the target radio wave. For example, the radius r, the periods P1 and P2 of the first conductor layer 30 are determined so that the occupancy rate of the first conductor layer 30 on the first surface 21 is 0.85 or less. The occupancy rate may be 0.75 or less, 0.60 or less, 0.50 or less, or 0.30 or less. The occupancy rate may be 0.05 or more, or 0.10 or more.
 占有率は、複数の第1導電体層30の面積の合計を、第1導電体層30が分布している領域の面積で割ることによって算出されてもよい。第1導電体層30が分布している領域の面積は、例えば図1において符号35で示すように、複数の第1導電体層30を囲う四角形35の面積であってもよい。 The occupancy rate may be calculated by dividing the total area of the plurality of first conductor layers 30 by the area of the region where the first conductor layers 30 are distributed. The area of the region where the first conductor layer 30 is distributed may be the area of a quadrangle 35 surrounding the plurality of first conductor layers 30, as shown by reference numeral 35 in FIG. 1, for example.
 複数の第1導電体層30が周期的に並んでいる場合、占有率は、1つの第1導電体層30の面積を、ユニットセル12の面積で割ることによって算出されてもよい。図3は、ユニットセル12を示す斜視図である。ユニットセル12は、1つの第1導電体層30と、第1誘電体層20と、第2導電体層40とを含み、1つの第1導電体層30に対応する面積を有する。例えば、ユニットセル12は、平面視において、第1方向D1に延びる一対の第1辺と、第2方向D2に延びる一対の第2辺とを含む四角形である。第1辺の長さは第1周期P1に等しく、第2辺の長さは第2周期P2に等しい。図3に示す例において、ユニットセル12の面積は、P1×P2である。第1誘電体層20の面積は、πrである。従って、占有率はπr/(P1×P2)である。 When a plurality of first conductor layers 30 are arranged periodically, the occupancy rate may be calculated by dividing the area of one first conductor layer 30 by the area of the unit cell 12. FIG. 3 is a perspective view showing the unit cell 12. The unit cell 12 includes one first conductor layer 30, a first dielectric layer 20, and a second conductor layer 40, and has an area corresponding to one first conductor layer 30. For example, the unit cell 12 is a quadrangle including a pair of first sides extending in the first direction D1 and a pair of second sides extending in the second direction D2 in a plan view. The length of the first side is equal to the first period P1 and the length of the second side is equal to the second period P2. In the example shown in FIG. 3, the area of the unit cell 12 is P1 × P2. The area of the first dielectric layer 20 is πr 2 . Therefore, the occupancy rate is πr 2 / (P1 × P2).
 図1において、符号S1は、第1方向D1における第1導電体層30の寸法を表す。寸法S1は、例えば5.0mm未満であり、4.0mm以下であってもよく、3.0mm以下であってもよく、2.0mm以下であってもよく、1.5mm以下であってもよく、1.0mm以下であってもよい。符号S2は、第2方向D2における第1導電体層30の寸法を表す。寸法S2は、例えば5.0mm未満であり、4.0mm以下であってもよく、3.0mm以下であってもよく、2.0mm以下であってもよく、1.5mm以下であってもよく、1.0mm以下であってもよい。図1に示す例において、寸法S1、S2は、第1導電体層30の直径である。
 これらの寸法の範囲に関する条件は、寸法S1及び寸法S2の両方で満たされていてもよく、若しくは、いずれか一方のみで満たされていてもよい。例えば、寸法S1は5.0mm未満であるが、寸法S2は5.0mm以上であってもよい。上述の周期P1及び周期P2の範囲に関する条件も同様に、周期P1及び周期P2の両方で満たされていてもよく、若しくは、いずれか一方のみで満たされていてもよい。
In FIG. 1, reference numeral S1 represents the dimension of the first conductor layer 30 in the first direction D1. The dimension S1 is, for example, less than 5.0 mm, may be 4.0 mm or less, may be 3.0 mm or less, may be 2.0 mm or less, or may be 1.5 mm or less. It may be 1.0 mm or less. Reference numeral S2 represents the dimension of the first conductor layer 30 in the second direction D2. The dimension S2 is, for example, less than 5.0 mm, may be 4.0 mm or less, may be 3.0 mm or less, may be 2.0 mm or less, or may be 1.5 mm or less. It may be 1.0 mm or less. In the example shown in FIG. 1, the dimensions S1 and S2 are the diameters of the first conductor layer 30.
The conditions regarding the range of these dimensions may be satisfied by both dimensions S1 and S2, or may be satisfied by only one of them. For example, the dimension S1 may be less than 5.0 mm, but the dimension S2 may be 5.0 mm or more. Similarly, the above-mentioned conditions regarding the range of the period P1 and the period P2 may be satisfied by both the period P1 and the period P2, or may be satisfied by only one of them.
 次に、第2導電体層40について説明する。第2導電体層40は、導電性を有する材料を含む。第2導電体層40の材料としては、第1導電体層30で例示した材料を用いることができる。第2導電体層40の材料は、第1導電体層30の材料と同一であってもよく、異なっていてもよい。 Next, the second conductor layer 40 will be described. The second conductor layer 40 contains a material having conductivity. As the material of the second conductor layer 40, the material exemplified by the first conductor layer 30 can be used. The material of the second conductor layer 40 may be the same as or different from the material of the first conductor layer 30.
 第2導電体層40の厚みT2は、1μm以上であってもよく、5μm以上であってもよい。第2導電体層40の厚みは、50μm以下であってもよく、20μm以下であってもよい。 The thickness T2 of the second conductor layer 40 may be 1 μm or more, or 5 μm or more. The thickness of the second conductor layer 40 may be 50 μm or less, or 20 μm or less.
 第2導電体層40は、第1誘電体層20の厚み方向において第1導電体層30に対向している。これにより、第1導電体層30と第2導電体層40との間に電界を生じさせることができる。 The second conductor layer 40 faces the first conductor layer 30 in the thickness direction of the first dielectric layer 20. As a result, an electric field can be generated between the first conductor layer 30 and the second conductor layer 40.
 第2導電体層40は、平面視において、複数の第1導電体層30と重なるように広がっていてもよい。例えば、第2導電体層40は、第1誘電体層20の第2面22の全域に位置していてもよい。図示はしないが、第2導電体層40に開口、スリットなどが形成されていてもよい。 The second conductor layer 40 may be spread so as to overlap the plurality of first conductor layers 30 in a plan view. For example, the second conductor layer 40 may be located over the entire second surface 22 of the first dielectric layer 20. Although not shown, the second conductor layer 40 may have openings, slits, or the like.
 電波吸収シート10全体の厚みは、例えば350μm以下であり、300μm以下であってもよく、250μm以下であってもよく、200μm以下であってもよい。第1誘電体層20の厚みhが小さいので、電波吸収シート10の全体の厚みも小さくなる。電波吸収シート10全体の厚みは、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよく、50μm以上であってもよい。 The thickness of the entire radio wave absorbing sheet 10 is, for example, 350 μm or less, may be 300 μm or less, may be 250 μm or less, or may be 200 μm or less. Since the thickness h of the first dielectric layer 20 is small, the overall thickness of the radio wave absorbing sheet 10 is also small. The thickness of the entire radio wave absorbing sheet 10 may be 5 μm or more, 10 μm or more, 20 μm or more, or 50 μm or more.
 電波吸収シート10全体の厚みを小さくすることにより、電波吸収シート10の設置場所の制約を軽減できる。すなわち、電波吸収シート10のレイアウトの自由度が高くなる。また、厚み方向における電波吸収シート10の熱抵抗を低減できる。このため、電子機器に電波吸収シート10が設置される場合に、電波吸収シート10に起因する電子部品の温度上昇を抑制できる。これにより、例えば、150℃程度まで温度が上昇する部品を備える電子機器に電波吸収シート10を設置できる。 By reducing the thickness of the entire radio wave absorbing sheet 10, restrictions on the installation location of the radio wave absorbing sheet 10 can be reduced. That is, the degree of freedom in the layout of the radio wave absorbing sheet 10 is increased. Further, the thermal resistance of the radio wave absorbing sheet 10 in the thickness direction can be reduced. Therefore, when the radio wave absorbing sheet 10 is installed in the electronic device, it is possible to suppress the temperature rise of the electronic component caused by the radio wave absorbing sheet 10. Thereby, for example, the radio wave absorbing sheet 10 can be installed in an electronic device including a component whose temperature rises to about 150 ° C.
 次に、電波吸収シート10の作用について説明する。図4は、電波吸収シート10の等価回路を示す図である。等価回路は、一次回路14と、二次回路15と、一次回路14と二次回路15とを結合する変成器16と、を含む。 Next, the operation of the radio wave absorbing sheet 10 will be described. FIG. 4 is a diagram showing an equivalent circuit of the radio wave absorption sheet 10. The equivalent circuit includes a primary circuit 14, a secondary circuit 15, and a transformer 16 that connects the primary circuit 14 and the secondary circuit 15.
 一次回路14は、大気中を伝搬する電波を表している。一次回路14は、大気の誘電率に基づく特性インピーダンスを有する。二次回路15は、第1誘電体層20、第1導電体層30及び第2導電体層40によって構成される共振回路を表している。共振回路は、例えば、並列に接続された抵抗、コンデンサ及びコイルを含む。変成器16は、複数の第1導電体層30によって構成される。 The primary circuit 14 represents a radio wave propagating in the atmosphere. The primary circuit 14 has a characteristic impedance based on the permittivity of the atmosphere. The secondary circuit 15 represents a resonance circuit composed of a first dielectric layer 20, a first conductor layer 30, and a second conductor layer 40. Resonant circuits include, for example, resistors, capacitors and coils connected in parallel. The transformer 16 is composed of a plurality of first conductor layers 30.
 共振回路について説明する。上述のように、第1導電体層30は、平面視において、半径rを有する円形である。この場合、共振回路の共振周波数frは、下記の式(A1)、(A2)に基づいて算出される。
Figure JPOXMLDOC01-appb-M000009
 cは、光速である。reffは、第1導電体層30の端部におけるフリンジング効果を考慮した場合の、第1導電体層30の実効半径である。
The resonance circuit will be described. As described above, the first conductor layer 30 is a circle having a radius r in a plan view. In this case, the resonance frequency fr of the resonance circuit is calculated based on the following equations (A1) and (A2).
Figure JPOXMLDOC01-appb-M000009
c is the speed of light. r eff is the effective radius of the first conductor layer 30 when the fringe effect at the end of the first conductor layer 30 is taken into consideration.
 上述のように、電波吸収シート10が対象とする電波の周波数は、20GHz以上110GHz以下である。この場合、電波吸収シート10は、共振周波数frが20GHz以上110GHz以下になるよう構成される。例えば、電波吸収シート10が対象とする電波の周波数が79GHzである場合、共振周波数frが、79GHzと同一になる、又は近似するよう、第1誘電体層20の厚みh及び比誘電率ε並びに第1導電体層30の半径rが決定される。第1誘電体層20の厚みh及び比誘電率εが予め定められている場合、共振周波数frが所望の値になるように第1導電体層30の半径rが決定される。これにより、対象とする電波を、共振を利用して吸収できる。 As described above, the frequency of the radio wave targeted by the radio wave absorbing sheet 10 is 20 GHz or more and 110 GHz or less. In this case, the radio wave absorbing sheet 10 is configured so that the resonance frequency fr is 20 GHz or more and 110 GHz or less. For example, when the frequency of the radio wave targeted by the radio wave absorbing sheet 10 is 79 GHz, the thickness h and the relative permittivity ε r of the first dielectric layer 20 so that the resonance frequency fr becomes the same as or close to 79 GHz. In addition, the radius r of the first conductor layer 30 is determined. When the thickness h and the relative permittivity ε r of the first dielectric layer 20 are predetermined, the radius r of the first conductor layer 30 is determined so that the resonance frequency fr becomes a desired value. As a result, the target radio wave can be absorbed by using resonance.
 次に、変成器16について説明する。電波吸収シート10が電波を効果的に吸収するためには、二次回路15の特性インピーダンスが一次回路14の特性インピーダンスと同一である、又は近似していることが好ましい。二次回路15の共振回路が共振条件を満たしている場合、二次回路15の特性インピーダンスはNRである。Nは、変成器16の巻数比である。Rは、二次回路15の共振抵抗である。 Next, the transformer 16 will be described. In order for the radio wave absorbing sheet 10 to effectively absorb radio waves, it is preferable that the characteristic impedance of the secondary circuit 15 is the same as or close to the characteristic impedance of the primary circuit 14. When the resonance circuit of the secondary circuit 15 satisfies the resonance condition, the characteristic impedance of the secondary circuit 15 is N 2 R. N is the turns ratio of the transformer 16. R is the resonance resistance of the secondary circuit 15.
 N及びRは、下記の式(A3)、(A4)に基づいて算出される。
Figure JPOXMLDOC01-appb-M000010
 Pは、ユニットセル12の面積である。Kは定数である。式(A3)のπr/Pは、第1面21における第1導電体層30の占有率を表す。式(A3)は、第1導電体層30の占有率とNが比例関係にあることを意味する。
N 2 and R are calculated based on the following formulas (A3) and (A4).
Figure JPOXMLDOC01-appb-M000010
P is the area of the unit cell 12. K is a constant. Πr 2 / P in the formula (A3) represents the occupancy rate of the first conductor layer 30 on the first surface 21. The formula (A3) means that the occupancy rate of the first conductor layer 30 and N 2 are in a proportional relationship.
 大気中の特性インピーダンスが真空中の特性インピーダンスと同一であると仮定すると、一次回路14のインピーダンスは120πである。電波吸収シート10は、好ましくは、NRが120πと同一になる、又は近似するよう構成される。例えば、120πに対するNRの比率が0.8以上1.2以下になるよう、第1誘電体層20の誘電正接tanδ、第1導電体層30の半径r及びユニットセル12の面積Pが決定される。第1誘電体層20の誘電正接tanδ及び第1導電体層30の半径rが既に決定されている場合、120πに対するNRの比率が所望の値になるようにユニットセル12の面積Pが調整される。例えば、第1導電体層30の第1周期P1及び第2周期P2が調整される。これにより、電波吸収シート10が電波を効果的に吸収できる。120πに対するNRの比率は、0.9以上1.1以下であってもよく、0.95以上1.05以下であってもよい。 Assuming that the characteristic impedance in the atmosphere is the same as the characteristic impedance in vacuum, the impedance of the primary circuit 14 is 120π. Wave absorbing sheet 10 is preferably arranged to N 2 R is the same as 120Pai, or approximate. For example, the dielectric loss tang tan δ of the first dielectric layer 20, the radius r of the first conductor layer 30, and the area P of the unit cell 12 are set so that the ratio of N 2 R to 120 π is 0.8 or more and 1.2 or less. It is determined. When the dielectric loss tangent tan δ of the first dielectric layer 20 and the radius r of the first conductor layer 30 have already been determined, the area P of the unit cell 12 is set so that the ratio of N 2 R to 120 π becomes a desired value. It will be adjusted. For example, the first period P1 and the second period P2 of the first conductor layer 30 are adjusted. As a result, the radio wave absorbing sheet 10 can effectively absorb radio waves. The ratio of N 2 R to 120 π may be 0.9 or more and 1.1 or less, or 0.95 or more and 1.05 or less.
 次に、電波吸収シート10の製造方法について説明する。図5~図6Bは、電波吸収シート10の製造工程の一例を示す図である。 Next, a method for manufacturing the radio wave absorbing sheet 10 will be described. 5 to 6B are views showing an example of a manufacturing process of the radio wave absorbing sheet 10.
 まず、第1誘電体層20を準備する。第1誘電体層20は、柔軟性を有する部材であってもよく、剛性を有する部材であってもよい。続いて、第1誘電体層20の第1面21に第1導電体層30を形成する。また、第1誘電体層20の第2面22に第2導電体層40を形成する。第1導電体層30及び第2導電体層40の形成方法は、特には限られない。例えば、めっき法、蒸着法、スパッタリング法などによって、第1導電体層30及び第2導電体層40を形成してもよい。金属箔を第1誘電体層20に貼ることによって、第1導電体層30及び第2導電体層40を形成してもよい。導電ペーストを第1誘電体層20に印刷することによって、第1導電体層30及び第2導電体層40を形成してもよい。第1導電体層30の形成方法と第2導電体層40の形成方法は、同一であってもよく、異なっていてもよい。 First, the first dielectric layer 20 is prepared. The first dielectric layer 20 may be a flexible member or a rigid member. Subsequently, the first conductor layer 30 is formed on the first surface 21 of the first dielectric layer 20. Further, the second conductor layer 40 is formed on the second surface 22 of the first dielectric layer 20. The method for forming the first conductor layer 30 and the second conductor layer 40 is not particularly limited. For example, the first conductor layer 30 and the second conductor layer 40 may be formed by a plating method, a vapor deposition method, a sputtering method, or the like. The first conductor layer 30 and the second conductor layer 40 may be formed by attaching the metal foil to the first dielectric layer 20. The first conductor layer 30 and the second conductor layer 40 may be formed by printing the conductive paste on the first dielectric layer 20. The method for forming the first conductor layer 30 and the method for forming the second conductor layer 40 may be the same or different.
 続いて、第1導電体層30を加工して上述の複数の第1導電体層30に分断するパターニング工程を実施する。例えば、図5に示すように、第1導電体層30の上に複数のレジスト層37を形成する。複数のレジスト層37の位置はそれぞれ、図1及び図2に示す複数の第1導電体層30の位置に対応している。続いて、レジスト層37をマスクとしてウェットエッチングによって第1導電体層30を加工する。これにより、図6Aに示すように、第1面21の面内方向に並ぶ複数の第1導電体層30を得ることができる。 Subsequently, a patterning step of processing the first conductor layer 30 and dividing the first conductor layer 30 into the plurality of first conductor layers 30 described above is carried out. For example, as shown in FIG. 5, a plurality of resist layers 37 are formed on the first conductor layer 30. The positions of the plurality of resist layers 37 correspond to the positions of the plurality of first conductor layers 30 shown in FIGS. 1 and 2, respectively. Subsequently, the first conductor layer 30 is processed by wet etching using the resist layer 37 as a mask. As a result, as shown in FIG. 6A, a plurality of first conductor layers 30 arranged in the in-plane direction of the first surface 21 can be obtained.
 図6B及び図6Cはそれぞれ、図6Aの第1導電体層30及びレジスト層37の断面形状の一例である。図6Bに示すように、第1導電体層30は、第1面21に向かうにつれて寸法が減少する部分を含んでいてもよい。図6Cに示すように、第1導電体層30は、第1面21に向かうにつれて寸法が増加する部分を含んでいてもよい。図示はしないが、第1導電体層30の寸法は、第1面21からの距離に依らず一定であってもよい。いずれの場合であっても、第1面21に最も近接する位置での第1導電体層30の寸法が、電波吸収シート10の吸収特性に影響を及ぼす。従って、上述の寸法S1は、第1面21に最も近接する位置で測定する。 6B and 6C are examples of cross-sectional shapes of the first conductor layer 30 and the resist layer 37 of FIG. 6A, respectively. As shown in FIG. 6B, the first conductor layer 30 may include a portion whose dimensions decrease toward the first surface 21. As shown in FIG. 6C, the first conductor layer 30 may include a portion whose dimensions increase toward the first surface 21. Although not shown, the dimensions of the first conductor layer 30 may be constant regardless of the distance from the first surface 21. In any case, the dimension of the first conductor layer 30 at the position closest to the first surface 21 affects the absorption characteristics of the radio wave absorbing sheet 10. Therefore, the above-mentioned dimension S1 is measured at the position closest to the first surface 21.
 その後、レジスト層37を除去する。このようにして、第1誘電体層20、複数の第1導電体層30、及び第2導電体層40を備える電波吸収シート10を作製できる。 After that, the resist layer 37 is removed. In this way, the radio wave absorbing sheet 10 including the first dielectric layer 20, the plurality of first conductor layers 30, and the second conductor layer 40 can be manufactured.
 本実施の形態によれば、共振を利用して電波を吸収するので、従来の電波吸収体に比べて第1誘電体層20の厚みを小さくできる。このため、電波吸収シート10全体の厚みも小さくできる。これにより、電波吸収シート10が軽くなる。 According to the present embodiment, since the radio wave is absorbed by using resonance, the thickness of the first dielectric layer 20 can be made smaller than that of the conventional radio wave absorber. Therefore, the thickness of the entire radio wave absorbing sheet 10 can be reduced. As a result, the radio wave absorbing sheet 10 becomes lighter.
 図7は、電波吸収シート10を備える通信装置100の一例を示す図である。通信装置100は、筐体110と、筐体110の内部に位置し、電波を送信又は受信する通信機構120と、筐体110の内部に位置し、通信機構120を制御する制御機構130と、を備える。通信機構120は、電波吸収シート10が対象とする上述の周波数の電波Eを送信又は受信する。 FIG. 7 is a diagram showing an example of a communication device 100 provided with a radio wave absorbing sheet 10. The communication device 100 includes a housing 110, a communication mechanism 120 located inside the housing 110 to transmit or receive radio waves, and a control mechanism 130 located inside the housing 110 to control the communication mechanism 120. To prepare for. The communication mechanism 120 transmits or receives the radio wave E having the above-mentioned frequency targeted by the radio wave absorption sheet 10.
 図7において、符号10A~10Fが付された点線はそれぞれ、電波吸収シート10の配置の例を示している。例えば、符号10Aで示すように、電波吸収シート10は、通信機構120と制御機構130との間に配置されていてもよい。符号10Bで示すように、電波吸収シート10は、筐体110の前面111と通信機構120との間に配置されていてもよい。符号10Cで示すように、電波吸収シート10は、筐体110の前面111に取り付けられていてもよい。符号10Dで示すように、電波吸収シート10は、筐体110の後面112と通信機構120との間に配置されていてもよい。符号10Eで示すように、電波吸収シート10は、筐体110の後面112に取り付けられていてもよい。符号10Fで示すように、電波吸収シート10は、筐体110の側面113に取り付けられていてもよい。 In FIG. 7, dotted lines with reference numerals 10A to 10F show an example of the arrangement of the radio wave absorbing sheet 10, respectively. For example, as indicated by reference numeral 10A, the radio wave absorbing sheet 10 may be arranged between the communication mechanism 120 and the control mechanism 130. As shown by reference numeral 10B, the radio wave absorbing sheet 10 may be arranged between the front surface 111 of the housing 110 and the communication mechanism 120. As shown by reference numeral 10C, the radio wave absorbing sheet 10 may be attached to the front surface 111 of the housing 110. As shown by reference numeral 10D, the radio wave absorbing sheet 10 may be arranged between the rear surface 112 of the housing 110 and the communication mechanism 120. As indicated by reference numeral 10E, the radio wave absorbing sheet 10 may be attached to the rear surface 112 of the housing 110. As shown by reference numeral 10F, the radio wave absorbing sheet 10 may be attached to the side surface 113 of the housing 110.
 本実施の形態によれば、電波吸収シート10の厚みが小さいので、筐体110の内部における電波吸収シート10の配置の自由度が高い。 According to the present embodiment, since the thickness of the radio wave absorbing sheet 10 is small, the degree of freedom in arranging the radio wave absorbing sheet 10 inside the housing 110 is high.
 なお、上述した実施の形態に対して様々な変更を加えることが可能である。以下、必要に応じて図面を参照しながら、変形例について説明する。以下の説明及び以下の説明で用いる図面では、上述の実施の形態と同様に構成され得る部分について、第1の実施の形態における対応する部分に対して用いた符号と同一の符号を用いることとし、重複する説明を省略する。また、上述の実施の形態において得られる作用効果が変形例においても得られることが明らかである場合、その説明を省略することもある。 It is possible to make various changes to the above-described embodiment. Hereinafter, modification examples will be described with reference to the drawings as necessary. In the following description and the drawings used in the following description, the same reference numerals as those used for the corresponding portions in the first embodiment will be used for the portions that can be configured in the same manner as in the above-described embodiment. , Omit duplicate explanations. Further, when it is clear that the action and effect obtained in the above-described embodiment can be obtained in the modified example, the description thereof may be omitted.
 (第1変形例)
 図8は、第1変形例に係る電波吸収シート10を示す平面図である。図8に示すように、第1導電体層30は、平面視において、長さL及び幅Wを有する長方形であってもよい。幅Wは、長さLと同一であってもよく、長さLよりも小さくてもよい。
(First modification)
FIG. 8 is a plan view showing the radio wave absorbing sheet 10 according to the first modification. As shown in FIG. 8, the first conductor layer 30 may be a rectangle having a length L and a width W in a plan view. The width W may be the same as the length L or may be smaller than the length L.
 図8に示す例において、長さLを有する第1導電体層30の辺は、第1方向D1に延びており、幅Wを有する第1導電体層30の辺は、第2方向D2に延びている。図示はしないが、長さLを有する第1導電体層30の辺は、第1方向D1とは異なる方向に延びていてもよい。 In the example shown in FIG. 8, the side of the first conductor layer 30 having the length L extends in the first direction D1, and the side of the first conductor layer 30 having the width W extends in the second direction D2. It is extended. Although not shown, the side of the first conductor layer 30 having a length L may extend in a direction different from that of the first direction D1.
 図9は、本変形例におけるユニットセル12を示す斜視図である。ユニットセル12は、長方形の1つの第1導電体層30を含む。上述の実施の形態の場合と同様に、電波吸収シート10によって実現される共振回路の特性は、ユニットセル12の構成に基づいて決定される。 FIG. 9 is a perspective view showing the unit cell 12 in this modified example. The unit cell 12 includes one rectangular first conductor layer 30. As in the case of the above-described embodiment, the characteristics of the resonance circuit realized by the radio wave absorbing sheet 10 are determined based on the configuration of the unit cell 12.
 本変形例において、共振周波数frは、下記の式(B1)、(B2)、(B3)、(B4)に基づいて算出される。
Figure JPOXMLDOC01-appb-M000011
 式(B2)のεre(L)は、式(B3)のxにLを代入することによって算出される。式(B2)のεre(W)は、式(B3)のxにWを代入することによって算出される。Lは、第1導電体層30の端部におけるフリンジング効果を考慮した場合の、第1導電体層30の実効長さである。
In this modification, the resonance frequency fr is calculated based on the following equations (B1), (B2), (B3), and (B4).
Figure JPOXMLDOC01-appb-M000011
The ε re (L) of the equation (B2) is calculated by substituting L for x of the equation (B3). The ε re (W) of the equation (B2) is calculated by substituting W for x in the equation (B3). Le is the effective length of the first conductor layer 30 when the fringe effect at the end of the first conductor layer 30 is taken into consideration.
 本変形例においても、電波吸収シート10が対象とする電波の周波数は、20GHz以上110GHz以下である。この場合、電波吸収シート10は、共振周波数frが20GHz以上110GHz以下になるよう構成される。例えば、電波吸収シート10が対象とする電波の周波数が79GHzである場合、共振周波数frが、79GHzと同一になる、又は近似するよう、第1誘電体層20の厚みh及び比誘電率ε並びに第1導電体層30の長さL及び幅Wが決定される。第1誘電体層20の厚みh及び比誘電率εが予め定められている場合、共振周波数frが所望の値になるように第1導電体層30の長さL及び幅Wが決定される。これにより、対象とする電波を、共振を利用して吸収することができる。 Also in this modification, the frequency of the radio wave targeted by the radio wave absorbing sheet 10 is 20 GHz or more and 110 GHz or less. In this case, the radio wave absorbing sheet 10 is configured so that the resonance frequency fr is 20 GHz or more and 110 GHz or less. For example, when the frequency of the radio wave targeted by the radio wave absorbing sheet 10 is 79 GHz, the thickness h and the relative permittivity ε r of the first dielectric layer 20 so that the resonance frequency fr becomes the same as or close to 79 GHz. Further, the length L and the width W of the first conductor layer 30 are determined. When the thickness h and the relative permittivity ε r of the first dielectric layer 20 are predetermined, the length L and the width W of the first conductor layer 30 are determined so that the resonance frequency fr becomes a desired value. To. As a result, the target radio wave can be absorbed by utilizing resonance.
 本変形例において、N及びRは、下記の式(B5)、(B6)に基づいて算出される。
Figure JPOXMLDOC01-appb-M000012
 Kは定数である。式(B5)のLW/Pは、第1面21における第1導電体層30の占有率を表す。式(B5)は、第1導電体層30の占有率とNが比例関係にあることを意味する。
In this modification, N 2 and R are calculated based on the following equations (B5) and (B6).
Figure JPOXMLDOC01-appb-M000012
K is a constant. The LW / P of the formula (B5) represents the occupancy rate of the first conductor layer 30 on the first surface 21. The formula (B5) means that the occupancy rate of the first conductor layer 30 and N 2 are in a proportional relationship.
 本変形例の電波吸収シート10も、好ましくは、NRが120πと同一になる、又は近似するよう構成される。例えば、120πに対するNRの比率が0.8以上1.2以下になるよう、第1誘電体層20の誘電正接tanδ、第1導電体層30の長さL、幅W及びユニットセル12の面積Pが決定される。第1誘電体層20の誘電正接tanδ及び第1導電体層30の長さL、幅Wが既に決定されている場合、120πに対するNRの比率が所望の値になるようにユニットセル12の面積Pが調整される。例えば、第1導電体層30の第1周期P1及び第2周期P2が調整される。これにより、電波吸収シート10が電波を効果的に吸収できる。 Also wave absorption sheet 10 of this modification, preferably, configured so that N 2 R is the same as 120Pai, or approximate. For example, the dielectric loss tangent tan δ of the first dielectric layer 20, the length L of the first conductor layer 30, the width W, and the unit cell 12 so that the ratio of N 2 R to 120 π is 0.8 or more and 1.2 or less. Area P is determined. When the length L and width W of the dielectric loss tangent tan δ of the first dielectric layer 20 and the first conductor layer 30 have already been determined, the unit cell 12 so that the ratio of N 2 R to 120 π becomes a desired value. Area P is adjusted. For example, the first period P1 and the second period P2 of the first conductor layer 30 are adjusted. As a result, the radio wave absorbing sheet 10 can effectively absorb radio waves.
 (第2変形例)
 図10は、第2変形例に係る電波吸収シート10を示す平面図である。図10に示すように、第1導電体層30は、複数の開口33を含んでいてもよい。これにより、電波吸収シート10が軽くなる。また、可視光の一部が第1導電体層30を透過できる。
(Second modification)
FIG. 10 is a plan view showing the radio wave absorbing sheet 10 according to the second modification. As shown in FIG. 10, the first conductor layer 30 may include a plurality of openings 33. As a result, the radio wave absorbing sheet 10 becomes lighter. Further, a part of visible light can pass through the first conductor layer 30.
 開口33を含む第1導電体層30の具体的な構成は任意である。例えば、第1導電体層30は、複数の線状の層を組み合わせることにより構成される、いわゆるメッシュの形態であってもよい。 The specific configuration of the first conductor layer 30 including the opening 33 is arbitrary. For example, the first conductor layer 30 may be in the form of a so-called mesh, which is formed by combining a plurality of linear layers.
 図示はしないが、第2導電体層40も複数の開口を含んでいてもよい。これにより、可視光の一部が第1導電体層30を透過できる。第1誘電体層20が透明である場合、可視光の一部は、電波吸収シート10を透過できる。これにより、電波吸収シート10が目立つことを抑制できる。 Although not shown, the second conductor layer 40 may also include a plurality of openings. As a result, a part of visible light can pass through the first conductor layer 30. When the first dielectric layer 20 is transparent, a part of visible light can pass through the radio wave absorbing sheet 10. As a result, it is possible to prevent the radio wave absorbing sheet 10 from being conspicuous.
 (第3変形例)
 図11は、第3変形例に係る電波吸収シート10を示す平面図である。図11に示すように、複数の第1導電体層30の形状は異なっていてもよい。例えば、複数の第1導電体層30は、複数の第1形状層31と、平面視において第1形状層31とは異なる形状を有する複数の第2形状層32と、を含んでいてもよい。第1形状層31は、第1方向D1において寸法S11を有し、第2方向D2において寸法S12を有する。第2形状層32は、第1方向D1において寸法S21を有し、第2方向D2において寸法S22を有する。図10に示す例において、寸法S21は寸法S11よりも大きく、寸法S22は寸法S12よりも大きい。
(Third modification example)
FIG. 11 is a plan view showing the radio wave absorbing sheet 10 according to the third modification. As shown in FIG. 11, the shapes of the plurality of first conductor layers 30 may be different. For example, the plurality of first conductor layers 30 may include a plurality of first shape layers 31 and a plurality of second shape layers 32 having a shape different from that of the first shape layer 31 in a plan view. .. The first shape layer 31 has a dimension S11 in the first direction D1 and a dimension S12 in the second direction D2. The second shape layer 32 has a dimension S21 in the first direction D1 and a dimension S22 in the second direction D2. In the example shown in FIG. 10, the dimension S21 is larger than the dimension S11, and the dimension S22 is larger than the dimension S12.
 第1形状層31を含むユニットセル12は、第1の共振周波数fr1を有する共振回路を構成する。第2形状層32を含むユニットセル12は、第2の共振周波数fr2を有する共振回路を構成する。第2の共振周波数fr2は、第1の共振周波数fr1とは異なる。本変形例によれば、電波吸収シート10が2つの共振周波数を有するので、電波吸収シート10が2つの吸収ピークを有することができる。 The unit cell 12 including the first shape layer 31 constitutes a resonance circuit having a first resonance frequency fr1. The unit cell 12 including the second shape layer 32 constitutes a resonance circuit having a second resonance frequency fr2. The second resonance frequency fr2 is different from the first resonance frequency fr1. According to this modification, since the radio wave absorbing sheet 10 has two resonance frequencies, the radio wave absorbing sheet 10 can have two absorption peaks.
 (第4変形例)
 図12は、第4変形例に係る電波吸収シート10を示す平面図である。図13は、図12の電波吸収シートをXIII-XIII方向から見た場合を示す断面図である。電波吸収シート10は、第3面51及び第3面51の反対側に位置する第4面52を含む第2誘電体層50と、第4面52に位置する第3導電体層60と、を備えていてもよい。第2誘電体層50は、第2導電体層40が第1誘電体層20の第2面22と第2誘電体層50の第3面51との間に位置するよう、第1誘電体層20に積層されている。第2誘電体層50の第3面51は、第2導電体層40に接していてもよい。第3導電体層60は、第1誘電体層20の厚み方向において第1導電体層30及び第2導電体層40に対向している。
(Fourth modification)
FIG. 12 is a plan view showing the radio wave absorbing sheet 10 according to the fourth modification. FIG. 13 is a cross-sectional view showing a case where the radio wave absorbing sheet of FIG. 12 is viewed from the XIII-XIII direction. The radio wave absorbing sheet 10 includes a second dielectric layer 50 including a fourth surface 52 located on the opposite side of the third surface 51 and the third surface 51, and a third conductor layer 60 located on the fourth surface 52. May be provided. The second dielectric layer 50 is a first dielectric so that the second conductor layer 40 is located between the second surface 22 of the first dielectric layer 20 and the third surface 51 of the second dielectric layer 50. It is laminated on the layer 20. The third surface 51 of the second dielectric layer 50 may be in contact with the second conductor layer 40. The third conductor layer 60 faces the first conductor layer 30 and the second conductor layer 40 in the thickness direction of the first dielectric layer 20.
 図12に示すように、第2導電体層40は、第1誘電体層20の第2面22において複数に分断されていてもよい。言い換えると、電波吸収シート10は、第1誘電体層20の第2面22に位置する複数の第2導電体層40を含んでいてもよい。この場合、図12に示すように、第2導電体層40は、第1誘電体層20の厚み方向において第1導電体層30に対向していなくてもよい。第2面22における第2導電体層40の占有率は、第1導電体層30の場合と同様に、例えば0.85以下であり、0.75以下であってもよく、0.60以下であってもよく、0.50以下であってもよく、0.30以下であってもよい。占有率は、0.05以上であってもよく、0.10以上であってもよい。第2面22における第2導電体層40の占有率は、第1面21における第1導電体層30の占有率よりも大きくてもよい。 As shown in FIG. 12, the second conductor layer 40 may be divided into a plurality of pieces on the second surface 22 of the first dielectric layer 20. In other words, the radio wave absorbing sheet 10 may include a plurality of second conductor layers 40 located on the second surface 22 of the first dielectric layer 20. In this case, as shown in FIG. 12, the second conductor layer 40 does not have to face the first conductor layer 30 in the thickness direction of the first dielectric layer 20. The occupancy rate of the second conductor layer 40 on the second surface 22 is, for example, 0.85 or less, 0.75 or less, and 0.60 or less, as in the case of the first conductor layer 30. It may be 0.50 or less, or 0.30 or less. The occupancy rate may be 0.05 or more, or 0.10 or more. The occupancy rate of the second conductor layer 40 on the second surface 22 may be larger than the occupancy rate of the first conductor layer 30 on the first surface 21.
 第2誘電体層50は、絶縁性を有する材料を含む。第2誘電体層50の材料としては、第1誘電体層20で例示した材料を用いることができる。第2誘電体層50の材料は、第1誘電体層20の材料と同一であってもよく、異なっていてもよい。 The second dielectric layer 50 contains a material having an insulating property. As the material of the second dielectric layer 50, the material exemplified by the first dielectric layer 20 can be used. The material of the second dielectric layer 50 may be the same as or different from the material of the first dielectric layer 20.
 第2誘電体層50の厚みh2は、例えば300μm以下であり、250μm以下であってもよく、200μm以下であってもよく、150μm以下であってもよく、100μm以下であってもよい。厚みh2は、5μm以上であってもよく、10μm以上であってもよく、20μm以上であってもよく、50μm以上であってもよい。 The thickness h2 of the second dielectric layer 50 may be, for example, 300 μm or less, 250 μm or less, 200 μm or less, 150 μm or less, or 100 μm or less. The thickness h2 may be 5 μm or more, 10 μm or more, 20 μm or more, or 50 μm or more.
 第3導電体層60は、導電性を有する材料を含む。第3導電体層60の材料としては、第1導電体層30で例示した材料を用いることができる。第3導電体層60の材料は、第1導電体層30の材料と同一であってもよく、異なっていてもよい。 The third conductor layer 60 contains a material having conductivity. As the material of the third conductor layer 60, the material exemplified by the first conductor layer 30 can be used. The material of the third conductor layer 60 may be the same as or different from the material of the first conductor layer 30.
 第3導電体層60の厚みT3は、1μm以上であってもよく、5μm以上であってもよい。第3導電体層60の厚みは、50μm以下であってもよく、20μm以下であってもよい。 The thickness T3 of the third conductor layer 60 may be 1 μm or more, or 5 μm or more. The thickness of the third conductor layer 60 may be 50 μm or less, or 20 μm or less.
 第1誘電体層20及び第2誘電体層50を挟んで対向している、第1導電体層30及び第3導電体層60は、第1の共振周波数を有する第1の共振回路を構成する。また、第2誘電体層50を挟んで対向している、第2導電体層40及び第3導電体層60は、第2の共振周波数を有する第2の共振回路を構成する。本変形例においても、電波吸収シート10が2つの共振周波数を有するので、電波吸収シート10が2つの吸収ピークを有することができる。 The first conductor layer 30 and the third conductor layer 60, which face each other with the first dielectric layer 20 and the second dielectric layer 50 interposed therebetween, constitute a first resonance circuit having a first resonance frequency. do. Further, the second conductor layer 40 and the third conductor layer 60, which face each other with the second dielectric layer 50 interposed therebetween, form a second resonance circuit having a second resonance frequency. Also in this modification, since the radio wave absorbing sheet 10 has two resonance frequencies, the radio wave absorbing sheet 10 can have two absorption peaks.
 (第5変形例)
 図14は、第5変形例に係る電波吸収シート10を示す平面図である。図15は、図14の電波吸収シートをXV-XV方向から見た場合を示す断面図である。
(Fifth modification)
FIG. 14 is a plan view showing the radio wave absorbing sheet 10 according to the fifth modification. FIG. 15 is a cross-sectional view showing a case where the radio wave absorbing sheet of FIG. 14 is viewed from the XV-XV direction.
 図12及び図13においては、第1導電体層30と第2導電体層40とが第1誘電体層20の厚み方向において重ならない例を示した。しかしながら、これに限られることはなく、図14及び図15に示すように、第1導電体層30と第2導電体層40とが第1誘電体層20の厚み方向において重なっていてもよい。 12 and 13 show an example in which the first conductor layer 30 and the second conductor layer 40 do not overlap in the thickness direction of the first dielectric layer 20. However, the present invention is not limited to this, and as shown in FIGS. 14 and 15, the first conductor layer 30 and the second conductor layer 40 may overlap in the thickness direction of the first dielectric layer 20. ..
 第1導電体層30は、第1方向D1において寸法S1を有し、第2方向D2において寸法S2を有する。第2導電体層40は、第1方向D1において寸法S3を有し、第2方向D2において寸法S4を有する。寸法S1は、寸法S3よりも大きくてもよい。寸法S2は、寸法S4よりも大きくてもよい。図14に示すように、第2導電体層40は、平面視において第1導電体層30を囲う輪郭を有していてもよい。 The first conductor layer 30 has a dimension S1 in the first direction D1 and a dimension S2 in the second direction D2. The second conductor layer 40 has a dimension S3 in the first direction D1 and a dimension S4 in the second direction D2. The dimension S1 may be larger than the dimension S3. The dimension S2 may be larger than the dimension S4. As shown in FIG. 14, the second conductor layer 40 may have a contour surrounding the first conductor layer 30 in a plan view.
 第1誘電体層20を挟んで対向している、第1導電体層30及び第2導電体層40は、第1の共振周波数を有する第1の共振回路を構成する。また、第2誘電体層50を挟んで対向している、第2導電体層40及び第3導電体層60は、第2の共振周波数を有する第2の共振回路を構成する。本変形例においても、電波吸収シート10が2つの共振周波数を有するので、電波吸収シート10が2つの吸収ピークを有することができる。 The first conductor layer 30 and the second conductor layer 40 facing each other with the first dielectric layer 20 interposed therebetween constitute a first resonance circuit having a first resonance frequency. Further, the second conductor layer 40 and the third conductor layer 60, which face each other with the second dielectric layer 50 interposed therebetween, form a second resonance circuit having a second resonance frequency. Also in this modification, since the radio wave absorbing sheet 10 has two resonance frequencies, the radio wave absorbing sheet 10 can have two absorption peaks.
 次に、本開示の形態を実施例により更に具体的に説明するが、本開示の形態はその要旨を超えない限り、以下の実施例の記載に限定されるものではない。 Next, the embodiment of the present disclosure will be described more specifically by way of examples, but the embodiment of the present disclosure is not limited to the description of the following examples as long as the gist of the present disclosure is not exceeded.
(例1)
 まず、ガラスエポキシ基材の両面に銅箔が設けられた積層板を準備した。ガラスエポキシ基材の厚みは100μmであり、銅箔の厚みはいずれも12μmであった。ガラスエポキシ基材は、上述の第1誘電体層20として機能する。銅箔は、上述の第1導電体層30及び第2導電体層40として機能する。ガラスエポキシ基材の比誘電率は4.2であり、誘電正接は0.02であった。
(Example 1)
First, a laminated board in which copper foils were provided on both sides of a glass epoxy base material was prepared. The thickness of the glass epoxy base material was 100 μm, and the thickness of the copper foil was 12 μm. The glass epoxy substrate functions as the first dielectric layer 20 described above. The copper foil functions as the first conductor layer 30 and the second conductor layer 40 described above. The relative permittivity of the glass epoxy substrate was 4.2, and the dielectric loss tangent was 0.02.
 続いて、一方の銅箔の上に上述の複数のレジスト層37を形成した。続いて、レジスト層37をマスクとしてウェットエッチングによって銅箔を加工した。このようにして、第1誘電体層20と、第1面21に位置する複数の第1導電体層30と、第2面22に位置する第2導電体層40と、を備える電波吸収シート10を作製した。平面視における第1導電体層30の形状及び配置は下記のとおりである。
・第1導電体層30の形状:半径0.506mmの円形
・第1周期P1:2.712mm
・第2周期P2:2.712mm
 第1導電体層30の占有率は、0.109である。二次回路15の特性インピーダンスNRは、計算上は120πである。
Subsequently, the above-mentioned plurality of resist layers 37 were formed on one of the copper foils. Subsequently, the copper foil was processed by wet etching using the resist layer 37 as a mask. In this way, the radio wave absorbing sheet including the first dielectric layer 20, the plurality of first conductor layers 30 located on the first surface 21, and the second conductor layer 40 located on the second surface 22. 10 was made. The shape and arrangement of the first conductor layer 30 in a plan view are as follows.
-Shape of the first conductor layer 30: Circular with a radius of 0.506 mm-First period P1: 2.712 mm
・ Second cycle P2: 2.712 mm
The occupancy rate of the first conductor layer 30 is 0.109. The characteristic impedance N 2 R of the secondary circuit 15 is calculated to be 120 π.
 続いて、電波吸収シート10の吸収特性を評価した。具体的には、電波吸収シート10における電波の反射減衰量を、フリースペース法によって測定した。測定器としては、Keysight製のベクトルネットワークアナライザ PNA N5222B及びVirginia Diodes製の周波数マルチプライヤ WR12を用いた。WR12は、PNA N5222Bの周波数範囲を拡張するための装置である。 Subsequently, the absorption characteristics of the radio wave absorption sheet 10 were evaluated. Specifically, the amount of reflection attenuation of the radio wave in the radio wave absorbing sheet 10 was measured by the free space method. As a measuring instrument, a vector network analyzer PNA N5222B manufactured by Keysight and a frequency multiplier WR12 manufactured by Virginia Diodes were used. The WR12 is a device for expanding the frequency range of PNA N5222B.
 また、シミュレーションに基づいて電波吸収シート10の反射減衰量を算出した。シミュレーションソフトとしては、ANSYS社のHFSSを用いた。フリースペース法による測定結果と、シミュレーションによる算出結果は同等であった。シミュレーションの結果を図16に示す。図16のグラフにおいて、横軸は周波数fを示し、縦軸は反射減衰量dを示す。BW1は、反射減衰量が-15dBになる位置における吸収ピークの幅である。幅BW1は0.56GHzであった。吸収ピークの深さHは57.6dBであった。 In addition, the amount of reflection attenuation of the radio wave absorption sheet 10 was calculated based on the simulation. As the simulation software, HFSS manufactured by ANSYS was used. The measurement result by the free space method and the calculation result by the simulation were equivalent. The result of the simulation is shown in FIG. In the graph of FIG. 16, the horizontal axis indicates the frequency f, and the vertical axis indicates the reflection attenuation amount d. BW1 is the width of the absorption peak at the position where the reflection attenuation amount is −15 dB. The width BW1 was 0.56 GHz. The depth H of the absorption peak was 57.6 dB.
(例1B~例1G)
 例1Aの第1導電体層30の周期P1,P2を変更した条件において、シミュレーションに基づいて電波吸収シート10の吸収特性を評価した。例1B、1C、1D、1E、1F及び1Gにおける周期P1,P2は、2.1mm、2.3mm、2.5mm、2.7mm、2.9mm及び3.1mmである。第1導電体層30の形状は例1Aの場合と同一である。従って、二次回路15の共振回路の共振周波数frは、例1Aの場合と同様に79.4GHzである。一方、二次回路15の特性インピーダンスNRは、例1Aの場合とは異なる。このため、例1B~例1Gの例では、二次回路15の特性インピーダンスNRが、一次回路14の特性インピーダンスである120πに一致していない。
(Example 1B to Example 1G)
Under the condition that the cycles P1 and P2 of the first conductor layer 30 of Example 1A were changed, the absorption characteristics of the radio wave absorbing sheet 10 were evaluated based on the simulation. The cycles P1, P2 in Examples 1B, 1C, 1D, 1E, 1F and 1G are 2.1 mm, 2.3 mm, 2.5 mm, 2.7 mm, 2.9 mm and 3.1 mm. The shape of the first conductor layer 30 is the same as that of Example 1A. Therefore, the resonance frequency fr of the resonance circuit of the secondary circuit 15 is 79.4 GHz as in the case of Example 1A. On the other hand, the characteristic impedance N 2 R of the secondary circuit 15 is different from that of Example 1A. Therefore, in the example of Examples 1B ~ Example 1G, the characteristic impedance N 2 R of the secondary circuit 15 does not coincide with the the characteristic impedance of the primary circuit 14 120π.
 例1A~例1Gシミュレーション結果をまとめて図17に示す。二次回路15の特性インピーダンスNRが、一次回路14の特性インピーダンスである120πに一致していない場合であっても、吸収ピークが生じていた。二次回路15の特性インピーダンスNRと120πとの間のずれが大きいほど、吸収ピークの深さが小さくなった。 The simulation results of Example 1A to Example 1G are summarized in FIG. Even when the characteristic impedance N 2 R of the secondary circuit 15 does not match the characteristic impedance 120π of the primary circuit 14, an absorption peak occurs. The larger the deviation between the characteristic impedance N 2 R of the secondary circuit 15 and 120 π, the smaller the depth of the absorption peak.
(例2)
 下記の条件で構成された電波吸収シート10の吸収特性を、シミュレーションに基づいて評価した。第1誘電体層20、第1導電体層30及び第2導電体層40の材料は、例1の場合と同様に、ガラスエポキシ、銅及び銅が想定されている。第1導電体層30の占有率は、0.403である。二次回路15の特性インピーダンスNRは、計算上は120πである。
・第1導電体層30の厚み:12μm
・第1導電体層30の形状:半径1.49mmの円形
・第1周期P1:4.16mm
・第2周期P2:4.16mm
・第2導電体層40の厚み:12μm
・第1誘電体層20の厚み:100μm
・第1誘電体層20の比誘電率:4.2
・第1誘電体層20の誘電正接:0.02
(Example 2)
The absorption characteristics of the radio wave absorption sheet 10 configured under the following conditions were evaluated based on a simulation. As the material of the first dielectric layer 20, the first conductor layer 30, and the second conductor layer 40, glass epoxy, copper, and copper are assumed as in the case of Example 1. The occupancy rate of the first conductor layer 30 is 0.403. The characteristic impedance N 2 R of the secondary circuit 15 is calculated to be 120 π.
-Thickness of the first conductor layer 30: 12 μm
-Shape of the first conductor layer 30: Circular with a radius of 1.49 mm-First period P1: 4.16 mm
・ Second cycle P2: 4.16 mm
-Thickness of the second conductor layer 40: 12 μm
-Thickness of the first dielectric layer 20: 100 μm
Relative permittivity of the first dielectric layer 20: 4.2
Dielectric loss tangent of first dielectric layer 20: 0.02
 シミュレーション結果を図18に示す。共振周波数frは28.2GHzであった。吸収ピークの深さHは40.4dBであり、幅BW1は0.22GHzであった。 The simulation results are shown in FIG. The resonance frequency fr was 28.2 GHz. The depth H of the absorption peak was 40.4 dB, and the width BW1 was 0.22 GHz.
(例3)
 下記の条件で構成された電波吸収シート10の吸収特性を、シミュレーションに基づいて評価した。第1誘電体層20、第1導電体層30及び第2導電体層40の材料は、例1の場合と同様に、ガラスエポキシ、銅及び銅が想定されている。第1導電体層30の占有率は、0.102である。二次回路15の特性インピーダンスNRは、計算上は120πである。
・第1導電体層30の厚み:12μm
・第1導電体層30の形状:一辺の長さが0.85mmの正方形
・第1周期P1:2.66mm
・第2周期P2:2.66mm
・第2導電体層40の厚み:12μm
・第1誘電体層20の厚み:100μm
・第1誘電体層20の比誘電率:4.2
・第1誘電体層20の誘電正接:0.02
(Example 3)
The absorption characteristics of the radio wave absorption sheet 10 configured under the following conditions were evaluated based on a simulation. As the material of the first dielectric layer 20, the first conductor layer 30, and the second conductor layer 40, glass epoxy, copper, and copper are assumed as in the case of Example 1. The occupancy rate of the first conductor layer 30 is 0.102. The characteristic impedance N 2 R of the secondary circuit 15 is calculated to be 120 π.
-Thickness of the first conductor layer 30: 12 μm
-Shape of the first conductor layer 30: Square with a side length of 0.85 mm-First period P1: 2.66 mm
・ Second cycle P2: 2.66 mm
-Thickness of the second conductor layer 40: 12 μm
-Thickness of the first dielectric layer 20: 100 μm
Relative permittivity of the first dielectric layer 20: 4.2
Dielectric loss tangent of first dielectric layer 20: 0.02
 シミュレーション結果を図19に示す。共振周波数frは79.35GHzであった。吸収ピークの深さHは44.09dBであり、幅BW1は0.6GHzであった。 The simulation results are shown in FIG. The resonance frequency fr was 79.35 GHz. The depth H of the absorption peak was 44.09 dB, and the width BW1 was 0.6 GHz.
10 電波吸収シート
12 ユニットセル
14 一次回路
15 二次回路
16 変成器
20 第1誘電体層
21 第1面
22 第2面
30 第1導電体層
31 第1形状層
32 第2形状層
33 開口
35 分布領域
37 レジスト層
40 第2導電体層
50 第2誘電体層
51 第3面
52 第4面
60 第3導電体層
100 通信装置
110 筐体
120 通信機構
130 制御機構
D1 第1方向
D2 第2方向
P1 第1周期
P2 第2周期
10 Radio wave absorbing sheet 12 Unit cell 14 Primary circuit 15 Secondary circuit 16 Transformer 20 First dielectric layer 21 First surface 22 Second surface 30 First conductor layer 31 First shape layer 32 Second shape layer 33 Opening 35 Distribution area 37 Resist layer 40 Second conductor layer 50 Second dielectric layer 51 Third surface 52 Fourth surface 60 Third conductor layer 100 Communication device 110 Housing 120 Communication mechanism 130 Control mechanism D1 First direction D2 Second Direction P1 1st cycle P2 2nd cycle

Claims (15)

  1.  第1面及び前記第1面の反対側に位置する第2面を含む第1誘電体層と、
     前記第1面に位置し、第1方向に並ぶ複数の第1導電体層と、
     前記第2面に位置する第2導電体層と、を備え、
     前記第1面における前記第1導電体層の占有率が0.85以下である、電波吸収シート。
    A first dielectric layer including a first surface and a second surface located on the opposite side of the first surface,
    A plurality of first conductor layers located on the first surface and arranged in the first direction,
    A second conductor layer located on the second surface is provided.
    A radio wave absorbing sheet in which the occupancy rate of the first conductor layer on the first surface is 0.85 or less.
  2.  前記第1方向における前記第1導電体層の寸法は、5.0mm未満である、請求項1に記載の電波吸収シート。 The radio wave absorbing sheet according to claim 1, wherein the dimension of the first conductor layer in the first direction is less than 5.0 mm.
  3.  前記第1誘電体層の厚みは、300μm以下である、請求項1に記載の電波吸収シート。 The radio wave absorbing sheet according to claim 1, wherein the thickness of the first dielectric layer is 300 μm or less.
  4.  前記第1誘電体層の比誘電率は、20未満である、請求項1に記載の電波吸収シート。 The radio wave absorbing sheet according to claim 1, wherein the relative permittivity of the first dielectric layer is less than 20.
  5.  前記第1誘電体層の誘電正接は、0.2以下である、請求項1に記載の電波吸収シート。 The radio wave absorbing sheet according to claim 1, wherein the dielectric loss tangent of the first dielectric layer is 0.2 or less.
  6.  前記電波吸収シートの厚みは、350μm以下である、請求項1に記載の電波吸収シート。 The radio wave absorbing sheet according to claim 1, wherein the thickness of the radio wave absorbing sheet is 350 μm or less.
  7.  20GHz以上110GHz以下の範囲内に位置する共振周波数frを有する、請求項1乃至6のいずれか一項に記載の電波吸収シート。 The radio wave absorption sheet according to any one of claims 1 to 6, which has a resonance frequency fr located in the range of 20 GHz or more and 110 GHz or less.
  8.  前記第1導電体層は、平面視において、半径rを有する円形であり、
     前記共振周波数frは、下記の式(A1)、(A2)に基づいて算出され、
    Figure JPOXMLDOC01-appb-M000001
     cは光速であり、εrは前記第1誘電体層の比誘電率であり、hは前記第1誘電体層の厚みである、請求項7に記載の電波吸収シート。
    The first conductor layer is a circle having a radius r in a plan view.
    The resonance frequency fr is calculated based on the following equations (A1) and (A2).
    Figure JPOXMLDOC01-appb-M000001
    The radio wave absorption sheet according to claim 7, wherein c is the speed of light, ε r is the relative permittivity of the first dielectric layer, and h is the thickness of the first dielectric layer.
  9.  120πに対するNRの比率が0.8以上1.2以下であり、
     N及びRは、下記の式(A3)、(A4)に基づいて算出され、
    Figure JPOXMLDOC01-appb-M000002
     Pはユニットセルの面積であり、Kは定数であり、tanδは前記第1誘電体層の誘電正接である、請求項8に記載の電波吸収シート。
    The ratio of N 2 R to 120 π is 0.8 or more and 1.2 or less.
    N 2 and R are calculated based on the following formulas (A3) and (A4).
    Figure JPOXMLDOC01-appb-M000002
    The radio wave absorption sheet according to claim 8, wherein P is the area of the unit cell, K is a constant, and tan δ is the dielectric loss tangent of the first dielectric layer.
  10.  前記第1導電体層は、平面視において、長さL及び幅Wを有する長方形であり、幅Wは長さL以下であり、
     前記共振周波数frは、下記の式(B1)、(B2)、(B3)、(B4)に基づいて算出され、
    Figure JPOXMLDOC01-appb-M000003
     cは光速であり、εrは前記第1誘電体層の比誘電率であり、hは前記第1誘電体層の厚みである、請求項7に記載の電波吸収シート。
    The first conductor layer is a rectangle having a length L and a width W in a plan view, and the width W is a length L or less.
    The resonance frequency fr is calculated based on the following equations (B1), (B2), (B3), and (B4).
    Figure JPOXMLDOC01-appb-M000003
    The radio wave absorption sheet according to claim 7, wherein c is the speed of light, ε r is the relative permittivity of the first dielectric layer, and h is the thickness of the first dielectric layer.
  11.  120πに対するNRの比率が0.8以上1.2以下であり、
     N及びRは、下記の式(B5)、(B6)に基づいて算出され、
    Figure JPOXMLDOC01-appb-M000004
     Pはユニットセルの面積であり、Kは定数であり、tanδは前記第1誘電体層の誘電正接である、請求項10に記載の電波吸収シート。
    The ratio of N 2 R to 120 π is 0.8 or more and 1.2 or less.
    N 2 and R are calculated based on the following equations (B5) and (B6).
    Figure JPOXMLDOC01-appb-M000004
    The radio wave absorption sheet according to claim 10, wherein P is the area of the unit cell, K is a constant, and tan δ is the dielectric loss tangent of the first dielectric layer.
  12.  前記第1導電体層は、複数の開口を含む、請求項1乃至6のいずれか一項に記載の電波吸収シート。 The radio wave absorption sheet according to any one of claims 1 to 6, wherein the first conductor layer includes a plurality of openings.
  13.  前記複数の第1導電体層は、複数の第1形状層と、平面視において前記第1形状層とは異なる形状を有する複数の第2形状層と、を含む、請求項1乃至6のいずれか一項に記載の電波吸収シート。 Any of claims 1 to 6, wherein the plurality of first conductor layers include a plurality of first shape layers and a plurality of second shape layers having a shape different from that of the first shape layer in a plan view. The radio wave absorption sheet described in item 1.
  14.  第3面及び前記第3面の反対側に位置する第4面を含む第2誘電体層と、
     前記第4面に位置する第3導電体層と、を備え、
     前記第2導電体層は、前記第1誘電体層の前記第2面と前記第2誘電体層の前記第3面との間に位置し、
     前記第2面における前記第2導電体層の占有率が0.85以下である、請求項1乃至6のいずれか一項に記載の電波吸収シート。
    A second dielectric layer including a third surface and a fourth surface located on the opposite side of the third surface, and
    A third conductor layer located on the fourth surface is provided.
    The second conductor layer is located between the second surface of the first dielectric layer and the third surface of the second dielectric layer.
    The radio wave absorption sheet according to any one of claims 1 to 6, wherein the occupancy rate of the second conductor layer on the second surface is 0.85 or less.
  15.  電波を送信又は受信する通信機構と、
     請求項1乃至6のいずれか一項に記載の電波吸収シートと、を備える、通信装置。
    A communication mechanism that transmits or receives radio waves,
    A communication device comprising the radio wave absorbing sheet according to any one of claims 1 to 6.
PCT/JP2021/023181 2020-06-23 2021-06-18 Radio wave absorbing sheet and communication device WO2021261390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-107759 2020-06-23
JP2020107759A JP7261395B2 (en) 2020-06-23 2020-06-23 Radio wave absorption sheet and communication device

Publications (1)

Publication Number Publication Date
WO2021261390A1 true WO2021261390A1 (en) 2021-12-30

Family

ID=79247021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023181 WO2021261390A1 (en) 2020-06-23 2021-06-18 Radio wave absorbing sheet and communication device

Country Status (3)

Country Link
JP (1) JP7261395B2 (en)
TW (1) TW202205938A (en)
WO (1) WO2021261390A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189699A (en) * 1985-02-19 1986-08-23 日東紡績株式会社 Radio wave absorbent element
JP2002314284A (en) * 2001-04-16 2002-10-25 Yokohama Rubber Co Ltd:The Electric wave absorber
JP2004140194A (en) * 2002-10-17 2004-05-13 Goto Ikueikai Radio wave absorber effective to multifrequency band
JP2009071278A (en) * 2007-08-17 2009-04-02 Asahi Glass Co Ltd Radio wave absorber
JP2009076802A (en) * 2007-09-25 2009-04-09 Mitsubishi Cable Ind Ltd Radio wave absorber
JP2009124285A (en) * 2007-11-13 2009-06-04 Kyushu Univ Antenna, antenna designing apparatus, antenna designing method, and antenna producing method
JP2016207834A (en) * 2015-04-22 2016-12-08 京セラ株式会社 Printed-circuit board
US20180006381A1 (en) * 2016-07-01 2018-01-04 Hyundai Motor Company Electromagnetic wave absorber
JP2020009829A (en) * 2018-07-04 2020-01-16 地方独立行政法人東京都立産業技術研究センター Radio wave absorption structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852153B (en) * 2015-04-15 2017-10-10 北京航空航天大学 It is a kind of that RCS composites are reduced based on the broadband for intersecting bowtie-shaped AMC
KR101941884B1 (en) * 2017-06-16 2019-04-11 (주)제이엠씨 Electromagnetic wave absorber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189699A (en) * 1985-02-19 1986-08-23 日東紡績株式会社 Radio wave absorbent element
JP2002314284A (en) * 2001-04-16 2002-10-25 Yokohama Rubber Co Ltd:The Electric wave absorber
JP2004140194A (en) * 2002-10-17 2004-05-13 Goto Ikueikai Radio wave absorber effective to multifrequency band
JP2009071278A (en) * 2007-08-17 2009-04-02 Asahi Glass Co Ltd Radio wave absorber
JP2009076802A (en) * 2007-09-25 2009-04-09 Mitsubishi Cable Ind Ltd Radio wave absorber
JP2009124285A (en) * 2007-11-13 2009-06-04 Kyushu Univ Antenna, antenna designing apparatus, antenna designing method, and antenna producing method
JP2016207834A (en) * 2015-04-22 2016-12-08 京セラ株式会社 Printed-circuit board
US20180006381A1 (en) * 2016-07-01 2018-01-04 Hyundai Motor Company Electromagnetic wave absorber
JP2020009829A (en) * 2018-07-04 2020-01-16 地方独立行政法人東京都立産業技術研究センター Radio wave absorption structure

Also Published As

Publication number Publication date
JP2022003665A (en) 2022-01-11
JP7261395B2 (en) 2023-04-20
TW202205938A (en) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2011068238A1 (en) Structural body, printed substrate, antenna, transmission line waveguide converter, array antenna, and electronic device
US8378894B2 (en) Antenna device
US9629282B2 (en) Electronic device, structure, and heat sink
US20160211563A1 (en) Structure and electronic circuit
WO2021261390A1 (en) Radio wave absorbing sheet and communication device
WO2022054626A1 (en) Radio wave absorbing sheet and communication device
EP2071665B1 (en) Antenna device
JP5509220B2 (en) Line conversion structure and antenna using the same
JP2023113076A (en) Radio wave absorption sheet and communication device
JP5525875B2 (en) Optical module
JP5304489B2 (en) Radio wave absorber
WO2011070735A1 (en) Electronic device
WO2019221054A1 (en) Antenna, array antenna, and wireless communication device
JP7321292B2 (en) Waveguide structure and method for manufacturing waveguide structure
JP2009130453A (en) Transmission line with filter function
WO2024018767A1 (en) Waveguide element
JP7189374B2 (en) high frequency device
US11888225B2 (en) Metamaterial structure, metamaterial-type transparent heater, and radar apparatus using metamaterial-type transparent heater
WO2023017773A1 (en) Waveguide element
JP7060971B2 (en) Laminated circuit board and antenna device
JP4914804B2 (en) Electronic element
WO2023175414A1 (en) Electromagnetic-wave absorber and reflector, planar antenna, and method for manufacturing electromagnetic-wave absorber and reflector
JP4540493B2 (en) Printed wiring board
JP2024062916A (en) Radome configured with a double-layer double-ring circuit
JP2023138311A (en) Electromagnetic wave absorber/reflector, planar antenna, and manufacturing method of electromagnetic wave absorber/reflector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829500

Country of ref document: EP

Kind code of ref document: A1