WO2021261334A1 - 標的物質の検出又は定量のためのナノ粒子及びその製造方法、並びに標的物質の検出又は定量方法 - Google Patents

標的物質の検出又は定量のためのナノ粒子及びその製造方法、並びに標的物質の検出又は定量方法 Download PDF

Info

Publication number
WO2021261334A1
WO2021261334A1 PCT/JP2021/022732 JP2021022732W WO2021261334A1 WO 2021261334 A1 WO2021261334 A1 WO 2021261334A1 JP 2021022732 W JP2021022732 W JP 2021022732W WO 2021261334 A1 WO2021261334 A1 WO 2021261334A1
Authority
WO
WIPO (PCT)
Prior art keywords
target substance
nanoparticles
electrode
shell portion
probe
Prior art date
Application number
PCT/JP2021/022732
Other languages
English (en)
French (fr)
Inventor
龍洙 朴
アキレッシュ バブ ガンガンボイア
Original Assignee
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人静岡大学 filed Critical 国立大学法人静岡大学
Priority to JP2022531842A priority Critical patent/JPWO2021261334A1/ja
Publication of WO2021261334A1 publication Critical patent/WO2021261334A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals

Definitions

  • the present invention relates to nanoparticles for detecting or quantifying a target substance and a method for producing the same, and a method for detecting or quantifying a target substance using the nanoparticles.
  • RT-PCR is a method of performing PCR on cDNA generated using RNA as a template. Compared to separation tests, it is more sensitive and can accurately diagnose subtypes, and the required time is as short as several hours, but because it requires advanced technology, it can only be tested at a limited number of medical institutions.
  • the influenza detection kit can detect both type A and type B, and the time required for detection is about 15 minutes, so that the results can be obtained quickly.
  • the problem is that even if they are actually infected, there are cases where they become negative.
  • false positives increase when the sensitivity is increased, and false negatives increase when the specificity is increased, and there is a trade-off relationship between the two.
  • Non-Patent Document 1 a fluorescent alloy quantum dot (Quantum dot, QD) having optical properties suitable for a wide range of chemical, physical, and biological applications.
  • an object of the present invention is to provide a method for detecting or quantifying a target substance in a sample easily, quickly and with high sensitivity, nanoparticles for carrying out the method, and a method for producing the same.
  • the present inventors have developed a rapid and simple detection technique based on electrochemical impedance spectroscopy for a target substance such as a virus (Patent Document 2; Publication date: April 8, 2021). Specifically, a nanomaterial composite material having excellent conductivity and a high specific surface area is placed on the electrode, and an antibody immobilized on the nanomaterial composite material is subjected to an antigen-antibody reaction with a target virus to cause an antigen-antibody reaction on the electrode surface. This is a method of detecting a target virus by using an increase in electrical resistance as a signal. So far, the inventor has set hepatitis E virus and influenza virus (H1N1, H9N2) as target substances, and achieved rapid (detection time 15 minutes) and high detection sensitivity (100 copy RNA / ml).
  • H1N1, H9N2 hepatitis E virus and influenza virus
  • the electrochemical impedance spectroscopy has the same sensitivity as RT-PCR, but is superior to the PCR method in that it does not require a highly trained inspection engineer and results can be obtained quickly.
  • the detection sensitivity is more than two orders of magnitude higher than that of an immunochromatographic method using an antigen-antibody reaction (eg, influenza detection kit, pregnancy test drug) or an ELISA method.
  • an antigen-antibody reaction eg, influenza detection kit, pregnancy test drug
  • the present inventors have found a highly sensitive target substance detection / quantification method using a dual modality of electrochemical impedance spectroscopy and fluorescence method using predetermined nanoparticles. , The present invention has been completed.
  • the present invention is as follows.
  • a method for producing nanoparticles wherein the nanoparticles include a core portion made of fluorescent quantum dots and a hollow shell portion made of a magnetic material surrounding the core portion, and the minimum inner diameter of the shell portion is Nanoparticles for detecting or quantifying target substances that are larger than the maximum outer diameter of the core portion, and the above method is (1) the step of producing fluorescent quantum dots and (2) A manufacturing method comprising a step of forming a hollow shell portion made of a magnetic material surrounding the core portion made of the quantum dots.
  • the average particle size of the core portion is 3 to 20 nm, the average outer diameter of the shell portion is 5 to 50 nm, and the minimum inner diameter of the shell portion is 1 to 10 nm larger than the maximum outer diameter of the quantum dots.
  • the manufacturing method according to any one of 1] to [3].
  • Step (2) is (2-1) Iron ions are accumulated on the surface of the core portion to form an iron shell covering the core portion to obtain nanoparticles having a quantum dot core / iron shell structure, and (2-2).
  • the step of forming a complex with the target substance and (2) The process of collecting the nanoparticles with a magnet and (3) A step of redispersing the nanoparticles, immersing the electrode for electrochemical measurement to which the probe is bound in a redispersion solution containing the complex, and binding the complex onto the electrode.
  • a step and (5) obtained which comprises measuring the impedance value of the electrode to which the complex is bonded and / or measuring the fluorescence intensity of the dispersion liquid after removing the electrode.
  • the method of [11] comprising the step of detecting or quantifying the target substance based on the impedance value and / or the fluorescence intensity.
  • step (3) The method of [12], wherein the electrode in step (3) is a graphene oxide-modified gold electrode to which a probe specific to the target substance is bound.
  • step (5) the above-mentioned target substance is quantified using the calibration curve of the target substance prepared based on the impedance change rate and / or the calibration curve of the target substance prepared based on the fluorescence intensity reduction rate. Included, the method of [12] or [13].
  • [15] The method according to any one of [12] to [14], wherein the test sample is selected from the group consisting of urine, stool, blood, saliva, other body fluids, mucous membranes, hair, cells, and tissues.
  • a kit for detecting or quantifying a target substance which comprises nanoparticles produced by the production method of [7] or [8] and an electrochemical measurement electrode to which a probe specific to the target substance is bound.
  • a target substance having a core portion made of fluorescent quantum dots and a hollow shell portion made of a magnetic material surrounding the core portion, wherein the minimum inner diameter of the shell portion is larger than the maximum outer diameter of the core portion. Nanoparticles for detection or quantification.
  • a kit for detecting or quantifying a target substance which comprises the nanoparticles of [18] and an electrochemical measurement electrode to which a probe specific to the target substance is bound.
  • the target substance in the sample can be detected or quantified easily, quickly and with high sensitivity.
  • the method for producing nanoparticles of the present invention nanoparticles capable of easily, quickly and highly sensitively detecting or quantifying a target substance in a sample can be produced.
  • the detection or quantification method of the present invention can easily, quickly and highly sensitively detect or quantify the target substance in the sample. Further, according to the dual modality of the electrochemical impedance spectroscopy and the fluorescence method, there is an advantage that erroneous detection can be reduced and the detection accuracy can be improved.
  • (A) is a plan view of the hollow magnetic fluorescent nanoparticles of one embodiment, and (b) is a cross-sectional view taken along the AA'axis in the plan view (a).
  • (A) is a schematic diagram showing the manufacturing process of QD @ MNS NP of Example 1,
  • (b) to (d) are TEM images of QD, Fe @ QD, and QD @ MNS NP, and
  • (e) Is an HRTEM image of QD @ MNS NP. It is a graph which shows the particle size distribution of QD, Fe @ QD, QD @ MNS NP of Example 1.
  • FIG. It is a figure which shows the result of the physical analysis of QD, Fe @ QD and QD @ MNS NP of Example 1.
  • (A) shows the intensity of dynamic light scattering (DLS) of QD, Fe @ QD and QD @ MNS NP, and (b) shows the X-ray diffraction pattern (XRD) of QD, QD @ MNS NP. It is a figure which shows the result of the physical analysis of QD @ MNS NP of Example 1.
  • (A) is a photograph of a QD @ MHS NP suspension (left) and a state in which a magnet is applied to the suspension (right) observed under ambient light and (b) under UV light.
  • c) shows the saturation magnetization of QD @ MHS NP at 300K.
  • FIG. 1 shows the fluorescence intensity of the particles at each reaction time point (0 minutes, 5 minutes, 10 minutes, 20 minutes, 30 minutes, 40 minutes) in the process of forming CdSeTeS QD by the oxidation of the iron shell in Example 1
  • FIG. (A) shows the X-ray photoelectron spectroscopy (XPS) spectrum of QD @ MHS NP
  • (b) shows the Cd 3d spectrum of QD and QD @ MHS NP
  • (c) shows the Fe 2p spectrum of QD @ MHS NP. show.
  • XPS X-ray photoelectron spectroscopy
  • FIG. (A) shows the absorption and fluorescence spectrum (UV / Vis spectrum) of QD @ MHS NP
  • (b) shows the fluorescence spectrum of QD @ MHS NP
  • (c) is different in the presence of HEV-LP.
  • the fluorescence intensity decrease rate of QD @ MHS NP-Ab of the concentration is shown.
  • (A) and (b) show the Nyquist plot of EIS and its calibration curve, respectively
  • (c) and (d) show the fluorescence intensity and its calibration curve, respectively.
  • nanoparticles are nanoparticles 1 for detecting or quantifying a target substance, and are core portions 2 composed of fluorescent quantum dots.
  • a hollow shell portion 3 made of a magnetic material surrounding the core portion 2 is provided, and the minimum inner diameter of the shell portion 3 is larger than the maximum outer diameter of the core portion 2.
  • the core part 2 is composed of fluorescent quantum dots.
  • the core portion 2 is in the form of particles, and its particle size is defined by the maximum outer diameter (largest diameter).
  • Quantum dots (Quantum dots, sometimes referred to as "QD" in the present specification) refer to nanocrystals having a quantum well structure.
  • the average particle size of the quantum dots of the core portion 2 of the present embodiment is preferably 3 to 20 nm, and may be, for example, 3 nm or more, 5 nm or more, or 10 nm or more, or 20 nm or less, 15 nm or less, or. It may be 10 nm or less, for example, 3 to 15 nm, 5 to 15 nm, or 5 to 10 nm.
  • the average particle size can be measured and calculated by a transmission electron microscope (TEM) or a high resolution electron microscope (HRTEM).
  • the fluorescent quantum dot is not particularly limited as long as it is a fluorescent quantum dot, but it may be a quantum dot made of a fluorescent substance or a quantum dot whose surface is coated with a fluorescent substance.
  • the fluorescence means having a property of emitting fluorescence under a special light source such as UV.
  • the fluorescent quantum dots are preferably quantum dots made of a fluorescent substance, for example, quantum dots made of CdSeTeS, CdSeCdS, CdSeZnS, or CdSe, and quantum dots made of a quaternary alloy CdSeTeS suitable for fluorescence method detection. Is more preferable.
  • the method for synthesizing the quantum dots made of the quaternary alloy CdSeTeS is as described later.
  • the shell portion 3 is in the form of hollow particles and surrounds the core portion 2, but has a minimum inner diameter larger than the maximum outer diameter of the core portion 2. Therefore, there is a cavity between the shell portion 3 and the core portion 2.
  • the cavity refers to a gap between the outer surface of the core portion 2 and the inner surface of the shell portion 3.
  • the shell portion 3 and the core portion 2 are concentric spheres. In this case, the cavity is a donut-shaped ring.
  • the core portion 2 since the core portion 2 is not fixed inside the shell portion 3, the shell portion 3 and the core portion 2 may not be concentric spheres.
  • the core portion 2 may be in contact with the inner wall of the shell portion 3.
  • the structure in which the core portion 2 is embedded in the hollow shell portion 3 has the advantage that it is not easily affected by the fluorescence measurement environment and the fluorescence of the quantum dots can stably maintain high intensity.
  • the fluorescence intensity of the nanoparticles 1 is not particularly limited as long as it can be detected by the fluorescence method, but the fluorescence intensity may be such that it can be detected at 450 nm, for example.
  • the nanoparticles 1 are in the form of particles, and the average particle size thereof, that is, the average outer diameter of the shell portion 3 may be 5 to 50 nm, for example, 5 nm or more, 10 nm or more, 15 nm or more, or 20 nm or more. Alternatively, it may be 50 nm or less, 40 nm or less, 30 nm or less, or 25 nm or less, and may be, for example, 10 to 40 nm, 15 to 30 nm, or 15 to 25 nm.
  • the inner diameter of the shell portion 3 may be 1 to 10 nm larger than the particle size of the quantum dots of the core portion 2, and may be, for example, 2 to 8 nm, 4 to 6 nm, or about 5 nm.
  • the average thickness of the shell portion 3 may be 1 to 20 nm, for example, 2 to 15 nm or 5 to 10 nm.
  • the hollow shell portion 3 is made of a magnetic material.
  • Magnetic material is iron (Fe), is preferably in the like magnetic compound containing Fe, such as iron oxide (Fe 2 O 3), from the viewpoint of formation of the cavity is preferably iron oxide (Fe 2 O 3) .
  • the magnetic strength of the nanoparticles 1 may be such that it can be separated by a magnet, and for example, the saturation magnetization at 300 K may be 10 to 50 emu / g, 15 to 40 emu / g, or 20 to 35 emu / g.
  • the probe for the target substance is bound to the outer surface of the shell portion 3.
  • the "target substance" to be detected is not particularly limited, and may be any substance that specifically binds to the probe.
  • one of a set of substances that specifically bind to each other such as an antigen-antibody, a sugar-lectin, a ligand-receptor, an aptamer target substance-aptamer, and a nucleic acid-nucleic acid, can be used as a target substance and the other as a probe.
  • viruses, proteins, peptides, DNA, RNA, sugars, chemical substances, hormones and the like can be used as target substances or probes.
  • the probe preferably has a carboxy group from the viewpoint of easily binding to the shell portion 3 of the nanoparticles 1. Further, since the probe has high specificity and excellent sensitivity, it is preferable that the probe is an antibody and the target substance is an antigen against the antibody. Further, the target substance and the probe are preferably nucleic acid (RNA or DNA) and nucleic acid (RNA or DNA), and it is particularly preferable to use viral RNA as the target substance.
  • RNA or DNA nucleic acid
  • RNA or DNA nucleic acid
  • Typical viruses diagnosed using specific antibodies include, for example, hepatitis viruses (type A, type B, type C, type D, type E, type F, which infect humans or non-human animals. G type, TT type), influenza virus, norovirus, adenovirus, cytomegalovirus, white spot disease virus (WSSV) and the like can be mentioned.
  • hepatitis viruses type A, type B, type C, type D, type E, type F, which infect humans or non-human animals.
  • G type TT type
  • influenza virus norovirus
  • adenovirus adenovirus
  • cytomegalovirus cytomegalovirus
  • WSSV white spot disease virus
  • the antibody against the surface antigen of the virus can be used as a probe against the target substance.
  • Surface antigens of known viruses can be utilized, for example, hepatitis E virus (HEV) Genogroup 1-7 (G1 to G7), influenza virus hemagglutinin (HA) and neuraminidase (NA), norovirus Genogroup I. And Genogroup II and the like.
  • Antibodies can be produced by known methods, for example, immunizing animals such as mice, rabbits, and goats with a partial sequence peptide in a region specific to a target substance to collect antisera, or to produce an antibody. It can be obtained by producing a hybridoma. Alternatively, a commercially available antibody may be used. The antibody may be a polyclonal antibody, a monoclonal antibody or a functional fragment thereof. Further, as the antibody against the target substance, one kind or two or more kinds can be used.
  • the target substance may be present in a liquid, or may be present in a solid, powder, fluid, gas, or the like.
  • the test sample containing the target substance include urine, stool, blood, saliva, other body fluids, mucous membranes, hair, cells, tissues and the like collected from humans or non-human animals.
  • the test sample is preferably a liquid, if the target substance is present in the sample material other than the liquid, the sample material is dissolved or suspended in an appropriate buffer or the like to turn the sample into a liquid. It is preferable to do so.
  • the probe may be bound to the outer surface of the shell portion 3 to the target substance by directly binding the probe to the target substance to the outer surface of the shell portion 3, or the probe to the target substance and the shell portion 3. It may be attached to the outer surface of the substance via another probe that recognizes the probe for the target substance.
  • the other probe that recognizes the probe may be, for example, a secondary antibody against the primary antibody.
  • the method for binding the probe to the target substance to the outer surface of the shell portion 3 is as described later.
  • the method for producing nanoparticles of this embodiment is (1) The process of producing fluorescent quantum dots and (2) A process of forming a hollow shell portion made of a magnetic material surrounding the core portion made of quantum dots, and To prepare for.
  • Non-Patent Document 1 trioctylphosphine oxide (TOPO) and 1-octadecene (1-octadecene; ODE) are heated to 80 ° C., and Se and Te.
  • TOPSe Trioctylphosphine selenide
  • TOPTe Trioctylphosphine telluride
  • Oleic acid and ODE was heated to 280 ° C., to grow by adding CdCl 2 ⁇ 2.5H 2 O and TOPSe CdSe quantum dots (CdSe QD). Then, TOPTe is added to obtain CdSeTe quantum dots (CdSeTe QD), and then a sulfur precursor is added to obtain CdSeTeS QD.
  • the step (2) of forming a hollow shell portion made of a magnetic material surrounding the core portion made of quantum dots is preferable.
  • Iron ions are accumulated on the surface of the core portion to form an iron shell covering the core portion to obtain nanoparticles having a quantum dot core / iron shell structure, and
  • CdSeTeS QD is suspended in a solvent such as 1-octadecene and oleylamine, degassed under vacuum at 120 ° C. for 10 to 60 minutes, and heated to 180 ° C. under argon gas.
  • a solution of pentacarbonyl iron (Fe (CO) 5 ) is injected into the suspension, and iron ions are deposited around the QD by thermal decomposition of Fe (CO) 5 at 180 ° C.
  • nanoparticles having an iron shell structure surrounding the QD (sometimes referred to as "Fe @ QD" in the present specification) can be obtained.
  • the following methods can be mentioned for the oxidation of (2-2).
  • the temperature of the reaction solution containing Fe @ QD is lowered to 100 ° C., and the iron shell around the QD is oxidized to an iron oxide (Fe 2 O 3 ) shell under a mixed gas of argon and oxygen, resulting in a Kirkendal effect.
  • Kirkendal effect can form a void (cavity) between the QD and the iron oxide shell to obtain hollow magnetic fluorescent nanoparticles (sometimes referred to as "QD @ MNS NP" in the present specification).
  • the obtained hollow magnetic fluorescent nanoparticles have good magnetism and fluorescence.
  • the fluorescence of the QD core is blocked by the formation of the iron shell, but it has been confirmed that the fluorescence is restored by the formation of cavities after the oxidation reaction.
  • the production method of the present embodiment further includes (3) a step of binding a probe to the target substance to the outer surface of the shell portion.
  • Binding the probe to the target material to the outer surface of the shell 3 is, for example, in a solution containing the probe and nanoparticles 1 with N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) / N.
  • EDC N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide
  • NES hydroxysuccinimide
  • the detection or quantification method of the present embodiment is a method of detecting or quantifying a target substance using the nanoparticles of the present embodiment.
  • the detection or quantification method may be used.
  • the contact between the nanoparticles and the test sample containing the target substance is not particularly limited, but it is preferable to bring them into contact with each other in a liquid.
  • the nanoparticles and the test sample are as described above. CdSeTeS QD is preferably used as the nanoparticles.
  • the test sample may be diluted to an appropriate concentration if necessary.
  • Buffers for dissolving, suspending, or diluting the sample include, for example, phosphate buffered saline (PBS), (4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid) (HEPES), 2. -Morholinoethanesulfonic acid (MES) and the like can be mentioned.
  • PBS phosphate buffered saline
  • HEPES 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid
  • MES -Morholinoethanesulfonic acid
  • the amount of virus in the diluent may be 10-14 to 10-7 g / mL, 10-14 to 10-8 g / mL or 10-13 to 10-9 g / mL. May be.
  • the amount of nanoparticles added to the diluted solution is not particularly limited, but may be 0.1 to 10 ⁇ g / mL, preferably about 0.5 to 5 ⁇ g / mL or 1 ⁇ g / mL.
  • a complex of nanoparticles and a target substance is formed by a specific bond between the probe and the target substance.
  • Target substances and probes are preferably viruses and specific antibodies thereof. At this time, if the nanoparticles are present in an excessive amount with respect to the target substance, the nanoparticles forming the complex and the free nanoparticles not forming the complex coexist.
  • the nanoparticles contain a magnetic material and are easily recovered by a magnet. Even if the test sample contains impurities, it can be easily separated from the impurities by a magnet or the like, so that there is an advantage that it is not easily affected by the impurities.
  • the magnet is not particularly limited as long as it can recover nanoparticles.
  • the recovered nanoparticles may be washed with a buffer such as pure water or PBS.
  • step (3) the recovered nanoparticles are redistributed, and the electrode for electrochemical measurement to which the probe is bound is immersed in a redispersion solution containing nanoparticles for a certain period of time, whereby the probe and nanoparticles on the electrode are immersed.
  • the complex of the target substance and the nanoparticles is bound on the electrode.
  • the free nanoparticles that have not formed a complex with the target substance remain in the redispersion liquid.
  • the redispersion liquid is obtained by suspending the nanoparticles in pure water or a buffer or the like. At that time, the concentration of the nanoparticles may be 0.1 to 10 ⁇ g / mL, preferably about 0.5 to 5 ⁇ g / mL or 1 ⁇ g / mL.
  • the time for contacting the electrode and the redispersion liquid is preferably 180 seconds or longer, preferably 10 minutes or longer, from the viewpoint of sufficiently reacting the probe bound to the electrode with the target substance. It is more preferably 20 minutes or more. Further, from the viewpoint of measurement efficiency, it is preferably 1 hour or less, preferably 30 minutes or less, and even more preferably 20 minutes or less.
  • a graphene oxide-modified gold electrode to which a probe specific to the target substance is bound is preferably used.
  • the graphene oxide-modified gold electrode can be produced, for example, as described in Example 1. Binding of the probe specific to the target substance to the graphene oxide modified gold electrode is, for example, in a solution containing the probe and nanoparticles 1 with N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC) / N.
  • EDC N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide
  • NES hydroxysuccinimide
  • Step (4) includes measuring the impedance value of the electrode to which the complex is bonded and / or measuring the fluorescence intensity of the redispersion liquid after the electrode is removed.
  • the former is an electrochemical method and the latter is a fluorescence method.
  • the target substance can be detected and quantified by either method, but dual modality detection using both the electrochemical method and the fluorescence method is more effective. It is preferable because of its high detection accuracy.
  • Step (5) includes detecting or quantifying the target substance based on the obtained impedance value and / or fluorescence intensity. Detection means determining the presence or absence of a target substance in a test sample, and quantification means calculating the weight, volume or concentration of the target substance in the test sample.
  • steps (4) and (5) will be described in detail separately for the electrochemical method and the fluorescence method.
  • the electrochemical method involves measuring the impedance value of the electrode to which the complex is bonded. As described above, since the nanoparticles recovered by the magnet do not contain impurities, the noise of the electrochemical response of the nanoparticles bonded to the electrode is small, and high-sensitivity detection can be achieved even from a complicated sample.
  • the electrode to which the complex is bonded is removed from the redispersion solution containing nanoparticles, the electrode is washed, and then the impedance is measured in a buffer solution. It is preferable to clean the working electrode before measuring the impedance. It is possible to remove contaminants other than the target substance in the sample adhering to the electrode surface and improve the measurement sensitivity.
  • the solution used for cleaning the electrodes is not particularly limited, but is preferably a buffer such as pure water or PBS.
  • the impedance can be measured by immersing the electrode system including the working electrode and the counter electrode in a buffer solution.
  • the electrode to which the composite is bonded is a working electrode
  • the counter electrode (2-electrode system) or counter electrode and reference electrode (3-electrode system) of the working electrode are not particularly limited, and known ones can be used, for example, the counter electrode.
  • a reference electrode a glass electrode, a carbon electrode, a platinum electrode, and a nickel electrode can be used as reference electrodes, and a silver-silver chloride electrode and a silver / silver + type reference electrode can be used as reference electrodes.
  • Impedance can be measured by a known method.
  • a method such as potential electrochemical impedance spectroscopy (PEIS) can be mentioned, and an apparatus normally used as an apparatus for measuring impedance can also be used in the method of the present embodiment, and a commercially available apparatus can be used for measurement. May be used for.
  • PEIS potential electrochemical impedance spectroscopy
  • the biosensor may be equipped with a constant temperature cell for storing a test sample, a power supply for applying a voltage to the electrode system, a pulse signal source for applying a pulse voltage to the electrode system, an ammeter, an impedance measuring instrument, a recorder, etc. It may be a mold or a flow type. Known constant temperature cells, power supplies, pulse signal sources, impedance measuring instruments, ammeters, and recorders can be used.
  • the frequency range is preferably 50 MHz or more, more preferably 100 MHz or more, and preferably 200 kHz or less, preferably 100 Hz.
  • the following is more preferable.
  • the amplitude is preferably 2 mV or more, more preferably 5 mV or more, preferably 10 mV or less, and more preferably 7 mV or less.
  • the time for applying the voltage to the electrode system is preferably 10 seconds or longer, preferably 1 minute or longer, and further preferably 2 minutes or longer from the viewpoint of sufficient charge transfer. .. Further, from the viewpoint of measurement efficiency, it is preferably 0.5 hours or less, preferably 5 minutes or less, and even more preferably 3 minutes or less. Within the above range, the impedance of the working electrode can be measured more sensitively in the method of the present embodiment.
  • the target substance becomes the probe on the surface of the working electrode when the electrode (working electrode) to which the probe is bound is brought into contact with the redispersion. It binds, the charge transfer at the working electrode is hindered, and the impedance of the working electrode increases. Therefore, if the impedance of the working electrode is increased compared to the initial impedance of the working electrode before it is brought into contact with the redispersion liquid, it can be determined that the target substance is present, and the impedance of the working electrode is increased.
  • the impedance of the working electrode is preferably the impedance of the surface on which the complex of the working pole is supported.
  • the initial impedance of the working electrode before contact with the redispersion liquid is, for example, the electrode system in contact with pure water or a buffer instead of the redispersion liquid with respect to the unused working electrode before contact with the redispersion liquid. It can be measured by letting it.
  • a value measured in advance may be used as a reference value, or a value measured for each measurement of the redispersion liquid may be used.
  • the method for quantifying the target substance is the same as the method for detecting the target substance up to the step of measuring the impedance of the working electrode.
  • the target substance in the sample can be quantified using a calibration curve prepared based on the impedance change rate of the working electrode brought into contact with the standard sample containing the target substance having a known concentration.
  • the quantification using the calibration curve can be performed by a general method. For example, a calibration curve is prepared in advance from the impedance change rate of the working electrode brought into contact with a plurality of standard samples containing a target substance having a known concentration. By applying the measured impedance change rate to this calibration curve, the concentration of the target substance in the sample can be obtained.
  • the concentration of the target substance in the test sample can be easily calculated from the concentration of the target substance in the redispersion liquid based on the dilution ratio and the like.
  • the impedance change rate is the impedance of the working electrode after contacting with the sample with respect to the initial impedance of the working electrode before contacting with the sample, and can be obtained by, for example, the following equation.
  • Impedance change rate ⁇ (impedance of working electrode after contact with sample) / (initial impedance of working electrode before contact with sample) ⁇ x 100 (%)
  • the fluorescence method includes measuring the fluorescence intensity of the redispersion liquid after removing the electrode. If the nanoparticles are in excess of the target material, the free nanoparticles that do not bind to the target material will not be able to bind to the electrode and will remain in the redispersion liquid. By detecting or quantifying the nanoparticles remaining in this redispersion solution by the fluorescence method, the presence or quantification of the nanoparticles bound to the electrodes is possible. In addition, by detecting an excessive amount of nanoparticles, it is possible to correct an error during detection by an electrochemical method.
  • the fluorescence intensity of the redispersion solution can be measured by a general fluorescence spectrophotometer.
  • a fluorescence spectrophotometer for example, a microplate reader (Infinite F500, Tecan, Mannedorf Switzerland) can be mentioned.
  • the fluorescence intensity of the redispersion solution it may be diluted with pure water or a buffer solution, if necessary.
  • the fluorescence intensity of the redispersion solution before contacting the electrode (working electrode) and the fluorescence intensity of the redispersion solution after contacting the electrode are measured, and the fluorescence intensity of the redispersion solution is measured according to the following formula.
  • the rate of decrease in fluorescence intensity can be obtained. It is preferable to add nanoparticles to the test sample in an excessive amount so that the fluorescence intensity reduction rate does not reach 100%.
  • Fluorescence intensity reduction rate ⁇ (Fluorescence intensity of redispersed liquid before contacting electrodes-Fluorescence intensity of redispersed liquid after contacting electrodes) / (Fluorescence intensity of redispersed liquid before contacting electrodes) ⁇ ⁇ 100 (%)
  • the fluorescence intensity reduction rate is 0%, it means that there were no nanoparticles bound to the electrode, that is, there was no target substance.
  • the rate of decrease in fluorescence intensity is more than 0% and less than 100%, it means that nanoparticles bound to the target substance and free nanoparticles not bound to the target substance are mixed in the redispersion liquid, that is, , Means that the target substance is present. If the rate of decrease in fluorescence intensity is 100%, it means that all the nanoparticles are bound to the target substance in the redispersion liquid, that is, the target substance is present, but the target substance may be present in an excessive amount. It is suggested that the measured value may be lower than the actual content due to the nature.
  • the electrode is brought into contact with a standard sample containing the target substance having a known concentration, and the calibration curve prepared based on the reduction rate of the fluorescence intensity is used to quantify the target substance in the sample.
  • Quantification using a calibration curve can be performed by a general method. For example, a calibration curve is prepared in advance from the obtained fluorescence intensity reduction rate by contacting with a plurality of standard samples containing a target substance having a known concentration. By applying the measured rate of decrease in fluorescence intensity to this calibration curve, the concentration of the target substance in the sample can be determined. The concentration of the target substance in the test sample can be easily calculated from the concentration of the target substance in the redispersion liquid based on the dilution ratio and the like.
  • Dual modality detection and quantification using both electrochemical and fluorescent methods greatly improves sensitivity and accuracy by integrating both electrochemical and fluorescent methods into a single detection system. It has the advantage of providing wide linear range detection.
  • the method of the present embodiment shows high detection accuracy with almost no interference even with a test sample containing a complicated component.
  • the target substance can be detected and quantified quickly and with high sensitivity without the need for advanced technology and equipment.
  • the kit for detecting or quantifying the target substance of the present embodiment includes nanoparticles of the present embodiment to which a probe for the target substance is bound, and an electrochemical measurement electrode to which a probe specific to the target substance is bound.
  • the nanoparticles and electrodes are as described above, respectively.
  • Example 1 Preparation of Hollow Magnetic Fluorescent Nanoparticles and Analysis thereof ⁇ Synthesis of CdSeTeS Quantum Dots and Preparation of Hollow Magnetic Fluorescent Nanoparticles>
  • Hollow magnetic nanoparticles (QD-encapsulated magnesium nanoparticles, hereinafter referred to as “QD @ MNS NP”) are composed of quantum dots (QD), as shown in the schematic diagram of FIG. 2 (a), in the QD core. It was produced by the procedure of forming Fe @ QD having a structure in which an iron shell covers the periphery, and iron oxidation for forming a cavity between the QD and the iron oxide shell.
  • CdSeTeS QD a fluorescent quaternary alloy CdSeTeS quantum dot
  • QD a fluorescent quaternary alloy CdSeTeS quantum dot
  • TOPO trioctylphosphine oxide
  • 1-octadecene 1-octadecene
  • Se and Te were added to obtain Trioctylphosphine selenide (TOPSe) and Trioctylphosphine telluride (TOPTe), which are reaction precursors of Se and Te, respectively.
  • TOPSe Trioctylphosphine selenide
  • TOPTe Trioctylphosphine telluride
  • Oleic acid and ODE was heated to 280 ° C., it was grown by adding CdCl 2 ⁇ 2.5H 2 O and TOPSe CdSe quantum dots (CdSe QD). Then, TOPTe was added to obtain CdSeTe quantum dots (CdSeTe QD), and then a sulfur precursor was added to obtain CdSeTeS QD.
  • CdSeTeS QD is a spherical particle having a particle size of 6 to 14 nm and an average particle size of 10 nm (FIGS. 2 (b) and 3 (a)).
  • Fe @ QD is a spherical particle having a core / shell structure having an average particle size of 15 nm (FIGS. 2 (c) and 3 (b)).
  • QD @ MNS NP has a core / shell structure having an average particle size of 20 nm (FIG. 2 (d) and FIG. 3 (c)), and has a thickness of about 5 nm between the QD core and the iron oxide shell. It was confirmed that there was a cavity having a cavity (FIG. 2 (e)).
  • the particle size distribution of each particle was further investigated by a dynamic light scattering method (DLS, Malvern Zetasizer nanoseries) Nano-ZS90 (Malvern Inst. Ltd., Malvern, UK).
  • DLS Dynamic Light scattering method
  • Malvern Zetasizer nanoseries Nano-ZS90
  • FIG. 4 (a) The result of DLS is shown in FIG. 4 (a).
  • the particle size increased in the order of CdSeTeS QD, Fe @ QD and QD @ MNS NP.
  • the hydrodynamic average particle sizes of each were 20 nm, 25 nm and 50 nm, respectively.
  • CdSeTeS QD and QD @ MNS NP were analyzed by X-ray diffraction method (XRD, RINT ULTIMA XRD (Rigaku Co., Japan)).
  • the X-ray diffraction pattern is shown in FIG. 4 (b).
  • the diffraction pattern of CdSeTeS QD shows three characteristic peaks of 2 ⁇ of 24.7 °, 42.4 ° and 50.4 ° with respect to the crystal planes (111), (220) and (311). , CdSeTeS QD was confirmed to be crystalline and cubic. In addition, the positions of the above three peaks did not change in the diffraction pattern of QD @ MNS NP, suggesting that QD is not affected by the oxidation reaction of the iron shell. On the other hand, a new clear peak with 2 ⁇ of 43.4 ° appeared after the oxidation of the iron shell, confirming that the formation of the iron oxide shell was successful.
  • FIG. 5A is a photograph of a QD @ MHS NP suspension (left) observed under ambient light and FIG. 5B is a photograph of the suspension with a magnet applied (right).
  • the fluorescence of QD @ MHS NP was clearly observable under UV light.
  • QD @ MHS NP was accumulated on the inner wall of the glass vial, and the remaining solution became transparent. It was confirmed that the QD @ MHS NP can be easily separated by an external magnetic field due to the strong magnetic moment.
  • the saturation magnetization of QD @ MHS NP at room temperature (300K) was measured by a superconducting quantum interferometer (SQUID; MPMS-7, Quantum Design, Inc., San Diego, USA).
  • FIG. 5 (c) The result of saturation magnetization is shown in FIG. 5 (c).
  • the saturation magnetization of QD @ MHS NP at 300 K was 31.6 emu / g. It was confirmed that such a strong magnetic moment can be easily separated by an external magnetic field as shown in FIGS. 5 (a) and 5 (b).
  • QD @ MHS NP was analyzed by X-ray photoelectron spectroscopy (XPS, ESCA Ulvac-PHI 1600 phototectron spectrometer, Kanagawa, Japan).
  • the XPS spectrum is shown in FIG. 7 (a). From FIG. 7 (a), the survey scan of QD @ MHS NP is Se 3d (52.9 eV), S 2p (163.3 eV), C 1s (284.7 eV), Cd 3d (405.7 eV), O 1s. It was confirmed that (532.1 eV), Te 3d (582.9 eV), and Fe 2p (711.5 eV and 725.1 eV) show characteristic peaks (FIG. 7 (a)).
  • FIG. 7 (b) shows the Cd 3d spectra of QD and QD @ MHS NP. Since the two spectra almost overlap, it was confirmed that the phase of Cd 3d is not affected by the oxidation of the iron shell.
  • FIG. 7 (c) shows the peak separation of the Fe 2p spectrum of Cd of QD @ MHS NP. Since the characteristic peaks of Fe 2p3 / 2 and Fe2p1 / 2 are concentrated at 710.9 eV and 724.8 eV, respectively, the formation of iron oxide was confirmed by QD @ MHS NP. In addition, peak separation showed two major peaks at 710.3 eV and 712.5 eV belonging to Fe 3+ and Fe 2+ , respectively, while weak satellite bands associated with these major peaks were detected, one of which. One was a satellite band from Fe 2p3 / 2 (Fe 3+ ), which was at 718.5 eV. The peak-separated Fe 2p XPS spectrum suggested the possibility of coexistence of Fe 2 O 3 and Fe 3 O 4.
  • FIG. 8A shows the absorption and fluorescence spectra (UV / Vis spectra) of QD @ MHS NP. It was confirmed that the characteristic absorption peak of QD was maintained even after the formation of the hollow iron oxide shell.
  • FIG. 8B shows the fluorescence spectrum of QD @ MHS NP. It was confirmed that the peak width of the fluorescence intensity of QD @ MHS NP was slightly wider than that of QD, but the height of the peak did not change. It was suggested that the average size of the QD core was maintained by the oxidation of the iron shell.
  • Hollow magnetic fluorescent nanoparticles were functionalized by surface modification with an antibody. Surface modification was performed by an improved method described in K. V. Korpany, F. Habib, M. Murugesu, A. S. Blum, Mater. Chem. Phys 2013, 138 (1), 29-37.
  • QD @ MNS NP 1 ⁇ g / mL was suspended in 500 ⁇ L of trichloromethane, and then the same amount of water was added to the suspension. Then, an aqueous solution of 3-mercaptopropionic acid (MPA) and NaOH (pH 5.0) was gradually added to reverse the phase of QD @ MNS NP. After removing the trichloromethane layer, the obtained nanoparticles were washed 3 times with pure ethanol to remove residual ethanol in a nitrogen gas environment.
  • MPA 3-mercaptopropionic acid
  • NaOH pH 5.0
  • the obtained nanoparticles were added to 500 ⁇ L of a 1 mM methoxypolyethylene glycol thiol (mPEG-SH) aqueous solution, the pH was adjusted to 8 with an appropriate amount of 1 M NaOH, left at room temperature for 30 minutes, and surface-modified with MPA.
  • MHS NP MPA-capped QD @ MHS NP
  • an antibody specific to the target virus was modified to the QD @ MHS NP surface-modified with the above MPA. Specifically, 1 mL of PBS buffer containing 5.1 ⁇ g of antibody and 1 mL of 0.1 M EDC (N- [3- (Dimethylamino) propyl] -N'-estercarbodimide) are mixed and mixed at 7 ° C. and 30 ° C. The EDC was reacted with the carboxyl group of the antibody while stirring for a minute to generate an active ester intermediate.
  • EDC N- [3- (Dimethylamino) propyl] -N'-estercarbodimide
  • the gold (Au) electrode (6355-S-AU, Baologic, France) was washed with ultrapure water and ethanol while sonicating.
  • the Au electrode is immersed in reduced graphene oxide (rGO) in a 1 mg / ml solution, and cyclic voltammetry (CV) is used to apply a voltage with a scan rate of 50 mV / sec from 0 to -1.5 V, where rGO is Au. It was introduced on the surface of the electrode to prepare a graphene oxide-modified gold electrode (Au
  • an electrode surface-modified with an antibody specific for the target virus (hereinafter, may be referred to as Au
  • rGO electrode was immersed in a phosphate buffer solution containing 0.1 M EDC, left at room temperature for 30 minutes, then 0.1 M NHS and 1 mL of antibody solution were added, and the temperature was 7 ° C. 16 After reacting for a long time, unreacted EDC and NHS were washed away, and the obtained Au
  • HEV-LP G3 HEV-like particles
  • Recombinant baculovirus Ac5480 / 7126 was infected with insect cells BTL-Tn 5B1-4 (Tn5) and cultured in EX-CELL405 medium at 26.5 ° C. for 7 days. After culturing, the supernatant excluding cells was purified by the CsCL density gradient centrifugation method. Purified HEV-LP was quantified according to standard methods.
  • the anti-HEV antibody is an anti-HEV IgG antibody obtained by immunizing a rabbit with purified G3 HEV-LP and further purified from rabbit serum by an IgG column, and the obtained antibody is purified by a protein G column and has a concentration of 0. It was 3 mg / mL.
  • the anti-HEV antibody-modified electrode was prepared according to the above EDC / NHS method.
  • 1 ng / mL G3 HEV-LP and QD @ MHS NP-Ab at different concentrations are mixed for 10 minutes.
  • QD @ MHS NP-Ab was separated from the liquid using a magnet and redispersed in 100 ⁇ L of PBS buffer.
  • the anti-HEV antibody-modified electrode was immersed in the QD @ MHS NP-HEV redispersion solution for 10 minutes, and then the electrode was washed with pure water. At this time, the complex of HEV-LP and QD @ MHS NP-Ab was trapped in the anti-HEV antibody-modified electrode via the specific binding between the virus in the complex and the antibody on the electrode.
  • the electrodes were removed, the redispersion solution was measured, and the fluorescence intensity was measured with a fluorescence spectrophotometer.
  • the fluorescence intensity reduction rate (%) was calculated by [(fluorescence intensity before reaction-fluorescence intensity after reaction) / fluorescence intensity before reaction ⁇ 100]%. It is shown in FIG. 8 (c).
  • QD @ MHS NP-Ab of 5 ⁇ g / mL and 10 ⁇ g / mL, the fluorescence reduction rate was very low because QD @ MHS NP-Ab was abundantly present compared to the amount of HEV-LP.
  • the fluorescence intensity reduction rate was close to 100%.
  • Example 2 Dual modality detection of HEV-LP Using HEV-LP as a target virus, using QD @ MHS NP modified with an anti-HEV antibody as QD @ MHS NP-Ab, and using an anti-HEV antibody-modified electrode as an Ab-rGO electrode. Was used. Each production method is the same as in Example 1.
  • QD @ MHS NP with different concentrations (10 fg / mL, 100 fg / mL, 1 pg / mL, 10 pg / mL, 100 pg / mL, 1 ng / mL, and 10 ng / mL).
  • QD @ MHS NP-Ab was separated using a magnet and redispersed in 100 ⁇ L PBS buffer. Further, the anti-HEV antibody-modified electrode was immersed in the redispersion solution for 10 minutes, and then the electrode was washed with pure water.
  • the impedance was measured by the electrochemical impedance spectroscopy (EIS, SP-150, BioLogic. Inc., France) of Au
  • EIS electrochemical impedance spectroscopy
  • Ab-rGO with a sinusoidal amplitude of 10 kHz to 0.1 Hz and 5 mV.
  • a system to which no virus was added (0 fg / mL) was used as a control.
  • FIG. 9 (b) a calibration curve showing the correlation between the change in impedance and the concentration is shown in FIG. 9 (b).
  • R ctQ represents the charge transfer resistance
  • R ctQ0 represents the charge transfer resistance before the virus is detected
  • R ctQ represents the charge transfer resistance after the virus is detected.
  • the detection limit (LOD) defined by 3 ⁇ / S ( ⁇ is the standard deviation of 10 times of the lowest signal and S is the gradient of the linear calibration curve) was 1.2 fg / mL.
  • the fluorescence intensity of the redispersion liquid from which the electrodes were removed was measured by the same method as in Example 1 using a fluorescence spectrophotometer.
  • the fluorescence spectrum is shown in FIG. 9 (c). It was confirmed that the fluorescence intensity at 630 nm decreased as the HEV-LP concentration increased from 10 fg / mL to 10 ng / mL.
  • FIG. 9 (d) A calibration curve showing the correlation between the change in fluorescence intensity and the HEV-LP concentration is shown in FIG. 9 (d).
  • F Q0 and F Q are the fluorescence intensities before and after virus detection, respectively.
  • the LOD by definition of 3 ⁇ / S was 2.6 fg / mL.
  • Example 3 Dual Modality Detection of Norovirus It is clear that the dual modality detection strategy of HEV-LP demonstrated in Example 2 can be applied to other types of viruses. In order to further confirm the sensitivity and accuracy of dual modality detection, dual modality detection of norovirus-like particles (NoV-LP) and clinical norovirus (NoV) was performed.
  • NoV-LP norovirus-like particles
  • NoV clinical norovirus
  • NoV-LP was expressed by transfecting recombinant baculovirus TCN-VP1 (Invitrogen, San Diego, CA, USA) into Trichoplusia ni, BTL-Tn 5B1-4 (Tn5).
  • the expressed NoV-LP was purified and quantified according to standard methods for virus-like particle (VLP) preparation.
  • VLP virus-like particle
  • an anti-NoV antibody monoclonal antibody NS14
  • NS14 isotype-IgG
  • the concentrations of NoV-LP were 10 fg / mL, 100 fg / mL, 1 pg / mL, 10 pg / mL, 100 pg / mL, 1 ng / mL, and 10 ng / mL.
  • the QD @ MHS NP-Ab the QD @ MHS NP modified with the anti-norovirus antibody using the above EDC / NHS method was used, and as the Ab-rGO electrode, the anti-norovirus antibody modified electrode was used using the above EDC / NHS method.
  • Dual modality detection was performed according to the method described in Example 2.
  • A shows the Nyquist plot of the impedance method
  • (b) shows the fluorescence spectrum
  • (c) shows the calibration curve of the impedance method and the fluorescence method.
  • the LOD by definition of 3 ⁇ / S was 1.6 fg / mL. This confirmed that dual modality detection was possible in the range of norovirus concentration from 10 fg / mL to 10 ng / mL.
  • Clinical norovirus (NoV GII.3) was obtained from clinical fecal samples containing food-borne diseases collected from patients infected with infectious gastroenteritis and was determined by statutory testing. A 100 ⁇ g stool sample was added to 900 ⁇ L PBS (pH 7.4), the solid was separated and the supernatant was used as the detection sample. NoV GII. Of these supernatants. 3 concentration was estimated to 7.2 ⁇ 10 8 RNA copies / mL by real-time PCR.
  • NoV GII Obtained from human feces. 3 concentrations were 10 2, 10 3, 10 4, 10 5, 10 6 and 10 7 RNA copies / mL of.
  • QD @ MHS NP-Ab the QD @ MHS NP modified with the anti-norovirus antibody using the above EDC / NHS method was used, and as the Ab-rGO electrode, the anti-norovirus antibody modified electrode was used using the above EDC / NHS method.
  • Dual modality detection was performed according to the method described in Example 2. Dual modality detection was performed according to the method described in Example 2.
  • D shows the Nyquist plot of the impedance method
  • e shows the fluorescence spectrum
  • f shows the calibration curve of the impedance method and the fluorescence method.
  • 10 2 ⁇ 10 7 RNA copies / mL of norovirus concentration range changes in both the change and the fluorescence intensity of the impedance shows a norovirus concentration highly correlated, the correlation coefficient in impedance method and fluorescence method respectively 0 It was .987 and 0.986 (FIG. 10 (f)).
  • LOD by definition of 3 ⁇ / S was measured as 69 RNA copies / mL.
  • it was possible dual-modality detection is confirmed in a range of norovirus concentration of 10 2 ⁇ 10 7 RNA copies / mL of.
  • Example 3 suggested that the dual modality detection of the present invention is an ultrasensitive detection that can provide accurate and reliable quantitative results.
  • G7 HEV was obtained from cell culture using the human liver cancer cell line PLC / PRF / 5 (JCRB0406, Human Science Research Resource Bank, Osaka, Japan). Cells were cultured in Dulbecco-modified Eagle's medium supplemented with 10% heat-inactivated fetal bovine serum at 37 ° C. in a 5% CO 2 atmosphere. Real-time PCT, the concentration of the resulting G7 HEV was evaluated as 5.0 ⁇ 10 8 RNA copies / mL. Dual modality detection was performed according to the method described in Example 2.
  • Concentration of used G7 HEV was 10 2, 10 3, 10 4, 10 5, 10 6 and 10 7 RNA copies / mL of.
  • the dual calibration curve of the EIS method and the fluorescence method is shown in FIG. 11 (a).
  • the correlation coefficient was 0.988 by the impedance method and 0.987 by the fluorescence method.
  • the LOD by definition of 3 ⁇ / S for HEV was measured as 57 RNA copies / mL.
  • a series of fecal specimens containing G7 HEV were collected from cynomolgus monkeys 4 to 43 days after G7 HEV infection. Fecal specimens were diluted with PBS to prepare a 10% (w / v) suspension. The suspension is then shaken at 4 ° C. for 1 hour, centrifuged at 10,000 xg for 30 centrifuges, clarified, passed through a 0.45 ⁇ m membrane filter (Millipore, Bedford, Massachusetts), and -80 to use. Stored at ° C. Prior to detection, all HEV samples were inactivated by incubation at 70 ° C. for 20 minutes.
  • RT-qPCR 500 FAST Real-Time PCR System, Applied Biosystems, Foster City, CA
  • PCR 5'-GGTGGTTTCTTGGGGTGAC-3'(SEQ ID NO: 1) as a forward primer
  • 5'ends as a probe are modified with a FAM TM dye.
  • the virus concentration obtained by applying the obtained impedance and fluorescence intensity to the calibration curve of FIG. 11 (a) and the virus concentration measured by RT-qPCR are blotted and shown in FIG. 11 (b).
  • HEV-LP HEV-LP was used as the target virus, and as the interfering virus, influenza virus (commercially available), NoV (Shizuoka Prefectural Institute of Environmental Health Sciences), white spot syndrome virus (WSSV, Fisheries Research and Education Organization, Zoyoshoku Research Institute, Fish Disease Research Center) and Dicavirus (Nagasaki University Tropical Disease Research Center) were used.
  • influenza virus commercially available
  • NoV Shizuoka Prefectural Institute of Environmental Health Sciences
  • An electrode modified with an anti-HEV antibody was used as the Au
  • 10% serum (sensor) was used.
  • the selectivity (specificity) for HEV-LP was also confirmed by the fluorescence method. Similar experiments were performed on the above-mentioned various interfering virus samples alone and mixed samples of the interfering virus sample and HEV-LP. The fluorescence intensity of the suspension after removing the electrodes from the sample was measured, and the results are shown in FIG. 11 (d). Since QD @ MHS NP could not bind to the interfering virus sample, the fluorescence intensity decreased only in the presence of HEV-LP.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本発明は、試料中の標的物質を簡便な処理で迅速かつ高感度に検出又は定量する方法並びに当該方法を実施するためのナノ粒子及びその製造方法を提供することを目的とする。本発明のナノ粒子は、標的物質を検出又は定量するためのナノ粒子であり、蛍光性量子ドットからなるコア部と、コア部の周りを囲む磁性材料からなる中空のシェル部とを備え、シェル部の最小内径がコア部の最大外径よりも大きいことを特徴としており、好ましくは、シェル部の外表面に標的物質に対するプローブが結合されている。本発明のナノ粒子の製造方法は、(1)蛍光性量子ドットを作製する工程と、(2)前記量子ドットからなるコア部の周りを囲む磁性材料からなる中空のシェル部を形成する工程とを備える。

Description

標的物質の検出又は定量のためのナノ粒子及びその製造方法、並びに標的物質の検出又は定量方法
 本発明は、標的物質の検出又は定量のためのナノ粒子及びその製造方法、並びに該ナノ粒子を用いた標的物質の検出又は定量方法に関する。
 感染症対策において、高感度かつ迅速な病原体検出技術は、適切な予防、治療を実施する上で極めて重要である。ウイルスの高感度検出方法としてはPCRを基盤とした遺伝子検査が主流であり、迅速な判定が求められる場合は主にイムノクロマト法による抗原検査が行われている。近年、LAMP法など等温遺伝子増幅法も実用化されているが、迅速性は十分とはいえない。
 ウイルス検出の最も一般的な検出法はRT-PCRであり、これはRNAを鋳型として生成されたcDNAに対してPCRを行う手法である。分離検査などと比べて感度が高く亜型まで正確に診断でき、必要な時間も数時間と短いが、高度な技術が必要なため、限られた医療機関でしか検査できない。
 イムノクロマト法の代表的なものとして、酵素結合免疫吸着法(ELISA法)があり、インフルエンザウイルスの検出等に利用されている(特許文献1)。例えばインフルエンザ検出用キットではA型とB型の両方を検出することが可能で、検出に必要な時間も15分程度と、迅速に結果が得られる。しかし、感染初期の患者からは取れる検体が少ないため、実際に感染していても陰性となるケースが起こるのが問題である。また、抗原抗体反応を利用した検出系では、感度を高くしようとすると偽陽性が増え、特異度を高くしようとすると偽陰性が増えてしまい、両者はトレードオフの関係にある。
 一方、本発明者らは、幅広い化学的、物理的、生物学的用途に適した光学特性を備えた蛍光合金量子ドット(Quantum dot、QD)を開発した(非特許文献1)。
国際公開第2013/088367号 US2021-0102912A1
Adegoke,O.; Nyokong, T.; Forbes, P. B., Structural and Optical Properties of AlloyedQuaternary CdSeTeS Core and CdSeTeS/ZnS Core-Shell Quantum Dots. J. Alloys Compd.2015, 645, 443-449
 そこで、本発明は、試料中の標的物質を簡便、迅速かつ高感度に検出又は定量する方法並びに当該方法を実施するためのナノ粒子及びその製造方法を提供することを目的とする。
 本発明者ら、ウイルス等の標的物質を対象に、電気化学インピーダンス分光法に基づく迅速・簡便な検出技術を開発した(特許文献2;公開日:2021年4月8日)。具体的には、優れた導電性と高い比表面積を有するナノマテリアル複合材を電極上に配し、当該ナノマテリアル複合材に固定した抗体と、標的ウイルスとの抗原-抗体反応により、電極表面の電気抵抗値の増加をシグナルとして、標的ウイルスを検出する方法である。発明者はこれまで、標的物質にE型肝炎ウイルス、インフルエンザウイルス(H1N1、H9N2)を設定し、迅速(検出時間15分)、かつ高検出感度(100コピーRNA/ml)を達成した。
 当該電気化学インピーダンス分光法は、RT-PCRと同程度の感度であるが、高度に訓練された検査技師を必要とせず、迅速に結果が出る点でPCR法よりも優れている。また、抗原-抗体反応を利用するイムノクロマト法(例:インフルエンザ検出キット、妊娠検査薬)やELISA法に比べ、検出感度が2オーダー以上優れている。一方で、この方法も抗原-抗体反応を利用するため、試料中の夾雑物が抗原の特異的吸着を阻害することで起こる偽陰性、抗原の非特異的吸着による偽陽性、又は、ヒューマンエラーによる誤判断は完全に回避できない。
 本発明者らは、さらなる改良のため鋭意研究を重ねた結果、所定のナノ粒子を用いた、電気化学インピーダンス分光法と蛍光法のデュアルモダリティによる、高感度の標的物質の検出・定量方法を見出し、本発明を完成させた。
 すなわち、本発明は、以下のとおりである。
[1]
 ナノ粒子の製造方法であって、上記ナノ粒子が、蛍光性量子ドットからなるコア部と、該コア部の周りを囲む磁性材料からなる中空のシェル部とを備え、上記シェル部の最小内径が上記コア部の最大外径よりも大きい、標的物質を検出又は定量するためのナノ粒子であり、上記方法が
(1)蛍光性量子ドットを作製する工程と、
(2)前記量子ドットからなるコア部の周りを囲む磁性材料からなる中空のシェル部を形成する工程と
を備える、製造方法。
[2]
 上記蛍光性量子ドットが四元合金CdSeTeSからなる量子ドットである、[1]の製造方法。
[3]
 上記シェル部は酸化鉄を含む、[1]又は[2]の製造方法。
[4]
 上記コア部の平均粒径が3~20nmであり、上記シェル部の平均外径が5~50nmであり、上記シェル部の最小内径は上記量子ドットの最大外径よりも1~10nm大きい、[1]~[3]のいずれかの製造方法。
[5]
 上記シェル部の平均厚さは、1~20nmである、[1]~[4]のいずれかの製造方法。
[6]
 上記標的物質はウイルス、タンパク質、ペプチド、DNA、又はRNAである、[1]~[5]のいずれかの製造方法。
[7]
 上記シェル部の外表面に上記標的物質に対するプローブが結合されている、[1]~[6]のいずれかの製造方法。
[8]
 上記プローブは、抗体又は核酸である、[7]の製造方法。
[9]
 工程(2)が、
 (2-1)上記コア部の表面に鉄イオンを蓄積させ、上記コア部を被覆する鉄シェルを形成させ、量子ドットコア/鉄シェル構造を有するナノ粒子を得ること、及び
 (2-2)上記(2-1)で得られたナノ粒子を酸化させ、酸化鉄を含む上記シェル部を形成すること
を含む、[1]~[8]のいずれかの製造方法。
[10]
 (3)上記シェル部の外表面に上記標的物質に対するプローブを結合させる工程をさらに含む、[7]又は[8]の製造方法。
[11]
 [1]~[10]のいずれかの製造方法によって製造されたナノ粒子を用いた、標的物質を検出又は定量する方法。
[12]
 (1)[7]又は[8]の製造方法によって製造されたナノ粒子と上記標的物質を含む被検試料とを接触させ、上記プローブと上記標的物質との特異的結合により、上記ナノ粒子と上記標的物質との複合体を形成させる工程と、
 (2)上記ナノ粒子を磁石によって回収する工程と、
 (3)上記ナノ粒子を再分散し、上記プローブが結合された電気化学測定用電極を、上記複合体を含む再分散液に浸し、上記電極上に上記複合体を結合させる工程と、
 (4)上記複合体が結合された電極のインピーダンス値を測定すること、及び/又は、上記電極を外した後の上記分散液の蛍光強度を測定することを含む、工程と
 (5)得られたインピーダンス値及び/又は蛍光強度に基づき、上記標的物質を検出又は定量する工程と
を含む、[11]の方法。
[13]
 工程(3)の電極が、上記標的物質に特異的プローブが結合された、酸化グラフェン修飾金電極である、[12]の方法。
[14]
 工程(5)において、インピーダンス変化率に基づいて作成した標的物質の検量線、及び/又は、蛍光強度減少率に基づいて作成した標的物質の検量線を用いて、上記標的物質を定量することを含む、[12]又は[13]の方法。
[15]
 上記被検試料は、尿、便、血液、唾液、その他の体液、粘膜、毛髪、細胞、及び組織からなる群より選択される、[12]~[14]のいずれかの方法。
[16]
 [7]又は[8]の製造方法によって製造されたナノ粒子と、標的物質に特異的プローブが結合された電気化学測定用電極とを含む、標的物質を検出又は定量するキット。
[17]
 蛍光性量子ドットからなるコア部と、該コア部の周りを囲む磁性材料からなる中空のシェル部とを備え、上記シェル部の最小内径が上記コア部の最大外径よりも大きい、標的物質を検出又は定量するためのナノ粒子。
[18]
 上記シェル部の外表面に上記標的物質に対するプローブが結合されている、[17]のナノ粒子。
[19]
 [17]又は[18]のナノ粒子を用いた、標的物質を検出又は定量する方法。
[20]
 [18]のナノ粒子と、標的物質に特異的プローブが結合された電気化学測定用電極とを含む、標的物質を検出又は定量するキット。
 本発明のナノ粒子によれば、試料中の標的物質を簡便、迅速かつ高感度に検出又は定量することができる。本発明のナノ粒子の製造方法によれば、試料中の標的物質を簡便、迅速かつ高感度に検出又は定量することができるナノ粒子を製造することができる。本発明の検出又は定量方法は、試料中の標的物質を簡便、迅速かつ高感度に検出又は定量することができる。また、電気化学インピーダンス分光法と蛍光法のデュアルモダリティによれば、誤検出を低減でき、検出精度を高められる利点がある。
(a)は一実施形態の中空磁気蛍光ナノ粒子の平面図であり、(b)は平面図(a)におけるA-A’軸での断面図である。 (a)は実施例1のQD@MNS NPの作製工程を示す概略図であり、(b)~(d)はQD、Fe@QD、及びQD@MNS NPのTEM画像であり、(e)はQD@MNS NPのHRTEM画像である。 実施例1のQD、Fe@QD、QD@MNS NPの粒径分布を示すグラフである。 実施例1のQD、Fe@QD及びQD@MNS NPの物理的解析の結果を示す図である。(a)はQD、Fe@QD及びQD@MNS NPの動的光散乱(DLS)の強度を示し、(b)はQD、QD@MNS NPのX線回折パターン(XRD)を示す。 実施例1のQD@MNS NPの物理的解析の結果を示す図である。(a)は周囲光下で、(b)はUVライト下で観察した、QD@MHS NP懸濁液(左)及び該懸濁液に磁石を当てた状態(右)の写真であり、(c)はQD@MHS NPの300Kでの飽和磁化を示す。 実施例1における鉄シェルの酸化によるCdSeTeS QDの形成過程における各反応時点(0分、5分、10分、20分、30分、40分)での粒子の蛍光強度を示す。 実施例1のQD、Fe@QD及びQD@MNS NPの化学的解析の結果を示す図である。(a)はQD@MHS NPのX線光電子分光(XPS)スペクトルを示し、(b)はQD及びQD@MHS NPのCd 3dスペクトルを示し、(c)はQD@MHS NPのFe 2pスペクトルを示す。 実施例1のQD、Fe@QD及びQD@MNS NPの化学的解析の結果を示す図である。(a)は、QD@MHS NPの吸収及び蛍光スペクトル(UV/Visスペクトル)を示し、(b)は、QD@MHS NPの蛍光スペクトルを示し、(c)はHEV-LPの存在下で異なる濃度のQD@MHS NP-Abの蛍光強度減少率を示す。 実施例2のHEV-LPのデュアルモダリティ検出の結果を示す図である。(a)及び(b)はそれぞれEISのナイキストプロット及びその検量線を示し、(c)及び(d)はそれぞれ蛍光強度及びその検量線を示す。 実施例3のNoV-LP((a)~(c))及び臨床検体からのNoV((d)~(f))のデュアルモダリティ検出の結果を示す図である。(a)及び(d)はEISのナイキストプロットを示し、(b)及び(e)蛍光強度を示し、(c)及び(f)はデュアルモダリティ検量線を示す。 実施例4のHEVのデュアルモダリティ検出の結果を示す図である。(a)は、細胞培養上清中のG7 HEVのデュアルモダリティ検出の検量線を示し、(b)は、カニクイザルの糞便サンプル中のG7 HEVのデュアルモダリティとRT-qPCRによる検出の経時変化を示し、(c)は干渉ウイルスを用いた検出選択性を確認するためのEISのナイキストプロットを示し、(d)は干渉ウイルスを用いた検出選択性を確認するための蛍光検出の結果を示す。
〔ナノ粒子〕
 以下、図1を参照しながら、本実施形態のナノ粒子について詳細に説明する。本実施形態のナノ粒子(本明細書において、「中空磁気蛍光ナノ粒子」という場合がある)は、標的物質を検出又は定量するためのナノ粒子1であり、蛍光性量子ドットからなるコア部2と、コア部2の周りを囲む磁性材料からなる中空のシェル部3とを備え、シェル部3の最小内径がコア部2の最大外径よりも大きいことを特徴としている。
 コア部2は、蛍光性量子ドットからなる。コア部2は、粒子状であり、その粒径は、最大外径(最も大きい直径)によって定義される。量子ドット(Quantum dot、本明細書において「QD」という場合がある)とは、量子井戸構造を有するナノ結晶のことを指す。本実施形態のコア部2の量子ドットの平均粒径は、3~20nmであることが好ましく、例えば、3nm以上、5nm以上、若しくは10nm以上であってよく、又は、20nm以下、15nm以下、若しくは10nm以下であってよく、例えば、3~15nm、5~15nm、若しくは5~10nmであってよい。平均粒径は、透過型電子顕微鏡(TEM)又は高解像度電子顕微鏡(HRTEM)によって測定・計算することができる。
 蛍光性量子ドットは蛍光性を有する量子ドットであれば特に限定されないが、蛍光性物質からなる量子ドットであってもよく、表面が蛍光性物質によってコーディングされた量子ドットであってもよい。ここで、蛍光性とは、UV等の特殊な光源下で蛍光を放つ性質を有することを意味する。蛍光性量子ドットは好ましくは、蛍光性物質からなる量子ドット、例えば、CdSeTeS、CdSeCdS、CdSeZnS、又はCdSeからなる量子ドットであることが好ましく、蛍光法検出に適した四元合金CdSeTeSからなる量子ドットであることがより好ましい。四元合金CdSeTeSからなる量子ドットの合成方法は、後述のとおりである。
 シェル部3は中空粒子状であり、コア部2の周りを囲むが、コア部2の最大外径よりも大きい最小内径を有する。そのため、シェル部3とコア部2との間に空洞がある。ここで空洞は、コア部2の外表面とシェル部3の内表面との間の空隙を指す。図1(b)の一実施形態のナノ粒子1の断面図において、シェル部3とコア部2とは同心球状となっている。この場合、空洞はドーナツ状のリングになっている。一方で、コア部2はシェル部3の内部で固定されていないため、シェル部3とコア部2とが同心球でない状態もあり得る。例えば、コア部2はシェル部3の内壁とは接触していてもよい。
 コア部2が中空のシェル部3に包埋されている構造は、蛍光測定環境の影響を受けにくく、量子ドットの蛍光は安定的に高い強度を保つことができるという利点がある。ナノ粒子1の蛍光強度は、蛍光法によって検出できるものであれば特に限定されないが、例えば450nmで検出できる程度の蛍光強度であればよい。
 ナノ粒子1は粒子状であり、その平均粒径、すなわち、シェル部3の平均外径が5~50nmであってよく、例えば、5nm以上、10nm以上、15nm以上若しくは20nm以上であってよく、又は、50nm以下、40nm以下、30nm以下、若しくは25nm以下であってよく、例えば、10~40nm、15~30nm、若しくは15~25nmであってよい。
 シェル部3の内径はコア部2の量子ドットの粒径よりも1~10nm大きくてよく、例えば、2~8nm、4~6nm、又は5nm程度大きくてよい。シェル部3の平均厚さは、1~20nmであってよく、例えば、2~15nm又は5~10nmであってよい。
 中空のシェル部3は磁性材料からなる。磁性材料は鉄(Fe)、酸化鉄(Fe)等のFeを含む磁性化合物などであることが好ましく、空洞の形成の観点から、酸化鉄(Fe)であることが好ましい。ナノ粒子1の磁性強度は磁石によって分離できる程度であればよく、例えば、300Kでの飽和磁化は10~50emu/g、15~40emu/g、又は20~35emu/gであってよい。
 本実施形態において、シェル部3の外表面に標的物質に対するプローブが結合されていることが好ましい。検出の対象となる「標的物質」は、特に限定されず、プローブと特異的に結合する物質であればよい。例えば、抗原-抗体、糖-レクチン、リガンド-レセプター、アプタマーの標的物質-アプタマー、核酸-核酸等の、互いに特異的に結合する物質の組の一方を標的物質とし、他方をプローブとして用いることができる。例えば、ウイルス、タンパク質、ペプチド、DNA、RNA、糖、化学物質、ホルモン等を標的物質又はプローブに用いることができる。
 ナノ粒子1のシェル部3と結合させやすい観点から、プローブはカルボキシ基を有するものであることが好ましい。また、特異性が高く感度に優れることから、プローブが抗体であり、標的物質が該抗体に対する抗原であることが好ましい。また、標的物質とプローブは、核酸(RNA若しくはDNA)と核酸(RNA若しくはDNA)であることも好ましく、特にウイルスのRNAを標的物質とすることが好ましい。
 特異的な抗体を用いて診断される代表的なウイルスとしては、例えば、ヒト又はヒト以外の動物に感染する、肝炎ウイルス(A型、B型、C型、D型、E型、F型、G型、TT型)、インフルエンザウイルス、ノロウイルス、アデノウイルス、サイトメガロウイルス、ホワイトスポット病ウイルス(WSSV)等が挙げられる。
 ウイルスが標的物質である場合、ウイルスの表面抗原に対する抗体を、標的物質に対するプローブとして利用し得る。既知のウイルスの表面抗原を利用することができ、例えば、E型肝炎ウイルス(HEV)のGenogroup 1~7(G1~G7)、インフルエンザウイルスのヘマグルチニン(HA)及びノイラミニダーゼ(NA)、ノロウイルスのGenogroup IおよびGenogroup II等が挙げられる。
 抗体は、公知の方法により作製することができ、例えば、標的物質に特異的な領域の部分配列ペプチドをマウス、ウサギ、ヤギ等の動物に免疫して抗血清を採取したり、抗体を産生するハイブリドーマを作製したりすることによって、取得できる。また、市販品の抗体を利用してもよい。抗体は、ポリクローナル抗体でもモノクローナル抗体又はそれらの機能的断片でもよい。また、標的物質に対する抗体は、一種又は二種以上を用いることができる。
 標的物質は、液体中に存在していてもよく、固体、粉末、流動体、気体等の中に存在していてもよい。標的物質を含む被験試料としては、例えば、ヒト又はヒト以外の動物から採取される、尿、便、血液、唾液、その他の体液、粘膜、毛髪、細胞、組織等を挙げることができる。後述するように、被験試料が液体であることが好ましいため、標的物質が液体以外の試料材料中に存在する場合には、適切なバッファー等に該試料材料を溶解又は懸濁し、試料を液体にすることが好ましい。
 本実施形態において、シェル部3の外表面への標的物質に対するプローブの結合は、標的物質に対するプローブがシェル部3の外表面に直接結合していてもよいし、標的物質に対するプローブとシェル部3の外表面とが、標的物質に対するプローブを認識する別のプローブを介して結合していてもよい。プローブを認識する別のプローブとは、例えば、一次抗体に対する二次抗体であってよい。シェル部3の外表面に標的物質に対するプローブを結合させる方法は後述のとおりである。
〔ナノ粒子の製造方法〕
 本実施形態のナノ粒子の製造方法は、
 (1)蛍光性量子ドットを作製する工程と、
 (2)量子ドットからなるコア部の周りを囲む磁性材料からなる中空のシェル部を形成する工程と、
を備える。
<工程(1)>
 蛍光性量子ドットを作製する工程は、蛍光性を有しない物質からなる量子ドットを合成し、次に合成した量子ドットに蛍光性物質を結合させること、或いは、蛍光性物質からなる量子ドットを合成することを含む。後者のほうが好ましく、また、蛍光性量子ドットが四元合金CdSeTeSからなる量子ドットであることが好ましい。以下、四元合金CdSeTeSからなる量子ドット(本明細書には「CdSeTeS QD」という場合がある)の合成方法について説明する。
 具体的には、本発明者らによる方法(非特許文献1)にしたがって、トリオクチルホスフィンオキシド(Trioctylphosphine oxide;TOPO)と1-オクタデセン(1-octadecene;ODE)を80℃に熱し、SeとTeをそれぞれ添加し、SeとTeのそれぞれの合成前駆体であるTrioctylphosphine selenide(TOPSe)とTrioctylphosphine telluride(TOPTe)を得る。オレイン酸とODEを280℃まで加熱し、CdCl・2.5HO及びTOPSeを添加しCdSe量子ドット(CdSe QD)を成長させる。その後、TOPTeを添加し、CdSeTe量子ドット(CdSeTe QD)を得てから、硫黄前駆体を添加し、CdSeTeS QDを得る。
<工程(2)>
 量子ドットからなるコア部の周りを囲む磁性材料からなる中空のシェル部を形成する工程(2)は、好ましくは、
 (2-1)コア部の表面に鉄イオンを蓄積させ、コア部を被覆する鉄シェルを形成させ、量子ドットコア/鉄シェル構造を有するナノ粒子を得ること、及び
 (2-2)(2-1)で得られたナノ粒子を酸化させ、酸化鉄を含むシェル部を形成すること
を含む。
 (2-1)の鉄シェルの形成は、以下の方法が挙げられる。例えば、CdSeTeS QDを1-オクタデセン及びオレイルアミン等の溶媒に懸濁したのち、120℃、10~60分間真空下で脱ガスし、アルゴン気体下で180℃まで加熱する。180℃に達したら、懸濁液にペンタカルボニル鉄(Fe(CO))溶液を注入し、Fe(CO)の熱分解によってQDの周りに鉄イオンが堆積するよう、180℃、10~50分間維持することにより、QDの周りを囲む鉄シェル構造を有するナノ粒子(本明細書には、「Fe@QD」という場合がある)を得ることができる。
 (2-2)の酸化は、以下の方法が挙げられる。例えば、上記Fe@QDを含む反応液の温度を100℃までに下げ、アルゴンと酸素の混合気体下で、QDの周りの鉄シェルを酸化鉄(Fe)シェルに酸化させ、カーケンダル効果(Kirkendall effect)によってQDと酸化鉄シェルとの間に空隙(空洞)を形成させ、中空磁気蛍光ナノ粒子(本明細書において「QD@MNS NP」という場合がある)を得ることができる。得られた中空磁気蛍光ナノ粒子は、良好な磁性及び蛍光性を有する。特にQDコアの蛍光性は、鉄シェルの形成によって遮られるが、酸化反応後に空洞の形成によって蛍光性が回復することが確認されている。
 本実施形態の製造方法は、(3)シェル部の外表面に標的物質に対するプローブを結合させる工程をさらに含むことが好ましい。
 標的物質に対するプローブをシェル部3の外表面に結合させることは、例えば、プローブとナノ粒子1とを含む溶液に、N-エチル-N’-(3-ジメチルアミノプロピル)カルボジイミド(EDC)/N-ヒドロキシスクシンイミド(NHS)試薬等の公知の架橋剤を添加することにより、簡便に行うことができる。例えば、実施例1に記載の手順によって行うことができる。
〔標的物質の検出又は定量方法〕
 本実施形態の検出又は定量方法は、本実施形態のナノ粒子を用いた標的物質を検出又は定量する方法である。例えば、本実施形態のナノ粒子がシェル部の外表面に標的物質に対するプローブが結合されているナノ粒子である場合、検出又は定量方法は、
 (1)ナノ粒子と標的物質を含む被検試料とを接触させ、プローブと標的物質との特異的結合により、ナノ粒子と標的物質との複合体を形成させる工程と、
 (2)ナノ粒子を磁石によって回収する工程と、
 (3)ナノ粒子を再分散し、プローブが結合された電気化学測定用電極を、ナノ粒子を含む再分散液に浸し、電極上に複合体を結合させる工程と、
 (4)複合体が結合された電極のインピーダンス値を測定すること、及び/又は、電極を外した後の再分散液の蛍光強度を測定することを含む、工程と
 (5)得られたインピーダンス値及び/又は蛍光強度に基づき、標的物質を検出又は定量する工程と
を含むことが好ましい。
 工程(1)において、ナノ粒子と標的物質を含む被検試料との接触は特に限定されないが、液体中において接触させることが好ましい。ナノ粒子及び被検試料は上述のとおりである。ナノ粒子として、CdSeTeS QDが好ましく使用される。
 被検試料は必要に応じて適宜な濃度に希釈してもよい。試料を溶解、懸濁、又は希釈するためのバッファーとしては、例えば、リン酸緩衝生理食塩水(PBS)、(4-(2-ヒドロキシエチル)-1-ピペラジンエタンスルホン酸)(HEPES)、2-モルホリノエタンスルホン酸(MES)等を挙げることができる。ウイルスを検出する場合、希釈液中におけるウイルスの量は10-14~10-7g/mLであってよく、10-14~10-8g/mL又は10-13~10-9g/mLであってよい。
 希釈液に添加されるナノ粒子の量は特に限定されないが、0.1~10μg/mLであってよく、0.5~5μg/mL又は1μg/mL程度であることが好ましい。
 工程(1)において、プローブと標的物質との特異的結合により、ナノ粒子と標的物質との複合体が形成される。標的物質及びプローブは好ましくはウイルス及びその特異的抗体である。この際、標的物質に対してナノ粒子が過剰量に存在すると、複合体を形成するナノ粒子と、複合体を形成してないフリーのナノ粒子が混在する。
 工程(2)において、ナノ粒子が磁性材料を含むことにより、磁石によって容易に回収される。被験試料中に夾雑物を含む場合であっても、磁石等によって夾雑物とも容易に分離することができるため、夾雑物の影響を受けにくいという利点がある。磁石は、ナノ粒子を回収できるものであれば特に限定されない。回収されたナノ粒子は、純水又はPBS等のバッファーによって洗浄してもよい。
 工程(3)において、回収されたナノ粒子を再分散し、プローブが結合された電気化学測定用電極を、ナノ粒子を含む再分散液に一定時間浸し、それによって、電極上のプローブとナノ粒子に結合した標的物質と結合することにより、電極上に上記標的物質とナノ粒子の複合体が結合する。一方、標的物質と複合体を形成してないフリーのナノ粒子は、再分散液に残ったままである。
 再分散液は、ナノ粒子を純水又はバッファー等に懸濁することによって得られる。その際、ナノ粒子の濃度が、0.1~10μg/mLであってよく、0.5~5μg/mL又は1μg/mL程度であることが好ましい。
 電極と再分散液とを接触させる時間は、電極に結合されているプローブと標的物質とを十分に反応させる観点からは、180秒以上とすることが好ましく、10分以上とすることが好ましく、20分以上とすることがさらに好ましい。また、測定効率の観点から、1時間以下であることが好ましく、30分以下であることが好ましく、20分以下であることがさらに好ましい。
 工程(3)における電極として、標的物質に特異的プローブが結合された、酸化グラフェン修飾金電極が好ましく使用される。酸化グラフェン修飾金電極は、例えば実施例1に記載のように作製することができる。酸化グラフェン修飾金電極への標的物質に特異的プローブの結合は、例えば、プローブとナノ粒子1とを含む溶液に、N-エチル-N’-(3-ジメチルアミノプロピル)カルボジイミド(EDC)/N-ヒドロキシスクシンイミド(NHS)試薬等の公知の架橋剤を添加することにより、簡便に行うことができる。例えば、実施例1に記載の手順によって行うことができる。
 工程(4)は、複合体が結合された電極のインピーダンス値を測定すること、及び/又は、電極を外した後の再分散液の蛍光強度を測定することを含む。前者が電気化学的方法、後者が蛍光法であり、後述のとおり、いずれの方法によっても、標的物質を検出・定量できるが、電気化学的方法及び蛍光法の両方を行うデュアルモダリティ検出は、より検出精度が高いため好ましい。
 工程(5)は、得られたインピーダンス値及び/又は蛍光強度に基づき、前記標的物質を検出又は定量することを含む。検出とは、被検試料において標的物質が存在するかどうかを判定することを意味し、定量とは、被験試料中の標的物質の重量、体積又は濃度を算出することを意味する。
 以下、電気化学的方法と蛍光法とに分けて、工程(4)及び(5)について詳細に説明する。
(電気化学的方法)
 電気化学的方法は、複合体が結合された電極のインピーダンス値を測定することを含む。上述したように、磁石によって回収されるナノ粒子は夾雑物を含まないため、電極に結合するナノ粒子の電気化学応答のノイズが少なく、複雑な検体からでも高感度検出を達成できる。
 複合体が結合された電極は、ナノ粒子を含む再分散液から外し、電極を洗浄した後、緩衝溶液中にてインピーダンスを測定する。インピーダンスを測定する前に、作用極を洗浄することが好ましい。電極表面に付着する、試料中の標的物質以外の夾雑物質等を除去し、測定感度を向上させることができる。電極の洗浄に使用する溶液は、特に限定されないが、純水又はPBS等のバッファーであることが好ましい。インピーダンスを測定する際には、上記作用極と対極とを含む電極系を緩衝溶液に浸漬し、インピーダンスを測定することができる。
 複合体が結合された電極は作用極とし、作用極の対極(2電極系)又は対極及び参照極(3電極系)は特に限定されず、公知のものを使用することができ、例えば、対極としてガラス電極、炭素電極、白金電極、ニッケル電極を、参照電極として銀-塩化銀電極、銀/銀型参照電極を、用いる構成を例示することができる。
 インピーダンスの測定は公知の方法により行うことができる。例えば、電位電気化学インピーダンス分光法(PEIS)等の方法を挙げることができ、インピーダンスを測定する装置として通常用いられる装置を、本実施形態の方法においても使用することができ、市販の装置を測定に使用してもよい。
 一連の操作は、例えば特許文献2に記載のバイオセンサを用いて行ってもよい。バイオセンサは、被験試料を入れる恒温セル、電極系に電圧を印加する電源、電極系にパルス電圧を印加するパルス信号源、電流計、インピーダンス測定器、記録計等を備えていてもよく、バッチ型であってもフロー型であってもよい。恒温セル、電源、パルス信号源、インピーダンス測定器、電流計、記録計は、公知のものを使用することができる。
 例えば、電位電気化学インピーダンス分光法(PEIS)でインピーダンスを測定するに際しては、周波数範囲を50mHz以上とすることが好ましく、100mHz以上とすることがより好ましく、また、200kHz以下とすることが好ましく、100Hz以下とすることがより好ましい。また、振幅を2mV以上とすることが好ましく、5mV以上とすることがより好ましく、また、10mV以下とすることが好ましく、7mV以下とすることがより好ましい。また、電極系に電圧を印加する時間は、十分な電荷移動が行われる観点からは、10秒以上とすることが好ましく、1分以上とすることが好ましく、2分以上とすることがさらに好ましい。また、測定効率の観点から、0.5時間以下であることが好ましく、5分以下であることが好ましく、3分以下であることがさらに好ましい。
上述の範囲であれば、本実施形態の方法において作用極のインピーダンスをより感度よく測定することができる。
 標的物質の検出方法において、再分散されたナノ粒子に標的物質が結合していれば、プローブが結合された電極(作用極)を再分散に接触させる際に標的物質が作用極表面のプローブに結合し、作用極での電荷移動が阻害され、作用極のインピーダンスが増加する。したがって、作用極のインピーダンスが、再分散液と接触させる前の作用極の初期インピーダンスと比較して増加していれば、標的物質が存在していると判断することができ、作用極のインピーダンスが、試料と接触させる前の作用極の初期インピーダンスと比較して増加していなければ、試料中に標的物質が存在していないと判断することができる。なお、測定する「作用極のインピーダンス」とは、作用極の複合体が担持されている表面のインピーダンスであることが好ましい。
 再分散液と接触させる前の作用極の初期インピーダンスは、例えば、再分散液と接触させる前、すなわち未使用の作用極に対して、再分散液の代わりに純水又はバッファーに電極系を接触させることによって測定することができる。作用極の初期インピーダンスとしては、予め測定した値を基準値として用いてもよいし、再分散液の測定ごとに測定した値を用いてもよい。
 標的物質の定量方法においては、作用極のインピーダンスを測定するステップまで、標的物質の検出方法と同様である。定量方法においては、既知濃度の標的物質を含む標準試料に接触させた作用極のインピーダンス変化率に基づいて作成した検量線を使用して、試料中の標的物質を定量することができる。検量線を使用する定量は、一般的な方法により行なうことができ、例えば、既知濃度の標的物質を含む複数の標準試料に接触させた作用極のインピーダンス変化率から予め検量線を作成しておき、測定したインピーダンス変化率をこの検量線にあてはめることにより、試料中の標的物質の濃度を求めることができる。なお、被検試料中の標的物質の濃度は、希釈率などに基づき、再分散液中の標的物質の濃度から簡単に計算することができる。
 インピーダンス変化率とは、試料と接触させる前の作用極の初期インピーダンスに対する、試料と接触させた後の作用極のインピーダンスのことであり、例えば、以下の式により求めることができる。
 インピーダンス変化率={(試料と接触させた後の作用極のインピーダンス)/(試料と接触させる前の作用極の初期インピーダンス)}×100(%)
(蛍光法)
 蛍光法は、電極を外した後の前記再分散液の蛍光強度を測定することを含む。ナノ粒子が標的物質に対して過剰量である場合、標的物質と結合しないフリーのナノ粒子が、電極に結合することができず、再分散液に残ったままである。この再分散液に残ったナノ粒子を蛍光法によって検出又は定量することによって、電極に結合したナノ粒子の存在又は定量を可能にする。また、過剰量のナノ粒子の検出によって、電気化学的方法による検出時のエラーを補正できる。
 蛍光法において、再分散液の蛍光強度は、一般的な蛍光分光光度計によって測定することができる。このような蛍光分光光度計例えば、マイクロプレートリーダー(Infinite F500、Tecan、Mannedorf Switzerland)を挙げることができる。再分散液の蛍光強度を測定する際に、必要に応じて純水又は緩衝液で希釈してもよい。
 標的物質の検出及び定量方法において、電極(作用極)を接触する前の再分散液の蛍光強度、及び、電極を接触した後の再分散液の蛍光強度を測定し、下の式にしたがって、蛍光強度減少率を求めることができる。蛍光強度減少率が100%とならないように、被検試料にナノ粒子を過剰量に添加することが好ましい。
蛍光強度減少率={(電極を接触する前の再分散液の蛍光強度-電極を接触した後の再分散液の蛍光強度)/(電極を接触する前の再分散液の蛍光強度)}×100(%)
 蛍光強度減少率該0%である場合、電極に結合したナノ粒子がなかったことを意味し、すなわち、標的物質が存在しないことを意味する。一方、蛍光強度減少率が0%超100%未満である場合、再分散液中に標的物質と結合するナノ粒子と、結合していないフリーのナノ粒子が混在していることを意味し、すなわち、標的物質が存在することを意味する。蛍光強度減少率が100%である場合、再分散液中にナノ粒子は全て標的物質と結合していることを意味し、すなわち、標的物質が存在するが、標的物質が過剰量に存在する可能性があるため、測定値は実際の含有量よりも低い可能性あることが示唆される。
 標的物質の定量方法においては、既知濃度の標的物質を含む標準試料に電極を接触させ、その蛍光強度減少率に基づいて作成した検量線を使用して、試料中の標的物質を定量することができる。検量線を使用する定量は、一般的な方法により行なうことができ、例えば、既知濃度の標的物質を含む複数の標準試料に接触させ、得られる蛍光強度減少率から予め検量線を作成しておき、測定した蛍光強度減少率をこの検量線にあてはめることにより、試料中の標的物質の濃度を求めることができる。なお、被検試料中の標的物質の濃度は、希釈率などに基づき、再分散液中の標的物質の濃度から簡単に計算することができる。
 電気化学的方法及び蛍光法の両方を用いたデュアルモダリティ検出・定量は、電気化学的方法と蛍光法の両方が一つの検出システムに統合されることにより、感度が大幅に向上し、精度が向上した広い線形範囲の検出を提供するメリットがある。本実施形態の方法、複雑な成分を含む被検試料であっても、殆ど干渉されることなく、高い検出精度を示す。また、高度な技術及び設備を必要とせず、迅速かつ高感度に標的物質を検出・定量できる。
〔キット〕
 本実施形態の標的物質を検出又は定量するキットは、標的物質に対するプローブが結合された本実施形態のナノ粒子と、標的物質に特異的プローブが結合された電気化学測定用電極とを含む。ナノ粒子及び電極はそれぞれ上述のとおりである。本実施形態のキットを用いれば、被検試料中の標的物質を迅速かつ高感度に検出又は定量することができる。
 以下に実施例を挙げて本発明を詳細に説明するが、本発明は何らこれらに限定されるものではない。
実施例1 中空磁気蛍光ナノ粒子の作製及びその解析
<CdSeTeS量子ドットの合成及び中空磁気蛍光ナノ粒子の作製>
 中空磁気蛍光ナノ粒子(QD-encapsulated magnetic hollow sphere nanoparticle、以下「QD@MNS NP」という)は、図2の(a)の概略図に示すように、量子ドット(QD)の合成、QDコアの周りを鉄シェルが被覆する構造を有するFe@QDの形成、及び、QDと酸化鉄シェルとの間に空洞を形成するための鉄酸化の手順で作製した。
 QDとして、蛍光性四元合金CdSeTeS量子ドット(CdSeTeS QD;以下、単に「QD」という場合がある)を合成し、使用した。具体的には、本発明者らによる方法(非特許文献1)にしたがって、トリオクチルホスフィンオキシド(Trioctylphosphine oxide;TOPO)と1-オクタデセン(1-octadecene;ODE)を80℃に熱し、SeとTeをそれぞれ添加し、SeとTeの反応前駆体であるTrioctylphosphine selenide(TOPSe)とTrioctylphosphine telluride(TOPTe)を得た。オレイン酸とODEを280℃まで加熱し、CdCl・2.5HO及びTOPSeを添加しCdSe量子ドット(CdSe QD)を成長させた。その後、TOPTeを添加し、CdSeTe量子ドット(CdSeTe QD)を得てから、硫黄前駆体を添加し、CdSeTeS QDを得た。
 上記得られたCdSeTeS QD 54mgを10mLの1-オクタデセン及び0.05mLのオレイルアミンに加え、軽くソニケーションしながら懸濁させた。その後、120℃、30分間真空下で脱ガスし、アルゴン気体下で180℃まで加熱した。180℃に達したら、懸濁液に1mLの1-オクタデセンに溶解した0.1mLのペンタカルボニル鉄(Fe(CO))を注入し、Fe(CO)の熱分解によってQDの周りに鉄イオンが堆積するよう、180℃、30分間維持した。これにより、QDの周りを囲む鉄シェル構造を有するFe@QDを得た。
 反応後、温度を100℃までに下げ、アルゴンと酸素の10:9の混合気体下で、QDの周りの鉄シェルを酸化鉄(Fe)シェルに酸化させ、カーケンダル効果(Kirkendall effect)によってQDと酸化鉄シェルとの間に空洞を形成させ、中空磁気蛍光ナノ粒子(QD@MNS NP)を得た。反応後、磁石でQD@MNS NPを分離し、トルエンとエタノールで洗浄し、精製した。
<QD@MHS NPの物理的解析>
 得られたCdSeTeS QD、Fe@QD及びQD@MNS NPを、透過型電子顕微鏡(TEM、JEM-ARM200F、JEOL, Ltd.)及び高解像度電子顕微鏡(HRTEM、JEM-2010、JEOL, Ltd.)で観察した。CdSeTeS QD、Fe@QD及びQD@MNS NPのTEM画像はそれぞれ図2の(b)、(c)及び(c)に示し、QD@MNS NPのHRTEM画像は図2の(e)に示す。また、TEM画像及びHRTEM画像に基づき、それぞれの粒子の粒径分布をグラフ化し、図3に示す。
 これらの結果から、CdSeTeS QDは粒径が6~14nmであり、平均粒径が10nmの球状粒子であることが確認された(図2(b)、図3(a))。Fe@QDは平均粒径が15nmのコア/シェル構造を有する球状粒子であることが確認された(図2(c)、図3(b))。また、QD@MNS NPは平均粒径が20nmのコア/シェル構造を有し(図2(d)、図3(c))、かつ、QDコアと酸化鉄シェルとの間に約5nmの厚みを有する空洞があることが確認された(図2(e))。
 各粒子について、さらに動的光散乱法(DLS、マルバンのゼータサイザーナノシリーズ(Malvern Zetasizer nanoseries)Nano-ZS90(Malvern Inst. Ltd., Malvern, UK)によって粒径分布を調べた。
 DLSの結果を図4(a)に示す。図4(a)によれば、CdSeTeS QD、Fe@QD及びQD@MNS NPの順で粒径が大きくなった。それぞれの流体力学的平均粒径はそれぞれ20nm、25nm及び50nmであった。
 また、ナノ粒子の結晶性を確認するため、CdSeTeS QD及びQD@MNS NPをX線回折法(XRD、RINT ULTIMA XRD(Rigaku Co., Japan))によって解析した。
 X線回折パターンを図4(b)に示す。CdSeTeS QDの回折パターンは、(111)、(220)及び(311)結晶面に対して2θが24.7°、42.4°及び50.4°の3つの特徴的なピークを示すことから、CdSeTeS QDが結晶性を有し、立方体であることが確認された。また、QD@MNS NPの回折パターンにおいても、上記3つのピークの位置が変わらないことから、QDは鉄シェルの酸化反応の影響を受けないことが示唆された。一方、鉄シェルの酸化後に2θが43.4°の明確なピークが新たに出現したことから、酸化鉄シェルの形成に成功したことが確認された。
 さらに、QD@MHS NPの光学的特性及び磁気的特性を調べた。まず、UV-Vis分光光度計(UV-1800、 Shimadzu, Kyoto, Japan)を用いて、周囲光及びUVライトで観察し、その結果を図5に示す。
 図5の(a)は周囲光下、(b)はUVライト下で観察したQD@MHS NP懸濁液(左)及び該懸濁液に磁石を当てた状態(右)の写真である。QD@MHS NPの蛍光は、UVライトの下ではっきりと観察できた。またQD@MHS NPを含むバイアルの外壁に磁石を配置した直後に、ガラスのバイアルの内壁にQD@MHS NPが蓄積され、残りの溶液は透明になった。QD@MHS NPの強力な磁気モーメントにより、外部磁場によって容易に分離できることが確認された。
 また、QD@MHS NPの室温(300K)での飽和磁化は、超伝導量子干渉計(SQUID;MPMS-7, Quantum Design, Inc., San Diego, USA)によって測定した。
 飽和磁化の結果を図5(c)に示す。図5(c)によれば、QD@MHS NPの300Kでの飽和磁化は31.6emu/gであった。このような強力な磁気モーメントは、図5の(a)及び(b)に示すように、外部磁場によって容易に分離できることを裏付けた。
 さらに、QD@MHS NPの形成過程の蛍光性の変化を調べた。Fe@QDの鉄シェルの酸化反応の開始からの各反応時点(0分、5分、10分、15分、20分、25分、30分、35分)でのナノ粒子の蛍光強度を調べた。
 蛍光強度の結果を図6に示す。図6から、酸化反応の開始時点(0分)のFe@QDは、QDが鉄シェルによって覆われているため蛍光強度が弱く、鉄シェルの酸化によってQDと酸化鉄シェルとの間に空洞が形成されるにつれ、蛍光強度が徐々に回復することが確認された。
<QD@MHS NPの化学的解析>
 QD@MHS NPをX線光電子分光(XPS、ESCA Ulvac-PHI 1600 photoelectron spectrometer, Kanagawa, Japan)によって解析した。
 XPSスペクトルを図7(a)に示す。図7(a)から、QD@MHS NPのサーベイスキャンは、Se 3d(52.9eV)、S 2p(163.3eV)、C 1s(284.7eV)、Cd 3d(405.7eV)、O 1s(532.1eV)、Te 3d(582.9eV)、及び、Fe 2p(711.5eV及び725.1eV)の特徴的なピークを示すことが確認された(図7(a))。
 図7(b)は、QD及びQD@MHS NPのCd 3dスペクトルを示す。2つのスペクトルがほぼ重なり合っていることから、Cd 3dの位相は鉄シェルの酸化による影響を受けないことが確認された。
 図7(c)は、QD@MHS NPのCdのFe 2pスペクトルのピーク分離を示す。Fe 2p3/2とFe2p1/2の特徴的なピークはそれぞれ710.9eV及び724.8eVに集中していることから、QD@MHS NPで酸化鉄の形成が確認された。また、ピーク分離は、それぞれFe3+とFe2+に属する710.3eVと712.5eVに2つの主要なピークを示した一方、これらの主要なピークに関連する弱い衛星バンドが検出され、そのうちの1つはFe 2p3/2(Fe3+)からの衛星バンドであり、718.5eVにあった。ピーク分離したFe 2p XPSスペクトルは、FeとFeの共存の可能性を示唆した。
 QD@MHS NPを分光光度計(UV/Vis、UV-1800, Shimadzu, Kyoto, Japan)で解析した。
 図8(a)は、QD@MHS NPの吸収及び蛍光スペクトル(UV/Visスペクトル)を示す。中空酸化鉄シェルの形成後でも、QDの特徴的な吸収ピークを維持していることが確認された。図8(b)は、QD@MHS NPの蛍光スペクトルを示す。QD@MHS NPはQDに比べて蛍光強度のピークの幅が少し広がったものの、ピークの高さは変わらないことが確認された。鉄シェルの酸化によっても、QDコアの平均サイズが維持されていることが示唆された。
<中空磁気蛍光ナノ粒子の機能化>
 抗体による表面修飾によって中空磁気蛍光ナノ粒子を機能化した。表面修飾は、K. V.Korpany, F. Habib, M. Murugesu, A. S. Blum, Mater. Chem. Phys 2013, 138 (1), 29-37に記載の方法を改良した方法によって行った。
 具体的には、QD@MNS NP 1μg/mLを500μLのトリクロロメタンに懸濁させた後、該懸濁液に同量の水を添加した。その後、3-メルカプトプロピオン酸(MPA)及びNaOHの水溶液(pH5.0)を徐々に添加し、QD@MNS NPを逆相にした。トリクロロメタン層を除去した後、得られたナノ粒子を純エタノールで3回洗浄し、窒素ガス環境下で残エタノールを除いた。得られたナノ粒子は、1mMのメトキシポリエチレングリコールチオール(mPEG-SH)水溶液500μLに添加し、適量の1M NaOHでpHを8に調整し、30分間室温で放置し、MPAで表面修飾したQD@MHS NP(MPA-capped QD@MHS NP)を得た。
 EDC/NHS法を用いて、上記MPAで表面修飾されたQD@MHS NPへ標的ウイルスに特異的抗体を修飾した。具体的には、5.1μgの抗体を含むPBS緩衝液1mLと、0.1MのEDC(N-[3-(Dimethylamino)propyl]-N´-ethylcarbodiimide)1mLとを混合し、7℃、30分攪拌しながらEDCと抗体のカルボキシル基とを反応させ、活性エステル中間体を生成させた。次に、当該反応液に1mLのQD@MHS NP懸濁液及び0.1MのNHS(N-Hydroxysuccinimide)1mLをさらに添加し、7℃で16時間撹拌しながら反応させ、抗体とナノ粒子の間に安定なアミド結合を形成させた。これによって、抗体標識QD@MHS NP(QD@MHS NP-Ab)を得た。得られたQD@MHS NP-Abは0.1MのPBS緩衝液(pH7.4)中4℃で保存した。
<酸化グラフェン修飾金電極の作製及び機能化>
 金(Au)電極(6355-S-AU、バオロジック社、フランス)を超純水とエタノールでソニケーションをかけながら洗浄した。Au電極を1mg/ml溶液の還元型酸化グラフェン(rGO)に浸し、サイクリックボルタンメトリー(CV)を使用して、スキャン速度が50mV/秒の電圧を0から-1.5Vまでかけ、rGOがAu電極の表面に導入し、酸化グラフェン修飾金電極(Au||rGO)を作製した。
 続いて、EDC/NHS法で、標的ウイルスに特異的な抗体によって表面修飾した電極(以下、Au||Ab-rGO又は単にAb-rGOという場合がある)を得た。具体的には、Au||rGO電極を0.1M EDCを含んだリン酸緩衝液に浸し、30分間常温で放置した後、0.1M NHSと1mLの抗体溶液を添加し、7℃で16時間反応させ、反応後未反応のEDCとNHSを洗い流し、得られたAu||Ab-rGOを4℃で保管した。
<検出パラメータの最適化>
 検出パラメータの最適化を行うために、標的ウイルスの存在下で、異なる濃度のQD@MHS NP-Abの蛍光強度の低下を調べた。標的ウイルスとしてG3 E型肝炎ウイルス様粒子(HEV-LP)を用い、QD@MHS NP-Abとして抗HEV抗体で修飾したQD@MHS NPを用いた。また、Ab-rGO電極としては抗HEV抗体で修飾した抗HEV抗体修飾電極を用いた。
 具体的には、組換えバキュロウイルス発現システムでG3 HEV様粒子(HEV-LP)を発現させた。組換えバキュロウイルスAc5480/7126を昆虫細胞BTL-Tn 5B1-4(Tn5)に感染させ、EX-CELL405培地で26.5℃、7日間培養を行った。培養後細胞を除いた上澄みを、CsCL密度勾配遠心法で精製を行った。精製したHEV-LPは標準的な方法に従って定量した。抗HEV抗体は、精製G3 HEV-LPでウサギを免疫し、さらにウサギの血清からIgGカラムで精製された抗HEV IgG抗体であり、得られた抗体はタンパク質Gカラムによって精製し、濃度が0.3mg/mLであった。抗HEV抗体修飾電極は、上記EDC/NHS法にしたがって作製した。
 1ng/mLのG3 HEV-LPと、異なる濃度(0.1μg/mL、0.5μg/mL、1μg/mL、5μg/mL、及び10μg/mL)のQD@MHS NP-Abを10分間混合し、ウイルスとQD@MHS NP-Abとが結合し、複合体を形成させた。その後、磁石を用いて液体からQD@MHS NP-Abを分離し、100μLのPBS緩衝液に再分散した。この際、最初に添加したQD@MHS NP-AbがHEV-LPに対して過剰量である場合、得られたQD@MHS NP-Abは、HEV-LPと複合体を形成しているものと、複合体を形成せずQD@MHS NP-Abのままのものとが混在していた。
 該QD@MHS NP-HEV再分散液に、抗HEV抗体修飾電極を10分間浸した後、純水で電極を洗浄した。この際、HEV-LPとQD@MHS NP-Abとの複合体が、複合体中のウイルスと電極上の抗体との特異的結合を介して、抗HEV抗体修飾電極にトラップされた。
 反応後、電極を取り除き、再分散液を計り取り、蛍光分光光度計で蛍光強度を測定した。
 測定した蛍光強度(反応後の蛍光強度)に基づき、[(反応前の蛍光強度-反応後の蛍光強度)/反応前の蛍光強度×100]%で蛍光強度減少率(%)を計算し、図8(c)に示す。5μg/mL及び10μg/mLのQD@MHS NP-Abでは、HEV-LPの量に比べ、QD@MHS NP-Abが過剰に存在するため、蛍光減少率は非常に低かった。最低濃度の0.1μg/mLでは、ほぼすべてのQD@MHS NP-AbがrGO電極に結合したため、100%近くの蛍光強度減少率を示した。一方、1μg/mLのQD@MHS NP-Abでは17%の蛍光強度減少率を示した。蛍光量子収率は、高感度の蛍光検出システムの開発における重要なパラメータであるため、蛍光検出プローブとして十分な17%の蛍光強度減少率を示した1μg/mLの濃度はウイルス検出に最適な濃度であると判断した。
実施例2 HEV-LPのデュアルモダリティ検出
 標的ウイルスとしてHEV-LPを用い、QD@MHS NP-Abとして抗HEV抗体で修飾したQD@MHS NPを用い、Ab-rGO電極としては抗HEV抗体修飾電極を用いた。それぞれの作製方法は実施例1と同様である。
 異なる濃度(10fg/mL、100fg/mL、1pg/mL、10pg/mL、100pg/mL、1ng/mL、及び10ng/mL)のHEV-LPを、1μg/mLの抗HEV抗体修飾QD@MHS NPと10分間混合し、磁石を用いてQD@MHS NP-Abを分離し、100μLのPBS緩衝液に再分散した。さらに、抗HEV抗体修飾電極を該再分散液に10分間浸した後、純水で電極を洗浄した。その後、周波数10kHz~0.1Hz、5mVの正弦波振幅で、Au||Ab-rGOの電気化学的インピーダンス分光法(EIS、SP-150、BioLogic.Inc.,France)によりインピーダンスを測定した。また、ウイルスが添加していない(0fg/mL)系をコントロールとした。
 Au||Ab-rGOの電気化学インピーダンス分光法(EIS)で測定したインピーダンスをナイキストプロットで示めす(図9(a))。電極電解質界面(Rct)での電荷移動抵抗を表すナイキストプロットの半円の直径は、HEV-LPの濃度依存の増加につれて、強度が増加することが確認された。
 また、インピーダンスの変化と濃度の相関関係を示す検量線を図9(b)に示す。図中、RctQは電荷移動抵抗、RctQ0はウイルスの検出前の電荷移動抵抗、RctQはウイルスの検出後の電荷移動抵抗を表す。10fg/mLから10ng/mLのHEV-LP濃度の範囲において、インピーダンスの変化とHEV-LP濃度が高い相関関係を示した(R=0.993)。3σ/S(σは最低信号の10回分の標準偏差、Sは線形検量線の勾配)定義による検出限界(LOD)は1.2fg/mLであった。
 一方、全てのHEV-LP/QD@MHS NP-Ab複合体が電極に結合したのち、電極を取り除いた再分散液の蛍光強度を、蛍光分光光度計によって実施例1と同じ方法で測定した。
 蛍光スペクトルは図9(c)に示す。HEV-LP濃度が10fg/mLから10ng/mLに増加するにつれて、630nmでの蛍光強度が減少することが確認された。
 また、蛍光強度の変化とHEV-LP濃度との相関関係を示す検量線は図9(d)に示す。FQ0とFはそれぞれウイルスの検出前後の蛍光強度です。10fg/mLから10ng/mLのHEV-LP濃度の範囲において、蛍光強度の変化とHEV-LP濃度が高い相関関係を示した(R=0.992)。3σ/Sの定義によるLODは2.6fg/mLであった。
実施例3 ノロウイルスのデュアルモダリティ検出
 実施例2で証明されたHEV-LPのデュアルモダリティ検出戦略は、他のタイプのウイルスにも適用できることは明らかである。デュアルモダリティ検出の感度及び精度をさらに確認するために、ノロウイルス様粒子(NoV-LP)及び臨床ノロウイルス(NoV)のデュアルモダリティ検出を行った。
<NoV-LPのデュアルモダリティ検出>
 NoV-LPは、組換えバキュロウイルスTCN-VP1(Invitrogen、San Diego、CA、USA)を、Trichoplusia ni、BTL-Tn 5B1-4(Tn5)にトランスフェクションし、発現させた。発現されたNoV-LPは精製され、ウイルス様粒子(VLP)調製のための標準的な方法に従って定量化された。抗NoV抗体は、ジェノグループIIに広く反応する抗NoV抗体(モノクローナル抗体NS14)を使用した。NS14(アイソタイプ-IgG)は、経口免疫したマウスの脾臓細胞から取得した。得られた抗体はタンパク質Gカラムで精製し、濃度が0.3mg/mLであった。
 NoV-LPの濃度は、10fg/mL、100fg/mL、1pg/mL、10pg/mL、100pg/mL、1ng/mL、及び10ng/mLであった。QD@MHS NP-Abとして、上記EDC/NHS法を用いて抗ノロウイルス抗体で修飾したQD@MHS NPを用い、Ab-rGO電極としては、上記EDC/NHS法を用いて抗ノロウイルス抗体修飾電極を用いた。デュアルモダリティ検出は実施例2に記載の方法に準じて行った。
 その結果は図10(a)~(c)に示す。(a)はインピーダンス法のナイキストプロットを示し、(b)は蛍光スペクトルを示し、(c)はインピーダンス法及び蛍光法の検量線を示す。10fg/mLから10ng/mLのノロウイルス濃度の範囲において、インピーダンスの変化及び蛍光強度の変化の両方がノロウイルス濃度と高い相関関係を示した(図10(c)、R=0.991、0.989)。3σ/Sの定義によるLODは、1.6fg/mLであった。これにより、10fg/mLから10ng/mLのノロウイルス濃度の範囲でデュアルモダリティ検出が可能であったことが確認された。
<臨床ノロウイルスのデュアルモダリティ検出>
 臨床ノロウイルス(NoV GII.3)は、感染症のある胃腸炎に感染した患者から収集された、食品媒介疾患を含む臨床糞便サンプルから得られたものであり、法令に基づく検査によって決定された。100μgの糞便サンプルを900μLのPBS(pH7.4)に加え、固体を分離し、上清を検出サンプルに使用した。これらの上清のNoV GII.3濃度は、リアルタイムPCRによって7.2×10RNAコピー/mLと評価された。
 人間の糞便から得られたNoV GII.3の濃度は、10、10、10、10、10及び10のRNAコピー/mLであった。QD@MHS NP-Abとして、上記EDC/NHS法を用いて抗ノロウイルス抗体で修飾したQD@MHS NPを用い、Ab-rGO電極としては、上記EDC/NHS法を用いて抗ノロウイルス抗体修飾電極を用いた。デュアルモダリティ検出は実施例2に記載の方法に準じて行った。デュアルモダリティ検出は実施例2に記載の方法に準じて行った。
 その結果を図10(d)~(f)に示す。(d)はインピーダンス法のナイキストプロットを示し、(e)は蛍光スペクトルを示し、(f)はインピーダンス法及び蛍光法の検量線を示す。10~10のRNAコピー/mLのノロウイルス濃度の範囲において、インピーダンスの変化及び蛍光強度の変化の両方がノロウイルス濃度と高い相関関係を示し、インピーダンス法及び蛍光法での相関係数がそれぞれ0.987及び0.986であった(図10(f))。3σ/Sの定義によるLODは69RNAコピー/mLと測定された。これにより、10~10のRNAコピー/mLのノロウイルス濃度の範囲でデュアルモダリティ検出が可能であったことが確認された。
 実施例3の結果は、本発明のデュアルモダリティ検出は、正確で信頼性の高い定量結果を提供できる超高感度検出であることを示唆した。
実施例4 HEVのデュアルモダリティ検出及び検出の安定性
<G7 HEVのデュアルモダリティ検出>
 標的ウイルスとしてG7 HEVを用いたデュアルモダリティ検出を行った。G7 HEVは、ヒト肝癌細胞株PLC/PRF/5(JCRB0406、ヒューマンサイエンス研究資源バンク、大阪、日本)を用いた細胞培養から得られた。細胞は、5%のCO雰囲気中、37℃で、10%熱不活化ウシ胎児血清を添加したDulbecco改変Eagle培地で培養した。リアルタイムPCTによって、得られたG7 HEVの濃度は5.0×10RNAコピー/mLと評価された。デュアルモダリティ検出は実施例2に記載の方法に準じて行った。
 使用したG7 HEVの濃度が10、10、10、10、10及び10のRNAコピー/mLであった。EIS法と蛍光法のデュアル検量線は図11(a)に示す。HEV濃度の増加につれて、EIS法では強度が増加し、蛍光法では蛍光強度が減少した。相関係数は、インピーダンス法で0.988であり、蛍光法で0.987であった。HEVの3σ/Sの定義によるLODは57RNAコピー/mLと測定された。
<カニクイザルの糞便サンプル中のHEVの検出>
 上記結果をさらに検証するために、G7 HEV感染カニクイザルの糞便検体から得られたG7 HEVのデュアルモダリティ検出及びRT-qPCRによる検出を行った。
 G7 HEV感染後4~43日のカニクイザルから、G7 HEVを含む一連の糞便検体を収集した。糞便検体をPBSで希釈して、10%(w/v)懸濁液を調製した。次に、懸濁液を4℃で1時間振とうし、10,000×gで30遠心分離して清澄化し、0.45μmメンブレンフィルター(Millipore、マサチューセッツ州ベッドフォード)に通し、使用まで-80℃で保存した。検出を行う前に、70℃で20分間のインキュベーションにより、すべてのHEVサンプルを不活性化した。
 糞便検体のHEVのデュアルモダリティ検出は、HEV-LP検出と同じ手順で行った。また、検出精度の比較のため、TaqMan assayによるRT-qPCR(7500 FAST Real-Time PCR System、Applied Biosystems, Foster City, CA)を行った。PCRは、forward primerとして5’-GGTGGTTTCTGGGGTGAC-3’(配列番号1)を、reverse primerとして5’-AGGGGTTGGTTGGATGAA-3’(配列番号2)を、probeとして5’末端がFAM(商標)色素で修飾され、3’末端がTAMRA(商標)色素で修飾された5’-TGATTCTCAGCCCTTCGC-3’(配列番号3)をそれぞれ用いて、5分×50℃、20秒×95℃、及び3秒×95℃と30秒×60℃を30サイクル行った。
 得られたインピーダンス及び蛍光強度を図11(a)の検量線に当てはめて得られたウイルス濃度と、RT-qPCRによって測定したウイルス濃度をブロットして、図11(b)に示す。
 図11(b)から、感染のピークは感染後1~2週間の間にあり、その後徐々に検出不能な量まで減少した。RT-qPCRの結果から、感染後22日まではG7 HEVが検出された。HEVの感染サイクル及びRT-qPCRの結果から、感染22日後に採集された糞便からHEVが検出されなかった。このことは、感染22日後のカニクイザルはHEVを持っていないことを証明した。したがって、感染22日以降に採集された糞便検体をネガティブコントロールと見なした。さらに、デュアルモダリティ検出結果の時系列変化は、RT-qPCRの検出結果とほぼ重なり、RT-qPCRの感度と比べ遜色のない結果であったことが確認された。この結果は、実際のサンプルに適用可能であることが示された。
<デュアルモダリティ検出の選択性>
 標的ウイルスの選択性(特異性)を調べるために、標的ウイルスとしてHEV-LPを用い、干渉ウイルスとして、インフルエンザウイルス(市販品)、NoV(静岡県環境衛科学研究所)、ホワイトスポットシンドロームウイルス(WSSV、水産研究・教育機構増養殖研究所魚病研究センター)及びジカウイルス(長崎大学熱帯病研究センター)を用いた。Au||Ab-rGO電極として抗HEV抗体で修飾した電極を用い、QD@MHS NP-Abとして抗HEV抗体で修飾したQD@MHS NPを用いた。ネガティブコントロールとして、10%血清(センサ)を用いた。
 まず、Au||Ab-rGOの電気化学インピーダンス分光法(EIS)検出を行った。実験方法は、HEV-LP検出と同じ手順で行った。EISのナイキストプロットを図11(c)に示す。HEV-LP以外のウイルスのインピーダンスは約0.5~5%とわずかに増加しただけで、HEV-LPのみにインピーダンス値の有意な増加が認められ、デュアルモダリティ検出の優れた特異性が確認された。
 また、HEV-LPに対する選択性(特異性)は蛍光法によっても確認した。上記各種干渉ウイルスサンプル単独、及び、干渉ウイルスサンプルとHEV-LPとの混合サンプルについても同様な実験を行った。サンプルから電極を取り除いた後の懸濁液の蛍光強度を測定し、その結果を図11(d)に示す。QD@MHS NPは干渉ウイルスサンプルと結合できないため、蛍光強度はHEV-LPの存在下でのみ減少した。
 これらの結果から、本発明のデュアルモダリティ検出は、観察可能な干渉を引き起こすことなく、複雑なマトリックスでの実際の臨床サンプル診断に優れた性能を有することが証明された。
 1…ナノ粒子、2…コア部、3…シェル部。

Claims (16)

  1.  ナノ粒子の製造方法であって、前記ナノ粒子が、蛍光性量子ドットからなるコア部と、該コア部の周りを囲む磁性材料からなる中空のシェル部とを備え、前記シェル部の最小内径が前記コア部の最大外径よりも大きい、標的物質を検出又は定量するためのナノ粒子であり、前記方法は
    (1)蛍光性量子ドットを作製する工程と、
    (2)前記量子ドットからなるコア部の周りを囲む磁性材料からなる中空のシェル部を形成する工程と
    を備える、製造方法。
  2.  前記蛍光性量子ドットが四元合金CdSeTeSからなる量子ドットである、請求項1に記載の製造方法。
  3.  前記シェル部は酸化鉄を含む、請求項1又は2に記載の製造方法。
  4.  前記コア部の平均粒径が3~20nmであり、前記シェル部の平均外径が5~50nmであり、前記シェル部の最小内径は前記量子ドットの最大外径よりも1~10nm大きい、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記シェル部の平均厚さは、1~20nmである、請求項1~4のいずれか一項に記載の製造方法。
  6.  前記標的物質はウイルス、タンパク質、ペプチド、DNA、又はRNAである、請求項1~5のいずれか一項に記載の製造方法。
  7.  前記シェル部の外表面に前記標的物質に対するプローブが結合されている、請求項1~6のいずれか一項に記載の製造方法。
  8.  前記プローブは、抗体又は核酸である、請求項7に記載の製造方法。
  9.  工程(2)が、
     (2-1)前記コア部の表面に鉄イオンを蓄積させ、前記コア部を被覆する鉄シェルを形成させ、量子ドットコア/鉄シェル構造を有するナノ粒子を得ること、及び
     (2-2)前記(2-1)で得られたナノ粒子を酸化させ、酸化鉄を含む前記シェル部を形成すること
    を含む、請求項1~8のいずれか一項に記載の製造方法。
  10.  (3)前記シェル部の外表面に前記標的物質に対するプローブを結合させる工程をさらに含む、請求項7又は8に記載の製造方法。
  11.  請求項1~10のいずれか一項に記載の製造方法によって製造されたナノ粒子を用いた、標的物質を検出又は定量する方法。
  12.  (1)請求項7又は8に記載の製造方法によって製造されたナノ粒子と前記標的物質を含む被検試料とを接触させ、前記プローブと前記標的物質との特異的結合により、前記ナノ粒子と前記標的物質との複合体を形成させる工程と、
     (2)前記ナノ粒子を磁石によって回収する工程と、
     (3)前記ナノ粒子を再分散し、前記プローブが結合された電気化学測定用電極を、前記複合体を含む再分散液に浸し、前記電極上に前記複合体を結合させる工程と、
     (4)前記複合体が結合された電極のインピーダンス値を測定すること、及び/又は、前記電極を外した後の前記再分散液の蛍光強度を測定することを含む、工程と
     (5)得られたインピーダンス値及び/又は蛍光強度に基づき、前記標的物質を検出又は定量する工程と
    を含む、請求項11に記載の方法。
  13.  工程(3)の電極が、前記標的物質に特異的プローブが結合された、酸化グラフェン修飾金電極である、請求項12に記載の方法。
  14.  工程(5)において、インピーダンス変化率に基づいて作成した標的物質の検量線、及び/又は、蛍光強度減少率に基づいて作成した標的物質の検量線を用いて、前記標的物質を定量することを含む、請求項12又は13に記載の方法。
  15.  前記被検試料は、尿、便、血液、唾液、その他の体液、粘膜、毛髪、細胞、及び組織からなる群より選択される、請求項12~14のいずれか一項に記載の方法。
  16.  請求項7又は8に記載の製造方法によって製造されたナノ粒子と、標的物質に特異的プローブが結合された電気化学測定用電極とを含む、標的物質を検出又は定量するキット。
PCT/JP2021/022732 2020-06-23 2021-06-15 標的物質の検出又は定量のためのナノ粒子及びその製造方法、並びに標的物質の検出又は定量方法 WO2021261334A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022531842A JPWO2021261334A1 (ja) 2020-06-23 2021-06-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020107951 2020-06-23
JP2020-107951 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261334A1 true WO2021261334A1 (ja) 2021-12-30

Family

ID=79281241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022732 WO2021261334A1 (ja) 2020-06-23 2021-06-15 標的物質の検出又は定量のためのナノ粒子及びその製造方法、並びに標的物質の検出又は定量方法

Country Status (2)

Country Link
JP (1) JPWO2021261334A1 (ja)
WO (1) WO2021261334A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060118757A1 (en) * 2004-12-03 2006-06-08 Klimov Victor I Multifunctional nanocrystals
US20100112716A1 (en) * 2004-03-23 2010-05-06 University Of New Orleans Research And Technology Foundation, Inc. Synthesis of nanoassemblies containing luminescent quantum dots and magnetic nanoparticles
JP2010540709A (ja) * 2007-09-28 2010-12-24 ナノコ テクノロジーズ リミテッド ナノ粒子
JP2012037259A (ja) * 2010-08-04 2012-02-23 Nagoya Univ 磁性ナノ粒子複合体及び当該磁性ナノ粒子複合体による細胞の標識方法
KR20160136550A (ko) * 2015-05-20 2016-11-30 고려대학교 산학협력단 중공 구조를 갖는 나노 금속 산화물 입자의 제조 방법
CN109100511A (zh) * 2018-07-20 2018-12-28 四川大学 用于循环肿瘤细胞可视化捕获及释放的免疫磁性纳米粒子及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112716A1 (en) * 2004-03-23 2010-05-06 University Of New Orleans Research And Technology Foundation, Inc. Synthesis of nanoassemblies containing luminescent quantum dots and magnetic nanoparticles
US20060118757A1 (en) * 2004-12-03 2006-06-08 Klimov Victor I Multifunctional nanocrystals
JP2010540709A (ja) * 2007-09-28 2010-12-24 ナノコ テクノロジーズ リミテッド ナノ粒子
JP2012037259A (ja) * 2010-08-04 2012-02-23 Nagoya Univ 磁性ナノ粒子複合体及び当該磁性ナノ粒子複合体による細胞の標識方法
KR20160136550A (ko) * 2015-05-20 2016-11-30 고려대학교 산학협력단 중공 구조를 갖는 나노 금속 산화물 입자의 제조 방법
CN109100511A (zh) * 2018-07-20 2018-12-28 四川大学 用于循环肿瘤细胞可视化捕获及释放的免疫磁性纳米粒子及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHOWDFURY ANKAN DUTTA, AKHILESH BABU GANGANBOINA, YUAN-CHUNG TSAI, HSIN-CHENG CHIU, RUEY-AN DOONG : "Multifunctional GQDs-ConcanavalinA@Fe304 nanocomposites for cancer cells detection and targeted drug delivery", ANALYTICA CHIMICA ACTA, vol. 1027, 16 October 2018 (2018-10-16), pages 109 - 120, XP055891721 *
GANGANBOINA, AKHILESH BABU ET AL.: "Hollow magnetic-fluorescent nanoparticles for dual- modality virus detection", BIOSENSORS AND BIOELECTRONICS, vol. 170, no. 112680, 2 October 2020 (2020-10-02), XP086326803, DOI: 10.1016/j.bios.2020.112680 *
TAKEMURA, KENSHIN ET AL.: "High- sensitivity and rapid detection of leptin and GLP- 1 using the local surface plasmon resonance effect on the surface of nanoparticles", LECTURE PREPRINTS OF THE 65TH JSAP SPRING MEETING, 2018, JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 24 August 2018 (2018-08-24) *

Also Published As

Publication number Publication date
JPWO2021261334A1 (ja) 2021-12-30

Similar Documents

Publication Publication Date Title
Munawar et al. Nanosensors for diagnosis with optical, electric and mechanical transducers
JP6484744B2 (ja) タンパク質検出方法
Smith et al. Optimization of antibody-conjugated magnetic nanoparticles for target preconcentration and immunoassays
Li et al. High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor
Zhang et al. A silicon dioxide modified magnetic nanoparticles–labeled lateral flow strips for HBs antigen
JP2020514709A5 (ja)
Liu et al. Sandwich pair nanobodies, a potential tool for electrochemical immunosensing serum prostate-specific antigen with preferable specificity
US20060240456A1 (en) Nanosized biological container and manufacture thereof
US20230408501A1 (en) Detection of target analytes at picomolar concentrations
JP2021518912A (ja) マルチウェル電極基盤のバイオセンサー
US20120058548A1 (en) Detection of biotargets using bioreceptor functionalized nanoparticles
Pleshakova et al. AFM-based technologies as the way towards the reverse Avogadro number
Ganganboina et al. Cargo encapsulated hepatitis E virus-like particles for anti-HEV antibody detection
JP6593840B2 (ja) 量子ドット蛍光増強免疫測定法
Cancino-Bernardi et al. A SARS-CoV-2 impedimetric biosensor based on the immobilization of ACE-2 receptor-containing entire cell membranes as the biorecognition element
GhaderiShekhiAbadi et al. Magnetic biosensors for identification of SARS-CoV-2, Influenza, HIV, and Ebola viruses: A review
Moon et al. Development of highly sensitive plasmonic biosensors encoded with gold nanoparticles on M13 bacteriophage networks
Ding et al. Inorganic nanoparticles‐based strategies for the microbial detection in infectious diseases
WO2021261334A1 (ja) 標的物質の検出又は定量のためのナノ粒子及びその製造方法、並びに標的物質の検出又は定量方法
KR20150085700A (ko) 표적-특이적 프로브와 표지물질-항체 복합체를 포함하는 바이오마커 탐지용 조성물 및 이의 이용방법
US20240319186A1 (en) Nanowire-based immunofluorescence kit for detecting sars coronavirus 2 antibody, and use thereof
Yamakawa et al. Canine parvovirus 2 detection using a LSPR biosensing method with gold nanoparticles
Syamila et al. Bio-nanogate manipulation on electrode surface as an electrochemical immunosensing strategy for detecting anti-hepatitis B surface antigen
JP4911639B2 (ja) バイオセンシング方法及び固定化方法
Le et al. Fluorescent nanodiamond immunosensors for clinical diagnostics of tuberculosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21827567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531842

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21827567

Country of ref document: EP

Kind code of ref document: A1