WO2021261254A1 - Cutting device and cutting method - Google Patents
Cutting device and cutting method Download PDFInfo
- Publication number
- WO2021261254A1 WO2021261254A1 PCT/JP2021/021959 JP2021021959W WO2021261254A1 WO 2021261254 A1 WO2021261254 A1 WO 2021261254A1 JP 2021021959 W JP2021021959 W JP 2021021959W WO 2021261254 A1 WO2021261254 A1 WO 2021261254A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unit
- electrode plate
- focal position
- laser beam
- laser
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims description 11
- 238000006073 displacement reaction Methods 0.000 claims abstract description 38
- 239000007772 electrode material Substances 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 9
- 238000000576 coating method Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 6
- 230000005855 radiation Effects 0.000 abstract 1
- 230000032258 transport Effects 0.000 description 16
- 230000007246 mechanism Effects 0.000 description 11
- 230000003287 optical effect Effects 0.000 description 6
- 239000011521 glass Substances 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 239000003517 fume Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 230000012447 hatching Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/04—Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
- B23K26/046—Automatically focusing the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G13/00—Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This disclosure relates to a cutting device and a cutting method.
- Patent Document 1 discloses an apparatus for cutting an electrode plate with a laser beam while continuously transporting an electrode plate used for the secondary battery by a roll-to-roll method.
- This disclosure has been made in view of these circumstances, and one of the purposes thereof is to provide a technique for improving the cutting quality of the electrode plate.
- This cutting device has a laser irradiation unit that irradiates an electrode plate with laser light to perform cutting processing, an information acquisition unit that acquires information about the focal position of the laser beam, a position displacement unit that displaces the focal position, and information acquisition. It includes a control unit that controls the position / displacement unit based on the information acquired by the unit.
- This cutting method includes irradiating the electrode plate with a laser beam to perform cutting processing, acquiring information on the focal position of the laser beam, and displacing the focal position based on the acquired information.
- the cutting quality of the electrode plate can be improved.
- FIG. 1 is a perspective view schematically showing the cutting device 1 according to the embodiment.
- FIG. 1 mainly illustrates the shape of the electrode plate 6 and how the electrode plate 6 is cut. Therefore, in FIG. 1, the illustration of the laser irradiation unit 4 is simplified, and the information acquisition unit 40, the position displacement unit 42, and the control unit 44 that constitute the focal position adjustment mechanism described later are omitted.
- the cutting device 1 includes a transport unit 2 and a laser irradiation unit 4.
- the transport unit 2 is a mechanism for transporting the electrode plate 6.
- the transport speed of the electrode plate 6 is, for example, 1 m / min to 100 m / min.
- the laser irradiation unit 4 is a mechanism for irradiating the electrode plate 6 with the laser beam L to cut the electrode plate 6.
- the direction in which the electrode plate 6 flows at the position where the electrode plate 6 is cut by the laser irradiation unit 4 is defined as the transport direction A of the electrode plate 6.
- the transport direction A is downward in the vertical direction.
- the electrode plate 6 of the present embodiment is a strip-shaped member long in the transport direction A, and has a structure in which a plurality of unit electrode plates 8 are connected.
- the electrode plate 6 has a structure in which the unit electrode plates 8 are arranged in two rows and a plurality of columns. The unit electrode plates 8 are finally separated from each other. Then, the unit electrode plate 8 of the positive electrode and the unit electrode plate 8 of the negative electrode are alternately laminated with the separator interposed therebetween to form a laminated electrode body. That is, the electrode plate 6 is used for the laminated electrode body. Not limited to this, the electrode plate 6 may be used for a wound electrode body.
- the obtained electrode body is used for a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, a nickel-cadmium battery, a capacitor such as an electric double layer capacitor, and the like.
- Each unit electrode plate 8 has a structure in which an electrode active material layer is laminated on a current collector plate.
- the current collector plate is made of aluminum foil or the like if it is a positive electrode, and copper foil or the like if it is a negative electrode.
- the electrode active material is lithium cobalt oxide, lithium iron phosphate or the like for the positive electrode, and graphite or the like for the negative electrode.
- a tab portion 10 is provided on each unit electrode plate 8 in a state after the electrode plate 6 has been cut by the laser irradiation portion 4. The tab portion 10 projects from the current collector plate of the unit electrode plate 8 in the width direction B of the electrode plate 6.
- the width direction B is a direction orthogonal to the transport direction A.
- the electrode plate 6 has a coated portion 12 of the electrode active material and a non-coated portion 14 of the electrode active material.
- the coating portion 12 of the electrode active material is arranged at the central portion in the width direction B of the electrode plate 6.
- the coating portion 12 corresponds to the electrode active material layer.
- the coating unit 12 is obtained by applying an electrode slurry containing an electrode active material to the surface of a plate material constituting a current collector plate using a known coating device.
- the non-applied portions 14 of the electrode active material are arranged at both ends of the electrode plate 6 in the width direction B.
- the non-applied portion 14 is a portion where the plate material constituting the current collector plate is exposed, and becomes a tab portion 10 by cutting.
- the transport unit 2 continuously transports the electrode plate 6 to a position facing the laser irradiation unit 4 by a feed roll (not shown).
- the cutting device 1 of the present embodiment includes two laser irradiation units 4 arranged in the width direction B.
- the laser irradiation unit 4 irradiates the non-applied portion 14 on one end side of the electrode plate 6 being conveyed with the laser beam L.
- the other laser irradiation unit 4 irradiates the non-applied portion 14 on the other end side of the electrode plate 6 being conveyed with the laser beam L.
- the non-applied portions 14 on both sides are cut to form a plurality of tab portions 10 arranged at predetermined intervals in the transport direction A.
- a part of the coating portion 12 can also be cut during the cutting process by the laser irradiation unit 4.
- a protective layer (not shown) for protecting the coated portion 12 may be provided at the boundary between the coated portion 12 and the non-coated portion 14. ..
- the protective layer is, for example, an oxide layer of a metal constituting a current collector plate.
- a part of the protective layer may be cut in addition to the non-coated portion 14 during the cutting process by the laser irradiation unit 4.
- a part of the coated portion 12 and a part of the protective layer may be cut.
- the transport unit 2 has a chamber 16.
- the chamber 16 suppresses spatter and fume generated by the cutting process with the laser beam L from adhering to the electrode plate 6 and the cutting device 1 and floating in the atmosphere.
- the chamber 16 may be omitted.
- the electrode plate 6 that has been cut by the laser irradiation unit 4 is divided into a product unit 18 and a waste material unit 20.
- the product unit 18 includes a plurality of continuous unit electrode plates 8 and a plurality of tab units 10. Each tab portion 10 is provided on a one-to-one basis with respect to each unit electrode plate 8.
- the waste material portion 20 is a portion of the non-coated portion 14 that does not remain on the product portion 18 side as a tab portion 10.
- the product unit 18 is conveyed to the line of the next process.
- the waste material unit 20 is transported in a direction different from that of the product unit 18 and is separated from the product unit 18.
- FIG. 2 is a schematic diagram for explaining a focal position adjusting mechanism included in the cutting device 1.
- the laser irradiation unit 4 has an incident unit 22, a scanning unit 24, and a condensing unit 26.
- the laser beam L oscillated by the laser oscillator 100 is incident on the incident portion 22.
- the laser oscillator 100 is a known fiber laser oscillator, and is connected to one end of the incident portion 22 via a fiber cable 28.
- the type of the laser oscillator 100 is not particularly limited and can be appropriately selected.
- a collimating lens 30 is provided inside the incident portion 22.
- the laser beam L incident from one end of the incident portion 22 is adjusted to a parallel state by the collimated lens 30 and travels to the other end side.
- the other end of the incident portion 22 is connected to the scanning portion 24.
- the laser beam L that has passed through the collimating lens 30 and becomes parallel light travels from the other end of the incident portion 22 into the scanning portion 24.
- the scanning unit 24 is a mechanism for scanning the electrode plate 6 with the laser beam L.
- the scanning unit 24 is composed of, for example, a known galvano scanner.
- the scanning unit 24 has an X-axis mirror 32 and a Y-axis mirror 34.
- the scanning unit 24 reflects the laser beam L incident from the incident unit 22 by each mirror and emits it toward the electrode plate 6.
- the X-axis mirror 32 is supported by an X-axis motor (not shown) and can rotate in the X-axis direction.
- the Y-axis mirror 34 is supported by a Y-axis motor (not shown) and can rotate in the Y-axis direction.
- the scanning unit 24 reflects the laser beam L in the order of the Y-axis mirror 34 and the X-axis mirror 32, and rotates each mirror to scan the laser beam L on the XY plane, that is, on the electrode plate 6. Can be done.
- the laser beam L may be reflected in the order of the X-axis mirror 32 and the Y-axis mirror 34.
- the drive of the scanning unit 24 is controlled by the control unit 44, which will be described later.
- the drive of the scanning unit 24 may be controlled by a control unit different from the control unit 44.
- a condensing unit 26 is connected to the emission port of the laser beam L in the scanning unit 24. Therefore, the light collecting unit 26 is interposed between the scanning unit 24 and the electrode plate 6.
- the light collecting unit 26 collects the laser beam L emitted from the scanning unit 24 on the electrode plate 6.
- the light collecting unit 26 has a group lens 36 composed of a plurality of lenses and a protective glass 38.
- the set lens 36 is, for example, an f ⁇ lens.
- the protective glass 38 is interposed between the assembled lens 36 and the electrode plate 6 to protect the assembled lens 36 from spatter, fume, and the like generated by the cutting process with the laser beam L.
- the laser beam L emitted from the scanning unit 24 passes through the condensing unit 26 and reaches the electrode plate 6.
- the condensing unit 26 has a focal point F, and the laser beam L is focused on the focal point F by the condensing unit 26.
- the focal position of the light collecting unit 26 is adjusted to a position (initial position) suitable for cutting the electrode plate 6.
- the optical member that transmits the laser beam L is heated, and the so-called thermal lens effect may cause a shift in the focal position (focus shift).
- the focal position approaches the laser irradiation unit 4 by the focal shift.
- Examples of the optical member capable of generating the focal shift include the collimating lens 30, the assembled lens 36, and the protective glass 38.
- foreign matter such as spatter and fume easily adheres to the protective glass 38, and the laser beam L is absorbed by the foreign matter and the temperature tends to rise locally. Therefore, the protective glass 38 tends to cause a focus shift.
- the set lens 36 has a structure in which a plurality of lenses are combined. Therefore, the set lens 36 is also likely to cause a focus shift.
- the cutting quality includes the smoothness of the cut surface, the shape, the presence or absence of thermal deformation, and the like. Deterioration of cutting quality can lead to the generation of burrs in the cut portion. The burr generated on the electrode plate causes a short circuit, which deteriorates the quality of the secondary battery.
- the cutting device 1 of the present embodiment includes a focal position adjusting mechanism.
- the focal position adjusting mechanism includes an information acquisition unit 40, a position displacement unit 42, and a control unit 44.
- the information acquisition unit 40 acquires information regarding the focal position of the laser beam L.
- the information acquisition unit 40 of the present embodiment acquires information regarding the width dimension M of the irradiation mark 46 of the laser beam L formed on the electrode plate 6 as information regarding the focal position.
- the information acquisition unit 40 of the present embodiment has an image pickup device 48 that captures an image of the irradiation mark 46, and acquires an image IMG of the irradiation mark 46 as information regarding the width dimension M of the irradiation mark 46.
- FIG. 3 is a schematic diagram showing an example of an image IMG generated by the image pickup apparatus 48.
- the irradiation marks 46 are burnt by the irradiation of the laser beam L in each of the vanishing portion 46a, which is interposed between the product section 18 and the waste material section 20 and burned down by the irradiation of the laser beam L, and the product section 18 and the waste material section 20.
- the burnt mark portion 46b is included.
- the information acquisition unit 40 sends the image IMG generated by the image pickup apparatus 48 to the control unit 44 as information regarding the focal position.
- the information acquisition unit 40 may acquire the focal position itself or the displacement amount of the focal position itself as information regarding the focal position by calculation.
- the amount of displacement of the focal position has a correlation with the amount of heat input to each optical member. Therefore, the displacement amount can be estimated by calculation based on the output intensity of the laser beam L, the irradiation time, and the like. Further, by adding the obtained displacement amount to the initial position, the focal position can be estimated by calculation.
- the information acquisition unit 40 may include a reflectance measuring device for measuring the light reflectance in the region including the irradiation mark 46 on the electrode plate 6.
- the light reflectance of the irradiation mark 46 is lower than the light reflectance of the region where the laser beam L is not irradiated in the coated portion 12 and the non-coated portion 14. Therefore, the width of the irradiation mark 46 can be estimated based on the change in the measured light reflectance. That is, the information regarding the focal position and the information regarding the width dimension M of the irradiation mark 46 may be the light reflectance of the region including the irradiation mark 46 on the electrode plate 6, or the amount of change thereof.
- the position displacement portion 42 is a mechanism for displacing the focal position.
- the position displacement portion 42 of the present embodiment is composed of a uniaxial slider.
- the position displacement unit 42 includes a rail 50 that extends in the direction in which the laser irradiation unit 4 and the chamber 16 are aligned and to which the laser irradiation unit 4 is connected, a motor 52 that moves the laser irradiation unit 4 along the rail 50, and the like.
- the position displacement unit 42 of the present embodiment displaces the entire laser irradiation unit 4, that is, the incident unit 22, the scanning unit 24, and the condensing unit 26 with respect to the electrode plate 6. As a result, the focal position can be displaced with respect to the electrode plate 6.
- the position displacement unit 42 may displace only the light collection unit 26.
- the control unit 44 controls the position displacement unit 42 based on the information acquired by the information acquisition unit 40.
- the control unit 44 is realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and is realized by a computer program or the like as a software configuration, but in FIG. 2, it is realized by their cooperation. It is drawn as a functional block. It is well understood by those skilled in the art that this functional block can be realized in various ways by a combination of hardware and software.
- the control unit 44 can calculate the width dimension M of the irradiation mark 46 by performing known image processing on the image IMG. For example, the control unit 44 may measure the width dimension M of a predetermined one place in the irradiation mark 46 in the image IMG and set the value as the width dimension M of the irradiation mark 46, or measure the width dimension M of a plurality of places. Then, the average value may be used as the width dimension M of the irradiation mark 46.
- the control unit 44 controls the position displacement unit 42 according to the width dimension M of the irradiation mark 46.
- the width dimension M of the irradiation mark 46 gradually expands. That is, the width dimension M of the irradiation mark 46 and the focal position of the laser beam L have a correlation. Therefore, the control unit 44 holds in advance a conversion table in which the width dimension M of the irradiation mark 46 and the focal position of the laser beam L are associated with each other. By using this conversion table, the control unit 44 can grasp the current focal position based on the width dimension M of the irradiation mark 46 obtained from the image IMG.
- the conversion table may correspond the width dimension M of the irradiation mark 46 with the displacement amount of the focal position. Further, the focal position may be grasped as the distance between the laser irradiation unit 4 (for example, the condensing unit 26) and the electrode plate 6.
- the control unit 44 controls the motor 52 of the position displacement unit 42 so that the focal position approaches the initial position.
- the control unit 44 matches the focal position with the initial position.
- the control unit 44 controls the position displacement unit 42 so that the laser irradiation unit 4 comes closer to the electrode plate 6.
- the control unit 44 acquires an image IMG of the portion that has been cut after adjusting the focal position from the information acquisition unit 40, and controls the position displacement unit 42 based on the image IMG to control the irradiation mark 46. It is possible to execute feedback control that makes the width dimension M of the constant constant.
- the cutting device 1 has information regarding the laser irradiation unit 4 that irradiates the electrode plate 6 with the laser beam L to perform cutting processing, and the information regarding the focal position of the laser beam L.
- the acquisition unit 40 includes a position displacement unit 42 that displaces the focal position of the laser beam L, and a control unit 44 that controls the position displacement unit 42 based on the information regarding the focal position acquired by the information acquisition unit 40.
- the information acquisition unit 40 of the present embodiment acquires information regarding the width dimension M of the irradiation mark 46 of the laser beam L formed on the electrode plate 6 as information regarding the focal position. Then, the control unit 44 controls the position displacement unit 42 according to the width dimension M of the irradiation mark 46. That is, the cutting device 1 measures the change in the width dimension M of the irradiation mark 46 during cutting of the electrode plate 6 with the laser beam L, and adjusts the focal position in real time according to the measurement result.
- the information regarding the focal position may be the focal position obtained by calculation or the displacement amount of the focal position.
- the displacement of the focal position such as the adhesion of foreign matter to the optical member, and it is very difficult to accurately calculate the focal position and its displacement amount.
- directly detecting the focal point F of the laser beam L can also lead to complicated structure and high cost of the cutting device 1.
- the width dimension M of the irradiation mark 46 as the information regarding the focal position, the focal position can be grasped more easily. Therefore, the cutting quality of the electrode plate 6 can be improved more easily.
- the information acquisition unit 40 of the present embodiment has an image pickup device 48 that captures an image of the irradiation mark 46, and acquires an image IMG of the irradiation mark 46 as information regarding the width dimension M of the irradiation mark 46.
- the cutting device 1 is provided with a camera for in-line inspection of the dimensions and appearance of the electrode plate 6. Therefore, the camera can be used as the image pickup device 48. Therefore, it is possible to suppress the complexity and cost increase of the structure of the cutting device 1 by providing the focal position adjusting mechanism.
- the laser irradiation unit 4 of the present embodiment includes an incident unit 22 on which the laser light L oscillated by the laser oscillator 100 is incident, and a scanning unit 24 that scans the electrode plate 6 with the laser light L incident on the incident unit 22. It also has a condensing unit 26 that condenses the laser beam L emitted from the scanning unit 24 on the electrode plate 6. Then, the position displacement unit 42 displaces the focal position by displacing the entire laser irradiation unit 4.
- the laser light emitted from the scanning unit 24 is parallel light. Therefore, the focal position can also be displaced by displacing only the condensing portion 26 with respect to the electrode plate 6.
- the incident unit 22, the scanning unit 24, and the light collecting unit 26 are airtightly connected to each other. Therefore, when only the condensing unit 26 is displaced, it is necessary to separately take measures against the entry of foreign matter into the connection portion between the scanning unit 24 and the condensing unit 26, which may complicate the structure of the laser irradiation unit 4.
- the displacement target of the position displacement unit 42 to the entire laser irradiation unit 4
- the focal position can be displaced without complicating the structure of the laser irradiation unit 4.
- the cutting device 1 of the present embodiment includes a transport unit 2 for transporting the electrode plate 6.
- the electrode plate 6 has a long strip shape in the transport direction A, and the electrode active material coating portion 12 arranged at the center of the width direction B orthogonal to the transport direction A in the electrode plate 6 and the width direction B in the electrode plate 6 It has a non-coated portion 14 of the electrode active material arranged at the end portion of the.
- the laser irradiation unit 4 cuts at least the non-applied portion 14 to form a plurality of tab portions 10 arranged at predetermined intervals in the transport direction A. As a result, the high-quality tab portion 10 can be stably formed.
- the cutting device 1 may be an individualized unit electrode plate 8 from the electrode plate 6.
- the electrode plate 6 may be a stack of a unit electrode plate 8 and a separator.
- the structure of the laser irradiation unit 4 and the position displacement unit 42 is not particularly limited as long as the focal position can be adjusted.
- the invention according to the above-described embodiment may be specified by the items described below.
- the electrode plate (6) is irradiated with laser light (L) to perform cutting processing. Obtain information about the focal position of the laser beam (L) and Including shifting the focal position based on the acquired information, Cutting method.
- This disclosure can be used for cutting devices and cutting methods.
Landscapes
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Plasma & Fusion (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Laser Beam Processing (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
A cutting device 1 comprises: a laser radiation unit 4 that radiates a laser beam L onto an electrode plate 6 to cut the same; an information acquisition unit 40 that acquires information pertaining to a focal position of the laser beam L; a position displacement unit 42 that displaces the focal position; and a control unit 44 that controls the position displacement unit 42 on the basis of the information acquired by the information acquisition unit 40.
Description
本開示は、切断装置および切断方法に関する。
This disclosure relates to a cutting device and a cutting method.
近年、電気自動車(EV)、ハイブリッド車(HV)、プラグインハイブリッド車(PHV)等の普及にともない、車載用の二次電池の出荷が増えている。特にリチウムイオン二次電池の出荷が増えている。また、車載用に限らず、例えばノート型パソコン等の携帯端末用の電源としても二次電池の普及が進んでいる。このような二次電池に関して、例えば特許文献1には、二次電池に用いられる電極板をロールtoロール方式で連続搬送しながら、レーザ光で電極板を切断加工する装置が開示されている。
In recent years, with the spread of electric vehicles (EVs), hybrid vehicles (HVs), plug-in hybrid vehicles (PHVs), etc., shipments of in-vehicle secondary batteries are increasing. In particular, shipments of lithium-ion secondary batteries are increasing. Further, secondary batteries are becoming widespread not only for in-vehicle use but also as a power source for mobile terminals such as notebook personal computers. Regarding such a secondary battery, for example, Patent Document 1 discloses an apparatus for cutting an electrode plate with a laser beam while continuously transporting an electrode plate used for the secondary battery by a roll-to-roll method.
レーザ光で電極板を切断することで、切断品質を高めることができる。一方で、電池の品質向上に対する要求は常にある。したがって、電極板の切断品質にもさらなる向上が求められる。
By cutting the electrode plate with laser light, the cutting quality can be improved. On the other hand, there is always a demand for battery quality improvement. Therefore, further improvement is required for the cutting quality of the electrode plate.
本開示はこうした状況に鑑みてなされたものであり、その目的の1つは、電極板の切断品質を向上させる技術を提供することにある。
This disclosure has been made in view of these circumstances, and one of the purposes thereof is to provide a technique for improving the cutting quality of the electrode plate.
本開示のある態様は、切断装置である。この切断装置は、電極板にレーザ光を照射して切断加工を施すレーザ照射部と、レーザ光の焦点位置に関する情報を取得する情報取得部と、焦点位置を変位させる位置変位部と、情報取得部が取得した情報に基づいて位置変位部を制御する制御部と、を備える。
One aspect of the present disclosure is a cutting device. This cutting device has a laser irradiation unit that irradiates an electrode plate with laser light to perform cutting processing, an information acquisition unit that acquires information about the focal position of the laser beam, a position displacement unit that displaces the focal position, and information acquisition. It includes a control unit that controls the position / displacement unit based on the information acquired by the unit.
本開示の他の態様は、切断方法である。この切断方法は、電極板にレーザ光を照射して切断加工を施し、レーザ光の焦点位置に関する情報を取得し、取得した情報に基づいて焦点位置を変位させることを含む。
Another aspect of the present disclosure is a cutting method. This cutting method includes irradiating the electrode plate with a laser beam to perform cutting processing, acquiring information on the focal position of the laser beam, and displacing the focal position based on the acquired information.
以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。
Any combination of the above components and the conversion of the expressions of the present disclosure between methods, devices, systems, etc. are also effective as aspects of the present disclosure.
本開示によれば、電極板の切断品質を向上させることができる。
According to the present disclosure, the cutting quality of the electrode plate can be improved.
以下、本開示を好適な実施の形態をもとに図面を参照しながら説明する。実施の形態は、本開示を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも本開示の本質的なものであるとは限らない。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、各図に示す各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。また、本明細書または請求項中に「第1」、「第2」等の用語が用いられる場合には、特に言及がない限りこの用語はいかなる順序や重要度を表すものでもなく、ある構成と他の構成とを区別するためのものである。また、各図面において実施の形態を説明する上で重要ではない部材の一部は省略して表示する。
Hereinafter, the present disclosure will be described with reference to the drawings based on the preferred embodiments. The embodiments are not limited to the present disclosure, but are exemplary, and all the features and combinations thereof described in the embodiments are not necessarily essential to the present disclosure. The same or equivalent components, members, and processes shown in the drawings shall be designated by the same reference numerals, and duplicate description thereof will be omitted as appropriate. In addition, the scale and shape of each part shown in each figure are set for convenience in order to facilitate explanation, and are not limitedly interpreted unless otherwise specified. In addition, when terms such as "first" and "second" are used in the present specification or claims, these terms do not represent any order or importance unless otherwise specified, and have a certain structure. Is to distinguish between and other configurations. In addition, some of the members that are not important for explaining the embodiment in each drawing are omitted and displayed.
図1は、実施の形態に係る切断装置1を模式的に示す斜視図である。図1では主に、電極板6の形状と電極板6に切断加工が施される様子を図示している。このため、図1ではレーザ照射部4の図示を簡略化し、後述する焦点位置調整機構を構成する情報取得部40、位置変位部42および制御部44の図示を省略している。
FIG. 1 is a perspective view schematically showing the cutting device 1 according to the embodiment. FIG. 1 mainly illustrates the shape of the electrode plate 6 and how the electrode plate 6 is cut. Therefore, in FIG. 1, the illustration of the laser irradiation unit 4 is simplified, and the information acquisition unit 40, the position displacement unit 42, and the control unit 44 that constitute the focal position adjustment mechanism described later are omitted.
切断装置1は、搬送部2と、レーザ照射部4と、を備える。搬送部2は、電極板6を搬送する機構である。電極板6の搬送速度は、例えば1m/分~100m/分である。レーザ照射部4は、電極板6にレーザ光Lを照射して、電極板6に切断加工を施す機構である。本実施の形態では、レーザ照射部4によって電極板6が切断される位置において電極板6が流れる方向を電極板6の搬送方向Aとする。例えば搬送方向Aは、鉛直方向下方である。
The cutting device 1 includes a transport unit 2 and a laser irradiation unit 4. The transport unit 2 is a mechanism for transporting the electrode plate 6. The transport speed of the electrode plate 6 is, for example, 1 m / min to 100 m / min. The laser irradiation unit 4 is a mechanism for irradiating the electrode plate 6 with the laser beam L to cut the electrode plate 6. In the present embodiment, the direction in which the electrode plate 6 flows at the position where the electrode plate 6 is cut by the laser irradiation unit 4 is defined as the transport direction A of the electrode plate 6. For example, the transport direction A is downward in the vertical direction.
本実施の形態の電極板6は、搬送方向Aに長い帯状の部材であり、複数の単位電極板8が連なった構造を有する。例えば、電極板6は、単位電極板8が2行複数列に配列された構造を有する。各単位電極板8は、最終的には互いに切り離される。そして、正極の単位電極板8と負極の単位電極板8とがセパレータを挟んで交互に積層されて積層型電極体が形成される。つまり、電極板6は、積層型電極体に用いられる。なお、これに限らず、電極板6は巻回型電極体に用いられてもよい。得られた電極体は、リチウムイオン電池、ニッケル-水素電池、ニッケル-カドミウム電池等の充電可能な二次電池や、電気二重層キャパシタなどのキャパシタ等に用いられる。
The electrode plate 6 of the present embodiment is a strip-shaped member long in the transport direction A, and has a structure in which a plurality of unit electrode plates 8 are connected. For example, the electrode plate 6 has a structure in which the unit electrode plates 8 are arranged in two rows and a plurality of columns. The unit electrode plates 8 are finally separated from each other. Then, the unit electrode plate 8 of the positive electrode and the unit electrode plate 8 of the negative electrode are alternately laminated with the separator interposed therebetween to form a laminated electrode body. That is, the electrode plate 6 is used for the laminated electrode body. Not limited to this, the electrode plate 6 may be used for a wound electrode body. The obtained electrode body is used for a rechargeable secondary battery such as a lithium ion battery, a nickel-hydrogen battery, a nickel-cadmium battery, a capacitor such as an electric double layer capacitor, and the like.
各単位電極板8は、集電板に電極活物質層が積層された構造を有する。一般的なリチウムイオン二次電池の場合、集電板は正極であればアルミニウム箔等で構成され、負極であれば銅箔等で構成される。また、一般的なリチウムイオン二次電池の場合、電極活物質は、正極であればコバルト酸リチウムやリン酸鉄リチウム等であり、負極であれば黒鉛等である。レーザ照射部4による切断加工が電極板6に施された後の状態で、各単位電極板8にはタブ部10が設けられる。タブ部10は、単位電極板8の集電板から電極板6の幅方向Bに突出する。幅方向Bは、搬送方向Aと直交する方向である。
Each unit electrode plate 8 has a structure in which an electrode active material layer is laminated on a current collector plate. In the case of a general lithium ion secondary battery, the current collector plate is made of aluminum foil or the like if it is a positive electrode, and copper foil or the like if it is a negative electrode. Further, in the case of a general lithium ion secondary battery, the electrode active material is lithium cobalt oxide, lithium iron phosphate or the like for the positive electrode, and graphite or the like for the negative electrode. A tab portion 10 is provided on each unit electrode plate 8 in a state after the electrode plate 6 has been cut by the laser irradiation portion 4. The tab portion 10 projects from the current collector plate of the unit electrode plate 8 in the width direction B of the electrode plate 6. The width direction B is a direction orthogonal to the transport direction A.
電極板6は、電極活物質の塗布部12と、電極活物質の非塗布部14とを有する。電極活物質の塗布部12は、電極板6における幅方向Bの中央部に配置される。塗布部12は、電極活物質層に相当する。塗布部12は、公知の塗工装置を用いて、集電板を構成する板材の表面に電極活物質を含む電極スラリーを塗布することで得られる。電極活物質の非塗布部14は、電極板6における幅方向Bの両端部に配置される。非塗布部14は、集電板を構成する板材が露出した部分であり、切断加工によってタブ部10となる。
The electrode plate 6 has a coated portion 12 of the electrode active material and a non-coated portion 14 of the electrode active material. The coating portion 12 of the electrode active material is arranged at the central portion in the width direction B of the electrode plate 6. The coating portion 12 corresponds to the electrode active material layer. The coating unit 12 is obtained by applying an electrode slurry containing an electrode active material to the surface of a plate material constituting a current collector plate using a known coating device. The non-applied portions 14 of the electrode active material are arranged at both ends of the electrode plate 6 in the width direction B. The non-applied portion 14 is a portion where the plate material constituting the current collector plate is exposed, and becomes a tab portion 10 by cutting.
搬送部2は、図示しないフィードロールによって電極板6をレーザ照射部4と対向する位置に連続搬送する。本実施の形態の切断装置1は、幅方向Bに並ぶ2つのレーザ照射部4を備える。一方のレーザ照射部4は、搬送中の電極板6における一端側の非塗布部14にレーザ光Lを照射する。他方のレーザ照射部4は、搬送中の電極板6における他端側の非塗布部14にレーザ光Lを照射する。これにより、両側の非塗布部14に切断加工が施されて、搬送方向Aに所定の間隔をあけて配置される複数のタブ部10が形成される。
The transport unit 2 continuously transports the electrode plate 6 to a position facing the laser irradiation unit 4 by a feed roll (not shown). The cutting device 1 of the present embodiment includes two laser irradiation units 4 arranged in the width direction B. On the other hand, the laser irradiation unit 4 irradiates the non-applied portion 14 on one end side of the electrode plate 6 being conveyed with the laser beam L. The other laser irradiation unit 4 irradiates the non-applied portion 14 on the other end side of the electrode plate 6 being conveyed with the laser beam L. As a result, the non-applied portions 14 on both sides are cut to form a plurality of tab portions 10 arranged at predetermined intervals in the transport direction A.
なお、電極板6が負極板の配列されたものである場合、レーザ照射部4による切断加工の際に、塗布部12の一部も切断され得る。また、電極板6が正極板の配列されたものである場合、塗布部12と非塗布部14との境界には、塗布部12を保護するための保護層(図示せず)が設けられ得る。保護層は、例えば集電板を構成する金属の酸化物層である。この場合、レーザ照射部4による切断加工の際に、非塗布部14に加えて保護層の一部も切断され得る。あるいは非塗布部14に加えて塗布部12の一部および保護層の一部も切断され得る。
When the electrode plates 6 are arranged with the negative electrode plates, a part of the coating portion 12 can also be cut during the cutting process by the laser irradiation unit 4. Further, when the electrode plate 6 is an array of positive electrode plates, a protective layer (not shown) for protecting the coated portion 12 may be provided at the boundary between the coated portion 12 and the non-coated portion 14. .. The protective layer is, for example, an oxide layer of a metal constituting a current collector plate. In this case, a part of the protective layer may be cut in addition to the non-coated portion 14 during the cutting process by the laser irradiation unit 4. Alternatively, in addition to the non-coated portion 14, a part of the coated portion 12 and a part of the protective layer may be cut.
搬送部2は、チャンバー16を有する。チャンバー16は、レーザ光Lでの切断加工によって生じるスパッタやヒュームが電極板6や切断装置1に付着したり、雰囲気中に浮遊したりすることを抑制する。なお、チャンバー16は省略することもできる。
The transport unit 2 has a chamber 16. The chamber 16 suppresses spatter and fume generated by the cutting process with the laser beam L from adhering to the electrode plate 6 and the cutting device 1 and floating in the atmosphere. The chamber 16 may be omitted.
レーザ照射部4で切断加工が施された電極板6は、製品部18と、廃材部20とに分けられる。製品部18は、連続する複数の単位電極板8と、複数のタブ部10とを含む。各タブ部10は、各単位電極板8に対して1対1で設けられる。廃材部20は、非塗布部14のうちタブ部10として製品部18側に残らなかった部分である。製品部18は、次工程のラインに搬送される。廃材部20は、製品部18とは異なる方向に搬送されて、製品部18から切り離される。
The electrode plate 6 that has been cut by the laser irradiation unit 4 is divided into a product unit 18 and a waste material unit 20. The product unit 18 includes a plurality of continuous unit electrode plates 8 and a plurality of tab units 10. Each tab portion 10 is provided on a one-to-one basis with respect to each unit electrode plate 8. The waste material portion 20 is a portion of the non-coated portion 14 that does not remain on the product portion 18 side as a tab portion 10. The product unit 18 is conveyed to the line of the next process. The waste material unit 20 is transported in a direction different from that of the product unit 18 and is separated from the product unit 18.
続いて、切断装置1が備える焦点位置調整機構について説明する。図2は、切断装置1が備える焦点位置調整機構を説明するための模式図である。
Next, the focal position adjusting mechanism included in the cutting device 1 will be described. FIG. 2 is a schematic diagram for explaining a focal position adjusting mechanism included in the cutting device 1.
レーザ照射部4は、入射部22と、走査部24と、集光部26とを有する。入射部22には、レーザ発振器100が発振するレーザ光Lが入射する。例えば、レーザ発振器100は公知のファイバレーザ発振器であり、ファイバケーブル28を介して入射部22の一端に接続される。なお、レーザ発振器100の種類は特に限定されず、適宜選択することができる。また、入射部22の内部には、コリメートレンズ30が設けられる。入射部22の一端から入射したレーザ光Lは、コリメートレンズ30によって平行状態に調整され、他端側に進行する。入射部22の他端は、走査部24に接続される。コリメートレンズ30を透過して平行光となったレーザ光Lは、入射部22の他端から走査部24内に進行する。
The laser irradiation unit 4 has an incident unit 22, a scanning unit 24, and a condensing unit 26. The laser beam L oscillated by the laser oscillator 100 is incident on the incident portion 22. For example, the laser oscillator 100 is a known fiber laser oscillator, and is connected to one end of the incident portion 22 via a fiber cable 28. The type of the laser oscillator 100 is not particularly limited and can be appropriately selected. Further, a collimating lens 30 is provided inside the incident portion 22. The laser beam L incident from one end of the incident portion 22 is adjusted to a parallel state by the collimated lens 30 and travels to the other end side. The other end of the incident portion 22 is connected to the scanning portion 24. The laser beam L that has passed through the collimating lens 30 and becomes parallel light travels from the other end of the incident portion 22 into the scanning portion 24.
走査部24は、レーザ光Lで電極板6を走査する機構である。走査部24は、例えば公知のガルバノスキャナで構成される。走査部24は、X軸ミラー32と、Y軸ミラー34とを有する。走査部24は、入射部22から入射したレーザ光Lを各ミラーで反射して、電極板6に向けて出射する。X軸ミラー32は、X軸モータ(図示せず)に支持されて、X軸方向に回動することができる。Y軸ミラー34は、Y軸モータ(図示せず)に支持されて、Y軸方向に回動することができる。走査部24は、レーザ光LをY軸ミラー34、X軸ミラー32の順で反射させるとともに各ミラーを回動させることで、XY平面上、つまり電極板6上をレーザ光Lで走査することができる。なお、レーザ光Lは、X軸ミラー32、Y軸ミラー34の順で反射させてもよい。走査部24の駆動は、後述する制御部44によって制御される。なお、走査部24の駆動は、制御部44とは別の制御部によって制御されてもよい。
The scanning unit 24 is a mechanism for scanning the electrode plate 6 with the laser beam L. The scanning unit 24 is composed of, for example, a known galvano scanner. The scanning unit 24 has an X-axis mirror 32 and a Y-axis mirror 34. The scanning unit 24 reflects the laser beam L incident from the incident unit 22 by each mirror and emits it toward the electrode plate 6. The X-axis mirror 32 is supported by an X-axis motor (not shown) and can rotate in the X-axis direction. The Y-axis mirror 34 is supported by a Y-axis motor (not shown) and can rotate in the Y-axis direction. The scanning unit 24 reflects the laser beam L in the order of the Y-axis mirror 34 and the X-axis mirror 32, and rotates each mirror to scan the laser beam L on the XY plane, that is, on the electrode plate 6. Can be done. The laser beam L may be reflected in the order of the X-axis mirror 32 and the Y-axis mirror 34. The drive of the scanning unit 24 is controlled by the control unit 44, which will be described later. The drive of the scanning unit 24 may be controlled by a control unit different from the control unit 44.
走査部24におけるレーザ光Lの出射口には、集光部26が接続される。したがって、集光部26は、走査部24と電極板6との間に介在する。集光部26は、走査部24から出射されるレーザ光Lを電極板6に集光させる。集光部26は、複数枚のレンズで構成される組レンズ36と、保護ガラス38とを有する。組レンズ36は、例えばfθレンズである。保護ガラス38は、組レンズ36と電極板6との間に介在し、レーザ光Lでの切断加工によって生じるスパッタやヒューム等から組レンズ36を保護する。
A condensing unit 26 is connected to the emission port of the laser beam L in the scanning unit 24. Therefore, the light collecting unit 26 is interposed between the scanning unit 24 and the electrode plate 6. The light collecting unit 26 collects the laser beam L emitted from the scanning unit 24 on the electrode plate 6. The light collecting unit 26 has a group lens 36 composed of a plurality of lenses and a protective glass 38. The set lens 36 is, for example, an fθ lens. The protective glass 38 is interposed between the assembled lens 36 and the electrode plate 6 to protect the assembled lens 36 from spatter, fume, and the like generated by the cutting process with the laser beam L.
走査部24から出射されるレーザ光Lは、集光部26を透過して電極板6に到達する。集光部26は焦点Fを有し、レーザ光Lは集光部26によって焦点Fに集光される。切断装置1の初期調整において、集光部26の焦点位置は、電極板6の切断加工に適した位置(初期位置)に調整される。しかしながら、レーザ光Lの照射が継続すると、レーザ光Lを透過する光学部材が加熱され、いわゆる熱レンズ効果によって焦点位置のずれ(焦点シフト)が生じ得る。一般に焦点位置は、焦点シフトによってレーザ照射部4に近づいていく。
The laser beam L emitted from the scanning unit 24 passes through the condensing unit 26 and reaches the electrode plate 6. The condensing unit 26 has a focal point F, and the laser beam L is focused on the focal point F by the condensing unit 26. In the initial adjustment of the cutting device 1, the focal position of the light collecting unit 26 is adjusted to a position (initial position) suitable for cutting the electrode plate 6. However, if the irradiation of the laser beam L is continued, the optical member that transmits the laser beam L is heated, and the so-called thermal lens effect may cause a shift in the focal position (focus shift). Generally, the focal position approaches the laser irradiation unit 4 by the focal shift.
焦点シフトを発生させ得る光学部材としては、コリメートレンズ30、組レンズ36および保護ガラス38が例示される。特に、保護ガラス38は、スパッタやヒューム等の異物が付着しやすく、この異物によってレーザ光Lが吸収されて局所的に温度が上昇しやすい。このため、保護ガラス38は、焦点シフトを引き起こしやすい。また、組レンズ36は、複数枚のレンズが組み合わされた構造を有する。このため、組レンズ36も焦点シフトを引き起こしやすい。
Examples of the optical member capable of generating the focal shift include the collimating lens 30, the assembled lens 36, and the protective glass 38. In particular, foreign matter such as spatter and fume easily adheres to the protective glass 38, and the laser beam L is absorbed by the foreign matter and the temperature tends to rise locally. Therefore, the protective glass 38 tends to cause a focus shift. Further, the set lens 36 has a structure in which a plurality of lenses are combined. Therefore, the set lens 36 is also likely to cause a focus shift.
焦点シフトが発生すると、電極板6に対するレーザ光Lの照射径が大きくなり、切断品質の低下を引き起こし得る。切断品質には、切断面の平滑度、形状、熱変形の有無等が含まれる。切断品質の低下は、切断部におけるバリの発生につながり得る。電極板に生じたバリはショートの原因になるため、二次電池の品質が低下する。
When the focus shift occurs, the irradiation diameter of the laser beam L to the electrode plate 6 becomes large, which may cause deterioration of cutting quality. The cutting quality includes the smoothness of the cut surface, the shape, the presence or absence of thermal deformation, and the like. Deterioration of cutting quality can lead to the generation of burrs in the cut portion. The burr generated on the electrode plate causes a short circuit, which deteriorates the quality of the secondary battery.
一般に電極板6の切断加工においては、1つの電極板6の切断加工が終了すると、次の電極板6を切断装置1に設置する作業が実施される。当該作業の間、レーザ光Lの照射は停止するため、レーザ光Lによって加熱された各光学部材は冷却され、焦点位置は初期位置に戻ることが期待される。しかしながら、近年は、二次電池の生産リードタイムやスループットの向上が求められている。したがって、電極板6の設置作業の時間短縮が図られたり、電極板6自体の長さを長くしたりする傾向にある。この場合、各光学部材が十分に冷却されず、焦点シフトがより生じやすくなることが予想される。
Generally, in the cutting process of the electrode plate 6, when the cutting process of one electrode plate 6 is completed, the work of installing the next electrode plate 6 in the cutting device 1 is carried out. Since the irradiation of the laser beam L is stopped during the work, it is expected that each optical member heated by the laser beam L is cooled and the focal position returns to the initial position. However, in recent years, there has been a demand for improvement in production lead time and throughput of secondary batteries. Therefore, there is a tendency that the time required for installing the electrode plate 6 is shortened and the length of the electrode plate 6 itself is lengthened. In this case, it is expected that each optical member will not be sufficiently cooled and the focus shift will be more likely to occur.
これに対し、本実施の形態の切断装置1は、焦点位置調整機構を備える。焦点位置調整機構は、情報取得部40と、位置変位部42と、制御部44とを含む。
On the other hand, the cutting device 1 of the present embodiment includes a focal position adjusting mechanism. The focal position adjusting mechanism includes an information acquisition unit 40, a position displacement unit 42, and a control unit 44.
情報取得部40は、レーザ光Lの焦点位置に関する情報を取得する。本実施の形態の情報取得部40は、焦点位置に関する情報として、電極板6に形成されるレーザ光Lの照射痕46の幅寸法Mに関する情報を取得する。また、本実施の形態の情報取得部40は、照射痕46を撮像する撮像装置48を有し、照射痕46の幅寸法Mに関する情報として照射痕46の画像IMGを取得する。図3は、撮像装置48が生成する画像IMGの一例を示す模式図である。照射痕46には、製品部18および廃材部20の間に介在する、レーザ光Lの照射により焼失した消失部46aと、製品部18および廃材部20のそれぞれにおける、レーザ光Lの照射により焦げた焦跡部46bとが含まれる。焦点シフトが生じると、照射痕46の幅寸法M、つまり焼け幅は徐々に広がっていく。このため、照射痕46の幅寸法Mから、レーザ光Lの焦点位置あるいは焦点位置の変位量を把握することができる。
The information acquisition unit 40 acquires information regarding the focal position of the laser beam L. The information acquisition unit 40 of the present embodiment acquires information regarding the width dimension M of the irradiation mark 46 of the laser beam L formed on the electrode plate 6 as information regarding the focal position. Further, the information acquisition unit 40 of the present embodiment has an image pickup device 48 that captures an image of the irradiation mark 46, and acquires an image IMG of the irradiation mark 46 as information regarding the width dimension M of the irradiation mark 46. FIG. 3 is a schematic diagram showing an example of an image IMG generated by the image pickup apparatus 48. The irradiation marks 46 are burnt by the irradiation of the laser beam L in each of the vanishing portion 46a, which is interposed between the product section 18 and the waste material section 20 and burned down by the irradiation of the laser beam L, and the product section 18 and the waste material section 20. The burnt mark portion 46b is included. When the focal point shift occurs, the width dimension M of the irradiation mark 46, that is, the burn width gradually increases. Therefore, the focal position of the laser beam L or the displacement amount of the focal position can be grasped from the width dimension M of the irradiation mark 46.
情報取得部40は、焦点位置に関する情報として、撮像装置48が生成した画像IMGを制御部44に送る。なお、情報取得部40は、焦点位置に関する情報として、焦点位置そのものや焦点位置の変位量そのものを計算によって取得してもよい。焦点位置の変位量は、各光学部材への入熱量と相関を有する。したがって当該変位量は、レーザ光Lの出力強度や照射時間等に基づいて計算により推定することができる。また、得られた変位量を初期位置に加算することで、焦点位置を計算により推定することができる。また、情報取得部40は、電極板6における照射痕46を含む領域の光反射率を測定する反射率測定器を備えてもよい。照射痕46の光反射率は、塗布部12や非塗布部14におけるレーザ光Lが照射されなかった領域の光反射率よりも低下する。このため、測定される光反射率の変化に基づいて、照射痕46の幅を推定することができる。つまり、焦点位置に関する情報および照射痕46の幅寸法Mに関する情報は、電極板6における照射痕46を含む領域の光反射率、あるいはその変化量であってもよい。
The information acquisition unit 40 sends the image IMG generated by the image pickup apparatus 48 to the control unit 44 as information regarding the focal position. The information acquisition unit 40 may acquire the focal position itself or the displacement amount of the focal position itself as information regarding the focal position by calculation. The amount of displacement of the focal position has a correlation with the amount of heat input to each optical member. Therefore, the displacement amount can be estimated by calculation based on the output intensity of the laser beam L, the irradiation time, and the like. Further, by adding the obtained displacement amount to the initial position, the focal position can be estimated by calculation. Further, the information acquisition unit 40 may include a reflectance measuring device for measuring the light reflectance in the region including the irradiation mark 46 on the electrode plate 6. The light reflectance of the irradiation mark 46 is lower than the light reflectance of the region where the laser beam L is not irradiated in the coated portion 12 and the non-coated portion 14. Therefore, the width of the irradiation mark 46 can be estimated based on the change in the measured light reflectance. That is, the information regarding the focal position and the information regarding the width dimension M of the irradiation mark 46 may be the light reflectance of the region including the irradiation mark 46 on the electrode plate 6, or the amount of change thereof.
位置変位部42は、焦点位置を変位させる機構である。本実施の形態の位置変位部42は、1軸スライダで構成される。位置変位部42は、レーザ照射部4とチャンバー16とが並ぶ方向に延びるとともにレーザ照射部4が接続されるレール50や、レーザ照射部4をレール50に沿って移動させるモータ52等を有する。本実施の形態の位置変位部42は、レーザ照射部4の全体を、つまり入射部22、走査部24および集光部26を電極板6に対して変位させる。これにより、電極板6に対して焦点位置を変位させることができる。なお、位置変位部42は、集光部26のみを変位させてもよい。
The position displacement portion 42 is a mechanism for displacing the focal position. The position displacement portion 42 of the present embodiment is composed of a uniaxial slider. The position displacement unit 42 includes a rail 50 that extends in the direction in which the laser irradiation unit 4 and the chamber 16 are aligned and to which the laser irradiation unit 4 is connected, a motor 52 that moves the laser irradiation unit 4 along the rail 50, and the like. The position displacement unit 42 of the present embodiment displaces the entire laser irradiation unit 4, that is, the incident unit 22, the scanning unit 24, and the condensing unit 26 with respect to the electrode plate 6. As a result, the focal position can be displaced with respect to the electrode plate 6. The position displacement unit 42 may displace only the light collection unit 26.
制御部44は、情報取得部40が取得した情報に基づいて位置変位部42を制御する。制御部44は、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図2では、それらの連携によって実現される機能ブロックとして描いている。この機能ブロックがハードウェアおよびソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には当然に理解されるところである。
The control unit 44 controls the position displacement unit 42 based on the information acquired by the information acquisition unit 40. The control unit 44 is realized by elements and circuits such as a computer CPU and memory as a hardware configuration, and is realized by a computer program or the like as a software configuration, but in FIG. 2, it is realized by their cooperation. It is drawn as a functional block. It is well understood by those skilled in the art that this functional block can be realized in various ways by a combination of hardware and software.
情報取得部40が照射痕46の画像IMGを生成する場合、制御部44は、画像IMGに対し公知の画像処理を施すことで、照射痕46の幅寸法Mを算出することができる。例えば制御部44は、画像IMG中の照射痕46における所定の1箇所の幅寸法Mを計測して、その値を照射痕46の幅寸法Mとしてもよいし、複数箇所の幅寸法Mを計測して、その平均値を照射痕46の幅寸法Mとしてもよい。
When the information acquisition unit 40 generates the image IMG of the irradiation mark 46, the control unit 44 can calculate the width dimension M of the irradiation mark 46 by performing known image processing on the image IMG. For example, the control unit 44 may measure the width dimension M of a predetermined one place in the irradiation mark 46 in the image IMG and set the value as the width dimension M of the irradiation mark 46, or measure the width dimension M of a plurality of places. Then, the average value may be used as the width dimension M of the irradiation mark 46.
そして、制御部44は、照射痕46の幅寸法Mに応じて位置変位部42を制御する。上述のとおり、焦点シフトが生じると、照射痕46の幅寸法Mは徐々に広がっていく。つまり、照射痕46の幅寸法Mとレーザ光Lの焦点位置とは相関を有する。そこで、制御部44は、照射痕46の幅寸法Mとレーザ光Lの焦点位置とを対応付けた変換テーブルを予め保持する。制御部44は、この変換テーブルを用いることで、画像IMGから得られる照射痕46の幅寸法Mに基づいて、現在の焦点位置を把握することができる。なお、変換テーブルは、照射痕46の幅寸法Mと焦点位置の変位量とを対応付けたものであってもよい。また、焦点位置は、レーザ照射部4(例えば集光部26)と電極板6との距離として把握されてもよい。
Then, the control unit 44 controls the position displacement unit 42 according to the width dimension M of the irradiation mark 46. As described above, when the focal shift occurs, the width dimension M of the irradiation mark 46 gradually expands. That is, the width dimension M of the irradiation mark 46 and the focal position of the laser beam L have a correlation. Therefore, the control unit 44 holds in advance a conversion table in which the width dimension M of the irradiation mark 46 and the focal position of the laser beam L are associated with each other. By using this conversion table, the control unit 44 can grasp the current focal position based on the width dimension M of the irradiation mark 46 obtained from the image IMG. The conversion table may correspond the width dimension M of the irradiation mark 46 with the displacement amount of the focal position. Further, the focal position may be grasped as the distance between the laser irradiation unit 4 (for example, the condensing unit 26) and the electrode plate 6.
制御部44は、焦点位置が初期位置に近づくように、位置変位部42のモータ52を制御する。好ましくは制御部44は、焦点位置を初期位置に一致させる。上述のとおり、焦点シフトが生じると、焦点位置はレーザ照射部4に近づく方向に変位する。このため、制御部44は、レーザ照射部4を電極板6に近づけるように位置変位部42を制御する。これにより、焦点位置のずれを抑制することができ、電極板6の切断品質を高めることができる。また、制御部44は、焦点位置の調整後に切断加工が施された部位の画像IMGを情報取得部40から取得し、この画像IMGに基づいて位置変位部42を制御することで、照射痕46の幅寸法Mを一定にするフィードバック制御を実行することができる。
The control unit 44 controls the motor 52 of the position displacement unit 42 so that the focal position approaches the initial position. Preferably, the control unit 44 matches the focal position with the initial position. As described above, when the focus shift occurs, the focus position is displaced in the direction approaching the laser irradiation unit 4. Therefore, the control unit 44 controls the position displacement unit 42 so that the laser irradiation unit 4 comes closer to the electrode plate 6. As a result, the deviation of the focal position can be suppressed, and the cutting quality of the electrode plate 6 can be improved. Further, the control unit 44 acquires an image IMG of the portion that has been cut after adjusting the focal position from the information acquisition unit 40, and controls the position displacement unit 42 based on the image IMG to control the irradiation mark 46. It is possible to execute feedback control that makes the width dimension M of the constant constant.
以上説明したように、本実施の形態に係る切断装置1は、電極板6にレーザ光Lを照射して切断加工を施すレーザ照射部4と、レーザ光Lの焦点位置に関する情報を取得する情報取得部40と、レーザ光Lの焦点位置を変位させる位置変位部42と、情報取得部40が取得した焦点位置に関する情報に基づいて位置変位部42を制御する制御部44と、を備える。これにより、電極板6の切断加工中に焦点シフトが発生しても、焦点Fのシフト量に応じてレーザ光Lの焦点位置を調整することができる。これにより、電極板6の切断品質を向上させることができ、電池の品質向上を図ることができる。
As described above, the cutting device 1 according to the present embodiment has information regarding the laser irradiation unit 4 that irradiates the electrode plate 6 with the laser beam L to perform cutting processing, and the information regarding the focal position of the laser beam L. The acquisition unit 40 includes a position displacement unit 42 that displaces the focal position of the laser beam L, and a control unit 44 that controls the position displacement unit 42 based on the information regarding the focal position acquired by the information acquisition unit 40. As a result, even if a focal shift occurs during the cutting process of the electrode plate 6, the focal position of the laser beam L can be adjusted according to the shift amount of the focal point F. As a result, the cutting quality of the electrode plate 6 can be improved, and the quality of the battery can be improved.
また、本実施の形態の情報取得部40は、焦点位置に関する情報として、電極板6に形成されるレーザ光Lの照射痕46の幅寸法Mに関する情報を取得する。そして、制御部44は、照射痕46の幅寸法Mに応じて位置変位部42を制御する。つまり、切断装置1は、レーザ光Lでの電極板6の切断中に照射痕46の幅寸法Mの変化を測定して、測定結果に応じてリアルタイムに焦点位置を調整する。
Further, the information acquisition unit 40 of the present embodiment acquires information regarding the width dimension M of the irradiation mark 46 of the laser beam L formed on the electrode plate 6 as information regarding the focal position. Then, the control unit 44 controls the position displacement unit 42 according to the width dimension M of the irradiation mark 46. That is, the cutting device 1 measures the change in the width dimension M of the irradiation mark 46 during cutting of the electrode plate 6 with the laser beam L, and adjusts the focal position in real time according to the measurement result.
上述のように、焦点位置に関する情報は、計算によって得られる焦点位置や焦点位置の変位量であってもよい。しかしながら、光学部材への異物の付着といった、焦点位置の変位に影響する外的要因が多く、焦点位置やその変位量を正確に算出することは非常に困難である。また、レーザ光Lの焦点Fを直接検知することも、切断装置1の構造の複雑化や高コスト化を招き得る。これに対し、焦点位置に関する情報として照射痕46の幅寸法Mを利用することで、より簡単に焦点位置を把握することができる。よって、電極板6の切断品質をより簡単に向上させることができる。
As described above, the information regarding the focal position may be the focal position obtained by calculation or the displacement amount of the focal position. However, there are many external factors that affect the displacement of the focal position, such as the adhesion of foreign matter to the optical member, and it is very difficult to accurately calculate the focal position and its displacement amount. Further, directly detecting the focal point F of the laser beam L can also lead to complicated structure and high cost of the cutting device 1. On the other hand, by using the width dimension M of the irradiation mark 46 as the information regarding the focal position, the focal position can be grasped more easily. Therefore, the cutting quality of the electrode plate 6 can be improved more easily.
また、本実施の形態の情報取得部40は、照射痕46を撮像する撮像装置48を有し、照射痕46の幅寸法Mに関する情報として照射痕46の画像IMGを取得する。照射痕46の画像IMGを用いてレーザ光Lの焦点位置を調整することで、電極板6の切断品質をより簡単に向上させることができる。また、一般に切断装置1には、電極板6の寸法や外観をインラインで検査するためにカメラが設けられている。このため、当該カメラを撮像装置48として利用することができる。したがって、焦点位置調整機構を設けることによる切断装置1の構造の複雑化や高コスト化を抑制することができる。
Further, the information acquisition unit 40 of the present embodiment has an image pickup device 48 that captures an image of the irradiation mark 46, and acquires an image IMG of the irradiation mark 46 as information regarding the width dimension M of the irradiation mark 46. By adjusting the focal position of the laser beam L using the image IMG of the irradiation mark 46, the cutting quality of the electrode plate 6 can be improved more easily. Further, in general, the cutting device 1 is provided with a camera for in-line inspection of the dimensions and appearance of the electrode plate 6. Therefore, the camera can be used as the image pickup device 48. Therefore, it is possible to suppress the complexity and cost increase of the structure of the cutting device 1 by providing the focal position adjusting mechanism.
また、本実施の形態のレーザ照射部4は、レーザ発振器100が発振するレーザ光Lが入射する入射部22と、入射部22に入射したレーザ光Lで電極板6を走査する走査部24と、走査部24から出射されるレーザ光Lを電極板6に集光させる集光部26とを有する。そして、位置変位部42は、レーザ照射部4の全体を変位させることで焦点位置を変位させる。
Further, the laser irradiation unit 4 of the present embodiment includes an incident unit 22 on which the laser light L oscillated by the laser oscillator 100 is incident, and a scanning unit 24 that scans the electrode plate 6 with the laser light L incident on the incident unit 22. It also has a condensing unit 26 that condenses the laser beam L emitted from the scanning unit 24 on the electrode plate 6. Then, the position displacement unit 42 displaces the focal position by displacing the entire laser irradiation unit 4.
走査部24から出射されるレーザ光は、平行光である。このため、集光部26のみを電極板6に対して変位させることでも、焦点位置を変位させることができる。しかしながら、レーザ照射部4内への異物の進入を防ぐために、入射部22、走査部24および集光部26は、互いに気密に接続することが望ましい。したがって、集光部26のみを変位させる場合、走査部24と集光部26との接続部に対して異物の進入対策が別途必要となり、レーザ照射部4の構造の複雑化を招き得る。これに対し、位置変位部42による変位対象をレーザ照射部4の全体とすることで、レーザ照射部4の構造の複雑化を招くことなく、焦点位置を変位させることが可能となる。
The laser light emitted from the scanning unit 24 is parallel light. Therefore, the focal position can also be displaced by displacing only the condensing portion 26 with respect to the electrode plate 6. However, in order to prevent foreign matter from entering the laser irradiation unit 4, it is desirable that the incident unit 22, the scanning unit 24, and the light collecting unit 26 are airtightly connected to each other. Therefore, when only the condensing unit 26 is displaced, it is necessary to separately take measures against the entry of foreign matter into the connection portion between the scanning unit 24 and the condensing unit 26, which may complicate the structure of the laser irradiation unit 4. On the other hand, by setting the displacement target of the position displacement unit 42 to the entire laser irradiation unit 4, the focal position can be displaced without complicating the structure of the laser irradiation unit 4.
また、本実施の形態の切断装置1は、電極板6を搬送する搬送部2を備える。電極板6は、搬送方向Aに長い帯状であり、電極板6における搬送方向Aと直交する幅方向Bの中央部に配置される電極活物質の塗布部12と、電極板6における幅方向Bの端部に配置される電極活物質の非塗布部14とを有する。レーザ照射部4は、少なくとも非塗布部14を切断して搬送方向Aに所定の間隔をあけて配置される複数のタブ部10を形成する。これにより、高品質なタブ部10を安定的に形成することができる。
Further, the cutting device 1 of the present embodiment includes a transport unit 2 for transporting the electrode plate 6. The electrode plate 6 has a long strip shape in the transport direction A, and the electrode active material coating portion 12 arranged at the center of the width direction B orthogonal to the transport direction A in the electrode plate 6 and the width direction B in the electrode plate 6 It has a non-coated portion 14 of the electrode active material arranged at the end portion of the. The laser irradiation unit 4 cuts at least the non-applied portion 14 to form a plurality of tab portions 10 arranged at predetermined intervals in the transport direction A. As a result, the high-quality tab portion 10 can be stably formed.
以上、本開示の実施の形態について詳細に説明した。前述した実施の形態は、本開示を実施するにあたっての具体例を示したものにすぎない。実施の形態の内容は、本開示の技術的範囲を限定するものではなく、請求の範囲に規定された本開示の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。設計変更が加えられた新たな実施の形態は、組み合わされる実施の形態および変形それぞれの効果をあわせもつ。前述の実施の形態では、このような設計変更が可能な内容に関して、「本実施の形態の」、「本実施の形態では」等の表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。以上の構成要素の任意の組み合わせも、本開示の態様として有効である。図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。
The embodiment of the present disclosure has been described in detail above. The embodiments described above are merely specific examples of carrying out the present disclosure. The content of the embodiments does not limit the technical scope of the present disclosure, and many designs such as changes, additions, deletions, etc. of components are made without departing from the ideas of the present disclosure defined in the claims. It can be changed. The new embodiment with the design change has the effects of the combined embodiment and the modification. In the above-described embodiment, the contents that can be changed in design are emphasized by adding notations such as "in the present embodiment" and "in the present embodiment". Design changes are allowed even if there is no content. Any combination of the above components is also valid as an aspect of the present disclosure. The hatching attached to the cross section of the drawing does not limit the material of the object to which the hatching is attached.
切断装置1は、電極板6から単位電極板8を個片化するものであってもよい。電極板6は、単位電極板8とセパレータとが積層されたものであってもよい。レーザ照射部4や位置変位部42は、焦点位置を調整可能なものであれば、その構造は特に限定されない。
The cutting device 1 may be an individualized unit electrode plate 8 from the electrode plate 6. The electrode plate 6 may be a stack of a unit electrode plate 8 and a separator. The structure of the laser irradiation unit 4 and the position displacement unit 42 is not particularly limited as long as the focal position can be adjusted.
上述した実施の形態に係る発明は、以下に記載する項目によって特定されてもよい。
[項目1]
電極板(6)にレーザ光(L)を照射して切断加工を施し、
レーザ光(L)の焦点位置に関する情報を取得し、
取得した情報に基づいて焦点位置を変位させることを含む、
切断方法。 The invention according to the above-described embodiment may be specified by the items described below.
[Item 1]
The electrode plate (6) is irradiated with laser light (L) to perform cutting processing.
Obtain information about the focal position of the laser beam (L) and
Including shifting the focal position based on the acquired information,
Cutting method.
[項目1]
電極板(6)にレーザ光(L)を照射して切断加工を施し、
レーザ光(L)の焦点位置に関する情報を取得し、
取得した情報に基づいて焦点位置を変位させることを含む、
切断方法。 The invention according to the above-described embodiment may be specified by the items described below.
[Item 1]
The electrode plate (6) is irradiated with laser light (L) to perform cutting processing.
Obtain information about the focal position of the laser beam (L) and
Including shifting the focal position based on the acquired information,
Cutting method.
本開示は、切断装置および切断方法に利用することができる。
This disclosure can be used for cutting devices and cutting methods.
1 切断装置、 2 搬送部、 4 レーザ照射部、 6 電極板、 10 タブ部、 12 塗布部、 14 非塗布部、 22 入射部、 24 走査部、 26 集光部、 40 情報取得部、 42 位置変位部、 44 制御部、 46 照射痕、 48 撮像装置、 100 レーザ発振器。
1 cutting device, 2 transport part, 4 laser irradiation part, 6 electrode plate, 10 tab part, 12 coating part, 14 non-coating part, 22 incident part, 24 scanning part, 26 condensing part, 40 information acquisition part, 42 position Displacement unit, 44 control unit, 46 irradiation marks, 48 image pickup device, 100 laser oscillator.
Claims (6)
- 電極板にレーザ光を照射して切断加工を施すレーザ照射部と、
前記レーザ光の焦点位置に関する情報を取得する情報取得部と、
前記焦点位置を変位させる位置変位部と、
前記情報取得部が取得した情報に基づいて前記位置変位部を制御する制御部と、を備える、
切断装置。 A laser irradiation unit that irradiates the electrode plate with laser light to perform cutting processing,
An information acquisition unit that acquires information about the focal position of the laser beam, and
The position displacement part that displaces the focal position and
A control unit that controls the position displacement unit based on the information acquired by the information acquisition unit is provided.
Cutting device. - 前記情報取得部は、前記焦点位置に関する情報として、前記電極板に形成される前記レーザ光の照射痕の幅寸法に関する情報を取得し、
前記制御部は、前記照射痕の幅寸法に応じて前記位置変位部を制御する、
請求項1に記載の切断装置。 The information acquisition unit acquires information on the width dimension of the irradiation mark of the laser beam formed on the electrode plate as information on the focal position.
The control unit controls the position displacement unit according to the width dimension of the irradiation mark.
The cutting device according to claim 1. - 前記情報取得部は、前記照射痕を撮像する撮像装置を有し、前記照射痕の幅寸法に関する情報として前記照射痕の画像を取得する、
請求項2に記載の切断装置。 The information acquisition unit has an image pickup device that captures the irradiation mark, and acquires an image of the irradiation mark as information regarding the width dimension of the irradiation mark.
The cutting device according to claim 2. - 前記レーザ照射部は、
レーザ発振器が発振する前記レーザ光が入射する入射部と、
前記入射部に入射した前記レーザ光で前記電極板を走査する走査部と、
前記走査部から出射される前記レーザ光を前記電極板に集光させる集光部と、を有し、
前記位置変位部は、前記レーザ照射部の全体を変位させることで、前記焦点位置を変位させる、
請求項1乃至3のいずれか1項に記載の切断装置。 The laser irradiation unit is
The incident part where the laser beam oscillated by the laser oscillator is incident and
A scanning unit that scans the electrode plate with the laser beam incident on the incident portion, and a scanning unit.
It has a condensing unit that condenses the laser light emitted from the scanning unit on the electrode plate.
The position displacement portion displaces the focal position by displacing the entire laser irradiation portion.
The cutting device according to any one of claims 1 to 3. - 前記切断装置は、電極板を搬送する搬送部を備え、
前記電極板は、搬送方向に長い帯状であり、前記電極板における前記搬送方向と直交する幅方向の中央部に配置される電極活物質の塗布部と、前記電極板における前記幅方向の端部に配置される前記電極活物質の非塗布部と、を有し、
前記レーザ照射部は、少なくとも前記非塗布部を切断して前記搬送方向に所定の間隔をあけて配置される複数のタブ部を形成する、
請求項1乃至4のいずれか1項に記載の切断装置。 The cutting device includes a transport unit for transporting the electrode plate.
The electrode plate has a long strip in the transport direction, and has a coating portion of an electrode active material arranged at the center of the electrode plate in the width direction orthogonal to the transport direction, and an end portion in the electrode plate in the width direction. With a non-coated portion of the electrode active material, which is arranged in
The laser irradiation unit cuts at least the non-applied portion to form a plurality of tab portions arranged at predetermined intervals in the transport direction.
The cutting device according to any one of claims 1 to 4. - 電極板にレーザ光を照射して切断加工を施し、
前記レーザ光の焦点位置に関する情報を取得し、
取得した前記情報に基づいて前記焦点位置を変位させることを含む、
切断方法。 The electrode plate is irradiated with laser light to cut it,
Obtaining information about the focal position of the laser beam,
Including displacement of the focal position based on the acquired information,
Cutting method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-107313 | 2020-06-22 | ||
JP2020107313A JP2023102796A (en) | 2020-06-22 | 2020-06-22 | Cutting device and cutting method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021261254A1 true WO2021261254A1 (en) | 2021-12-30 |
Family
ID=79281111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/021959 WO2021261254A1 (en) | 2020-06-22 | 2021-06-09 | Cutting device and cutting method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023102796A (en) |
WO (1) | WO2021261254A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023145202A1 (en) * | 2022-01-31 | 2023-08-03 | コマツ産機株式会社 | Laser blanking device |
CN117733374A (en) * | 2024-02-07 | 2024-03-22 | 蔚来电池科技(安徽)有限公司 | Pole piece cutting equipment and control method thereof |
JP7519557B1 (en) | 2023-11-24 | 2024-07-19 | リ,ケ-ソル | Automatic cleaning device for pattern jigs after laser notching |
WO2024186155A1 (en) * | 2023-03-09 | 2024-09-12 | 주식회사 엘지에너지솔루션 | Electrode sheet processing apparatus and electrode sheet processing method using same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010082663A (en) * | 2008-09-30 | 2010-04-15 | Sunx Ltd | Laser beam machine |
JP2017047454A (en) * | 2015-09-02 | 2017-03-09 | トヨタ自動車株式会社 | Laser welder |
JP2018022554A (en) * | 2016-08-01 | 2018-02-08 | オー・エム・シー株式会社 | Raw fabric processing method, device, and tub drawing processing method using device |
-
2020
- 2020-06-22 JP JP2020107313A patent/JP2023102796A/en active Pending
-
2021
- 2021-06-09 WO PCT/JP2021/021959 patent/WO2021261254A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010082663A (en) * | 2008-09-30 | 2010-04-15 | Sunx Ltd | Laser beam machine |
JP2017047454A (en) * | 2015-09-02 | 2017-03-09 | トヨタ自動車株式会社 | Laser welder |
JP2018022554A (en) * | 2016-08-01 | 2018-02-08 | オー・エム・シー株式会社 | Raw fabric processing method, device, and tub drawing processing method using device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023145202A1 (en) * | 2022-01-31 | 2023-08-03 | コマツ産機株式会社 | Laser blanking device |
WO2024186155A1 (en) * | 2023-03-09 | 2024-09-12 | 주식회사 엘지에너지솔루션 | Electrode sheet processing apparatus and electrode sheet processing method using same |
JP7519557B1 (en) | 2023-11-24 | 2024-07-19 | リ,ケ-ソル | Automatic cleaning device for pattern jigs after laser notching |
CN117733374A (en) * | 2024-02-07 | 2024-03-22 | 蔚来电池科技(安徽)有限公司 | Pole piece cutting equipment and control method thereof |
CN117733374B (en) * | 2024-02-07 | 2024-05-10 | 蔚来电池科技(安徽)有限公司 | Pole piece cutting equipment and control method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2023102796A (en) | 2023-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021261254A1 (en) | Cutting device and cutting method | |
CN110730702B (en) | Method and device for high-throughput cutting of band-type substrates, in particular for electrodes of batteries, into separate pieces | |
Lutey et al. | Laser cutting of lithium iron phosphate battery electrodes: characterization of process efficiency and quality | |
US20200406401A1 (en) | Method for producing battery electrodes | |
US20230075603A1 (en) | Inspection device, method for producing multilayer electrode body and inspection method | |
US9168611B2 (en) | Laser cutting method | |
Kriegler et al. | Process strategies for laser cutting of electrodes in lithium-ion battery production | |
JP6806057B2 (en) | Cutting device | |
JP2017084691A (en) | Method of manufacturing electrode sheet, and electrode sheet | |
JP5397400B2 (en) | Laser processing apparatus and laser processing method | |
EP3240652B1 (en) | Apparatus for laser scribing | |
WO2021182515A1 (en) | Cutting device and cutting method | |
US11945050B2 (en) | Electrode sheet manufacturing apparatus and power storage device manufacturing method | |
TWI537621B (en) | Optical fiber, optical fiber device, and laser processing device | |
Lutey et al. | Quality and productivity considerations for laser cutting of LiFePO4 and LiNiMnCoO2 battery electrodes | |
Huang et al. | High speed pulsed laser cutting of anode material for a Li-ion battery in burst mode | |
WO2012064003A1 (en) | Apparatus and method for welding secondary battery electrode | |
JP6819586B2 (en) | Electrode manufacturing method and electrodes | |
JP2010087041A (en) | Method of removing thin film by laser beam, and method of manufacturing thin-film solar cell panel | |
CN117859066A (en) | Apparatus, system and method for repairing test contact devices | |
KR20170068064A (en) | An etching method for substarate and a secondary battery comprising substrate ethched by the same | |
Patwa et al. | Investigation of different laser cutting strategies for sizing of Li-Ion battery electrodes | |
KR20240089693A (en) | Laser processing of lithium battery webs | |
KR102407661B1 (en) | Electrode fabricating device | |
Lutey et al. | Lithium iron phosphate battery electrode integrity following high speed pulsed laser cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21829274 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21829274 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |