WO2021261098A1 - Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate - Google Patents

Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate Download PDF

Info

Publication number
WO2021261098A1
WO2021261098A1 PCT/JP2021/017916 JP2021017916W WO2021261098A1 WO 2021261098 A1 WO2021261098 A1 WO 2021261098A1 JP 2021017916 W JP2021017916 W JP 2021017916W WO 2021261098 A1 WO2021261098 A1 WO 2021261098A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel
acid
electroless
mol
catalyst solution
Prior art date
Application number
PCT/JP2021/017916
Other languages
French (fr)
Japanese (ja)
Inventor
康二 田中
一生 佐藤
良将 奥野
Original Assignee
石原ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原ケミカル株式会社 filed Critical 石原ケミカル株式会社
Priority to CN202180044944.7A priority Critical patent/CN115803476A/en
Publication of WO2021261098A1 publication Critical patent/WO2021261098A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal

Definitions

  • the present invention relates to a nickel colloidal catalyst solution for imparting a catalyst as a pretreatment when subjecting a non-conductive substrate to nickel-free nickel or nickel alloy plating, and a nickel-free nickel or nickel alloy plating method using the nickel colloidal catalyst solution. , And a method for manufacturing a nickel or nickel alloy plated substrate that forms a nickel or nickel alloy film by the plating method. More specifically, the present invention contains a specific colloidal stabilizer and a specific synthetic water-soluble polymer in combination under predetermined conditions, effectively promoting stability over time, and thus a nickel or nickel alloy film. Provided is a nickel colloidal catalyst solution capable of further improving the properties of the above.
  • Electroless nickel or nickel-phosphorus on non-conductive substrates such as glass substrates and ceramics substrates, including resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin.
  • resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin.
  • metals such as palladium, gold, silver, copper, and nickel are adsorbed on the substrate to form a catalyst nucleus, and then electroless nickel or nickel alloy plating solution is used via the catalyst nucleus.
  • a method of depositing a nickel-based film on a substrate is common.
  • Patent Document 1 (hereinafter referred to as a reference invention) as a pretreatment for electroless nickel or nickel alloy plating.
  • a nickel colloidal catalyst solution for imparting nickel catalyst nuclei to a conductive substrate was presented.
  • Patent Document 1 That is, it is a nickel colloidal catalyst solution for applying a catalyst by contacting it with an electroless nickel or a non-conductive substrate to be plated with a nickel alloy.
  • a nickel colloid catalyst solution for electroless nickel or nickel alloy plating containing at least one colloid stabilizer selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids.
  • the stability of the nickel colloid catalyst solution over time can be improved by containing a specific colloidal stabilizer such as oxycarboxylic acids having a complexing effect on the soluble nickel salt, and the colloidal stability is described above.
  • the stability of the nickel colloid catalyst solution over time can be further improved (see claim 2).
  • Patent Document 2 includes a nickel catalyst solution and a catalyst solution of another kind
  • Patent Document 3 is a noble metal-based catalyst solution.
  • Patent Document 2 It relates to a catalyst solution for electroless plating (that is, a fine metal body) instead of a noble metal catalyst solution, and the catalyst solution is Metal salts selected from nickel, copper, and cobalt, Dispersants selected from nonionic surfactants and gelatin, With a complexing agent selected from monocarboxylic acids, dicarboxylic acids, oxycarboxylic acids, and salts thereof, With reducing agents such as boron hydride, It contains stabilizers such as hypochlorous acids and is adjusted to pH 1 to 10 (claims 1 to 7).
  • the salt content of the metal is 5 to 50 g / L (page 3, upper left column, line 18), and the content of the complexing agent is 10 to 50 g / L (page 3, upper left column, line 10).
  • Typical examples of complexing agents are benzoic acid, succinic acid, lactic acid, sodium acetate and the like (page 3, upper left column, lines 9 to 10).
  • Examples 1 and 2 are examples of nickel catalyst solutions.
  • Example 3 is an example of a cobalt catalyst solution
  • Example 4 is an example of a copper catalyst solution.
  • Example 1 the ABS resin was immersed in a nickel catalyst solution containing nickel sulfate, gelatin (dispersant), sodium boron hydroxide (reducing agent), and sodium hypophosphite (stabilizer). After that, a nickel plating film is formed on the surface of the ABS resin by the electroless nickel plating solution.
  • this nickel catalyst solution does not contain a complexing agent (page 3, lower left column, line 3 to lower right column, line 1).
  • the nickel catalyst solution of Example 2 also contains a nickel salt, a reducing agent, and a stabilizer (hypophosphate), but does not contain a complexing agent (page 3, lower right column, line 2). ⁇ 10th line).
  • the copper catalyst solution of Example 4 also does not contain a complexing agent (lines 12 to 20 in the upper left column of page 4).
  • the cobalt catalyst solution of Example 3 contains sodium acetate as a complexing agent.
  • Patent Document 3 The present invention relates to the manufacture of a solar cell including a step of applying electroless nickel plating after contacting a silicon substrate with a catalyst solution.
  • Precious metals such as palladium, gold and silver or their compounds
  • B Thickeners selected from ethylene glycol, propylene glycol, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid, etc.
  • C Contains water. Therefore, the metal that becomes the catalyst nucleus of the catalyst liquid is a noble metal or a compound thereof, not nickel.
  • Patent Document 2 discloses a nickel catalyst solution, which contains a nickel salt, a reducing agent, and a hypophosphate as main components. There is a problem that it is not sufficient in terms of stability over time.
  • Patent Document 3 discloses a nickel solution as an electroless plating solution, but as described above, the catalyst solution used in the catalyst applying step before electroless plating is a noble metal such as palladium, gold, silver or a compound thereof. Is a catalyst nucleus, not a nickel catalyst solution. However, the catalyst solution contains a thickener such as PVA and PVP.
  • the nickel colloidal catalyst solution of the above standard invention contains specific colloidal stabilizers such as oxycarboxylic acids and aminocarboxylic acids that have a complexing effect on nickel salts, the stability over time is improved.
  • the present invention focuses on the temporal stability of the nickel-based colloid catalyst solution, effectively enhances the temporal stability, and is highly uniform on the catalyst-imposed non-conductive substrate.
  • the technical task is to form a nickel or nickel alloy film.
  • the colloidal dispersibility is improved, and electroless nickel or nickel alloy plating is performed. It is stated that it can be expected to improve the uniformity of the nickel-based film and eliminate unevenness (see paragraph [0031] of the standard invention).
  • the water-soluble polymer is selected from synthetic polymers, naturally occurring water-soluble polymers, or semi-synthetic polymers such as cellulose derivatives.
  • the present inventors have diligently studied a nickel colloidal catalyst solution composed of four components (A) to (C) and a water-soluble polymer and its stability over time.
  • a predetermined colloidal stabilizer (C) such as oxycarboxylic acids and aminocarboxylic acids is selected as the colloidal stabilizer
  • a predetermined synthetic water-soluble polymer (D) is selected as the water-soluble polymer.
  • the content of the component (C) and the content of the component (D), and the molar ratio of the content of the component (C) to the content of the component (D) are adjusted to appropriate ranges.
  • ⁇ Stability over time is promoted more weighted than the standard invention.
  • a nickel or nickel alloy film with excellent uniformity can be obtained.
  • the predetermined synthetic water-soluble polymer is different from the polymer in the range disclosed in the above standard invention, and it is necessary to replace a part of the polymer in the disclosed range with a new polymer. Newly found and completed the present invention.
  • the present invention 1 is a nickel colloidal catalyst solution for contacting a non-conductive substrate to be plated with electroless nickel or nickel alloy to impart a catalyst to the non-conductive substrate.
  • A Soluble nickel salt and
  • B Reducing agent and
  • C At least one colloidal stabilizer selected from polycarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and carbohydrates.
  • PVPs polyvinylpyrrolidones
  • PVA polyvinyl alcohol
  • PEIs polyethyleneimines
  • PAAs polyallylamines
  • PVs polyvinylimidazoles
  • PAMs polyacrylamides
  • the content of the colloidal stabilizer (C) is 0.001 mol / L to 5.0 mol / L with respect to the nickel colloidal catalyst solution, and the content of the synthetic water-soluble polymer (D).
  • Electroless nickel characterized in that the molar ratio (C / D) of the content of the colloidal stabilizer (C) to the content of the synthetic water-soluble polymer (D) is 0.01 to 1000.
  • it is a nickel colloid catalyst solution for nickel alloy plating.
  • the colloidal stabilizer (C) is used in the present invention 1.
  • the reducing agent (B) is a boron hydride compound, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyvalent.
  • a nickel colloid catalyst solution for electroless nickel or nickel alloy plating which is at least one selected from the group consisting of naphthols, phenol sulfonic acids, naphthol sulfonic acids, sulfin acids, and reducing saccharides.
  • the present invention 4 (A) Contact the non-conductive substrate with a liquid containing at least one adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Adsorption promotion step to make (B) A catalyst-imparting step of bringing a non-conductive substrate whose adsorption has been promoted into contact with the nickel colloid catalyst solution according to any one of the present inventions 1 to 3 to adsorb nickel colloid particles on the surface of the non-conductive substrate.
  • adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants.
  • Electroless nickel or nickel-free plating which comprises an electroless plating step of forming a nickel or nickel alloy film on a non-conductive substrate to which a catalyst is applied, using an electroless nickel or nickel alloy plating solution. It is a nickel alloy plating method.
  • the present invention 5 is the above-mentioned invention 4.
  • the non-conductive substrate is brought into contact with the etching treatment liquid to perform an etching treatment step (p) for roughening the surface of the non-conductive substrate, and at the same time, the etching treatment step (p) is performed.
  • the non-conductive substrate is subjected to the adsorption promotion step (a) after the etching treatment step (p), and then the catalyst application step (b) and the electroless plating step (c) in sequence. This is an electroless nickel or nickel alloy plating method.
  • the present invention 6 is characterized in that, in the present invention 4 or 5, the adsorption accelerator used in the adsorption promoting step (a) is a cationic surfactant and / or an amphoteric surfactant. Alternatively, it is a nickel alloy plating method.
  • the present invention 7 is characterized in that a nickel or nickel alloy film is formed on a non-conductive substrate by the electroless nickel or nickel alloy plating method according to any one of the above 4 to 6 of the present invention. This is a method for manufacturing a substrate.
  • a predetermined colloidal stabilizer (C) selected from oxycarboxylic acids and aminocarboxylic acids that have a complexing effect on the soluble nickel salt (A), PVPs, PEIs and the like are used.
  • the content of the component (C) and the content of the component (D), and the content and the component of the component (C) are used in combination with the selected predetermined synthetic water-soluble polymer (D).
  • the molar ratio (C / D) with the content of D) is adjusted to an appropriate range.
  • the nickel colloid catalyst solution of the present invention effectively promotes the dispersibility of the colloidal particles, that is, the stability over time, as compared with the reference invention. Therefore, the electroless nickel or nickel alloy film obtained by electroless nickel or nickel alloy plating after catalyst application has no unevenness and is excellent in uniformity.
  • the molar ratio (C / D) is within the appropriate range even if the content of the colloidal stabilizer (C) is very small within the appropriate range. It should be noted that the stability over time of the nickel colloidal catalyst solution can be well maintained because it is adjusted.
  • a sugar can be selected in addition to the oxycarboxylic acids, polycarboxylic acids, and aminocarboxylic acids used in the above standard invention.
  • the water-soluble polymer used in the present invention is the synthesis of polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), etc. among the water-soluble polymers used in the above standard invention. It is limited to the water-soluble polymer (D), and does not include naturally-derived polymers such as starch and vegetable gum, or semi-synthetic polymers such as cellulose derivatives such as carboxymethyl cellulose (CMC), as will be described later.
  • PVPs polyvinylpyrrolidones
  • PVA polyvinyl alcohols
  • PEIs polyethyleneimines
  • the basic principle is that nickel colloidal particles are adsorbed on a non-conductive substrate to apply a catalyst, and then electroless nickel or nickel alloy plating is applied.
  • the non-conductive substrate is applied.
  • an adsorption promotion treatment in which the substance is brought into contact with the liquid containing the adsorption accelerator, which is a surfactant. That is, in the present invention, the adsorption promotion step, the catalyst applying step, and the electroless nickel or nickel alloy plating step are sequentially performed to enhance the catalytic activity at the time of applying the catalyst, and the nickel or nickel alloy film precipitated by the electroless plating. It is possible to improve the uniformity of the film and satisfactorily prevent the occurrence of unevenness of the film.
  • the present invention is, first, a nickel colloidal catalyst liquid for contacting an electroless substrate to impart a catalyst to the electroless substrate, wherein (A) a soluble nickel salt and (B) a reducing agent. , (C) a predetermined colloidal stabilizer and (D) a predetermined synthetic water-soluble polymer, and the content of the component (C), the content of the component (D), and the content of the component (C).
  • a nickel colloid catalyst solution for electroless nickel or nickel alloy plating in which the molar ratio (C / D) of the amount and the content of the component (D) is adjusted to a predetermined range, respectively (corresponding to the present invention 1).
  • the present invention is secondly an electroless nickel or nickel alloy plating method using the nickel colloid catalyst solution, wherein the non-conductive substrate is previously adsorbed and promoted with a solution containing a surfactant, and then the non-conductive substrate is adsorbed.
  • This is a method of performing electroless plating after applying a catalyst with the nickel colloidal catalyst solution (corresponding to the present invention 4).
  • the present invention is a third method for manufacturing a nickel or nickel alloy substrate (corresponding to the present invention 7) in which a nickel or nickel alloy film is formed by the above electroless plating method.
  • the non-conductive substrate is glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate (PC) resin, polyamide (PA) resin, polystyrene (PS) resin, polyester resin (for example, polybutylene). Talephthalate (PBT) resin, etc.), ABS resin, PET resin, and resin substrates such as these polymer alloys (eg, PC / ABS, PBT / ABS, PA / ABS, PC / PS), glass substrates, ceramics, etc. Refers to a board or the like.
  • the basic composition of the nickel colloidal catalyst solution of the present invention 1 is (A) a soluble nickel salt, (B) a reducing agent, (C) a predetermined colloidal stabilizer, and (D) a predetermined synthetic water-soluble polymer.
  • the soluble nickel salt (A) any soluble salt that generates nickel ions in an aqueous solution can be used, there is no particular limitation, and the sparingly soluble salt is not excluded. Specific examples thereof include nickel sulfate, nickel oxide, nickel chloride, nickel ammonium sulfate, nickel acetate, nickel nitrate, nickel carbonate, nickel sulfamate, and nickel salts of organic sulfonic acid and carboxylic acid.
  • Examples of the reducing agent (B) include boron hydride compounds, amine borons, hypophosphoric acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenol sulfonic acids, naphthol sulfonic acids, and sulfin. Acids, reducing sugars and the like can be mentioned.
  • the boron borohydride compound is sodium borohydride, potassium borohydride and the like.
  • Amineboranes include dimethylamineborane and diethylamineborane.
  • Aldehydes include formaldehyde, glyoxylic acid or salts thereof.
  • Polyphenols include catechol, hydroquinone, resorcin, pyrogallol, fluoroglucin, gallic acid and the like.
  • Phenolic sulfonic acids include phenol sulfonic acid, cresol sulfonic acid or salts thereof.
  • Reducing saccharides include glucose, fructose and the like.
  • the predetermined colloidal stabilizer (C) is a compound that forms a nickel complex in electroless nickel or a nickel alloy plating solution, and functions to ensure the stability of the nickel colloidal catalyst solution over time.
  • the colloidal stabilizer (C) is at least one selected from polycarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and sugars.
  • the polycarboxylic acids are polycarboxylic acids and salts thereof, and at least one selected from saturated polycarboxylic acids and salts thereof is preferable, but unsaturated polycarboxylic acids such as maleic acid, itaconic acid, and citraconic acid and salts thereof. Does not exclude.
  • saturated polycarboxylic acid examples include malonic acid, succinic acid, glutaric acid, adipic acid, and oxalic acid. Therefore, monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid and stearic acid and salts thereof are excluded.
  • the colloidal stabilizer (C) composed of polycarboxylic acids and the above monocarboxylic acid may be used in combination.
  • the oxycarboxylic acids are at least one selected from oxycarboxylic acids and salts thereof.
  • the oxycarboxylic acid include citric acid, tartaric acid, malic acid, gluconic acid, glycolic acid, lactic acid, ascorbic acid, hydroxybutyric acid, glucoheptic acid, citramaric acid, and erythorbic acid.
  • the aminocarboxylic acids are at least one selected from aminocarboxylic acids and salts thereof.
  • the aminocarboxylic acid include glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, glycine, N, N-bis (2-hydroxyethyl) glycine, and (S, S) -ethylenediamine succinic acid.
  • the above sugars are selected from glucose, galactose, mannose, fructose, lactose, sucrose, maltose, palatinose, xylose, trehalose, sorbitol, xylitol, mannitol, maltitol, erythritol, reduced candy, lactitol, reduced palatinose, and gluconolactone. At least one kind of lactitol.
  • the predetermined synthetic water-soluble polymer (D) improves the dispersibility of nickel colloidal particles, and thus electroless nickel or nickel alloy coating is uniform and even by electroless nickel or nickel alloy plating after catalyst application. It fulfills the function of contributing to the precipitation of.
  • the synthetic water-soluble polymer (D) includes polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), polyallylamines (PAAs), polyvinylimidazoles (PVIs), and It is at least one kind of synthetic water-soluble polymer selected from polyacrylamides (PAMs).
  • the synthetic water-soluble polymer (D) is a synthetic polymer, it is semi-synthesized such as a naturally-derived water-soluble polymer such as gelatin or starch, or a cellulose derivative such as carboxymethyl cellulose (CMC) or methyl cellulose (MC). System polymers are not included. However, in the present invention, the combined use of the synthetic water-soluble polymer (D) with the naturally-derived water-soluble polymer and / or the semi-synthetic polymer is not excluded.
  • the polyvinylpyrrolidones include a homopolymer of polyvinylpyrrolidone and an alkylene oxide adduct of polyvinylpyrrolidone such as a polymer obtained by adding ethylene oxide (EO) and / or propylene oxide (PO) to polyvinylpyrrolidone.
  • the polyethyleneimines (PEIs) include a homopolymer of polyethyleneimine and an alkylene oxide adduct of polyethyleneimine such as a polymer obtained by adding ethylene oxide and / or propylene oxide to polyethyleneimine.
  • the polyallylamines are basically diallylamine polymers, specifically, dialalkylammonium chloride polymer, diallyldimethylammonium chloride / sulfur dioxide copolymer, diallylmethylethylammonium ethylsulfate polymer, and diallyldimethyl. Ammonium chloride / acrylamide copolymer and the like.
  • the polyvinyl imidazoles (PVIs) include a homopolymer of polyvinyl imidazole and an alkylene oxide adduct of polyvinyl imidazole such as a polymer obtained by adding ethylene oxide and / or propylene oxide to polyvinyl imidazole.
  • the above polyacrylamides include polymers obtained by copolymerizing acrylamide with hydrophilic polymers such as acrylic acid and methacrylic acid, including acrylamide homopolymers, aldehyde-modified polyacrylamides, methylolpolyacrylamides, and polyisopropylacrylamides. include.
  • the diallyldimethylammonium chloride / acrylamide copolymer is classified as a copolymer of diallylamine and acrylamide.
  • polyvinylpyrrolidones PVPs
  • polyacrylamides PAMs
  • polyethyleneimines PEIs
  • PAAs polyallylamines
  • ethylene oxide of PEI is preferable.
  • Additives, PAAs containing diallylamine polymers, aldehyde-modified polyacrylamide and the like are more preferred.
  • the nickel colloidal catalyst solution of the present invention may contain a surfactant, if necessary, in order to increase the dispersibility of the fine metal serving as the catalyst nucleus.
  • a surfactant various nonionic, cationic, anionic, or amphoteric surfactants can be selected.
  • the nonionic surfactant include C1 to C20 alkanol, phenol, naphthol, bisphenols, (poly) C1 to C25 alkylphenol, (poly) arylalkylphenol, C1 to C25 alkylnaphthol, and C1 to C25 alkoxylated phosphate (salt).
  • Sorbitane ester polyalkylene glycol, C1 to C22 aliphatic amines, C1 to C22 aliphatic amides, etc. with 2 to 300 mol of ethylene oxide (EO) and / or propylene oxide (PO) added and condensed, or C1 to Examples thereof include C25 alkoxylated phosphate (salt).
  • EO ethylene oxide
  • PO propylene oxide
  • Examples of the cationic surfactant include a quaternary ammonium salt or a pyridinium salt, and specifically, a lauryltrimethylammonium salt, a stearyltrimethylammonium salt, a lauryldimethylethylammonium salt, an octadecyldimethylethylammonium salt, and the like.
  • anionic surfactant examples include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, alkylbenzene sulfonates, ⁇ (mono, di, tri) alkyl ⁇ naphthalene sulfonates and the like. Can be mentioned.
  • amphoteric tenside examples include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid. Sulfation of ethylene oxide and / or the condensation product of propylene oxide with alkylamines or diamines, or sulfonated adducts can also be used.
  • the colloidal stabilizer (C) has a function of forming a nickel complex
  • the synthetic water-soluble polymer (D) has a function of enhancing colloidal dispersibility. Therefore, the colloidal stabilizer (C) ) Decreases and the synthetic water-soluble polymer (D) increases, and conversely, even if the colloidal stabilizer (C) increases and the synthetic water-soluble polymer (D) decreases, the nickel colloidal particles are produced. The ability to disperse and maintain is reduced.
  • the molar ratio (C / D) of the content of the colloidal stabilizer (C) to the content of the synthetic water-soluble polymer (D) is the dispersibility of the nickel colloidal catalyst solution, and thus the nickel colloidal catalyst solution over time. It is an important factor for ensuring stability, and in the nickel colloid catalyst solution of the present invention, since this molar ratio is adjusted to an appropriate range, a uniform and even nickel or nickel alloy film can be obtained.
  • the molar ratio (C / D) needs to be 0.01 to 1000, preferably 0.1 to 500, and more preferably 1 to 250.
  • the nickel colloid catalyst solution When the molar ratio (C / D) is smaller than 0.01, the nickel colloid catalyst solution impairs stability over time, and when the molar ratio (C / D) is larger than 1000, the dispersibility of the nickel colloid Is reduced, and the nickel colloidal catalyst solution also impairs stability over time.
  • the colloidal stabilizer (C) and the synthetic water-soluble polymer (D) can be used alone or in combination, respectively, but in order to adjust the molar ratio (C / D) to an appropriate range, the colloidal stabilizer (C) may be used.
  • the content of the above-mentioned nickel colloid catalyst solution needs to be 0.001 mol / L to 5.0 mol / L, preferably 0.002 mol / L to 2.5 mol / L.
  • the content of the colloidal stabilizer (C) is preferably 1.5 times or more the content of the soluble nickel salt (A).
  • the content of the synthetic water-soluble polymer (D) is 0.0005 mol / L to 0 with respect to the nickel colloid catalyst solution. It needs to be .3 mol / L, preferably 0.0010 mol / L to 0.2 mol / L, more preferably 0.0020 mol / L to 0.1 mol / L.
  • the soluble nickel salt (A) in the nickel colloid catalyst solution, can be used alone or in combination, and the content of the soluble nickel salt (A) in the nickel colloid catalyst solution is 0.001 mol / L to 1.0.
  • Molar / L is suitable, preferably 0.002 mol / L to 0.5 mol / L, and more preferably 0.0025 mol / L to 0.3 mol / L. If the content of the soluble nickel salt (A) is less than the appropriate amount, the film thickness of the nickel or nickel alloy film may be insufficient or the homogeneity of the film may be deteriorated.
  • the upper limit content is limited.
  • the reducing agent (B) can be used alone or in combination, and the content of the reducing agent (B) with respect to the nickel colloid catalyst solution is preferably 0.002 mol / L to 1.0 mol / L, and is preferable. It is 0.003 mol / L to 0.7 mol / L, more preferably 0.005 mol / L to 0.6 mol / L. If the content of the reducing agent (B) is less than the appropriate amount, the reducing action of the nickel salt is lowered, and conversely, the upper limit content is limited by the dissolved amount or the like, but if it is too large, it precipitates by electroless plating. There is a risk that the homogeneity of the nickel or nickel alloy film will decrease.
  • the nickel colloidal catalyst solution of the present invention may be water-based or an organic solvent-based solution such as lipophilic alcohol.
  • the solvent of the catalyst solution is selected from water and / or hydrophilic alcohol.
  • the pH of the catalyst solution is not particularly limited, but it is preferable to select neutral, weakly acidic, weakly alkaline or the like.
  • a solution containing the soluble nickel salt (A) and a solution containing the reducing agent (B) prepared separately from this solution are mixed to obtain colloidal particles. It is important to generate.
  • the soluble nickel salt (A) and the reducing agent (B) are mixed first, nickel ions are reduced to precipitate metallic nickel, and the colloid stabilizer (C) and the synthetic water-soluble polymer (D) are catalysts. This is because it may not function organically in the liquid.
  • a solution containing the reducing agent (B) is used as a soluble nickel salt (A) (and a colloidal stabilizer). Basically, it is slowly added dropwise over time to a solution containing (C) and the synthetic water-soluble polymer (D)).
  • a solution containing a reducing agent (B) is added dropwise to a solution containing a soluble nickel salt (A) at 5 ° C to 50 ° C (preferably 10 ° C to 40 ° C) and pH 1 to 8 (preferably pH 3 to 7).
  • the mixture is stirred for 20 minutes to 1200 minutes (preferably 30 minutes to 300 minutes) to prepare a catalyst solution.
  • the preparation of the catalyst solution does not exclude dropping the solution of the soluble nickel salt (A) into the solution of the reducing agent (B).
  • the nickel colloid particles produced from the soluble nickel salt (A) by the action of the reducing agent (B) have a suitable average particle size of 1 nm to 250 nm, preferably 1 nm to 120 nm, and more preferably 1 nm. It is a fine particle of ⁇ 100 nm.
  • the average particle size of the nickel colloid particles is 250 nm or less
  • the nickel colloid particles enter the dents on the fine uneven surface of the substrate and are densely adsorbed or caught. It can be presumed that the attachment of nickel colloidal nuclei to the surface of the substrate is promoted by the anchor effect such as.
  • the present invention 4 is an electroless plating method using the nickel colloidal catalyst solution, which is a combination of the following three steps in sequence.
  • the adsorption promoting step (a) is, so to speak, a pretreatment step of the catalyst applying step (b), and is a nonionic surfactant.
  • This is a step of bringing the non-conductive substrate into contact with a liquid containing at least one adsorption accelerator selected from the group consisting of an activator, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.
  • the wettability of the surface of the substrate is enhanced to enhance the catalytic activity, and the adsorption of the nickel colloidal particles in the next catalyst application step (b) is promoted. It is a thing.
  • the adsorption promotion step (a) since it is necessary to bring the non-conductive substrate into contact with the liquid containing the adsorption accelerator, it is basic to immerse the non-conductive substrate in the liquid containing the adsorbent. Treatment such as spraying on a non-conductive substrate or applying with a brush may be used.
  • the nickel colloid catalyst solution of the present invention the nickel colloid particles produced by allowing the reducing agent (B) to act on the soluble nickel salt (A) have a negative zeta potential.
  • each surfactant used in the adsorption promotion step (a) are the same as those described in the nickel colloidal catalyst solution of the present invention 1.
  • the content of the adsorption accelerator, which is a surfactant is preferably 0.05 g / L to 100 g / L, and more preferably 0.5 g / L to 50 g / L.
  • the treatment temperature is preferably about 15 ° C.
  • the contact time is preferably about 0.5 minutes to 20 minutes.
  • the non-conductive substrate is brought into contact with the etching treatment liquid to roughen the surface of the non-conductive substrate. It is preferable to carry out the treatment step (p).
  • the process proceeds to the next catalyst application step (b) with or without drying.
  • the non-conductive substrate is brought into contact with the nickel colloid catalyst liquid to adsorb the nickel colloid particles on the surface of the non-conductive substrate.
  • the temperature of the nickel colloidal catalyst solution is preferably 15 ° C to 95 ° C (preferably 15 ° C to 70 ° C), the contact time is about 0.1 to 20 minutes, and the pH is 3 to 12 (preferably). It is desirable that the pH is 5 to 11).
  • the catalyst application step (b) since it is necessary to bring the non-conductive substrate into contact with the nickel colloid catalyst liquid, it is basic to immerse the non-conductive substrate in the nickel colloid catalyst liquid. Can be sprayed on a non-conductive substrate or applied with a brush. In the dipping treatment, it is sufficient to immerse the non-conductive substrate in the nickel colloidal catalyst solution in a static state, but stirring or shaking may be performed. Further, between the catalyst application step (b) and the next electroless plating step (c), an activation step (b-1) in which the non-conductive substrate is brought into contact with an activation solution such as an acid solution for cleaning treatment. ) Is preferably added.
  • an activation solution such as an acid solution for cleaning treatment.
  • the catalytic activity can be effectively maintained, and film formation in the next electroless plating step (c) can be smoothly promoted.
  • it is basic to immerse the non-conductive substrate in the activating solution, but the activating solution is sprayed on the non-conductive substrate or applied with a brush. There is no problem with processing such as.
  • the non-conductive substrate that has completed the catalyst application step (b) or, if necessary, the non-conductive substrate that has completed the activation step (b-1) is washed with pure water and then dried or dried. Instead, the process proceeds to the next electroless plating step (c).
  • the electroless nickel or nickel alloy plating in the electroless plating step (c) may be treated in the same manner as in the conventional case, and there are no particular restrictions.
  • the liquid temperature of the electroless nickel or nickel alloy plating solution is generally 15 ° C to 100 ° C, preferably 20 ° C to 90 ° C. When stirring the electroless nickel or nickel alloy plating solution, air stirring, rapid liquid flow stirring, mechanical stirring by a stirring blade or the like can be adopted.
  • the composition of the electroless nickel or nickel alloy plating solution is not particularly limited, and a known plating solution can be used.
  • the electroless nickel plating is substantially nickel-phosphorus plating or nickel-boron plating.
  • the electroless nickel alloy plating includes nickel-cobalt alloy plating, nickel-tin alloy plating, nickel-tin-zinc alloy plating and the like.
  • the known electroless nickel plating solution basically contains a soluble nickel salt and a reducing agent as main components, and if necessary, contains various additives such as a complexing agent, a pH adjuster, and a reaction accelerator.
  • a phosphorus-based reducing agent eg, hypophosphite
  • a boron-based reducing agent eg, dimethylamine borane
  • the soluble nickel salt is as described in the above nickel colloidal catalyst solution.
  • the complexing agent has some parts in common with the colloidal stabilizer (C) described in the above nickel colloidal catalyst solution, and specifically, ammonia, ethylenediamine, pyrophosphate, citric acid, malic acid, lactic acid, acetic acid, etc. Ethylenediaminetetraacetic acid (EDTA) and the like.
  • the components of the electroless nickel alloy plating solution are basically the same as the components of the electroless nickel plating solution, but include soluble salts of the metal of the other party forming an alloy with nickel.
  • the nickel alloy include a nickel-cobalt alloy, a nickel-tin alloy, a nickel-tin-zinc alloy, and the like.
  • Soluble cobalt salts such as cobalt salts; soluble stannous salts such as stannous sulfate, stannous chloride, stannous oxide, sodium tintate, stannous borofluoride, and stannous salts of organic sulfonic acid and sulfosuccinic acid.
  • the present invention 7 is a method for manufacturing a nickel or nickel alloy plated substrate, which forms a nickel or nickel alloy film on the non-conductive substrate by the electroless nickel or nickel alloy plating method.
  • Example 1 the following item (1)
  • a reference example the following item (0)
  • Examples 2 to 18 (items (2) to (18)) will be described in detail in order.
  • Examples 2 to 18 are examples of the electroless nickel plating method
  • Example 18 is an example of the electroless nickel-cobalt alloy plating method.
  • Example 1 As will be described later, after the etching treatment step (p) is performed as a preliminary step, the adsorption promotion step (a) ⁇ the catalyst application step (b) ⁇ the activation step (b-1) ⁇ electroless plating.
  • the adsorption accelerator in the adsorption promoting step (a) is a mixture of a cationic surfactant and a nonionic surfactant, and the nickel colloidal catalyst solution in the catalyst applying step (b) is reduced.
  • the agent (B) is a boron hydride compound
  • the colloidal stabilizer (C) is glutaric acid belonging to polycarboxylic acids
  • the synthetic water-soluble polymer (D) is polyethyleneimine (PEI) belonging to polyethyleneimines (PEIs).
  • Examples 2 to 15 and 18 are examples based on the above-mentioned Example 1, and Examples 16 to 17 are examples based on Example 10.
  • Example 4 Example in which the molar ratio (C / D) is set near the lower limit of a predetermined appropriate range
  • Example 5 Example 6 in which the colloidal stabilizer (C) was changed to succinic acid, which is a dicarboxylic acid belonging to polycarboxylic acids.
  • Example 6 Example in which the colloidal stabilizer (C) was changed to glycolic acid belonging to oxycarboxylic acids.
  • Example 7 Example 8 in which the colloidal stabilizer (C) was changed to glycine belonging to aminocarboxylic acids
  • Example 8 Example in which the colloidal stabilizer (C) was changed to xylitol belonging to a sugar
  • Example 9 Colloidal stabilizer (C) , Examples of changing to adipic acid, which is a dicarboxylic acid belonging to polycarboxylic acids
  • Examples 10 to 11 Synthetic water-soluble polymer (D) is replaced with an EO adduct of PEI belonging to PEIs (Examples 10 and 11).
  • Example 12 Synthetic water-soluble polymer (D) was changed to diallylamine polymer belonging to polyallylamines (PAAs)
  • Example 13 Synthetic water-soluble polymer.
  • Example 15 Example of changing the synthetic water-soluble polymer (D) to a copolymer of diallylamine and acrylamide
  • Example 16 Example of changing the soluble nickel salt (A)
  • Example 17 Example of changing the reducing agent (B)
  • Example 18 is an example in which electroless nickel-cobalt alloy plating is performed instead of electroless nickel plating, and after performing an etching treatment step (p) as a preliminary step, an adsorption promotion step ( Each step of a) ⁇ catalyst application step (b) ⁇ activation step (b-1) ⁇ electroless plating step (c) was sequentially performed.
  • the etching treatment step (p), the adsorption promotion step (a), the catalyst applying step (b), and the activation step (b-1) were based on Example 1.
  • Comparative Examples 1 to 4 are as follows. Comparative Example 1: Example in which the molar ratio (C / D) is larger than the specified range in the present invention Comparative Example 2: Example in which the molar ratio (C / D) is smaller than the specified range in the present invention Comparative Example 3: Example of using a naturally occurring water-soluble polymer instead of the synthetic water-soluble polymer (D) used in the present invention Comparative Example 4: Components other than the colloidal stabilizer (C) specified in the present invention (ethylenediamine belonging to polyamines). )
  • Example 1 The electroless nickel plating method of the present invention is based on sequentially performing an adsorption promotion step (a) ⁇ a catalyst application step (b) ⁇ an electroless plating step (c), but in the first embodiment, the adsorption promotion step An etching treatment step (p) was added in advance before (a), and an activation step (b-1) was added between the catalyst application step (b) and the electroless plating step (c). Therefore, the electroless nickel plating method of Example 1 is: etching treatment step (p) ⁇ adsorption promotion step (a) ⁇ catalyst application step (b) ⁇ activation step (b-1) ⁇ electroless plating step (c). Consists of.
  • an etching treatment is performed under the following condition (p)
  • adsorption promotion is performed under the following condition (a)
  • catalyst application is performed under the following condition (b)
  • activation is performed under the following condition (b-1).
  • electroless nickel-phosphorus plating was performed under the following condition (c).
  • Etching Treatment Step An etching treatment liquid was prepared with the following composition. [Etching liquid] Chromic acid anhydride 400g / L 98% sulfuric acid 200g / L
  • Adsorption promoting step A liquid containing an adsorption promoting agent was prepared with the following composition. Mw is the weight average molecular weight.
  • [Adsorption accelerator] Dialyldimethylammonium chloride polymer (Mw: 30,000) 5g / L Polyoxyalkylene branched decyl ether 1g / L (B) Catalyst application step First, a nickel solution and a reducing agent solution were prepared, and then both solutions were mixed to prepare a nickel colloidal catalyst solution.
  • the composition of each solution and the preparation conditions for the nickel colloidal catalyst solution are as follows.
  • Nickel solution Nickel sulfate (as Ni 2+ ) 0.1 mol / L Glutaric acid 0.3 mol / L PEI (Mw: 1800) 0.01 mol / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Mole ratio (C / D)] 0.3 / 0.01 30
  • Preparation conditions for nickel colloidal catalyst solution A reducing agent solution was added dropwise to a nickel solution at 25 ° C. adjusted to pH 4.0 and stirred to obtain a nickel colloidal catalyst solution.
  • B-1) Activation step
  • Activation solution 98% sulfuric acid 5mL / L
  • Electroless plating step An electroless nickel-phosphorus plating solution was built with the following composition.
  • the pH of the plating solution was adjusted with sodium hydroxide.
  • Electroless nickel-phosphorus plating solution Nickel sulphate hexahydrate (as Ni 2+ ) 0.1 mol / L Sodium hypophosphate monohydrate 30 g / L Succinic acid 25g / L Pure water residual pH (20 ° C) 4.6
  • All treatment conditions in electroless nickel-phosphorus plating The electroless nickel-phosphorus plating of Example 1 comprises steps (p) ⁇ (a) ⁇ (b) ⁇ (b-1) ⁇ (c).
  • the processing conditions of the process are as follows.
  • a nickel colloidal catalyst solution was prepared using only the colloidal stabilizer (C) (glutaric acid) without using the synthetic water-soluble polymer (D) in the present invention. That is, in this reference example, in the catalyst application step (b), a nickel colloidal catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a colloidal stabilizer (C) as essential components is used. Based on Example 1, all settings are the same as in Example 1 including the etching treatment step (p) and the activation step (b-1), except that the composition of the nickel colloidal catalyst solution is changed as follows. did.
  • Example 2 (Mole ratio (C / D) is set near the upper limit) Based on the above-mentioned Example 1, all the same as in Example 1 including the etching treatment step (p) and the activation step (b-1) except that the composition of the nickel colloid catalyst solution was changed as follows. I set it. In the examples and comparative examples described later, the reference to the etching process (p) and the activation step (b-1) will be omitted.
  • Example 3 (set the molar ratio (C / D) small) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 4 (Mole ratio (C / D) is set near the lower limit) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L Glutaric acid 0.0015 mol / L PEI (Mw: 600) 0.08 mol / L
  • Reducing agent solution Sodium borohydride 0.25 mol / L
  • Mole ratio (C / D)] 0.0015 / 0.08 0.01875
  • Example 5 (change colloidal stabilizer (C)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 6 (change colloidal stabilizer (C)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 7 (change colloidal stabilizer (C)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 8 (change colloidal stabilizer (C)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 9 (change colloidal stabilizer (C)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 10 (changed synthetic water-soluble polymer (D)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 11 (changed synthetic water-soluble polymer (D)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Catalyst application step [nickel solution] Nickel sulfate (as Ni 2+ ) 0.1 mol / L Glutaric acid 0.3 mol / L PEI EO adduct (EO: 140 mol, Mw: 8000) 0.0375 mol / L
  • Example 12 (changed synthetic water-soluble polymer (D)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 13 (changed synthetic water-soluble polymer (D)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 14 (changed synthetic water-soluble polymer (D)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 15 (changed synthetic water-soluble polymer (D)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
  • Example 16 (changed soluble nickel salt (A)) Based on the above Example 10, all the settings were the same as in Example 10 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Example 17 (change the reducing agent (B)) Based on the above Example 10, all the settings were the same as in Example 10 except that the composition of the nickel colloid catalyst solution was changed as follows.
  • Example 18 Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the electroless nickel-cobalt alloy plating described below was performed as the electroless plating step (c) instead of the electroless nickel-phosphorus plating.
  • (C) Electroless plating step An electroless nickel-cobalt alloy plating solution was built with the following composition. The pH of the plating solution was adjusted with sodium hydroxide.
  • Electroless plating conditions Plating temperature: 90 ° C Plating time: 20 minutes
  • Comparative Example 1 Mole ratio (C / D) is set larger than the specified range in the present invention
  • the composition of the nickel colloidal catalyst solution was changed as follows. That is, in Comparative Example 1, in the catalyst application step (b), the molar ratio (C / D) was set to be larger than the range specified in the present invention to prepare a nickel colloidal catalyst solution. However, after the preparation, the nickel colloid catalyst solution started to decompose, but the catalyst nucleus adhered to a part of the sample substrate immersed in the catalyst solution, so that the sample substrate was very small in the electroless plating step (c) later. A nickel-phosphorus film was partially precipitated.
  • Comparative Example 2 (Mole ratio (C / D) is set smaller than the specified range in the present invention) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows. That is, in Comparative Example 1, in the catalyst application step (b), the molar ratio (C / D) was set to be smaller than the range specified in the present invention to prepare a nickel colloidal catalyst solution. However, after the preparation, the nickel colloid catalyst solution started to decompose, but the catalyst nucleus adhered to a part of the sample substrate immersed in the catalyst solution, so that the sample substrate was very small in the electroless plating step (c) later. A nickel-phosphorus film was partially precipitated.
  • Comparative Example 3 A naturally derived water-soluble polymer is used instead of the synthetic water-soluble polymer (D)) Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows. That is, in Comparative Example 3, in the catalyst application step (b), a nickel colloidal catalyst solution was prepared using a naturally-derived water-soluble polymer (gelatin) instead of the synthetic water-soluble polymer (D) used in the present invention. did. However, although nickel colloidal particles were generated, they aggregated and precipitated, and the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
  • Comparative Example 4 Compounds belonging to polyamines are used instead of the colloidal stabilizer (C)
  • the composition of the nickel colloidal catalyst solution was changed as follows. That is, in Comparative Example 4, in the catalyst application step (b), a nickel colloidal catalyst solution was prepared using a compound (ethylenediamine) belonging to polyamines instead of the colloidal stabilizer (C) used in the present invention. However, although nickel colloidal particles were generated, they aggregated and precipitated, and the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
  • the type and content of the colloidal stabilizer (C), the type and content of the synthetic water-soluble polymer (D), and the molar ratio (C / D) in the nickel colloidal catalyst solution are determined. It is summarized in Table 1. Further, with respect to Reference Examples and Comparative Examples 1 to 4, the type and content of the colloidal stabilizer (C) or the component used in place of the colloidal stabilizer (C) in the nickel colloidal catalyst solution, the synthetic water-soluble polymer (D) or a substitute thereof. Table 2 summarizes the types and contents of the components used in the above, as well as various molar ratios.
  • Table 3 summarizes the evaluation results of the temporal stability of the nickel colloidal catalyst solution and the appearance of the plating film.
  • the synthetic water-soluble polymer (D) specified in the present invention is used, it is also compared in Comparative Example 4 using a compound (ethylenediamine) belonging to polyamines other than the colloidal stabilizer (C) specified in the present invention. Similar to Example 3, nickel colloidal particles were generated, but aggregated and precipitated, and even if electroless plating was applied to the non-conductive substrate, the plating film did not precipitate.
  • a compound (ethylenediamine) belonging to polyamines other than the colloidal stabilizer (C) specified in the present invention Similar to Example 3, nickel colloidal particles were generated, but aggregated and precipitated, and even if electroless plating was applied to the non-conductive substrate, the plating film did not precipitate.
  • the content of the colloidal stabilizer (C) and the content of the synthetic water-soluble polymer (D) It can be determined that it is necessary to set the molar ratio (C / D) with and within the appropriate range specified in the present invention. Further, among the colloidal stabilizer (C) and the synthetic water-soluble polymer (D), the synthetic water-soluble polymer (D) is capable of forming a uniform plating film without unevenness and good stability of the nickel colloid catalyst solution over time. It can be seen that even if the above is not specified in the present invention or the colloidal stabilizer (C) is not specified in the present invention, it cannot be achieved.
  • a nickel colloid catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a predetermined colloidal stabilizer (C) was applied as a catalyst, and electroless plating was performed.
  • the stability over time of the nickel colloid catalyst solution was good (evaluation is ⁇ ), and the plating film precipitated by electroless plating was even and excellent in uniformity (evaluation is ⁇ ). Evaluation is ⁇ ).
  • the catalyst was applied with a nickel colloid catalyst solution containing a predetermined synthetic water-soluble polymer (D) in addition to the colloid stabilizer (C) of the above standard example, and electroless plating was performed.
  • a nickel colloid catalyst solution containing a predetermined synthetic water-soluble polymer (D) in addition to the colloid stabilizer (C) of the above standard example, and electroless plating was performed.
  • most of the nickel colloidal catalyst solutions were excellent in stability over time (most of them were evaluated as ⁇ ), and were generally superior to the above standard examples.
  • the plating film deposited by electroless plating had no unevenness and was excellent in uniformity (evaluation was ⁇ ).
  • the molar ratio (C / D) is included in the more preferable range (1 to 250), so that the nickel colloidal catalyst solution is used over time.
  • Examples 1 to 18 with respect to Comparative Examples 1 to 4 is as follows. First, since the nickel colloidal catalyst solution was decomposed in Comparative Examples 1 and 2, it is self-evident that it is important to adjust the molar ratio (C / D) to an appropriate range as in Examples 1 to 18. Is. Further, when Examples 1 to 18 are compared with Comparative Examples 3 to 4, in order to obtain a plating film having no unevenness and excellent uniformity by electroless plating after treatment with a nickel colloid catalyst solution, naturally derived water-soluble material is obtained.
  • Example 1 the non-conductive substrate is pretreated with a liquid containing a quaternary ammonium salt (adsorption accelerator) of a diallylamine polymer which is a cationic surfactant, and nickel sulfate (soluble nickel salt (A)) is prepared. ), Boron hydride compound (reducing agent (B)), glutaric acid (colloidal stabilizer (C)), and PEI (synthetic water-soluble polymer (D)). This is an example of electroless nickel plating.
  • a quaternary ammonium salt adsorption accelerator
  • a diallylamine polymer which is a cationic surfactant
  • nickel sulfate soluble nickel salt (A)
  • B Boron hydride compound
  • glutaric acid colloidal stabilizer
  • PEI synthetic water-soluble polymer
  • the nickel colloidal catalyst solution has excellent stability over time, does not precipitate or decompose even 60 days after preparation, and the plating film obtained by electroless nickel plating is uniform and uneven. I wouldn't. That is, the evaluation of the appearance of the plating film was the same as that of the standard example, but the stability over time of the nickel colloidal catalyst solution was found to be superior to the standard example.
  • Example 5 to 9 in which succinic acid, glycolic acid, glycine, xylitol, or adipic acid were used as the colloidal stabilizer (C) and PEI was used as the synthetic water-soluble polymer (D), and the colloidal stabilizer ( Also in Examples 10 to 11 in which glutaric acid was used as C) and PEI's EO adduct was used as the synthetic water-soluble polymer (D), the stability of the nickel colloid catalyst solution over time and the appearance of the plating film were evaluated. The result was the same as in Example 1.
  • Example 2 in which PEI was used as the synthetic water-soluble polymer (D) and the molar ratio (C / D) was set near the upper limit or the lower limit of the appropriate range, respectively, the nickel colloid catalyst solution was used.
  • the evaluation of the stability over time was the same as that of the reference example. Therefore, it can be determined that the stability over time can be improved if the molar ratio (C / D) is included in a more preferable range as in Example 1.
  • the content of the synthetic water-soluble polymer (D) is contained in a more preferable range (0.0020 mol / L to 0.1 mol / L), and the colloidal stabilizer (C) is contained.
  • the content of C) and the content of the synthetic water-soluble polymer (D) are both in a more preferable range ((C): 0.005 mol / L to 1.0 mol / L, (D): 0.0020 mol. If it is set within / L to 0.1 mol / L), the stability over time of the nickel colloidal catalyst solution will be improved compared to the standard example (evaluation is ⁇ ⁇ ⁇ ), and a plating film with no unevenness and excellent uniformity will be obtained. It can be seen that the performance of the formable nickel colloidal catalyst solution can be maintained for a longer period of time.
  • Example 12 to 15 in which the synthetic water-soluble polymer (D) was changed to a diallylamine polymer, PVP, PVA, or a copolymer of diallylamine and acrylamide based on Example 1, the nickel colloid catalyst solution was also used.
  • the evaluation of the stability over time and the appearance of the plating film was the same as in Example 1.
  • Examples 16 to 17 in which the soluble nickel salt (A) or the reducing agent (B) was changed based on Example 10, the stability over time of the nickel colloidal catalyst solution and the evaluation of the appearance of the plating film were evaluated in Examples. The result was the same as 10.
  • Example 18 in which the electroless plating step (c) was changed from electroless nickel-phosphorus plating to electroless nickel-cobalt alloy plating based on Example 1, the stability of the nickel colloid catalyst solution over time and the plating film were obtained. The evaluation of the appearance was the same result as in Example 1.
  • the nickel colloid catalyst solution for electroless nickel or nickel alloy plating and the electroless nickel or nickel alloy plating method of the present invention can be suitably used for electroless plating on a non-conductive substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemically Coating (AREA)

Abstract

A uniform and even nickel or nickel alloy coating film is obtained by: bringing a non-conductive substrate into contact with a solution containing an adsorption enhancer comprising a surfactant to enhance the adsorption performance of the non-conductive substrate and thereby enhancing the catalytic activity of the non-conductive substrate; then applying a catalyst to the non-conductive substrate by using a nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, said solution comprising (A) a soluble nickel salt, (B) a reducing agent, (C) a prescribed colloid stabilizer such as a polycarboxylic acid or an oxycarboxylic acid, and (D) a prescribed synthetic water-soluble polymer such as a polyvinylpyrrolidone or a polyethylenimine, and having excellent long-term stability; and then performing an electroless nickel or nickel alloy plating procedure.

Description

無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液、無電解ニッケル又はニッケル合金メッキ方法、及びニッケル又はニッケル合金メッキ基板の製造方法Nickel colloid catalyst solution for electroless nickel or nickel alloy plating, electroless nickel or nickel alloy plating method, and method for manufacturing nickel or nickel alloy plated substrate.
 本発明は、非導電性基板に無電解ニッケル又はニッケル合金メッキを施す際に前処理として触媒付与をするためのニッケルコロイド触媒液、当該ニッケルコロイド触媒液を用いた無電解ニッケル又はニッケル合金メッキ方法、及び当該メッキ方法でニッケル又はニッケル合金皮膜を形成するニッケル又はニッケル合金メッキ基板の製造方法に関する。より詳しくは、本発明は、特定のコロイド安定剤と特定の合成系水溶性ポリマーとを所定条件で組み合わせて含有しており、経時安定性が効果的に促進され、もって、ニッケル又はニッケル合金皮膜の性状を一段と改善できるニッケルコロイド触媒液を提供する。 INDUSTRIAL APPLICABILITY The present invention relates to a nickel colloidal catalyst solution for imparting a catalyst as a pretreatment when subjecting a non-conductive substrate to nickel-free nickel or nickel alloy plating, and a nickel-free nickel or nickel alloy plating method using the nickel colloidal catalyst solution. , And a method for manufacturing a nickel or nickel alloy plated substrate that forms a nickel or nickel alloy film by the plating method. More specifically, the present invention contains a specific colloidal stabilizer and a specific synthetic water-soluble polymer in combination under predetermined conditions, effectively promoting stability over time, and thus a nickel or nickel alloy film. Provided is a nickel colloidal catalyst solution capable of further improving the properties of the above.
 ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ABS樹脂、PET樹脂などの樹脂基板を初め、ガラス基板、セラミックス基板などの非導電性基板上に無電解ニッケル又はニッケル合金メッキを施すには、先ず、基板上にパラジウム、金、銀、銅、ニッケルなどの金属を吸着させてこれを触媒核とした後、この触媒核を介して無電解ニッケル又はニッケル合金メッキ液によりニッケル系皮膜を基板上に析出させる方式が一般的である。 Electroless nickel or nickel-phosphorus on non-conductive substrates such as glass substrates and ceramics substrates, including resin substrates such as glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate resin, ABS resin, and PET resin. To apply gold plating, first, metals such as palladium, gold, silver, copper, and nickel are adsorbed on the substrate to form a catalyst nucleus, and then electroless nickel or nickel alloy plating solution is used via the catalyst nucleus. A method of depositing a nickel-based film on a substrate is common.
 そこで、ニッケル又はニッケル合金メッキを含む無電解メッキを施すに際して、本出願人は、先に、次の特許文献1(以下、基準発明という)で、無電解ニッケル又はニッケル合金メッキの予備処理として非導電性基板にニッケル触媒核を付与するためのニッケルコロイド触媒液を提示した。
(1)特許文献1
 即ち、無電解ニッケル又はニッケル合金メッキを施す非導電性基板に接触させて触媒付与を行うためのニッケルコロイド触媒液であって、
(A)可溶性ニッケル塩と、
(B)還元剤と、
(C)モノカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、及びポリカルボン酸類よりなる群から選ばれた少なくとも一種のコロイド安定剤と
を含有する、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である(請求項1参照)。
 この基準発明では、可溶性ニッケル塩に対する錯化作用を有するオキシカルボン酸類などの特定のコロイド安定剤を含有させることで、ニッケルコロイド触媒液の経時安定性を向上させることができ、また、上記コロイド安定剤や還元剤などの含有量を特定すると、ニッケルコロイド触媒液の経時安定性をさらに向上させることができる(請求項2参照)。
Therefore, when performing electroless plating including nickel or nickel alloy plating, the applicant has previously referred to the following Patent Document 1 (hereinafter referred to as a reference invention) as a pretreatment for electroless nickel or nickel alloy plating. A nickel colloidal catalyst solution for imparting nickel catalyst nuclei to a conductive substrate was presented.
(1) Patent Document 1
That is, it is a nickel colloidal catalyst solution for applying a catalyst by contacting it with an electroless nickel or a non-conductive substrate to be plated with a nickel alloy.
(A) Soluble nickel salt and
(B) Reducing agent and
(C) A nickel colloid catalyst solution for electroless nickel or nickel alloy plating containing at least one colloid stabilizer selected from the group consisting of monocarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and polycarboxylic acids. (See claim 1).
In this reference invention, the stability of the nickel colloid catalyst solution over time can be improved by containing a specific colloidal stabilizer such as oxycarboxylic acids having a complexing effect on the soluble nickel salt, and the colloidal stability is described above. By specifying the content of the agent, reducing agent, etc., the stability of the nickel colloid catalyst solution over time can be further improved (see claim 2).
 同じく、非導電性基板上にニッケル又はニッケル合金メッキを含む無電解メッキを行う際の予備処理として、当該非導電性基板にニッケル触媒核を付与するための触媒液の従来技術を挙げると、次の通りである。
 但し、特許文献2はニッケル触媒液及び他種の触媒液を包含するものであり、特許文献3は貴金属系の触媒液である。
(2)特許文献2
 貴金属触媒液に替わる無電解メッキ用の触媒液(即ち、微細な金属体)に関するもので、当該触媒液は、
ニッケル、銅、及びコバルトから選ばれた金属の塩と、
ノニオン性界面活性剤及びゼラチンから選ばれた分散剤と、
モノカルボン酸、ジカルボン酸、オキシカルボン酸、及びこれらの塩から選ばれた錯化剤と、
水素化ホウ素類などの還元剤と、
次亜リン酸類などの安定剤と
を含み、pH1~10に調整される(特許請求の範囲の第1項~第7項)。
 上記金属の塩の含有量は5~50g/Lで(第3頁左上欄第18行)、上記錯化剤の含有量は10~50g/Lであり(第3頁左上欄第10行)、錯化剤の代表例は安息香酸、コハク酸、乳酸、酢酸ナトリウムなどである(第3頁左上欄第9行~第10行)。
 上記触媒液を製造する具体的な実施例1~4をみると(第3頁左下欄第3行~第4頁右上欄第9行)、実施例1~2はニッケル触媒液の例、実施例3はコバルト触媒液の例、実施例4は銅触媒液の例である。
 このうち、実施例1では、硫酸ニッケルと、ゼラチン(分散剤)と、水酸化ホウ素ナトリウム(還元剤)と、次亜リン酸ナトリウム(安定剤)とを含むニッケル触媒液に、ABS樹脂を浸漬した後、無電解ニッケルメッキ液によってABS樹脂表面にニッケルメッキ皮膜を形成している。しかし、このニッケル触媒液に錯化剤は含まれていない(第3頁左下欄第3行~右下欄第1行)。
 同じく、実施例2のニッケル触媒液にも、ニッケル塩と還元剤と安定剤(次亜リン酸塩)とは含まれるが、錯化剤は含まれない(第3頁右下欄第2行~第10行)。実施例4の銅触媒液にも、錯化剤は含まれない(第4頁左上欄第12行~第20行)。
 一方、実施例3のコバルト触媒液には、錯化剤として酢酸ナトリウムが含まれる。
Similarly, as a preliminary treatment when performing electroless plating including nickel or nickel alloy plating on a non-conductive substrate, the prior art of a catalyst solution for imparting nickel catalyst nuclei to the non-conductive substrate is as follows. It is a street.
However, Patent Document 2 includes a nickel catalyst solution and a catalyst solution of another kind, and Patent Document 3 is a noble metal-based catalyst solution.
(2) Patent Document 2
It relates to a catalyst solution for electroless plating (that is, a fine metal body) instead of a noble metal catalyst solution, and the catalyst solution is
Metal salts selected from nickel, copper, and cobalt,
Dispersants selected from nonionic surfactants and gelatin,
With a complexing agent selected from monocarboxylic acids, dicarboxylic acids, oxycarboxylic acids, and salts thereof,
With reducing agents such as boron hydride,
It contains stabilizers such as hypochlorous acids and is adjusted to pH 1 to 10 (claims 1 to 7).
The salt content of the metal is 5 to 50 g / L (page 3, upper left column, line 18), and the content of the complexing agent is 10 to 50 g / L (page 3, upper left column, line 10). , Typical examples of complexing agents are benzoic acid, succinic acid, lactic acid, sodium acetate and the like (page 3, upper left column, lines 9 to 10).
Looking at specific examples 1 to 4 for producing the above catalyst solution (page 3, lower left column, line 3 to page 4, upper right column, line 9), Examples 1 and 2 are examples of nickel catalyst solutions. Example 3 is an example of a cobalt catalyst solution, and Example 4 is an example of a copper catalyst solution.
Of these, in Example 1, the ABS resin was immersed in a nickel catalyst solution containing nickel sulfate, gelatin (dispersant), sodium boron hydroxide (reducing agent), and sodium hypophosphite (stabilizer). After that, a nickel plating film is formed on the surface of the ABS resin by the electroless nickel plating solution. However, this nickel catalyst solution does not contain a complexing agent (page 3, lower left column, line 3 to lower right column, line 1).
Similarly, the nickel catalyst solution of Example 2 also contains a nickel salt, a reducing agent, and a stabilizer (hypophosphate), but does not contain a complexing agent (page 3, lower right column, line 2). ~ 10th line). The copper catalyst solution of Example 4 also does not contain a complexing agent (lines 12 to 20 in the upper left column of page 4).
On the other hand, the cobalt catalyst solution of Example 3 contains sodium acetate as a complexing agent.
(3)特許文献3
 シリコン基板を触媒液に接触させた後、無電解ニッケルメッキを施す工程を含む太陽電池の製造に関するもので、上記触媒液は、
(a)パラジウム、金、銀などの貴金属又はその化合物と、
(b)エチレングリコール、プロピレングリコール、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、ポリアクリル酸などから選ばれた増粘剤と、
(c)水と
を含有する。
 従って、触媒液の触媒核となる金属は、貴金属又はその化合物であり、ニッケルではない。
(3) Patent Document 3
The present invention relates to the manufacture of a solar cell including a step of applying electroless nickel plating after contacting a silicon substrate with a catalyst solution.
(A) Precious metals such as palladium, gold and silver or their compounds,
(B) Thickeners selected from ethylene glycol, propylene glycol, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylic acid, etc.
(C) Contains water.
Therefore, the metal that becomes the catalyst nucleus of the catalyst liquid is a noble metal or a compound thereof, not nickel.
特開2016-056421号公報Japanese Unexamined Patent Publication No. 2016-056421 特開平02-093076号公報Japanese Unexamined Patent Publication No. 02-93076 特開2011-168889号公報Japanese Unexamined Patent Publication No. 2011-168889
 上記特許文献2の実施例1~2には、ニッケル触媒液が開示されているが、当該ニッケル触媒液は、ニッケル塩と還元剤と次亜リン酸塩とを主成分とするものであり、経時安定性の面で充分でないという問題がある。
 上記特許文献3には、無電解メッキ液としてニッケル液が開示されているが、上述の通り、無電解メッキ前の触媒付与工程で用いる触媒液は、パラジウム、金、銀などの貴金属又はその化合物を触媒核としており、ニッケル触媒液ではない。但し、当該触媒液には、PVA、PVPなどの増粘剤が含まれている。
Examples 1 and 2 of Patent Document 2 disclose a nickel catalyst solution, which contains a nickel salt, a reducing agent, and a hypophosphate as main components. There is a problem that it is not sufficient in terms of stability over time.
The above-mentioned Patent Document 3 discloses a nickel solution as an electroless plating solution, but as described above, the catalyst solution used in the catalyst applying step before electroless plating is a noble metal such as palladium, gold, silver or a compound thereof. Is a catalyst nucleus, not a nickel catalyst solution. However, the catalyst solution contains a thickener such as PVA and PVP.
 一方、上記基準発明のニッケルコロイド触媒液は、ニッケル塩に錯化作用を呈するオキシカルボン酸類、アミノカルボン酸類などの特定のコロイド安定剤を含有しているので、経時安定性が向上している。
 本発明は、この基準発明を前提として、ニッケルコロイド触媒液の経時安定性に焦点を当て、当該経時安定性を効果的に増進させるとともに、触媒付与した非導電性基板上に、高度に均一なニッケル又はニッケル合金皮膜を形成することを技術的課題とする。
On the other hand, since the nickel colloidal catalyst solution of the above standard invention contains specific colloidal stabilizers such as oxycarboxylic acids and aminocarboxylic acids that have a complexing effect on nickel salts, the stability over time is improved.
Based on this reference invention, the present invention focuses on the temporal stability of the nickel-based colloid catalyst solution, effectively enhances the temporal stability, and is highly uniform on the catalyst-imposed non-conductive substrate. The technical task is to form a nickel or nickel alloy film.
 上記基準発明では、成分(A)~(C)を含むニッケルコロイド触媒液に、さらに所定の水溶性ポリマーを複合的に組み合わせると、コロイド分散性が向上し、無電解ニッケル又はニッケル合金メッキの際に、ニッケル系皮膜の均一性の改善やムラの解消が期待できることが述べられている(基準発明の段落[0031]参照)。
 この水溶性ポリマーは、合成系ポリマー、天然由来の水溶性ポリマー、或いは、セルロース誘導体のような半合成系ポリマーから選ばれる。
In the above standard invention, when a predetermined water-soluble polymer is further combined with the nickel colloidal catalyst solution containing the components (A) to (C) in a complex manner, the colloidal dispersibility is improved, and electroless nickel or nickel alloy plating is performed. It is stated that it can be expected to improve the uniformity of the nickel-based film and eliminate unevenness (see paragraph [0031] of the standard invention).
The water-soluble polymer is selected from synthetic polymers, naturally occurring water-soluble polymers, or semi-synthetic polymers such as cellulose derivatives.
 本発明者らは、上記基準発明に基づいて、成分(A)~(C)及び水溶性ポリマーの4成分からなるニッケルコロイド触媒液並びにその経時安定性について鋭意研究を行った。当該鋭意研究の過程で、コロイド安定剤としてオキシカルボン酸類、アミノカルボン酸類などの所定のコロイド安定剤(C)を選択し、水溶性ポリマーとして所定の合成系水溶性ポリマー(D)を選択するとともに、成分(C)の含有量及び成分(D)の含有量、並びに、成分(C)の含有量と成分(D)の含有量とのモル比を各々適正範囲に調整したニッケルコロイド触媒液は、
・経時安定性が基準発明よりも加重的に促進されること、
・触媒付与した非導電性基板に無電解ニッケル又はニッケル合金メッキを施すことによって、均一性に優れたニッケル又はニッケル合金皮膜が得られること、
・所定の合成系水溶性ポリマーは、上記基準発明にて開示された範囲のポリマーとは異なり、開示された範囲の一部のポリマーを新たなポリマーで置き換える必要があること
を、本発明者らは新たに見出して、本発明を完成した。
Based on the above-mentioned reference invention, the present inventors have diligently studied a nickel colloidal catalyst solution composed of four components (A) to (C) and a water-soluble polymer and its stability over time. In the process of the diligent research, a predetermined colloidal stabilizer (C) such as oxycarboxylic acids and aminocarboxylic acids is selected as the colloidal stabilizer, and a predetermined synthetic water-soluble polymer (D) is selected as the water-soluble polymer. , The content of the component (C) and the content of the component (D), and the molar ratio of the content of the component (C) to the content of the component (D) are adjusted to appropriate ranges. ,
・ Stability over time is promoted more weighted than the standard invention.
-By applying electroless nickel or nickel alloy plating to a non-conductive substrate to which a catalyst is applied, a nickel or nickel alloy film with excellent uniformity can be obtained.
-The present inventors have stated that the predetermined synthetic water-soluble polymer is different from the polymer in the range disclosed in the above standard invention, and it is necessary to replace a part of the polymer in the disclosed range with a new polymer. Newly found and completed the present invention.
 即ち、本発明1は、無電解ニッケル又はニッケル合金メッキを施す非導電性基板を接触させて、該非導電性基板に触媒付与を行うためのニッケルコロイド触媒液であって、
 (A)可溶性ニッケル塩と、
 (B)還元剤と、
 (C)ポリカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、及び糖質から選ばれた少なくとも一種のコロイド安定剤と、
 (D)ポリビニルピロリドン類(PVP類)、ポリビニルアルコール(PVA)、ポリエチレンイミン類(PEI類)、ポリアリルアミン類(PAA類)、ポリビニルイミダゾール類(PVI類)、及びポリアクリルアミド類(PAM類)から選ばれた少なくとも一種の合成系水溶性ポリマーと
を含有しており、
 上記コロイド安定剤(C)の含有量が、上記ニッケルコロイド触媒液に対して0.001モル/L~5.0モル/Lであり、且つ、上記合成系水溶性ポリマー(D)の含有量が、上記ニッケルコロイド触媒液に対して0.0005モル/L~0.3モル/Lであるとともに、
 上記コロイド安定剤(C)の含有量と上記合成系水溶性ポリマー(D)の含有量とのモル比(C/D)が、0.01~1000であることを特徴とする、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である。
That is, the present invention 1 is a nickel colloidal catalyst solution for contacting a non-conductive substrate to be plated with electroless nickel or nickel alloy to impart a catalyst to the non-conductive substrate.
(A) Soluble nickel salt and
(B) Reducing agent and
(C) At least one colloidal stabilizer selected from polycarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and carbohydrates.
(D) From polyvinylpyrrolidones (PVPs), polyvinyl alcohol (PVA), polyethyleneimines (PEIs), polyallylamines (PAAs), polyvinylimidazoles (PVIs), and polyacrylamides (PAMs) Contains at least one synthetic water-soluble polymer of choice,
The content of the colloidal stabilizer (C) is 0.001 mol / L to 5.0 mol / L with respect to the nickel colloidal catalyst solution, and the content of the synthetic water-soluble polymer (D). However, it is 0.0005 mol / L to 0.3 mol / L with respect to the above nickel colloid catalyst solution, and
Electroless nickel characterized in that the molar ratio (C / D) of the content of the colloidal stabilizer (C) to the content of the synthetic water-soluble polymer (D) is 0.01 to 1000. Alternatively, it is a nickel colloid catalyst solution for nickel alloy plating.
 本発明2は、上記本発明1において、上記コロイド安定剤(C)が、
 マロン酸、コハク酸、グルタル酸、アジピン酸、シュウ酸、及びこれらの塩から選ばれた少なくとも一種のポリカルボン酸類;
 クエン酸、酒石酸、リンゴ酸、グルコン酸、グリコール酸、乳酸、アスコルビン酸、ヒドロキシ酪酸、グルコヘプトン酸、シトラマル酸、エリソルビン酸、及びこれらの塩から選ばれた少なくとも一種のオキシカルボン酸類;
 グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、グリシン、N,N-ビス(2-ヒドロキシエチル)グリシン、(S,S)-エチレンジアミンコハク酸、及びこれらの塩から選ばれた少なくとも一種のアミノカルボン酸類;並びに
 グルコース、ガラクトース、マンノース、フルクトース、ラクトース、スクロース、マルトース、パラチノース、キシロース、トレハロース、ソルビトール、キシリトール、マンニトール、マルチトール、エリスリトール、還元水飴、ラクチトール、還元パラチノース、及びグルコノラクトンから選ばれた少なくとも一種の糖質
よりなる群から選ばれた少なくとも一種であることを特徴とする、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である。
In the present invention 2, the colloidal stabilizer (C) is used in the present invention 1.
Malonic acid, succinic acid, glutaric acid, adipic acid, oxalic acid, and at least one polycarboxylic acid selected from these salts;
Citric acid, tartaric acid, malic acid, gluconic acid, glycolic acid, lactic acid, ascorbic acid, hydroxybutyric acid, glucoheptic acid, citramalic acid, erythorbic acid, and at least one oxycarboxylic acid selected from these salts;
Glutamic acid, dicarboxymethyl glutamate, ornithine, cysteine, glycine, N, N-bis (2-hydroxyethyl) glycine, (S, S) -ethylenediamine succinic acid, and at least one aminocarboxylic acid selected from salts thereof. And at least selected from glucose, galactose, mannose, fructose, lactose, sucrose, maltose, palatinose, xylose, trehalose, sorbitol, xylitol, mannitol, martitol, erythritol, reduced candy, lactitol, reduced palatinose, and gluconolactone. It is a nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which is characterized by being at least one selected from the group consisting of one kind of sugar.
 本発明3は、上記本発明1又は2において、上記還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、及び還元糖類よりなる群から選ばれた少なくとも一種であることを特徴とする、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である。 In the present invention 3, in the present invention 1 or 2, the reducing agent (B) is a boron hydride compound, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyvalent. A nickel colloid catalyst solution for electroless nickel or nickel alloy plating, which is at least one selected from the group consisting of naphthols, phenol sulfonic acids, naphthol sulfonic acids, sulfin acids, and reducing saccharides.
 本発明4は、
 (a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる吸着促進工程と、
 (b)上記本発明1~3のいずれかのニッケルコロイド触媒液に、吸着促進された非導電性基板を接触させて、該非導電性基板の表面にニッケルコロイド粒子を吸着させる触媒付与工程と、
 (c)触媒付与された非導電性基板上に、無電解ニッケル又はニッケル合金メッキ液を用いてニッケル又はニッケル合金皮膜を形成する無電解メッキ工程と
からなることを特徴とする、無電解ニッケル又はニッケル合金メッキ方法である。
The present invention 4
(A) Contact the non-conductive substrate with a liquid containing at least one adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Adsorption promotion step to make
(B) A catalyst-imparting step of bringing a non-conductive substrate whose adsorption has been promoted into contact with the nickel colloid catalyst solution according to any one of the present inventions 1 to 3 to adsorb nickel colloid particles on the surface of the non-conductive substrate.
(C) Electroless nickel or nickel-free plating, which comprises an electroless plating step of forming a nickel or nickel alloy film on a non-conductive substrate to which a catalyst is applied, using an electroless nickel or nickel alloy plating solution. It is a nickel alloy plating method.
 本発明5は、上記本発明4において、
 先ず、エッチング処理液に非導電性基板を接触させて、該非導電性基板の表面を粗面化するエッチング処理工程(p)を施すとともに、
 該非導電性基板に対して、上記エッチング処理工程(p)の次に上記吸着促進工程(a)を施し、その後、上記触媒付与工程(b)及び上記無電解メッキ工程(c)を順次施す
ことを特徴とする、無電解ニッケル又はニッケル合金メッキ方法である。
The present invention 5 is the above-mentioned invention 4.
First, the non-conductive substrate is brought into contact with the etching treatment liquid to perform an etching treatment step (p) for roughening the surface of the non-conductive substrate, and at the same time, the etching treatment step (p) is performed.
The non-conductive substrate is subjected to the adsorption promotion step (a) after the etching treatment step (p), and then the catalyst application step (b) and the electroless plating step (c) in sequence. This is an electroless nickel or nickel alloy plating method.
 本発明6は、上記本発明4又は5において、上記吸着促進工程(a)で用いる吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする、無電解ニッケル又はニッケル合金メッキ方法である。 The present invention 6 is characterized in that, in the present invention 4 or 5, the adsorption accelerator used in the adsorption promoting step (a) is a cationic surfactant and / or an amphoteric surfactant. Alternatively, it is a nickel alloy plating method.
 本発明7は、上記本発明4~6のいずれかの無電解ニッケル又はニッケル合金メッキ方法によって、非導電性基板上にニッケル又はニッケル合金皮膜を形成することを特徴とする、ニッケル又はニッケル合金メッキ基板の製造方法である。 The present invention 7 is characterized in that a nickel or nickel alloy film is formed on a non-conductive substrate by the electroless nickel or nickel alloy plating method according to any one of the above 4 to 6 of the present invention. This is a method for manufacturing a substrate.
 本発明のニッケルコロイド触媒液では、可溶性ニッケル塩(A)に錯化作用を呈するオキシカルボン酸類、アミノカルボン酸類などから選ばれた所定のコロイド安定剤(C)と、PVP類、PEI類などから選ばれた所定の合成系水溶性ポリマー(D)とが併用され、且つ、上記成分(C)の含有量及び上記成分(D)の含有量、並びに、成分(C)の含有量と成分(D)の含有量とのモル比(C/D)が各々適正範囲に調整されている。従って、当該成分(C)と成分(D)との有機的な作用で、本発明のニッケルコロイド触媒液は、コロイド粒子の分散性、即ち、経時安定性が基準発明と比較して有効に促進されており、もって、触媒付与後の無電解ニッケル又はニッケル合金メッキによって得られる無電解ニッケル又はニッケル合金皮膜は、ムラがなく、均一性に優れている。
 特に、所定の合成系水溶性ポリマー(D)の存在下においては、コロイド安定剤(C)の含有量が適正範囲内のごく少量であっても、モル比(C/D)が適正範囲に調整されているので、ニッケルコロイド触媒液の経時安定性が良好に保持され得る点は、注目すべきである。
In the nickel colloidal catalyst solution of the present invention, a predetermined colloidal stabilizer (C) selected from oxycarboxylic acids and aminocarboxylic acids that have a complexing effect on the soluble nickel salt (A), PVPs, PEIs and the like are used. The content of the component (C) and the content of the component (D), and the content and the component of the component (C) are used in combination with the selected predetermined synthetic water-soluble polymer (D). The molar ratio (C / D) with the content of D) is adjusted to an appropriate range. Therefore, due to the organic action of the component (C) and the component (D), the nickel colloid catalyst solution of the present invention effectively promotes the dispersibility of the colloidal particles, that is, the stability over time, as compared with the reference invention. Therefore, the electroless nickel or nickel alloy film obtained by electroless nickel or nickel alloy plating after catalyst application has no unevenness and is excellent in uniformity.
In particular, in the presence of the predetermined synthetic water-soluble polymer (D), the molar ratio (C / D) is within the appropriate range even if the content of the colloidal stabilizer (C) is very small within the appropriate range. It should be noted that the stability over time of the nickel colloidal catalyst solution can be well maintained because it is adjusted.
 本発明では、コロイド安定剤(C)として、上記基準発明にて用いられたオキシカルボン酸類、ポリカルボン酸類、及びアミノカルボン酸類に加えて、糖質も選択することができる。
 また、本発明に用いられる水溶性ポリマーは、上記基準発明にて用いられた水溶性ポリマーのうち、ポリビニルピロリドン類(PVP類)、ポリビニルアルコール(PVA)、ポリエチレンイミン類(PEI類)などの合成系水溶性ポリマー(D)に限定され、後述するように、澱粉、植物ガムなどの天然由来のポリマー、或いは、カルボキシメチルセルロース(CMC)などのセルロース誘導体といった半合成系ポリマーは含まれない。
In the present invention, as the colloidal stabilizer (C), a sugar can be selected in addition to the oxycarboxylic acids, polycarboxylic acids, and aminocarboxylic acids used in the above standard invention.
The water-soluble polymer used in the present invention is the synthesis of polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), etc. among the water-soluble polymers used in the above standard invention. It is limited to the water-soluble polymer (D), and does not include naturally-derived polymers such as starch and vegetable gum, or semi-synthetic polymers such as cellulose derivatives such as carboxymethyl cellulose (CMC), as will be described later.
 本発明では、非導電性基板にニッケルコロイド粒子を吸着させて触媒付与した後、無電解ニッケル又はニッケル合金メッキを施すことを基本原理とするが、この触媒付与の前処理として、非導電性基板を界面活性剤である吸着促進剤の含有液に接触させる吸着促進処理を加重的に施す。すなわち、本発明では、吸着促進工程、触媒付与工程、及び無電解ニッケル又はニッケル合金メッキ工程を順次行うことにより、触媒付与時の触媒活性を強化し、無電解メッキにより析出するニッケル又はニッケル合金皮膜の均一性を改善し、且つ、皮膜のムラ発生を良好に防止できる。 In the present invention, the basic principle is that nickel colloidal particles are adsorbed on a non-conductive substrate to apply a catalyst, and then electroless nickel or nickel alloy plating is applied. As a pretreatment for applying the catalyst, the non-conductive substrate is applied. Is weighted and subjected to an adsorption promotion treatment in which the substance is brought into contact with the liquid containing the adsorption accelerator, which is a surfactant. That is, in the present invention, the adsorption promotion step, the catalyst applying step, and the electroless nickel or nickel alloy plating step are sequentially performed to enhance the catalytic activity at the time of applying the catalyst, and the nickel or nickel alloy film precipitated by the electroless plating. It is possible to improve the uniformity of the film and satisfactorily prevent the occurrence of unevenness of the film.
 本発明は、第一に、非導電性基板を接触させて、該非導電性基板に触媒付与を行うためのニッケルコロイド触媒液であって、(A)可溶性ニッケル塩と、(B)還元剤と、(C)所定のコロイド安定剤と、(D)所定の合成系水溶性ポリマーとを含有し、成分(C)の含有量及び成分(D)の含有量、並びに、成分(C)の含有量と成分(D)の含有量とのモル比(C/D)がそれぞれ所定範囲に調整された、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液である(本発明1に相当)。また本発明は、第二に、上記ニッケルコロイド触媒液を用いた無電解ニッケル又はニッケル合金メッキ方法であって、予め、非導電性基板を界面活性剤の含有液で吸着促進処理し、次いで、当該ニッケルコロイド触媒液により触媒付与した後に、無電解メッキを行う方法である(本発明4に相当)。さらに本発明は、第三に、上記無電解メッキ方法によってニッケル又はニッケル合金皮膜を形成する、ニッケル又はニッケル合金基板の製造方法である(本発明7に相当)。
 また、上記非導電性基板は、ガラス・エポキシ樹脂、ガラス・ポリイミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリカーボネート(PC)樹脂、ポリアミド(PA)樹脂、ポリスチレン(PS)樹脂、ポリエステル樹脂(例えば、ポリブチレンタレフタレート(PBT)樹脂など)、ABS樹脂、PET樹脂、及びこれらのポリマーアロイ(例えば、PC/ABS、PBT/ABS、PA/ABS、PC/PS)などの樹脂基板を初め、ガラス基板、セラミックス基板などをいう。
The present invention is, first, a nickel colloidal catalyst liquid for contacting an electroless substrate to impart a catalyst to the electroless substrate, wherein (A) a soluble nickel salt and (B) a reducing agent. , (C) a predetermined colloidal stabilizer and (D) a predetermined synthetic water-soluble polymer, and the content of the component (C), the content of the component (D), and the content of the component (C). A nickel colloid catalyst solution for electroless nickel or nickel alloy plating in which the molar ratio (C / D) of the amount and the content of the component (D) is adjusted to a predetermined range, respectively (corresponding to the present invention 1). The present invention is secondly an electroless nickel or nickel alloy plating method using the nickel colloid catalyst solution, wherein the non-conductive substrate is previously adsorbed and promoted with a solution containing a surfactant, and then the non-conductive substrate is adsorbed. This is a method of performing electroless plating after applying a catalyst with the nickel colloidal catalyst solution (corresponding to the present invention 4). Further, the present invention is a third method for manufacturing a nickel or nickel alloy substrate (corresponding to the present invention 7) in which a nickel or nickel alloy film is formed by the above electroless plating method.
The non-conductive substrate is glass / epoxy resin, glass / polyimide resin, epoxy resin, polyimide resin, polycarbonate (PC) resin, polyamide (PA) resin, polystyrene (PS) resin, polyester resin (for example, polybutylene). Talephthalate (PBT) resin, etc.), ABS resin, PET resin, and resin substrates such as these polymer alloys (eg, PC / ABS, PBT / ABS, PA / ABS, PC / PS), glass substrates, ceramics, etc. Refers to a board or the like.
 上記本発明1のニッケルコロイド触媒液の基本組成は、(A)可溶性ニッケル塩、(B)還元剤、(C)所定のコロイド安定剤、及び(D)所定の合成系水溶性ポリマーである。
 上記可溶性ニッケル塩(A)は、水溶液中でニッケルイオンを発生させる可溶性の塩であれば任意のものが使用でき、特段の制限はなく、難溶性塩をも排除しない。
 具体的には、硫酸ニッケル、酸化ニッケル、塩化ニッケル、硫酸ニッケルアンモニウム、酢酸ニッケル、硝酸ニッケル、炭酸ニッケル、スルファミン酸ニッケル、或いは有機スルホン酸やカルボン酸のニッケル塩などが挙げられる。
The basic composition of the nickel colloidal catalyst solution of the present invention 1 is (A) a soluble nickel salt, (B) a reducing agent, (C) a predetermined colloidal stabilizer, and (D) a predetermined synthetic water-soluble polymer.
As the soluble nickel salt (A), any soluble salt that generates nickel ions in an aqueous solution can be used, there is no particular limitation, and the sparingly soluble salt is not excluded.
Specific examples thereof include nickel sulfate, nickel oxide, nickel chloride, nickel ammonium sulfate, nickel acetate, nickel nitrate, nickel carbonate, nickel sulfamate, and nickel salts of organic sulfonic acid and carboxylic acid.
 上記還元剤(B)としては、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、還元糖類などが挙げられる。
 水素化ホウ素化合物は、水素化ホウ素ナトリウム、水素化ホウ素カリウムなどである。アミンボラン類は、ジメチルアミンボラン、ジエチルアミンボランなどである。アルデヒド類は、ホルムアルデヒド、グリオキシル酸又はその塩などである。多価フェノール類は、カテコール、ヒドロキノン、レゾルシン、ピロガロール、フロログルシン、没食子酸などである。フェノールスルホン酸類は、フェノールスルホン酸、クレゾールスルホン酸又はその塩などである。還元糖類は、グルコース、フルクトースなどである。
Examples of the reducing agent (B) include boron hydride compounds, amine borons, hypophosphoric acids, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyhydric naphthols, phenol sulfonic acids, naphthol sulfonic acids, and sulfin. Acids, reducing sugars and the like can be mentioned.
The boron borohydride compound is sodium borohydride, potassium borohydride and the like. Amineboranes include dimethylamineborane and diethylamineborane. Aldehydes include formaldehyde, glyoxylic acid or salts thereof. Polyphenols include catechol, hydroquinone, resorcin, pyrogallol, fluoroglucin, gallic acid and the like. Phenolic sulfonic acids include phenol sulfonic acid, cresol sulfonic acid or salts thereof. Reducing saccharides include glucose, fructose and the like.
 上記所定のコロイド安定剤(C)は、無電解ニッケル又はニッケル合金メッキ液中でニッケル錯体を形成する化合物であり、ニッケルコロイド触媒液の経時安定性を担保する機能を果たす。
 上記コロイド安定剤(C)は、ポリカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、及び糖質から選ばれた少なくとも一種である。
 上記ポリカルボン酸類は、ポリカルボン酸及びその塩であり、飽和ポリカルボン酸及びその塩から選ばれた少なくとも一種が好ましいが、マレイン酸、イタコン酸、シトラコン酸などの不飽和ポリカルボン酸及びその塩を排除するものではない。
 上記飽和ポリカルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、シュウ酸などが挙げられる。
 従って、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸などのモノカルボン酸及びその塩は排除される。
 但し、本発明において、ポリカルボン酸類からなるコロイド安定剤(C)と、上記モノカルボン酸などとを併用することは差し支えない。
The predetermined colloidal stabilizer (C) is a compound that forms a nickel complex in electroless nickel or a nickel alloy plating solution, and functions to ensure the stability of the nickel colloidal catalyst solution over time.
The colloidal stabilizer (C) is at least one selected from polycarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and sugars.
The polycarboxylic acids are polycarboxylic acids and salts thereof, and at least one selected from saturated polycarboxylic acids and salts thereof is preferable, but unsaturated polycarboxylic acids such as maleic acid, itaconic acid, and citraconic acid and salts thereof. Does not exclude.
Examples of the saturated polycarboxylic acid include malonic acid, succinic acid, glutaric acid, adipic acid, and oxalic acid.
Therefore, monocarboxylic acids such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid and stearic acid and salts thereof are excluded.
However, in the present invention, the colloidal stabilizer (C) composed of polycarboxylic acids and the above monocarboxylic acid may be used in combination.
 上記オキシカルボン酸類は、オキシカルボン酸及びその塩から選ばれた少なくとも一種である。
 上記オキシカルボン酸としては、クエン酸、酒石酸、リンゴ酸、グルコン酸、グリコール酸、乳酸、アスコルビン酸、ヒドロキシ酪酸、グルコヘプトン酸、シトラマル酸、エリソルビン酸などが挙げられる。
The oxycarboxylic acids are at least one selected from oxycarboxylic acids and salts thereof.
Examples of the oxycarboxylic acid include citric acid, tartaric acid, malic acid, gluconic acid, glycolic acid, lactic acid, ascorbic acid, hydroxybutyric acid, glucoheptic acid, citramaric acid, and erythorbic acid.
 上記アミノカルボン酸類は、アミノカルボン酸及びその塩から選ばれた少なくとも一種である。
 上記アミノカルボン酸としては、グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、グリシン、N,N-ビス(2-ヒドロキシエチル)グリシン、(S,S)-エチレンジアミンコハク酸などが挙げられる。
The aminocarboxylic acids are at least one selected from aminocarboxylic acids and salts thereof.
Examples of the aminocarboxylic acid include glutamic acid, dicarboxymethyl glutamic acid, ornithine, cysteine, glycine, N, N-bis (2-hydroxyethyl) glycine, and (S, S) -ethylenediamine succinic acid.
 上記糖質は、グルコース、ガラクトース、マンノース、フルクトース、ラクトース、スクロース、マルトース、パラチノース、キシロース、トレハロース、ソルビトール、キシリトール、マンニトール、マルチトール、エリスリトール、還元水飴、ラクチトール、還元パラチノース、及びグルコノラクトンから選ばれた少なくとも一種などである。 The above sugars are selected from glucose, galactose, mannose, fructose, lactose, sucrose, maltose, palatinose, xylose, trehalose, sorbitol, xylitol, mannitol, maltitol, erythritol, reduced candy, lactitol, reduced palatinose, and gluconolactone. At least one kind of lactitol.
 上記所定の合成系水溶性ポリマー(D)は、ニッケルコロイド粒子の分散性を向上させ、もって、触媒付与後の無電解ニッケル又はニッケル合金メッキによって、均一でムラのない無電解ニッケル又はニッケル合金皮膜の析出に寄与する機能を果たす。
 上記合成系水溶性ポリマー(D)は、ポリビニルピロリドン類(PVP類)、ポリビニルアルコール(PVA)、ポリエチレンイミン類(PEI類)、ポリアリルアミン類(PAA類)、ポリビニルイミダゾール類(PVI類)、及びポリアクリルアミド類(PAM類)から選ばれた少なくとも一種の合成系水溶性ポリマーである。
 上記合成系水溶性ポリマー(D)は、合成系のポリマーであるので、ゼラチン、澱粉などの天然由来の水溶性ポリマー、或いは、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)などのセルロース誘導体といった半合成系ポリマーは含まれない。但し、本発明において、合成系水溶性ポリマー(D)と、当該天然由来の水溶性ポリマー及び/又は半合成系ポリマーとを併用することは、排除されない。
The predetermined synthetic water-soluble polymer (D) improves the dispersibility of nickel colloidal particles, and thus electroless nickel or nickel alloy coating is uniform and even by electroless nickel or nickel alloy plating after catalyst application. It fulfills the function of contributing to the precipitation of.
The synthetic water-soluble polymer (D) includes polyvinylpyrrolidones (PVPs), polyvinyl alcohols (PVA), polyethyleneimines (PEIs), polyallylamines (PAAs), polyvinylimidazoles (PVIs), and It is at least one kind of synthetic water-soluble polymer selected from polyacrylamides (PAMs).
Since the synthetic water-soluble polymer (D) is a synthetic polymer, it is semi-synthesized such as a naturally-derived water-soluble polymer such as gelatin or starch, or a cellulose derivative such as carboxymethyl cellulose (CMC) or methyl cellulose (MC). System polymers are not included. However, in the present invention, the combined use of the synthetic water-soluble polymer (D) with the naturally-derived water-soluble polymer and / or the semi-synthetic polymer is not excluded.
 上記ポリビニルピロリドン類(PVP類)は、ポリビニルピロリドンのホモポリマー、並びに、ポリビニルピロリドンにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を付加したポリマーなどの、ポリビニルピロリドンのアルキレンオキシド付加物を含む。
 上記ポリエチレンイミン類(PEI類)は、ポリエチレンイミンのホモポリマー、並びに、ポリエチレンイミンにエチレンオキシド及び/又はプロピレンオキシドを付加したポリマーなどの、ポリエチレンイミンのアルキレンオキシド付加物を含む。
 上記ポリアリルアミン類(PAA類)は、ジアリルアミンポリマーが基本であり、具体的には、ジアルキルアンモニウムクロリド重合体、ジアリルジメチルアンモニウムクロリド・二酸化硫黄共重合体、ジアリルメチルエチルアンモニウムエチルサルフェート重合体、ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体などである。
 上記ポリビニルイミダゾール類(PVI類)は、ポリビニルイミダゾールのホモポリマー、並びに、ポリビニルイミダゾールにエチレンオキシド及び/又はプロピレンオキシドを付加したポリマーなどの、ポリビニルイミダゾールのアルキレンオキシド付加物を含む。
 上記ポリアクリルアミド類(PAM類)は、アクリルアミドのホモポリマー、アルデヒド変性ポリアクリルアミド、メチロールポリアクリルアミド、ポリイソプロピルアクリルアミドなどを初め、アクリルアミドにアクリル酸、メタクリル酸などの親水性ポリマーなどを共重合したポリマーを含む。但し、前記ジアリルジメチルアンモニウムクロリド・アクリルアミド共重合体は、ジアリルアミンとアクリルアミドとの共重合体に分類される。
 上記合成系水溶性ポリマー(D)としては、ポリビニルピロリドン類(PVP類)、ポリアクリルアミド類(PAM類)、ポリエチレンイミン類(PEI類)、及びポリアリルアミン類(PAA類)が好ましく、PEIのエチレンオキシド付加物、ジアリルアミンポリマーを含むPAA類、アルデヒド変性ポリアクリルアミドなどがより好ましい。
The polyvinylpyrrolidones (PVPs) include a homopolymer of polyvinylpyrrolidone and an alkylene oxide adduct of polyvinylpyrrolidone such as a polymer obtained by adding ethylene oxide (EO) and / or propylene oxide (PO) to polyvinylpyrrolidone.
The polyethyleneimines (PEIs) include a homopolymer of polyethyleneimine and an alkylene oxide adduct of polyethyleneimine such as a polymer obtained by adding ethylene oxide and / or propylene oxide to polyethyleneimine.
The polyallylamines (PAAs) are basically diallylamine polymers, specifically, dialalkylammonium chloride polymer, diallyldimethylammonium chloride / sulfur dioxide copolymer, diallylmethylethylammonium ethylsulfate polymer, and diallyldimethyl. Ammonium chloride / acrylamide copolymer and the like.
The polyvinyl imidazoles (PVIs) include a homopolymer of polyvinyl imidazole and an alkylene oxide adduct of polyvinyl imidazole such as a polymer obtained by adding ethylene oxide and / or propylene oxide to polyvinyl imidazole.
The above polyacrylamides (PAMs) include polymers obtained by copolymerizing acrylamide with hydrophilic polymers such as acrylic acid and methacrylic acid, including acrylamide homopolymers, aldehyde-modified polyacrylamides, methylolpolyacrylamides, and polyisopropylacrylamides. include. However, the diallyldimethylammonium chloride / acrylamide copolymer is classified as a copolymer of diallylamine and acrylamide.
As the synthetic water-soluble polymer (D), polyvinylpyrrolidones (PVPs), polyacrylamides (PAMs), polyethyleneimines (PEIs), and polyallylamines (PAAs) are preferable, and ethylene oxide of PEI is preferable. Additives, PAAs containing diallylamine polymers, aldehyde-modified polyacrylamide and the like are more preferred.
 また、本発明のニッケルコロイド触媒液には、必要に応じて、触媒核となる微細金属の分散性を増すために、界面活性剤を含有させることができる。
 当該界面活性剤は、ノニオン系、カチオン系、アニオン系、或いは両性の各種界面活性剤を選択できる。
 上記ノニオン系界面活性剤としては、C1~C20アルカノール、フェノール、ナフトール、ビスフェノール類、(ポリ)C1~C25アルキルフェノール、(ポリ)アリールアルキルフェノール、C1~C25アルキルナフトール、C1~C25アルコキシル化リン酸(塩)、ソルビタンエステル、ポリアルキレングリコール、C1~C22脂肪族アミン、C1~C22脂肪族アミドなどにエチレンオキシド(EO)及び/又はプロピレンオキシド(PO)を2~300モル付加縮合させたものや、C1~C25アルコキシル化リン酸(塩)などが挙げられる。
 上記カチオン系界面活性剤としては、第4級アンモニウム塩、或いはピリジニウム塩などが挙げられ、具体的には、ラウリルトリメチルアンモニウム塩、ステアリルトリメチルアンモニウム塩、ラウリルジメチルエチルアンモニウム塩、オクタデシルジメチルエチルアンモニウム塩、ジメチルベンジルラウリルアンモニウム塩、セチルジメチルベンジルアンモニウム塩、オクタデシルジメチルベンジルアンモニウム塩、トリメチルベンジルアンモニウム塩、トリエチルベンジルアンモニウム塩、ジメチルジフェニルアンモニウム塩、ベンジルジメチルフェニルアンモニウム塩、ヘキサデシルピリジニウム塩、ラウリルピリジニウム塩、ドデシルピリジニウム塩、ステアリルアミンアセテート、ラウリルアミンアセテート、オクタデシルアミンアセテートなどが挙げられる。
 上記アニオン系界面活性剤としては、アルキル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、アルキルベンゼンスルホン酸塩、{(モノ、ジ、トリ)アルキル}ナフタレンスルホン酸塩などが挙げられる。
 上記両性界面活性剤としては、カルボキシベタイン、イミダゾリンベタイン、スルホベタイン、アミノカルボン酸などが挙げられる。また、エチレンオキシド及び/又はプロピレンオキシドとアルキルアミン又はジアミンとの縮合生成物の硫酸化、或いはスルホン酸化付加物も使用できる。
Further, the nickel colloidal catalyst solution of the present invention may contain a surfactant, if necessary, in order to increase the dispersibility of the fine metal serving as the catalyst nucleus.
As the surfactant, various nonionic, cationic, anionic, or amphoteric surfactants can be selected.
Examples of the nonionic surfactant include C1 to C20 alkanol, phenol, naphthol, bisphenols, (poly) C1 to C25 alkylphenol, (poly) arylalkylphenol, C1 to C25 alkylnaphthol, and C1 to C25 alkoxylated phosphate (salt). ), Sorbitane ester, polyalkylene glycol, C1 to C22 aliphatic amines, C1 to C22 aliphatic amides, etc. with 2 to 300 mol of ethylene oxide (EO) and / or propylene oxide (PO) added and condensed, or C1 to Examples thereof include C25 alkoxylated phosphate (salt).
Examples of the cationic surfactant include a quaternary ammonium salt or a pyridinium salt, and specifically, a lauryltrimethylammonium salt, a stearyltrimethylammonium salt, a lauryldimethylethylammonium salt, an octadecyldimethylethylammonium salt, and the like. Dimethylbenzyllaurylammonium salt, cetyldimethylbenzylammonium salt, octadecyldimethylbenzylammonium salt, trimethylbenzylammonium salt, triethylbenzylammonium salt, dimethyldiphenylammonium salt, benzyldimethylphenylammonium salt, hexadecylpyridinium salt, laurylpyridinium salt, dodecylpyridinium Examples thereof include salts, stearylamine acetate, laurylamine acetate and octadecylamine acetate.
Examples of the anionic surfactant include alkyl sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkylphenyl ether sulfates, alkylbenzene sulfonates, {(mono, di, tri) alkyl} naphthalene sulfonates and the like. Can be mentioned.
Examples of the amphoteric tenside include carboxybetaine, imidazoline betaine, sulfobetaine, and aminocarboxylic acid. Sulfation of ethylene oxide and / or the condensation product of propylene oxide with alkylamines or diamines, or sulfonated adducts can also be used.
 本発明のニッケルコロイド触媒液において、コロイド安定剤(C)はニッケル錯体を形成する機能を有し、合成系水溶性ポリマー(D)はコロイド分散性を高める機能を有するので、コロイド安定剤(C)が減少して合成系水溶性ポリマー(D)が増大しても、逆に、コロイド安定剤(C)が増大して合成系水溶性ポリマー(D)が減少しても、ニッケルコロイド粒子を分散し、保全する機能が低下してしまう。
 従って、コロイド安定剤(C)の含有量と合成系水溶性ポリマー(D)の含有量とのモル比(C/D)は、ニッケルコロイド触媒液の分散性、ひいては、ニッケルコロイド触媒液の経時安定性を担保する重要な要素であり、本発明のニッケルコロイド触媒液では、このモル比が適正範囲に調整されているので、均一でムラのないニッケル又はニッケル合金皮膜が得られる。
 上記モル比(C/D)は、0.01~1000であることが必要であり、好ましくは0.1~500、より好ましくは1~250である。当該モル比(C/D)が0.01よりも小さいと、ニッケルコロイド触媒液が経時安定性を損ない、また、当該モル比(C/D)が1000よりも大きいと、ニッケルコロイドの分散性が低下し、ニッケルコロイド触媒液がやはり経時安定性を損なう。
 コロイド安定剤(C)及び合成系水溶性ポリマー(D)は、それぞれ単用又は併用できるが、上記モル比(C/D)を適正範囲に調整するためには、上記コロイド安定剤(C)の含有量は、上記ニッケルコロイド触媒液に対して0.001モル/L~5.0モル/Lであることが必要であり、好ましくは0.002モル/L~2.5モル/L、より好ましくは0.005モル/L~1.0モル/Lである。また、コロイド安定剤(C)の含有量は、可溶性ニッケル塩(A)の含有量の1.5倍以上であることが好ましい。
 同じく、上記モル比(C/D)を適正範囲に調整するためには、上記合成系水溶性ポリマー(D)の含有量は、上記ニッケルコロイド触媒液に対して0.0005モル/L~0.3モル/Lであることが必要であり、好ましくは0.0010モル/L~0.2モル/L、より好ましくは0.0020モル/L~0.1モル/Lである。
 一方、ニッケルコロイド触媒液において、上記可溶性ニッケル塩(A)は、単用又は併用でき、当該可溶性ニッケル塩(A)のニッケルコロイド触媒液に対する含有量は、0.001モル/L~1.0モル/Lが適しており、好ましくは0.002モル/L~0.5モル/L、より好ましくは0.0025モル/L~0.3モル/Lである。
 可溶性ニッケル塩(A)の含有量が適正量よりも少ないと、ニッケル又はニッケル合金皮膜の膜厚が不足したり、皮膜の均質性が低下する恐れがあり、逆に、溶解量などに応じて上限含有量は制限される。
 上記還元剤(B)は、単用又は併用でき、当該還元剤(B)のニッケルコロイド触媒液に対する含有量は、0.002モル/L~1.0モル/Lが適しており、好ましくは0.003モル/L~0.7モル/L、より好ましくは0.005モル/L~0.6モル/Lである。
 還元剤(B)の含有量が適正量よりも少ないと、ニッケル塩の還元作用が低下し、逆に、上限含有量は溶解量などで制限されるが、多過ぎると、無電解メッキで析出するニッケル又はニッケル合金皮膜の均質性が低下する恐れがある。
In the nickel colloidal catalyst solution of the present invention, the colloidal stabilizer (C) has a function of forming a nickel complex, and the synthetic water-soluble polymer (D) has a function of enhancing colloidal dispersibility. Therefore, the colloidal stabilizer (C) ) Decreases and the synthetic water-soluble polymer (D) increases, and conversely, even if the colloidal stabilizer (C) increases and the synthetic water-soluble polymer (D) decreases, the nickel colloidal particles are produced. The ability to disperse and maintain is reduced.
Therefore, the molar ratio (C / D) of the content of the colloidal stabilizer (C) to the content of the synthetic water-soluble polymer (D) is the dispersibility of the nickel colloidal catalyst solution, and thus the nickel colloidal catalyst solution over time. It is an important factor for ensuring stability, and in the nickel colloid catalyst solution of the present invention, since this molar ratio is adjusted to an appropriate range, a uniform and even nickel or nickel alloy film can be obtained.
The molar ratio (C / D) needs to be 0.01 to 1000, preferably 0.1 to 500, and more preferably 1 to 250. When the molar ratio (C / D) is smaller than 0.01, the nickel colloid catalyst solution impairs stability over time, and when the molar ratio (C / D) is larger than 1000, the dispersibility of the nickel colloid Is reduced, and the nickel colloidal catalyst solution also impairs stability over time.
The colloidal stabilizer (C) and the synthetic water-soluble polymer (D) can be used alone or in combination, respectively, but in order to adjust the molar ratio (C / D) to an appropriate range, the colloidal stabilizer (C) may be used. The content of the above-mentioned nickel colloid catalyst solution needs to be 0.001 mol / L to 5.0 mol / L, preferably 0.002 mol / L to 2.5 mol / L. More preferably, it is 0.005 mol / L to 1.0 mol / L. The content of the colloidal stabilizer (C) is preferably 1.5 times or more the content of the soluble nickel salt (A).
Similarly, in order to adjust the molar ratio (C / D) to an appropriate range, the content of the synthetic water-soluble polymer (D) is 0.0005 mol / L to 0 with respect to the nickel colloid catalyst solution. It needs to be .3 mol / L, preferably 0.0010 mol / L to 0.2 mol / L, more preferably 0.0020 mol / L to 0.1 mol / L.
On the other hand, in the nickel colloid catalyst solution, the soluble nickel salt (A) can be used alone or in combination, and the content of the soluble nickel salt (A) in the nickel colloid catalyst solution is 0.001 mol / L to 1.0. Molar / L is suitable, preferably 0.002 mol / L to 0.5 mol / L, and more preferably 0.0025 mol / L to 0.3 mol / L.
If the content of the soluble nickel salt (A) is less than the appropriate amount, the film thickness of the nickel or nickel alloy film may be insufficient or the homogeneity of the film may be deteriorated. The upper limit content is limited.
The reducing agent (B) can be used alone or in combination, and the content of the reducing agent (B) with respect to the nickel colloid catalyst solution is preferably 0.002 mol / L to 1.0 mol / L, and is preferable. It is 0.003 mol / L to 0.7 mol / L, more preferably 0.005 mol / L to 0.6 mol / L.
If the content of the reducing agent (B) is less than the appropriate amount, the reducing action of the nickel salt is lowered, and conversely, the upper limit content is limited by the dissolved amount or the like, but if it is too large, it precipitates by electroless plating. There is a risk that the homogeneity of the nickel or nickel alloy film will decrease.
 本発明のニッケルコロイド触媒液は、水系、或いは親油性アルコールなどの有機溶媒系を問わない。
 水系の場合には、触媒液の溶媒は、水及び/又は親水性アルコールから選択される。
 また、当該触媒液のpHについては特に限定はないが、中性、弱酸性、弱アルカリ性などを選択することが好ましい。
The nickel colloidal catalyst solution of the present invention may be water-based or an organic solvent-based solution such as lipophilic alcohol.
In the case of an aqueous system, the solvent of the catalyst solution is selected from water and / or hydrophilic alcohol.
The pH of the catalyst solution is not particularly limited, but it is preferable to select neutral, weakly acidic, weakly alkaline or the like.
 本発明のニッケルコロイド触媒液の調製手順としては、上記可溶性ニッケル塩(A)を含む溶液と、この溶液とは別に調製した上記還元剤(B)を含む溶液とを混合して、コロイド粒子を生成することが重要である。
 可溶性ニッケル塩(A)と還元剤(B)とを先に混合すると、ニッケルイオンが還元されて金属ニッケルが析出してしまい、コロイド安定剤(C)及び合成系水溶性ポリマー(D)が触媒液中で有機的に機能しない恐れがあるからである。
 従って、当該触媒液を調製する際には、還元剤(B)からニッケルイオンに電子を円滑に供与するため、還元剤(B)を含む溶液を、可溶性ニッケル塩(A)(並びにコロイド安定剤(C)及び合成系水溶性ポリマー(D))を含む溶液に、時間をかけて緩やかに滴下することを基本とする。例えば、5℃~50℃(好ましくは10℃~40℃)、pH1~8(好ましくはpH3~7)の可溶性ニッケル塩(A)を含む溶液に、還元剤(B)を含む溶液を滴下して、20分間~1200分間(好ましくは30分間~300分間)撹拌し、触媒液を調製する。尚、触媒液の調製では、可溶性ニッケル塩(A)の溶液を還元剤(B)の溶液に滴下することを排除するものではない。
 本発明のニッケルコロイド触媒液において、還元剤(B)の作用により可溶性ニッケル塩(A)から生じるニッケルコロイド粒子は、適した平均粒径が1nm~250nm、好ましくは1nm~120nm、より好ましくは1nm~100nmの微細粒子である。
 ニッケルコロイド粒子の平均粒径が250nm以下になると、ニッケルコロイド触媒液に非導電性基板を接触させた場合、ニッケルコロイド粒子が基板の微細な凹凸面の窪みに入り込み、緻密に吸着し、或いは引っ掛かるなどのアンカー効果により、基板表面にニッケルコロイド核の付与が促進されるものと推定できる。
As a procedure for preparing the nickel colloidal catalyst solution of the present invention, a solution containing the soluble nickel salt (A) and a solution containing the reducing agent (B) prepared separately from this solution are mixed to obtain colloidal particles. It is important to generate.
When the soluble nickel salt (A) and the reducing agent (B) are mixed first, nickel ions are reduced to precipitate metallic nickel, and the colloid stabilizer (C) and the synthetic water-soluble polymer (D) are catalysts. This is because it may not function organically in the liquid.
Therefore, when preparing the catalyst solution, in order to smoothly donate electrons from the reducing agent (B) to the nickel ions, a solution containing the reducing agent (B) is used as a soluble nickel salt (A) (and a colloidal stabilizer). Basically, it is slowly added dropwise over time to a solution containing (C) and the synthetic water-soluble polymer (D)). For example, a solution containing a reducing agent (B) is added dropwise to a solution containing a soluble nickel salt (A) at 5 ° C to 50 ° C (preferably 10 ° C to 40 ° C) and pH 1 to 8 (preferably pH 3 to 7). Then, the mixture is stirred for 20 minutes to 1200 minutes (preferably 30 minutes to 300 minutes) to prepare a catalyst solution. The preparation of the catalyst solution does not exclude dropping the solution of the soluble nickel salt (A) into the solution of the reducing agent (B).
In the nickel colloid catalyst solution of the present invention, the nickel colloid particles produced from the soluble nickel salt (A) by the action of the reducing agent (B) have a suitable average particle size of 1 nm to 250 nm, preferably 1 nm to 120 nm, and more preferably 1 nm. It is a fine particle of ~ 100 nm.
When the average particle size of the nickel colloid particles is 250 nm or less, when the non-conductive substrate is brought into contact with the nickel colloid catalyst solution, the nickel colloid particles enter the dents on the fine uneven surface of the substrate and are densely adsorbed or caught. It can be presumed that the attachment of nickel colloidal nuclei to the surface of the substrate is promoted by the anchor effect such as.
 本発明4は、上記ニッケルコロイド触媒液を用いた無電解メッキ方法であり、次の3つの工程を順次組み合わせてなる。
(a)吸着促進工程
(b)触媒付与工程
(c)無電解ニッケル又はニッケル合金メッキ工程
 上記吸着促進工程(a)は、言わば、触媒付与工程(b)の前処理工程であり、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる工程である。非導電性基板を界面活性剤の含有液に接触させることで、基板の表面の濡れ性を高めて触媒活性を増強し、次の触媒付与工程(b)でのニッケルコロイド粒子の吸着を促進するものである。
 吸着促進工程(a)では、非導電性基板を吸着促進剤の含有液に接触させることが必要であるため、含有液に非導電性基板を浸漬させることが基本であるが、含有液を、非導電性基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。
The present invention 4 is an electroless plating method using the nickel colloidal catalyst solution, which is a combination of the following three steps in sequence.
(A) Adsorption promoting step (b) Catalyst applying step (c) Electrolytic nickel or nickel alloy plating step The adsorption promoting step (a) is, so to speak, a pretreatment step of the catalyst applying step (b), and is a nonionic surfactant. This is a step of bringing the non-conductive substrate into contact with a liquid containing at least one adsorption accelerator selected from the group consisting of an activator, a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. By bringing the non-conductive substrate into contact with the liquid containing the surfactant, the wettability of the surface of the substrate is enhanced to enhance the catalytic activity, and the adsorption of the nickel colloidal particles in the next catalyst application step (b) is promoted. It is a thing.
In the adsorption promotion step (a), since it is necessary to bring the non-conductive substrate into contact with the liquid containing the adsorption accelerator, it is basic to immerse the non-conductive substrate in the liquid containing the adsorbent. Treatment such as spraying on a non-conductive substrate or applying with a brush may be used.
 本発明6のように、吸着を促進する見地から、正電荷を帯びたカチオン系界面活性剤及び/又は両性界面活性剤が吸着促進剤として好適であり、カチオン系界面活性剤が特に好ましい。また、カチオン系界面活性剤に少量のノニオン系界面活性剤を併用すると、吸着促進効果がさらに増す。
 本発明1のニッケルコロイド触媒液において、可溶性ニッケル塩(A)に還元剤(B)を作用させて生じるニッケルコロイド粒子は、ゼータ電位がマイナスであるため、例えば、非導電性基板をカチオン系界面活性剤の含有液で接触処理すると、非導電性基板がプラス電荷を帯び易く、次の触媒付与工程(b)におけるニッケルコロイド粒子の非導電性基板への吸着効率が上昇する。
 吸着促進工程(a)で用いる各界面活性剤の具体例は、上記本発明1のニッケルコロイド触媒液において述べた界面活性剤の通りである。
 界面活性剤である吸着促進剤の含有量は、好ましくは0.05g/L~100g/Lであり、より好ましくは0.5g/L~50g/Lである。当該吸着促進工程(a)において、処理温度は15℃~70℃程度、接触時間は0.5分間~20分間程度が好ましい。
 尚、本発明5のように、上記吸着促進工程(a)の前に、予備処理として、エッチング処理液に非導電性基板を接触させて、当該非導電性基板の表面を粗面化するエッチング処理工程(p)を行うことが好ましい。非導電性基板をエッチング処理液に接触させるには、エッチング処理液に非導電性基板を浸漬させることが基本であるが、エッチング処理液を、非導電性基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。
From the viewpoint of promoting adsorption as in the present invention 6, positively charged cationic surfactants and / or amphoteric surfactants are suitable as adsorption accelerators, and cationic surfactants are particularly preferable. Further, when a small amount of nonionic surfactant is used in combination with the cationic surfactant, the adsorption promoting effect is further enhanced.
In the nickel colloid catalyst solution of the present invention 1, the nickel colloid particles produced by allowing the reducing agent (B) to act on the soluble nickel salt (A) have a negative zeta potential. When the contact treatment is performed with the liquid containing the activator, the non-conductive substrate tends to be positively charged, and the adsorption efficiency of the nickel colloidal particles on the non-conductive substrate in the next catalyst application step (b) is increased.
Specific examples of each surfactant used in the adsorption promotion step (a) are the same as those described in the nickel colloidal catalyst solution of the present invention 1.
The content of the adsorption accelerator, which is a surfactant, is preferably 0.05 g / L to 100 g / L, and more preferably 0.5 g / L to 50 g / L. In the adsorption promotion step (a), the treatment temperature is preferably about 15 ° C. to 70 ° C., and the contact time is preferably about 0.5 minutes to 20 minutes.
As in the present invention 5, before the adsorption promotion step (a), as a preliminary treatment, the non-conductive substrate is brought into contact with the etching treatment liquid to roughen the surface of the non-conductive substrate. It is preferable to carry out the treatment step (p). In order to bring the non-conductive substrate into contact with the etching treatment liquid, it is basic to immerse the non-conductive substrate in the etching treatment liquid, but the etching treatment liquid is sprayed on the non-conductive substrate or applied with a brush. There is no problem with processing such as.
 吸着促進工程(a)を終えた非導電性基板を純水で洗浄した後、乾燥して、或いは乾燥することなく、次の触媒付与工程(b)に移行する。
 触媒付与工程(b)では、上記ニッケルコロイド触媒液に非導電性基板を接触させて、非導電性基板の表面にニッケルコロイド粒子を吸着させる。
 当該ニッケルコロイド触媒液の液温は、15℃~95℃(好ましくは15℃~70℃)であることが望ましく、接触時間は0.1分間~20分程度、pHは3~12(好ましくはpH5~11)であることが望ましい。
 触媒付与工程(b)では、非導電性基板をニッケルコロイド触媒液に接触させることが必要であるため、ニッケルコロイド触媒液に非導電性基板を浸漬させることが基本であるが、ニッケルコロイド触媒液を、非導電性基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。浸漬処理に際しては、非導電性基板をニッケルコロイド触媒液に静置状態で浸漬すれば充分であるが、撹拌や揺動を行っても良い。
 また、当該触媒付与工程(b)と次の無電解メッキ工程(c)との間に、非導電性基板を酸溶液などの活性化溶液に接触させて洗浄処理する活性化工程(b-1)を付加することが好ましい。これにより、触媒活性を効果的に保持して、次の無電解メッキ工程(c)での皮膜形成を円滑に促進できる。非導電性基板を活性化溶液に接触させるには、活性化溶液に非導電性基板を浸漬させることが基本であるが、活性化溶液を、非導電性基板に噴霧したり、刷毛で塗布するなどの処理でも差し支えない。
After the non-conductive substrate that has completed the adsorption promotion step (a) is washed with pure water, the process proceeds to the next catalyst application step (b) with or without drying.
In the catalyst application step (b), the non-conductive substrate is brought into contact with the nickel colloid catalyst liquid to adsorb the nickel colloid particles on the surface of the non-conductive substrate.
The temperature of the nickel colloidal catalyst solution is preferably 15 ° C to 95 ° C (preferably 15 ° C to 70 ° C), the contact time is about 0.1 to 20 minutes, and the pH is 3 to 12 (preferably). It is desirable that the pH is 5 to 11).
In the catalyst application step (b), since it is necessary to bring the non-conductive substrate into contact with the nickel colloid catalyst liquid, it is basic to immerse the non-conductive substrate in the nickel colloid catalyst liquid. Can be sprayed on a non-conductive substrate or applied with a brush. In the dipping treatment, it is sufficient to immerse the non-conductive substrate in the nickel colloidal catalyst solution in a static state, but stirring or shaking may be performed.
Further, between the catalyst application step (b) and the next electroless plating step (c), an activation step (b-1) in which the non-conductive substrate is brought into contact with an activation solution such as an acid solution for cleaning treatment. ) Is preferably added. As a result, the catalytic activity can be effectively maintained, and film formation in the next electroless plating step (c) can be smoothly promoted. In order to bring the non-conductive substrate into contact with the activating solution, it is basic to immerse the non-conductive substrate in the activating solution, but the activating solution is sprayed on the non-conductive substrate or applied with a brush. There is no problem with processing such as.
 触媒付与工程(b)を終えた非導電性基板、或いは必要に応じて活性化工程(b-1)を終えた非導電性基板を純水で洗浄した後、乾燥して、或いは乾燥することなく、次の無電解メッキ工程(c)に移行する。
 当該無電解メッキ工程(c)における無電解ニッケル又はニッケル合金メッキは、従来と同様に処理すれば良く、特段の制約はない。無電解ニッケル又はニッケル合金メッキ液の液温は、一般に15℃~100℃、好ましくは20℃~90℃である。
 無電解ニッケル又はニッケル合金メッキ液を撹拌する際には、空気撹拌、急速液流撹拌、撹拌羽根等による機械撹拌等を採用することができる。
The non-conductive substrate that has completed the catalyst application step (b) or, if necessary, the non-conductive substrate that has completed the activation step (b-1) is washed with pure water and then dried or dried. Instead, the process proceeds to the next electroless plating step (c).
The electroless nickel or nickel alloy plating in the electroless plating step (c) may be treated in the same manner as in the conventional case, and there are no particular restrictions. The liquid temperature of the electroless nickel or nickel alloy plating solution is generally 15 ° C to 100 ° C, preferably 20 ° C to 90 ° C.
When stirring the electroless nickel or nickel alloy plating solution, air stirring, rapid liquid flow stirring, mechanical stirring by a stirring blade or the like can be adopted.
 無電解ニッケル又はニッケル合金メッキ液の組成に特段の制限はなく、公知のメッキ液を使用できる。
 上記無電解ニッケルメッキは、実質的にはニッケル-リンメッキ、或いはニッケル-ホウ素メッキである。
 上記無電解ニッケル合金メッキは、ニッケル-コバルト合金メッキ、ニッケル-スズ合金メッキ、ニッケル-スズ-亜鉛合金メッキなどである。
 公知の無電解ニッケルメッキ液は、基本的に可溶性ニッケル塩と還元剤とを主成分とし、これに必要に応じて錯化剤、pH調整剤、反応促進剤などの各種添加剤を含有する。
 無電解ニッケルメッキに際して、リン系の還元剤(例えば、次亜リン酸塩)を使用すると、ニッケル-リン皮膜が得られ、ホウ素系の還元剤(例えば、ジメチルアミンボラン)を使用すると、ニッケル-ホウ素皮膜が得られる。
 可溶性ニッケル塩については、上記ニッケルコロイド触媒液で述べた通りである。
 錯化剤については、上記ニッケルコロイド触媒液で述べたコロイド安定剤(C)と共通する部分もあり、具体的には、アンモニア、エチレンジアミン、ピロリン酸塩、クエン酸、リンゴ酸、乳酸、酢酸、エチレンジアミン四酢酸(EDTA)などである。
 一方、無電解ニッケル合金メッキ液の成分は、基本的に無電解ニッケルメッキ液の成分と共通するが、ニッケルと合金を形成する相手方の金属の可溶性塩を含むことになる。
 上述の通り、ニッケル合金には、ニッケル-コバルト合金、ニッケル-スズ合金、ニッケル-スズ-亜鉛合金などが例示されるため、相手方の金属の可溶性塩として、硫酸コバルト、塩化コバルト、有機スルホン酸のコバルト塩などの可溶性コバルト塩;硫酸第一スズ、塩化第一スズ、酸化第一スズ、スズ酸ナトリウム、ホウフッ化第一スズ、有機スルホン酸やスルホコハク酸の第一スズ塩などの可溶性第一スズ塩;塩化亜鉛、硫酸亜鉛、酸化亜鉛、有機スルホン酸やスルホコハク酸の亜鉛塩などの可溶性亜鉛塩などが挙げられる。
 尚、前述したように、本発明7は、当該無電解ニッケル又はニッケル合金メッキ方法によって、非導電性基板上にニッケル又はニッケル合金皮膜を形成する、ニッケル又はニッケル合金メッキ基板の製造方法である。
The composition of the electroless nickel or nickel alloy plating solution is not particularly limited, and a known plating solution can be used.
The electroless nickel plating is substantially nickel-phosphorus plating or nickel-boron plating.
The electroless nickel alloy plating includes nickel-cobalt alloy plating, nickel-tin alloy plating, nickel-tin-zinc alloy plating and the like.
The known electroless nickel plating solution basically contains a soluble nickel salt and a reducing agent as main components, and if necessary, contains various additives such as a complexing agent, a pH adjuster, and a reaction accelerator.
For electroless nickel plating, a phosphorus-based reducing agent (eg, hypophosphite) can be used to obtain a nickel-phosphorus film, and a boron-based reducing agent (eg, dimethylamine borane) can be used to obtain nickel-. A boron film is obtained.
The soluble nickel salt is as described in the above nickel colloidal catalyst solution.
The complexing agent has some parts in common with the colloidal stabilizer (C) described in the above nickel colloidal catalyst solution, and specifically, ammonia, ethylenediamine, pyrophosphate, citric acid, malic acid, lactic acid, acetic acid, etc. Ethylenediaminetetraacetic acid (EDTA) and the like.
On the other hand, the components of the electroless nickel alloy plating solution are basically the same as the components of the electroless nickel plating solution, but include soluble salts of the metal of the other party forming an alloy with nickel.
As described above, examples of the nickel alloy include a nickel-cobalt alloy, a nickel-tin alloy, a nickel-tin-zinc alloy, and the like. Soluble cobalt salts such as cobalt salts; soluble stannous salts such as stannous sulfate, stannous chloride, stannous oxide, sodium tintate, stannous borofluoride, and stannous salts of organic sulfonic acid and sulfosuccinic acid. Salts: Soluble zinc salts such as zinc chloride, zinc sulfate, zinc oxide, organic sulfonic acid and zinc salts of sulfosuccinic acid.
As described above, the present invention 7 is a method for manufacturing a nickel or nickel alloy plated substrate, which forms a nickel or nickel alloy film on the non-conductive substrate by the electroless nickel or nickel alloy plating method.
 以下、本発明の吸着促進剤の含有液、ニッケルコロイド触媒液、並びに無電解ニッケル又はニッケル合金メッキ液の調製を含む、無電解ニッケル又はニッケル合金メッキ方法の実施例を述べるとともに、ニッケルコロイド触媒液の経時安定性評価及びニッケル又はニッケル合金皮膜の外観評価の試験例を順次説明する。
 尚、本発明は、下記実施例及び試験例に拘束されるものではなく、本発明の技術的思想の範囲内で任意の変形をなし得ることは勿論である。
Hereinafter, examples of a non-electrolytic nickel or nickel alloy plating method including preparation of an adsorption accelerator-containing liquid, a nickel colloid catalyst liquid, and a nickel-free nickel or nickel alloy plating liquid of the present invention will be described, and a nickel colloid catalyst liquid will be described. Test examples of the temporal stability evaluation and the appearance evaluation of nickel or nickel alloy film will be described in sequence.
It should be noted that the present invention is not limited to the following examples and test examples, and it goes without saying that any modification can be made within the scope of the technical idea of the present invention.
≪無電解ニッケル又はニッケル合金メッキ方法の実施例≫
 冒述で、本発明のニッケルコロイド触媒液は、基準発明を出発点としたことを述べたが、この基準発明に基づいて、可溶性ニッケル塩(A)と還元剤(B)とコロイド安定剤(C)とを含有するニッケルコロイド触媒液を「基準例」とすることで、ニッケルコロイド触媒液の経時安定性の見地から、本発明の実施例の有効性を相対的に評価した。
 従って、先ず、本発明の代表例として実施例1(下記の項目(1))を説明するとともに、実施例1との対比で上記基準発明に基づく基準例(下記の項目(0))を説明したうえで、実施例2~18(項目(2)~(18))を順次詳述する。
 下記実施例2~18のうち、実施例2~17は無電解ニッケルメッキ方法の実施例であり、実施例18は無電解ニッケル-コバルト合金メッキ方法の実施例である。
<< Examples of electroless nickel or nickel alloy plating method >>
In the above, it was stated that the nickel colloidal catalyst solution of the present invention started from the reference invention, but based on this reference invention, the soluble nickel salt (A), the reducing agent (B) and the colloidal stabilizer ( By using the nickel colloid catalyst solution containing C) as a "reference example", the effectiveness of the examples of the present invention was relatively evaluated from the viewpoint of the temporal stability of the nickel colloid catalyst solution.
Therefore, first, Example 1 (the following item (1)) will be described as a representative example of the present invention, and a reference example (the following item (0)) based on the above-mentioned reference invention will be described in comparison with Example 1. Then, Examples 2 to 18 (items (2) to (18)) will be described in detail in order.
Of the following Examples 2 to 18, Examples 2 to 17 are examples of the electroless nickel plating method, and Example 18 is an example of the electroless nickel-cobalt alloy plating method.
 実施例1は、後述するように、予備工程としてエッチング処理工程(p)を施した後、吸着促進工程(a)→触媒付与工程(b)→活性化工程(b-1)→無電解メッキ工程(c)の各工程を順次施した無電解ニッケルメッキ方法の実施例である。実施例1において、当該吸着促進工程(a)の吸着促進剤は、カチオン系界面活性剤とノニオン系界面活性剤との混合物であり、当該触媒付与工程(b)のニッケルコロイド触媒液は、還元剤(B)として水素化ホウ素化合物を、コロイド安定剤(C)としてポリカルボン酸類に属するグルタル酸を、合成系水溶性ポリマー(D)としてポリエチレンイミン類(PEI類)に属するポリエチレンイミン(PEI)を含有している。
 実施例2~15、18は上記実施例1を基本とした例であり、実施例16~17は実施例10を基本とした例である。
実施例2:コロイド安定剤(C)の含有量と合成系水溶性ポリマー(D)の含有量とのモル比(C/D)を、所定の適正範囲の上限付近に設定した例
実施例3:モル比(C/D)を、実施例1のモル比よりも小さく設定した例
実施例4:モル比(C/D)を、所定の適正範囲の下限付近に設定した例
実施例5:コロイド安定剤(C)を、ポリカルボン酸類に属するジカルボン酸であるコハク酸に変更した例
実施例6:コロイド安定剤(C)を、オキシカルボン酸類に属するグリコール酸に変更した例
実施例7:コロイド安定剤(C)を、アミノカルボン酸類に属するグリシンに変更した例
実施例8:コロイド安定剤(C)を、糖質に属するキシリトールに変更した例
実施例9:コロイド安定剤(C)を、ポリカルボン酸類に属するジカルボン酸であるアジピン酸に変更した例
実施例10~11:合成系水溶性ポリマー(D)を、PEI類に属するPEIのEO付加物(実施例10と実施例11とでは、平均分子量が異なる)にそれぞれ変更した例
実施例12:合成系水溶性ポリマー(D)を、ポリアリルアミン類(PAA類)に属するジアリルアミンポリマーに変更した例
実施例13:合成系水溶性ポリマー(D)を、ポリビニルピロリドン類(PVP類)に属するポリビニルピロリドン(PVP)に変更した例
実施例14:合成系水溶性ポリマー(D)を、ポリビニルアルコール(PVA)に変更した例
実施例15:合成系水溶性ポリマー(D)を、ジアリルアミンとアクリルアミドとの共重合体に変更した例
実施例16:可溶性ニッケル塩(A)を変更した例
実施例17:還元剤(B)を変更した例
In Example 1, as will be described later, after the etching treatment step (p) is performed as a preliminary step, the adsorption promotion step (a) → the catalyst application step (b) → the activation step (b-1) → electroless plating. This is an example of an electroless nickel plating method in which each step of the step (c) is sequentially performed. In Example 1, the adsorption accelerator in the adsorption promoting step (a) is a mixture of a cationic surfactant and a nonionic surfactant, and the nickel colloidal catalyst solution in the catalyst applying step (b) is reduced. The agent (B) is a boron hydride compound, the colloidal stabilizer (C) is glutaric acid belonging to polycarboxylic acids, and the synthetic water-soluble polymer (D) is polyethyleneimine (PEI) belonging to polyethyleneimines (PEIs). Contains.
Examples 2 to 15 and 18 are examples based on the above-mentioned Example 1, and Examples 16 to 17 are examples based on Example 10.
Example 2: Example 3 in which the molar ratio (C / D) of the content of the colloidal stabilizer (C) and the content of the synthetic water-soluble polymer (D) is set near the upper limit of a predetermined appropriate range. : Example in which the molar ratio (C / D) is set smaller than the molar ratio in Example 1 Example 4: Example in which the molar ratio (C / D) is set near the lower limit of a predetermined appropriate range Example 5: Example 6 in which the colloidal stabilizer (C) was changed to succinic acid, which is a dicarboxylic acid belonging to polycarboxylic acids. Example 6: Example in which the colloidal stabilizer (C) was changed to glycolic acid belonging to oxycarboxylic acids. Example 7: Example 8 in which the colloidal stabilizer (C) was changed to glycine belonging to aminocarboxylic acids Example 8: Example in which the colloidal stabilizer (C) was changed to xylitol belonging to a sugar Example 9: Colloidal stabilizer (C) , Examples of changing to adipic acid, which is a dicarboxylic acid belonging to polycarboxylic acids, Examples 10 to 11: Synthetic water-soluble polymer (D) is replaced with an EO adduct of PEI belonging to PEIs (Examples 10 and 11). Example 12: Synthetic water-soluble polymer (D) was changed to diallylamine polymer belonging to polyallylamines (PAAs) Example 13: Synthetic water-soluble polymer. Example 14 in which (D) was changed to polyvinylpyrrolidone (PVP) belonging to polyvinylpyrrolidones (PVPs): Example in which the synthetic water-soluble polymer (D) was changed to polyvinyl alcohol (PVA) Example 15: Example of changing the synthetic water-soluble polymer (D) to a copolymer of diallylamine and acrylamide Example 16: Example of changing the soluble nickel salt (A) Example 17: Example of changing the reducing agent (B)
 また、上述の通り、実施例18は、無電解ニッケルメッキに替えて無電解ニッケル-コバルト合金メッキを行った例であり、予備工程としてエッチング処理工程(p)を施した後、吸着促進工程(a)→触媒付与工程(b)→活性化工程(b-1)→無電解メッキ工程(c)の各工程を順次施した。これらエッチング処理工程(p)、吸着促進工程(a)、触媒付与工程(b)、及び活性化工程(b-1)は、実施例1を基本とした。 Further, as described above, Example 18 is an example in which electroless nickel-cobalt alloy plating is performed instead of electroless nickel plating, and after performing an etching treatment step (p) as a preliminary step, an adsorption promotion step ( Each step of a) → catalyst application step (b) → activation step (b-1) → electroless plating step (c) was sequentially performed. The etching treatment step (p), the adsorption promotion step (a), the catalyst applying step (b), and the activation step (b-1) were based on Example 1.
 一方、下記比較例1~4は、各々次の通りである。
比較例1:モル比(C/D)が、本発明で規定の範囲よりも大きい例
比較例2:モル比(C/D)が、本発明で規定の範囲よりも小さい例
比較例3:本発明に用いる合成系水溶性ポリマー(D)に替えて、天然由来の水溶性ポリマーを用いた例
比較例4:本発明で規定のコロイド安定剤(C)以外の成分(ポリアミン類に属するエチレンジアミン)を用いた例
On the other hand, the following Comparative Examples 1 to 4 are as follows.
Comparative Example 1: Example in which the molar ratio (C / D) is larger than the specified range in the present invention Comparative Example 2: Example in which the molar ratio (C / D) is smaller than the specified range in the present invention Comparative Example 3: Example of using a naturally occurring water-soluble polymer instead of the synthetic water-soluble polymer (D) used in the present invention Comparative Example 4: Components other than the colloidal stabilizer (C) specified in the present invention (ethylenediamine belonging to polyamines). )
(1)実施例1
 本発明の無電解ニッケルメッキ方法は、吸着促進工程(a)→触媒付与工程(b)→無電解メッキ工程(c)を順次施すことを基本とするが、本実施例1では、吸着促進工程(a)の前に、予めエッチング処理工程(p)を付加するとともに、触媒付与工程(b)と無電解メッキ工程(c)との間に活性化工程(b-1)を付加した。
 従って、実施例1の無電解ニッケルメッキ方法は、エッチング処理工程(p)→吸着促進工程(a)→触媒付与工程(b)→活性化工程(b-1)→無電解メッキ工程(c)からなる。
 即ち、先ず、予備処理として下記条件(p)でエッチング処理を行い、次いで、下記条件(a)で吸着促進を、下記条件(b)で触媒付与を、下記条件(b-1)で活性化を行った後、下記条件(c)で無電解ニッケル-リンメッキを行った。
(p)エッチング処理工程
 次の組成でエッチング処理液を調製した。
[エッチング処理液]
無水クロム酸 400g/L
98%硫酸  200g/L
(a)吸着促進工程
 次の組成で吸着促進剤の含有液を調製した。Mwは重量平均分子量である。
[吸着促進剤]
ジアリルジメチルアンモニウムクロリド重合体(Mw:30000)
                          5g/L
ポリオキシアルキレン分岐デシルエーテル       1g/L
(b)触媒付与工程
 先ず、ニッケル溶液と還元剤溶液とを調製し、次いで、両溶液を混合してニッケルコロイド触媒液を調製した。各溶液の組成及びニッケルコロイド触媒液の調製条件は、次の通りである。
[ニッケル溶液]
硫酸ニッケル(Ni2+として)  0.1モル/L
グルタル酸           0.3モル/L
PEI(Mw:1800)   0.01モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.01=30
[ニッケルコロイド触媒液の調製条件]
pH4.0に調整した25℃のニッケル溶液に還元剤溶液を滴下して撹拌し、ニッケルコロイド触媒液を得た。
(b-1)活性化工程
[活性化溶液]
98%硫酸 5mL/L
(c)無電解メッキ工程
 次の組成で無電解ニッケル-リンメッキ液を建浴した。また、当該メッキ液は水酸化ナトリウムでpH調整した。
[無電解ニッケル-リンメッキ液]
硫酸ニッケル六水和物(Ni2+として) 0.1モル/L
次亜リン酸ナトリウム1水和物       30g/L
コハク酸                 25g/L
純水                      残余
pH(20℃)                4.6
(d)無電解ニッケル-リンメッキにおける全処理条件
 本実施例1の無電解ニッケル-リンメッキは、工程(p)→(a)→(b)→(b-1)→(c)からなり、各工程の処理条件は次の通りである。
[エッチング条件]
 ABS樹脂基板(縦:45mm、横:50mm、板厚:3mm)を、上記(p)のエッチング処理液に68℃、10分間の条件で浸漬し、純水で洗浄して、表面が粗面化された試料基板を得た。
[吸着促進条件]
 エッチング処理した試料基板を、上記(a)の吸着促進剤の含有液に40℃、2分間の条件で浸漬し、純水で洗浄した。
[触媒付与条件]
 吸着促進処理した試料基板を、上記(b)のニッケルコロイド触媒液に25℃、10分間の条件で浸漬し、純水で洗浄した。
[活性化条件]
 次いで、試料基板を上記(b-1)の活性化溶液に25℃、5分間の条件で浸漬し、純水で洗浄した。
[無電解メッキ条件]
 その後、試料基板を上記(c)の無電解ニッケル-リンメッキ液中に90℃、20分間の条件で浸漬して無電解メッキを施し、試料基板上にニッケル-リン皮膜を形成した後、純水で洗浄し、乾燥した。
(1) Example 1
The electroless nickel plating method of the present invention is based on sequentially performing an adsorption promotion step (a) → a catalyst application step (b) → an electroless plating step (c), but in the first embodiment, the adsorption promotion step An etching treatment step (p) was added in advance before (a), and an activation step (b-1) was added between the catalyst application step (b) and the electroless plating step (c).
Therefore, the electroless nickel plating method of Example 1 is: etching treatment step (p) → adsorption promotion step (a) → catalyst application step (b) → activation step (b-1) → electroless plating step (c). Consists of.
That is, first, as a preliminary treatment, an etching treatment is performed under the following condition (p), then adsorption promotion is performed under the following condition (a), catalyst application is performed under the following condition (b), and activation is performed under the following condition (b-1). After that, electroless nickel-phosphorus plating was performed under the following condition (c).
(P) Etching Treatment Step An etching treatment liquid was prepared with the following composition.
[Etching liquid]
Chromic acid anhydride 400g / L
98% sulfuric acid 200g / L
(A) Adsorption promoting step A liquid containing an adsorption promoting agent was prepared with the following composition. Mw is the weight average molecular weight.
[Adsorption accelerator]
Dialyldimethylammonium chloride polymer (Mw: 30,000)
5g / L
Polyoxyalkylene branched decyl ether 1g / L
(B) Catalyst application step First, a nickel solution and a reducing agent solution were prepared, and then both solutions were mixed to prepare a nickel colloidal catalyst solution. The composition of each solution and the preparation conditions for the nickel colloidal catalyst solution are as follows.
[Nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PEI (Mw: 1800) 0.01 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.01 = 30
[Preparation conditions for nickel colloidal catalyst solution]
A reducing agent solution was added dropwise to a nickel solution at 25 ° C. adjusted to pH 4.0 and stirred to obtain a nickel colloidal catalyst solution.
(B-1) Activation step [Activation solution]
98% sulfuric acid 5mL / L
(C) Electroless plating step An electroless nickel-phosphorus plating solution was built with the following composition. The pH of the plating solution was adjusted with sodium hydroxide.
[Electroless nickel-phosphorus plating solution]
Nickel sulphate hexahydrate (as Ni 2+ ) 0.1 mol / L
Sodium hypophosphate monohydrate 30 g / L
Succinic acid 25g / L
Pure water residual pH (20 ° C) 4.6
(D) All treatment conditions in electroless nickel-phosphorus plating The electroless nickel-phosphorus plating of Example 1 comprises steps (p) → (a) → (b) → (b-1) → (c). The processing conditions of the process are as follows.
[Etching conditions]
The ABS resin substrate (length: 45 mm, width: 50 mm, plate thickness: 3 mm) was immersed in the etching treatment liquid of the above (p) at 68 ° C. for 10 minutes, washed with pure water, and the surface was roughened. A modified sample substrate was obtained.
[Adsorption promotion conditions]
The etched sample substrate was immersed in the solution containing the adsorption accelerator of (a) above at 40 ° C. for 2 minutes and washed with pure water.
[Catalyst addition conditions]
The sample substrate subjected to the adsorption promotion treatment was immersed in the nickel colloid catalyst solution of (b) above at 25 ° C. for 10 minutes and washed with pure water.
[Activation conditions]
Next, the sample substrate was immersed in the activation solution of (b-1) above at 25 ° C. for 5 minutes, and washed with pure water.
[Electroless plating conditions]
Then, the sample substrate is immersed in the electroless nickel-phosphorus plating solution of (c) above at 90 ° C. for 20 minutes to perform electroless plating, a nickel-phosphorus film is formed on the sample substrate, and then pure water is obtained. Washed with and dried.
(0)基準例
 上記基準発明に基づいて、本発明における合成系水溶性ポリマー(D)は用いず、コロイド安定剤(C)(グルタル酸)のみを用いてニッケルコロイド触媒液を調製した。
 即ち、本基準例では、触媒付与工程(b)において、可溶性ニッケル塩(A)と還元剤(B)とコロイド安定剤(C)とを必須成分とするニッケルコロイド触媒液を用いており、上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、エッチング処理工程(p)及び活性化工程(b-1)を含めて、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
グルタル酸          0.3モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
(0) Reference Example Based on the above standard invention, a nickel colloidal catalyst solution was prepared using only the colloidal stabilizer (C) (glutaric acid) without using the synthetic water-soluble polymer (D) in the present invention.
That is, in this reference example, in the catalyst application step (b), a nickel colloidal catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a colloidal stabilizer (C) as essential components is used. Based on Example 1, all settings are the same as in Example 1 including the etching treatment step (p) and the activation step (b-1), except that the composition of the nickel colloidal catalyst solution is changed as follows. did.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
(2)実施例2(モル比(C/D)を上限付近に設定)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、エッチング処理工程(p)及び活性化工程(b-1)を含めて、全て実施例1と同じに設定した。尚、後述の実施例及び比較例では、エッチング処理工程(p)及び活性化工程(b-1)についての言及は省略する。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)    0.1モル/L
グルタル酸             0.4モル/L
PEI(Mw:10000)  0.0005モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.4/0.0005=800
(2) Example 2 (Mole ratio (C / D) is set near the upper limit)
Based on the above-mentioned Example 1, all the same as in Example 1 including the etching treatment step (p) and the activation step (b-1) except that the composition of the nickel colloid catalyst solution was changed as follows. I set it. In the examples and comparative examples described later, the reference to the etching process (p) and the activation step (b-1) will be omitted.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.4 mol / L
PEI (Mw: 10000) 0.0005 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.4 / 0.0005 = 800
(3)実施例3(モル比(C/D)を小さく設定)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)  0.1モル/L
グルタル酸           0.3モル/L
PEI(Mw:600)    0.08モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.08=3.75
(3) Example 3 (set the molar ratio (C / D) small)
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PEI (Mw: 600) 0.08 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.08 = 3.75
(4)実施例4(モル比(C/D)を下限付近に設定)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)    0.1モル/L
グルタル酸          0.0015モル/L
PEI(Mw:600)      0.08モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.0015/0.08=0.01875
(4) Example 4 (Mole ratio (C / D) is set near the lower limit)
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.0015 mol / L
PEI (Mw: 600) 0.08 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.0015 / 0.08 = 0.01875
(5)実施例5(コロイド安定剤(C)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)  0.1モル/L
コハク酸            0.3モル/L
PEI(Mw:1800)   0.01モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.01=30
(5) Example 5 (change colloidal stabilizer (C))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Succinic acid 0.3 mol / L
PEI (Mw: 1800) 0.01 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.01 = 30
(6)実施例6(コロイド安定剤(C)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)  0.1モル/L
グリコール酸          0.3モル/L
PEI(Mw:1800)   0.01モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.01=30
(6) Example 6 (change colloidal stabilizer (C))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glycolic acid 0.3 mol / L
PEI (Mw: 1800) 0.01 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.01 = 30
(7)実施例7(コロイド安定剤(C)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)  0.1モル/L
グリシン            0.3モル/L
PEI(Mw:1800)   0.01モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.01=30
(7) Example 7 (change colloidal stabilizer (C))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glycine 0.3 mol / L
PEI (Mw: 1800) 0.01 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.01 = 30
(8)実施例8(コロイド安定剤(C)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)  0.1モル/L
キシリトール          0.3モル/L
PEI(Mw:1800)   0.01モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.01=30
(8) Example 8 (change colloidal stabilizer (C))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Xylitol 0.3 mol / L
PEI (Mw: 1800) 0.01 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.01 = 30
(9)実施例9(コロイド安定剤(C)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)  0.1モル/L
アジピン酸           0.3モル/L
PEI(Mw:1800)   0.01モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.01=30
(9) Example 9 (change colloidal stabilizer (C))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Adipic acid 0.3 mol / L
PEI (Mw: 1800) 0.01 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.01 = 30
(10)実施例10(合成系水溶性ポリマー(D)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)     0.1モル/L
グルタル酸              0.3モル/L
PEIのEO付加物(EO:40モル、Mw:2500)
                  0.02モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.02=15
(10) Example 10 (changed synthetic water-soluble polymer (D))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PEI EO adduct (EO: 40 mol, Mw: 2500)
0.02 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.02 = 15
(11)実施例11(合成系水溶性ポリマー(D)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)      0.1モル/L
グルタル酸               0.3モル/L
PEIのEO付加物(EO:140モル、Mw:8000)
                 0.0375モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.0375=8
(11) Example 11 (changed synthetic water-soluble polymer (D))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PEI EO adduct (EO: 140 mol, Mw: 8000)
0.0375 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.0375 = 8
(12)実施例12(合成系水溶性ポリマー(D)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)         0.1モル/L
グルタル酸                  0.3モル/L
ジアリルジメチルアンモニウムクロリド重合体(Mw:8500)
                    0.0025モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.0025=120
(12) Example 12 (changed synthetic water-soluble polymer (D))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
Dialyldimethylammonium chloride polymer (Mw: 8500)
0.0025 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.0025 = 120
(13)実施例13(合成系水溶性ポリマー(D)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)     0.1モル/L
グルタル酸              0.3モル/L
PVP(Mw:1800)   0.00125モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.00125=240
(13) Example 13 (changed synthetic water-soluble polymer (D))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PVP (Mw: 1800) 0.00125 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.00125 = 240
(14)実施例14(合成系水溶性ポリマー(D)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)     0.1モル/L
グルタル酸              0.3モル/L
PVA(Mw:1000)   0.00125モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.00125=240
(14) Example 14 (changed synthetic water-soluble polymer (D))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PVA (Mw: 1000) 0.00125 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.00125 = 240
(15)実施例15(合成系水溶性ポリマー(D)を変更)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)           0.1モル/L
グルタル酸                    0.3モル/L
ジアリルジメチルアンモニウムクロリド
-アクリルアミド共重合体(Mw:10000) 0.003モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.003=100
(15) Example 15 (changed synthetic water-soluble polymer (D))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
Dialyldimethylammonium chloride-acrylamide copolymer (Mw: 10000) 0.003 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.003 = 100
(16)実施例16(可溶性ニッケル塩(A)を変更)
 上記実施例10を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例10と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
塩化ニッケル(Ni2+として)     0.1モル/L
グルタル酸              0.3モル/L
PEIのEO付加物(EO:40モル、Mw:2500)
                  0.02モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.02=15
(16) Example 16 (changed soluble nickel salt (A))
Based on the above Example 10, all the settings were the same as in Example 10 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel chloride (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PEI EO adduct (EO: 40 mol, Mw: 2500)
0.02 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.02 = 15
(17)実施例17(還元剤(B)を変更)
 上記実施例10を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例10と同じに設定した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)     0.1モル/L
グルタル酸              0.3モル/L
PEIのEO付加物(EO:40モル、Mw:2500)
                  0.02モル/L
[還元剤溶液]
ジメチルアミンボラン 0.25モル/L
[モル比(C/D)]
0.3/0.02=15
(17) Example 17 (change the reducing agent (B))
Based on the above Example 10, all the settings were the same as in Example 10 except that the composition of the nickel colloid catalyst solution was changed as follows.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PEI EO adduct (EO: 40 mol, Mw: 2500)
0.02 mol / L
[Reducing agent solution]
Dimethylamine borane 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.02 = 15
(18)実施例18
 上記実施例1を基本として、無電解ニッケル-リンメッキに替えて、下記無電解ニッケル-コバルト合金メッキを無電解メッキ工程(c)として行った以外は、全て実施例1と同じに設定した。
(c)無電解メッキ工程
 次の組成で無電解ニッケル-コバルト合金メッキ液を建浴した。また、当該メッキ液は水酸化ナトリウムでpH調整した。
[無電解ニッケル-コバルト合金メッキ液]
塩化ニッケル(Ni2+として) 0.025モル/L
塩化コバルト(Co2+として) 0.025モル/L
酒石酸ナトリウム           78g/L
塩酸ヒドラジン            68g/L
純水                    残余
pH(20℃)             12.0
[無電解メッキ条件]
メッキ温度:90℃
メッキ時間:20分間
(18) Example 18
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the electroless nickel-cobalt alloy plating described below was performed as the electroless plating step (c) instead of the electroless nickel-phosphorus plating.
(C) Electroless plating step An electroless nickel-cobalt alloy plating solution was built with the following composition. The pH of the plating solution was adjusted with sodium hydroxide.
[Electroless nickel-cobalt alloy plating solution]
Nickel chloride (as Ni 2+ ) 0.025 mol / L
Cobalt chloride (as Co 2+ ) 0.025 mol / L
Sodium tartrate 78 g / L
Hydrazine hydrochloride 68g / L
Pure water residual pH (20 ° C) 12.0
[Electroless plating conditions]
Plating temperature: 90 ° C
Plating time: 20 minutes
(19)比較例1(モル比(C/D)を本発明で規定の範囲よりも大きく設定)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
 即ち、本比較例1では、触媒付与工程(b)において、モル比(C/D)を本発明で規定の範囲よりも大きく設定してニッケルコロイド触媒液を調製した。但し、調製後、ニッケルコロイド触媒液は分解を始めたが、触媒液に浸漬した試料基板の一部に触媒核が付着したことにより、後の無電解メッキ工程(c)において、試料基板のごく一部にニッケル-リン皮膜が析出した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)    0.1モル/L
グルタル酸             0.3モル/L
PEI(Mw:10000)  0.0002モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.3/0.0002=1500
(19) Comparative Example 1 (Mole ratio (C / D) is set larger than the specified range in the present invention)
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
That is, in Comparative Example 1, in the catalyst application step (b), the molar ratio (C / D) was set to be larger than the range specified in the present invention to prepare a nickel colloidal catalyst solution. However, after the preparation, the nickel colloid catalyst solution started to decompose, but the catalyst nucleus adhered to a part of the sample substrate immersed in the catalyst solution, so that the sample substrate was very small in the electroless plating step (c) later. A nickel-phosphorus film was partially precipitated.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
PEI (Mw: 10000) 0.0002 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.3 / 0.0002 = 1500
(20)比較例2(モル比(C/D)を本発明で規定の範囲よりも小さく設定)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
 即ち、本比較例1では、触媒付与工程(b)において、モル比(C/D)を本発明で規定の範囲よりも小さく設定してニッケルコロイド触媒液を調製した。但し、調製後、ニッケルコロイド触媒液は分解を始めたが、触媒液に浸漬した試料基板の一部に触媒核が付着したことにより、後の無電解メッキ工程(c)において、試料基板のごく一部にニッケル-リン皮膜が析出した。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)    0.1モル/L
グルタル酸          0.0015モル/L
PEI(Mw:600)       0.2モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(C/D)]
0.0015/0.2=0.0075
(20) Comparative Example 2 (Mole ratio (C / D) is set smaller than the specified range in the present invention)
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
That is, in Comparative Example 1, in the catalyst application step (b), the molar ratio (C / D) was set to be smaller than the range specified in the present invention to prepare a nickel colloidal catalyst solution. However, after the preparation, the nickel colloid catalyst solution started to decompose, but the catalyst nucleus adhered to a part of the sample substrate immersed in the catalyst solution, so that the sample substrate was very small in the electroless plating step (c) later. A nickel-phosphorus film was partially precipitated.
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.0015 mol / L
PEI (Mw: 600) 0.2 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (C / D)]
0.0015 / 0.2 = 0.0075
(21)比較例3(合成系水溶性ポリマー(D)の替わりに天然由来の水溶性ポリマーを使用)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
 即ち、本比較例3では、触媒付与工程(b)において、本発明に用いる合成系水溶性ポリマー(D)に替えて、天然由来の水溶性ポリマー(ゼラチン)を用いてニッケルコロイド触媒液を調製した。但し、ニッケルコロイド粒子は生成したものの、凝集・沈殿し、後の無電解メッキ工程(c)において、ニッケル-リン皮膜は析出しなかった。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として)    0.1モル/L
グルタル酸             0.3モル/L
ゼラチン(Mw:30000) 0.0006モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(コロイド安定剤(C)/天然由来の水溶性ポリマー)]
0.3/0.0006=500
(21) Comparative Example 3 (A naturally derived water-soluble polymer is used instead of the synthetic water-soluble polymer (D))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
That is, in Comparative Example 3, in the catalyst application step (b), a nickel colloidal catalyst solution was prepared using a naturally-derived water-soluble polymer (gelatin) instead of the synthetic water-soluble polymer (D) used in the present invention. did. However, although nickel colloidal particles were generated, they aggregated and precipitated, and the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Glutaric acid 0.3 mol / L
Gelatin (Mw: 30000) 0.0006 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (colloidal stabilizer (C) / naturally derived water-soluble polymer)]
0.3 / 0.0006 = 500
(22)比較例4(コロイド安定剤(C)の替わりにポリアミン類に属する化合物を使用)
 上記実施例1を基本として、ニッケルコロイド触媒液の組成を下記の通りに変更した以外は、全て実施例1と同じに設定した。
 即ち、本比較例4では、触媒付与工程(b)において、本発明に用いるコロイド安定剤(C)に替えて、ポリアミン類に属する化合物(エチレンジアミン)を用いてニッケルコロイド触媒液を調製した。但し、ニッケルコロイド粒子は生成したものの、凝集・沈殿し、後の無電解メッキ工程(c)において、ニッケル-リン皮膜は析出しなかった。
(b)触媒付与工程
[ニッケル溶液]
硫酸ニッケル(Ni2+として) 0.1モル/L
エチレンジアミン       0.3モル/L
PEI(Mw:1800)  0.01モル/L
[還元剤溶液]
水素化ホウ素ナトリウム 0.25モル/L
[モル比(ポリアミン類に属する化合物/合成系水溶性ポリマー(D)]
0.3/0.01=30
(22) Comparative Example 4 (Compounds belonging to polyamines are used instead of the colloidal stabilizer (C))
Based on the above-mentioned Example 1, all the settings were the same as in Example 1 except that the composition of the nickel colloidal catalyst solution was changed as follows.
That is, in Comparative Example 4, in the catalyst application step (b), a nickel colloidal catalyst solution was prepared using a compound (ethylenediamine) belonging to polyamines instead of the colloidal stabilizer (C) used in the present invention. However, although nickel colloidal particles were generated, they aggregated and precipitated, and the nickel-phosphorus film did not precipitate in the subsequent electroless plating step (c).
(B) Catalyst application step [nickel solution]
Nickel sulfate (as Ni 2+ ) 0.1 mol / L
Ethylenediamine 0.3 mol / L
PEI (Mw: 1800) 0.01 mol / L
[Reducing agent solution]
Sodium borohydride 0.25 mol / L
[Mole ratio (compounds belonging to polyamines / synthetic water-soluble polymer (D)]
0.3 / 0.01 = 30
 実施例1~18について、ニッケルコロイド触媒液における、コロイド安定剤(C)の種類及び含有量、合成系水溶性ポリマー(D)の種類及び含有量、並びに、モル比(C/D)を、表1に纏める。また、基準例及び比較例1~4について、ニッケルコロイド触媒液における、コロイド安定剤(C)又はこれに替えて用いた成分の種類及び含有量、合成系水溶性ポリマー(D)又はこれに替えて用いた成分の種類及び含有量、並びに、各種モル比を、表2に纏める。 For Examples 1 to 18, the type and content of the colloidal stabilizer (C), the type and content of the synthetic water-soluble polymer (D), and the molar ratio (C / D) in the nickel colloidal catalyst solution are determined. It is summarized in Table 1. Further, with respect to Reference Examples and Comparative Examples 1 to 4, the type and content of the colloidal stabilizer (C) or the component used in place of the colloidal stabilizer (C) in the nickel colloidal catalyst solution, the synthetic water-soluble polymer (D) or a substitute thereof. Table 2 summarizes the types and contents of the components used in the above, as well as various molar ratios.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
≪ニッケルコロイド触媒液の経時安定性評価≫
 実施例1~18、基準例、及び比較例1~4で調製した各ニッケルコロイド触媒液について、下記評価基準に基づいて経時安定性(コロイド安定性)を評価した。
(評価基準)
◎:調製後60日経過した時点で、沈殿及び分解が起こらなかった。
○:調製後30日間、沈殿及び分解が起こらなかった。
×:調製後すぐに、沈殿或いは分解した。
≪Evaluation of stability over time of nickel colloid catalyst solution≫
The nickel colloidal catalyst solutions prepared in Examples 1 to 18, Reference Examples, and Comparative Examples 1 to 4 were evaluated for stability over time (colloidal stability) based on the following evaluation criteria.
(Evaluation criteria)
⊚: No precipitation or decomposition occurred 60 days after the preparation.
◯: No precipitation or decomposition occurred for 30 days after preparation.
X: Precipitation or decomposition immediately after preparation.
≪無電解メッキにより析出したニッケル又はニッケル合金皮膜の外観評価≫
 実施例1~18、基準例、及び比較例1~4で得られたニッケル又はニッケル合金皮膜を目視にて観察し、下記評価基準に基づいて評価した。
(評価基準)
○:メッキ皮膜にムラがなく均一であった。
△:メッキ皮膜に一部未析出(メッキ欠け)が認められた。
×:メッキ皮膜が析出しなかった。
 尚、メッキ皮膜に「ムラ」が認められるとは、メッキ皮膜の緻密性や平滑性などについて、周囲と異なる部分が存在することである。メッキ皮膜の「ムラ」は、メッキ皮膜の「均一性」とは別の観点である。
≪Appearance evaluation of nickel or nickel alloy film deposited by electroless plating≫
The nickel or nickel alloy films obtained in Examples 1 to 18, Standard Examples, and Comparative Examples 1 to 4 were visually observed and evaluated based on the following evaluation criteria.
(Evaluation criteria)
◯: The plating film was even and uniform.
Δ: Partial non-precipitation (plating chipping) was observed in the plating film.
X: No plating film was deposited.
The fact that "unevenness" is observed in the plating film means that there is a portion different from the surroundings in terms of the density and smoothness of the plating film. The "unevenness" of the plating film is a different viewpoint from the "uniformity" of the plating film.
≪ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価結果≫
 上記ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価結果を、表3に纏める。
≪Evaluation results of the temporal stability of the nickel colloidal catalyst solution and the appearance of the plating film≫
Table 3 summarizes the evaluation results of the temporal stability of the nickel colloidal catalyst solution and the appearance of the plating film.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
≪ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の総合評価≫
 モル比(C/D)を本発明で規定の範囲よりも大きく設定した比較例1のニッケルコロイド触媒液は、調製後すぐに分解して経時安定性に劣り、ニッケルコロイド触媒液との接触後に非導電性基板に無電解メッキを施しても、基板のごく一部にしかメッキ皮膜が析出せず、メッキ欠けが認められた。
 また、モル比(C/D)を本発明で規定の範囲よりも小さく設定した比較例2のニッケルコロイド触媒液も、比較例1と同様に、調製後すぐに分解して経時安定性に劣り、非導電性基板に無電解メッキを施しても、基板のごく一部にしかメッキ皮膜が析出せず、メッキ欠けが認められた。
 一方、本発明で規定のコロイド安定剤(C)を用いたが、本発明に用いる合成系水溶性ポリマー(D)に替えて天然由来の水溶性ポリマー(ゼラチン)を用いた比較例3では、ニッケルコロイド粒子は生成したものの、凝集・沈殿し、ニッケルコロイド触媒液との接触後に非導電性基板に無電解メッキを施しても、メッキ皮膜は析出しなかった。
 また、本発明で規定の合成系水溶性ポリマー(D)を用いたが、本発明で規定のコロイド安定剤(C)以外のポリアミン類に属する化合物(エチレンジアミン)を用いた比較例4でも、比較例3と同様に、ニッケルコロイド粒子は生成したものの、凝集・沈殿し、非導電性基板に無電解メッキを施しても、メッキ皮膜は析出しなかった。
 これらより、ニッケルコロイド触媒液に優れた経時安定性を付与し、ムラがなく均一なメッキ皮膜を得るには、コロイド安定剤(C)の含有量と合成系水溶性ポリマー(D)の含有量とのモル比(C/D)を、本発明で規定の適正範囲内に設定することが必要であると判断できる。
 また、ニッケルコロイド触媒液の良好な経時安定性及びムラがなく均一なメッキ皮膜の形成は、コロイド安定剤(C)及び合成系水溶性ポリマー(D)のうち、合成系水溶性ポリマー(D)が本発明の規定外であっても、コロイド安定剤(C)が本発明の規定外であっても、達成され得ないことが分かる。
≪Comprehensive evaluation of the stability of nickel colloidal catalyst solution over time and the appearance of the plating film≫
The nickel colloid catalyst solution of Comparative Example 1 in which the molar ratio (C / D) was set to be larger than the specified range in the present invention decomposed immediately after preparation and was inferior in stability over time, and after contact with the nickel colloid catalyst solution. Even if electroless plating was applied to the non-conductive substrate, the plating film was deposited only on a small part of the substrate, and plating chipping was observed.
Further, the nickel colloid catalyst solution of Comparative Example 2 in which the molar ratio (C / D) is set smaller than the specified range in the present invention also decomposes immediately after preparation and is inferior in stability over time, as in Comparative Example 1. Even if electroless plating was applied to the non-conductive substrate, the plating film was deposited only on a small part of the substrate, and plating chipping was observed.
On the other hand, although the specified colloidal stabilizer (C) was used in the present invention, in Comparative Example 3 in which a naturally derived water-soluble polymer (gelatin) was used instead of the synthetic water-soluble polymer (D) used in the present invention. Although nickel colloidal particles were generated, they aggregated and precipitated, and even if electroless plating was applied to the non-conductive substrate after contact with the nickel colloidal catalyst solution, the plating film did not precipitate.
Further, although the synthetic water-soluble polymer (D) specified in the present invention is used, it is also compared in Comparative Example 4 using a compound (ethylenediamine) belonging to polyamines other than the colloidal stabilizer (C) specified in the present invention. Similar to Example 3, nickel colloidal particles were generated, but aggregated and precipitated, and even if electroless plating was applied to the non-conductive substrate, the plating film did not precipitate.
From these, in order to impart excellent temporal stability to the nickel colloidal catalyst solution and obtain a uniform plating film without unevenness, the content of the colloidal stabilizer (C) and the content of the synthetic water-soluble polymer (D) It can be determined that it is necessary to set the molar ratio (C / D) with and within the appropriate range specified in the present invention.
Further, among the colloidal stabilizer (C) and the synthetic water-soluble polymer (D), the synthetic water-soluble polymer (D) is capable of forming a uniform plating film without unevenness and good stability of the nickel colloid catalyst solution over time. It can be seen that even if the above is not specified in the present invention or the colloidal stabilizer (C) is not specified in the present invention, it cannot be achieved.
 これに対して、吸着促進処理した後、可溶性ニッケル塩(A)と還元剤(B)と所定のコロイド安定剤(C)とを含むニッケルコロイド触媒液で触媒付与し、無電解メッキを施した、冒述の基準発明に基づく基準例では、ニッケルコロイド触媒液の経時安定性は良好であり(評価は○)、無電解メッキにより析出したメッキ皮膜は、ムラがなく均一性に優れていた(評価は〇)。
 また、吸着促進処理した後、上記基準例のコロイド安定剤(C)に加えて所定の合成系水溶性ポリマー(D)を含むニッケルコロイド触媒液で触媒付与し、無電解メッキを施した実施例1~18では、殆どのニッケルコロイド触媒液が経時安定性に優れており(殆どが評価は◎)、上記基準例よりも概ね優位性があった。また、無電解メッキにより析出したメッキ皮膜は、ムラがなく均一性に優れていた(評価は〇)。
 これを詳細に見れば、前述の通り、実施例1、3、及び5~18では、モル比(C/D)がより好ましい範囲(1~250)に含まれるので、ニッケルコロイド触媒液が経時安定性に優れている(評価は◎)のに対して、実施例2及び4では、モル比(C/D)がそれぞれ適正範囲(0.01~1000)の上限付近及び下限付近であるので、ニッケルコロイド触媒液の経時安定性は良好である(評価は○)と推定される。
On the other hand, after the adsorption promotion treatment, a nickel colloid catalyst solution containing a soluble nickel salt (A), a reducing agent (B) and a predetermined colloidal stabilizer (C) was applied as a catalyst, and electroless plating was performed. In the reference example based on the above-mentioned reference invention, the stability over time of the nickel colloid catalyst solution was good (evaluation is ○), and the plating film precipitated by electroless plating was even and excellent in uniformity (evaluation is ○). Evaluation is 〇).
Further, after the adsorption promotion treatment, the catalyst was applied with a nickel colloid catalyst solution containing a predetermined synthetic water-soluble polymer (D) in addition to the colloid stabilizer (C) of the above standard example, and electroless plating was performed. In 1 to 18, most of the nickel colloidal catalyst solutions were excellent in stability over time (most of them were evaluated as ⊚), and were generally superior to the above standard examples. In addition, the plating film deposited by electroless plating had no unevenness and was excellent in uniformity (evaluation was 〇).
Looking at this in detail, as described above, in Examples 1, 3 and 5 to 18, the molar ratio (C / D) is included in the more preferable range (1 to 250), so that the nickel colloidal catalyst solution is used over time. While the stability is excellent (evaluation is ⊚), in Examples 2 and 4, the molar ratio (C / D) is near the upper limit and the lower limit of the appropriate range (0.01 to 1000), respectively. , It is estimated that the stability over time of the nickel colloidal catalyst solution is good (evaluation is ◯).
 そこで、比較例1~4に対する実施例1~18の考察を纏めると次の通りである。
 先ず、比較例1~2ではニッケルコロイド触媒液に分解が生じたことから、実施例1~18のように、モル比(C/D)を適正範囲に調整することの重要性は、自ずと明らかである。
 また、実施例1~18を比較例3~4と対比すると、ニッケルコロイド触媒液で処理した後、無電解メッキでムラがなく均一性に優れたメッキ皮膜を得るためには、天然由来の水溶性ポリマーではなく、合成系水溶性ポリマーを選択する必要があるが、合成系水溶性ポリマー群から任意に選択すれば良い訳ではなく、合成系水溶性ポリマー群から、ポリアミン類等ではない所定の合成系水溶性ポリマー(D)を適正に選択する必要があると判断できる。
Therefore, the consideration of Examples 1 to 18 with respect to Comparative Examples 1 to 4 is as follows.
First, since the nickel colloidal catalyst solution was decomposed in Comparative Examples 1 and 2, it is self-evident that it is important to adjust the molar ratio (C / D) to an appropriate range as in Examples 1 to 18. Is.
Further, when Examples 1 to 18 are compared with Comparative Examples 3 to 4, in order to obtain a plating film having no unevenness and excellent uniformity by electroless plating after treatment with a nickel colloid catalyst solution, naturally derived water-soluble material is obtained. It is necessary to select a synthetic water-soluble polymer instead of a sex polymer, but it is not necessary to arbitrarily select from the synthetic water-soluble polymer group, and a predetermined non-polyamine or the like is selected from the synthetic water-soluble polymer group. It can be determined that it is necessary to appropriately select the synthetic water-soluble polymer (D).
 以下、実施例1~18について詳細に検討する。当該検討において、実施例1を基本として他の実施例の評価を対比的に説明する。
 先ず、基本の実施例1は、カチオン系界面活性剤であるジアリルアミンポリマーの4級アンモニウム塩(吸着促進剤)の含有液で非導電性基板を前処理し、硫酸ニッケル(可溶性ニッケル塩(A))、水素化ホウ素化合物(還元剤(B))、グルタル酸(コロイド安定剤(C))、及びPEI(合成系水溶性ポリマー(D))を含有したニッケルコロイド触媒液で触媒付与した後、無電解ニッケルメッキを施した例である。ニッケルコロイド触媒液は経時安定性に優れ、調製後60日経過しても、沈殿が生じたり、分解することはなく、また、無電解ニッケルメッキで得られたメッキ皮膜は、均一でムラも認められなかった。即ち、メッキ皮膜外観の評価は基準例と同じ結果であったが、ニッケルコロイド触媒液の経時安定性は基準例に対して優位性が認められた。
 コロイド安定剤(C)としてコハク酸、グリコール酸、グリシン、キシリトール、又はアジピン酸をそれぞれ用い、合成系水溶性ポリマー(D)としてPEIを用いた実施例5~9において、及び、コロイド安定剤(C)としてグルタル酸を用い、合成系水溶性ポリマー(D)としてPEIのEO付加物を用いた実施例10~11においても、ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価は、実施例1と同じ結果であった。
 これに対して、合成系水溶性ポリマー(D)としてPEIを用い、モル比(C/D)を適正範囲の上限付近又は下限付近にそれぞれ設定した実施例2及び4においては、ニッケルコロイド触媒液の経時安定性の評価は、基準例と同じ結果であった。従って、実施例1のように、モル比(C/D)がより好ましい範囲に含まれるようにすれば、経時安定性の向上が可能であると判断できる。特に、実施例4のように、合成系水溶性ポリマー(D)の含有量がより好ましい範囲(0.0020モル/L~0.1モル/L)に含まれており、コロイド安定剤(C)の含有量が適正範囲(0.001モル/L~5.0モル/L)内のごく少量(0.0015モル/L)の場合(従って、モル比(C/D)は適正範囲の下限付近である0.01875)も、ニッケルコロイド触媒液の経時安定性が良好に保持されている(評価は〇)点は、注目すべきである。
 また、実施例4と対比して、実施例3のように、モル比(C/D)がより好ましい範囲(1~250)の下限付近(3.75)であっても、コロイド安定剤(C)の含有量及び合成系水溶性ポリマー(D)の含有量を、共により好ましい範囲((C):0.005モル/L~1.0モル/L、(D):0.0020モル/L~0.1モル/L)内に設定すれば、ニッケルコロイド触媒液の経時安定性は基準例よりも向上し(評価は〇→◎)、ムラがなく均一性に優れたメッキ皮膜を形成可能なニッケルコロイド触媒液の性能を、より長期間に亘って維持できることが分かる。
 尚、合成系水溶性ポリマー(D)としてPEI又はPEIのEO付加物を用いた実施例1~11においては、コロイド安定剤(C)としてオキシカルボン酸類に属するグルタル酸又はグリコール酸、ポリカルボン酸類に属するコハク酸又はアジピン酸、アミノカルボン酸類に属するグリシン、もしくは糖質に属するキシリトールをそれぞれ用いても、ニッケルコロイド触媒液は、概ね経時安定性に優れており(評価は◎~○)、これらはコロイド安定剤(C)としてほぼ同等の機能を果たすことが分かる。
Hereinafter, Examples 1 to 18 will be examined in detail. In this study, the evaluation of other examples will be explained in comparison with the example 1.
First, in the basic Example 1, the non-conductive substrate is pretreated with a liquid containing a quaternary ammonium salt (adsorption accelerator) of a diallylamine polymer which is a cationic surfactant, and nickel sulfate (soluble nickel salt (A)) is prepared. ), Boron hydride compound (reducing agent (B)), glutaric acid (colloidal stabilizer (C)), and PEI (synthetic water-soluble polymer (D)). This is an example of electroless nickel plating. The nickel colloidal catalyst solution has excellent stability over time, does not precipitate or decompose even 60 days after preparation, and the plating film obtained by electroless nickel plating is uniform and uneven. I couldn't. That is, the evaluation of the appearance of the plating film was the same as that of the standard example, but the stability over time of the nickel colloidal catalyst solution was found to be superior to the standard example.
In Examples 5 to 9 in which succinic acid, glycolic acid, glycine, xylitol, or adipic acid were used as the colloidal stabilizer (C) and PEI was used as the synthetic water-soluble polymer (D), and the colloidal stabilizer ( Also in Examples 10 to 11 in which glutaric acid was used as C) and PEI's EO adduct was used as the synthetic water-soluble polymer (D), the stability of the nickel colloid catalyst solution over time and the appearance of the plating film were evaluated. The result was the same as in Example 1.
On the other hand, in Examples 2 and 4, in which PEI was used as the synthetic water-soluble polymer (D) and the molar ratio (C / D) was set near the upper limit or the lower limit of the appropriate range, respectively, the nickel colloid catalyst solution was used. The evaluation of the stability over time was the same as that of the reference example. Therefore, it can be determined that the stability over time can be improved if the molar ratio (C / D) is included in a more preferable range as in Example 1. In particular, as in Example 4, the content of the synthetic water-soluble polymer (D) is contained in a more preferable range (0.0020 mol / L to 0.1 mol / L), and the colloidal stabilizer (C) is contained. ) Is in a very small amount (0.0015 mol / L) within the appropriate range (0.001 mol / L to 5.0 mol / L) (hence, the molar ratio (C / D) is in the appropriate range. It should be noted that the stability over time of the nickel colloid catalyst solution is well maintained (evaluation is 0) even at 0.01875), which is near the lower limit.
Further, as compared with Example 4, the colloidal stabilizer (3.75) even when the molar ratio (C / D) is near the lower limit (3.75) in the more preferable range (1 to 250) as in Example 3. The content of C) and the content of the synthetic water-soluble polymer (D) are both in a more preferable range ((C): 0.005 mol / L to 1.0 mol / L, (D): 0.0020 mol. If it is set within / L to 0.1 mol / L), the stability over time of the nickel colloidal catalyst solution will be improved compared to the standard example (evaluation is 〇 → ◎), and a plating film with no unevenness and excellent uniformity will be obtained. It can be seen that the performance of the formable nickel colloidal catalyst solution can be maintained for a longer period of time.
In Examples 1 to 11 in which PEI or an EO adduct of PEI was used as the synthetic water-soluble polymer (D), glutaric acid, glycolic acid, or polycarboxylic acid belonging to oxycarboxylic acids was used as the colloidal stabilizer (C). Even if succinic acid or adipic acid belonging to, glycine belonging to aminocarboxylic acids, or xylitol belonging to sugars are used, the nickel colloid catalyst solution is generally excellent in stability over time (evaluation is ◎ to ○). It can be seen that has almost the same function as the colloidal stabilizer (C).
 一方、実施例1を基本として、合成系水溶性ポリマー(D)をジアリルアミンポリマー、PVP、PVA、又はジアリルアミンとアクリルアミドとの共重合体にそれぞれ変更した実施例12~15においても、ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価は、実施例1と同じ結果であった。また、実施例10を基本として、可溶性ニッケル塩(A)又は還元剤(B)を変更した実施例16~17においても、ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価は、実施例10と同じ結果であった。
 この場合、実施例1~15を見ると、合成系水溶性ポリマー(D)としてPEI、PEIのEO付加物、ジアリルアミンポリマー、PVP、PVA、又はジアリルアミンとアクリルアミドとの共重合体をそれぞれ用いても、ニッケルコロイド触媒液は、概ね経時安定性に優れており(評価は◎~○)、これらは合成系水溶性ポリマー(D)としてほぼ同等の機能を果たすことが分かる。
 また、合成系水溶性ポリマー(D)に着目すると、実施例3(含有量:0.08モル/L、Mw:600)、実施例1及び5~9(含有量:0.01モル/L、Mw:=1800)、実施例2(含有量:0.0005モル/L、Mw:10000)、並びに、実施例15(含有量:0.003モル/L、Mw:10000)のように、重量平均分子量が低いポリマーから重量平均分子量が高いポリマーまで種々の合成系水溶性ポリマーを用いても、ニッケルコロイド触媒液は、概ね経時安定性に優れていることから(評価は◎~○)、合成系水溶性ポリマー(D)については、重量平均分子量がある程度変化しても、経時安定性に対してほぼ同等の機能を果たすことが分かる。
 尚、実施例1を基本として、無電解メッキ工程(c)を、無電解ニッケル-リンメッキから無電解ニッケル-コバルト合金メッキに変更した実施例18では、ニッケルコロイド触媒液の経時安定性及びメッキ皮膜外観の評価は、実施例1と同じ結果であった。
On the other hand, in Examples 12 to 15 in which the synthetic water-soluble polymer (D) was changed to a diallylamine polymer, PVP, PVA, or a copolymer of diallylamine and acrylamide based on Example 1, the nickel colloid catalyst solution was also used. The evaluation of the stability over time and the appearance of the plating film was the same as in Example 1. Further, also in Examples 16 to 17 in which the soluble nickel salt (A) or the reducing agent (B) was changed based on Example 10, the stability over time of the nickel colloidal catalyst solution and the evaluation of the appearance of the plating film were evaluated in Examples. The result was the same as 10.
In this case, in Examples 1 to 15, even if PEI, an EO adduct of PEI, a diallylamine polymer, PVP, PVA, or a copolymer of diallylamine and acrylamide is used as the synthetic water-soluble polymer (D), respectively. , The nickel colloidal catalyst solution is generally excellent in stability over time (evaluations are ⊚ to ◯), and it can be seen that these perform almost the same functions as the synthetic water-soluble polymer (D).
Focusing on the synthetic water-soluble polymer (D), Example 3 (content: 0.08 mol / L, Mw: 600), Examples 1 and 5 to 9 (content: 0.01 mol / L). , Mw: = 1800), Example 2 (content: 0.0005 mol / L, Mw: 10000), and Example 15 (content: 0.003 mol / L, Mw: 10000). Even if various synthetic water-soluble polymers are used, from polymers with a low weight average molecular weight to polymers with a high weight average molecular weight, the nickel colloid catalyst solution is generally excellent in stability over time (evaluation is ◎ to ○). It can be seen that the synthetic water-soluble polymer (D) performs almost the same function with respect to stability over time even if the weight average molecular weight changes to some extent.
In Example 18 in which the electroless plating step (c) was changed from electroless nickel-phosphorus plating to electroless nickel-cobalt alloy plating based on Example 1, the stability of the nickel colloid catalyst solution over time and the plating film were obtained. The evaluation of the appearance was the same result as in Example 1.
 本発明の無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液及び無電解ニッケル又はニッケル合金メッキ方法は、非導電性基板への無電解メッキに好適に使用され得る。 The nickel colloid catalyst solution for electroless nickel or nickel alloy plating and the electroless nickel or nickel alloy plating method of the present invention can be suitably used for electroless plating on a non-conductive substrate.

Claims (7)

  1.  無電解ニッケル又はニッケル合金メッキを施す非導電性基板を接触させて、該非導電性基板に触媒付与を行うためのニッケルコロイド触媒液であって、
     (A)可溶性ニッケル塩と、
     (B)還元剤と、
     (C)ポリカルボン酸類、オキシカルボン酸類、アミノカルボン酸類、及び糖質から選ばれた少なくとも一種のコロイド安定剤と、
     (D)ポリビニルピロリドン類(PVP類)、ポリビニルアルコール(PVA)、ポリエチレンイミン類(PEI類)、ポリアリルアミン類(PAA類)、ポリビニルイミダゾール類(PVI類)、及びポリアクリルアミド類(PAM類)から選ばれた少なくとも一種の合成系水溶性ポリマーと
    を含有しており、
     上記コロイド安定剤(C)の含有量が、上記ニッケルコロイド触媒液に対して0.001モル/L~5.0モル/Lであり、且つ、上記合成系水溶性ポリマー(D)の含有量が、上記ニッケルコロイド触媒液に対して0.0005モル/L~0.3モル/Lであるとともに、
     上記コロイド安定剤(C)の含有量と上記合成系水溶性ポリマー(D)の含有量とのモル比(C/D)が、0.01~1000であることを特徴とする、無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液。
    A nickel colloidal catalyst solution for contacting a non-conductive substrate to be plated with electroless nickel or nickel alloy to impart a catalyst to the non-conductive substrate.
    (A) Soluble nickel salt and
    (B) Reducing agent and
    (C) At least one colloidal stabilizer selected from polycarboxylic acids, oxycarboxylic acids, aminocarboxylic acids, and carbohydrates.
    (D) From polyvinylpyrrolidones (PVPs), polyvinyl alcohol (PVA), polyethyleneimines (PEIs), polyallylamines (PAAs), polyvinylimidazoles (PVIs), and polyacrylamides (PAMs) Contains at least one synthetic water-soluble polymer of choice,
    The content of the colloidal stabilizer (C) is 0.001 mol / L to 5.0 mol / L with respect to the nickel colloidal catalyst solution, and the content of the synthetic water-soluble polymer (D). However, it is 0.0005 mol / L to 0.3 mol / L with respect to the above nickel colloid catalyst solution, and
    Electroless nickel characterized in that the molar ratio (C / D) of the content of the colloidal stabilizer (C) to the content of the synthetic water-soluble polymer (D) is 0.01 to 1000. Or a nickel colloid catalyst solution for nickel alloy plating.
  2.  上記コロイド安定剤(C)が、
     マロン酸、コハク酸、グルタル酸、アジピン酸、シュウ酸、及びこれらの塩から選ばれた少なくとも一種のポリカルボン酸類;
     クエン酸、酒石酸、リンゴ酸、グルコン酸、グリコール酸、乳酸、アスコルビン酸、ヒドロキシ酪酸、グルコヘプトン酸、シトラマル酸、エリソルビン酸、及びこれらの塩から選ばれた少なくとも一種のオキシカルボン酸類;
     グルタミン酸、ジカルボキシメチルグルタミン酸、オルニチン、システイン、グリシン、N,N-ビス(2-ヒドロキシエチル)グリシン、(S,S)-エチレンジアミンコハク酸、及びこれらの塩から選ばれた少なくとも一種のアミノカルボン酸類;並びに
     グルコース、ガラクトース、マンノース、フルクトース、ラクトース、スクロース、マルトース、パラチノース、キシロース、トレハロース、ソルビトール、キシリトール、マンニトール、マルチトール、エリスリトール、還元水飴、ラクチトール、還元パラチノース、及びグルコノラクトンから選ばれた少なくとも一種の糖質
    よりなる群から選ばれた少なくとも一種であることを特徴とする、請求項1に記載の無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液。
    The colloidal stabilizer (C) is
    Malonic acid, succinic acid, glutaric acid, adipic acid, oxalic acid, and at least one polycarboxylic acid selected from these salts;
    Citric acid, tartaric acid, malic acid, gluconic acid, glycolic acid, lactic acid, ascorbic acid, hydroxybutyric acid, glucoheptic acid, citramalic acid, erythorbic acid, and at least one oxycarboxylic acid selected from these salts;
    Glutamic acid, dicarboxymethyl glutamate, ornithine, cysteine, glycine, N, N-bis (2-hydroxyethyl) glycine, (S, S) -ethylenediamine succinic acid, and at least one aminocarboxylic acid selected from salts thereof. And at least selected from glucose, galactose, mannose, fructose, lactose, sucrose, maltose, palatinose, xylose, trehalose, sorbitol, xylitol, mannitol, martitol, erythritol, reduced candy, lactitol, reduced palatinose, and gluconolactone. The nickel colloid catalyst solution for electroless nickel or nickel alloy plating according to claim 1, which is at least one selected from the group consisting of one type of sugar.
  3.  上記還元剤(B)が、水素化ホウ素化合物、アミンボラン類、次亜リン酸類、アルデヒド類、アスコルビン酸類、ヒドラジン類、多価フェノール類、多価ナフトール類、フェノールスルホン酸類、ナフトールスルホン酸類、スルフィン酸類、及び還元糖類よりなる群から選ばれた少なくとも一種であることを特徴とする、請求項1又は2に記載の無電解ニッケル又はニッケル合金メッキ用のニッケルコロイド触媒液。 The reducing agent (B) is a boron hydride compound, amine borons, hypophosphates, aldehydes, ascorbic acids, hydrazines, polyhydric phenols, polyvalent naphthols, phenolsulfonic acids, naphtholsulfonic acids, sulfinic acids. , And the nickel colloid catalyst solution for plating a non-electrolytic nickel or a nickel alloy according to claim 1 or 2, which is at least one selected from the group consisting of reducing saccharides.
  4.  (a)ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、及び両性界面活性剤よりなる群から選ばれた少なくとも一種の吸着促進剤の含有液に、非導電性基板を接触させる吸着促進工程と、
     (b)請求項1~3のいずれか1項に記載のニッケルコロイド触媒液に、吸着促進された非導電性基板を接触させて、該非導電性基板の表面にニッケルコロイド粒子を吸着させる触媒付与工程と、
     (c)触媒付与された非導電性基板上に、無電解ニッケル又はニッケル合金メッキ液を用いてニッケル又はニッケル合金皮膜を形成する無電解メッキ工程と
    からなることを特徴とする、無電解ニッケル又はニッケル合金メッキ方法。
    (A) Contact the non-conductive substrate with a liquid containing at least one adsorption accelerator selected from the group consisting of nonionic surfactants, cationic surfactants, anionic surfactants, and amphoteric surfactants. Adsorption promotion step to make
    (B) The nickel colloidal catalyst solution according to any one of claims 1 to 3 is brought into contact with an adsorption-promoted non-conductive substrate to provide a catalyst for adsorbing nickel colloidal particles on the surface of the non-conductive substrate. Process and
    (C) Electroless nickel or nickel-free plating, which comprises an electroless plating step of forming a nickel or nickel alloy film on a non-conductive substrate to which a catalyst is applied, using an electroless nickel or nickel alloy plating solution. Nickel alloy plating method.
  5.  先ず、エッチング処理液に非導電性基板を接触させて、該非導電性基板の表面を粗面化するエッチング処理工程(p)を施すとともに、
     該非導電性基板に対して、上記エッチング処理工程(p)の次に上記吸着促進工程(a)を施し、その後、上記触媒付与工程(b)及び上記無電解メッキ工程(c)を順次施す
    ことを特徴とする、請求項4に記載の無電解ニッケル又はニッケル合金メッキ方法。
    First, the non-conductive substrate is brought into contact with the etching treatment liquid to perform an etching treatment step (p) for roughening the surface of the non-conductive substrate, and at the same time, the etching treatment step (p) is performed.
    The non-conductive substrate is subjected to the adsorption promotion step (a) after the etching treatment step (p), and then the catalyst application step (b) and the electroless plating step (c) in sequence. 4. The electroless nickel or nickel alloy plating method according to claim 4.
  6.  上記吸着促進工程(a)で用いる吸着促進剤が、カチオン系界面活性剤及び/又は両性界面活性剤であることを特徴とする、請求項4又は5に記載の無電解ニッケル又はニッケル合金メッキ方法。 The electroless nickel or nickel alloy plating method according to claim 4 or 5, wherein the adsorption accelerator used in the adsorption promotion step (a) is a cationic surfactant and / or an amphoteric surfactant. ..
  7.  請求項4~6のいずれか1項に記載の無電解ニッケル又はニッケル合金メッキ方法によって、非導電性基板上にニッケル又はニッケル合金皮膜を形成することを特徴とする、ニッケル又はニッケル合金メッキ基板の製造方法。 A nickel or nickel alloy plated substrate, characterized in that a nickel or nickel alloy film is formed on the non-conductive substrate by the electroless nickel or nickel alloy plating method according to any one of claims 4 to 6. Production method.
PCT/JP2021/017916 2020-06-24 2021-05-11 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate WO2021261098A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180044944.7A CN115803476A (en) 2020-06-24 2021-05-11 Nickel colloidal catalytic solution for electroless nickel plating or nickel alloy plating, method for electroless nickel plating or nickel alloy plating, and method for producing nickel plating or nickel alloy substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-109161 2020-06-24
JP2020109161A JP6858425B1 (en) 2020-06-24 2020-06-24 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method

Publications (1)

Publication Number Publication Date
WO2021261098A1 true WO2021261098A1 (en) 2021-12-30

Family

ID=75378047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017916 WO2021261098A1 (en) 2020-06-24 2021-05-11 Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate

Country Status (4)

Country Link
JP (1) JP6858425B1 (en)
CN (1) CN115803476A (en)
TW (1) TW202210661A (en)
WO (1) WO2021261098A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770282A (en) * 2023-07-04 2023-09-19 江苏贺鸿电子有限公司 Chemical nickel plating process for circuit board

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220494B1 (en) 2022-08-26 2023-02-10 石原ケミカル株式会社 Gold concentration measuring device and measuring method in gold-containing plating solution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293076A (en) * 1988-09-29 1990-04-03 Sanko Tokushu Kinzoku Kogyo Kk Production of fine metal body utilized for electroless plating
JP2016056421A (en) * 2014-09-11 2016-04-21 石原ケミカル株式会社 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating, and plating method of electroless nickel or nickel alloy
JP2016151056A (en) * 2015-02-19 2016-08-22 石原ケミカル株式会社 Copper colloid catalyst liquid for electroless copper plating and electroless copper plating method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2736666B2 (en) * 1988-12-29 1998-04-02 戸田工業株式会社 Palladium hydrosol catalyst for electroless plating and method for producing the same
US5082734A (en) * 1989-12-21 1992-01-21 Monsanto Company Catalytic, water-soluble polymeric films for metal coatings
JP6145681B2 (en) * 2014-02-07 2017-06-14 石原ケミカル株式会社 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0293076A (en) * 1988-09-29 1990-04-03 Sanko Tokushu Kinzoku Kogyo Kk Production of fine metal body utilized for electroless plating
JP2016056421A (en) * 2014-09-11 2016-04-21 石原ケミカル株式会社 Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating, and plating method of electroless nickel or nickel alloy
JP2016151056A (en) * 2015-02-19 2016-08-22 石原ケミカル株式会社 Copper colloid catalyst liquid for electroless copper plating and electroless copper plating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770282A (en) * 2023-07-04 2023-09-19 江苏贺鸿电子有限公司 Chemical nickel plating process for circuit board
CN116770282B (en) * 2023-07-04 2024-03-19 江苏贺鸿电子有限公司 Chemical nickel plating process for circuit board

Also Published As

Publication number Publication date
CN115803476A (en) 2023-03-14
JP6858425B1 (en) 2021-04-14
JP2022006741A (en) 2022-01-13
TW202210661A (en) 2022-03-16

Similar Documents

Publication Publication Date Title
TWI621736B (en) Nickle colloidal catalyst solution for electroless nickle or nickle alloy plating and electroless nickle or nickle alloy plating method
TWI684673B (en) Copper colloidal catalyst solution for electroless copper plating and electroless copper plating method
KR102322950B1 (en) Copper colloidal catalyst solution for electroless copper plating, electroless copper plating method, and manufacturing method of copper plating substrate
KR101807696B1 (en) Aqueous copper colloid catalyst solution and electroless copper plating method for the electroless copper plating
WO2021261098A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
WO2021220788A1 (en) Nickel colloid catalyst solution for electroless nickel or nickel alloy plating use, electroless nickel or nickel alloy plating method, and method for manufacturing nickel- or nickel-alloy-plated substrate
JP6268379B2 (en) Nickel colloidal catalyst solution for electroless nickel or nickel alloy plating and electroless nickel or nickel alloy plating method
JP6735981B2 (en) Electroless copper plating method and method of manufacturing printed wiring board using the method
JP2023008598A (en) Electroless nickel or nickel alloy plating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828172

Country of ref document: EP

Kind code of ref document: A1