WO2021261031A1 - Propagation prediction system, propagation prediction method, and recording medium storing propagation prediction program - Google Patents

Propagation prediction system, propagation prediction method, and recording medium storing propagation prediction program Download PDF

Info

Publication number
WO2021261031A1
WO2021261031A1 PCT/JP2021/010539 JP2021010539W WO2021261031A1 WO 2021261031 A1 WO2021261031 A1 WO 2021261031A1 JP 2021010539 W JP2021010539 W JP 2021010539W WO 2021261031 A1 WO2021261031 A1 WO 2021261031A1
Authority
WO
WIPO (PCT)
Prior art keywords
clutter
dominant
base station
loss
propagation
Prior art date
Application number
PCT/JP2021/010539
Other languages
French (fr)
Japanese (ja)
Inventor
威生 藤井
直 宮本
啓太 片桐
宏一 安達
光哉 佐藤
Original Assignee
国立大学法人電気通信大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020170283A external-priority patent/JP2022007866A/en
Application filed by 国立大学法人電気通信大学 filed Critical 国立大学法人電気通信大学
Publication of WO2021261031A1 publication Critical patent/WO2021261031A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/373Predicting channel quality or other radio frequency [RF] parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic

Definitions

  • the present invention relates to a propagation prediction system, a propagation prediction method, and a recording medium containing a propagation prediction program, and in particular, a propagation prediction system for predicting propagation loss between base stations of two wireless communication systems using the same frequency, propagation. It can be suitably used as a recording medium in which a prediction method and a propagation prediction program are stored.
  • the frequency band used in wireless communication is finite, and with the spread of mobile terminals that perform wireless communication, there is a demand for a method of using the frequency band more efficiently. From this point of view, a technique for allocating the same frequency band to a plurality of wireless communication systems is being studied.
  • control is performed to stop at least a part of the lower priority secondary radio communication system using the same frequency at the time and region where the higher priority primary radio communication system performs wireless communication. Can be considered.
  • This control may be performed by predicting the interference power to the primary base station included in the primary wireless communication system for each of the secondary base stations included in the secondary wireless communication system. This interference power may be predicted based on the propagation loss between the primary base station and the secondary base station.
  • wireless communication systems with higher priority include wireless relay transmission systems for television broadcasting and wireless communication systems related to disaster prevention or defense.
  • wireless communication system having a lower priority wireless communication using a mobile phone, a smartphone, or the like, particularly wireless communication by carrier aggregation that bundles and uses a plurality of frequency bands can be mentioned.
  • Non-Patent Document 1 (ITU-R (Radiocommunication Sector of International Telecommunication Union), "Recommunication ITU-R P.2108-0 (06/2017) Redocommunication Section ], June 20, 2017, Internet ⁇ URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2108-0-201706-I ! PDF- E.pdf>) discloses a calculation method for modeling the propagation environment of electromagnetic waves and approximately predicting the propagation loss due to clutter existing in this propagation environment.
  • Non-Patent Document 1 the elevation difference of the transmitting side antenna, the receiving side antenna, the clutter, etc. is not taken into consideration, and the propagation predicted when there is a clutter such as a building significantly higher than the antenna. The loss error increases.
  • the propagation prediction system includes an arithmetic unit and an input / output unit.
  • the arithmetic unit estimates the propagation path between the primary base station and the secondary base station, and predicts the propagation loss in the propagation path.
  • the input / output device outputs an output signal according to the propagation loss.
  • the arithmetic unit is the first dominant clutter that has the maximum elevation angle when the apex of the clutter is seen from the primary base station, and the clutter from the secondary base station. Select the second dominant clutter that has the maximum elevation angle when looking at the apex of.
  • the arithmetic unit is the distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, the distance from the second dominant clutter to the secondary base station, and the primary base. Based on the respective altitudes of the station, the first dominant clutter, the second dominant clutter, and the secondary base station, the component of the propagation loss caused by the first dominant clutter and the second dominant clutter is calculated as the clutter loss. do.
  • the arithmetic unit predicts the propagation loss by approximating the component of the propagation loss excluding the clutter loss to the free space loss.
  • the propagation prediction method estimates the propagation path between the primary base station and the secondary base station, predicts the propagation loss of the propagation path, and outputs an output signal according to the propagation loss. Including that. Predicting propagation loss is to select the first dominant clutter that has the maximum elevation angle from the primary base station to the apex of the clutter from the clutters located between the primary base station and the secondary base station. This includes selecting the second dominant clutter that has the maximum elevation angle when the apex of the clutter is seen from the secondary base station from the clutters arranged between the primary base station and the secondary base station.
  • Predicting propagation loss also means the distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, and the distance from the second dominant clutter to the secondary base station. Due to the first dominant clutter and the second dominant clutter of the propagation loss, based on the distance of the primary base station, the first dominant clutter, the second dominant clutter, and the respective altitudes of the secondary base stations. Includes calculating the component as a clutter loss. Predicting the propagation loss further includes approximating the components of the propagation loss excluding the clutter loss to the free space loss.
  • the recording medium in which the propagation prediction program is stored is a recording medium in which the program for realizing a predetermined function in the computer is stored.
  • a predetermined function includes estimating the propagation path between the primary base station and the secondary base station, predicting the propagation loss of the propagation path, and outputting an output signal according to the propagation loss.
  • Predicting propagation loss is to select the first dominant clutter that has the maximum elevation angle from the primary base station to the apex of the clutter from the clutters located between the primary base station and the secondary base station. This includes selecting the second dominant clutter that has the maximum elevation angle when the apex of the clutter is seen from the secondary base station from the clutters arranged between the primary base station and the secondary base station.
  • Predicting propagation loss also means the distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, and the distance from the second dominant clutter to the secondary base station.
  • the component of the propagation loss due to the 1st dominant clutter and the 2nd dominant clutter based on the distance of the primary base station, the 1st dominant clutter, the 2nd dominant clutter and the secondary base station respectively. Includes calculating as a clutter loss. Predicting the propagation loss further includes approximating the components of the propagation loss excluding the clutter loss to the free space loss.
  • FIG. 1 is a diagram showing a configuration example of a propagation prediction system according to an embodiment.
  • FIG. 2A is a block circuit diagram showing a configuration example of a server of a propagation prediction system according to an embodiment.
  • FIG. 2B is a block circuit diagram showing an example of the configuration of the server shown in FIG. 2A from a functional point of view.
  • FIG. 3 is a flowchart showing a configuration example of a propagation prediction method according to an embodiment.
  • FIG. 4 is a diagram for explaining a method of selecting a dominant clutter in one embodiment.
  • FIG. 5 is a diagram for explaining parameters derived from the positional relationship between the antenna and the dominant clutter according to the embodiment.
  • FIG. 1 is a diagram showing a configuration example of a propagation prediction system according to an embodiment.
  • FIG. 2A is a block circuit diagram showing a configuration example of a server of a propagation prediction system according to an embodiment.
  • FIG. 2B is a block circuit diagram showing an example of the configuration of the
  • FIG. 6 is a diagram for explaining a case where the dominant clutter corresponding to the two antennas is the same in one embodiment.
  • FIG. 7 is a flowchart showing a modified example of the propagation prediction method according to the embodiment.
  • FIG. 8A is a flowchart showing another modification of the propagation prediction method according to the embodiment.
  • FIG. 8B is a flowchart showing still another modification of the propagation prediction method according to the embodiment.
  • FIG. 8C is a flowchart showing a modified example of the propagation prediction method according to the embodiment.
  • FIG. 9 is a diagram for explaining parameters derived from the positional relationship between two antennas having different altitudes and a dominant clutter in one embodiment.
  • the propagation prediction system 1 is connected to the primary radio communication system 4 and the secondary radio communication system 5.
  • the primary wireless communication system 4 and the secondary wireless communication system 5 are external to the propagation prediction system 1
  • the primary wireless communication system 4 and the secondary wireless communication system 5 are propagation prediction systems. It does not necessarily exclude the case included in 1.
  • the primary wireless communication system 4 is a transmission / reception system of an FPU (Field Pickup Unit: wireless relay transmission device)
  • the FPU is used, for example, for material transmission for relaying and broadcasting a marathon.
  • the primary wireless communication system 4 includes a primary base station 41 and a primary mobile station 42.
  • the primary base station 41 and the primary mobile station 42 perform wireless communication using a predetermined frequency band assigned to the primary wireless communication system 4.
  • the secondary wireless communication system 5 is a cellular system.
  • the cellular system is used for wireless communication of, for example, mobile phones and smartphones.
  • the secondary wireless communication system 5 includes a secondary base station 51A, 51B, 51C, 51D, 51E, a secondary operation server 50 that controls the secondary base stations 51A, 51B, 51C, 51D, 51E, and a secondary mobile station (not shown).
  • a secondary base station 51A, 51B, 51C, 51D, and 51E may be simply referred to as the secondary base station 51.
  • the total number of secondary base stations 51 is 5, but the present embodiment is not limited to this total number. Further, the present embodiment is not limited to the total number of secondary mobile stations.
  • the secondary base station 51 and the secondary mobile station perform wireless communication using a predetermined frequency band assigned to the secondary wireless communication system 5.
  • the secondary wireless communication system 5 uses a frequency band that can interfere with the frequency band of the primary wireless communication system 4 .
  • the primary wireless communication system 4 preferentially uses the frequency in this band with respect to the secondary wireless communication system 5, and the secondary wireless communication system 5 uses the frequency in the same band within a range that does not interfere with the primary wireless communication system 4. do.
  • This frequency band may be, for example, a frequency band used in 5G (fifth generation mobile communication system).
  • the propagation prediction system 1 controls the suppression of interference from the secondary wireless communication system 5 to the primary wireless communication system 4 by predicting the propagation loss between the primary wireless communication system 4 and the secondary wireless communication system 5. Therefore, first, the propagation prediction system 1 acquires operational information from each of the primary wireless communication system 4 and the secondary wireless communication system 5.
  • the primary operation information 44 of the primary wireless communication system 4 may be provided to the propagation prediction system 1 from the primary base station 41, or may be provided to the propagation prediction system 1 from a primary operation server (not shown).
  • the secondary operation information 54 of the secondary wireless communication system 5 is provided to the propagation prediction system 1 from the secondary operation server 50 included in the secondary wireless communication system 5.
  • the propagation prediction system 1 predicts the propagation loss of each secondary base station 51 based on these operational information, and makes the interference power from the secondary base station 51 to the primary base station 41 equal to or less than a desired threshold value. Control is performed to limit the operation of the wireless communication system 5. This threshold may be determined based on the protection norms for protecting the primary radio communication system 4. Further, in this control, the propagation prediction system 1 generates and outputs an output signal 14 according to the propagation loss of each secondary base station 51, and the secondary operation server 50 stops each of the secondary base stations 51 based on the output signal 14. Alternatively, it may be performed by operating it.
  • the propagation prediction system 1 calculates the propagation loss between the primary wireless communication system 4 and the secondary wireless communication system 5 in order to calculate this interference power. In order to calculate this propagation loss, the propagation prediction system 1 refers to the three-dimensional map information of the area where the primary wireless communication system 4 and the secondary wireless communication system 5 are arranged.
  • the three-dimensional map information includes position information indicating the horizontal position and altitude of the clutter arranged between the primary wireless communication system 4 and the secondary wireless communication system 5.
  • Clutter is a general term for objects other than topography that exist on the surface of the earth, and refers to, for example, buildings and vegetation.
  • the position information of the clutter may represent the horizontal position and altitude of the apex where the diffraction of the electromagnetic wave can occur in the clutter.
  • the three-dimensional map information includes the position information indicating the horizontal position and altitude of the primary wireless communication system 4, particularly the primary base station 41, and the horizontal position of the secondary wireless communication system 5, particularly the secondary base station 51. It also includes location information that represents altitude.
  • the position information of the primary base station 41 may represent the horizontal position and altitude of the antenna included in the primary base station 41.
  • the position information of the secondary base station 51 may represent the horizontal position and altitude of the antenna included in the secondary base station 51.
  • the propagation prediction system 1 may hold the three-dimensional map information of the area where the primary wireless communication system 4, the secondary wireless communication system 5 and the clutter are arranged in advance, or acquire it from the outside as needed. May be good.
  • the server 2 includes a bus 21, an input / output device 22, an arithmetic unit 23, a storage device 24, and an external storage device 25.
  • the input / output device 22 inputs / outputs information, signals, etc. to / from the external configuration of the server 2.
  • the arithmetic unit 23 can realize a predetermined function by reading and executing the program stored in the storage device 24.
  • the storage device 24 stores programs, data, and the like to be read by the arithmetic unit 23 in order to realize a predetermined function.
  • the external storage device 25 can read programs, data, and the like from the recording medium 26, and can write the programs, data, and the like to the recording medium 26.
  • the recording medium 26 may be non-temporary and tangible.
  • the input / output device 22, the arithmetic unit 23, the storage device 24, and the external storage device 25 can communicate with each other via the bus 21.
  • the server 2 includes a communication unit 201, a clutter selection unit 202, a propagation loss calculation unit 203, and a control unit 204.
  • Each of the communication unit 201 and the control unit 204 is a functional unit realized by the input / output device 22, the arithmetic unit 23, and the storage device 24 in cooperation with each other.
  • Each of the clutter selection unit 202 and the propagation loss calculation unit 203 is a functional unit realized by the arithmetic unit 23 and the storage device 24 in cooperation with each other.
  • the functions of the communication unit 201, the clutter selection unit 202, the propagation loss calculation unit 203, and the control unit 204 will be described later.
  • step S01 is executed, and the three-dimensional map information is prepared in the storage device 24.
  • the three-dimensional map information includes the primary wireless communication system 4 including the primary base station 41, the secondary wireless communication system 5 including the secondary base station 51, and the clutter of the primary base station 41 and the secondary base station 51. It belongs to the area where it is located. A part or all of the three-dimensional map information may be read from the outside by the communication unit 201 of the server 2 and stored in the storage device 24.
  • Step S02 is executed after step S01, and the communication unit 201 of the server 2 acquires the primary operation information 44 from the primary base station 41 or the primary operation server, and acquires the secondary operation information 54 from the secondary operation server 50.
  • the primary operation information 44 includes the horizontal position and altitude of the primary base station 41, the frequency band used by the primary radio communication system 4, the strength of the radio signal transmitted from the primary mobile station 42 and reaching the primary base station 41, and the primary radio communication system.
  • Various information indicating the time zone in which 4 operates may be included.
  • the secondary operation information 54 includes the horizontal position and altitude of the secondary base station 51, the frequency band used by the secondary wireless communication system 5, the strength of the radio signal transmitted from the secondary base station 51, and the secondary base station 51, respectively.
  • Information indicating the horizontal position and altitude of each of the primary base station 41 and the secondary base station 51 may be supplied from any one of the three-dimensional map information, the primary operation information 44, and the secondary operation information 54. However, it may be supplied in duplicate from a plurality of units. With respect to the operation information supplied in duplicate, which operation information the server 2 adopts may be appropriately determined based on criteria such as, for example, the latest operation information being adopted.
  • Step S03 is executed after step S02, and the clutter selection unit 202 of the server 2 is placed between the primary base station 41 and the secondary base station 51 from among the clutters arranged between the primary base station 41 and the secondary base station 51.
  • Election a dominant clutter whose effect on propagation loss is dominant.
  • FIG. 4 an example of a method of selecting a dominant clutter in one embodiment will be described.
  • three clutters 63, 64, and 65 are present between the first antenna 61 of the primary base station 41 and the second antenna 62 of the secondary base station 51.
  • the altitudes of the first antenna 61 and the second antenna 62 are the same, but the present embodiment is not limited to this example.
  • Each of the clutters 63, 64, and 65 is arranged so as to have a portion that blocks a virtual straight path 612 connecting the first antenna 61 and the second antenna 62.
  • each of the clutters 63, 64, and 65 is arranged between the first antenna 61 and the second antenna 62, and the altitude thereof is higher than the altitudes of the first antenna 61 and the second antenna 62.
  • the electromagnetic wave emitted from the first antenna 61 can reach the second antenna 62 by diffracting at the ends of the clutters 63, 64, and 65.
  • the electromagnetic wave radiated from the second antenna 62 can reach the first antenna 61 by diffracting at the ends of the clutters 63, 64, 65.
  • diffraction causes propagation loss.
  • the clutters 63, 64, and 65 have vertices 631, 641, and 651, respectively.
  • the propagation loss may be calculated in consideration of all the diffractions generated at these vertices 631, 641, and 651, but the amount of calculation for that purpose can be relatively enormous. Therefore, in the present embodiment, among the clutters arranged between the first antenna 61 and the second antenna 62, the first dominant clutter, in which the influence of the propagation loss on the first antenna 61 is dominant, and the first.
  • the approximation is made by selecting the second dominant clutter in which the influence of the propagation loss on the two antennas 62 is dominant, and ignoring the propagation loss caused by the remaining clutter.
  • the clutter 64 is selected as the first dominant clutter corresponding to the first antenna 61.
  • the criterion for selection is that the clutter has the maximum elevation angle when the vertices 631, 641 and 651 of the clutter 63, 64 and 65 are viewed from the first antenna 61.
  • the path 613 which is a straight line connecting the first antenna 61 and the apex 631 of the clutter 63 is blocked by the clutter 64
  • the path 615 which is a straight line connecting the first antenna 61 and the apex 651 of the clutter 65 is also blocked by the clutter 64. It is blocked.
  • the path 614 which is a straight line connecting the first antenna 61 and the apex 641 of the clutter 64, is not blocked by the other clutters 63 and 65. Therefore, it is considered that the propagation loss of the electromagnetic wave transmitted and received by the first antenna 61 is larger when diffracted by the clutter 64 than when diffracted by the clutter 63 or 65.
  • the clutter 65 is selected as the second dominant clutter corresponding to the second antenna 62.
  • the criterion for selection is that the clutter has the maximum elevation angle when the vertices 631, 641 and 651 of the clutter 63, 64 and 65 are viewed from the second antenna 62.
  • the path 623 which is a straight line connecting the second antenna 62 and the apex 631 of the clutter 63, is blocked by the clutters 64 and 65
  • the path 624 which is a straight line connecting the second antenna 62 and the apex 641 of the clutter 64, is a clutter. It is blocked by 65.
  • the path 615 which is a straight line connecting the second antenna 62 and the apex 651 of the clutter 65, is not blocked by the other clutters 63 and 64. Therefore, it is considered that the propagation loss of the electromagnetic wave transmitted and received by the second antenna 62 is larger when diffracted by the clutter 65 than when diffracted by the clutter 63 or 64.
  • the clutter having the maximum clearance coefficient of the clutter with respect to the antenna may be used as the dominant clutter.
  • the clearance coefficient is a parameter related to the loss that the electromagnetic wave propagates through the obstacle.
  • the propagation loss of the propagation path between the first antenna 61 and the second antenna 62 is the first.
  • the components excluding the clutter loss due to the 1 dominant clutter 64 and the 2nd dominant clutter 65 are calculated and / or predicted by approximating the free space loss.
  • the propagation loss at 645 and path 614 is approximated to the propagation loss in free space at the distance of path 612.
  • the propagation path between the first antenna 61 and the second antenna 62 is a free space at a distance of the path 612.
  • the propagation loss is approximated. calculate.
  • the propagation loss in each of the path 625, the path 645, and the path 614 is the propagation loss in the free space of the same distance. May be good.
  • the first antenna 61 and the second antenna 62 are arranged by selecting the first dominant clutter 64 corresponding to the first antenna 61 and the second dominant clutter 65 corresponding to the second antenna 62. It is estimated that the propagation path between them is a set of paths 625, 645 and 614 that pass through the apex 641 of the first dominant clutter 64 and the apex 651 of the second dominant clutter 65.
  • Non-Patent Document 1 (ITU-R (Radiocommunication Sector of International Telecommunication Union), "Recommunication ITU-R P.2108-0 (06/2017) Radiocommunication , [Online], June 20, 2017, Internet ⁇ URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2108-0-201706-I !!
  • the clutter model defined in PDF-E.pdf> has been improved. By doing so, in the present embodiment, the propagation loss can be accurately calculated and / or predicted.
  • the clutter selection unit 202 selects a plurality of second dominant clutters corresponding to the plurality of secondary base stations 51, respectively.
  • the clutter selection unit 202 stores information representing the selected dominant clutter in the storage device 24.
  • step S04 is executed after step S03, and the propagation loss calculation unit 203 of the server 2 interferes with the primary base station 41 in the frequency band used by the secondary base station 51. Calculate the propagation loss at frequencies included in the frequency band where can occur.
  • the first clutter loss which is a component caused by the first dominant clutter, is the distance from the primary base station 41 to the first dominant clutter and the primary. It can be calculated based on the respective altitudes of the base station 41 and the first dominant clutter.
  • the second clutter loss which is a component caused by the second dominant clutter, is the distance from the secondary base station 51 to the second dominant clutter. And the altitude of each of the secondary base station 51 and the second dominant clutter.
  • clutter loss A h is the standard model of non-patent document 1 is defined by the following (1a) formula and (1b) Formula (suburban, urban, trees, forests, dense urban) and has units of dB (Decibel).
  • J ( ⁇ ) is a parameter related to the loss due to diffraction, and its unit is dB.
  • is the clearance coefficient of the dominant clutter, and its unit is dimensionless.
  • "6.03” is an approximated constant, and depending on the approximated condition, for example, “6.02", “6.04", "any numerical value from 6.00 to 6.06", etc. , Can be changed to another value.
  • "H” is the altitude of the antenna, and its unit is m (meter).
  • R” is the altitude of the dominant clutter 64 corresponding to this antenna, the unit of which is m.
  • each of the altitude h of the antenna and the altitude R of the dominant clutter 64 shown in FIG. 5 are altitudes with respect to the same horizontal plane. These altitudes may be defined as above sea level, or may be defined by adding the altitude above sea level to the height above sea level, but the present embodiment is not limited to these examples. In either case, since the difference between the altitude h and the altitude R is used in the calculation of the clutter loss and / or the propagation loss in the present embodiment, the altitude of the reference horizontal plane may be arbitrary.
  • Equation (1a) is applied when the condition of "h ⁇ R" is satisfied, that is, when the dominant clutter blocks the virtual straight line connecting the first antenna 61 and the second antenna 62. Further, the equation (1b) is applied when the condition of "h ⁇ R" is satisfied, that is, when the electromagnetic wave can be directly propagated along this virtual straight line between the first antenna 61 and the second antenna 62. Will be done.
  • the calculation method of the equation (1a) will be described.
  • the clearance coefficient ⁇ used in the equation (2) is defined as the following equation (3).
  • K nu is a parameter related to frequency.
  • h dif is the difference between the altitude R of the dominant clutter 64 and the altitude h of the first antenna 61, and the unit thereof is m.
  • ⁇ cult is an elevation angle when the apex 641 of the dominant clutter 64 is viewed from the first antenna 61, and the unit thereof is deg (degrees).
  • the value of the elevation angle when looking above the horizontal direction is positive, but the depression angle when looking below the horizontal direction may be treated as an elevation angle having a negative value.
  • the frequency parameter K nu used in the equation (3) is defined as the following equation (4).
  • "f” is a frequency, and its unit is GHz (gigahertz).
  • the altitude difference h def used in the equation (3) is defined as the following equation (5).
  • the elevation angle ⁇ clut used in the equation (3) is defined as the following equation (6).
  • "w s" as shown in FIG. 5, a horizontal distance to the vertex 641 of the dominant clutter 64 from the first antenna 61, the unit is m.
  • the distance w s may correspond to a parameter defined as a road width in the standard model of Non-Patent Document 1.
  • the dominant in this frequency band is based on the position and altitude information of each of the first antenna 61 and the dominant clutter 64 and the value of the frequency contained in the frequency band used.
  • the clutter loss due to the clutter 64 can be calculated.
  • the clutter loss can be similarly calculated for the dominant clutter corresponding to the second antenna 62.
  • the propagation path from the primary base station 41 to the secondary base station 51 is approximated to free space.
  • this propagation path is divided by the dominant clutter 64 and the second dominant clutter 65
  • the propagation path to the two dominant clutter 65 and the propagation path from the second dominant clutter 65 to the secondary base station 51 are approximated to free space, respectively.
  • the propagation loss that is, the free space loss in each of these free spaces is defined by the following equation (7).
  • L 0 is a free space loss, the unit of which is dimensionless, but the propagation loss of the unit is dB by calculating 10 times its log (logarithm with a base of 10). Can be calculated.
  • D is the distance at which the electromagnetic wave propagates in the propagation path as a free space, and its unit is m.
  • is a wavelength corresponding to the frequency used, and its unit is m.
  • the overall propagation loss from the primary base station 41 to the secondary base station 51 is predicted. be able to.
  • Step S05 is executed after step S04, and the control unit 204 of the server 2 generates an output signal 14 according to the propagation loss calculated in step S04 and outputs the output signal 14 to the secondary operation server 50.
  • the propagation loss threshold value may be set so that the interference power from the secondary base station 51 to the primary base station 41 exceeds another predetermined threshold value.
  • the interference power can be calculated from the power and propagation loss of the radio signal transmitted from the secondary base station 51.
  • the output signal 14 output by the control unit 204 may be a control signal for the secondary operation server 50 to stop the secondary base station 51 in which the interference power to the primary base station 41 exceeds a predetermined protection standard.
  • the secondary operation server 50 may stop the secondary base station 51 in which the interference power to the primary base station 41 exceeds a predetermined protection standard in response to the output signal 14.
  • step S05 When step S05 is completed, the flowchart of FIG. 3 ends.
  • FIG. 6 another example of the method of selecting the dominant clutter in one embodiment will be described.
  • the example of FIG. 6 is the example of FIG. 4 with the following changes added. That is, the altitude of the clutter 65 is lowered.
  • the second dominant clutter corresponding to the second antenna 62 was the clutter 65 in the example of FIG. 4, but the clutter 64 in the example of FIG.
  • the first dominant clutter corresponding to the first antenna 61 is the clutter 64 in FIG. 6 as in the case of FIG. That is, in the example of FIG. 6, the first dominant clutter and the second dominant clutter are the same clutter 64.
  • the calculation of the propagation loss of the dominant clutter in step S04 of the flowchart of FIG. 3 is performed when the first dominant clutter 64 and the second dominant clutter 65 are different clutters as illustrated in FIG.
  • the first dominant clutter 64 and the second dominant clutter 64 may be the same dominant clutter 64 as illustrated in the above, and may be performed by different methods. An example of such a modification will be described with reference to the flowchart of FIG.
  • step S11 is executed, and the propagation loss calculation unit 203 determines whether the first dominant clutter and the second dominant clutter are the same clutter. In order to make this determination, the propagation loss calculation unit 203 may read out the result of selecting the dominant clutter stored in the storage device 24 by the clutter selection unit 202.
  • step S12 is executed after step S11. ..
  • the propagation loss calculation unit 203 calculates the overall propagation loss between the first antenna 61 of the primary base station 41 and the second antenna 62 of the secondary base station 51 as follows.
  • the first clutter loss and the second clutter loss due to the diffraction generated in the first dominant clutter 64 and the second dominant clutter 65 are each used by equations (1a) to (7). To calculate.
  • step S12 When step S12 is completed, the flowchart of FIG. 7 ends, and the process proceeds to step S05 of the flowchart of FIG.
  • the propagation loss calculation unit 203 calculates the overall propagation loss between the first antenna 61 of the primary base station 41 and the second antenna 62 of the secondary base station 51 as follows.
  • the clutter loss in the same dominant clutter 64 is the shorter of the first distance from the primary base station 41 to the dominant clutter 64 and the second distance from the secondary base station 51 to the dominant clutter 64.
  • the clutter loss of the dominant clutter 64 is calculated based on the distance of.
  • the propagation path from the primary base station 41 to the first dominant clutter 64 and the propagation path from the first dominant clutter 64 to the second antenna 62 are approximated to free space, respectively.
  • the free space loss in each of these free spaces is defined as the above-mentioned equation (7).
  • step S13 When step S13 is completed, the flowchart of FIG. 7 ends, and the process proceeds to step S05 of the flowchart of FIG.
  • the dominant clutter corresponding to the first antenna 61 and the second antenna 62 is the same clutter depending on whether or not the flowchart of FIG. 7 is processed, the clutter caused by this dominant clutter. It is possible to select whether the loss is added once or twice in the overall propagation loss between the first antenna 61 and the second antenna 62. This selection may be made depending on the shape of the apex of the dominant clutter and the like. As an example, if the dominant clutter is a rectangular parallelepiped building or the like and there is a sufficiently long distance between the apex facing the first antenna 61 and the apex facing the second antenna 62, FIG. 7 shows. If the flow chart is not processed, the accuracy of predicting the propagation loss may be higher. On the contrary, if the distance between the apex facing the first antenna 61 and the apex facing the second antenna 62 is sufficiently short, the flow chart processing of FIG. 7 is more accurate in predicting the propagation loss. May be higher.
  • step S21 is executed, and the propagation loss calculation unit 203 determines whether or not the altitude of the dominant clutter is equal to or higher than the threshold value.
  • the propagation loss calculation unit 203 may read out the selection result of the dominant clutter stored in the storage device 24 by the clutter selection unit 202 in step S03 of the flowchart of FIG. Further, the propagation loss calculation unit 203 may read out the altitude of the dominant clutter stored in the database or the storage device 24 (not shown).
  • step S22 is executed after step S21.
  • the propagation loss calculation unit 203 replaces the altitude of this dominant clutter with this threshold value.
  • step S22 is completed, the flowchart of FIG. 8A ends, processing returns to step S04 of the flowchart of FIG. 3 or step S12 or step S13 of the flowchart of FIG. 7, and the propagation loss calculation unit 203 dominates the replaced altitude.
  • the clutter loss and propagation loss are calculated using the clutter altitude.
  • step S21 if the altitude of the dominant clutter selected in step S03 is less than a predetermined threshold value (No), the flowchart of FIG. 8A ends, and the process is performed in step S04 or the flowchart of FIG.
  • the propagation loss calculation unit 203 calculates the clutter loss and the propagation loss by using the altitude that has not been replaced as the altitude of the dominant clutter.
  • step S31 is executed, and the propagation loss calculation unit 203 determines whether or not the altitude difference between the dominant clutter and the corresponding base station is equal to or greater than the threshold value.
  • the propagation loss calculation unit 203 may read out the selection result of the dominant clutter stored in the storage device 24 by the clutter selection unit 202 in step S03 of the flowchart of FIG. Further, the propagation loss calculation unit 203 may read out the altitudes of the primary base station 41, the secondary base station 51, and the dominant clutter stored in the database or the storage device 24.
  • step S32 is executed after step S31.
  • the propagation loss calculation unit 203 replaces the altitude of the dominant clutter with a value at which the altitude difference is equal to the threshold value.
  • step S32 is completed, the flowchart of FIG. 8B ends, processing returns to step S04 of the flowchart of FIG. 3 or step S12 or step S13 of the flowchart of FIG. 7, and the propagation loss calculation unit 203 dominates the replaced altitude.
  • the clutter loss and propagation loss are calculated using the clutter altitude.
  • step S31 when the altitude of the dominant clutter selected in step S03 is less than a predetermined threshold value (No), the flowchart of FIG. 8B ends, and the process is performed in step S04 or the flowchart of FIG.
  • the propagation loss calculation unit 203 calculates the clutter loss and the propagation loss by using the altitude that has not been replaced as the altitude of the dominant clutter.
  • diffraction at the apex of the dominant clutter is performed by using an appropriate altitude threshold as the threshold of the altitude of the dominant clutter, as in the case of FIG. 8A.
  • an appropriate altitude threshold as the threshold of the altitude of the dominant clutter
  • This process requires a relatively small amount of calculation as a method for calculating the propagation loss due to diffraction on the side surface of the dominant clutter, and further leads to accurate prediction of the propagation loss.
  • the dominant clutter is selected as a preliminary step. Sometimes the same replacement is done. This will be described with reference to FIG. 8C.
  • step S41 the clutter selection unit 202 refers to the map information, lists the information of the clutter existing between the primary base station 41 and the secondary base station 51, and initializes the order of processing the clutter.
  • the order in which the clutter is processed may be, for example, the order closest to the primary base station.
  • the argument representing the order is initialized to zero, and the argument representing the total number of clutters listed is stored.
  • step S42 the clutter selection unit 202 reads the next clutter information from the clutter information listed. At this time, the argument indicating the order of processing the clutter is incremented.
  • step S43 it is determined whether or not the value obtained by subtracting the reference altitude from the altitude of the clutter from which the information is read is larger than a predetermined threshold value.
  • the reference altitude is equal to this altitude when the first antenna 61 of the primary base station 41 and the second antenna 62 of the secondary base station 51 have the same altitude.
  • the altitude of the point closest to the apex of the clutter included in the virtual straight line connecting the first antenna 61 and the second antenna 62. Is.
  • the value obtained by subtracting the reference altitude from the altitude of the clutter is equal to the vertical length from the apex of the clutter to the virtual straight line.
  • step S44 if the value obtained by subtracting the reference altitude from the altitude of the clutter from which the information is read is larger than the predetermined threshold value (Yes), the altitude of the clutter is set to another lower altitude in step S44. After the replacement, the process proceeds to step S45. On the contrary, when the value obtained by subtracting the reference altitude from the altitude of the clutter from which the information is read is not larger than the predetermined threshold value (No), the process proceeds to step S45 without executing step S44.
  • step S45 it is determined whether or not all the clutter information has been read. In other words, it is determined whether the argument indicating the order in which the clutters are processed has reached the argument indicating the total number of clutters listed. As a result of the determination, if all the clutter information has been read (Yes), the process proceeds to step S46. On the contrary, when the clutter for which the information has not been read remains (No), the process returns to step S42.
  • step S46 the clutter selection unit 202 extracts the dominant clutter. This operation is as shown in step S03 of the flowchart of FIG. When step S46 is completed, the flowchart of FIG. 8C ends, and the process proceeds to step S04 of the flowchart of FIG.
  • both the processing for extracting the dominant clutter and the processing for calculating the clutter loss derived from the dominant clutter are performed by similarly replacing the altitude of the clutter. Consistency can be achieved between processes.
  • the altitude h eb of the first antenna 61 is higher than the high R e of the clutter 66 influence the propagation loss is dominant for the first antenna 61, high R e of the dominant clutter 66 second 2 Higher than the altitude h et of the antenna 62.
  • each of these advanced h eb, h et, R e a highly referenced to the same horizontal plane.
  • this standard may be above sea level or at a height above the ground surface, but the present embodiment is not limited to these examples.
  • a virtual straight line connecting the first antenna 61 and the second antenna 62 is not horizontal.
  • the path 612 of the virtual straight line It may block.
  • the electromagnetic wave radiated from the second antenna 62 via the path 616 connecting the first antenna 61 and the apex 661 of the dominant clutter and the path 626 connecting the apex 661 and the second antenna 62 is the first antenna. 61 can be reached.
  • the altitude heb of the first antenna 61 and the altitude h et of the second antenna 62 are different by correcting the equation used for calculating the propagation loss in the first embodiment as follows. Even in this case, it is possible to calculate the propagation loss.
  • the definition of the clearance coefficient ⁇ is corrected from the equation (3) used in the first embodiment to the following equation (8).
  • K nu is a parameter related to the frequency defined in equation (4).
  • the “ h'dif ” is the length obtained by correcting the altitude difference h div of the above-mentioned equation (5).
  • the " ⁇ 'clut " is an angle corrected by the elevation angle ⁇ clut of the above-mentioned equation (6).
  • the length h'dim of the equation (8) is the length in the vertical direction from the apex 661 of the dominant clutter 66 to the virtual straight line connecting the first antenna 61 and the second antenna 62. And the unit is m.
  • the definition of the length h'dim is a correction of the definition of h def according to the equation (5) used in the first embodiment as shown in the following equation (9).
  • "R e" is highly dominant clutter 66
  • the unit is m.
  • “H et ” is the altitude of the second antenna 62, and its unit is m.
  • “H eb ” is the altitude of the first antenna 61, and its unit is m.
  • W s is the distance in the horizontal direction to the dominant clutter 66 from the first antenna 61, the unit is m.
  • D is the horizontal distance from the first antenna 61 to the second antenna 62, and the unit thereof is m.
  • Theta tr is the angle between the horizontal direction and the path 612 of a virtual straight line connecting the first antenna 61 and the second antenna 62, and the unit is deg (degrees).
  • the angle ⁇ 'clut in the equation (8) is a virtual straight line path 612 connecting the first antenna 61 and the second antenna 62, and the apex 661 of the first antenna 61 and the dominant clutter 66. It is an angle between the path 616 of a virtual straight line connecting the two, and its unit is deg (degree).
  • the definition of the angle ⁇ 'clut is a correction of the definition of the elevation angle ⁇ clut according to the equation (6) used in the first embodiment as shown in the following equation (11).
  • the angle ⁇ 'clut is an elevation angle obtained from the first antenna 61 as seen from the apex 661 of the dominant clutter 66 when the path 612 of a virtual straight line connecting the first antenna 61 and the second antenna 62 is used as a reference. Can be regarded as.
  • the propagation loss can be calculated accurately.
  • the following changes are made as modified examples of the first embodiment and the second embodiment. That is, in the propagation loss between the primary base station 41 and the secondary base station 51, the first clutter loss which is a component caused by the first dominant clutter and the second clutter loss which is a component caused by the second dominant clutter.
  • the propagation loss is calculated by considering only one of the first clutter loss and the second clutter loss. At this time, of the first clutter loss and the second clutter loss, the other one not considered in the calculation of the propagation loss is replaced with the free space loss when calculating the propagation loss.
  • the definition of free space loss is as in Eq. (7) above.
  • the propagation loss is calculated by considering the smaller loss of the first clutter loss and the second clutter loss and replacing the larger loss with the free space loss.
  • the propagation loss is calculated by considering the larger loss of the first clutter loss and the second clutter loss and replacing the smaller loss with the free space loss. do.
  • the prediction of propagation loss can be accurately predicted, in particular, when a margin is set for the signal output when the frequency is shared between the primary wireless communication system 4 and the secondary wireless communication system 5. It can be carried out.
  • the clutter loss may be calculated using the three-dimensional map information which is divided into a plurality of areas and the altitude information is registered for each area.
  • the altitude information registered in these areas is the representative altitude of each area, and may be, for example, the average altitude in the area.
  • the selection of the dominant clutter and the calculation of the clutter loss due to the dominant clutter may be performed assuming that the clutter of the representative altitude exists at the representative position of each region, for example, at the geometric center position.
  • the region where the elevation angle of the region is maximum when viewed from the antenna is selected as the dominant region, and the distance from the antenna to the representative position of the dominant region, the height of the antenna, and the representative altitude are used. Then, the component due to the dominant region of the propagation loss may be calculated. Further, the area where the primary base station 41 and the secondary base station 51 are arranged is horizontally divided into a plurality of meshes with a predetermined unit length, and the average value of the altitudes of the clutter included in each mesh is calculated as the altitude of each mesh. Can be treated as. In this case, in step S03 of the flowchart of FIG.
  • the altitude of the clutter arranged between the primary base station 41 and the secondary base station 51 is set to the altitude of the mesh arranged between the primary base station 41 and the secondary base station 51. It can be highly replaced to elect the dominant mesh instead of the dominant clutter. Further, in step S04 of the flowchart of FIG. 3, the altitude of the dominant clutter can be replaced with the altitude of the dominant mesh, and the clutter loss and the propagation loss can be calculated.
  • a model of the clutter a model having a vertex at the uppermost position has been described, but the present disclosure is not limited to this, and it may be a structure formed in a rectangular parallelepiped shape, for example, a building.
  • the position of the geometric center of the building may be used as the position of the clutter, or the position of the wall surface on the side close to the antenna may be used.
  • a model may be adopted in which the apex of the clutter is directly above the position of the clutter and has the altitude of the clutter.
  • control unit 204 may generate and output an output signal 14 for displaying the propagation loss calculated in step S04 on an arbitrary display device.
  • the user of the propagation prediction system 1 may control the secondary base station 51 via the secondary operation server 50 according to the propagation loss displayed on the display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

According to the present invention, the propagation loss between two wireless communication systems is accurately predicted. From among clutters placed between two base stations, a dominant clutter having the maximum elevation angle when the apex of the clutter is seen from each base station is selected. On the basis of the distance between each base station and each dominant clutter and the altitudes thereof, a clutter loss of the propagation loss of a propagation path between the two base stations is calculated, the clutter loss being a component resulting from the dominant clutter. The components of the propagation loss excluding the clutter loss are approximated to a free space loss to predict the propagation loss. An output signal according to the propagation loss is output.

Description

伝搬予測システム、伝搬予測方法および伝搬予測プログラムを格納した記録媒体A recording medium containing a propagation prediction system, a propagation prediction method, and a propagation prediction program.
 本発明は伝搬予測システム、伝搬予測方法および伝搬予測プログラムを格納した記録媒体に関し、特に同じ周波数を利用する2つの無線通信システムの基地局の間の伝搬損失を予測するための伝搬予測システム、伝搬予測方法および伝搬予測プログラムを格納した記録媒体に好適に利用できるものである。 The present invention relates to a propagation prediction system, a propagation prediction method, and a recording medium containing a propagation prediction program, and in particular, a propagation prediction system for predicting propagation loss between base stations of two wireless communication systems using the same frequency, propagation. It can be suitably used as a recording medium in which a prediction method and a propagation prediction program are stored.
 無線通信で使用される周波数帯域は有限であり、無線通信を行う携帯端末の普及などに伴い、周波数帯域をより効率的に利用する方法が求められている。このような観点から、同一の周波数帯域を複数の無線通信システムに割り当てる技術が検討されている。 The frequency band used in wireless communication is finite, and with the spread of mobile terminals that perform wireless communication, there is a demand for a method of using the frequency band more efficiently. From this point of view, a technique for allocating the same frequency band to a plurality of wireless communication systems is being studied.
 ここで、相互干渉を防ぐために、優先順位のより高いプライマリ無線通信システムが無線通信を行う時間および地域において、同じ周波数を利用し優先順位のより低いセカンダリ無線通信システムの少なくとも一部を停止する制御が考えられる。この制御は、セカンダリ無線通信システムに含まれるセカンダリ基地局のそれぞれについて、プライマリ無線通信システムに含まれるプライマリ基地局への干渉電力を予測して行ってもよい。この干渉電力は、プライマリ基地局とセカンダリ基地局の間の伝搬損失に基づいて予測してもよい。 Here, in order to prevent mutual interference, control is performed to stop at least a part of the lower priority secondary radio communication system using the same frequency at the time and region where the higher priority primary radio communication system performs wireless communication. Can be considered. This control may be performed by predicting the interference power to the primary base station included in the primary wireless communication system for each of the secondary base stations included in the secondary wireless communication system. This interference power may be predicted based on the propagation loss between the primary base station and the secondary base station.
 優先順位のより高い無線通信システムの例としては、テレビ放送の無線中継伝送システムや、防災または防衛に係る無線通信システムなどが挙げられる。また、優先順位のより低い無線通信システムの例としては、携帯電話やスマートフォンなどを用いた無線通信、特に複数の周波数帯域を束ねて利用するキャリアアグリゲーションによる無線通信などが挙げられる。 Examples of wireless communication systems with higher priority include wireless relay transmission systems for television broadcasting and wireless communication systems related to disaster prevention or defense. Further, as an example of a wireless communication system having a lower priority, wireless communication using a mobile phone, a smartphone, or the like, particularly wireless communication by carrier aggregation that bundles and uses a plurality of frequency bands can be mentioned.
 上記に関連して、非特許文献1(ITU-R(Radiocommunication Sector of International Telecommunication Union)、“Recommendation ITU-R P.2108-0 (06/2017) Prediction of clutter loss P Series Radiowave propagation”、[Online]、2017年6月20日、インターネット<URL:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2108-0-201706-I!!PDF-E.pdf>)には、電磁波の伝搬環境をモデル化し、この伝搬環境に存在するクラッタによる伝搬損失を近似的に予測するための算出手法が開示されている。 In relation to the above, Non-Patent Document 1 (ITU-R (Radiocommunication Sector of International Telecommunication Union), "Recommunication ITU-R P.2108-0 (06/2017) Redocommunication Section ], June 20, 2017, Internet <URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2108-0-201706-I !! PDF- E.pdf>) discloses a calculation method for modeling the propagation environment of electromagnetic waves and approximately predicting the propagation loss due to clutter existing in this propagation environment.
 非特許文献1の標準モデルでは、送信側アンテナ、受信側アンテナ、クラッタなどの標高差が考慮されておらず、また、アンテナと比較して著しく高い建物などのクラッタが存在する場合に予測した伝搬損失の誤差が大きくなる。 In the standard model of Non-Patent Document 1, the elevation difference of the transmitting side antenna, the receiving side antenna, the clutter, etc. is not taken into consideration, and the propagation predicted when there is a clutter such as a building significantly higher than the antenna. The loss error increases.
 本開示では、伝搬損失の予測を精度よく行うことを目的とする。その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 The purpose of this disclosure is to accurately predict propagation loss. Other issues and novel features will become apparent from the description and accompanying drawings herein.
 一実施の形態によれば、伝搬予測システムは、演算装置と入出力装置を備える。演算装置は、プライマリ基地局とセカンダリ基地局の間の伝搬経路を推定し、伝搬経路における伝搬損失を予測する。入出力装置は、伝搬損失に応じた出力信号を出力する。演算装置は、プライマリ基地局とセカンダリ基地局の間に配置されているクラッタの中から、プライマリ基地局からクラッタの頂点を見た仰角が最大となる第1支配的クラッタと、セカンダリ基地局からクラッタの頂点を見た仰角が最大となる第2支配的クラッタとをそれぞれ選出する。演算装置は、プライマリ基地局から第1支配的クラッタまでの距離と、第1支配的クラッタから第2支配的クラッタまでの距離と、第2支配的クラッタからセカンダリ基地局までの距離と、プライマリ基地局、第1支配的クラッタ、第2支配的クラッタおよびセカンダリ基地局のそれぞれの高度とに基づいて、伝搬損失のうち第1支配的クラッタおよび第2支配的クラッタに起因する成分をクラッタ損失として算出する。演算装置は、伝搬損失のうち、クラッタ損失を除く成分を自由空間損失に近似して伝搬損失を予測する。 According to one embodiment, the propagation prediction system includes an arithmetic unit and an input / output unit. The arithmetic unit estimates the propagation path between the primary base station and the secondary base station, and predicts the propagation loss in the propagation path. The input / output device outputs an output signal according to the propagation loss. Among the clutters arranged between the primary base station and the secondary base station, the arithmetic unit is the first dominant clutter that has the maximum elevation angle when the apex of the clutter is seen from the primary base station, and the clutter from the secondary base station. Select the second dominant clutter that has the maximum elevation angle when looking at the apex of. The arithmetic unit is the distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, the distance from the second dominant clutter to the secondary base station, and the primary base. Based on the respective altitudes of the station, the first dominant clutter, the second dominant clutter, and the secondary base station, the component of the propagation loss caused by the first dominant clutter and the second dominant clutter is calculated as the clutter loss. do. The arithmetic unit predicts the propagation loss by approximating the component of the propagation loss excluding the clutter loss to the free space loss.
 一実施の形態によれば、伝搬予測方法は、プライマリ基地局とセカンダリ基地局の間の伝搬経路を推定し、伝搬経路の伝搬損失を予測することと、伝搬損失に応じた出力信号を出力することとを含む。伝搬損失を予測することは、プライマリ基地局とセカンダリ基地局の間に配置されているクラッタの中から、プライマリ基地局からクラッタの頂点を見た仰角が最大となる第1支配的クラッタを選出することと、プライマリ基地局とセカンダリ基地局の間に配置されているクラッタの中から、セカンダリ基地局からクラッタの頂点を見た仰角が最大となる第2支配的クラッタを選出することとを含む。伝搬損失を予測することは、さらに、プライマリ基地局から第1支配的クラッタまでの距離と、第1支配的クラッタから第2支配的クラッタまでの距離と、第2支配的クラッタからセカンダリ基地局までの距離と、プライマリ基地局、第1支配的クラッタ、第2支配的クラッタおよびセカンダリ基地局のそれぞれの高度とに基づいて、伝搬損失のうち第1支配的クラッタおよび第2支配的クラッタに起因する成分をクラッタ損失として算出することを含む。伝搬損失を予測することは、さらに、伝搬損失のうち、クラッタ損失を除く成分を自由空間損失に近似することを含む。 According to one embodiment, the propagation prediction method estimates the propagation path between the primary base station and the secondary base station, predicts the propagation loss of the propagation path, and outputs an output signal according to the propagation loss. Including that. Predicting propagation loss is to select the first dominant clutter that has the maximum elevation angle from the primary base station to the apex of the clutter from the clutters located between the primary base station and the secondary base station. This includes selecting the second dominant clutter that has the maximum elevation angle when the apex of the clutter is seen from the secondary base station from the clutters arranged between the primary base station and the secondary base station. Predicting propagation loss also means the distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, and the distance from the second dominant clutter to the secondary base station. Due to the first dominant clutter and the second dominant clutter of the propagation loss, based on the distance of the primary base station, the first dominant clutter, the second dominant clutter, and the respective altitudes of the secondary base stations. Includes calculating the component as a clutter loss. Predicting the propagation loss further includes approximating the components of the propagation loss excluding the clutter loss to the free space loss.
 一実施の形態によれば、伝搬予測プログラムを格納した記録媒体は、コンピュータに所定の機能を実現させるためのプログラムを格納した記録媒体である。所定の機能は、プライマリ基地局とセカンダリ基地局の間の伝搬経路を推定し、伝搬経路の伝搬損失を予測することと、伝搬損失に応じた出力信号を出力することとを含む。伝搬損失を予測することは、プライマリ基地局とセカンダリ基地局の間に配置されているクラッタの中から、プライマリ基地局からクラッタの頂点を見た仰角が最大となる第1支配的クラッタを選出することと、プライマリ基地局とセカンダリ基地局の間に配置されているクラッタの中から、セカンダリ基地局からクラッタの頂点を見た仰角が最大となる第2支配的クラッタを選出することとを含む。伝搬損失を予測することは、さらに、プライマリ基地局から第1支配的クラッタまでの距離と、第1支配的クラッタから第2支配的クラッタまでの距離と、第2支配的クラッタからセカンダリ基地局までの距離と、プライマリ基地局、第1支配的クラッタ、第2支配的クラッタおよびセカンダリ基地局のそれぞれの高度に基づいて、伝搬損失のうち第1支配的クラッタおよび第2支配的クラッタに起因する成分をクラッタ損失として算出することを含む。伝搬損失を予測することは、さらに、伝搬損失のうち、クラッタ損失を除く成分を自由空間損失に近似することを含む。 According to one embodiment, the recording medium in which the propagation prediction program is stored is a recording medium in which the program for realizing a predetermined function in the computer is stored. A predetermined function includes estimating the propagation path between the primary base station and the secondary base station, predicting the propagation loss of the propagation path, and outputting an output signal according to the propagation loss. Predicting propagation loss is to select the first dominant clutter that has the maximum elevation angle from the primary base station to the apex of the clutter from the clutters located between the primary base station and the secondary base station. This includes selecting the second dominant clutter that has the maximum elevation angle when the apex of the clutter is seen from the secondary base station from the clutters arranged between the primary base station and the secondary base station. Predicting propagation loss also means the distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, and the distance from the second dominant clutter to the secondary base station. The component of the propagation loss due to the 1st dominant clutter and the 2nd dominant clutter based on the distance of the primary base station, the 1st dominant clutter, the 2nd dominant clutter and the secondary base station respectively. Includes calculating as a clutter loss. Predicting the propagation loss further includes approximating the components of the propagation loss excluding the clutter loss to the free space loss.
 前記一実施の形態によれば、伝搬損失の予測を精度よく行うことが出来る。 According to the above-described embodiment, it is possible to accurately predict the propagation loss.
図1は、一実施の形態による伝搬予測システムの一構成例を示す図である。FIG. 1 is a diagram showing a configuration example of a propagation prediction system according to an embodiment. 図2Aは、一実施の形態による伝搬予測システムのサーバの一構成例を示すブロック回路図である。FIG. 2A is a block circuit diagram showing a configuration example of a server of a propagation prediction system according to an embodiment. 図2Bは、図2Aに示したサーバの一構成例を機能的な観点から示すブロック回路図である。FIG. 2B is a block circuit diagram showing an example of the configuration of the server shown in FIG. 2A from a functional point of view. 図3は、一実施の形態による伝搬予測方法の一構成例を示すフローチャートである。FIG. 3 is a flowchart showing a configuration example of a propagation prediction method according to an embodiment. 図4は、一実施の形態において支配的クラッタを選出する方法を説明するための図である。FIG. 4 is a diagram for explaining a method of selecting a dominant clutter in one embodiment. 図5は、一実施の形態によるアンテナと支配的クラッタの位置関係に由来するパラメータを説明するための図である。FIG. 5 is a diagram for explaining parameters derived from the positional relationship between the antenna and the dominant clutter according to the embodiment. 図6は、一実施の形態において、2つのアンテナに対応する支配的クラッタが同一であった場合について説明するための図である。FIG. 6 is a diagram for explaining a case where the dominant clutter corresponding to the two antennas is the same in one embodiment. 図7は、一実施の形態による伝搬予測方法の変形例を示すフローチャートである。FIG. 7 is a flowchart showing a modified example of the propagation prediction method according to the embodiment. 図8Aは、一実施の形態による伝搬予測方法の別の変形例を示すフローチャートである。FIG. 8A is a flowchart showing another modification of the propagation prediction method according to the embodiment. 図8Bは、一実施の形態による伝搬予測方法のさらに別の変形例を示すフローチャートである。FIG. 8B is a flowchart showing still another modification of the propagation prediction method according to the embodiment. 図8Cは、一実施の形態による伝搬予測方法の変形例を示すフローチャートである。FIG. 8C is a flowchart showing a modified example of the propagation prediction method according to the embodiment. 図9は、一実施の形態において、高度が異なる2つのアンテナと支配的クラッタの位置関係に由来するパラメータを説明するための図である。FIG. 9 is a diagram for explaining parameters derived from the positional relationship between two antennas having different altitudes and a dominant clutter in one embodiment.
 添付図面を参照して、本発明による伝搬予測システム、伝搬予測方法および伝搬予測プログラムを格納した記録媒体を実施するための形態を以下に説明する。 With reference to the attached drawings, a mode for implementing a recording medium containing a propagation prediction system, a propagation prediction method, and a propagation prediction program according to the present invention will be described below.
 (第1の実施の形態)
 図1を参照して、一実施の形態による伝搬予測システム1の一構成例を説明する。伝搬予測システム1は、プライマリ無線通信システム4とセカンダリ無線通信システム5に接続されている。以降、プライマリ無線通信システム4とセカンダリ無線通信システム5が伝搬予測システム1の外部の構成である場合について説明するが、本実施の形態はプライマリ無線通信システム4とセカンダリ無線通信システム5が伝搬予測システム1に含まれる場合を必ずしも除外しない。
(First Embodiment)
A configuration example of the propagation prediction system 1 according to the embodiment will be described with reference to FIG. 1. The propagation prediction system 1 is connected to the primary radio communication system 4 and the secondary radio communication system 5. Hereinafter, the case where the primary wireless communication system 4 and the secondary wireless communication system 5 are external to the propagation prediction system 1 will be described, but in the present embodiment, the primary wireless communication system 4 and the secondary wireless communication system 5 are propagation prediction systems. It does not necessarily exclude the case included in 1.
 本実施の形態では、プライマリ無線通信システム4がFPU(Field Pickup Unit:無線中継伝送装置)の送受信システムである場合について説明する。FPUは、例えば、マラソンを中継して放送するための素材伝送に利用される。プライマリ無線通信システム4は、プライマリ基地局41とプライマリ移動局42を備える。プライマリ基地局41とプライマリ移動局42は、プライマリ無線通信システム4に割り当てられた所定の周波数帯域を利用して無線通信を行う。 In the present embodiment, a case where the primary wireless communication system 4 is a transmission / reception system of an FPU (Field Pickup Unit: wireless relay transmission device) will be described. The FPU is used, for example, for material transmission for relaying and broadcasting a marathon. The primary wireless communication system 4 includes a primary base station 41 and a primary mobile station 42. The primary base station 41 and the primary mobile station 42 perform wireless communication using a predetermined frequency band assigned to the primary wireless communication system 4.
 また、本実施の形態では、セカンダリ無線通信システム5がセルラーシステムである場合について説明する。セルラーシステムは、例えば、携帯電話、スマートフォンなどの無線通信に利用される。セカンダリ無線通信システム5は、セカンダリ基地局51A、51B、51C、51D、51Eと、セカンダリ基地局51A、51B、51C、51D、51Eを制御するセカンダリ運用サーバ50と、図示しないセカンダリ移動局を備える。以降、セカンダリ基地局51A、51B、51C、51D、51Eを区別しない場合には、単にセカンダリ基地局51と記すことがある。図1の例では、セカンダリ基地局51の総数は5であるが、本実施の形態はこの総数に限定されない。また、本実施の形態はセカンダリ移動局の総数にも限定されない。セカンダリ基地局51とセカンダリ移動局は、セカンダリ無線通信システム5に割り当てられた所定の周波数帯域を利用して無線通信を行う。 Further, in the present embodiment, a case where the secondary wireless communication system 5 is a cellular system will be described. The cellular system is used for wireless communication of, for example, mobile phones and smartphones. The secondary wireless communication system 5 includes a secondary base station 51A, 51B, 51C, 51D, 51E, a secondary operation server 50 that controls the secondary base stations 51A, 51B, 51C, 51D, 51E, and a secondary mobile station (not shown). Hereinafter, when the secondary base stations 51A, 51B, 51C, 51D, and 51E are not distinguished, they may be simply referred to as the secondary base station 51. In the example of FIG. 1, the total number of secondary base stations 51 is 5, but the present embodiment is not limited to this total number. Further, the present embodiment is not limited to the total number of secondary mobile stations. The secondary base station 51 and the secondary mobile station perform wireless communication using a predetermined frequency band assigned to the secondary wireless communication system 5.
 ここで、本実施の形態では、プライマリ無線通信システム4の周波数帯域に干渉し得る周波数帯域をセカンダリ無線通信システム5が使用する場合について説明する。言い換えれば、セカンダリ基地局51から放射される無線信号が干渉波53としてプライマリ基地局41に到達しうる場合について説明する。プライマリ無線通信システム4はセカンダリ無線通信システム5に対して優先的にこの帯域の周波数を利用し、セカンダリ無線通信システム5はプライマリ無線通信システム4に対して干渉しない範囲内で同じ帯域の周波数を利用する。この周波数帯域は、例えば、5G(第5世代移動通信システム)で利用される周波数帯域であってもよい。 Here, in the present embodiment, a case where the secondary wireless communication system 5 uses a frequency band that can interfere with the frequency band of the primary wireless communication system 4 will be described. In other words, a case where the radio signal radiated from the secondary base station 51 can reach the primary base station 41 as an interference wave 53 will be described. The primary wireless communication system 4 preferentially uses the frequency in this band with respect to the secondary wireless communication system 5, and the secondary wireless communication system 5 uses the frequency in the same band within a range that does not interfere with the primary wireless communication system 4. do. This frequency band may be, for example, a frequency band used in 5G (fifth generation mobile communication system).
 伝搬予測システム1は、プライマリ無線通信システム4とセカンダリ無線通信システム5の間の伝搬損失を予測することによって、セカンダリ無線通信システム5からプライマリ無線通信システム4への干渉を抑制する制御を行う。そこで、まず、伝搬予測システム1は、プライマリ無線通信システム4とセカンダリ無線通信システム5のそれぞれから運用情報を取得する。プライマリ無線通信システム4のプライマリ運用情報44は、プライマリ基地局41から伝搬予測システム1に提供されてもよいし、図示しないプライマリ運用サーバから伝搬予測システム1に提供されてもよい。セカンダリ無線通信システム5のセカンダリ運用情報54は、セカンダリ無線通信システム5が備えるセカンダリ運用サーバ50から伝搬予測システム1に提供される。 The propagation prediction system 1 controls the suppression of interference from the secondary wireless communication system 5 to the primary wireless communication system 4 by predicting the propagation loss between the primary wireless communication system 4 and the secondary wireless communication system 5. Therefore, first, the propagation prediction system 1 acquires operational information from each of the primary wireless communication system 4 and the secondary wireless communication system 5. The primary operation information 44 of the primary wireless communication system 4 may be provided to the propagation prediction system 1 from the primary base station 41, or may be provided to the propagation prediction system 1 from a primary operation server (not shown). The secondary operation information 54 of the secondary wireless communication system 5 is provided to the propagation prediction system 1 from the secondary operation server 50 included in the secondary wireless communication system 5.
 伝搬予測システム1は、これらの運用情報に基づいてそれぞれのセカンダリ基地局51の伝搬損失を予測し、セカンダリ基地局51からプライマリ基地局41への干渉電力が所望の閾値以下になるように、セカンダリ無線通信システム5の運用を制限するための制御を行う。この閾値は、プライマリ無線通信システム4を保護するための保護規範に基づいて決定してもよい。また、この制御は、伝搬予測システム1がそれぞれのセカンダリ基地局51の伝搬損失に応じた出力信号14を生成出力し、セカンダリ運用サーバ50が出力信号14に基づいてセカンダリ基地局51のそれぞれを停止または稼働させることによって行われてもよい。 The propagation prediction system 1 predicts the propagation loss of each secondary base station 51 based on these operational information, and makes the interference power from the secondary base station 51 to the primary base station 41 equal to or less than a desired threshold value. Control is performed to limit the operation of the wireless communication system 5. This threshold may be determined based on the protection norms for protecting the primary radio communication system 4. Further, in this control, the propagation prediction system 1 generates and outputs an output signal 14 according to the propagation loss of each secondary base station 51, and the secondary operation server 50 stops each of the secondary base stations 51 based on the output signal 14. Alternatively, it may be performed by operating it.
 伝搬予測システム1は、この干渉電力を算出するために、プライマリ無線通信システム4とセカンダリ無線通信システム5の間の伝搬損失を算出する。伝搬予測システム1は、この伝搬損失を算出するために、プライマリ無線通信システム4とセカンダリ無線通信システム5が配置されている地域の3次元地図情報を参照する。 The propagation prediction system 1 calculates the propagation loss between the primary wireless communication system 4 and the secondary wireless communication system 5 in order to calculate this interference power. In order to calculate this propagation loss, the propagation prediction system 1 refers to the three-dimensional map information of the area where the primary wireless communication system 4 and the secondary wireless communication system 5 are arranged.
 3次元地図情報には、プライマリ無線通信システム4とセカンダリ無線通信システム5の間に配置されているクラッタの水平位置と高度を表す位置情報が含まれている。クラッタとは、地球の表面に存在する、地形以外の物体の総称であり、例えば、建物や植生などを指す。クラッタの位置情報は、クラッタにおいて電磁波の回折が発生し得る頂点の水平位置と高度を表してもよい。 The three-dimensional map information includes position information indicating the horizontal position and altitude of the clutter arranged between the primary wireless communication system 4 and the secondary wireless communication system 5. Clutter is a general term for objects other than topography that exist on the surface of the earth, and refers to, for example, buildings and vegetation. The position information of the clutter may represent the horizontal position and altitude of the apex where the diffraction of the electromagnetic wave can occur in the clutter.
 また、3次元地図情報には、プライマリ無線通信システム4の、特にプライマリ基地局41の、水平位置と高度を表す位置情報と、セカンダリ無線通信システム5の、特にセカンダリ基地局51の、水平位置と高度を表す位置情報とが、さらに含まれている。プライマリ基地局41の位置情報は、プライマリ基地局41が備えるアンテナの水平位置と高度を表してもよい。また、セカンダリ基地局51の位置情報は、セカンダリ基地局51が備えるアンテナの水平位置と高度を表してもよい。 Further, the three-dimensional map information includes the position information indicating the horizontal position and altitude of the primary wireless communication system 4, particularly the primary base station 41, and the horizontal position of the secondary wireless communication system 5, particularly the secondary base station 51. It also includes location information that represents altitude. The position information of the primary base station 41 may represent the horizontal position and altitude of the antenna included in the primary base station 41. Further, the position information of the secondary base station 51 may represent the horizontal position and altitude of the antenna included in the secondary base station 51.
 伝搬予測システム1は、プライマリ無線通信システム4、セカンダリ無線通信システム5およびクラッタが配置されている地域の3次元地図情報を、予め保持していてもよいし、必要に応じて外部から取得してもよい。 The propagation prediction system 1 may hold the three-dimensional map information of the area where the primary wireless communication system 4, the secondary wireless communication system 5 and the clutter are arranged in advance, or acquire it from the outside as needed. May be good.
 プライマリ無線通信システム4とセカンダリ無線通信システム5を結ぶ仮想的な直線を遮るクラッタが存在するとき、このクラッタに起因する伝搬損失が発生する。このような伝搬損失をクラッタ損失と呼ぶ。言い換えれば、あるクラッタのクラッタ損失は、プライマリ無線通信システム4とセカンダリ無線通信システム5の間の伝搬損失のうち、そのクラッタに起因する成分である。 When there is a clutter that blocks a virtual straight line connecting the primary wireless communication system 4 and the secondary wireless communication system 5, propagation loss due to this clutter occurs. Such propagation loss is called clutter loss. In other words, the clutter loss of a certain clutter is a component of the propagation loss between the primary radio communication system 4 and the secondary radio communication system 5 due to the clutter.
 図2Aのブロック回路図を参照して、一実施の形態による伝搬予測システム1の一構成例について説明する。伝搬予測システム1の各機能は、サーバ2の構成を用いて実現されてもよい。サーバ2は、バス21、入出力装置22、演算装置23、記憶装置24および外部記憶装置25を備えている。入出力装置22は、サーバ2の外部の構成との間で情報、信号などの入出力を行う。演算装置23は、記憶装置24に格納されたプログラムを読み出して実行することによって、所定の機能を実現することができる。記憶装置24は、演算装置23が所定の機能を実現するために読み出すプログラム、データなどを格納している。外部記憶装置25は、記録媒体26からプログラム、データなどを読み込むことができ、また、プログラム、データなどを記録媒体26に書き込むことができる。記録媒体26は、非一時的かつ有形であってもよい。入出力装置22、演算装置23、記憶装置24および外部記憶装置25は、バス21を介して相互に通信することができる。 A configuration example of the propagation prediction system 1 according to the embodiment will be described with reference to the block circuit diagram of FIG. 2A. Each function of the propagation prediction system 1 may be realized by using the configuration of the server 2. The server 2 includes a bus 21, an input / output device 22, an arithmetic unit 23, a storage device 24, and an external storage device 25. The input / output device 22 inputs / outputs information, signals, etc. to / from the external configuration of the server 2. The arithmetic unit 23 can realize a predetermined function by reading and executing the program stored in the storage device 24. The storage device 24 stores programs, data, and the like to be read by the arithmetic unit 23 in order to realize a predetermined function. The external storage device 25 can read programs, data, and the like from the recording medium 26, and can write the programs, data, and the like to the recording medium 26. The recording medium 26 may be non-temporary and tangible. The input / output device 22, the arithmetic unit 23, the storage device 24, and the external storage device 25 can communicate with each other via the bus 21.
 図2Bのブロック回路図を参照して、図2Aに示したサーバ2の一構成例について機能的な観点から説明する。サーバ2は、通信部201、クラッタ選出部202、伝搬損失算出部203および制御部204を備えている。通信部201と制御部204のそれぞれは、入出力装置22、演算装置23および記憶装置24が協働して実現する機能部である。クラッタ選出部202と伝搬損失算出部203のそれぞれは、演算装置23および記憶装置24が協働して実現する機能部である。通信部201、クラッタ選出部202、伝搬損失算出部203および制御部204のそれぞれの機能については、後述する。 With reference to the block circuit diagram of FIG. 2B, one configuration example of the server 2 shown in FIG. 2A will be described from a functional point of view. The server 2 includes a communication unit 201, a clutter selection unit 202, a propagation loss calculation unit 203, and a control unit 204. Each of the communication unit 201 and the control unit 204 is a functional unit realized by the input / output device 22, the arithmetic unit 23, and the storage device 24 in cooperation with each other. Each of the clutter selection unit 202 and the propagation loss calculation unit 203 is a functional unit realized by the arithmetic unit 23 and the storage device 24 in cooperation with each other. The functions of the communication unit 201, the clutter selection unit 202, the propagation loss calculation unit 203, and the control unit 204 will be described later.
 図3のフローチャートを参照して、一実施の形態による伝搬予測方法の一構成例について説明する。なお、本実施の形態による伝搬予測方法の一構成例を説明することは、本実施の形態による伝搬予測システム1の動作を説明することであり、また、本実施の形態による記録媒体に格納された伝搬予測プログラムの一構成例を説明することでもある。 With reference to the flowchart of FIG. 3, a configuration example of a propagation prediction method according to an embodiment will be described. It should be noted that explaining one configuration example of the propagation prediction method according to the present embodiment is to explain the operation of the propagation prediction system 1 according to the present embodiment, and is stored in the recording medium according to the present embodiment. It is also to explain a configuration example of the propagation prediction program.
 本実施の形態による伝搬予測方法が開始すると、ステップS01が実行され、記憶装置24に3次元地図情報が用意される。この3次元地図情報は、上述のとおり、プライマリ基地局41を含むプライマリ無線通信システム4と、セカンダリ基地局51を含むセカンダリ無線通信システム5と、プライマリ基地局41とセカンダリ基地局51のクラッタとが配置されている地域のものである。3次元地図情報は、その一部または全てが、サーバ2の通信部201によって外部から読み込まれて記憶装置24に格納されてもよい。 When the propagation prediction method according to the present embodiment is started, step S01 is executed, and the three-dimensional map information is prepared in the storage device 24. As described above, the three-dimensional map information includes the primary wireless communication system 4 including the primary base station 41, the secondary wireless communication system 5 including the secondary base station 51, and the clutter of the primary base station 41 and the secondary base station 51. It belongs to the area where it is located. A part or all of the three-dimensional map information may be read from the outside by the communication unit 201 of the server 2 and stored in the storage device 24.
 ステップS01に次いでステップS02が実行され、サーバ2の通信部201が、プライマリ基地局41またはプライマリ運用サーバからプライマリ運用情報44を取得し、セカンダリ運用サーバ50からセカンダリ運用情報54を取得する。プライマリ運用情報44には、プライマリ基地局41の水平位置と高度、プライマリ無線通信システム4が使用する周波数帯域、プライマリ移動局42から送信されプライマリ基地局41に届く無線信号の強度、プライマリ無線通信システム4が稼働する時間帯、などを表す様々な情報が含まれていてもよい。同様に、セカンダリ運用情報54には、セカンダリ基地局51の水平位置と高度、セカンダリ無線通信システム5が使用する周波数帯域、セカンダリ基地局51から送信される無線信号の強度、セカンダリ基地局51のそれぞれが稼働する時間帯、などを表す様々な情報が含まれていてもよい。なお、プライマリ基地局41とセカンダリ基地局51のそれぞれの水平位置と高度を表す情報は、3次元地図情報と、プライマリ運用情報44と、セカンダリ運用情報54のいずれか1つから供給されてもよいし、複数から重複して供給されてもよい。重複して供給された運用情報については、サーバ2がどの運用情報を採用するかを適宜に、例えば、最も新しい運用情報を採用する、などの基準に基づいて、決定してもよい。 Step S02 is executed after step S01, and the communication unit 201 of the server 2 acquires the primary operation information 44 from the primary base station 41 or the primary operation server, and acquires the secondary operation information 54 from the secondary operation server 50. The primary operation information 44 includes the horizontal position and altitude of the primary base station 41, the frequency band used by the primary radio communication system 4, the strength of the radio signal transmitted from the primary mobile station 42 and reaching the primary base station 41, and the primary radio communication system. Various information indicating the time zone in which 4 operates may be included. Similarly, the secondary operation information 54 includes the horizontal position and altitude of the secondary base station 51, the frequency band used by the secondary wireless communication system 5, the strength of the radio signal transmitted from the secondary base station 51, and the secondary base station 51, respectively. It may contain various information indicating the time zone during which the device is operated. Information indicating the horizontal position and altitude of each of the primary base station 41 and the secondary base station 51 may be supplied from any one of the three-dimensional map information, the primary operation information 44, and the secondary operation information 54. However, it may be supplied in duplicate from a plurality of units. With respect to the operation information supplied in duplicate, which operation information the server 2 adopts may be appropriately determined based on criteria such as, for example, the latest operation information being adopted.
 ステップS02に次いでステップS03が実行され、サーバ2のクラッタ選出部202が、プライマリ基地局41とセカンダリ基地局51の間に配置されたクラッタの中から、プライマリ基地局41とセカンダリ基地局51の間の伝搬損失への影響が支配的である支配的クラッタを選出する。 Step S03 is executed after step S02, and the clutter selection unit 202 of the server 2 is placed between the primary base station 41 and the secondary base station 51 from among the clutters arranged between the primary base station 41 and the secondary base station 51. Election a dominant clutter whose effect on propagation loss is dominant.
 図4を参照して、一実施の形態において支配的クラッタを選出する方法の一例を説明する。図4の例では、プライマリ基地局41の第1アンテナ61と、セカンダリ基地局51の第2アンテナ62の間に、3つのクラッタ63、64、65が存在している。図4の例を用いた以降の説明では、第1アンテナ61と第2アンテナ62の高度は同じであると仮定するが、本実施の形態はこの例に限定されない。 With reference to FIG. 4, an example of a method of selecting a dominant clutter in one embodiment will be described. In the example of FIG. 4, three clutters 63, 64, and 65 are present between the first antenna 61 of the primary base station 41 and the second antenna 62 of the secondary base station 51. In the following description using the example of FIG. 4, it is assumed that the altitudes of the first antenna 61 and the second antenna 62 are the same, but the present embodiment is not limited to this example.
 クラッタ63、64、65のそれぞれは、第1アンテナ61と第2アンテナ62を結ぶ仮想的な直線のパス612を遮る部分を有するように配置されている。言い換えれば、クラッタ63、64、65のそれぞれは、第1アンテナ61と第2アンテナ62の間に配置されており、かつ、その高度が第1アンテナ61と第2アンテナ62の高度より高い部分を有している。少なくとも、第1アンテナ61と第2アンテナ62の間で、この仮想的な直線のパス612に沿って直接波が伝搬することはできない。 Each of the clutters 63, 64, and 65 is arranged so as to have a portion that blocks a virtual straight path 612 connecting the first antenna 61 and the second antenna 62. In other words, each of the clutters 63, 64, and 65 is arranged between the first antenna 61 and the second antenna 62, and the altitude thereof is higher than the altitudes of the first antenna 61 and the second antenna 62. Have. At the very least, no direct wave can propagate between the first antenna 61 and the second antenna 62 along this virtual straight path 612.
 その一方で、第1アンテナ61から放出された電磁波は、クラッタ63、64、65の端部で回折することによって、第2アンテナ62に到達し得る。同様に、第2アンテナ62から放射された電磁波は、クラッタ63、64、65の端部で回折することによって、第1アンテナ61に到達し得る。ただし、回折によって伝搬損失が発生する。 On the other hand, the electromagnetic wave emitted from the first antenna 61 can reach the second antenna 62 by diffracting at the ends of the clutters 63, 64, and 65. Similarly, the electromagnetic wave radiated from the second antenna 62 can reach the first antenna 61 by diffracting at the ends of the clutters 63, 64, 65. However, diffraction causes propagation loss.
 本実施形態によるクラッタモデルでは、クラッタ63、64、65は頂点631、641、651をそれぞれ有している。これらの頂点631、641、651で発生する回折を全て考慮して伝搬損失を算出してもよいが、そのための計算量は比較的膨大になり得る。そこで、本実施形態では、第1アンテナ61と第2アンテナ62の間に配置されているクラッタの中から、第1アンテナ61に対する伝搬損失の影響が支配的である第1支配的クラッタと、第2アンテナ62に対する伝搬損失の影響が支配的である第2支配的クラッタとをそれぞれ選出し、残るクラッタに起因する伝搬損失を無視する、という近似を行う。 In the clutter model according to the present embodiment, the clutters 63, 64, and 65 have vertices 631, 641, and 651, respectively. The propagation loss may be calculated in consideration of all the diffractions generated at these vertices 631, 641, and 651, but the amount of calculation for that purpose can be relatively enormous. Therefore, in the present embodiment, among the clutters arranged between the first antenna 61 and the second antenna 62, the first dominant clutter, in which the influence of the propagation loss on the first antenna 61 is dominant, and the first. The approximation is made by selecting the second dominant clutter in which the influence of the propagation loss on the two antennas 62 is dominant, and ignoring the propagation loss caused by the remaining clutter.
 図4の例では、第1アンテナ61に対応する第1支配的クラッタとして、クラッタ64が選出される。選出の基準は、第1アンテナ61からクラッタ63、64、65の頂点631、641、651を見た仰角が最大となるクラッタであることにある。ここで、第1アンテナ61とクラッタ63の頂点631を結ぶ直線であるパス613はクラッタ64によって遮られており、第1アンテナ61とクラッタ65の頂点651を結ぶ直線であるパス615もクラッタ64によって遮られている。その一方で、第1アンテナ61とクラッタ64の頂点641を結ぶ直線であるパス614は、他のクラッタ63、65によって遮られていない。したがって、第1アンテナ61が送受信する電磁波の伝搬損失は、クラッタ63または65で回折する場合よりも、クラッタ64で回折した場合の方が大きいと考えられる。 In the example of FIG. 4, the clutter 64 is selected as the first dominant clutter corresponding to the first antenna 61. The criterion for selection is that the clutter has the maximum elevation angle when the vertices 631, 641 and 651 of the clutter 63, 64 and 65 are viewed from the first antenna 61. Here, the path 613 which is a straight line connecting the first antenna 61 and the apex 631 of the clutter 63 is blocked by the clutter 64, and the path 615 which is a straight line connecting the first antenna 61 and the apex 651 of the clutter 65 is also blocked by the clutter 64. It is blocked. On the other hand, the path 614, which is a straight line connecting the first antenna 61 and the apex 641 of the clutter 64, is not blocked by the other clutters 63 and 65. Therefore, it is considered that the propagation loss of the electromagnetic wave transmitted and received by the first antenna 61 is larger when diffracted by the clutter 64 than when diffracted by the clutter 63 or 65.
 同様に、図4の例では、第2アンテナ62に対応する第2支配的クラッタとして、クラッタ65が選出される。選出の基準は、第2アンテナ62からクラッタ63、64、65の頂点631、641、651を見た仰角が最大となるクラッタであることにある。ここで、第2アンテナ62とクラッタ63の頂点631を結ぶ直線であるパス623はクラッタ64、65によって遮られており、第2アンテナ62とクラッタ64の頂点641を結ぶ直線であるパス624はクラッタ65によって遮られている。その一方で、第2アンテナ62とクラッタ65の頂点651を結ぶ直線であるパス615が、他のクラッタ63、64によって遮られていない。したがって、第2アンテナ62が送受信する電磁波の伝搬損失は、クラッタ63または64で回折する場合よりも、クラッタ65で回折した場合の方が大きいと考えられる。 Similarly, in the example of FIG. 4, the clutter 65 is selected as the second dominant clutter corresponding to the second antenna 62. The criterion for selection is that the clutter has the maximum elevation angle when the vertices 631, 641 and 651 of the clutter 63, 64 and 65 are viewed from the second antenna 62. Here, the path 623, which is a straight line connecting the second antenna 62 and the apex 631 of the clutter 63, is blocked by the clutters 64 and 65, and the path 624, which is a straight line connecting the second antenna 62 and the apex 641 of the clutter 64, is a clutter. It is blocked by 65. On the other hand, the path 615, which is a straight line connecting the second antenna 62 and the apex 651 of the clutter 65, is not blocked by the other clutters 63 and 64. Therefore, it is considered that the propagation loss of the electromagnetic wave transmitted and received by the second antenna 62 is larger when diffracted by the clutter 65 than when diffracted by the clutter 63 or 64.
 あるアンテナに対応する支配的クラッタを選出する別の基準として、そのアンテナに対するそのクラッタのクリアランス係数が最大であるクラッタを支配的クラッタとしてもよい。ここで、クリアランス係数とは、電磁波が障害物越しに伝搬する損失に関するパラメータである。 As another criterion for selecting the dominant clutter corresponding to an antenna, the clutter having the maximum clearance coefficient of the clutter with respect to the antenna may be used as the dominant clutter. Here, the clearance coefficient is a parameter related to the loss that the electromagnetic wave propagates through the obstacle.
 なお、本実施の形態では、第1アンテナ61と第2アンテナ62の間の伝搬経路の伝搬損失のうち、すなわちプライマリ基地局41とセカンダリ基地局51の間の伝搬経路の伝搬損失のうち、第1支配的クラッタ64と第2支配的クラッタ65に起因するクラッタ損失を除く成分を、自由空間損失に近似して算出および/または予測する。図4の例では、第2アンテナ62から送信された電磁波がパス625、パス645およびパス614を通って第1アンテナ61に受信される場合の伝搬損失を算出するとき、まず、パス625、パス645およびパス614における伝搬損失を、パス612の距離の自由空間の伝搬損失に近似する。つまり、第1アンテナ61と第2アンテナ62の間の伝搬経路が、パス612の距離の自由空間であると推定する。次に、パス612の距離の自由空間損失に、第1支配的クラッタ64に起因するクラッタ損失と、第2支配的クラッタ65に起因するクラッタ損失とを加味することで、伝搬損失を近似的に算出する。また、パス625、パス645およびパス614を通る伝搬損失の算出方法の変形例として、パス625、パス645およびパス614のそれぞれにおける伝搬損失が、それぞれ同じ距離の自由空間の伝搬損失であるものとしてもよい。この変形例では、第1アンテナ61に対応する第1支配的クラッタ64と、第2アンテナ62に対応する第2支配的クラッタ65とを選出することによって、第1アンテナ61と第2アンテナ62の間の伝搬経路が、第1支配的クラッタ64の頂点641と第2支配的クラッタ65の頂点651を通る、パス625、パス645およびパス614の集合であると推定していることになる。 In the present embodiment, the propagation loss of the propagation path between the first antenna 61 and the second antenna 62, that is, the propagation loss of the propagation path between the primary base station 41 and the secondary base station 51, is the first. The components excluding the clutter loss due to the 1 dominant clutter 64 and the 2nd dominant clutter 65 are calculated and / or predicted by approximating the free space loss. In the example of FIG. 4, when calculating the propagation loss when the electromagnetic wave transmitted from the second antenna 62 is received by the first antenna 61 through the path 625, the path 645 and the path 614, first, the path 625 and the path The propagation loss at 645 and path 614 is approximated to the propagation loss in free space at the distance of path 612. That is, it is estimated that the propagation path between the first antenna 61 and the second antenna 62 is a free space at a distance of the path 612. Next, by adding the clutter loss due to the first dominant clutter 64 and the clutter loss due to the second dominant clutter 65 to the free space loss at the distance of the path 612, the propagation loss is approximated. calculate. Further, as a modification of the method of calculating the propagation loss through the path 625, the path 645, and the path 614, it is assumed that the propagation loss in each of the path 625, the path 645, and the path 614 is the propagation loss in the free space of the same distance. May be good. In this modification, the first antenna 61 and the second antenna 62 are arranged by selecting the first dominant clutter 64 corresponding to the first antenna 61 and the second dominant clutter 65 corresponding to the second antenna 62. It is estimated that the propagation path between them is a set of paths 625, 645 and 614 that pass through the apex 641 of the first dominant clutter 64 and the apex 651 of the second dominant clutter 65.
 このように、本実施の形態では、非特許文献1(ITU-R(Radiocommunication Sector of International Telecommunication Union)、“Recommendation ITU-R P.2108-0 (06/2017) Prediction of clutter loss P Series Radiowave propagation”、[Online]、2017年6月20日、インターネット<URL:https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2108-0-201706-I!!PDF-E.pdf>)に定義されているクラッタモデルに改良を加えている。こうすることによって、本実施の形態では、伝搬損失を精度よく算出および/または予測することができる。 As described above, in the present embodiment, Non-Patent Document 1 (ITU-R (Radiocommunication Sector of International Telecommunication Union), "Recommunication ITU-R P.2108-0 (06/2017) Radiocommunication , [Online], June 20, 2017, Internet <URL: https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.2108-0-201706-I !! The clutter model defined in PDF-E.pdf>) has been improved. By doing so, in the present embodiment, the propagation loss can be accurately calculated and / or predicted.
 複数のセカンダリ基地局51が存在する場合、クラッタ選出部202は、複数のセカンダリ基地局51にそれぞれ対応する複数の第2支配的クラッタを選出する。 When a plurality of secondary base stations 51 exist, the clutter selection unit 202 selects a plurality of second dominant clutters corresponding to the plurality of secondary base stations 51, respectively.
 いずれの場合も、クラッタ選出部202は、選出された支配的クラッタを表す情報を記憶装置24に格納する。 In either case, the clutter selection unit 202 stores information representing the selected dominant clutter in the storage device 24.
 図3のフローチャートを再度参照して、ステップS03に次いでステップS04が実行され、サーバ2の伝搬損失算出部203が、セカンダリ基地局51で使用される周波数帯域のうち、プライマリ基地局41への干渉が発生し得る周波数帯域に含まれる周波数における伝搬損失を算出する。プライマリ基地局41とセカンダリ基地局51の間の伝搬損失のうち、第1支配的クラッタに起因する成分である第1クラッタ損失は、プライマリ基地局41から第1支配的クラッタまでの距離と、プライマリ基地局41および第1支配的クラッタのそれぞれの高度とに基づいて算出することができる。同様に、プライマリ基地局41とセカンダリ基地局51の間の伝搬損失のうち、第2支配的クラッタに起因する成分である第2クラッタ損失は、セカンダリ基地局51から第2支配的クラッタまでの距離と、セカンダリ基地局51および第2支配的クラッタのそれぞれの高度とに基づいて算出することができる。 With reference to the flowchart of FIG. 3 again, step S04 is executed after step S03, and the propagation loss calculation unit 203 of the server 2 interferes with the primary base station 41 in the frequency band used by the secondary base station 51. Calculate the propagation loss at frequencies included in the frequency band where can occur. Of the propagation losses between the primary base station 41 and the secondary base station 51, the first clutter loss, which is a component caused by the first dominant clutter, is the distance from the primary base station 41 to the first dominant clutter and the primary. It can be calculated based on the respective altitudes of the base station 41 and the first dominant clutter. Similarly, of the propagation loss between the primary base station 41 and the secondary base station 51, the second clutter loss, which is a component caused by the second dominant clutter, is the distance from the secondary base station 51 to the second dominant clutter. And the altitude of each of the secondary base station 51 and the second dominant clutter.
 まず、クラッタ損失Aは、非特許文献1の標準モデル(郊外、都市、木々、森、密集した都市)において以下の(1a)式および(1b)式によって定義されており、その単位はdB(デシベル)である。
Figure JPOXMLDOC01-appb-M000001
(1a)式において、「J(ν)」は回折による損失に関するパラメータであり、その単位はdBである。「ν」は支配的クラッタのクリアランス係数であり、その単位は無次元である。「6.03」は近似された定数であり、近似の条件に応じて、例えば「6.02」、「6.04」、「6.00から6.06までのいずれかの数値」などの、別の値に変更可能である。「h」はアンテナの高度であり、その単位はm(メートル)である。「R」はこのアンテナに対応する支配的クラッタ64の高度であり、その単位はmである。
First, clutter loss A h is the standard model of non-patent document 1 is defined by the following (1a) formula and (1b) Formula (suburban, urban, trees, forests, dense urban) and has units of dB (Decibel).
Figure JPOXMLDOC01-appb-M000001
In the equation (1a), "J (ν)" is a parameter related to the loss due to diffraction, and its unit is dB. “Ν” is the clearance coefficient of the dominant clutter, and its unit is dimensionless. "6.03" is an approximated constant, and depending on the approximated condition, for example, "6.02", "6.04", "any numerical value from 6.00 to 6.06", etc. , Can be changed to another value. "H" is the altitude of the antenna, and its unit is m (meter). "R" is the altitude of the dominant clutter 64 corresponding to this antenna, the unit of which is m.
 図5を参照して、一実施の形態による第1アンテナ61と支配的クラッタ64の位置関係に由来するパラメータを説明する。図5に示すアンテナの高度hと支配的クラッタ64の高度Rのそれぞれは、同一の水平面を基準とする高度である。これらの高度は、海抜として定義されていてもよいし、地表からの高さにその地表の海抜を加算して定義されていてもよいが、本実施の形態はこれらの例に限定されない。いずれの場合も、本実施の形態におけるクラッタ損失および/または伝搬損失の算出では、高度hと高度Rの差を利用するので、基準となる水平面の高度は任意であってもよい。 With reference to FIG. 5, parameters derived from the positional relationship between the first antenna 61 and the dominant clutter 64 according to the embodiment will be described. Each of the altitude h of the antenna and the altitude R of the dominant clutter 64 shown in FIG. 5 are altitudes with respect to the same horizontal plane. These altitudes may be defined as above sea level, or may be defined by adding the altitude above sea level to the height above sea level, but the present embodiment is not limited to these examples. In either case, since the difference between the altitude h and the altitude R is used in the calculation of the clutter loss and / or the propagation loss in the present embodiment, the altitude of the reference horizontal plane may be arbitrary.
 (1a)式は「h<R」の条件を満たす場合、すなわち支配的クラッタが第1アンテナ61と第2アンテナ62を結ぶ仮想的な直線を遮る場合に適用される。また、(1b)式は「h≧R」の条件を満たす場合、すなわち第1アンテナ61と第2アンテナ62の間で、この仮想的な直線に沿って直接的に電磁波が伝搬できる場合に適用される。以降、(1a)式の算出方法を説明する。 Equation (1a) is applied when the condition of "h <R" is satisfied, that is, when the dominant clutter blocks the virtual straight line connecting the first antenna 61 and the second antenna 62. Further, the equation (1b) is applied when the condition of "h ≧ R" is satisfied, that is, when the electromagnetic wave can be directly propagated along this virtual straight line between the first antenna 61 and the second antenna 62. Will be done. Hereinafter, the calculation method of the equation (1a) will be described.
 (1a)式に用いるパラメータJ(ν)は、以下の(2)式のように定義される。
Figure JPOXMLDOC01-appb-M000002
The parameter J (ν) used in the equation (1a) is defined as the following equation (2).
Figure JPOXMLDOC01-appb-M000002
 (2)式に用いるクリアランス係数νは、以下の(3)式のように定義される。
Figure JPOXMLDOC01-appb-M000003
(3)式において、「Knu」は周波数に関するパラメータである。「hdif」は、図5に示すように、支配的クラッタ64の高度Rと第1アンテナ61の高度hの差であり、その単位はmである。「θclut」は、図5に示すように、第1アンテナ61から支配的クラッタ64の頂点641を見た仰角であり、その単位はdeg(度)である。ここで、水平方向より上を見た場合の仰角の値は正であるが、水平方向より下を見た場合の俯角を値が負の仰角として扱ってもよい。
The clearance coefficient ν used in the equation (2) is defined as the following equation (3).
Figure JPOXMLDOC01-appb-M000003
In equation (3), "K nu " is a parameter related to frequency. As shown in FIG. 5, “h dif ” is the difference between the altitude R of the dominant clutter 64 and the altitude h of the first antenna 61, and the unit thereof is m. As shown in FIG. 5, “θ cult ” is an elevation angle when the apex 641 of the dominant clutter 64 is viewed from the first antenna 61, and the unit thereof is deg (degrees). Here, the value of the elevation angle when looking above the horizontal direction is positive, but the depression angle when looking below the horizontal direction may be treated as an elevation angle having a negative value.
 (3)式に用いる、周波数に関するパラメータKnuは、以下の(4)式のように定義される。
Figure JPOXMLDOC01-appb-M000004
(4)式において、「f」は周波数であり、その単位はGHz(ギガヘルツ)である。
The frequency parameter K nu used in the equation (3) is defined as the following equation (4).
Figure JPOXMLDOC01-appb-M000004
In equation (4), "f" is a frequency, and its unit is GHz (gigahertz).
 (3)式に用いる高度差hdifは、以下の(5)式のように定義される。
Figure JPOXMLDOC01-appb-M000005
The altitude difference h def used in the equation (3) is defined as the following equation (5).
Figure JPOXMLDOC01-appb-M000005
 (3)式に用いる仰角θclutは、以下の(6)式のように定義される。
Figure JPOXMLDOC01-appb-M000006
(6)式において、「w」は、図5に示すように、第1アンテナ61から支配的クラッタ64の頂点641までの水平方向の距離であり、その単位はmである。なお、距離wは、非特許文献1の標準モデルで道路幅として定義されているパラメータに対応していてもよい。
The elevation angle θ clut used in the equation (3) is defined as the following equation (6).
Figure JPOXMLDOC01-appb-M000006
In (6), "w s", as shown in FIG. 5, a horizontal distance to the vertex 641 of the dominant clutter 64 from the first antenna 61, the unit is m. The distance w s may correspond to a parameter defined as a road width in the standard model of Non-Patent Document 1.
 以上に説明したように、第1アンテナ61および支配的クラッタ64のそれぞれの、位置および高度に関する情報と、利用される周波数帯域に含まれる周波数の値とに基づいて、この周波数帯域における、支配的クラッタ64に起因するクラッタ損失を算出することができる。クラッタ損失は、第2アンテナ62に対応する支配的クラッタについても同様に算出できる。 As described above, the dominant in this frequency band is based on the position and altitude information of each of the first antenna 61 and the dominant clutter 64 and the value of the frequency contained in the frequency band used. The clutter loss due to the clutter 64 can be calculated. The clutter loss can be similarly calculated for the dominant clutter corresponding to the second antenna 62.
 次いで、プライマリ基地局41からセカンダリ基地局51までの伝搬経路を自由空間に近似する。もしくは、この伝搬経路を支配的クラッタ64と第2支配的クラッタ65で区切る変形例の場合は、プライマリ基地局41から第1支配的クラッタ64までの伝搬経路と、第1支配的クラッタ64から第2支配的クラッタ65までの伝搬経路と、第2支配的クラッタ65からセカンダリ基地局51までの伝搬経路とを、それぞれ、自由空間に近似する。これらの自由空間のそれぞれにおける伝搬損失、すなわち自由空間損失は、以下の(7)式のように定義される。
Figure JPOXMLDOC01-appb-M000007
(7)式において、「L」は自由空間損失であり、その単位は無次元であるが、そのlog(底が10である対数)の10倍を算出することで単位がdBの伝搬損失を算出できる。「d」は自由空間としての伝搬経路で電磁波が伝搬する距離であり、その単位はmである。「λ」は使用される周波数に対応する波長であり、その単位はmである。
Next, the propagation path from the primary base station 41 to the secondary base station 51 is approximated to free space. Alternatively, in the case of a modification in which this propagation path is divided by the dominant clutter 64 and the second dominant clutter 65, the propagation path from the primary base station 41 to the first dominant clutter 64 and the first dominant clutter 64 to the first. The propagation path to the two dominant clutter 65 and the propagation path from the second dominant clutter 65 to the secondary base station 51 are approximated to free space, respectively. The propagation loss, that is, the free space loss in each of these free spaces is defined by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
In equation (7), "L 0 " is a free space loss, the unit of which is dimensionless, but the propagation loss of the unit is dB by calculating 10 times its log (logarithm with a base of 10). Can be calculated. “D” is the distance at which the electromagnetic wave propagates in the propagation path as a free space, and its unit is m. “Λ” is a wavelength corresponding to the frequency used, and its unit is m.
 次いで、それぞれの伝搬経路の自由空間損失Lに、それぞれの支配的クラッタ64、65のクラッタ損失を加味することで、プライマリ基地局41からセカンダリ基地局51までの全体的な伝搬損失を予測することができる。 Next, by adding the clutter losses of the dominant clutters 64 and 65, respectively, to the free space loss L 0 of each propagation path, the overall propagation loss from the primary base station 41 to the secondary base station 51 is predicted. be able to.
 ステップS04に次いでステップS05が実行され、ステップS04で算出した伝搬損失に応じた出力信号14をサーバ2の制御部204が生成してセカンダリ運用サーバ50に出力する。ここで、伝搬損失が所定の閾値より小さいときに、セカンダリ基地局51からプライマリ基地局41への干渉電力が別の所定の閾値を超えるように、伝搬損失の閾値を設定してもよい。干渉電力は、セカンダリ基地局51から送信される無線信号の電力と伝搬損失から算出できる。 Step S05 is executed after step S04, and the control unit 204 of the server 2 generates an output signal 14 according to the propagation loss calculated in step S04 and outputs the output signal 14 to the secondary operation server 50. Here, when the propagation loss is smaller than a predetermined threshold value, the propagation loss threshold value may be set so that the interference power from the secondary base station 51 to the primary base station 41 exceeds another predetermined threshold value. The interference power can be calculated from the power and propagation loss of the radio signal transmitted from the secondary base station 51.
 制御部204が出力する出力信号14は、セカンダリ運用サーバ50が、プライマリ基地局41への干渉電力が所定の保護規範を超えたセカンダリ基地局51を停止させるための制御信号であってもよい。言い換えれば、セカンダリ運用サーバ50は、出力信号14に応じて、プライマリ基地局41への干渉電力が所定の保護規範を超えたセカンダリ基地局51を停止してもよい。 The output signal 14 output by the control unit 204 may be a control signal for the secondary operation server 50 to stop the secondary base station 51 in which the interference power to the primary base station 41 exceeds a predetermined protection standard. In other words, the secondary operation server 50 may stop the secondary base station 51 in which the interference power to the primary base station 41 exceeds a predetermined protection standard in response to the output signal 14.
 ステップS05が完了すると、図3のフローチャートは終了する。 When step S05 is completed, the flowchart of FIG. 3 ends.
 図6を参照して、一実施の形態において支配的クラッタを選出する方法の別の一例を説明する。図6の例は、図4の例に次の変更点を加えたものである。つまり、クラッタ65の高度が下がっている。その結果、第2アンテナ62に対応する第2支配的クラッタが、図4の例ではクラッタ65であったが、図6の例ではクラッタ64である。その一方で、第1アンテナ61に対応する第1支配的クラッタは図6でも図4の場合と同様にクラッタ64である。つまり、図6の例では、第1支配的クラッタと第2支配的クラッタが同一のクラッタ64である。 With reference to FIG. 6, another example of the method of selecting the dominant clutter in one embodiment will be described. The example of FIG. 6 is the example of FIG. 4 with the following changes added. That is, the altitude of the clutter 65 is lowered. As a result, the second dominant clutter corresponding to the second antenna 62 was the clutter 65 in the example of FIG. 4, but the clutter 64 in the example of FIG. On the other hand, the first dominant clutter corresponding to the first antenna 61 is the clutter 64 in FIG. 6 as in the case of FIG. That is, in the example of FIG. 6, the first dominant clutter and the second dominant clutter are the same clutter 64.
 図3のフローチャートのステップS04における支配的クラッタの伝搬損失の算出は、図4に例示したような、第1支配的クラッタ64と第2支配的クラッタ65が互いに異なるクラッタである場合と、図6に例示したような、第1支配的クラッタ64と第2支配的クラッタ64が同一の支配的クラッタ64である場合とで、異なる方法で行ってもよい。このような変形例について、図7のフローチャートを参照して説明する。 The calculation of the propagation loss of the dominant clutter in step S04 of the flowchart of FIG. 3 is performed when the first dominant clutter 64 and the second dominant clutter 65 are different clutters as illustrated in FIG. The first dominant clutter 64 and the second dominant clutter 64 may be the same dominant clutter 64 as illustrated in the above, and may be performed by different methods. An example of such a modification will be described with reference to the flowchart of FIG.
 図7のフローチャートが開始すると、ステップS11が実行され、伝搬損失算出部203は第1支配的クラッタと第2支配的クラッタが同じクラッタであるかどうかを判定する。この判定を行うために、伝搬損失算出部203は、クラッタ選出部202が記憶装置24に格納した、支配的クラッタを選出した結果を読み出してもよい。 When the flowchart of FIG. 7 starts, step S11 is executed, and the propagation loss calculation unit 203 determines whether the first dominant clutter and the second dominant clutter are the same clutter. In order to make this determination, the propagation loss calculation unit 203 may read out the result of selecting the dominant clutter stored in the storage device 24 by the clutter selection unit 202.
 ステップS11において、図4に例示したように、第1支配的クラッタ64と第2支配的クラッタ65が互いに異なるクラッタであると判定された場合(No)、ステップS11に次いでステップS12が実行される。ステップS12において、伝搬損失算出部203は、プライマリ基地局41の第1アンテナ61とセカンダリ基地局51の第2アンテナ62の間の全体的な伝搬損失を、次のように算出する。 In step S11, as illustrated in FIG. 4, when it is determined that the first dominant clutter 64 and the second dominant clutter 65 are different clutters (No), step S12 is executed after step S11. .. In step S12, the propagation loss calculation unit 203 calculates the overall propagation loss between the first antenna 61 of the primary base station 41 and the second antenna 62 of the secondary base station 51 as follows.
 すなわち、第1支配的クラッタ64と第2支配的クラッタ65で発生する回折に起因する第1クラッタ損失と第2クラッタ損失のそれぞれを、上述のとおり、(1a)式~(7)式を用いて算出する。 That is, as described above, the first clutter loss and the second clutter loss due to the diffraction generated in the first dominant clutter 64 and the second dominant clutter 65 are each used by equations (1a) to (7). To calculate.
 ステップS12が完了すると、図7のフローチャートは終了し、処理は図3のフローチャートのステップS05に移る。 When step S12 is completed, the flowchart of FIG. 7 ends, and the process proceeds to step S05 of the flowchart of FIG.
 図7のフローチャートのステップS11において、図6に例示したように、第1支配的クラッタ64と第2支配的クラッタ64が同一の支配的クラッタ64であると判定された場合(Yes)、ステップS11に次いでステップS13が実行される。ステップS13において、伝搬損失算出部203は、プライマリ基地局41の第1アンテナ61とセカンダリ基地局51の第2アンテナ62の間の全体的な伝搬損失を、次のように算出する。 In step S11 of the flowchart of FIG. 7, as illustrated in FIG. 6, when it is determined that the first dominant clutter 64 and the second dominant clutter 64 are the same dominant clutter 64 (Yes), step S11. Then step S13 is executed. In step S13, the propagation loss calculation unit 203 calculates the overall propagation loss between the first antenna 61 of the primary base station 41 and the second antenna 62 of the secondary base station 51 as follows.
 すなわち、同一の支配的クラッタ64におけるクラッタ損失を、プライマリ基地局41から支配的クラッタ64までの第1距離と、セカンダリ基地局51から支配的クラッタ64までの第2距離のうちの、より短い方の距離に基づいて、支配的クラッタ64のクラッタ損失を算出する。 That is, the clutter loss in the same dominant clutter 64 is the shorter of the first distance from the primary base station 41 to the dominant clutter 64 and the second distance from the secondary base station 51 to the dominant clutter 64. The clutter loss of the dominant clutter 64 is calculated based on the distance of.
 次いで、プライマリ基地局41から第1支配的クラッタ64までの伝搬経路と、第1支配的クラッタ64から第2アンテナ62までの伝搬経路とを、それぞれ、自由空間に近似する。これらの自由空間のそれぞれにおける自由空間損失は、上述した(7)式のように定義される。 Next, the propagation path from the primary base station 41 to the first dominant clutter 64 and the propagation path from the first dominant clutter 64 to the second antenna 62 are approximated to free space, respectively. The free space loss in each of these free spaces is defined as the above-mentioned equation (7).
 次いで、それぞれの伝搬経路の自由空間損失Lに、第1支配的クラッタ64のクラッタ損失を加味することで、プライマリ基地局41からセカンダリ基地局51までの全体的な伝搬損失を予測することができる。 Next, by adding the clutter loss of the first dominant clutter 64 to the free space loss L 0 of each propagation path, it is possible to predict the overall propagation loss from the primary base station 41 to the secondary base station 51. can.
 ステップS13が完了すると、図7のフローチャートは終了し、処理は図3のフローチャートのステップS05に移る。 When step S13 is completed, the flowchart of FIG. 7 ends, and the process proceeds to step S05 of the flowchart of FIG.
 このように、図7のフローチャートの処理を行うか否かで、第1アンテナ61と第2アンテナ62に対応する支配的クラッタが同一のクラッタであった場合の、この支配的クラッタに起因するクラッタ損失が、第1アンテナ61と第2アンテナ62の間の全体的な伝搬損失の中で、1度加味されるか、2度加味されるかを選択できる。この選択は、支配的クラッタの頂点の形状などに応じて行ってもよい。一例として、支配的クラッタが直方体の建物などであって、第1アンテナ61に面する頂点と、第2アンテナ62に面する頂点との間に十分に長い距離がある場合には、図7のフローチャートの処理を行わない方が、伝搬損失を予測する精度がより高くなる可能性がある。反対に、第1アンテナ61に面する頂点と、第2アンテナ62に面する頂点との間の距離が十分に短ければ、図7のフローチャート処理を行った方が、伝搬損失を予測する精度がより高くなる可能性がある。 As described above, when the dominant clutter corresponding to the first antenna 61 and the second antenna 62 is the same clutter depending on whether or not the flowchart of FIG. 7 is processed, the clutter caused by this dominant clutter. It is possible to select whether the loss is added once or twice in the overall propagation loss between the first antenna 61 and the second antenna 62. This selection may be made depending on the shape of the apex of the dominant clutter and the like. As an example, if the dominant clutter is a rectangular parallelepiped building or the like and there is a sufficiently long distance between the apex facing the first antenna 61 and the apex facing the second antenna 62, FIG. 7 shows. If the flow chart is not processed, the accuracy of predicting the propagation loss may be higher. On the contrary, if the distance between the apex facing the first antenna 61 and the apex facing the second antenna 62 is sufficiently short, the flow chart processing of FIG. 7 is more accurate in predicting the propagation loss. May be higher.
 図8Aのフローチャートを参照して、一実施の形態による伝搬予測方法の別の変形例について説明する。この変形例では、図3のフローチャートのステップS04または図7のフローチャートのステップS12もしくはステップS13において支配的クラッタに起因するクラッタ損失を算出するとき、所定の条件を満たした場合に支配的クラッタの高度をより低い別の高度に置き換える。こうすることで、非特許文献1の標準モデルでは考慮されていない、支配的クラッタの側面における回析による伝搬を模擬することができる。 With reference to the flowchart of FIG. 8A, another modification of the propagation prediction method according to one embodiment will be described. In this modification, when calculating the clutter loss due to the dominant clutter in step S04 of the flowchart of FIG. 3 or step S12 or step S13 of the flowchart of FIG. 7, the altitude of the dominant clutter is determined when a predetermined condition is satisfied. To another lower altitude. By doing so, it is possible to simulate propagation by diffraction in the aspect of the dominant clutter, which is not considered in the standard model of Non-Patent Document 1.
 図8Aのフローチャートが開始すると、ステップS21が実行され、伝搬損失算出部203は支配的クラッタの高度が閾値以上であるかどうかを判定する。伝搬損失算出部203は、この判定を行うために、図3のフローチャートのステップS03でクラッタ選出部202が記憶装置24に格納した、支配的クラッタの選出結果を読み出してもよい。また、伝搬損失算出部203は、図示しないデータベースまたは記憶装置24に格納されている、支配的クラッタの高度を読み出してもよい。 When the flowchart of FIG. 8A starts, step S21 is executed, and the propagation loss calculation unit 203 determines whether or not the altitude of the dominant clutter is equal to or higher than the threshold value. In order to make this determination, the propagation loss calculation unit 203 may read out the selection result of the dominant clutter stored in the storage device 24 by the clutter selection unit 202 in step S03 of the flowchart of FIG. Further, the propagation loss calculation unit 203 may read out the altitude of the dominant clutter stored in the database or the storage device 24 (not shown).
 ステップS21の判定の結果、ステップS03で選出された支配的クラッタの高度が所定の閾値以上である場合(Yes)は、ステップS21に次いでステップS22が実行される。ステップS22において、伝搬損失算出部203は、この支配的クラッタの高度をこの閾値に置き換える。ステップS22が完了すると、図8Aのフローチャートは終了し、処理は図3のフローチャートのステップS04または図7のフローチャートのステップS12またはステップS13に戻り、伝搬損失算出部203は置き換えられた高度を支配的クラッタの高度として用いてクラッタ損失と伝搬損失を算出する。 As a result of the determination in step S21, if the altitude of the dominant clutter selected in step S03 is equal to or higher than a predetermined threshold value (Yes), step S22 is executed after step S21. In step S22, the propagation loss calculation unit 203 replaces the altitude of this dominant clutter with this threshold value. When step S22 is completed, the flowchart of FIG. 8A ends, processing returns to step S04 of the flowchart of FIG. 3 or step S12 or step S13 of the flowchart of FIG. 7, and the propagation loss calculation unit 203 dominates the replaced altitude. The clutter loss and propagation loss are calculated using the clutter altitude.
 ステップS21の判定の結果、ステップS03で選出された支配的クラッタの高度が所定の閾値未満である場合(No)は、図8Aのフローチャートは終了し、処理は図3のフローチャートのステップS04または図7のフローチャートのステップS12もしくはステップS13に戻り、伝搬損失算出部203は置き換えられなかった高度を支配的クラッタの高度として用いてクラッタ損失と伝搬損失を算出する。 As a result of the determination in step S21, if the altitude of the dominant clutter selected in step S03 is less than a predetermined threshold value (No), the flowchart of FIG. 8A ends, and the process is performed in step S04 or the flowchart of FIG. Returning to step S12 or step S13 of the flowchart of 7, the propagation loss calculation unit 203 calculates the clutter loss and the propagation loss by using the altitude that has not been replaced as the altitude of the dominant clutter.
 このように、図8Aのフローチャートに示した処理を行うときに、支配的クラッタの高度の閾値として適宜な高度閾値を用いることによって、支配的クラッタの頂点における回折を介した伝搬に加えて、非特許文献1の標準モデルでは考慮されていない、支配的クラッタの側面における回析による伝搬を模擬することができる。この処理は、支配的クラッタの側面における回析による伝搬損失を算出する方法としては計算量が比較的少なく、さらに、伝搬損失の予測を精度よく行うことに繋がる。 Thus, when performing the process shown in the flowchart of FIG. 8A, by using an appropriate altitude threshold as the threshold of the altitude of the dominant clutter, in addition to propagation through diffraction at the apex of the dominant clutter, non-progression is performed. It is possible to simulate the propagation by diffraction in the aspect of the dominant clutter, which is not considered in the standard model of Patent Document 1. This process requires a relatively small amount of calculation as a method for calculating the propagation loss due to diffraction on the side surface of the dominant clutter, and further leads to accurate prediction of the propagation loss.
 図8Bのフローチャートを参照して、一実施の形態による伝搬予測方法のさらに別の変形例について説明する。この変形例でも、図8Aの場合と同様に、図3のフローチャートのステップS04または図7のフローチャートのステップS12もしくはステップS13において支配的クラッタに起因するクラッタ損失を算出するとき、所定の条件を満たした場合に支配的クラッタの高度をより低い別の高度に置き換える。こうすることで、非特許文献1の標準モデルでは考慮されていない、支配的クラッタの側面における回析による伝搬を模擬することができる。 Further, another modification of the propagation prediction method according to the embodiment will be described with reference to the flowchart of FIG. 8B. Also in this modification, as in the case of FIG. 8A, when calculating the clutter loss due to the dominant clutter in step S04 of the flowchart of FIG. 3 or step S12 or step S13 of the flowchart of FIG. 7, a predetermined condition is satisfied. If so, replace the altitude of the dominant clutter with another lower altitude. By doing so, it is possible to simulate propagation by diffraction in the aspect of the dominant clutter, which is not considered in the standard model of Non-Patent Document 1.
 図8Bのフローチャートが開始すると、ステップS31が実行され、伝搬損失算出部203は支配的クラッタと対応する基地局との高度差が閾値以上であるかどうかを判定する。伝搬損失算出部203は、この判定を行うために、図3のフローチャートのステップS03でクラッタ選出部202が記憶装置24に格納した、支配的クラッタの選出結果を読み出してもよい。また、伝搬損失算出部203は、データベースまたは記憶装置24に格納されている、プライマリ基地局41、セカンダリ基地局51および支配的クラッタのそれぞれの高度を読み出してもよい。 When the flowchart of FIG. 8B starts, step S31 is executed, and the propagation loss calculation unit 203 determines whether or not the altitude difference between the dominant clutter and the corresponding base station is equal to or greater than the threshold value. In order to make this determination, the propagation loss calculation unit 203 may read out the selection result of the dominant clutter stored in the storage device 24 by the clutter selection unit 202 in step S03 of the flowchart of FIG. Further, the propagation loss calculation unit 203 may read out the altitudes of the primary base station 41, the secondary base station 51, and the dominant clutter stored in the database or the storage device 24.
 ステップS31の判定の結果、ステップS03で選出された支配的クラッタと対応する基地局との高度差が所定の閾値以上である場合(Yes)は、ステップS31に次いでステップS32が実行される。ステップS32において、伝搬損失算出部203は、この高度差が閾値に等しくなる値に、この支配的クラッタの高度を置き換える。ステップS32が完了すると、図8Bのフローチャートは終了し、処理は図3のフローチャートのステップS04もしくは図7のフローチャートのステップS12またはステップS13に戻り、伝搬損失算出部203は置き換えられた高度を支配的クラッタの高度として用いてクラッタ損失と伝搬損失を算出する。 As a result of the determination in step S31, if the altitude difference between the dominant clutter selected in step S03 and the corresponding base station is equal to or greater than a predetermined threshold value (Yes), step S32 is executed after step S31. In step S32, the propagation loss calculation unit 203 replaces the altitude of the dominant clutter with a value at which the altitude difference is equal to the threshold value. When step S32 is completed, the flowchart of FIG. 8B ends, processing returns to step S04 of the flowchart of FIG. 3 or step S12 or step S13 of the flowchart of FIG. 7, and the propagation loss calculation unit 203 dominates the replaced altitude. The clutter loss and propagation loss are calculated using the clutter altitude.
 ステップS31の判定の結果、ステップS03で選出された支配的クラッタの高度が所定の閾値未満である場合(No)は、図8Bのフローチャートは終了し、処理は図3のフローチャートのステップS04または図7のフローチャートのステップS12もしくはステップS13に戻り、伝搬損失算出部203は置き換えられなかった高度を支配的クラッタの高度として用いてクラッタ損失と伝搬損失を算出する。 As a result of the determination in step S31, when the altitude of the dominant clutter selected in step S03 is less than a predetermined threshold value (No), the flowchart of FIG. 8B ends, and the process is performed in step S04 or the flowchart of FIG. Returning to step S12 or step S13 of the flowchart of 7, the propagation loss calculation unit 203 calculates the clutter loss and the propagation loss by using the altitude that has not been replaced as the altitude of the dominant clutter.
 このように、図8Bのフローチャートに示した処理を行うときに、図8Aの場合と同様に、支配的クラッタの高度の閾値として適宜な高度閾値を用いることによって、支配的クラッタの頂点における回折を介した伝搬に加えて、非特許文献1の標準モデルでは考慮されていない、支配的クラッタの側面における回析による伝搬を模擬することができる。この処理は、支配的クラッタの側面における回析による伝搬損失を算出する方法としては計算量が比較的少なく、さらに、伝搬損失の予測を精度よく行うことに繋がる。 In this way, when performing the process shown in the flowchart of FIG. 8B, diffraction at the apex of the dominant clutter is performed by using an appropriate altitude threshold as the threshold of the altitude of the dominant clutter, as in the case of FIG. 8A. In addition to the propagation through, it is possible to simulate the propagation by diffraction in the aspect of the dominant clutter, which is not considered in the standard model of Non-Patent Document 1. This process requires a relatively small amount of calculation as a method for calculating the propagation loss due to diffraction on the side surface of the dominant clutter, and further leads to accurate prediction of the propagation loss.
 図8Aと図8Bを参照して説明した変形例において、支配的クラッタの高度をより低い別の高度に置き換えてクラッタ損失を算出する場合には、その前段階として、支配的クラッタの選択を行うときにも同様の置き換えを行う。このことを、図8Cを参照して説明する。 In the modification described with reference to FIGS. 8A and 8B, when the clutter loss is calculated by replacing the altitude of the dominant clutter with another lower altitude, the dominant clutter is selected as a preliminary step. Sometimes the same replacement is done. This will be described with reference to FIG. 8C.
 本変形例では、図3のフローチャートのステップS03が実行されると、図8Cのフローチャートが開始される。まず、ステップS41において、クラッタ選出部202が地図情報を参照し、プライマリ基地局41とセカンダリ基地局51の間に存在するクラッタの情報をリストアップし、クラッタを処理する順序を初期化する。クラッタを処理する順序は、例えば、プライマリ基地局から近い順であってもよい。また、順序を表す引数をゼロに初期化し、リストアップされたクラッタの総数を表す引数を記憶する。 In this modification, when step S03 of the flowchart of FIG. 3 is executed, the flowchart of FIG. 8C is started. First, in step S41, the clutter selection unit 202 refers to the map information, lists the information of the clutter existing between the primary base station 41 and the secondary base station 51, and initializes the order of processing the clutter. The order in which the clutter is processed may be, for example, the order closest to the primary base station. Also, the argument representing the order is initialized to zero, and the argument representing the total number of clutters listed is stored.
 ステップS42において、クラッタ選出部202が、リストアップされたクラッタの情報の中から、次のクラッタの情報を読み込む。このとき、クラッタを処理する順序を表す引数をインクリメントする。ステップS43において、情報を読み込んだクラッタの高度から基準高度を引き算した値が、所定の閾値より大きいかどうかを判定する。ここで、基準高度は、プライマリ基地局41の第1アンテナ61とセカンダリ基地局51の第2アンテナ62が同じ高度を有している場合は、この高度に等しい。 In step S42, the clutter selection unit 202 reads the next clutter information from the clutter information listed. At this time, the argument indicating the order of processing the clutter is incremented. In step S43, it is determined whether or not the value obtained by subtracting the reference altitude from the altitude of the clutter from which the information is read is larger than a predetermined threshold value. Here, the reference altitude is equal to this altitude when the first antenna 61 of the primary base station 41 and the second antenna 62 of the secondary base station 51 have the same altitude.
 なお、第1アンテナ61と第2アンテナ62が異なる高度を有している場合は、第1アンテナ61と第2アンテナ62を結ぶ仮想的な直線に含まれる、クラッタの頂点から最も近い点の高度である。言い換えれば、クラッタの高度から基準高度を引き算した値は、クラッタの頂点から、仮想的な直線までの、鉛直方向の長さに等しい。第1アンテナ61と第2アンテナ62が異なる高度を有している場合の、支配的クラッタに由来するクラッタ損失を算出する際にも、クラッタの高度を同様に置き換える。その詳細については、別の実施の形態として後述する。 When the first antenna 61 and the second antenna 62 have different altitudes, the altitude of the point closest to the apex of the clutter included in the virtual straight line connecting the first antenna 61 and the second antenna 62. Is. In other words, the value obtained by subtracting the reference altitude from the altitude of the clutter is equal to the vertical length from the apex of the clutter to the virtual straight line. When calculating the clutter loss derived from the dominant clutter when the first antenna 61 and the second antenna 62 have different altitudes, the altitude of the clutter is similarly replaced. The details will be described later as another embodiment.
 いずれの場合も、判定の結果として、情報を読み込んだクラッタの高度から基準高度を引き算した値が、所定の閾値より大きい場合(Yes)は、ステップS44でクラッタの高度を別のより低い高度に置き換えてから処理がステップS45に進む。反対に、情報を読み込んだクラッタの高度から基準高度を引き算した値が、所定の閾値より大きくない場合(No)は、ステップS44を実行せずに処理がステップS45に進む。 In either case, as a result of the determination, if the value obtained by subtracting the reference altitude from the altitude of the clutter from which the information is read is larger than the predetermined threshold value (Yes), the altitude of the clutter is set to another lower altitude in step S44. After the replacement, the process proceeds to step S45. On the contrary, when the value obtained by subtracting the reference altitude from the altitude of the clutter from which the information is read is not larger than the predetermined threshold value (No), the process proceeds to step S45 without executing step S44.
 ステップS45において、全てのクラッタの情報を読み込んだかどうかを判定する。言い換えれば、クラッタを処理する順序を表す引数が、リストアップされたクラッタの総数を表す引数に達したかどうかを判定する。判定の結果、全てのクラッタの情報を読み込んである場合(Yes)は、処理がステップS46に進む。反対に、情報を読み込んでいないクラッタが残っている場合(No)は、処理がステップS42に戻る。 In step S45, it is determined whether or not all the clutter information has been read. In other words, it is determined whether the argument indicating the order in which the clutters are processed has reached the argument indicating the total number of clutters listed. As a result of the determination, if all the clutter information has been read (Yes), the process proceeds to step S46. On the contrary, when the clutter for which the information has not been read remains (No), the process returns to step S42.
 ステップS46において、クラッタ選出部202が支配的クラッタを抽出する。この動作は、図3のフローチャートのステップS03のとおりである。ステップS46が完了すると、図8Cのフローチャートは終了して、処理が図3のフローチャートのステップS04に進む。 In step S46, the clutter selection unit 202 extracts the dominant clutter. This operation is as shown in step S03 of the flowchart of FIG. When step S46 is completed, the flowchart of FIG. 8C ends, and the process proceeds to step S04 of the flowchart of FIG.
 本変形例では、以上のように処理することによって、支配的クラッタの抽出を行う処理と、支配的クラッタに由来するクラッタ損失を算出する処理において、クラッタの高度を同様に置き換えることで、両方の処理の間で整合性を取ることができる。 In this modification, by performing the above processing, both the processing for extracting the dominant clutter and the processing for calculating the clutter loss derived from the dominant clutter are performed by similarly replacing the altitude of the clutter. Consistency can be achieved between processes.
 (第2の実施の形態)
 上述した第1の実施の形態では、図4、図6に例示したように、第1アンテナ61と第2アンテナ62の高度が同じである場合について説明した。この構成は、非特許文献1の標準モデルに準ずるものである。第2の実施の形態では、第1アンテナ61と第2アンテナ62の高度差を考慮して伝搬損失を予測する方法について説明する。
(Second embodiment)
In the first embodiment described above, as illustrated in FIGS. 4 and 6, a case where the altitudes of the first antenna 61 and the second antenna 62 are the same has been described. This configuration conforms to the standard model of Non-Patent Document 1. In the second embodiment, a method of predicting the propagation loss in consideration of the altitude difference between the first antenna 61 and the second antenna 62 will be described.
 図9を参照して、一実施の形態における、高度が異なる2つのアンテナ61、62と支配的クラッタ66の位置関係に由来するパラメータについて説明する。図9の例では、第1アンテナ61の高度hebは、第1アンテナ61に対する伝搬損失の影響が支配的であるクラッタ66の高度Rより高く、この支配的クラッタ66の高度Rは第2アンテナ62の高度hetより高い。ここで、これらの高度heb、het、Rのそれぞれは、同一の水平面を基準とする高度である。この基準は、図5の場合と同様に、海抜であってもよいし、地表からの高さであってもよいが、本実施の形態はこれらの例に限定されない。 With reference to FIG. 9, parameters derived from the positional relationship between the two antennas 61 and 62 at different altitudes and the dominant clutter 66 in one embodiment will be described. In the example of FIG. 9, the altitude h eb of the first antenna 61 is higher than the high R e of the clutter 66 influence the propagation loss is dominant for the first antenna 61, high R e of the dominant clutter 66 second 2 Higher than the altitude h et of the antenna 62. Here, each of these advanced h eb, h et, R e , a highly referenced to the same horizontal plane. As in the case of FIG. 5, this standard may be above sea level or at a height above the ground surface, but the present embodiment is not limited to these examples.
 第1アンテナ61の高度hebと第2アンテナ62の高度hetが異なる場合、第1アンテナ61と第2アンテナ62を結ぶ仮想的な直線は、水平ではない。また、支配的クラッタ66の高度Rが第1アンテナ61の高度hebより低くても、支配的クラッタ66の位置によっては、図9に例示したように、この仮想的な直線のパス612を遮る場合がある。この場合でも、第1アンテナ61と支配的クラッタの頂点661を結ぶパス616と、頂点661と第2アンテナ62を結ぶパス626とを介して、第2アンテナ62から放射された電磁波が第1アンテナ61に到達し得る。本実施の形態では、第1の実施の形態で伝搬損失の算出に用いた式を以下の様に補正することで、第1アンテナ61の高度hebと第2アンテナ62の高度hetが異なる場合でも伝搬損失の算出を可能とする。 If the altitude h et altitude h eb and second antenna 62 of the first antenna 61 are different, a virtual straight line connecting the first antenna 61 and the second antenna 62 is not horizontal. Moreover, even highly R e dominant clutter 66 is lower than the height h eb of the first antenna 61, depending on the position of the dominant clutter 66, as illustrated in FIG. 9, the path 612 of the virtual straight line It may block. Even in this case, the electromagnetic wave radiated from the second antenna 62 via the path 616 connecting the first antenna 61 and the apex 661 of the dominant clutter and the path 626 connecting the apex 661 and the second antenna 62 is the first antenna. 61 can be reached. In the present embodiment, the altitude heb of the first antenna 61 and the altitude h et of the second antenna 62 are different by correcting the equation used for calculating the propagation loss in the first embodiment as follows. Even in this case, it is possible to calculate the propagation loss.
 クリアランス係数νの定義を、第1の実施の形態で用いた(3)式から、以下の(8)式に補正する。
Figure JPOXMLDOC01-appb-M000008
(8)式において、「Knu」は、(4)式で定義された周波数に関するパラメータである。「h’dif」は、上述した(5)式の高度差hdifを補正した長さである。「θ’clut」は、上述した(6)式の仰角θclutを補正した角度である。
The definition of the clearance coefficient ν is corrected from the equation (3) used in the first embodiment to the following equation (8).
Figure JPOXMLDOC01-appb-M000008
In equation (8), "K nu " is a parameter related to the frequency defined in equation (4). The “ h'dif ” is the length obtained by correcting the altitude difference h div of the above-mentioned equation (5). The "θ'clut" is an angle corrected by the elevation angle θ clut of the above-mentioned equation (6).
 (8)式の長さh’difは、図9に示すように、支配的クラッタ66の頂点661から、第1アンテナ61と第2アンテナ62を結ぶ仮想的直線までの、鉛直方向の長さであり、その単位はmである。長さh’difの定義は、第1の実施の形態で用いた(5)式によるhdifの定義を、以下の(9)式のように補正したものである。
Figure JPOXMLDOC01-appb-M000009
(9)式において、「R」は支配的クラッタ66の高度であり、その単位はmである。「het」は第2アンテナ62の高度であり、その単位はmである。「heb」は第1アンテナ61の高度であり、その単位はmである。「w」は第1アンテナ61から支配的クラッタ66までの水平方向の距離であり、その単位はmである。「d」は第1アンテナ61から第2アンテナ62までの水平方向の距離であり、その単位はmである。「θtr」は水平方向と、第1アンテナ61と第2アンテナ62を結ぶ仮想的な直線のパス612との間の角度であり、その単位はdeg(度)である。
As shown in FIG. 9, the length h'dim of the equation (8) is the length in the vertical direction from the apex 661 of the dominant clutter 66 to the virtual straight line connecting the first antenna 61 and the second antenna 62. And the unit is m. The definition of the length h'dim is a correction of the definition of h def according to the equation (5) used in the first embodiment as shown in the following equation (9).
Figure JPOXMLDOC01-appb-M000009
In (9), "R e" is highly dominant clutter 66, the unit is m. “H et ” is the altitude of the second antenna 62, and its unit is m. “H eb ” is the altitude of the first antenna 61, and its unit is m. "W s" is the distance in the horizontal direction to the dominant clutter 66 from the first antenna 61, the unit is m. “D” is the horizontal distance from the first antenna 61 to the second antenna 62, and the unit thereof is m. “Theta tr ” is the angle between the horizontal direction and the path 612 of a virtual straight line connecting the first antenna 61 and the second antenna 62, and the unit is deg (degrees).
 (9)式の角度θtrは、以下の(10)式のように定義される。
Figure JPOXMLDOC01-appb-M000010
The angle θ tr of the equation (9) is defined as the following equation (10).
Figure JPOXMLDOC01-appb-M000010
 (8)式の角度θ’clutは、図9に示すように、第1アンテナ61と第2アンテナ62を結ぶ仮想的な直線のパス612と、第1アンテナ61と支配的クラッタ66の頂点661を結ぶ仮想的な直線のパス616との間の角度であり、その単位はdeg(度)である。角度θ’clutの定義は、第1の実施の形態で用いた(6)式による仰角θclutの定義を、以下の(11)式のように補正したものである。
Figure JPOXMLDOC01-appb-M000011
ここで、角度θ’clutは、第1アンテナ61と第2アンテナ62を結ぶ仮想的な直線のパス612を基準とした場合の、第1アンテナ61から支配的クラッタ66の頂点661を見た仰角と見做すことができる。
As shown in FIG. 9, the angle θ'clut in the equation (8) is a virtual straight line path 612 connecting the first antenna 61 and the second antenna 62, and the apex 661 of the first antenna 61 and the dominant clutter 66. It is an angle between the path 616 of a virtual straight line connecting the two, and its unit is deg (degree). The definition of the angle θ'clut is a correction of the definition of the elevation angle θ clut according to the equation (6) used in the first embodiment as shown in the following equation (11).
Figure JPOXMLDOC01-appb-M000011
Here, the angle θ'clut is an elevation angle obtained from the first antenna 61 as seen from the apex 661 of the dominant clutter 66 when the path 612 of a virtual straight line connecting the first antenna 61 and the second antenna 62 is used as a reference. Can be regarded as.
 なお、上記の補正の結果、(1)式の適用条件も、以下の(12a)式および(12b)式のように補正される。
Figure JPOXMLDOC01-appb-M000012
As a result of the above correction, the application conditions of the formula (1) are also corrected as the following formulas (12a) and (12b).
Figure JPOXMLDOC01-appb-M000012
 各定義を上記のように補正することで、本実施の形態によれば、アンテナ61、62の高度が異なるプライマリ基地局41とセカンダリ基地局51の間においても、第1の実施の形態の場合と同様に、伝搬損失を精度よく算出することができる。 By correcting each definition as described above, according to the present embodiment, even between the primary base station 41 and the secondary base station 51 having different altitudes of the antennas 61 and 62, the case of the first embodiment Similarly, the propagation loss can be calculated accurately.
 (第3の実施の形態)
 本実施の形態では、第1の実施の形態と第2の実施の形態の変形例として、以下の変更を行う。すなわち、プライマリ基地局41とセカンダリ基地局51の間の伝搬損失に、第1支配的クラッタに起因する成分である第1クラッタ損失と、第2支配的クラッタに起因する成分である第2クラッタ損失とが含まれているときに、第1クラッタ損失と第2クラッタ損失のうちの片方だけを考慮して伝搬損失を算出する。このとき、第1クラッタ損失と第2クラッタ損失のうちの、伝搬損失の算出に考慮されなかったもう片方については、伝搬損失を算出する際に自由空間損失に置き換える。自由空間損失の定義は、上述の(7)式のとおりである。
(Third embodiment)
In this embodiment, the following changes are made as modified examples of the first embodiment and the second embodiment. That is, in the propagation loss between the primary base station 41 and the secondary base station 51, the first clutter loss which is a component caused by the first dominant clutter and the second clutter loss which is a component caused by the second dominant clutter. When and is included, the propagation loss is calculated by considering only one of the first clutter loss and the second clutter loss. At this time, of the first clutter loss and the second clutter loss, the other one not considered in the calculation of the propagation loss is replaced with the free space loss when calculating the propagation loss. The definition of free space loss is as in Eq. (7) above.
 本実施形態では、第1クラッタ損失と第2クラッタ損失のうちの、損失がより小さい方を考慮し、損失がより大きい方を自由空間損失に置き換えて、伝搬損失を算出する。 In the present embodiment, the propagation loss is calculated by considering the smaller loss of the first clutter loss and the second clutter loss and replacing the larger loss with the free space loss.
 本実施形態の変形例では、反対に、第1クラッタ損失と第2クラッタ損失のうちの、損失がより大きい方を考慮し、損失がより小さい方を自由空間損失に置き換えて、伝搬損失を算出する。 In the modification of the present embodiment, on the contrary, the propagation loss is calculated by considering the larger loss of the first clutter loss and the second clutter loss and replacing the smaller loss with the free space loss. do.
 本実施形態では、以上のように算出することによって、特に、プライマリ無線通信システム4とセカンダリ無線通信システム5で周波数を共用する時の信号出力にマージンを設定するとき、伝搬損失の予測を精度良く行うことができる。 In the present embodiment, by calculating as described above, the prediction of propagation loss can be accurately predicted, in particular, when a margin is set for the signal output when the frequency is shared between the primary wireless communication system 4 and the secondary wireless communication system 5. It can be carried out.
 以上、発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。また、前記実施の形態に説明したそれぞれの特徴は、技術的に矛盾しない範囲で自由に組み合わせることが可能である。 Although the invention made by the inventor has been specifically described above based on the embodiment, the present invention is not limited to the above-described embodiment and can be variously modified without departing from the gist thereof. Needless to say. Further, the respective features described in the above-described embodiments can be freely combined within a technically consistent range.
 上述した各実施の形態の変形例として、複数の領域に分けられていて、その領域ごとに高度情報が登録された3次元地図情報を用いて、クラッタ損失を算出してもよい。例えば、水平方向に所定の単位長さで区切られたメッシュ状の3次元地図情報が用いられてもよい。これらの領域に登録された高度情報は、各領域の代表高度であり、例えば領域内の平均高度であってもよい。支配的クラッタの選出と、支配的クラッタに起因するクラッタ損失の算出は、各領域の代表位置に、例えば幾何中心位置に、代表高度のクラッタが存在するものとして行ってもよい。すなわち、領域の代表高度の部分をアンテナから見た仰角が最大である領域を支配的領域として選出し、アンテナから支配的領域の代表位置までの距離と、アンテナの高さと、代表高度とに基づいて、伝搬損失のうちの支配的領域に起因する成分を算出してもよい。また、プライマリ基地局41とセカンダリ基地局51が配置された地域を水平方向に所定の単位長さで複数のメッシュに区切り、それぞれのメッシュに含まれるクラッタの高度の平均値をそれぞれのメッシュの高度として扱うことができる。この場合は、図3のフローチャートのステップS03において、プライマリ基地局41とセカンダリ基地局51の間に配置されたクラッタの高度を、プライマリ基地局41とセカンダリ基地局51の間に配置されたメッシュの高度に置き換えて、支配的クラッタの代わりに支配的メッシュを選出することができる。また、図3のフローチャートのステップS04において、支配的クラッタの高度を支配的メッシュの高度に置き換えて、クラッタ損失と伝搬損失を算出することができる。 As a modification of each of the above-described embodiments, the clutter loss may be calculated using the three-dimensional map information which is divided into a plurality of areas and the altitude information is registered for each area. For example, mesh-shaped three-dimensional map information divided in a predetermined unit length in the horizontal direction may be used. The altitude information registered in these areas is the representative altitude of each area, and may be, for example, the average altitude in the area. The selection of the dominant clutter and the calculation of the clutter loss due to the dominant clutter may be performed assuming that the clutter of the representative altitude exists at the representative position of each region, for example, at the geometric center position. That is, the region where the elevation angle of the region is maximum when viewed from the antenna is selected as the dominant region, and the distance from the antenna to the representative position of the dominant region, the height of the antenna, and the representative altitude are used. Then, the component due to the dominant region of the propagation loss may be calculated. Further, the area where the primary base station 41 and the secondary base station 51 are arranged is horizontally divided into a plurality of meshes with a predetermined unit length, and the average value of the altitudes of the clutter included in each mesh is calculated as the altitude of each mesh. Can be treated as. In this case, in step S03 of the flowchart of FIG. 3, the altitude of the clutter arranged between the primary base station 41 and the secondary base station 51 is set to the altitude of the mesh arranged between the primary base station 41 and the secondary base station 51. It can be highly replaced to elect the dominant mesh instead of the dominant clutter. Further, in step S04 of the flowchart of FIG. 3, the altitude of the dominant clutter can be replaced with the altitude of the dominant mesh, and the clutter loss and the propagation loss can be calculated.
 クラッタのモデルとして、最上位置に頂点を有するモデルを説明したが、本開示はこれに限定されず、直方体状に形成された建造物であってもよく、例えばビルであってもよい。この場合、クラッタの位置として、建造物の幾何中心位置を用いてもよく、アンテナに近い側の壁面の位置を用いてもよい。さらに、クラッタの頂点は、上記のクラッタの位置の直上にあり、クラッタの高度を有する、というモデルを採用してもよい。 As a model of the clutter, a model having a vertex at the uppermost position has been described, but the present disclosure is not limited to this, and it may be a structure formed in a rectangular parallelepiped shape, for example, a building. In this case, the position of the geometric center of the building may be used as the position of the clutter, or the position of the wall surface on the side close to the antenna may be used. Further, a model may be adopted in which the apex of the clutter is directly above the position of the clutter and has the altitude of the clutter.
 図3のフローチャートのステップS05の変形例として、制御部204は、ステップS04で算出した伝搬損失を任意の表示装置で表示するための出力信号14を生成出力してもよい。伝搬予測システム1の利用者は、この表示装置に表示された伝搬損失に応じて、セカンダリ運用サーバ50経由でセカンダリ基地局51を制御してもよい。 As a modification of step S05 in the flowchart of FIG. 3, the control unit 204 may generate and output an output signal 14 for displaying the propagation loss calculated in step S04 on an arbitrary display device. The user of the propagation prediction system 1 may control the secondary base station 51 via the secondary operation server 50 according to the propagation loss displayed on the display device.
 本出願は、2020年6月25日に出願された日本国特許出願2020-109410号及び2020年10月8日に出願された日本国特許出願2020-170283号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 
This application claims priority based on Japanese Patent Application No. 2020-109410 filed on June 25, 2020 and Japanese Patent Application No. 2020-170283 filed on October 8, 2020. , All of its disclosures are taken here.

Claims (13)

  1.  プライマリ基地局とセカンダリ基地局の間の伝搬経路を推定し、前記伝搬経路における伝搬損失を予測する演算装置と、
     前記伝搬損失に応じた出力信号を出力する入出力装置と
    を備え、
     前記演算装置は、
      前記プライマリ基地局と前記セカンダリ基地局の間に配置されているクラッタの中から、前記プライマリ基地局からクラッタの頂点を見た仰角が最大となる第1支配的クラッタと、前記セカンダリ基地局からクラッタの頂点を見た仰角が最大となる第2支配的クラッタとをそれぞれ選出し、
      前記プライマリ基地局から前記第1支配的クラッタまでの距離と、前記第1支配的クラッタから前記第2支配的クラッタまでの距離と、前記第2支配的クラッタから前記セカンダリ基地局までの距離と、前記プライマリ基地局、前記第1支配的クラッタ、前記第2支配的クラッタおよび前記セカンダリ基地局のそれぞれの高度とに基づいて、前記伝搬損失のうち前記第1支配的クラッタおよび前記第2支配的クラッタに起因する成分をクラッタ損失として算出し、
      前記伝搬損失のうち、前記クラッタ損失を除く成分を自由空間損失に近似して前記伝搬損失を予測する
     伝搬予測システム。
    An arithmetic unit that estimates the propagation path between the primary base station and the secondary base station and predicts the propagation loss in the propagation path.
    It is equipped with an input / output device that outputs an output signal according to the propagation loss.
    The arithmetic unit is
    Among the clutters arranged between the primary base station and the secondary base station, the first dominant clutter having the maximum elevation angle when the apex of the clutter is seen from the primary base station and the clutter from the secondary base station. Select the second dominant clutter that has the maximum elevation angle when looking at the apex of
    The distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, and the distance from the second dominant clutter to the secondary base station. The first dominant clutter and the second dominant clutter of the propagation loss are based on the respective altitudes of the primary base station, the first dominant clutter, the second dominant clutter and the secondary base station. Calculate the component caused by the clutter loss as a clutter loss.
    A propagation prediction system that predicts the propagation loss by approximating the components of the propagation loss excluding the clutter loss to the free space loss.
  2.  請求項1に記載の伝搬予測システムにおいて、
     前記入出力装置は、前記伝搬損失が所定の閾値より低いとき、前記セカンダリ基地局を停止するための前記出力信号を出力する
     伝搬予測システム。
    In the propagation prediction system according to claim 1,
    The input / output device is a propagation prediction system that outputs the output signal for stopping the secondary base station when the propagation loss is lower than a predetermined threshold value.
  3.  請求項1または2に記載の伝搬予測システムにおいて、
     前記演算装置は、
      前記プライマリ基地局から前記第1支配的クラッタまでの第1距離と、前記プライマリ基地局および前記第1支配的クラッタのそれぞれの前記高度と、に基づいて前記クラッタ損失のうち前記第1支配的クラッタに起因する第1クラッタ損失を算出し、
      前記セカンダリ基地局から前記第2支配的クラッタまでの第2距離と、前記セカンダリ基地局および前記第2支配的クラッタのそれぞれの前記高度と、に基づいて前記クラッタ損失のうち前記第2支配的クラッタに起因する第2クラッタ損失を算出する
     伝搬予測システム。
    In the propagation prediction system according to claim 1 or 2.
    The arithmetic unit is
    The first dominant clutter of the clutter loss based on the first distance from the primary base station to the first dominant clutter and the respective altitudes of the primary base station and the first dominant clutter. Calculate the first clutter loss due to
    The second dominant clutter of the clutter loss is based on the second distance from the secondary base station to the second dominant clutter and the respective altitudes of the secondary base station and the second dominant clutter. Propagation prediction system that calculates the second clutter loss due to.
  4.  請求項3に記載の伝搬予測システムにおいて、
     前記クラッタ損失の成分である前記第1クラッタ損失と前記第2クラッタ損失のうち、損失がより大きい成分を自由空間損失に置き換えて前記伝搬損失を予測する
     伝搬予測システム。
    In the propagation prediction system according to claim 3,
    A propagation prediction system that predicts the propagation loss by replacing the component having the larger loss among the first clutter loss and the second clutter loss, which are components of the clutter loss, with free space loss.
  5.  請求項3に記載の伝搬予測システムにおいて、
     前記クラッタ損失の成分である前記第1クラッタ損失と前記第2クラッタ損失のうち、損失がより小さい成分を自由空間損失に置き換えて前記伝搬損失を予測する
     伝搬予測システム。
    In the propagation prediction system according to claim 3,
    A propagation prediction system that predicts the propagation loss by replacing a component having a smaller loss among the first clutter loss and the second clutter loss, which are components of the clutter loss, with free space loss.
  6.  請求項1または2に記載の伝搬予測システムにおいて、
     前記演算装置は、前記第1支配的クラッタと前記第2支配的クラッタが同一のクラッタであるとき、
      前記プライマリ基地局から前記同一のクラッタまでの第1距離と、前記セカンダリ基地局から前記同一のクラッタまでの第2距離とのうちより短い距離と、
      前記プライマリ基地局と前記セカンダリ基地局のうち前記同一のクラッタまでの距離が前記より短い距離である基地局の高度と、
      前記同一のクラッタの高度と、
    に基づいて前記クラッタ損失を算出する
     伝搬予測システム。
    In the propagation prediction system according to claim 1 or 2.
    When the first dominant clutter and the second dominant clutter are the same clutter, the arithmetic unit is used.
    The shorter of the first distance from the primary base station to the same clutter and the second distance from the secondary base station to the same clutter.
    The altitude of the base station in which the distance between the primary base station and the secondary base station to the same clutter is shorter than the distance, and the altitude of the base station.
    With the altitude of the same clutter,
    A propagation prediction system that calculates the clutter loss based on.
  7.  請求項1~6のいずれか一項に記載の伝搬予測システムにおいて、
     前記演算装置は、
      前記第1支配的クラッタと前記第2支配的クラッタを選出するときに、前記プライマリ基地局と前記セカンダリ基地局の間に配置されている前記クラッタのそれぞれにおいて、高度が所定の高度閾値以上であるクラッタの前記高度を前記高度閾値に置き換えたときの、前記プライマリ基地局から前記クラッタの頂点を見た仰角が最大となる前記第1支配的クラッタと、前記セカンダリ基地局からクラッタの頂点を見た仰角が最大となる前記第2支配的クラッタとを、前記クラッタの中からそれぞれ選出し、
      前記第1支配的クラッタの第1高度が前記高度閾値以上であるとき、前記第1高度を前記高度閾値に置き換えて前記クラッタ損失を算出し、
      前記第2支配的クラッタの第2高度が前記高度閾値以上であるとき、前記第2高度を前記高度閾値に置き換えて前記クラッタ損失を算出する
     伝搬予測システム。
    In the propagation prediction system according to any one of claims 1 to 6.
    The arithmetic unit is
    When the first dominant clutter and the second dominant clutter are elected, the altitude of each of the clutters arranged between the primary base station and the secondary base station is equal to or higher than a predetermined altitude threshold. When the altitude of the clutter was replaced with the altitude threshold value, the first dominant clutter having the maximum elevation angle when the apex of the clutter was seen from the primary base station and the apex of the clutter were seen from the secondary base station. The second dominant clutter with the maximum elevation angle is selected from the clutters, respectively.
    When the first altitude of the first dominant clutter is equal to or higher than the altitude threshold value, the first altitude is replaced with the altitude threshold value to calculate the clutter loss.
    A propagation prediction system that calculates the clutter loss by replacing the second altitude with the altitude threshold when the second altitude of the second dominant clutter is equal to or higher than the altitude threshold.
  8.  請求項1~6のいずれか一項に記載の伝搬予測システムにおいて、
     前記演算装置は、
      前記第1支配的クラッタを選出するときに、前記プライマリ基地局と前記セカンダリ基地局の間に配置されている前記クラッタのそれぞれにおいて、前記クラッタと前記プライマリ基地局の高度差が所定の高度差閾値以上であるとき、前記高度差が前記高度差閾値に等しくなる値に前記クラッタの前記高度を置き換えたときの、前記プライマリ基地局から前記クラッタの頂点を見た仰角が最大となる前記第1支配的クラッタを、前記クラッタの中から選出し、
      前記第1支配的クラッタと前記プライマリ基地局の第1高度差が前記高度差閾値以上であるとき、前記第1高度差が前記高度差閾値に等しくなる値に前記第1支配的クラッタの高度を置き換えて前記クラッタ損失を算出し、
      前記第2支配的クラッタを選出するときに、前記プライマリ基地局と前記セカンダリ基地局の間に配置されている前記クラッタのそれぞれにおいて、前記クラッタと前記セカンダリ基地局の高度差が所定の高度差閾値以上であるとき、前記高度差が前記高度差閾値に等しくなる値に前記クラッタの前記高度を置き換えたときの、前記セカンダリ基地局から前記クラッタの頂点を見た仰角が最大となる前記第2支配的クラッタを、前記クラッタの中から選出し、
      前記第2支配的クラッタと前記セカンダリ基地局の第2高度差が前記高度差閾値以上であるとき、前記第2高度差が前記高度差閾値に等しくなる値に前記第2支配的クラッタの高度を置き換えて前記クラッタ損失を算出する
     伝搬予測システム。
    In the propagation prediction system according to any one of claims 1 to 6.
    The arithmetic unit is
    When the first dominant clutter is elected, the altitude difference between the clutter and the primary base station is a predetermined altitude difference threshold value in each of the clutters arranged between the primary base station and the secondary base station. When the above is the case, when the altitude of the clutter is replaced with a value at which the altitude difference is equal to the altitude difference threshold value, the first control that maximizes the elevation angle when the apex of the clutter is viewed from the primary base station. Select the target clutter from the clutter,
    When the first altitude difference between the first dominant clutter and the primary base station is equal to or higher than the altitude difference threshold value, the altitude of the first dominant clutter is set to a value at which the first altitude difference becomes equal to the altitude difference threshold value. Replace and calculate the clutter loss,
    When the second dominant clutter is elected, the altitude difference between the clutter and the secondary base station is a predetermined altitude difference threshold value in each of the clutters arranged between the primary base station and the secondary base station. When the above is the case, when the altitude of the clutter is replaced with a value at which the altitude difference is equal to the altitude difference threshold value, the second control that maximizes the elevation angle when the apex of the clutter is viewed from the secondary base station. Select the target clutter from the clutter,
    When the second altitude difference between the second dominant clutter and the secondary base station is equal to or higher than the altitude difference threshold value, the altitude of the second dominant clutter is set to a value at which the second altitude difference becomes equal to the altitude difference threshold value. A propagation prediction system that replaces and calculates the clutter loss.
  9.  請求項1~6のいずれか一項に記載の伝搬予測システムにおいて、
     前記演算装置は、
      前記第1支配的クラッタと前記第2支配的クラッタを選出するときに、前記プライマリ基地局と前記セカンダリ基地局の間に配置されている前記クラッタのそれぞれにおいて、前記クラッタの頂点から、前記プライマリ基地局と前記セカンダリ基地局を結ぶ仮想的な直線までの鉛直方向の長さが所定の長さ閾値以上であるとき、前記長さが前記長さ閾値となる高度に前記クラッタの高度を置き換えたときの、前記プライマリ基地局から前記クラッタの頂点を見た仰角が最大となる前記第1支配的クラッタと、前記セカンダリ基地局からクラッタの頂点を見た仰角が最大となる前記第2支配的クラッタとを、前記クラッタの中からそれぞれ選出し、
      前記第1支配的クラッタの第1頂点から前記仮想的な直線までの鉛直方向の第1長さが所定の長さ閾値以上であるとき、前記第1長さが前記長さ閾値となる高度に前記第1支配的クラッタの高度を置き換えて前記クラッタ損失を算出し、
      前記第2支配的クラッタの第2頂点から前記仮想的な直線までの鉛直方向の第2長さが前記長さ閾値以上であるとき、前記第2長さが前記長さ閾値となる高度に前記第2支配的クラッタの高度を置き換えて前記クラッタ損失を算出する
     伝搬予測システム。
    In the propagation prediction system according to any one of claims 1 to 6.
    The arithmetic unit is
    When selecting the first dominant clutter and the second dominant clutter, in each of the clutters arranged between the primary base station and the secondary base station, from the apex of the clutter, the primary base When the vertical length to the virtual straight line connecting the station and the secondary base station is equal to or greater than a predetermined length threshold, and the altitude of the clutter is replaced with an altitude at which the length becomes the length threshold. The first dominant clutter having the maximum elevation angle when the apex of the clutter is seen from the primary base station, and the second dominant clutter having the maximum elevation angle when the apex of the clutter is seen from the secondary base station. Are selected from the above clutters, respectively.
    When the first length in the vertical direction from the first vertex of the first dominant clutter to the virtual straight line is equal to or greater than a predetermined length threshold value, the first length becomes the length threshold value. The clutter loss is calculated by substituting the altitude of the first dominant clutter.
    When the second length in the vertical direction from the second apex of the second dominant clutter to the virtual straight line is equal to or greater than the length threshold value, the second length becomes the length threshold value. A propagation prediction system that replaces the altitude of the second dominant clutter and calculates the clutter loss.
  10.  請求項1~9のいずれか一項に記載の伝搬予測システムにおいて、
     前記演算装置は、
     前記第1支配的クラッタと前記第2支配的クラッタが配置された地域が複数の領域に分けられ、前記複数の領域のそれぞれに代表位置と前記代表位置の代表高度を登録した地図情報を参照し、
     前記プライマリ基地局と前記セカンダリ基地局を結ぶ仮想的な直線を遮る領域の中から、前記プライマリ基地局から領域の代表位置の代表高度における仮想的な頂点を見た仰角が最大となる第1支配的領域を前記第1支配的クラッタとして、前記セカンダリ基地局から領域の代表位置の代表高度における仮想的な頂点を見た仰角が最大となる第2支配的領域を前記第2支配的クラッタとしてそれぞれ選出する
     伝搬予測システム。
    In the propagation prediction system according to any one of claims 1 to 9,
    The arithmetic unit is
    The area where the first dominant clutter and the second dominant clutter are arranged is divided into a plurality of areas, and the representative position and the representative altitude of the representative position are registered in each of the plurality of areas with reference to the map information. ,
    From the area that blocks the virtual straight line connecting the primary base station and the secondary base station, the first control that maximizes the elevation angle when the virtual apex at the representative altitude of the representative position of the area is seen from the primary base station. The target region is defined as the first dominant clutter, and the second dominant region having the maximum elevation angle when the virtual apex at the representative altitude of the representative position of the region is viewed from the secondary base station is defined as the second dominant clutter. Propagation prediction system to be elected.
  11.  請求項1~9のいずれか一項に記載の伝搬予測システムにおいて、
     前記演算装置は、前記プライマリ基地局の位置、高度および使用周波数帯域を表す情報を含む第1運用情報と、前記セカンダリ基地局の位置、高度および使用周波数帯域を表す情報を含む第2運用情報とにさらに基づいて前記伝搬損失を予測する
     伝搬予測システム。
    In the propagation prediction system according to any one of claims 1 to 9,
    The arithmetic unit includes first operational information including information representing the position, altitude, and frequency band of the primary base station, and second operational information including information representing the position, altitude, and frequency band of the secondary base station. A propagation prediction system that predicts the propagation loss based on the above.
  12.  プライマリ基地局とセカンダリ基地局の間の伝搬経路を推定し、前記伝搬経路における伝搬損失を予測することと、
     前記伝搬損失に応じた出力信号を出力することと
    を含み、
     前記伝搬損失を予測することは、
      前記プライマリ基地局と前記セカンダリ基地局の間に配置されているクラッタの中から、前記プライマリ基地局からクラッタの頂点を見た仰角が最大となる第1支配的クラッタを選出することと、
      前記プライマリ基地局と前記セカンダリ基地局の間に配置されているクラッタの中から、前記セカンダリ基地局からクラッタの頂点を見た仰角が最大となる第2支配的クラッタを選出することと、
      前記プライマリ基地局から前記第1支配的クラッタまでの距離と、前記第1支配的クラッタから前記第2支配的クラッタまでの距離と、前記第2支配的クラッタから前記セカンダリ基地局までの距離と、前記プライマリ基地局、前記第1支配的クラッタ、前記第2支配的クラッタおよび前記セカンダリ基地局のそれぞれの高度とに基づいて、前記伝搬損失のうち前記第1支配的クラッタおよび前記第2支配的クラッタに起因する成分をクラッタ損失として算出することと、
      前記伝搬損失のうち、前記クラッタ損失を除く成分を自由空間損失に近似することと
    を含む
     伝搬予測方法。
    Estimating the propagation path between the primary base station and the secondary base station, predicting the propagation loss in the propagation path, and
    Including outputting an output signal according to the propagation loss.
    Predicting the propagation loss is
    From the clutters arranged between the primary base station and the secondary base station, the first dominant clutter having the maximum elevation angle when the apex of the clutter is seen from the primary base station is selected.
    From the clutters arranged between the primary base station and the secondary base station, the second dominant clutter having the maximum elevation angle when the apex of the clutter is seen from the secondary base station is selected.
    The distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, and the distance from the second dominant clutter to the secondary base station. The first dominant clutter and the second dominant clutter of the propagation loss are based on the respective altitudes of the primary base station, the first dominant clutter, the second dominant clutter and the secondary base station. To calculate the component caused by the clutter loss,
    A propagation prediction method including approximating a component of the propagation loss excluding the clutter loss to a free space loss.
  13.  コンピュータに所定の機能を実現させるための伝搬予測プログラムを格納した非一時的かつ有形の記録媒体であって、
     前記所定の機能は、
     プライマリ基地局とセカンダリ基地局の間の伝搬経路を想定し、前記伝搬経路における伝搬損失を予測することと、
     前記伝搬損失に応じた出力信号を出力することと
    を含み、
     前記伝搬損失を予測することは、
      前記プライマリ基地局と前記セカンダリ基地局の間に配置されているクラッタの中から、前記プライマリ基地局からクラッタの頂点を見た仰角が最大となる第1支配的クラッタを選出することと、
      前記プライマリ基地局と前記セカンダリ基地局の間に配置されているクラッタの中から、前記セカンダリ基地局からクラッタの頂点を見た仰角が最大となる第2支配的クラッタを選出することと、
      前記プライマリ基地局から前記第1支配的クラッタまでの距離と、前記第1支配的クラッタから前記第2支配的クラッタまでの距離と、前記第2支配的クラッタから前記セカンダリ基地局までの距離と、前記プライマリ基地局、前記第1支配的クラッタ、前記第2支配的クラッタおよび前記セカンダリ基地局のそれぞれの高度とに基づいて、前記伝搬損失のうち前記第1支配的クラッタおよび前記第2支配的クラッタに起因する成分をクラッタ損失として算出することと、
      前記伝搬損失のうち、前記クラッタ損失を除く成分を自由空間損失に近似して前記伝搬損失を予測することと
    を含む
     伝搬予測プログラムを格納した記録媒体。
     
    It is a non-temporary and tangible recording medium that stores a propagation prediction program for realizing a predetermined function in a computer.
    The predetermined function is
    Assuming a propagation path between the primary base station and the secondary base station, predicting the propagation loss in the propagation path, and
    Including outputting an output signal according to the propagation loss.
    Predicting the propagation loss is
    From the clutters arranged between the primary base station and the secondary base station, the first dominant clutter having the maximum elevation angle when the apex of the clutter is seen from the primary base station is selected.
    From the clutters arranged between the primary base station and the secondary base station, the second dominant clutter having the maximum elevation angle when the apex of the clutter is seen from the secondary base station is selected.
    The distance from the primary base station to the first dominant clutter, the distance from the first dominant clutter to the second dominant clutter, and the distance from the second dominant clutter to the secondary base station. The first dominant clutter and the second dominant clutter of the propagation loss are based on the respective altitudes of the primary base station, the first dominant clutter, the second dominant clutter and the secondary base station. To calculate the component caused by the clutter loss,
    A recording medium containing a propagation prediction program including predicting the propagation loss by approximating the components of the propagation loss excluding the clutter loss to the free space loss.
PCT/JP2021/010539 2020-06-25 2021-03-16 Propagation prediction system, propagation prediction method, and recording medium storing propagation prediction program WO2021261031A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-109410 2020-06-25
JP2020109410 2020-06-25
JP2020-170283 2020-10-08
JP2020170283A JP2022007866A (en) 2020-06-25 2020-10-08 Propagation prediction system, propagation prediction method, and propagation prediction program

Publications (1)

Publication Number Publication Date
WO2021261031A1 true WO2021261031A1 (en) 2021-12-30

Family

ID=79282300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010539 WO2021261031A1 (en) 2020-06-25 2021-03-16 Propagation prediction system, propagation prediction method, and recording medium storing propagation prediction program

Country Status (1)

Country Link
WO (1) WO2021261031A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508781A (en) * 2000-09-07 2004-03-18 エリクソン インコーポレイテッド System and method for determining cumulative clutter path loss
CN101098537A (en) * 2006-06-30 2008-01-02 中兴通讯股份有限公司 Method for calculating diffraction loss of wireless communication
KR20140044658A (en) * 2012-10-05 2014-04-15 티앤비전파기술 주식회사 Method and apparatus of wave propagation path analysis

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004508781A (en) * 2000-09-07 2004-03-18 エリクソン インコーポレイテッド System and method for determining cumulative clutter path loss
CN101098537A (en) * 2006-06-30 2008-01-02 中兴通讯股份有限公司 Method for calculating diffraction loss of wireless communication
KR20140044658A (en) * 2012-10-05 2014-04-15 티앤비전파기술 주식회사 Method and apparatus of wave propagation path analysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HASE, YOSHIHIRO ET AL.: "White Space Database with Radio Propagation Simulator Considering Terrestrial Topology", IEICE TECHNICAL REPORT, vol. 113, no. 457, 3 March 2014 (2014-03-03), Retrieved from the Internet <URL:https://www.ieice.org/cs/sr/file/invited/140303_hase.pdf> [retrieved on 20210512] *

Similar Documents

Publication Publication Date Title
US8244511B2 (en) Radio wave propagation characteristic estimation apparatus and computer program
JP5699545B2 (en) Radio wave propagation characteristic estimation system, radio wave propagation characteristic estimation method, and computer program
US11476958B2 (en) Interference evaluation device, evaluation method and evaluation program
KR102042105B1 (en) Apparatus and Method for Analyzing Interference between Heterogeneous Wireless System considering Geographical Features
JP4530898B2 (en) Radio wave propagation estimation program, radio wave propagation estimation method, and apparatus for executing the method
US20170013474A1 (en) Frequency assignment device, frequency assignment method and wireless communication system
JP6704124B2 (en) Positioning method, positioning system, correction information generation method, and correction information generation device
US20190028215A1 (en) Radio environment estimation device, radio environment estimation system, radio environment estimation method, and recording medium
JP5480701B2 (en) Field strength estimation apparatus, method and program
JP2020031366A (en) Calculation method of radio wave shielding loss, calculation device, and program
WO2021261031A1 (en) Propagation prediction system, propagation prediction method, and recording medium storing propagation prediction program
Rakesh et al. Comprehensive performance analysis of path loss models on GSM 940 MHz and IEEE 802.16 WIMAX frequency 3.5 GHz on different terrains
JPWO2011132760A1 (en) Database, data structure, secondary availability determination system, and secondary availability determination method
JP2022007866A (en) Propagation prediction system, propagation prediction method, and propagation prediction program
Milanović et al. Performance analysis of empirical propagation model for long term evaluation (LTE) network
CN104335369B (en) It is directed toward using the air to surface antenna that the Kalman of beam control system optimizes
KR101469757B1 (en) Method for calculating communication coverage using 3D Object Intersection and Storage medium thereof
Ozuomba et al. Comparative Analysis of the Circle Fitting Empirical Method and the International Telecommunication Union Parabola Fitting Method for Determination of the Radius of Curvature for Rounded Edge Diffraction Obstruction
KR102584996B1 (en) Method, storage medium and electronic device for radio network design
JP2014045285A (en) Radio wave propagation height pattern characteristic estimator
JP2020053881A (en) Propagation failure determination device, propagation failure determination system, and propagation failure determination method
US11979839B2 (en) Interference wave calculation method, interference wave calculation apparatus, computer program
CN115396053A (en) Method, device and medium for determining interference of low-earth-orbit satellite
JP2013026884A (en) Propagation loss estimation method and program and propagation loss estimation device
Suh et al. A study on compatibility analysis based on minimum coupling loss applicable to frequency coordination combined with geographic information

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830122

Country of ref document: EP

Kind code of ref document: A1