WO2021260820A1 - 部分放電検出装置および電力機器 - Google Patents

部分放電検出装置および電力機器 Download PDF

Info

Publication number
WO2021260820A1
WO2021260820A1 PCT/JP2020/024709 JP2020024709W WO2021260820A1 WO 2021260820 A1 WO2021260820 A1 WO 2021260820A1 JP 2020024709 W JP2020024709 W JP 2020024709W WO 2021260820 A1 WO2021260820 A1 WO 2021260820A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface current
partial discharge
current sensor
signal
detection device
Prior art date
Application number
PCT/JP2020/024709
Other languages
English (en)
French (fr)
Inventor
泰智 大竹
貴弘 梅本
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022520989A priority Critical patent/JP7086325B2/ja
Priority to PCT/JP2020/024709 priority patent/WO2021260820A1/ja
Publication of WO2021260820A1 publication Critical patent/WO2021260820A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This application relates to a partial discharge detection device and an electric power device.
  • a detection device has been proposed in which one end of the detection wire arranged inside the metal housing is connected to the detection terminal to which the measurement cable is connected, and the other end is connected to the terminating resistor (.
  • Patent Document 1 a detection device in which one end of the detection wire arranged inside the metal housing is connected to the detection terminal to which the measurement cable is connected, and the other end is connected to the terminating resistor.
  • this detection device it is possible to estimate the direction of arrival of electromagnetic waves by arranging a plurality of sensors in a radial pattern and comparing the magnitude of the output intensity of each sensor.
  • both electromagnetic fields are also electromagnetic in the coaxial cable.
  • the excitation signal by the field will be measured. That is, the detection sensitivity of the sensor is strongly influenced by the way the coaxial cable is routed and the installation environment, and in particular, it fluctuates depending on the degree of adhesion to the equipment housing to be inspected.
  • This application discloses a technique for solving the above-mentioned problems, eliminates the influence of the detection sensitivity fluctuation depending on the installation method and installation environment of the signal cable connected to the surface current sensor, and the direction of arrival of electromagnetic waves. The purpose is to improve the estimation accuracy of.
  • the partial discharge detector disclosed in the present application includes a metal upper electrode and a metal lower electrode, an insulating spacer interposed between the upper electrode and the lower electrode, and a signal line connected to the upper electrode to form a ground outer skin.
  • a surface current sensor equipped with multiple signal terminals connected to the lower electrode, and a surface current detection circuit that determines whether surface current is generated on the external surface of the power equipment to be inspected from the strength of the signal output of the signal terminals.
  • the arrival direction estimation circuit that estimates the arrival direction of the surface current generated on the outer surface of the power equipment to be inspected from the ratio of the signal output of the signal terminal, and the power equipment to be inspected from the estimated arrival direction of the surface current. It is provided with an internal discharge discriminating circuit for discriminating the presence or absence of internal discharge.
  • the electric power device disclosed in the present application is provided with the partial discharge detection device on the outer surface of the electric power device in order to inspect the presence or absence of internal discharge of the electric power device.
  • the partial discharge detection device disclosed in the present application it is possible to suppress fluctuations in the detection sensitivity depending on the installation environment of the surface current sensor and the installation method of the signal cable, and it is possible to improve the estimation accuracy of the arrival direction of the electromagnetic wave. ..
  • the electric power device disclosed in the present application it is possible to suppress fluctuations in the detection sensitivity depending on the installation environment of the surface current sensor and the installation method of the signal cable, and it is possible to improve the estimation accuracy of the arrival direction of the electromagnetic wave.
  • FIG. 5 is an external perspective view of a surface current sensor according to the partial discharge detection device according to the first embodiment. It is an equivalent circuit diagram of the surface current sensor which concerns on the partial discharge detection apparatus by Embodiment 1.
  • FIG. It is a block diagram of the arithmetic processing part which concerns on the partial discharge detection apparatus by Embodiment 1.
  • FIG. It is a processing flow diagram of the arrival direction estimation of the surface current which concerns on the partial discharge detection apparatus by Embodiment 1.
  • FIG. It is explanatory drawing of the arrival direction estimation of the surface current which concerns on the partial discharge detection apparatus by Embodiment 1.
  • FIG. It is explanatory drawing of the arrival direction estimation of the surface current which concerns on the partial discharge detection apparatus by Embodiment 1.
  • FIG. It is sectional drawing of the surface current sensor which concerns on the partial discharge detection apparatus by Embodiment 2.
  • FIG. It is sectional drawing of the surface current sensor which concerns on the partial discharge detection apparatus by Embodiment 3.
  • FIG. It is a block diagram of the partial discharge detection apparatus according to Embodiment 4.
  • FIG. It is a block diagram of the partial discharge detection apparatus according to Embodiment 5.
  • Embodiment 1 In the first embodiment, a metal upper electrode and a lower electrode, an insulating spacer interposed between the upper electrode and the lower electrode, a signal line are connected to the upper electrode, and a ground skin is connected to the lower electrode.
  • a surface current sensor equipped with multiple signal terminals, a surface current detection circuit that determines whether or not a surface current is generated from the strength of the signal output of the signal terminals, and an arrival direction that estimates the arrival direction of the surface current from the ratio of the signal outputs.
  • the present invention relates to a partial discharge detection device including an estimation circuit and an internal discharge determination circuit that determines the presence or absence of internal discharge from the direction of arrival of the estimated surface current.
  • FIG. 1 which is a configuration diagram of the partial discharge detection device
  • FIG. 2 which is a cross-sectional view of the surface current sensor
  • FIG. 3 which is an equivalent circuit diagram of the surface current sensor
  • FIG. 5 which is a configuration diagram of the arithmetic processing unit
  • FIG. 6 which is a processing flow diagram for estimating the arrival direction of the surface current, and explanation of estimation of the arrival direction of the surface current. This will be described with reference to FIGS. 7 and 8.
  • the entire configuration of the partial discharge detection device 200 of the first embodiment will be described with reference to FIG.
  • the entire partial discharge detection device system is composed of a power device 100 to be inspected and a partial discharge detection device 200.
  • the electric power device 100 is not a part of the partial discharge detection device 200, it is closely related to the power device 100 and will be described without distinction from the partial discharge detection device 200.
  • the electric power device 100 to be inspected will be described.
  • the electric power device 100 is covered with a metal housing or a resin, and the inside is invisible.
  • the surface of the electric power device 100 is maintained at the ground potential by a metal housing, conductive coating, or the like.
  • the partial discharge detection device 200 of the first embodiment can be applied to a wide range of electric devices.
  • Examples of the electric power device 100 include an oil-filled transformer, a gas-insulated transformer, a molded transformer, a gas-insulated switchgear, a cubicle-type gas-insulated switchgear, a generator, a rotary machine, an instrument transformer, and an instrument transformer. Be done.
  • the partial discharge detection device 200 includes a surface current sensor 300, an arithmetic processing unit 400, and a display unit 500.
  • the surface current sensor 300 detects an electromagnetic field generated by a surface current generated on the outer surface of the power device 100 due to a partial discharge generated inside the power device 100.
  • the arithmetic processing unit 400 receives the signal detected by the surface current sensor 300 and determines whether or not surface current is generated. Further, the arithmetic processing unit 400 estimates the arrival direction of the surface current and determines whether or not a partial discharge has occurred inside the electric power device 100.
  • the display unit 500 displays the determination result, the estimation result, and the determination result of the arithmetic processing unit 400, and sends an alarm if necessary.
  • the surface current sensor 300 includes a metal upper electrode 1 and a lower electrode 2, and an insulating spacer 3 made of an insulating resin is interposed between the upper electrode 1 and the lower electrode 2.
  • the upper electrode 1, the lower electrode 2, and the insulating spacer 3 are configured to be laminated on the surface of the device housing 101 of the electric power device 100.
  • the insulating spacer 3 keeps the distance between the upper electrode 1 and the lower electrode 2 at a predetermined distance and secures insulation.
  • the insulating spacer 3 is arranged so as to fill the space between the upper electrode 1 and the lower electrode 2. However, it is also conceivable to partially cut out the insulating spacer 3 to provide a space. By partially cutting out and providing a space, the dielectric constant of the insulating spacer 3 can be changed or the weight of the surface current sensor 300 can be reduced as described later.
  • the surface current sensor 300 includes a signal terminal 4 and a signal terminal 5.
  • the signal lines of the signal terminals 4 and 5 are connected to the upper electrode 1 via the coupling wires 34 and 35, and the grounding skin is connected to the lower electrode 2.
  • FIG. 2 shows two examples of the number of signal terminals being signal terminals 4 and 5.
  • a coaxial cable 6 is connected to the signal terminal 4, and a coaxial cable 7 is connected to the signal terminal 5.
  • BNC Bayonet Neil Concelman
  • SMA SubMiniature version A
  • the surface current sensor 300 is installed along the device housing 101 of the power device 100.
  • the partial discharge generated inside the power device 100 causes a surface current on the surface of the device housing 101 through the electrical opening.
  • the electromagnetic field generated by the surface current can be detected with high sensitivity.
  • the surface current sensor 300 actually detects an electromagnetic field generated by the surface current.
  • the purpose of the surface current sensor 300 is to detect the surface current, it is described that the surface current sensor 300 detects the surface current as appropriate unless it is necessary to distinguish between them.
  • the surface current sensor 300 includes two or more signal terminals connected to the upper electrode 1 and the lower electrode 2.
  • FIG. 3 shows, as an example, a structure in which four sets of signal terminals 4, 9, 5, and 10 and coaxial cables 6, 11, 7, and 12 connected to these signal terminals are arranged by shifting them by 90 degrees. .. In FIG. 3, the signal terminals 4 and 5 and the signal terminals 9 and 10 are arranged diagonally.
  • the shape of the surface current sensor seen from the top surface is a polygon including a digon having the same angle as the number of terminals, and each corner of the polygon is provided with a signal terminal.
  • FIG. 3 shows a surface current sensor 300 having a quadrangular shape as an example.
  • the shape of the surface current sensor is not limited to a quadrangle, and the larger the number of signal terminals at each corner, the better the estimation accuracy of the surface current arrival direction, which will be described later.
  • the digonal surface current sensor for example, the distance between the signal terminals 9 and 10 of the surface current sensor in FIG. 3 is narrowed to secure the necessary insulating spacer capacitance C, and then only the signal terminals 4 and 5 are used.
  • the structure is assumed.
  • the shape of the surface current sensor is not limited to a polygon having a straight line as a side, and may be a shape having a curved side as a side, for example, a circle or an ellipse.
  • the partial discharge generated by the insulation failure inside the electric power device 100 causes a surface current to be generated on the surface of the device housing 101 through the electric opening, and the electromagnetic field is generated by this surface current.
  • An electric field is generated in the direction orthogonal to the surface of the device housing 101 due to the surface current flowing on the surface of the device housing 101. Further, this surface current generates a magnetic field parallel to the surface of the device housing 101 and in a direction orthogonal to the propagation direction of the surface current.
  • An electric field generates a voltage between the upper electrode 1 and the lower electrode 2, and this voltage propagates through the coaxial cables 6 and 7 via the signal terminals 4 and 5. Further, the magnetic field crosses a plane surrounded by the upper electrode 1 and the lower electrode 2, the signal terminal 4 and the signal terminal 5, and the coupling lines 34 and 35, and as a result, electromagnetic induction occurs.
  • a voltage is generated between the signal lines and the outer skin of these signal terminals 4 and 5. That is, a signal in which a voltage caused by an electric field due to a surface current and a voltage caused by a magnetic field are superimposed propagates to the coaxial cables 6 and 7.
  • the electromagnetic field generated by the surface current exists stronger as it is closer to the surface of the device housing 101. Therefore, when the surface current sensor 300 is separated from the device housing 101, the detection sensitivity of the surface current sensor 300 decreases.
  • the signal detected by the surface current sensor 300 will be described based on the equivalent circuit of the surface current sensor 300 of FIG.
  • the resistors R1 and R2 and the inductances L1 and L2 are generated by the coupling lines 34 and 35 connected from the signal terminals 4 and 5 of the surface current sensor 300 to the upper electrode 1.
  • the capacitance C is the capacitance of the insulating spacer 3.
  • the input impedances Z1 and Z2 of the signal terminals 4 and 5 are connected to both ends of the equivalent circuit.
  • the electromagnetic field generated by the surface current includes an electric field and a magnetic field.
  • a voltage is generated across the capacitance C by the electric field.
  • a voltage is generated in the inductances L1 and L2 by the magnetic field.
  • the voltage generated by the electric field and the magnetic field causes voltage vibration according to the circuit constant LCR, and the terminal voltage generated at both ends of the equivalent circuit diagram of FIG. 4 becomes the signal output of the surface current sensor 300.
  • the equivalent circuit of FIG. 4 is a circuit whose axis is the capacitance C, and is a closed circuit in which the input impedance of the signal terminal is connected in series to the series circuit of the LCR. Since the combined impedance of the LCR decreases at the resonance frequency of the LC, the shared voltage applied to the input impedance of the signal terminal becomes large. Therefore, among the frequency components of the incoming surface current and the electromagnetic field generated by the surface current, the voltage generated at the signal terminal of the surface current sensor is the largest with respect to the component corresponding to the LC resonance frequency.
  • the impedance of the capacitance C rises and the voltage generated at the signal terminal decreases.
  • the impedances of the inductances L1 and L2 increase, so that the voltage generated at the signal terminal decreases.
  • the plane surrounded by the upper electrode 1 and the lower electrode 2, the signal terminal 4 and the signal terminal 5, and the coupling lines 34 and 35 is the chain crossing surface of the magnetic flux.
  • the voltage generated on the plane is proportional to this area.
  • the magnetic field generated by the surface current is formed in a direction orthogonal to the propagation direction of the surface current. Therefore, the interlinkage magnetic flux changes depending on the angle at which the surface current sensor 300 is installed, and the voltage generated by the magnetic fields in the signal terminal 4 and the signal terminal 5 becomes a sinusoidal shape.
  • This is the basic principle of directivity shown by the surface current sensor 300. This principle is used to estimate the direction of arrival of the surface current, which will be explained later.
  • the absolute value of the voltage generated by the magnetic field at the signal terminal 4 and the signal terminal 5 becomes the largest.
  • the voltage generated by the electric field is commonly generated in the signal terminal 4 and the signal terminal 5. Since there is a voltage generated by the electric field, the polarities of the voltage generated by the interlinkage magnetic flux are different between the signal terminal 4 and the signal terminal 5 in the configuration of FIG. 2, and the largest value is taken when the ratio of the voltages of the signal terminal 4 and the signal terminal 5 is taken. It becomes.
  • the surface current sensor 300 when the surface current sensor 300 is arranged so that the crossing surface of the magnetic flux chain is orthogonal to the direction of arrival of the surface current, the voltage generated by the magnetic field at the signal terminal 4 and the signal terminal 5 becomes the smallest. At this time, since the voltages of the signal terminals 4 and the signal terminals 5 have the same values, the ratios thereof are close to 1.
  • the signal detected by the surface current sensor 300 is input to the arithmetic processing unit 400 via the coaxial cables 6 and 7.
  • the coaxial cables 6 and 7 are arranged along the device housing 101.
  • potential vibration occurs in the outer skin of the coaxial cables 6 and 7 with respect to the device housing 101 which is the ground potential.
  • This potential vibration propagates through the coaxial cables 6 and 7 and is input to the surface current sensor 300. Further, this potential vibration propagates from the outer skin of the coaxial cables 6 and 7 to the outer skin of the signal terminal 4, the signal terminal 5, and to the lower electrode 2.
  • the impedance between the lower electrode 2 and the device housing 101 is higher than the impedance between the upper electrode 1 and the lower electrode 2. Extremely small. Therefore, the potential vibration generated in the lower electrode 2 does not affect the upper electrode 1. In this way, the surface current sensor 300 can suppress the influence of the electromagnetic field on the coaxial cables 6 and 7.
  • the surface current sensor 300 in the first embodiment can suppress the influence of this external electromagnetic field.
  • the arithmetic processing unit 400 includes a protection circuit 21, a filter 22, a signal amplification circuit 23, a surface current detection circuit 24, an A / D (Analog-to-digital) converter 25, an arrival direction estimation circuit 26, and an internal discharge determination circuit 27.
  • the protection circuit 21, the filter 22, the signal amplification circuit 23, and the A / D converter 25 are provided for the signals from the signal terminals 4, 5, 9, and 10, respectively.
  • the protection circuit is "PT"
  • the filter is "FL”
  • the signal amplification circuit is "AMP”
  • the surface current detection circuit is "SCD”
  • the A / D converter is "A / D”
  • the estimation circuit is described as "DLE”
  • the internal discharge discrimination circuit is described as "IDJ”.
  • the signal detected by the surface current sensor 300 is input to the arithmetic processing unit 400 via the coaxial cables 6, 7, 11 and 12.
  • the signals from the signal terminals 4, 5, 9, and 10 are sequentially processed by the protection circuit 21, the filter 22, and the signal amplification circuit 23, respectively.
  • the protection circuit 21 removes a voltage higher than a predetermined value by a circuit using an element such as a diode and an arrester in order to prevent a failure due to a high voltage signal intrusion.
  • the filter 22 is a bandpass filter that extracts only a signal having a specific frequency of an electromagnetic field due to a partial discharge generated inside the power device 100 to be inspected.
  • the specific frequency of the partial discharge is a frequency component remarkably observed in the electromagnetic field due to the partial discharge. Since the signal of the frequency component other than the band of this frequency is caused by the external electromagnetic field, the influence of the external electromagnetic field can be suppressed by removing it.
  • the next signal amplification circuit 23 is generally an amplifier circuit using an operational amplifier.
  • the output of the signal amplification circuit 23 is input to the surface current detection circuit 24, and it is determined whether or not the surface current is detected by the surface current detection circuit 24.
  • the surface current detection circuit 24 is a comparator, and for example, when the signal strength exceeds a preset threshold value, it is determined that a surface current is generated due to a partial discharge generated inside the electric power device 100.
  • the threshold value for determination is set to a value higher than the signal strength obtained by the external electromagnetic field under the installation environment of the electric power device 100.
  • the output of the signal amplification circuit 23 is digitally converted by the A / D converter 25 and input to the arrival direction estimation circuit 26.
  • the arrival direction estimation circuit 26 estimates the arrival direction of the surface current based on the signals of the input signal terminals 4, 5 and the signal terminals 9, 10. As described above for the detection principle, the angle in the direction of arrival of the surface current can be estimated by taking the ratio of the signal intensities.
  • step 1 it is compared which set of the signal terminals 4 and 5 and the signal terminals 9 and 10 of the surface current sensor 300 has the larger output signal.
  • the output signal of the set of signal terminals having a cross section having a small angle with respect to the traveling direction of the surface current becomes large.
  • FIG. 7 is a curve showing the magnitude of the signal at the signal terminals 4, 9, 5, and 10 of the surface current sensor 300 when the traveling direction of the surface current is changed.
  • the solid line is the output signal of the signal terminal 4, and the dotted line is the output signal of the signal terminal 5.
  • the alternate long and short dash line is the output signal of the signal terminal 9, and the alternate long and short dash line is the output signal of the signal terminal 10.
  • the direction from the signal terminal 5 to the signal terminal 4 in FIG. 3 is set to 0 degree.
  • the traveling direction of the surface current is rotated clockwise (clockwise) when viewed from above.
  • the unit on the horizontal axis is an angle
  • the vertical axis is an arbitrary unit.
  • step 1 if the output signals of the signal terminals 4 and 5 of the surface current sensor 300 are larger, the process proceeds to step 2 (S02). If the output signals of the signal terminals 9 and 10 are larger, the process proceeds to step 3 (S03). Since the processing contents of step 2 (S02) and step 3 (S03) are the same, only the processing of step 2 (S02) will be described here.
  • FIG. 8 is a curve calculated from the signal curves appearing at the signal terminals 4, 9, 5, and 10 of the surface current sensor 300 of FIG. 7.
  • the solid line is (output signal of signal terminal 4 / output signal of signal terminal 5)
  • the dotted line is (output signal of signal terminal 4 / output signal of signal terminal 5).
  • the unit on the horizontal axis is an angle
  • the vertical axis is an arbitrary unit.
  • step 2 (S02) the traveling direction of the surface current is estimated from the calculated value of (output signal of signal terminal 4 / output signal of signal terminal 5).
  • the calculated value is 2
  • the position of the opening existing on the surface of the device housing 101 of the power device 100 is known in advance.
  • the traveling direction of the surface current can be estimated in consideration of the direction in which the signal terminal 4 is viewed from the signal terminal 5 of the surface current sensor 300 and the angle of the position of the opening.
  • the ratio of the set of signals having the larger output signal of the signal terminal of the surface current sensor 300 is taken, and the traveling direction of the surface current is estimated in consideration of the positional relationship between the surface current sensor 300 and the opening. ..
  • the traveling direction of the surface current can be estimated by using the set of signals having the smaller output signal of the signal terminal of the surface current sensor 300 together.
  • the ratio of the set of signals having the smaller output signal of the signal terminal of the surface current sensor 300 is taken, and the two angles intersecting are obtained from the calculated values. It is possible to compare these two angles with the two angles obtained from the previously obtained set of signals having a large signal output, and estimate the traveling direction of the surface current from the closer angle.
  • the traveling direction of the surface current shown in FIG. 8 (which is the opposite direction of the arrival direction) and the output signal of the signal terminal of the surface current sensor 300 can be obtained in advance by a calibration test to obtain accuracy.
  • the traveling direction of high surface current can be estimated.
  • the internal discharge determination circuit 27 determines whether or not a partial discharge is generated inside the power device 100.
  • the internal discharge discrimination circuit 27 determines that the surface current from the surface current detection circuit 24 is detected, and the estimation result of the arrival direction of the surface current from the arrival direction estimation circuit 26 indicates that the internal partial discharge of the power device 100 is partially discharged. Determine the presence or absence.
  • the range of the surface current arrival direction due to the partial discharge inside the power device 100 to be inspected and the estimation result of the surface current arrival direction are compared. If the arrival direction of the estimated surface current is within the range of the arrival direction set in advance, it is determined that a partial discharge has occurred inside the power device 100. In this case, it can be estimated that an electrical insulation defect has occurred inside the electric power device 100.
  • the range of the surface current arrival direction set in advance is determined from the position of the opening on the surface of the device housing 101 of the electric power device 100 and the installation position of the surface current sensor 300.
  • the display unit 500 displays on the display unit after receiving the surface current detection result from the arithmetic processing unit 400 and the determination result from the internal discharge discrimination circuit 27 that a partial discharge has occurred inside the power device 100. If necessary, an alarm signal indicating that an electrical insulation defect has occurred inside the power device 100 is transmitted.
  • the display unit 500 It is assumed that a PC (personal computer) is used for the display unit 500. Further, in the configuration diagram of the arithmetic processing unit 400 of FIG. 5, the surface current detection circuit 24, the arrival direction estimation circuit 26, and the internal discharge discrimination circuit 27 are provided inside the arithmetic processing unit 400. It can also be performed inside the display unit 500.
  • a PC personal computer
  • the electric power device provided with the partial discharge detection device of the first embodiment on the outer surface thereof can suppress the fluctuation of the detection sensitivity depending on the installation environment of the surface current sensor and the installation method of the signal cable, and the direction of arrival of the electromagnetic wave.
  • the estimation accuracy of can be improved.
  • the metal upper electrode and the lower electrode, the insulating spacer interposed between the upper electrode and the lower electrode, and the signal line are connected to the upper electrode.
  • Embodiment 2 The partial discharge detection device of the second embodiment uses an insulating spacer containing a high magnetic permeability material for the surface current sensor.
  • FIG. 9 is a cross-sectional view of the surface current sensor.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
  • the partial discharge detection device 201 and the surface current sensor 301 are used.
  • the surface current sensor 301 of the partial discharge detection device 201 of the second embodiment includes a metal upper electrode 1 and a lower electrode 2, and an insulating spacer 31 is interposed between them.
  • the surface current sensor 301 includes a signal terminal 4 and a signal terminal 5.
  • the signal lines of the signal terminals 4 and 5 are connected to the upper electrode 1 via the coupling wires 34 and 35, and the grounding skin is connected to the lower electrode 2.
  • a coaxial cable 6 is connected to the signal terminal 4, and a coaxial cable 7 is connected to the signal terminal 5.
  • the insulating spacer 31 of the surface current sensor 301 of the second embodiment has a structure in which the insulating spacers 32 and 33 and the metal spacer 37 made of a metal having a high magnetic permeability are combined between the insulating spacers 32 and 33. It is assumed that the insulating spacers 32 and 33 use the same insulating resin as the insulating spacer 3 described in the first embodiment.
  • the surface current generated on the outer surface of the device housing 101 due to the partial discharge generated inside the power device 100 is parallel to the surface of the device housing 101 and generates a magnetic field in the direction orthogonal to the propagation direction of the surface current.
  • a voltage is generated at the signal terminals 4 and 5 by the magnetic flux interlinking the plane surrounded by the upper electrode 1, the lower electrode 2, and the signal terminals 4 and 5. Since the voltage generated by this magnetic field is generated by electromagnetic induction, it increases in proportion to the magnetic permeability of the interlinkage space of the magnetic field. Therefore, by using a high magnetic permeability material for the insulating spacer 31 that occupies most of the magnetic flux interlinking space, the output of the surface current sensor 301 can be increased and the detection sensitivity can be increased.
  • a high magnetic permeability material it is necessary to apply a high magnetic permeability material to the insulating spacer 31 after ensuring the insulating performance between the upper electrode 1 and the lower electrode 2.
  • a combination of a metal having a high magnetic permeability between and a part of the insulation, and a metal powder having a high magnetic permeability added to the insulation can be used.
  • the metal having a high magnetic permeability include iron and silicon steel which is an alloy of iron and silicon, and an alloy of iron and nickel, cobalt, aluminum and the like.
  • the detection frequency characteristic of the surface current sensor 301 can be controlled. Therefore, the high-sensitivity frequency band can be changed without changing the dimensions of the surface current sensor 301.
  • Capacitance C is the capacitance of the insulating spacer 31 using a high magnetic permeability material. Further, the input impedances Z1 and Z2 of the signal terminals 4 and 5 are connected to both ends.
  • the electromagnetic field generated by the surface current includes an electric field and a magnetic field.
  • a voltage is generated across the capacitance C by the electric field.
  • a voltage is generated in the inductances L1 and 2 by the magnetic field.
  • the generated voltage causes voltage vibration according to the circuit constant LCR, and the terminal voltage generated at both ends of the equivalent circuit diagram of FIG. 4 becomes the output of the surface current sensor 301.
  • the equivalent circuit is a circuit whose axis is the capacitance C, and is a closed circuit in which the input impedance of the terminal is connected in series to the series circuit of the LCR. Since the combined impedance of the LCR decreases at the resonance frequency of the LC, the shared voltage applied to the input impedance of the terminal becomes large. Therefore, among the frequency components of the incoming surface current and the electromagnetic field generated by the surface current, the voltage generated at the terminal of the surface current sensor is the highest with respect to the component corresponding to the LC resonance frequency.
  • the voltage generated at the terminal decreases due to the increase in the impedance of the capacitance C in the frequency component below the LC resonance frequency. Further, among the frequency components of the incoming surface current and the electromagnetic field generated by the surface current, the impedance generated at the terminal decreases as the impedances of the inductances L1 and L2 increase in the frequency characteristic of the LC resonance frequency or higher.
  • the detection frequency characteristic of the surface current sensor 301 mainly changes depending on the inductances L1 and L2 of the coupling lines 34 and 35 and the capacitance C of the insulating spacer.
  • the inductances L1 and L2 can be controlled by the magnetic permeability of the insulating spacer, which is the interlinkage space of the magnetic flux due to the surface current.
  • the inductances L1 and L2 increase, and the LC resonance frequency becomes high. Therefore, by controlling the detection frequency characteristic of the surface current sensor 301, the surface current sensor 301 becomes highly sensitive to the surface current in the higher frequency band as compared with the surface current sensor 300 of the first embodiment.
  • the partial discharge detection device of the second embodiment uses an insulating spacer containing a high magnetic permeability material for the surface current sensor. Therefore, the partial discharge detection device of the second embodiment can suppress fluctuations in the detection sensitivity depending on the installation environment of the surface current sensor and the installation method of the signal cable, and can improve the estimation accuracy of the arrival direction of the electromagnetic wave. .. Further, the partial discharge detection device of the second embodiment controls the detection frequency characteristic of the surface current sensor to have high sensitivity to the surface current in the higher frequency band.
  • Embodiment 3 The partial discharge detection device of the third embodiment uses a high dielectric constant material for the insulating spacer of the surface current sensor.
  • FIG. 10 is a cross-sectional view of the surface current sensor.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
  • the partial discharge detection device 202 and the surface current sensor 302 are used.
  • the surface current sensor 302 of the partial discharge detection device 202 of the third embodiment includes a metal upper electrode 1 and a lower electrode 2, and an insulating spacer 41 is interposed between them.
  • the surface current sensor 302 includes a signal terminal 4 and a signal terminal 5.
  • the signal lines of the signal terminals 4 and 5 are connected to the upper electrode 1 via the coupling wires 34 and 35, and the grounding skin is connected to the lower electrode 2.
  • a coaxial cable 6 is connected to the signal terminal 4, and a coaxial cable 7 is connected to the signal terminal 5.
  • the insulating spacer 41 of the surface current sensor 302 of the third embodiment has a higher dielectric constant than the insulating spacer 3 described in the first embodiment.
  • the detection frequency characteristic of the surface current sensor 302 mainly changes depending on the inductances L1 and L2 of the coupling lines 34 and 35 and the capacitance C of the insulating spacer 41.
  • the capacitance C changes in proportion to the dielectric constant of the insulating spacer.
  • the dielectric constant can be changed by changing the resin material used for the insulating spacer, or by changing the material and the amount of the inorganic filler added to the resin material. It is also conceivable to partially change the material.
  • the capacitance C and selecting the LC resonance frequency the detection frequency characteristic of the surface current sensor 302 can be changed.
  • the capacitance C rises and the LC resonance frequency becomes high. Therefore, by controlling the detection frequency characteristic of the surface current sensor 302, the surface current sensor 302 becomes more sensitive to the surface current in the higher frequency band as compared with the surface current sensor 300 of the first embodiment.
  • the partial discharge detection device of the third embodiment uses a high dielectric constant material for the insulating spacer of the surface current sensor. Therefore, the partial discharge detection device of the third embodiment can suppress fluctuations in the detection sensitivity depending on the installation environment of the surface current sensor and the installation method of the signal cable, and can improve the estimation accuracy of the arrival direction of the electromagnetic wave. .. Further, the partial discharge detection device of the third embodiment controls the detection frequency characteristic of the surface current sensor to have high sensitivity to the surface current in the higher frequency band.
  • Embodiment 4 The partial discharge detection device of the fourth embodiment includes a plurality of surface current sensors having the same specifications.
  • FIG. 11 is a configuration diagram of the partial discharge detection device.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
  • the partial discharge detection device 203, the surface current sensors 300 and 303, the arithmetic processing units 400 and 401, and the display unit 501 are used.
  • the configuration of the partial discharge detection device 203 of the fourth embodiment will be described.
  • the partial discharge detection device 203 includes surface current sensors 300 and 303, arithmetic processing units 400 and 401, and a display unit 501. It is assumed that the partial discharge detection device 203 of the fourth embodiment uses two surface current sensors 300 having the same specifications, for example, the surface current sensor 300 described in the first embodiment.
  • the surface current sensor 300 and the surface current sensor 303 have the same specifications, but have different reference numerals for the sake of clarity.
  • the arithmetic processing units 400 and 401 have the same specifications, but have different code numbers for the sake of clarity.
  • the surface current sensors 300 and 303 detect an electromagnetic field generated by a surface current generated on the outer surface of the power device 100 due to a partial discharge generated inside the power device 100.
  • the arithmetic processing unit 400 receives the signal detected by the surface current sensor 300 and determines whether or not surface current is generated. Further, the arithmetic processing unit 400 estimates the arrival direction of the surface current and determines whether or not a partial discharge has occurred inside the electric power device 100.
  • the arithmetic processing unit 401 receives the signal detected by the surface current sensor 303 and determines whether or not surface current is generated. Further, the arithmetic processing unit 401 estimates the arrival direction of the surface current and determines whether or not a partial discharge has occurred inside the electric power device 100.
  • the display unit 501 displays the determination results, estimation results, and determination results of the arithmetic processing units 400 and 401, and emits an alarm if necessary.
  • the electromagnetic wave radiated by the partial discharge generated inside the electric power device 100 leaks through the electrical opening and propagates on the radiation. Further, this electromagnetic wave propagates while forming a surface current on the surface of the housing. Therefore, by connecting the arrival directions of the surface currents estimated by the arithmetic processing units 400 and 401 in the display unit 501, it is possible to specify the opening of the electric power device 100 that radiates a particularly strong electromagnetic wave. As a result, it becomes possible to estimate the location where partial discharge occurs, which is an abnormal location in the electrical insulation inside the power device 100.
  • the display unit 501 further analyzes the results estimated by the arithmetic processing units 400 and 401, but this analysis can also be performed by any of the arithmetic processing units 400 and 401. ..
  • the partial discharge detection device of the fourth embodiment includes a plurality of surface current sensors having the same specifications. Therefore, the partial discharge detection device of the fourth embodiment can suppress fluctuations in the detection sensitivity depending on the installation environment of the surface current sensor and the installation method of the signal cable, and can improve the estimation accuracy of the arrival direction of the electromagnetic wave. .. Further, the partial discharge detection device of the fourth embodiment can estimate an abnormal portion in the electrical insulation in which a partial discharge occurs inside the electric power device.
  • the partial discharge detection device of the fifth embodiment includes a plurality of surface current sensors having different dimensions.
  • FIG. 12 is a configuration diagram of the partial discharge detection device
  • FIG. 13 which is a cross-sectional view of the surface current sensor.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
  • the partial discharge detection device 204, the surface current sensors 300 and 304, the arithmetic processing units 400 and 402, and the display unit 502 are used.
  • the configuration of the partial discharge detection device 204 according to the fifth embodiment will be described.
  • the partial discharge detection device 204 includes surface current sensors 300 and 304, arithmetic processing units 400 and 402, and a display unit 502.
  • the partial discharge detection device 204 of the fifth embodiment assumes that, for example, the surface current sensor 300 described in the first embodiment and the surface current sensor 304 having different dimensions from the surface current sensor 300 are used.
  • the arithmetic processing units 400 and 402 are functionally the same, but have different code numbers for the sake of clarity.
  • the surface current sensors 300 and 304 detect an electromagnetic field generated by a surface current generated on the outer surface of the power device 100 due to a partial discharge generated inside the power device 100.
  • the arithmetic processing unit 400 receives the signal detected by the surface current sensor 300 and determines whether or not surface current is generated. Further, the arithmetic processing unit 400 estimates the arrival direction of the surface current and determines whether or not a partial discharge has occurred inside the electric power device 100.
  • the arithmetic processing unit 402 receives the signal detected by the surface current sensor 304 and determines whether or not surface current is generated. Further, the arithmetic processing unit 402 estimates the arrival direction of the surface current and determines whether or not a partial discharge has occurred inside the electric power device 100.
  • the display unit 502 displays the determination results, estimation results, and determination results of the arithmetic processing units 400 and 402, and emits an alarm if necessary.
  • the surface current sensor 304 includes a metal upper electrode 51 and a lower electrode 52, and an insulating spacer 53 is interposed between them.
  • the surface current sensor 304 includes a signal terminal 4 and a signal terminal 5.
  • the signal lines of the signal terminals 4 and 5 are connected to the upper electrode 1 via the coupling lines 54 and 55, and the grounding skin is connected to the lower electrode 2.
  • a coaxial cable 6 is connected to the signal terminal 4, and a coaxial cable 7 is connected to the signal terminal 5.
  • the surface current sensor 304 of the fifth embodiment has different dimensions from the surface current sensor 300 of the first embodiment. Specifically, the width of the surface current sensor 304 is larger than that of the surface current sensor 300.
  • the detection frequency characteristic of the surface current sensor 304 mainly changes depending on the inductances L1 and L2 of the coupling lines 54 and 55 and the capacitance C of the insulating spacer.
  • the capacitance C of the insulating spacer 53 is increased and the LC resonance frequency is increased. Therefore, the surface current sensor 304 is more sensitive to the surface current in the higher frequency band than the surface current sensor 300.
  • the detection frequency characteristic can be controlled by changing the dimensions of the surface current sensor 304.
  • the inductances L1 and L2 can be controlled by changing the width of the coupling wires 54 and 55 in addition to changing the lengths of the coupling wires 54 and 55, and by using a plurality of the inductance wires L1 and L2.
  • the capacitance C can be controlled by changing the thickness of the insulating spacer 53 and changing the area. Further, as described in the second and third embodiments, the inductances L1 and L2 and the capacitance C can be controlled by changing the material of the insulating spacer 53 and changing the magnetic permeability and the dielectric constant.
  • the detection frequency characteristics of the surface current sensor 304 can be changed by controlling the inductances L1 and L2 and the capacitance C to change the LC resonance frequency.
  • Partial discharge occurs due to an insulation defect that occurs inside the power device 100, but the frequency component of the partial discharge current differs depending on the type of insulation defect.
  • a discharge in SF6 gas contains more high frequency components.
  • the discharge is in dry air, the atmosphere or an insulator, it contains more low frequency components than the discharge in SF6 gas.
  • the frequency component is also affected by whether the discharge point is in the gas space or along the insulation surface.
  • the partial discharge detection device 204 equipped with the surface current sensors 300 and 304 having different detection frequency characteristics, it becomes possible to detect a wide range of types of insulation defects. Furthermore, by grasping which frequency component is strong, it is possible to estimate what kind of insulation defect has occurred.
  • the partial discharge detection device of the fifth embodiment includes a plurality of surface current sensors having different dimensions. Therefore, the partial discharge detection device of the fifth embodiment can suppress fluctuations in the detection sensitivity depending on the installation environment of the surface current sensor and the installation method of the signal cable, and can improve the estimation accuracy of the arrival direction of the electromagnetic wave. .. Further, the partial discharge detection device of the fifth embodiment can estimate the type of insulation defect inside the electric power device.
  • the partial discharge detection device of the sixth embodiment includes a plurality of surface current sensors using insulating spacers made of different materials.
  • FIG. 14 is a configuration diagram of the partial discharge detection device.
  • FIG. 9 of Embodiment 2 and FIG. 10 of Embodiment 3 are referred to as appropriate.
  • the same or corresponding parts as those of the first embodiment are designated by the same reference numerals.
  • the partial discharge detection device 205, the surface current sensors 301 and 302, the arithmetic processing units 403 and 404, and the display unit 503 are used.
  • the configuration of the partial discharge detection device 205 according to the sixth embodiment will be described.
  • the partial discharge detection device 205 includes surface current sensors 301 and 302, arithmetic processing units 403 and 404, and a display unit 503.
  • the partial discharge detection device 205 of the sixth embodiment is, for example, a surface current sensor 301 using an insulating spacer made of a high magnetic permeability material and a surface current sensor 302 using an insulating spacer made of a high dielectric constant material described in the second embodiment. And is supposed to be used.
  • the arithmetic processing units 403 and 404 are functionally the same, but have different code numbers for the sake of clarity.
  • the surface current sensors 301 and 302 detect an electromagnetic field generated by a surface current generated on the outer surface of the power device 100 due to a partial discharge generated inside the power device 100.
  • the arithmetic processing unit 403 receives the signal detected by the surface current sensor 301 and determines whether or not surface current is generated. Further, the arithmetic processing unit 403 estimates the arrival direction of the surface current and determines whether or not a partial discharge has occurred inside the electric power device 100.
  • the arithmetic processing unit 404 receives the signal detected by the surface current sensor 302 and determines whether or not surface current is generated. Further, the arithmetic processing unit 404 estimates the arrival direction of the surface current and determines whether or not a partial discharge has occurred inside the electric power device 100.
  • the display unit 503 displays the determination results, estimation results, and determination results of the arithmetic processing units 403 and 404, and emits an alarm if necessary.
  • the detection frequency characteristics of the surface current sensors 301 and 302 mainly change depending on the inductances L1 and L2 of the coupling lines 34 and 35 and the capacitance C of the insulating spacer. Further, the detection frequency characteristic of the surface current sensor 304 can be changed by controlling the inductances L1 and L2 and the capacitance C to change the LC resonance frequency.
  • Partial discharge occurs due to an insulation defect that occurs inside the power device 100, but the frequency component of the partial discharge current differs depending on the type of insulation defect.
  • a discharge in SF6 gas contains more high frequency components.
  • the discharge is in dry air, the atmosphere or an insulator, it contains more low frequency components than the discharge in SF6 gas.
  • the frequency component is also affected by whether the discharge point is in the gas space or along the insulation surface.
  • the partial discharge detection device 205 equipped with the surface current sensors 301 and 302 having different detection frequency characteristics, it becomes possible to detect a wide range of types of insulation defects. Furthermore, by grasping which frequency component is strong, it is possible to estimate what kind of insulation defect has occurred.
  • the partial discharge detection device of the sixth embodiment includes a plurality of surface current sensors using insulating spacers made of different materials. Therefore, the partial discharge detection device of the sixth embodiment can suppress fluctuations in the detection sensitivity depending on the installation environment of the surface current sensor and the installation method of the signal cable, and can improve the estimation accuracy of the arrival direction of the electromagnetic wave. .. Further, the partial discharge detection device of the sixth embodiment can estimate the type of insulation defect inside the electric power device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)

Abstract

部分放電検出装置(200)は、金属製の上部電極(1)および下部電極(2)と、その間に介在する絶縁スペーサ(3)と、信号線が上部電極(1)に接続され、接地外皮が下部電極(2)に接続されている信号端子を複数備えた面電流センサ(300)と、信号端子の信号出力の強度から面電流が発生したかどうかを判定する面電流検出回路(24)と、信号出力の比から面電流の到来方向を推定する到来方向推定回路(26)と、推定された面電流の到来方向から内部放電の有無を判別する内部放電判別回路(27)とを備える。

Description

部分放電検出装置および電力機器
 本願は、部分放電検出装置および電力機器に関するものである。
 電力機器は高い信頼性が求められ、金属製筐体に覆われ不可視な機器内部の電気絶縁の異常診断の要求が強い。診断には電磁波の適用例が多く、特に機器外部への設置で感度が良好な面電流センサが用いられている。しかし、面電流センサで得られた電磁波が機器内部の部分放電によるものか、機器外部の電磁ノイズ(外部電磁界)によるものかを区別することが難しい。
 この問題に対して、金属製筐体の内部に配置された検出線の一端は測定ケーブルが接続された検出端子に接続され、もう一端は終端抵抗に接続された検出装置が提案されている(例えば、特許文献1)。この検出装置では、センサを複数放射状に配置し、各センサの出力強度の大小を比較することで電磁波到来方向を推定することが可能である。
特開平10-17059公報
 特許文献1の装置では、面電流による電磁界および外部電磁界は、センサに接続される同軸ケーブル外皮と機器筐体との間にも電位振動を生じさせるために、同軸ケーブルにおいても両方の電磁界による励振信号を測定することになる。すなわち、センサの検出感度は同軸ケーブルの引き回し方、および設置環境の影響を強く受け、特に検査対象の機器筐体との密着度によって変動する。
 本願は、上記のような課題を解決するための技術を開示するものであり、面電流センサに接続される信号ケーブルの設置方法および設置環境による検出感度変動の影響を排除し、電磁波の到来方向の推定精度を向上することを目的とする。
 本願に開示される部分放電検出装置は、金属製の上部電極および金属製の下部電極と、上部電極と下部電極との間に介在する絶縁スペーサと、信号線が上部電極に接続され、接地外皮が下部電極に接続されている信号端子を複数備えた面電流センサと、信号端子の信号出力の強度から検査対象の電力機器の外部表面に面電流が発生したかどうかを判定する面電流検出回路と、信号端子の信号出力の比から検査対象の電力機器の外部表面に発生する面電流の到来方向を推定する到来方向推定回路と、推定された面電流の到来方向から検査対象の電力機器の内部放電の有無を判別する内部放電判別回路と、を備えたものである。
 本願に開示される電力機器は、電力機器の内部放電の有無を検査するために、上記部分放電検出装置を電力機器の外部表面に設けたものである。
 本願に開示される部分放電検出装置によれば、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。
 本願に開示される電力機器によれば、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。
実施の形態1による部分放電検出装置の構成図である。 実施の形態1による部分放電検出装置に係る面電流センサの断面図である。 実施の形態1による部分放電検出装置に係る面電流センサの外観斜視図である。 実施の形態1による部分放電検出装置に係る面電流センサの等価回路図である。 実施の形態1による部分放電検出装置に係る演算処理部の構成図である。 実施の形態1による部分放電検出装置に係る面電流の到来方向推定の処理フロー図である。 実施の形態1による部分放電検出装置に係る面電流の到来方向推定の説明図である。 実施の形態1による部分放電検出装置に係る面電流の到来方向推定の説明図である。 実施の形態2による部分放電検出装置に係る面電流センサの断面図である。 実施の形態3による部分放電検出装置に係る面電流センサの断面図である。 実施の形態4による部分放電検出装置の構成図である。 実施の形態5による部分放電検出装置の構成図である。 実施の形態5による部分放電検出装置に係る面電流センサの断面図である。 実施の形態6による部分放電検出装置の構成図である。
実施の形態1.
 実施の形態1は、金属製の上部電極および下部電極と、上部電極と下部電極との間に介在する絶縁スペーサと、信号線が上部電極に接続され、接地外皮が下部電極に接続されている信号端子を複数備えた面電流センサと、信号端子の信号出力の強度から面電流が発生したかどうかを判定する面電流検出回路と、信号出力の比から面電流の到来方向を推定する到来方向推定回路と、推定された面電流の到来方向から内部放電の有無を判別する内部放電判別回路とを備えた部分放電検出装置に関するものである。
 以下、実施の形態1に係る部分放電検出装置の構成および動作について、部分放電検出装置の構成図である図1、面電流センサの断面図である図2、面電流センサの外観斜視図である図3、面電流センサの等価回路図である図4、演算処理部の構成図である図5、面電流の到来方向推定の処理フロー図である図6、および面電流の到来方向推定の説明図7、図8に基づいて説明する。
 実施の形態1の部分放電検出装置200の全体の構成を図1に基づいて説明する。
 部分放電検出装置システム全体は、検査対象である電力機器100と、部分放電検出装置200とから構成される。電力機器100は、部分放電検出装置200の一部ではないが、密接に関連するため、部分放電検出装置200と区別することなく説明する。
 まず、検査対象である電力機器100について説明する。
 電力機器100は金属製の筐体で覆われている、または、樹脂で覆われており内部が不可視である。そして、電力機器100の表面は金属製の筐体、または導電塗装などで接地電位に保たれている。
 実施の形態1の部分放電検出装置200は、広範囲の電気機器に適用可能である。電力機器100として、例えば油入変圧器、ガス絶縁変圧器、モールド変圧器、ガス絶縁開閉装置、キュービクル型ガス絶縁開閉装置、発電機、回転機、計器用変圧器、および計器用変成器が挙げられる。
 次に、部分放電検出装置200について説明する。
 部分放電検出装置200は、面電流センサ300、演算処理部400、および表示部500を備える。
 面電流センサ300は、電力機器100の内部で発生する部分放電により電力機器100の外部表面に生じる面電流が発生させる電磁界を検出する。
 演算処理部400は、面電流センサ300が検出した信号を受けて、面電流発生の有無を判定する。さらに、演算処理部400は、面電流の到来方向を推定するとともに、電力機器100の内部で部分放電が発生したかどうかを判別する。
 表示部500は、演算処理部400の判定結果、推定結果および判別結果を表示するとともに、必要な場合、警報を発信する。
 次に、面電流センサ300の構造および機能について、面電流センサ300の断面図である図2、および外観斜視図である図3に基づいて説明する。
 面電流センサ300は、金属製の上部電極1と下部電極2とを備え、その間に絶縁性の樹脂からなる絶縁スペーサ3が介在している。
 図2に示すように、上部電極1、下部電極2、および絶縁スペーサ3は電力機器100の機器筐体101の表面に対して積層する形で構成されている。
 絶縁スペーサ3は、上部電極1と下部電極2との間隔を所定の距離に保つとともに、絶縁を確保する。
 図2では、絶縁スペーサ3は上部電極1と下部電極2の間を満たすように配置されている。しかし、絶縁スペーサ3を部分的に切り欠いて空間を設けることも考えられる。部分的に切り欠いて空間を設けることで、後で説明するように絶縁スペーサ3の誘電率を変化させたり、面電流センサ300の重量を軽くしたりすることができる。
 図2に示すように、面電流センサ300は信号端子4、信号端子5を備える。信号端子4、5の信号線は、結合線34、35を介して上部電極1に接続され、接地外皮は下部電極2に接続されている。図2では信号端子の数を信号端子4、5の2つの例を記載している。
 信号端子4に同軸ケーブル6が接続され、信号端子5に同軸ケーブル7が接続されている。
 信号端子4、5は一般的にはBNC(Bayonet Neill Concelman)コネクタおよびSMA(SubMiniature version A)コネクタが用いられる。
 面電流センサ300は電力機器100の機器筐体101に沿って設置される。電力機器100の内部で発生する部分放電が、電気的な開口部を通して、機器筐体101の表面に面電流を生じさせる。面電流センサ300は、この電気的な開口部の近く設置する方が、この面電流が発生させる電磁界を高感度に検出することができる。
 なお、面電流センサ300が実際に検出するのは、面電流が発生させる電磁界である。しかし、面電流センサ300の目的は面電流の検出であるため、特に区別する必要がない限り、適宜、面電流センサ300は面電流を検出すると記載する。
 面電流センサ300において、上部電極1と下部電極2とに接続される信号端子は2つ以上備える。図3では信号端子4、9、5、10とこれらの信号端子に接続される同軸ケーブル6、11、7、12の各4組を90度毎にずらして配置した構造を例として示している。図3では、信号端子4、5、および信号端子9,10が対角線上に配置されている。
 上面から見た面電流センサの形状は、端子数と同じ角を備える二角形を含む多角形であり、多角形の各角に信号端子を備える。図3では、形状が四角形である面電流センサ300を例として示している。しかし、面電流センサの形状は四角形に限らず、各角の信号端子の個数が多いほど後で説明する面電流の到来方向の推定精度は向上する。
 なお、二角形の面電流センサとしては、例えば図3の面電流センサの信号端子9、10の間隔を狭めて、必要な絶縁スペーサのキャパシタンスCを確保した上で、信号端子4、5のみとする構造を想定している。
 また、面電流センサの形状は、直線を辺とする多角形に限定されず、曲線を辺とする形状、例えば円形、楕円形であってもよい。
 次に電力機器100の機器筐体101の表面に生じる面電流、この面電流が発生させる電磁界、および面電流センサ300によるこの電磁界の検出原理について説明する。
 なお、以降の面電流センサ300の説明では、信号端子4および信号端子5を例として説明する。
 電力機器100内部の絶縁不良により生じた部分放電は、電気的な開口部を通して、機器筐体101の表面に面電流を生じさせ、この面電流により電磁界が発生する。
 機器筐体101の表面を流れる面電流により、機器筐体101の表面と直交方向に電界が発生する。またこの面電流により、機器筐体101の表面と並行で、かつ、面電流の伝搬方向に直交する方向に磁界が発生する。
 電界により上部電極1と下部電極2との間に電圧が生じ、この電圧は信号端子4、5を介して同軸ケーブル6、7を伝搬していく。
 また、磁界は上部電極1と下部電極2、信号端子4と信号端子5、および結合線34,35に囲まれた平面を鎖交し、この結果、電磁誘導が生じる。
 信号端子4、信号端子5から同軸ケーブル6、7を見た入力インピーダンスに従い、これら信号端子4、5の信号線および外皮間に電圧が生じる。すなわち、同軸ケーブル6、7には、面電流による電界に起因する電圧と磁界に起因する電圧が重畳した信号が伝搬していく。
 また、面電流により発生される電磁界は機器筐体101の表面近いほど強く存在している。このため、面電流センサ300を機器筐体101から離した場合、面電流センサ300の検出感度は低下する。
 次に、図4の面電流センサ300の等価回路に基づいて、面電流センサ300が検出する信号について説明する。
 図4の等価回路において、抵抗R1、R2とインダクタンスL1、L2は、面電流センサ300の信号端子4、5から上部電極1につながる結合線34、35で生じるものである。キャパシタンスCは、絶縁スペーサ3の静電容量である。また、等価回路の両端には信号端子4、5の入力インピーダンスZ1、Z2が接続されている。
 先に説明した通り、面電流が発生させる電磁界は、電界と磁界を含んでいる。電界によりキャパシタンスCの両端に電圧が生じる。磁界によりインダクタンスL1、L2に電圧が生じる。この電界および磁界によって生じた電圧により回路定数LCRに応じた電圧振動が生じ、図4の等価回路図の両端に生じる端子電圧が面電流センサ300の信号出力となる。
 図4の等価回路はキャパシタンスCを軸に線対象となる回路であり、それぞれLCRの直列回路に信号端子の入力インピーダンスを直列接続した閉回路になっている。
 LCの共振周波数においてLCRの合成インピーダンスは低下するため、信号端子の入力インピーダンスにかかる分担電圧は大きくなる。したがって、到来する面電流とそれが発生させる電磁界の周波数成分のうちLC共振周波数に一致する成分に対して面電流センサの信号端子に生じる電圧は最も大きくなる。
 一方、到来する面電流とそれが発生させる電磁界の周波数成分のうち、このLC共振周波数より低い周波数成分においては、キャパシタンスCのインピーダンスが上昇するため信号端子に生じる電圧は低下する。また、到来する面電流とそれが発生させる電磁界の周波数成分のうち、LC共振周波数より高い周波数特性においては、インダクタンスL1、L2のインピーダンスが上昇するため信号端子に生じる電圧は低下する。
 ここで、面電流が発生させる磁界に対して、上部電極1と下部電極2、信号端子4と信号端子5、および結合線34、35に囲まれた平面が磁束の鎖交面であり、この平面に生じる電圧はこの面積に比例する。
 面電流が発生させる磁界は、面電流の伝搬方向に対して直交する方向に形成される。このため、鎖交磁束は、面電流センサ300を設置する角度によって変化し、信号端子4、信号端子5に生じる磁界による電圧は正弦波状になる。これが面電流センサ300の示す指向性の基本原理である。この原理を後で説明する面電流の到来方向の推定に用いる。
 例えば、磁束鎖交面を面電流の到来方向に平行となるように面電流センサ300を配置するとき、信号端子4、信号端子5に生じる磁界による電圧の絶対値が最も大きくなる。
 なお、ここで、信号端子4、信号端子5には、電界によって生じた電圧が共通に生じていることを考慮する必要がある。
 電界によって生じた電圧があるため、図2の構成における信号端子4、信号端子5では鎖交磁束により生じる電圧の極性が異なり、信号端子4、信号端子5の電圧の比を取ると最も大きい値となる。
 また逆に、磁束鎖交面を面電流の到来方向に直交するように面電流センサ300を配置するとき、信号端子4、信号端子5に生じる磁界による電圧が最も小さくなる。このとき、信号端子4、信号端子5の電圧は同等の値となるため、これらの比を取ると1に近い値となる。
 面電流センサ300で検出された信号は同軸ケーブル6、7を介して演算処理部400に入力される。同軸ケーブル6、7は機器筐体101に沿って配置される。ここでも電磁界の影響により、同軸ケーブル6、7の外皮には接地電位である機器筐体101に対して電位振動が生じる。この電位振動は、同軸ケーブル6、7を伝搬し、面電流センサ300に入力される。さらに、この電位振動は、同軸ケーブル6、7の外皮から信号端子4、信号端子5の外皮へ、そして下部電極2に伝搬する。
 ここで、下部電極2は機器筐体101に近接して設置されるため、下部電極2と機器筐体101との間のインピーダンスは、上部電極1と下部電極2との間のインピーダンスに比べて極めて小さい。このため、下部電極2に生じた電位振動は上部電極1に影響を及ぼすことはない。このように、面電流センサ300では、同軸ケーブル6、7が受ける電磁界の影響を抑制できる。
 特に、面電流の到来方向の推定において、信号端子4、5の電圧を比較するとき、同軸ケーブル6、7が受ける電圧に外部電磁界の影響による電圧が重畳すると方向推定の誤差となる。しかし、実施の形態1における面電流センサ300では、この外部電磁界の影響を抑制できる。
 演算処理部400の構成および動作を図5に基づいて説明する。
 演算処理部400は、保護回路21、フィルタ22、信号増幅回路23、面電流検出回路24、A/D(Analog-to-digital)変換器25、到来方向推定回路26、および内部放電判別回路27を備える。
 図5において、保護回路21、フィルタ22、信号増幅回路23、およびA/D変換器25は、信号端子4、5、9、10からの信号に対して、それぞれ設けられている。
 また、図5において、保護回路は「PT」、フィルタは「FL」、信号増幅回路は「AMP」、面電流検出回路は「SCD」、A/D変換器は「A/D」、到来方向推定回路は「DLE」、および内部放電判別回路は「IDJ」と記載している。
 面電流センサ300で検出された信号は同軸ケーブル6、7、11、12を介して演算処理部400に入力される。演算処理部400内では、信号端子4、5、9、10からの信号は、それぞれ保護回路21、フィルタ22、および信号増幅回路23で順次処理される。
 まず保護回路21は、高電圧信号侵入による故障を防ぐため、ダイオードおよびアレスタなどの素子を用いた回路により既定値以上の電圧を除去する。
 次にフィルタ22は、検査対象である電力機器100の内部で発生する部分放電による電磁界の特定周波数の信号のみを取り出すバンドパスフィルタである。
 ここで、部分放電の特定周波数とは、部分放電による電磁界に顕著に観測される周波数成分である。
 この周波数の帯域以外の周波数成分の信号は外部電磁界に起因するものであるため、除去することで外部電磁界の影響を抑制することができる。
 次の信号増幅回路23は、オペアンプを用いた増幅回路が一般的である。
 信号増幅回路23の出力は、面電流検出回路24に入力され、面電流検出回路24において面電流が検出されたがどうかを判定する。
 面電流検出回路24は比較器であり、例えば、信号強度があらかじめ設定された閾値を超えた場合、電力機器100の内部で発生する部分放電による面電流が生じたと判定する。
 ここで判定用の閾値は、電力機器100の設置環境下での外部電磁界により得られる信号強度より高い値を設定する。
 また、信号増幅回路23の出力は、A/D変換器25でデジタル変換されて、到来方向推定回路26に入力される。
 この到来方向推定回路26では、入力される信号端子4、5、および信号端子9、10の信号に基づいて、面電流の到来方向の推定を行う。先に検出原理を説明したように、信号強度の比を取ることで、面電流の到来方向の角度を推定することができる。
 到来方向推定回路26における面電流の到来方向の推定処理を、図6の処理フロー図、および図7、8の説明図に基づいて説明する。
 ステップ1(S01)では、面電流センサ300の信号端子4、5および信号端子9、10の内いずれの組の出力信号が大きいかを比較する。
 先に説明したように、面電流の進行方向に対する角度の小さい鎖交断面を有する信号端子の組の出力信号が大きくなる。
 図7は、面電流の進行方向を変化させた場合、面電流センサ300の信号端子4、9、5、10における信号の大きさを表した曲線である。図において、実線は信号端子4の出力信号、点線は信号端子5の出力信号である。また、一点鎖線は信号端子9の出力信号、二点鎖線は信号端子10の出力信号である。
 図7では、図3における信号端子5から信号端子4に向かう方向を0度としている。また、図3において、上から見て面電流の進行方向を右回り(時計方向)に回転させている。
 図7において、横軸の単位は角度であり、縦軸は任意単位である。
 ステップ1(S01)において、面電流センサ300の信号端子4、5の出力信号の方が大きい場合はステップ2(S02)へ進む。信号端子9、10の出力信号の方が大きい場合はステップ3(S03)へ進む。
 ステップ2(S02)、およびステップ3(S03)は処理内容が同じであるため、ここでは、ステップ2(S02)の処理のみを説明する。
 図8は、図7の面電流センサ300の信号端子4、9、5、10に現れる信号曲線から演算した曲線である。図8において、実線は(信号端子4の出力信号/信号端子5の出力信号)であり、点線は(信号端子4の出力信号/信号端子5の出力信号)である。
 図8において、横軸の単位は角度であり、縦軸は任意単位である。
 ステップ2(S02)では、(信号端子4の出力信号/信号端子5の出力信号)の演算値から面電流の進行方向を推定する。
 例として、演算値が2である場合を想定して説明する。図8の実線において、演算値2と実線が交さする角度を求めると、約61度と300度となる。
 電力機器100の機器筐体101の表面に存在する開口部の位置は、あらかじめわかっている。面電流センサ300の信号端子5から信号端子4を見た方向と開口部の位置の角度を考慮して、面電流の進行方向を推定できる。
 以上の説明では、面電流センサ300の信号端子の出力信号が大きい方の組の信号の比を取り、面電流センサ300と開口部の位置関係と考慮して、面電流の進行方向を推定した。面電流センサ300の信号端子の出力信号が小さい方の組の信号を合わせて用いることで、同様に面電流の進行方向を推定できる。
 具体的には、面電流センサ300の信号端子の出力信号が小さい方の組の信号の比を取り、演算値から交さする2つの角度を求める。この2つの角度と、先に求めた信号出力が大きい組の信号から求めた2つの角度とを比較し、近い方の角度から面電流の進行方向を推定することができる。
 なお、図8で示した面電流の進行方向(これは、到来方向の逆方向)と面電流センサ300の信号端子の出力信号との関係をあらかじめ校正試験により取得しておくことで、精度の高い面電流の進行方向の推定ができる。
 内部放電判別回路27は、電力機器100内部の部分放電の発生の有無を判別する。内部放電判別回路27は、面電流検出回路24からの面電流を検出したとの判定結果と、到来方向推定回路26からの面電流の到来方向の推定結果から電力機器100の内部の部分放電の有無を判別する。
 具体的には、あらかじめ設定した検査対象の電力機器100内部の部分放電による面電流の到来方向の範囲と面電流の到来方向の推定結果とを比較する。推定された面電流の到来方向が、あらかじめ設定した到来方向の範囲内であれば、電力機器100の内部に部分放電が生じている判断する。この場合は、電力機器100の内部に電気的な絶縁不良が生じていると推定できる。
 なお、あらかじめ設定する面電流の到来方向の範囲は、電力機器100の機器筐体101の表面の開口部の位置と面電流センサ300の設置位置から決定する。
 表示部500は、演算処理部400からの面電流検出結果と、内部放電判別回路27からの電力機器100の内部に部分放電が生じているとの判断結果を受けて表示器に表示する。また、必要な場合は、電力機器100内部に電気的な絶縁不良が生じているとの警報信号を発信する。
 なお、表示部500には、PC(personal computer)を使用することを想定している。
 また、図5の演算処理部400の構成図では、面電流検出回路24、到来方向推定回路26、および内部放電判別回路27を演算処理部400の内部に設けたが、これら各回路の処理を表示部500内部で行うこともできる。
 また、その外部表面に実施の形態1の部分放電検出装置を設けた電力機器は、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。
 以上説明したように、実施の形態1の部分放電検出装置は、金属製の上部電極および下部電極と、上部電極と下部電極との間に介在する絶縁スペーサと、信号線が上部電極に接続され、接地外皮が下部電極に接続されている信号端子を複数備えた面電流センサと、信号端子の信号出力の強度から面電流が発生したかどうかを判定する面電流検出回路と、信号出力の比から面電流の到来方向を推定する到来方向推定回路と、推定された面電流の到来方向から内部放電の有無を判別する内部放電判別回路とを備えたものである。
 したがって、実施の形態1の部分放電検出装置は、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。
実施の形態2.
 実施の形態2の部分放電検出装置は、面電流センサに高透磁率材料を含む絶縁スペーサを用いたものである。
 実施の形態2の部分放電検出装置について、面電流センサの断面図である図9に基づいて、実施の形態1との差異を中心に説明する。
 実施の形態2の図9において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、部分放電検出装置201、面電流センサ301としている。
 実施の形態2の部分放電検出装置201の面電流センサ301の構造および機能を説明する。
 面電流センサ301は、金属製の上部電極1と下部電極2とを備え、その間に絶縁スペーサ31が介在している。
 面電流センサ301は、信号端子4、信号端子5を備える。信号端子4、5の信号線は、結合線34、35を介して上部電極1に接続され、接地外皮は下部電極2に接続されている。信号端子4に同軸ケーブル6が接続され、信号端子5に同軸ケーブル7が接続されている。
 本実施の形態2の面電流センサ301の絶縁スペーサ31は、絶縁スペーサ32、33と、絶縁スペーサ32、33の間に高透磁率である金属からなる金属スペーサ37を組合せた構造である。
 なお、絶縁スペーサ32、33は、実施の形態1で説明した絶縁スペーサ3と同じ材質の絶縁性樹脂を使用することを想定している。
 電力機器100の内部で発生する部分放電により機器筐体101の外部表面に生じる面電流は、機器筐体101の表面と並行であり、かつ、面電流の伝搬方向に直交する方向に磁界を発生させる。
 面電流センサ301では上部電極1と下部電極2および信号端子4、5に囲まれた平面を鎖交する磁束により、信号端子4、5に電圧が生じる。この磁界による電圧は電磁誘導によって生じるため、磁界の鎖交空間の透磁率に比例して大きくなる。
 したがって、磁束鎖交空間の多くを占める絶縁スペーサ31に高透磁率材料を用いることで面電流センサ301の出力を増大し、検出感度を高めることができる。
 ここで絶縁スペーサ31は、上部電極1と下部電極2との間の絶縁性能を確保した上で高透磁率材料を適用する必要がある。この構成としては絶縁物の間および一部分に高透磁率の金属物を組合せたもの、および絶縁物中に高透磁率である金属の粉末を添加したものなどが使用できる。高透磁率である金属としては、鉄および鉄にケイ素との合金である珪素鋼、鉄とニッケル・コバルト・アルミニウムのなどの合金等がある。
 本実施の形態2の面電流センサ301の構造では、面電流センサ301の検出周波数特性を制御することができる。このため、面電流センサ301の寸法を変更せずに、高感度の周波数帯域を変えることができる。
 ここで、図4の面電流センサの等価回路を参照して、面電流センサ301の特徴を説明する。抵抗R1、R2とインダクタンスL1、L2は面電流センサ301の信号端子4、5から上部電極1につながる結合線34、35で生じるものである。キャパシタンスCは高透磁率材料を用いた絶縁スペーサ31の静電容量である。
 また、両端には信号端子4、5の入力インピーダンスZ1、Z2が接続されている。
 実施の形態1で説明した通り、面電流により発生される電磁界は電界と磁界を含んでいる。電界によりキャパシタンスCの両端に電圧が生じる。磁界によりインダクタンスL1、2に電圧が生じる。この生じた電圧により回路定数LCRに応じた電圧振動を生じ、図4の等価回路図の両端に生じる端子電圧が面電流センサ301の出力となる。
 等価回路はキャパシタンスCを軸に線対象となる回路であり、それぞれLCRの直列回路に端子の入力インピーダンスを直列接続した閉回路なっている。
 LCの共振周波数においてLCRの合成インピーダンスは低下するため、端子の入力インピーダンスにかかる分担電圧は大きくなる。したがって、到来する面電流とそれが発生させる電磁界の周波数成分のうちLC共振周波数に一致する成分に対して面電流センサの端子に生じる電圧が最も高くなる。
 一方、到来する面電流とそれが発生させる電磁界の周波数成分のうち、このLC共振周波数以下の周波数成分においてはキャパシタンスCのインピーダンスが上昇することで端子に生じる電圧は低下する。また、到来する面電流とそれが発生させる電磁界の周波数成分のうち、LC共振周波数以上の周波数特性においてはインダクタンスL1、L2のインピーダンスが上昇することで端子に生じる電圧は低下する。
 したがって、面電流センサ301の検出周波数特性は、主に結合線34、35のインダクタンスL1、L2と絶縁スペーサのキャパシタンスCによって変化する。インダクタンスL1、L2は面電流による磁束の鎖交空間である絶縁スペーサの透磁率によって制御できる。絶縁スペーサ31に高透磁率材料を用いることでインダクタンスL1、L2が増加し、LC共振周波数は高くなる。したがって、面電流センサ301の検出周波数特性を制御して、実施の形態1の面電流センサ300と比較して、面電流センサ301はより高周波帯域の面電流に対し高感度となる。
 以上説明したように、実施の形態2の部分放電検出装置は、面電流センサに高透磁率材料を含む絶縁スペーサを用いたものである。
 したがって、実施の形態2の部分放電検出装置は、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。さらに実施の形態2の部分放電検出装置は、面電流センサの検出周波数特性を制御して、より高周波帯域の面電流に対し高感度となる。
実施の形態3.
 実施の形態3の部分放電検出装置は、面電流センサの絶縁スペーサに高誘電率材料を用いたものである。
 実施の形態3の部分放電検出装置について、面電流センサの断面図である図10に基づいて、実施の形態1との差異を中心に説明する。
 実施の形態3の図10において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、部分放電検出装置202、面電流センサ302としている。
 実施の形態3の部分放電検出装置202の面電流センサ302の構造および機能を説明する。
 面電流センサ302は、金属製の上部電極1と下部電極2とを備え、その間に絶縁スペーサ41が介在している。
 面電流センサ302は、信号端子4、信号端子5を備える。信号端子4、5の信号線は、結合線34、35を介して上部電極1に接続され、接地外皮は下部電極2に接続されている。信号端子4に同軸ケーブル6が接続され、信号端子5に同軸ケーブル7が接続されている。
 本実施の形態3の面電流センサ302の絶縁スペーサ41は、実施の形態1で説明した絶縁スペーサ3に比較して、誘電率を高くしたものである。
 先に説明した通り、面電流センサ302の検出周波数特性は、主に結合線34、35のインダクタンスL1、L2と絶縁スペーサ41のキャパシタンスCによって変化する。
 キャパシタンスCは絶縁スペーサの誘電率に比例し変化する。誘電率は、絶縁スペーサに用いられる樹脂材料を変える、また樹脂材料に添加される無機フィラーの材料および添加量を変えることで変更できる。また、部分的に材料を変えるも考えられる。
 キャパシタンスCを制御し、LC共振周波数を選定することで、面電流センサ302の検出周波数特性を変えることができる。
 高誘電率絶縁スペーサ41を用いることでキャパシタンスCが上昇し、LC共振周波数は高くなる。したがって、面電流センサ302の検出周波数特性を制御して、実施の形態1の面電流センサ300と比較して、面電流センサ302はより高周波帯域の面電流に対し高感度となる。
 以上説明したように、実施の形態3の部分放電検出装置は、面電流センサの絶縁スペーサに高誘電率材料を用いたものである。
 したがって、実施の形態3の部分放電検出装置は、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。さらに実施の形態3の部分放電検出装置は、面電流センサの検出周波数特性を制御して、より高周波帯域の面電流に対し高感度となる。
実施の形態4.
 実施の形態4の部分放電検出装置は、同じ仕様の面電流センサを複数備えたものである。
 実施の形態4の部分放電検出装置について、部分放電検出装置の構成図である図11に基づいて、実施の形態1との差異を中心に説明する。
 実施の形態4の構成図において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、部分放電検出装置203、面電流センサ300、303、演算処理部400、401、表示部501としている。
 実施の形態4の部分放電検出装置203の構成を説明する。
 部分放電検出装置203は、面電流センサ300、303、演算処理部400、401および表示部501を備える。
 実施の形態4の部分放電検出装置203は、同じ仕様、例えば実施の形態1で説明した面電流センサ300を2個使用することを想定している。面電流センサ300と面電流センサ303は、同じ仕様であるが、説明をわかりやすくするために異なる符番号としている。演算処理部400、401についても、同じ仕様であるが、説明をわかりやすくするために異なる符番号としている。
 面電流センサ300、303は、電力機器100の内部で発生する部分放電により電力機器100の外部表面に生じる面電流が発生させる電磁界を検出する。
 演算処理部400は、面電流センサ300が検出した信号を受けて、面電流発生の有無を判定する。さらに、演算処理部400は、面電流の到来方向を推定するとともに、電力機器100の内部で部分放電が発生したかどうかを判別する。
 演算処理部401は、面電流センサ303が検出した信号を受けて、面電流発生の有無を判定する。さらに、演算処理部401は、面電流の到来方向を推定するとともに、電力機器100の内部で部分放電が発生したかどうかを判別する。
 表示部501は、演算処理部400、401の判定結果、推定結果および判別結果を表示するとともに、必要な場合、警報を発信する。
 電力機器100内部で生じた部分放電により放射される電磁波は、電気的な開口部を通して漏洩し、放射上に伝搬する。またこの電磁波は、筐体表面では面電流を形成しながら伝搬していく。
 このため、表示部501において、演算処理部400、401が推定した面電流の到来方向を結ぶことで、特に強い電磁波を放射している電力機器100の開口部を特定することができる。この結果、電力機器100内部における電気絶縁上の異常箇所である部分放電の発生箇所を推定することが可能となる。
 また、演算処理部400、401が推定した面電流の到来方向が電力機器100の開口部ではない場合は、面電流センサ300、303が検出した信号は外部電磁界によるものと判断することができる。
 なお、以上の説明では、演算処理部400、401が推定した結果を受けて、表示部501が更なる解析を行ったが、この解析を演算処理部400、401のいずれかで行うこともできる。
実施の形態4では、図11で示したように2個の面電流センサ300、303、および2個の演算処理部400、401を備えた構成を説明したが、これより多い個数の面電流センサ、演算処理部を備えることが望ましい。
 以上説明したように、実施の形態4の部分放電検出装置は、同じ仕様の面電流センサを複数備えたものである。
 したがって、実施の形態4の部分放電検出装置は、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。さらに実施の形態4の部分放電検出装置は、電力機器内部における部分放電の発生する電気絶縁上の異常箇所を推定することができる。
実施の形態5.
 実施の形態5の部分放電検出装置は、異なる寸法の面電流センサを複数備えたものである。
 実施の形態5の部分放電検出装置について、部分放電検出装置の構成図である図12および面電流センサの断面図である図13に基づいて、実施の形態1との差異を中心に説明する。
 実施の形態5の構成図において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、部分放電検出装置204、面電流センサ300、304、演算処理部400、402、表示部502としている。
 実施の形態5の部分放電検出装置204の構成を説明する。
 部分放電検出装置204は、面電流センサ300、304、演算処理部400、402および表示部502を備える。
 実施の形態5の部分放電検出装置204は、例えば実施の形態1で説明した面電流センサ300と、面電流センサ300とは異なる寸法の面電流センサ304を使用することを想定している。演算処理部400、402については、機能的には同じであるが、説明をわかりやすくするために、異なる符番号としている。
 面電流センサ300、304は、電力機器100の内部で発生する部分放電により電力機器100の外部表面に生じる面電流が発生させる電磁界を検出する。
 演算処理部400は、面電流センサ300が検出した信号を受けて、面電流発生の有無を判定する。さらに、演算処理部400は、面電流の到来方向を推定するとともに、電力機器100の内部で部分放電が発生したかどうかを判別する。
 演算処理部402は、面電流センサ304が検出した信号を受けて、面電流発生の有無を判定する。さらに、演算処理部402は、面電流の到来方向を推定するとともに、電力機器100の内部で部分放電が発生したかどうかを判別する。
 表示部502は、演算処理部400、402の判定結果、推定結果および判別結果を表示するとともに、必要な場合、警報を発信する。
 次に、面電流センサ304の構造および機能について、面電流センサ304の断面図である図13に基づいて説明する。
 面電流センサ304は、金属製の上部電極51と下部電極52とを備え、その間に絶縁スペーサ53が介在している。
 面電流センサ304は、信号端子4、信号端子5を備える。信号端子4、5の信号線は、結合線54、55を介して上部電極1に接続され、接地外皮は下部電極2に接続されている。信号端子4に同軸ケーブル6が接続され、信号端子5に同軸ケーブル7が接続されている。
 本実施の形態5の面電流センサ304は、実施の形態1の面電流センサ300とは寸法が異なる。具体的には、面電流センサ304の幅は、面電流センサ300に比較して大きくなっている。
 先に説明したように、面電流センサ304の検出周波数特性は主に結合線54、55のインダクタンスL1、L2と絶縁スペーサのキャパシタンスCにより変化する。
 図13に示したように面電流センサ304の幅を変えることで、絶縁スペーサ53のキャパシタンスCが増加し、LC共振周波数は高くなる。したがって、面電流センサ304は面電流センサ300に対して、より高周波帯域の面電流に対し高感度となる。
 また、幅を変える以外にも面電流センサ304の寸法を変えることで、この検出周波数特性は制御できる。インダクタンスL1、L2は、結合線54、55の長さを変える以外に線の幅を変更すること、また複数本使用することで制御できる。
 キャパシタンスCは、絶縁スペーサ53の厚さを変更するほか、面積を変更することで制御できる。
 また、実施の形態2、3で説明したように、絶縁スペーサ53の材料を変更して、透磁率、誘電率を変えることでインダクタンスL1、L2、およびキャパシタンスCを制御することができる。
 以上説明したように、インダクタンスL1、L2、およびキャパシタンスCを制御して、LC共振周波数を変えることで、面電流センサ304の検出周波数特性を変えることができる。
 電力機器100の内部で生じる絶縁欠陥により部分放電が発生するが、部分放電電流の有する周波数成分は絶縁不良の種類によって異なる。例えば、SF6ガス中の放電であれば、より高周波成分を多く含む。これに対して、乾燥空気、大気中あるいは絶縁物中の放電であれば、SF6ガス中の放電より低周波成分を多く含む。また放電箇所がガス空間中か、絶縁物沿面で生じるものかによっても周波数成分に影響する。
 したがって、異なる検出周波数特性を備える面電流センサ300、304を備えた部分放電検出装置204を使用することで、幅広い絶縁欠陥の種別を検出することが可能になる。さらに、どの周波数成分が強いかを把握することで、どのような絶縁欠陥が発生しているかを推定することも可能になる。
 実施の形態5では、図12で示したように2個の面電流センサ300、304、および2個の演算処理部400、402を備えた構成を説明したが、これより多い個数の面電流センサ、演算処理部を備えることが望ましい。
 以上説明したように、実施の形態5の部分放電検出装置は、異なる寸法の面電流センサを複数備えたものである。
 したがって、実施の形態5の部分放電検出装置は、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。さらに実施の形態5の部分放電検出装置は、電力機器内部における絶縁欠陥の種別を推定することができる。
実施の形態6.
 実施の形態6の部分放電検出装置は、異なる材料からなる絶縁スペーサを用いた面電流センサを複数備えたものである。
 実施の形態6の部分放電検出装置について、部分放電検出装置の構成図である図14に基づいて、実施の形態1との差異を中心に説明する。なお、適宜、実施の形態2の図9、実施の形態3の図10を参照する。
 実施の形態6の構成図において、実施の形態1と同一あるいは相当部分は、同一の符号を付している。
 なお、実施の形態1と区別するために、部分放電検出装置205、面電流センサ301、302、演算処理部403、404、表示部503としている。
 実施の形態6の部分放電検出装置205の構成を説明する。
 部分放電検出装置205は、面電流センサ301、302、演算処理部403、404および表示部503を備える。
 実施の形態6の部分放電検出装置205は、例えば実施の形態2で説明した高透磁率材料の絶縁スペーサを用いた面電流センサ301と、高誘電率材料の絶縁スペーサを用いた面電流センサ302とを使用することを想定している。演算処理部403、404については、機能的には同じであるが、説明をわかりやすくするために、異なる符番号としている。
 面電流センサ301、302は、電力機器100の内部で発生する部分放電により電力機器100の外部表面に生じる面電流が発生させる電磁界を検出する。
 演算処理部403は、面電流センサ301が検出した信号を受けて、面電流発生の有無を判定する。さらに、演算処理部403は、面電流の到来方向を推定するとともに、電力機器100の内部で部分放電が発生したかどうかを判別する。
 演算処理部404は、面電流センサ302が検出した信号を受けて、面電流発生の有無を判定する。さらに、演算処理部404は、面電流の到来方向を推定するとともに、電力機器100の内部で部分放電が発生したかどうかを判別する。
 表示部503は、演算処理部403、404の判定結果、推定結果および判別結果を表示するとともに、必要な場合、警報を発信する。
 先に説明したように、面電流センサ301、302の検出周波数特性は主に結合線34、35のインダクタンスL1、L2と絶縁スペーサのキャパシタンスCにより変化する。
 また、インダクタンスL1、L2、およびキャパシタンスCを制御して、LC共振周波数を変えることで、面電流センサ304の検出周波数特性を変えることができる。
 電力機器100の内部で生じる絶縁欠陥により部分放電が発生するが、部分放電電流の有する周波数成分は絶縁不良の種類によって異なる。例えば、SF6ガス中の放電であれば、より高周波成分を多く含む。これに対して、乾燥空気、大気中あるいは絶縁物中の放電であれば、SF6ガス中の放電より低周波成分を多く含む。また放電箇所がガス空間中か、絶縁物沿面で生じるものかによっても周波数成分に影響する。
 したがって、異なる検出周波数特性を備える面電流センサ301、302を備えた部分放電検出装置205を使用することで、幅広い絶縁欠陥の種別を検出することが可能になる。さらに、どの周波数成分が強いかを把握することで、どのような絶縁欠陥が発生しているかを推定することも可能になる。
 実施の形態6では、図14で示したように2個の面電流センサ301、302、および2個の演算処理部403、404を備えた構成を説明したが、これより多い個数の面電流センサ、演算処理部を備えることが望ましい。
 以上説明したように、実施の形態6の部分放電検出装置は、異なる材料からなる絶縁スペーサを用いた面電流センサを複数備えたものである。
 したがって、実施の形態6の部分放電検出装置は、面電流センサの設置環境および信号ケーブルの設置方法による検出感度の変動を抑制することができ、電磁波の到来方向の推定精度を向上させることができる。さらに実施の形態6の部分放電検出装置は、電力機器内部における絶縁欠陥の種別を推定することができる。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるものではなく、単独で、または様々な組合せで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組合せる場合が含まれるものとする。
1,51 上部電極、2,52 下部電極、3,31,32,33,41,53 絶縁スペーサ、4,5,9,10 信号端子、6,7,11,12 同軸ケーブル、21 保護回路、22 フィルタ、23 信号増幅回路、24 面電流検出回路、25 A/D変換器、26 到来方向推定回路、27 内部放電判別回路、34,35,54,55 結合線、37 金属スペーサ、100 電力機器、101 機器筐体、200,201,202,203,204,205 部分放電検出装置,300,301,302,303,304 面電流センサ、400,401,402,403,404 演算処理部、500,501,502,503 表示部、R1,R2 抵抗、L1,L2 インダクタンス、C キャパシタンス、Z1,Z2 入力インピーダンス。

Claims (9)

  1. 金属製の上部電極および金属製の下部電極と、前記上部電極と前記下部電極との間に介在する絶縁スペーサと、信号線が前記上部電極に接続され、接地外皮が前記下部電極に接続されている信号端子を複数備えた面電流センサと、
    前記信号端子の信号出力の強度から検査対象の電力機器の外部表面に面電流が発生したかどうかを判定する面電流検出回路と、
    前記信号端子の信号出力の比から前記検査対象の電力機器の外部表面に発生する前記面電流の到来方向を推定する到来方向推定回路と、
    前記推定された面電流の到来方向から前記検査対象の電力機器の内部放電の有無を判別する内部放電判別回路と、を備えた部分放電検出装置。
  2. 高透磁率材料を含む前記絶縁スペーサを用いた請求項1に記載の部分放電検出装置。
  3. 前記絶縁スペーサに高誘電率材料を用いた請求項1に記載の部分放電検出装置。
  4. 前記面電流センサを複数備え、前記複数の前記面電流センサの前記信号端子の信号出力を用いて、さらに前記内部放電の発生箇所を推定する請求項1に記載の部分放電検出装置。
  5. 異なる大きさの前記面電流センサを複数備え、前記面電流センサの前記信号端子の信号出力から、さらに前記検査対象の電力機器の絶縁欠陥の種別を推定する請求項4に記載の部分放電検出装置。
  6. 異なる材料を用いた前記絶縁スペーサを備えた前記面電流センサを複数備え、前記面電流センサの前記信号端子の信号出力から、さらに前記検査対象の電力機器の絶縁欠陥の種別を推定する請求項4に記載の部分放電検出装置。
  7. 前記面電流センサの形状は多角形であり、前記多角形の頂部に前記信号端子を備える請求項1に記載の部分放電検出装置。
  8. 前記面電流センサの形状は四角形であり、
    前記面電流センサの四角形の対角線上にある前記信号端子の信号出力に基づいて、前記面電流の到来方向を推定し、前記電力機器の内部放電の有無を判別する請求項7に記載の部分放電検出装置。
  9. 前記電力機器の内部放電の有無を検査するために、請求項1から請求項8のいずれか1項に記載の部分放電検出装置を前記電力機器の外部表面に設けた電力機器。
PCT/JP2020/024709 2020-06-24 2020-06-24 部分放電検出装置および電力機器 WO2021260820A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022520989A JP7086325B2 (ja) 2020-06-24 2020-06-24 部分放電検出装置および電力機器
PCT/JP2020/024709 WO2021260820A1 (ja) 2020-06-24 2020-06-24 部分放電検出装置および電力機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024709 WO2021260820A1 (ja) 2020-06-24 2020-06-24 部分放電検出装置および電力機器

Publications (1)

Publication Number Publication Date
WO2021260820A1 true WO2021260820A1 (ja) 2021-12-30

Family

ID=79282066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024709 WO2021260820A1 (ja) 2020-06-24 2020-06-24 部分放電検出装置および電力機器

Country Status (2)

Country Link
JP (1) JP7086325B2 (ja)
WO (1) WO2021260820A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238440A1 (ja) * 2022-06-10 2023-12-14 三菱電機株式会社 部分放電検出装置、部分放電検出方法および部分放電検出システム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170596A (ja) * 1996-12-09 1998-06-26 Hitachi Ltd 絶縁機器診断システム及び部分放電検出法
JP2008032595A (ja) * 2006-07-31 2008-02-14 Japan Ae Power Systems Corp 三相一括ガス絶縁機器の部分放電部位標定方法
JP2010204020A (ja) * 2009-03-05 2010-09-16 Mitsubishi Electric Corp 電気機器の異常監視装置及び加速器装置の異常監視装置
JP2012220208A (ja) * 2011-04-04 2012-11-12 Toshiba Corp 部分放電検出装置および部分放電検出方法
JP2016194466A (ja) * 2015-04-01 2016-11-17 東京電力ホールディングス株式会社 部分放電測定装置
US20190056447A1 (en) * 2016-02-24 2019-02-21 Prysmian S.P.A. Processing apparatus and method for detecting partial discharge pulses in the presence of noise signals
JP2019219241A (ja) * 2018-06-19 2019-12-26 富士電機株式会社 電力機器
JP2020112578A (ja) * 2020-04-21 2020-07-27 株式会社東芝 部分放電検出装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10170596A (ja) * 1996-12-09 1998-06-26 Hitachi Ltd 絶縁機器診断システム及び部分放電検出法
JP2008032595A (ja) * 2006-07-31 2008-02-14 Japan Ae Power Systems Corp 三相一括ガス絶縁機器の部分放電部位標定方法
JP2010204020A (ja) * 2009-03-05 2010-09-16 Mitsubishi Electric Corp 電気機器の異常監視装置及び加速器装置の異常監視装置
JP2012220208A (ja) * 2011-04-04 2012-11-12 Toshiba Corp 部分放電検出装置および部分放電検出方法
JP2016194466A (ja) * 2015-04-01 2016-11-17 東京電力ホールディングス株式会社 部分放電測定装置
US20190056447A1 (en) * 2016-02-24 2019-02-21 Prysmian S.P.A. Processing apparatus and method for detecting partial discharge pulses in the presence of noise signals
JP2019219241A (ja) * 2018-06-19 2019-12-26 富士電機株式会社 電力機器
JP2020112578A (ja) * 2020-04-21 2020-07-27 株式会社東芝 部分放電検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238440A1 (ja) * 2022-06-10 2023-12-14 三菱電機株式会社 部分放電検出装置、部分放電検出方法および部分放電検出システム

Also Published As

Publication number Publication date
JPWO2021260820A1 (ja) 2021-12-30
JP7086325B2 (ja) 2022-06-17

Similar Documents

Publication Publication Date Title
US5933012A (en) Device for sensing of electric discharges in a test object
US9482697B2 (en) Combined measuring and detection system
CN101153890B (zh) 电力设备
US20070139056A1 (en) Partial discharge detection apparatus and detection method of electrical rotating machine
US10545178B2 (en) Current sensor for measuring an alternating current
EP1261091A1 (en) Gas insulated device and failure rating method
JP6058033B2 (ja) アンテナとケーブルの接続状態確認方法
JP7086325B2 (ja) 部分放電検出装置および電力機器
CN111308265A (zh) 用于电弧故障检测的低成本高频传感器
CN113917215A (zh) 一种电流传感器
KR101981640B1 (ko) 교류 전자파를 측정하는 전류센서와 이를 이용한 차단기
US6239587B1 (en) Probe for monitoring radio frequency voltage and current
JP5376932B2 (ja) 変圧器の部分放電診断装置
CN113227803B (zh) 局部放电检测装置
KR100632078B1 (ko) 초고압 케이블의 부분방전 측정 시 노이즈 제거장치 및방법
JP7111347B2 (ja) 磁界検出コイルおよびemiアンテナ
US7272520B2 (en) Method and apparatus for determining a current in a conductor
EP3933417B1 (en) Arc detection system and method for an aircraft high voltage and direct current electrical circuit
US5136241A (en) Device for sensing unwanted electric and magnetic fields in a remote sensor electrical lead
US20200182913A1 (en) Current sensor for measuring alternating electromagnetic wave and a current breaker using the same
EP1345033A1 (en) Electrical transformer for voltage and current measurement based on the electromagnetic waves sensored in dielectric
KR101904728B1 (ko) 하이브리드 마그네틱 프로브
WO2023238440A1 (ja) 部分放電検出装置、部分放電検出方法および部分放電検出システム
RU2649037C1 (ru) Компактное широкополосное четырёхкомпонентное приёмное антенное устройство
KR101594756B1 (ko) 부분방전 측정 장치 및 그 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022520989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942236

Country of ref document: EP

Kind code of ref document: A1