WO2021259763A1 - Duct for heat exchanger - Google Patents

Duct for heat exchanger Download PDF

Info

Publication number
WO2021259763A1
WO2021259763A1 PCT/EP2021/066455 EP2021066455W WO2021259763A1 WO 2021259763 A1 WO2021259763 A1 WO 2021259763A1 EP 2021066455 W EP2021066455 W EP 2021066455W WO 2021259763 A1 WO2021259763 A1 WO 2021259763A1
Authority
WO
WIPO (PCT)
Prior art keywords
duct
patterns
fluid
relief
conduit
Prior art date
Application number
PCT/EP2021/066455
Other languages
French (fr)
Inventor
Erwan ETIENNE
Yolanda Bravo
Kamel Azzouz
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2021259763A1 publication Critical patent/WO2021259763A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/424Means comprising outside portions integral with inside portions
    • F28F1/426Means comprising outside portions integral with inside portions the outside portions and the inside portions forming parts of complementary shape, e.g. concave and convex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/02Arrangements for modifying heat-transfer, e.g. increasing, decreasing by influencing fluid boundary
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0091Radiators
    • F28D2021/0094Radiators for recooling the engine coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F2001/027Tubular elements of cross-section which is non-circular with dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element

Definitions

  • the invention relates to a conduit for transporting a fluid inside a heat exchanger, in particular, a heat exchanger for an engine of a motor vehicle, as well as an associated heat exchanger.
  • Motor vehicles whether combustion, electric or hybrid, need to dissipate excess heat from the engine in order to prevent the engine from overheating.
  • engine cooling is obtained by means of a heat transfer fluid circulating in a cooling circuit.
  • the heat transfer fluid is a cooling liquid transporting the excess calories generated at the engine level to an engine radiator.
  • the cooling circuit generally includes a heat exchanger with at least one duct through which the coolant circulates.
  • the aim of the invention is to at least partially remedy this drawback.
  • the invention relates to a conduit for transporting a fluid inside a heat exchanger, the conduit comprising a plurality of protrusions and a plurality of raised patterns, the plurality of protuberances and the plurality of raised patterns being distributed over a length of the duct, the plurality of raised patterns being placed on an internal surface of the duct.
  • the presence of the plurality of patterns in relief on the internal surface of the duct reduces or even destroys the boundary layer, which allows the flow of the fluid to be of the pseudo-turbulent type, and consequently reactivates the heat exchanges of optimally.
  • the presence of the plurality of raised patterns on the internal surface of the duct can cause a decrease in the surface tension of the fluid layer in contact with the internal surface of the duct, thus limiting the average thickness of the layer. limit.
  • the plurality of relief patterns are placed on at least one of the plurality of protrusions.
  • the plurality of raised patterns is placed only on said plurality of protuberances.
  • a depth of at least one of the relief patterns is mesoscopic.
  • the depth of at least one of the relief patterns is between 75 ⁇ m and 250 ⁇ m, preferably between 100 ⁇ m and 200 ⁇ m.
  • a depth of at least one of the relief patterns is microscopic.
  • the depth of at least one of the relief patterns is between 2 ⁇ m and 150 ⁇ m, preferably between 5 ⁇ m and 100 ⁇ m.
  • At least some relief patterns are aligned in a direction forming a non-zero angle with a direction of flow of fluid within the conduit.
  • each relief pattern forms with the direction of flow of the fluid an angle of between 35 ° and 100 °, preferably between 45 ° and 90 °.
  • each relief pattern of the plurality of relief patterns is identical. According to another aspect, at least one relief pattern of the plurality of relief patterns is different from the other relief patterns.
  • each protuberance forms a hollow on an outer surface of the duct.
  • each protuberance is formed by a part assembled on the internal surface of the duct.
  • each relief pattern is obtained by surface texturing by laser and / or by mechanical methods.
  • a heat exchanger comprising at least one duct as described above.
  • the heat exchanger is of the low temperature radiator type.
  • the heat exchanger is configured to effect heat exchange between a first liquid fluid and a second liquid fluid or between a first liquid fluid and a second gaseous fluid.
  • the heat exchanger is a tube exchanger.
  • the heat exchanger is a plate exchanger.
  • the conduit is formed between two plates.
  • FIG. 1 is a schematic front view of a heat exchanger.
  • FIG. 2 is a perspective view and a detail of a duct of the heat exchanger of Figure 1 according to the present invention.
  • FIG. 3 shows a schematic view of a longitudinal section of the duct of FIG. 2.
  • FIG. 4 is a schematic view of a side section of a relief pattern according to the present invention.
  • FIG. 1 shows a heat exchanger 10 for an engine, in particular for a motor vehicle engine.
  • the exchanger 10 is a low temperature radiator type exchanger.
  • the exchanger 10 is configured to allow heat exchange between a first fluid and a second fluid.
  • the first fluid can be a liquid fluid or a gaseous fluid.
  • the second fluid can be a liquid fluid or a gaseous fluid.
  • the exchanger 10 is configured to effect heat exchange between two liquid fluids or between a liquid fluid and a gaseous fluid.
  • the exchanger 10 can also be configured to allow heat exchange between two gaseous fluids.
  • the heat exchanger 10 comprises at least one duct 12.
  • the exchanger 10 comprises a plurality of ducts 12.
  • Each conduit 12 extends between a first end 14 and a second end 16.
  • the conduits 12 are rectilinear.
  • a distance between the first end 14 and the second end 16 corresponds to a length L of the duct 12.
  • all of the conduits 12 in the exchanger 10 are, for example, mutually parallel in a longitudinal direction A and distributed so as to form a row of conduits 12.
  • the conduits 12 are intended to be crossed by said first fluid.
  • the first fluid is a heat transfer fluid.
  • the heat transfer fluid is a liquid fluid or a gaseous fluid.
  • the heat transfer fluid can be water or oil.
  • the exchanger 10 further comprises at least one heat transfer fluid intake manifold making it possible to direct the heat transfer fluid towards the interior of the conduits 12.
  • the exchanger 10 comprises a first intake manifold 18 and a second intake manifold 20 for the coolant.
  • the intake manifolds 18, 20 extend in a direction substantially perpendicular to the direction A of the ducts 12.
  • the first intake manifold 18 is connected to the first end 14 of the ducts 12.
  • the second intake manifold 20 is connected to the second end 16 of the ducts 12.
  • the heat transfer fluid circulating in the first and second manifolds. inlet 18, 20 accesses the interior of the conduits 12 via the first and second ends 14, 16.
  • conduits 12 according to the present invention is described in more detail, with reference to Figures 2 to 4.
  • the duct 12 has a side wall 22 extending between the first end 14 and the second end 16 in the longitudinal direction A.
  • the side wall 22 includes an outer surface 24 and an inner surface 26.
  • the side wall 22 forms an exchange surface between said heat transfer fluid and said second fluid.
  • the second fluid is a fluid circulating outside the conduit 12.
  • the second fluid is a liquid fluid or a gaseous fluid.
  • the duct 12 also comprises a plurality of protuberances 28 arranged on the side wall 22.
  • the protuberances 28 make it possible to increase the exchange surface, which optimizes the heat exchanges between the heat transfer fluid and the second fluid.
  • the plurality of protrusions 28 is distributed over the length L of the duct 12. As clearly shown in FIG. 3, each protrusion 28 projects inside the duct 12, a hollow being formed on the outer surface 24.
  • each protuberance 28 is formed by a part assembled on the internal surface 26, with or without formation of hollows on the external surface 24.
  • the protuberances 28 are regularly distributed over the side wall 22.
  • the protuberances 28 can be arranged so as to form one or more rows of protuberances 28.
  • the protuberances 28 are distributed randomly on the side wall 22.
  • the protrusions 28 are identical, and each protuberance 28 has the same shape and dimension as the other protuberances 28.
  • the protrusions 28 have a substantially ovoid shape.
  • At least one protuberance 28 has a shape and / or a dimension different from the other protuberances 28.
  • the protuberances 28 can all have the same orientation. Alternatively, the protuberances 28 have different orientations from one another.
  • the duct 12 comprises a plurality of patterns in relief 30.
  • the relief patterns 30 make it possible to reduce the surface tension of the layer of heat transfer fluid in contact with the internal surface 26 of the duct 12, thus limiting the formation of the boundary layer.
  • the plurality of patterns in relief 30 is arranged on the internal surface 26 of the duct 12.
  • the patterns in relief 30 are distributed over the length L of the duct 12.
  • the relief patterns 30 are arranged only on the protuberance (s) 28.
  • the relief patterns 30 can be arranged on an area of the internal surface 26 devoid of protuberances 28.
  • the plurality of raised patterns 30 can be placed on at least one of the protrusions 28.
  • the plurality of raised patterns 30 is placed only on the plurality of protrusions 28.
  • each relief pattern 30 includes at least one protrusion 32 and at least one depression 34.
  • a depth D of each relief pattern 30 is defined as a distance measured between the depression 34 and a point belonging to a plane P substantially tangent to the projection 32, the point being substantially parallel to the depression 34.
  • the depth D of the relief patterns 30 is of mesoscopic or microscopic dimension.
  • mesoscopic depth is meant a depth of between 75 ⁇ m and 250 ⁇ m, preferably between 100 ⁇ m and 200 ⁇ m.
  • microscopic depth is meant a depth of between 2 ⁇ m and 150 ⁇ m, preferably between 5 ⁇ m and 100 ⁇ m.
  • the depth D of at least one of the relief patterns 30 may be mesoscopic. Also, the depth D of at least one of the relief patterns 30 may be microscopic. Thus, the duct 12 may include certain patterns in relief 30 at mesoscopic depth and certain patterns in relief 30 at microscopic depth. Alternatively, all of the patterns in relief 30 are at mesoscopic depth or all of the patterns in relief 30 are at microscopic depth.
  • At least some relief patterns 30 are aligned in a direction forming a non-zero angle with a direction of flow of the heat transfer fluid inside the duct 12.
  • the angle a is between 35 ° and 100 °, preferably between 45 ° and 90 °.
  • the direction of flow of the heat transfer fluid is substantially parallel to the longitudinal direction A.
  • Each relief pattern 30 may be identical. Alternatively, at least one relief pattern 30 is different from the other relief patterns.
  • the relief patterns 30 can be obtained by laser surface texturing.
  • the relief patterns 30 can also be obtained by mechanical methods. For example, the relief patterns can be obtained by microfilling or additive manufacturing.
  • the relief patterns 30 prevent the formation of a boundary layer of heat transfer fluid on the internal surface 26 of the duct 12, which makes it possible to transform the flow of the heat transfer fluid inside the duct 12 from a flow of laminar type to a flow of pseudo-turbulent type, even if the Reynolds number is less than 3000.
  • the presence of the patterns 30 directly and only on the protuberances 28 ensures in particular an optimization of the transformation into pseudo-turbulent flow.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The invention relates to a duct (12) for conveying a fluid within a heat exchanger, the duct comprising a plurality of protrusions (28) and a plurality of raised patterns (30), the plurality of protrusions (28) and the plurality of raised patterns (30) being distributed over a length (L) of the duct (12), the plurality of raised patterns (30) being placed on an inner surface (26) of the duct (12).

Description

CONDUIT POUR ECHANGEUR THERMIQUE CONDUIT FOR HEAT EXCHANGER
Domaine technique Technical area
L’invention se rapporte à un conduit pour transporter un fluide à l’intérieur d’un échangeur thermique, en particulier, d’un échangeur thermique pour moteur d’un véhicule automobile, ainsi qu’à un échangeur thermique associé. The invention relates to a conduit for transporting a fluid inside a heat exchanger, in particular, a heat exchanger for an engine of a motor vehicle, as well as an associated heat exchanger.
Technique antérieure Prior art
Les véhicules à moteur, qu’ils soient à combustion, électriques ou hybrides, ont besoin de dissiper une chaleur excédentaire du moteur afin d’éviter une surchauffe dudit moteur. Motor vehicles, whether combustion, electric or hybrid, need to dissipate excess heat from the engine in order to prevent the engine from overheating.
Généralement, un refroidissement du moteur est obtenu grâce à un fluide caloporteur circulant dans un circuit de refroidissement. En particulier, le fluide caloporteur est un liquide de refroidissement transportant les calories excédentaires générées au niveau du moteur vers un radiateur du moteur. Le circuit de refroidissement comporte généralement un échangeur thermique muni d’au moins un conduit à travers duquel circule le liquide de refroidissement. Generally, engine cooling is obtained by means of a heat transfer fluid circulating in a cooling circuit. In particular, the heat transfer fluid is a cooling liquid transporting the excess calories generated at the engine level to an engine radiator. The cooling circuit generally includes a heat exchanger with at least one duct through which the coolant circulates.
Le mouvement du liquide de refroidissement à l’intérieur de chaque conduit de l’échangeur thermique est généré par une pompe électrique. Néanmoins, le développement de véhicules électriques ou hybrides impose l’emploi de pompes électriques de plus en plus petites, réduisant de ce fait drastiquement le débit du fluide dans l’échangeur et l’écoulement du fluide devient laminaire, caractérisé par un nombre de Reynolds inférieur à 3000. The movement of coolant within each heat exchanger duct is generated by an electric pump. However, the development of electric or hybrid vehicles requires the use of increasingly small electric pumps, thereby drastically reducing the flow of the fluid in the exchanger and the flow of the fluid becomes laminar, characterized by a Reynolds number. less than 3000.
Il en résulte la formation d’une couche limite de fluide dans les conduits de l’échangeur, dans laquelle la vitesse du fluide est nulle, et qui gêne voire empêche la transmission de chaleur de l’extérieur du conduit vers le liquide de refroidissement.This results in the formation of a boundary layer of fluid in the exchanger conduits, in which the fluid velocity is zero, and which interferes or even prevents the transmission of heat from outside the conduit to the coolant.
Le but de l’invention est de remédier au moins partiellement à cet inconvénient.The aim of the invention is to at least partially remedy this drawback.
Exposé de l’invention Disclosure of the invention
À cet effet, l’invention a pour objet un conduit pour transporter un fluide à l’intérieur d’un échangeur thermique, le conduit comprenant une pluralité de protubérances et une pluralité de motifs en relief, la pluralité de protubérances et la pluralité de motifs en relief étant reparties sur une longueur du conduit, la pluralité de motifs en relief étant placée sur une surface interne du conduit. To this end, the invention relates to a conduit for transporting a fluid inside a heat exchanger, the conduit comprising a plurality of protrusions and a plurality of raised patterns, the plurality of protuberances and the plurality of raised patterns being distributed over a length of the duct, the plurality of raised patterns being placed on an internal surface of the duct.
Ainsi, la présence de la pluralité de motifs en relief sur la surface interne du conduit réduit voire détruit la couche limite, ce qui permet à l’écoulement du fluide d’être de type pseudo-turbulent, et réactive par conséquent les échanges thermiques de façon optimale. Thus, the presence of the plurality of patterns in relief on the internal surface of the duct reduces or even destroys the boundary layer, which allows the flow of the fluid to be of the pseudo-turbulent type, and consequently reactivates the heat exchanges of optimally.
En outre, la présence de la pluralité de motifs en relief sur la surface interne du conduit peut entraîner une diminution de la tension de surface de la couche de fluide en contact avec la surface interne du conduit, limitant ainsi l’épaisseur moyenne de la couche limite. In addition, the presence of the plurality of raised patterns on the internal surface of the duct can cause a decrease in the surface tension of the fluid layer in contact with the internal surface of the duct, thus limiting the average thickness of the layer. limit.
Selon un autre aspect, la pluralité de motifs en relief est placée sur l’une au moins des protubérances de la pluralité de protubérances. In another aspect, the plurality of relief patterns are placed on at least one of the plurality of protrusions.
Selon un autre aspect, la pluralité de motifs en relief est placée uniquement sur ladite pluralité de protubérances. According to another aspect, the plurality of raised patterns is placed only on said plurality of protuberances.
Selon un autre aspect, une profondeur de l’un au moins des motifs en relief est mésoscopique. In another aspect, a depth of at least one of the relief patterns is mesoscopic.
Selon un autre aspect, la profondeur de l’un au moins des motifs en relief est comprise entre 75 pm et 250 miti, de préférence entre 100 pm et 200 pm. According to another aspect, the depth of at least one of the relief patterns is between 75 µm and 250 µm, preferably between 100 µm and 200 µm.
Selon un autre aspect, une profondeur de l’un au moins des motifs en relief est microscopique. In another aspect, a depth of at least one of the relief patterns is microscopic.
Selon un autre aspect, la profondeur de l’un au moins des motifs en relief est comprise entre 2 pm et 150 pm, de préférence entre 5 pm et 100 pm. According to another aspect, the depth of at least one of the relief patterns is between 2 µm and 150 µm, preferably between 5 µm and 100 µm.
Selon un autre aspect, au moins certains motifs en relief sont alignés dans une direction formant un angle non nul avec une direction d’écoulement du fluide à l’intérieur du conduit. In another aspect, at least some relief patterns are aligned in a direction forming a non-zero angle with a direction of flow of fluid within the conduit.
Selon un autre aspect, chaque motif en relief forme avec la direction d’écoulement du fluide un angle compris entre 35° et 100°, de préférence entre 45° et 90°. In another aspect, each relief pattern forms with the direction of flow of the fluid an angle of between 35 ° and 100 °, preferably between 45 ° and 90 °.
Selon un autre aspect, chaque motif en relief de la pluralité de motifs en relief est identique. Selon un autre aspect, au moins un motif en relief de la pluralité de motifs en relief est différent des autres motifs en relief. According to another aspect, each relief pattern of the plurality of relief patterns is identical. According to another aspect, at least one relief pattern of the plurality of relief patterns is different from the other relief patterns.
Selon un autre aspect, chaque protubérance forme un creux sur une surface externe du conduit. In another aspect, each protuberance forms a hollow on an outer surface of the duct.
Selon un autre aspect, chaque protubérance est formée par une pièce assemblée sur la surface interne du conduit. According to another aspect, each protuberance is formed by a part assembled on the internal surface of the duct.
Selon un autre aspect, chaque motif en relief est obtenu par texturation de surface par laser et/ou par des procédés mécaniques. According to another aspect, each relief pattern is obtained by surface texturing by laser and / or by mechanical methods.
Selon un autre aspect, il est décrit un échangeur thermique comprenant au moins un conduit tel que décrit ci-avant. According to another aspect, a heat exchanger is described comprising at least one duct as described above.
Selon un autre aspect, l’échangeur thermique est de type radiateur basse température. In another aspect, the heat exchanger is of the low temperature radiator type.
Selon un autre aspect, l’échangeur thermique est configuré pour effectuer un échange thermique entre un premier fluide liquide et un deuxième fluide liquide ou entre un premier fluide liquide et un deuxième fluide gazeux. In another aspect, the heat exchanger is configured to effect heat exchange between a first liquid fluid and a second liquid fluid or between a first liquid fluid and a second gaseous fluid.
Selon un aspect de l’invention, l’échangeur thermique est un échangeur à tubes.According to one aspect of the invention, the heat exchanger is a tube exchanger.
Selon un autre aspect de l’invention, l’échangeur thermique est un échangeur à plaques. According to another aspect of the invention, the heat exchanger is a plate exchanger.
Selon un aspect de l’invention, le conduit est formé entre deux plaques. According to one aspect of the invention, the conduit is formed between two plates.
Brève description des dessins Brief description of the drawings
D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après, et à l’analyse des dessins annexés, sur lesquels : Other features, details and advantages of the invention will become apparent on reading the detailed description below, and on analyzing the accompanying drawings, in which:
[Fig. 1] représente une vue schématique frontale d’un échangeur thermique. [Fig. 1] is a schematic front view of a heat exchanger.
[Fig. 2] est une vue en perspective et un détail d’un conduit de l’échangeur thermique de la figure 1 selon la présente invention. [Fig. 2] is a perspective view and a detail of a duct of the heat exchanger of Figure 1 according to the present invention.
[Fig. 3] montre une vue schématique d’une coupe longitudinale du conduit de la figure 2. [Fig. 4] est une vue schématique d’une coupe latérale d’un motif en relief selon la présente invention. [Fig. 3] shows a schematic view of a longitudinal section of the duct of FIG. 2. [Fig. 4] is a schematic view of a side section of a relief pattern according to the present invention.
Description de modes de réalisation Description of embodiments
Dans la suite de la description, les éléments identiques ou de fonction identique portent le même signe de référence. À fin de concision de la présente description, ces éléments ne sont pas décrits en détails dans chaque mode de réalisation. Au contraire, seules les différences entre les variantes de réalisation sont décrites en détails. In the remainder of the description, elements that are identical or have an identical function bear the same reference sign. For the sake of brevity of the present description, these elements are not described in detail in each embodiment. On the contrary, only the differences between the variant embodiments are described in detail.
La figure 1 montre un échangeur thermique 10 pour moteur, notamment pour moteur de véhicule automobile. De préférence, l’échangeur 10 est un échangeur de type radiateur basse température. FIG. 1 shows a heat exchanger 10 for an engine, in particular for a motor vehicle engine. Preferably, the exchanger 10 is a low temperature radiator type exchanger.
Comme il sera détaillé ultérieurement, l’échangeur 10 est configuré pour permettre un échange thermique entre un premier fluide et un deuxième fluide. Le premier fluide peut être un fluide liquide ou un fluide gazeux. De même, le deuxième fluide peut être un fluide liquide ou un fluide gazeux. As will be detailed later, the exchanger 10 is configured to allow heat exchange between a first fluid and a second fluid. The first fluid can be a liquid fluid or a gaseous fluid. Likewise, the second fluid can be a liquid fluid or a gaseous fluid.
Ainsi, l’échangeur 10 est configuré pour effectuer un échange thermique entre deux fluides liquides ou entre un fluide liquide et un fluide gazeux. L’échangeur 10 peut aussi être configuré pour permettre un échange thermique entre deux fluides gazeux. Thus, the exchanger 10 is configured to effect heat exchange between two liquid fluids or between a liquid fluid and a gaseous fluid. The exchanger 10 can also be configured to allow heat exchange between two gaseous fluids.
L’échangeur thermique 10 comprend au moins un conduit 12. De préférence, l’échangeur 10 comprend une pluralité de conduits 12. The heat exchanger 10 comprises at least one duct 12. Preferably, the exchanger 10 comprises a plurality of ducts 12.
Chaque conduit 12 s’étend entre une première extrémité 14 et une deuxième extrémité 16. De préférence, les conduits 12 sont rectilignes. Ainsi, une distance entre la première extrémité 14 et la deuxième extrémité 16 correspond à une longueur L du conduit 12. Each conduit 12 extends between a first end 14 and a second end 16. Preferably, the conduits 12 are rectilinear. Thus, a distance between the first end 14 and the second end 16 corresponds to a length L of the duct 12.
Sur la figure 1 , l’ensemble des conduits 12 dans l’échangeur 10 sont, par exemple, parallèles entre eux selon une direction longitudinale A et répartis de manière à former une rangée de conduits 12. Bien entendu, l’invention n’est pas limitée à cette configuration et les conduits peuvent être répartis selon plusieurs rangées de conduits. Les conduits 12 sont destinés à être traversés par ledit premier fluide. Le premier fluide est un fluide caloporteur. Le fluide caloporteur est un fluide liquide ou un fluide gazeux. Par exemple, le fluide caloporteur peut être de l’eau ou de l’huile. In FIG. 1, all of the conduits 12 in the exchanger 10 are, for example, mutually parallel in a longitudinal direction A and distributed so as to form a row of conduits 12. Of course, the invention is not not limited to this configuration and the conduits can be distributed in several rows of conduits. The conduits 12 are intended to be crossed by said first fluid. The first fluid is a heat transfer fluid. The heat transfer fluid is a liquid fluid or a gaseous fluid. For example, the heat transfer fluid can be water or oil.
L’échangeur 10 comprend en outre au moins un collecteur d’admission du fluide caloporteur permettant de diriger le fluide caloporteur vers l’intérieur des conduits 12. Sur la figure 1 , l’échangeur 10 comprend un premier collecteur d’admission 18 et un deuxième collecteur d’admission 20 du fluide caloporteur. The exchanger 10 further comprises at least one heat transfer fluid intake manifold making it possible to direct the heat transfer fluid towards the interior of the conduits 12. In FIG. 1, the exchanger 10 comprises a first intake manifold 18 and a second intake manifold 20 for the coolant.
De préférence, les collecteurs d’admission 18, 20 s’étendent selon une direction sensiblement perpendiculaire à la direction A des conduits 12. Preferably, the intake manifolds 18, 20 extend in a direction substantially perpendicular to the direction A of the ducts 12.
Le premier collecteur d’admission 18 est relié à la première extrémité 14 des conduits 12. Le deuxième collecteur d’admission 20 est relié à la deuxième extrémité 16 des conduits 12. Ainsi, le fluide caloporteur circulant dans les premier et deuxième collecteurs d’admission 18, 20 accède à l’intérieur des conduits 12 par les première et deuxième extrémités 14, 16. The first intake manifold 18 is connected to the first end 14 of the ducts 12. The second intake manifold 20 is connected to the second end 16 of the ducts 12. Thus, the heat transfer fluid circulating in the first and second manifolds. inlet 18, 20 accesses the interior of the conduits 12 via the first and second ends 14, 16.
Maintenant, on décrit plus en détails l’un des conduits 12 selon la présente invention, en référence aux figures 2 à 4. Now, one of the conduits 12 according to the present invention is described in more detail, with reference to Figures 2 to 4.
Comme illustré sur la figure 2, le conduit 12 comporte une paroi latérale 22 s’étendant entre la première extrémité 14 et la deuxième extrémité 16 selon la direction longitudinale A. La paroi latérale 22 comprend une surface externe 24 et une surface interne 26. As illustrated in Figure 2, the duct 12 has a side wall 22 extending between the first end 14 and the second end 16 in the longitudinal direction A. The side wall 22 includes an outer surface 24 and an inner surface 26.
Lorsque le fluide caloporteur circule dans le conduit 12, la paroi latérale 22 forme surface d’échange entre ledit fluide caloporteur et ledit deuxième fluide. Le deuxième fluide est un fluide circulant à l’extérieur du conduit 12. Le deuxième fluide est un fluide liquide ou un fluide gazeux. When the heat transfer fluid circulates in the conduit 12, the side wall 22 forms an exchange surface between said heat transfer fluid and said second fluid. The second fluid is a fluid circulating outside the conduit 12. The second fluid is a liquid fluid or a gaseous fluid.
Comme illustré sur les figures 2 et 3, le conduit 12 comprend également une pluralité de protubérances 28 disposée sur la paroi latérale 22. Les protubérances 28 permettent d’augmenter la surface d’échange, ce qui optimise les échanges thermiques entre le fluide caloporteur et le deuxième fluide. La pluralité de protubérances 28 est répartie sur la longueur L du conduit 12. Comme clairement représenté sur la figure 3, chaque protubérance 28 fait saillie à l’intérieur du conduit 12, un creux étant formé sur la surface externe 24. As illustrated in Figures 2 and 3, the duct 12 also comprises a plurality of protuberances 28 arranged on the side wall 22. The protuberances 28 make it possible to increase the exchange surface, which optimizes the heat exchanges between the heat transfer fluid and the second fluid. The plurality of protrusions 28 is distributed over the length L of the duct 12. As clearly shown in FIG. 3, each protrusion 28 projects inside the duct 12, a hollow being formed on the outer surface 24.
Selon une alternative non représentée, chaque protubérance 28 est formée par une pièce assemblée sur la surface interne 26, avec ou sans formation de creux sur la surface externe 24. According to an alternative not shown, each protuberance 28 is formed by a part assembled on the internal surface 26, with or without formation of hollows on the external surface 24.
De préférence, les protubérances 28 sont régulièrement réparties sur la paroi latérale 22. Par exemple, les protubérances 28 peuvent être disposées de manière à former une ou plusieurs rangées de protubérances 28. Preferably, the protuberances 28 are regularly distributed over the side wall 22. For example, the protuberances 28 can be arranged so as to form one or more rows of protuberances 28.
Alternativement, les protubérances 28 sont réparties de manière aléatoire sur la paroi latérale 22. Alternatively, the protuberances 28 are distributed randomly on the side wall 22.
De préférence, les protubérances 28 sont identiques, et chaque protubérance 28 a une même forme et dimension que les autres protubérances 28. Par exemple, les protubérances 28 ont une forme sensiblement ovoïde. Preferably, the protrusions 28 are identical, and each protuberance 28 has the same shape and dimension as the other protuberances 28. For example, the protrusions 28 have a substantially ovoid shape.
Alternativement, au moins une protubérance 28 a une forme et/ou une dimension différente des autres protubérances 28. Alternatively, at least one protuberance 28 has a shape and / or a dimension different from the other protuberances 28.
Comme montré sur la figure 2, les protubérances 28 peuvent avoir toutes une même orientation. Alternativement, les protubérances 28 ont des orientations différentes entre elles. As shown in Figure 2, the protuberances 28 can all have the same orientation. Alternatively, the protuberances 28 have different orientations from one another.
Comme il ressort également des figures, le conduit 12 comprend une pluralité de motifs en relief 30. As also emerges from the figures, the duct 12 comprises a plurality of patterns in relief 30.
Les motifs en relief 30 permettent de diminuer la tension de surface de la couche de fluide caloporteur en contact avec la surface interne 26 du conduit 12, limitant ainsi la formation de la couche limite. The relief patterns 30 make it possible to reduce the surface tension of the layer of heat transfer fluid in contact with the internal surface 26 of the duct 12, thus limiting the formation of the boundary layer.
Sur les figures, la pluralité de motifs en relief 30 est disposée sur la surface interne 26 du conduit 12. Les motifs en relief 30 sont repartis sur la longueur L du conduit 12. In the figures, the plurality of patterns in relief 30 is arranged on the internal surface 26 of the duct 12. The patterns in relief 30 are distributed over the length L of the duct 12.
De préférence, comme illustré sur les figures, les motifs en relief 30 sont disposés uniquement sur la ou les protubérances 28. Alternativement, les motifs en relief 30 peuvent être disposés sur une zone de la surface interne 26 démunie de protubérances 28. Preferably, as illustrated in the figures, the relief patterns 30 are arranged only on the protuberance (s) 28. Alternatively, the relief patterns 30 can be arranged on an area of the internal surface 26 devoid of protuberances 28.
Par exemple, la pluralité de motifs en relief 30 peut être placée sur l’une au moins des protubérances 28. Préférentiellement, la pluralité de motifs en relief 30 est placée uniquement sur la pluralité de protubérances 28. For example, the plurality of raised patterns 30 can be placed on at least one of the protrusions 28. Preferably, the plurality of raised patterns 30 is placed only on the plurality of protrusions 28.
Comme montré sur la figure 4, chaque motif en relief 30 comprend au moins une saillie 32 et au moins une dépression 34. As shown in Figure 4, each relief pattern 30 includes at least one protrusion 32 and at least one depression 34.
Une profondeur D de chaque motif en relief 30 est définie comme une distance mesurée entre la dépression 34 et un point appartenant à un plan P sensiblement tangent à la saillie 32, le point étant sensiblement parallèle à la dépression 34.A depth D of each relief pattern 30 is defined as a distance measured between the depression 34 and a point belonging to a plane P substantially tangent to the projection 32, the point being substantially parallel to the depression 34.
Avantageusement, la profondeur D des motifs en relief 30 est de dimension mésoscopique ou microscopique. Par profondeur mésoscopique on entend une profondeur comprise entre 75 pm et 250 miti, de préférence entre 100 pm et 200 pm. Par profondeur microscopique on entend une profondeur comprise entre 2 pm et 150 pm, de préférence entre 5 pm et 100 pm. Advantageously, the depth D of the relief patterns 30 is of mesoscopic or microscopic dimension. By mesoscopic depth is meant a depth of between 75 μm and 250 μm, preferably between 100 μm and 200 μm. By microscopic depth is meant a depth of between 2 μm and 150 μm, preferably between 5 μm and 100 μm.
Dans le conduit 12, la profondeur D de l’un au moins des motifs en relief 30 peut être mésoscopique. Aussi, la profondeur D de l’un au moins des motifs en relief 30 peut être microscopique. Ainsi, le conduit 12 peut comporter certains motifs en relief 30 à profondeur mésoscopique et certains motifs en relief 30 à profondeur microscopique. Alternativement, tous les motifs en relief 30 sont à profondeur mésoscopique ou tous les motifs en relief 30 sont à profondeur microscopique.In conduit 12, the depth D of at least one of the relief patterns 30 may be mesoscopic. Also, the depth D of at least one of the relief patterns 30 may be microscopic. Thus, the duct 12 may include certain patterns in relief 30 at mesoscopic depth and certain patterns in relief 30 at microscopic depth. Alternatively, all of the patterns in relief 30 are at mesoscopic depth or all of the patterns in relief 30 are at microscopic depth.
Comme montré sur la figure 3, au moins certains motifs en relief 30 sont alignés dans une direction formant un angle a non nul avec une direction d’écoulement du fluide caloporteur à l’intérieur du conduit 12. En particulier, l’angle a est compris entre 35° et 100°, de préférence entre 45° et 90°. Par exemple, la direction d’écoulement du fluide caloporteur est sensiblement parallèle à la direction longitudinale A. As shown in FIG. 3, at least some relief patterns 30 are aligned in a direction forming a non-zero angle with a direction of flow of the heat transfer fluid inside the duct 12. In particular, the angle a is between 35 ° and 100 °, preferably between 45 ° and 90 °. For example, the direction of flow of the heat transfer fluid is substantially parallel to the longitudinal direction A.
Chaque motif en relief 30 peut être identique. Alternativement, au moins un motif en relief 30 est différent des autres motifs en relief. Les motifs en relief 30 peuvent être obtenus par texturation de surface par laser. Les motifs en relief 30 peuvent aussi être obtenus par des procédés mécaniques. Par exemple, les motifs en relief peuvent être obtenus par microfraisage ou fabrication additive. Comme déjà indiqué, les motifs en relief 30 empêchent la formation d’une couche limite de fluide caloporteur sur la surface interne 26 du conduit 12, ce qui permet de transformer l’écoulement du fluide caloporteur à l’intérieur du conduit 12 d’un écoulement de type laminaire à un écoulement de type pseudo-turbulent, même si le nombre de Reynolds est inférieur à 3000. La présence des motifs 30 directement et uniquement sur les protubérances 28 assure en particulier une optimisation de la transformation en écoulement pseudo turbulent. Each relief pattern 30 may be identical. Alternatively, at least one relief pattern 30 is different from the other relief patterns. The relief patterns 30 can be obtained by laser surface texturing. The relief patterns 30 can also be obtained by mechanical methods. For example, the relief patterns can be obtained by microfilling or additive manufacturing. As already indicated, the relief patterns 30 prevent the formation of a boundary layer of heat transfer fluid on the internal surface 26 of the duct 12, which makes it possible to transform the flow of the heat transfer fluid inside the duct 12 from a flow of laminar type to a flow of pseudo-turbulent type, even if the Reynolds number is less than 3000. The presence of the patterns 30 directly and only on the protuberances 28 ensures in particular an optimization of the transformation into pseudo-turbulent flow.
La présente divulgation ne se limite pas à l’exemple décrit ci-avant en regard des figures. La présente divulgation englobe bien au contraire toutes les variantes et combinaisons que pourra envisager l’homme de l’art dans le cadre de la protection recherchée. The present disclosure is not limited to the example described above with reference to the figures. On the contrary, the present disclosure encompasses all the variants and combinations that a person skilled in the art may envisage in the context of the protection sought.

Claims

Revendications Claims
[Revendication 1] Conduit (12) pour transporter un fluide à l’intérieur d’un échangeur thermique (10), le conduit comprenant une pluralité de protubérances (28) et une pluralité de motifs en relief (30), la pluralité de protubérances (28) et la pluralité de motifs en relief (30) étant reparties sur une longueur (L) du conduit (12), la pluralité de motifs en relief (30) étant placée sur une surface interne (26) du conduit (12). [Claim 1] A conduit (12) for transporting fluid within a heat exchanger (10), the conduit comprising a plurality of protrusions (28) and a plurality of raised patterns (30), the plurality of protrusions (28) and the plurality of raised patterns (30) being distributed over a length (L) of the duct (12), the plurality of raised patterns (30) being placed on an internal surface (26) of the duct (12) .
[Revendication 2] Conduit (12) selon la revendication 1 , dans lequel la pluralité de motifs en relief (30) est placée sur l’une au moins des protubérances (28) de la pluralité de protubérances (28). [Claim 2] A conduit (12) according to claim 1, wherein the plurality of raised patterns (30) are placed on at least one of the protrusions (28) of the plurality of protrusions (28).
[Revendication 3] Conduit (12) selon la revendication 1 ou la revendication 2, dans lequel la pluralité de motifs en relief (30) est placée uniquement sur ladite pluralité de protubérances (28). [Claim 3] A conduit (12) according to claim 1 or claim 2, wherein the plurality of relief patterns (30) are placed only on said plurality of protrusions (28).
[Revendication 4] Conduit (12) selon l’une quelconque des revendications précédentes, dans lequel une profondeur (D) de l’un au moins des motifs en relief (30) est mésoscopique. [Claim 4] A conduit (12) according to any preceding claim, wherein a depth (D) of at least one of the relief patterns (30) is mesoscopic.
[Revendication 5] Conduit (12) selon la revendication précédente, dans lequel la profondeur (D) de l’un au moins des motifs en relief (30) est comprise entre 75 pm et 250 miti, de préférence entre 100 pm et 200 pm. [Claim 5] A conduit (12) according to the preceding claim, in which the depth (D) of at least one of the relief patterns (30) is between 75 pm and 250 miti, preferably between 100 pm and 200 pm .
[Revendication 6] Conduit (12) selon l’une quelconque des revendications précédentes, dans lequel une profondeur (D) de l’un au moins des motifs en relief (30) est microscopique. [Claim 6] A conduit (12) according to any preceding claim, wherein a depth (D) of at least one of the relief patterns (30) is microscopic.
[Revendication 7] Conduit (12) selon la revendication précédente, dans lequel la profondeur (D) de l’un au moins des motifs en relief (30) est comprise entre 2 pm et 150 pm, de préférence entre 5 pm et 100 pm. [Claim 7] A conduit (12) according to the preceding claim, in which the depth (D) of at least one of the relief patterns (30) is between 2 pm and 150 pm, preferably between 5 pm and 100 pm .
[Revendication 8] Conduit (12) selon l’une quelconque des revendications précédentes, dans lequel au moins certains motifs en relief (30) sont alignés dans une direction formant un angle (a) non nul avec une direction d’écoulement du fluide à l’intérieur du conduit (12). [Claim 8] A conduit (12) according to any preceding claim, wherein at least some relief patterns (30) are aligned in a direction forming a non-zero angle (a) with a direction of fluid flow at inside the duct (12).
[Revendication 9] Conduit (12) selon la revendication précédente, dans lequel chaque motif en relief (30) forme avec la direction d’écoulement du fluide un angle (a) compris entre 35° et 100°, de préférence entre 45° et 90°. [Claim 9] A conduit (12) according to the preceding claim, in which each relief pattern (30) forms with the direction of flow of the fluid an angle (a) of between 35 ° and 100 °, preferably between 45 ° and 90 °.
[Revendication 10] Echangeur thermique (10) comprenant au moins un conduit (12) selon l’une quelconque des revendications précédentes. [Claim 10] A heat exchanger (10) comprising at least one duct (12) according to any one of the preceding claims.
PCT/EP2021/066455 2020-06-24 2021-06-17 Duct for heat exchanger WO2021259763A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2006596 2020-06-24
FR2006596A FR3111972B1 (en) 2020-06-24 2020-06-24 DUCT FOR HEAT EXCHANGER

Publications (1)

Publication Number Publication Date
WO2021259763A1 true WO2021259763A1 (en) 2021-12-30

Family

ID=72560821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/066455 WO2021259763A1 (en) 2020-06-24 2021-06-17 Duct for heat exchanger

Country Status (2)

Country Link
FR (1) FR3111972B1 (en)
WO (1) WO2021259763A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057623A1 (en) * 2007-10-31 2009-05-07 Calsonic Kansei Corporation Heat exchanger
WO2011013144A2 (en) * 2009-07-29 2011-02-03 Thermax Limited A heat exchanger tube
DE102014108463A1 (en) * 2014-06-16 2015-12-17 Fischer Edelstahlrohre Gmbh Heat exchanger tube and method for producing a heat exchanger tube
DE102017222742A1 (en) * 2017-12-14 2019-06-19 Hanon Systems Pipe, in particular flat pipe for an exhaust gas cooler and exhaust gas cooler
US20190195575A1 (en) * 2017-12-21 2019-06-27 Mahle International Gmbh Flat tube for an exhaust gas cooler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009057623A1 (en) * 2007-10-31 2009-05-07 Calsonic Kansei Corporation Heat exchanger
WO2011013144A2 (en) * 2009-07-29 2011-02-03 Thermax Limited A heat exchanger tube
DE102014108463A1 (en) * 2014-06-16 2015-12-17 Fischer Edelstahlrohre Gmbh Heat exchanger tube and method for producing a heat exchanger tube
DE102017222742A1 (en) * 2017-12-14 2019-06-19 Hanon Systems Pipe, in particular flat pipe for an exhaust gas cooler and exhaust gas cooler
US20190195575A1 (en) * 2017-12-21 2019-06-27 Mahle International Gmbh Flat tube for an exhaust gas cooler

Also Published As

Publication number Publication date
FR3111972B1 (en) 2022-08-05
FR3111972A1 (en) 2021-12-31

Similar Documents

Publication Publication Date Title
EP0654646B1 (en) Laminated heat exchanger, more particularly oil cooler for automotive vehicle
WO2021259763A1 (en) Duct for heat exchanger
FR2935475A1 (en) Heat exchanger i.e. cooler, for cooling re-circulated exhaust gas, in cooling circuit of heat engine of motor vehicle, has fluid inlets for inletting fractions of coolant, and fluid outlet for evacuating fractions of coolant at same time
EP2171386B1 (en) Heat exchanger for gas, particularly for the exhaust gases of an engine
FR2823382A1 (en) Oil cooling of hybrid vehicle electric propulsion motor, uses restrictors in stator oil channels to improve cooling effect
FR2929653A1 (en) Cylinder head for internal combustion engine i.e. diesel engine, of motor vehicle, has exhaust pipe defined by wall in which coolant is circulated, where outline of transversal section of exhaust pipe comprises undulations
FR3056722A1 (en) THERMAL EXCHANGER COMPRISING PHASE CHANGE MATERIAL
FR3088994A1 (en) HEAT EXCHANGER AND FLUID COOLING SYSTEM COMPRISING SUCH A HEAT EXCHANGER
WO2020234056A1 (en) Plate of a heat exchanger for a vehicle
EP3532791B1 (en) Collector plate for a motor vehicle heat exchanger
FR3110632A1 (en) Heat exchange device for an exhaust line
FR3082295A1 (en) MOTOR VEHICLE HEAT EXCHANGER
FR2877694A1 (en) EXHAUST PIPE AND METHOD FOR MANUFACTURING EXHAUST PIPE
FR3111977A1 (en) Heat exchanger comprising a section reduction member of a manifold.
FR3030707A1 (en) HEAT TRANSFER ASSEMBLY FOR A HEAT EXCHANGER
FR2552216A1 (en) Improvements made to heat exchanger pipes and to exchangers made with such pipes
FR3078150A1 (en) Heat exchanger for electrical component and assembly of said heat exchanger and said component
FR2866948A1 (en) Heat exchanger e.g. heat radiator, for motor vehicle, has deviation plates of length selected such that their ends define deflector contour with convex portion complementary to concave portion of circumference of each hole of cooling fins
FR3059403A1 (en) PLAY FOR HEAT EXCHANGER OF MOTOR VEHICLE
FR2999696A1 (en) FLAT TUBE FOR EXHAUST AIR HEAT EXCHANGER AND HEAT EXCHANGER OF CORRESPONDING SUPERVISION AIR HEAT.
FR3056729A1 (en) COLLECTOR BOX FOR HEAT EXCHANGER WITH SOUNDS
FR2821926A1 (en) Plate heat exchanger, for refrigerating systems, uses plates defining independent fluid channels, and has cross-section of channel circulating fluid to be cooled significantly greater than that of channel circulating refrigerant fluid
FR3137754A1 (en) FINNED HEAT EXCHANGER OF VARIABLE LENGTH AND CORRESPONDING TURBOMACHINE
WO2023099315A1 (en) Advanced disturbance elements for improving pipe performance
FR2853052A1 (en) OPTIMIZED HEAT EXCHANGE MODULE, ESPECIALLY FOR A MOTOR VEHICLE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21733971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21733971

Country of ref document: EP

Kind code of ref document: A1