WO2021259267A1 - 一种电池充放电电路 - Google Patents

一种电池充放电电路 Download PDF

Info

Publication number
WO2021259267A1
WO2021259267A1 PCT/CN2021/101556 CN2021101556W WO2021259267A1 WO 2021259267 A1 WO2021259267 A1 WO 2021259267A1 CN 2021101556 W CN2021101556 W CN 2021101556W WO 2021259267 A1 WO2021259267 A1 WO 2021259267A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
terminal
capacitor
circuit
voltage
Prior art date
Application number
PCT/CN2021/101556
Other languages
English (en)
French (fr)
Inventor
向昌波
王大庆
王伟
连海权
胡跃贞
宋海生
范先胜
Original Assignee
深圳市富兰瓦时技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市富兰瓦时技术有限公司 filed Critical 深圳市富兰瓦时技术有限公司
Priority to US17/560,243 priority Critical patent/US20220115887A1/en
Publication of WO2021259267A1 publication Critical patent/WO2021259267A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • the embodiments of the present application relate to battery charging and discharging technologies, such as a battery charging and discharging circuit.
  • the energy storage system includes a battery and a two-way DC/AC (Direct Current Alternating Current/, DC/AC) energy storage inverter. Batteries are also divided into low voltage and high voltage.
  • the DC/AC energy storage inverter is set to convert the direct current of the battery into alternating current to supply power to the load or connect to the grid to the public grid.
  • the AC voltage and current output by the inverter must have low harmonic content; the above-mentioned batteries and DC/AC energy storage inverters in related industries are generally placed separately.
  • the battery supplies power to important loads through the DC/AC energy storage inverter; in related industries, in the event of a power failure, the DC/AC energy storage inverter will restart, and then the battery will be converted to AC power supplies power to the load, and there will be a power outage of more than a second in the middle, and important equipment cannot save data; in some high-voltage energy storage systems, because the inverter is not isolated, there is a safety hazard and it is not convenient for home users to use.
  • the present application provides a battery charging and discharging circuit to achieve the effect of uninterrupted charging and discharging.
  • an embodiment of the present application provides a battery charging and discharging circuit, including:
  • the battery module (1) is set to receive charging voltage or release discharge voltage
  • a transformer circuit (2) the transformer circuit (2) is connected to the battery module (1), and the transformer circuit (2) is configured to convert a first charging voltage into a charging voltage or a discharging voltage into First discharge voltage;
  • a buck-boost circuit (3) the buck-boost circuit (3) is connected to the transformer circuit (2), and the buck-boost circuit (3) is configured to convert the second charging voltage into the first Charging voltage or converting the first discharging voltage into a second discharging voltage;
  • Grid end or user end (4) said grid end or user end (4) is connected to said buck-boost circuit (3), said grid end or user end (4) is set to generate a second charging voltage or accept The second discharge voltage.
  • FIG. 1 is a module connection diagram of a battery charging and discharging circuit provided in Embodiment 1 of this application;
  • FIG. 2 is a circuit diagram of a battery charging and discharging circuit provided in Embodiment 1 of this application;
  • FIG. 3 is a module connection diagram of a battery charging and discharging circuit provided in the second embodiment of the application.
  • FIG. 4 is a circuit diagram of a battery charging and discharging circuit provided in the second embodiment of the application.
  • first”, “second”, etc. may be used herein to describe various directions, actions, steps or elements, etc., but these directions, actions, steps or elements are not limited by these terms. These terms are only used to distinguish a first direction, action, step or element from another direction, action, step or element.
  • the first voltage may be referred to as the first voltage
  • the second voltage may be referred to as the first voltage. Both the first voltage and the second voltage are the first voltage, but they are not the same first voltage.
  • the terms “first”, “second”, etc. cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • FIG. 1 is a module connection diagram of a battery charging and discharging circuit provided in Example 1 of this application, which is suitable for the case of uninterrupted battery charging and discharging, including: battery module 1, transformer circuit 2, buck-boost circuit 3, and power grid terminal Or user terminal 4.
  • FIG. 2 is a circuit diagram of a battery charging and discharging circuit provided in this embodiment, and the battery module 1 is configured to receive a charging voltage or release a discharging voltage.
  • the battery module 1 includes a battery V1, and the battery V1 includes a first interface J1 and a second interface J2.
  • the battery V1 is a lithium battery, which is a type of battery that uses lithium metal or lithium alloy as the positive/negative electrode material and uses a non-aqueous electrolyte solution, and has the effect of being able to charge and discharge.
  • the charging voltage and the discharging voltage of the battery V1 are both 48V, and the output voltage and charging voltage of the battery V1 can also be adjusted adaptively according to the model of the battery V1, which is not limited in this embodiment.
  • the interface J1 is the positive electrode of the battery V1
  • the interface J2 is the negative electrode
  • the interface J1 is the negative electrode of the battery V1
  • the interface J2 is the positive electrode, which is not limited in this embodiment.
  • the voltage transformation circuit 2 is connected to the battery module 1, and the voltage transformation circuit 2 is configured to convert the first charging voltage to a charging voltage or to convert a discharging voltage to a first discharging voltage.
  • the transformer circuit 2 includes: a transistor S1, a transistor S2, a transistor S3, a transistor S4, a transistor S5, a transistor S6, a transistor S7, a transistor S8, a transformer TX, an inductor L1, a capacitor C1, and a capacitor C2.
  • the first terminal of the capacitor C1 is connected to the battery module 1, the second terminal of the capacitor C1 is connected to the battery module 1, and the first terminal of the transistor S1 is connected to the first terminal of the capacitor C1 ,
  • the second end of the transistor S1 is connected to the first end of the transistor S2, the second end of the transistor S2 is connected to the second end of the capacitor C1, and the first end of the transistor S3 is connected to the first end of the transistor S2.
  • the first end of the transistor S1, the second end of the transistor S3 is connected to the first end of the transistor S4, the second end of the transistor S4 is connected to the second end of the transistor S2, and the transistor S5
  • the first terminal of the transistor S7 is connected to the first terminal of the transistor S7
  • the second terminal of the transistor S5 is connected to the first terminal of the transistor S6, and the second terminal of the transistor S6 is connected to the first terminal of the transistor S8.
  • the second terminal of the transistor S7 is connected to the first terminal of the transistor S8, the first terminal of the positive side of the transformer TX is connected to the second terminal of the transistor S1, and the positive side of the transformer TX
  • the second terminal is connected to the first terminal of the transistor S4, the first terminal of the secondary side of the transformer TX is connected to the second terminal of the transistor S5, and the second terminal of the secondary side of the transformer TX is connected to the inductor L1.
  • the second end of the inductor L1 is connected to the first end of the capacitor C2, and the second end of the capacitor C2 is connected to the second end of the transistor S7.
  • the transformer circuit 2 is a bidirectional full-bridge resonant converter circuit, including a full-bridge circuit with transistor S1, transistor S2, transistor S3, transistor S4, a high-frequency transformer TX, and a secondary side transistor S5 , Transistor S6, Transistor S7 and Transistor S8 full-bridge circuit, through the high-frequency transformer TX to achieve high-low voltage conversion.
  • the first charging voltage and the first discharging voltage are 300V.
  • the charging voltage or discharging voltage of the battery V1 is increased to 300V through the full-bridge resonant converter circuit: the transistors S1 ⁇ S4 have a fixed 50% duty cycle to facilitate a smaller excitation current That is, it can realize zero-voltage turn-on and ensure that the transformer is not saturated, and the secondary side is rectified and output to 300V through the body diode of the transistors S5 to S8.
  • the buck-boost circuit 3 is connected to the transformer circuit 2, and the buck-boost circuit 3 is configured to convert a second charging voltage into the first charging voltage or convert the first discharging voltage into a second discharging voltage.
  • the transformer circuit 2 includes an inductor L2, a transistor S9, a transistor S10, a capacitor C3, and a capacitor C4.
  • the first terminal of the capacitor C3 is connected to the first terminal of the transformer circuit 2
  • the second terminal of the capacitor C3 is connected to the second terminal of the transformer circuit 2
  • the first terminal of the inductor L2 Is connected to the first end of the capacitor C3
  • the second end of the inductor L2 is connected to the first end of the transistor S9
  • the second end of the transistor S9 is connected to the second end of the capacitor C3, so
  • the first end of the transistor S10 is connected to the second end of the inductor L2
  • the second end of the transistor S10 is connected to the first end of the capacitor C4
  • the second end of the capacitor C4 is connected to the transistor The second end of S9.
  • the buck-boost circuit 3 is a two-way buck/boost BUCK/BOOST circuit.
  • the BUCK circuit refers to a single-tube non-isolated DC conversion with an output voltage lower than the input voltage.
  • the BOOST circuit refers to a single-tube with an output voltage higher than the input voltage. The tube does not isolate the DC conversion.
  • the second charging voltage and the second discharging voltage are 360V
  • the second charging voltage of 360V is transformed into the first charging voltage of the transformer circuit 2 through the inductance L2, the step-down circuit composed of the body diode of the transistor S9 and the transistor S10;
  • the first discharge voltage of 2 passes through the inductance L2, the booster circuit composed of the body diode of the transistor S9 and the transistor S10 to become the second discharge voltage of 360V.
  • the power grid or user terminal 4 is connected to the buck-boost circuit 3, and the power grid or user terminal 4 is configured to generate a second charging voltage or receive the second discharge voltage.
  • the second charging voltage is generated by the power grid terminal.
  • the battery V1 When the power grid terminal is normally powered, the battery V1 is in the charging mode, and the second charging voltage 360V at the grid terminal is stepped down to the first charging voltage 300V through the buck-boost circuit 3. Then it is stepped down to a charging voltage of 48V by the transformer circuit 2 and input to the battery V1 for charging.
  • the discharge voltage is generated by the battery V1.
  • the battery V1 is in the discharge mode.
  • the discharge voltage of 48V is boosted by the transformer circuit 2 to the first discharge voltage of 300V, and then boosted by the buck-boost circuit 3 to the second discharge. After the voltage is 360V, it is delivered to the user terminal for use.
  • An embodiment of the present application discloses a battery charging and discharging circuit, which includes: a battery module configured to receive a charging voltage or release a discharge voltage; a transformer circuit, the transformer circuit is connected to the battery module, the The voltage transformation circuit is configured to convert the first charging voltage into the charging voltage or the discharge voltage into the first discharging voltage; Set to convert the second charging voltage to the first charging voltage or to convert the first discharging voltage to the second discharging voltage; the power grid terminal or the user terminal, the power grid terminal or the user terminal and the buck-boost circuit Connected, the power grid terminal or the user terminal is configured to generate a second charging voltage or receive the second discharging voltage.
  • the battery charging and discharging circuit charged the battery when there is mains power on the power grid, and when the power fails on the power grid, the battery provides power to the important load on the user side, which has the effect of uninterrupted charging and discharging, and realizes the user's power consumption. Safety.
  • Fig. 3 is a module connection diagram of a battery charging and discharging circuit provided in the second embodiment of the application.
  • an inverter module is added on the basis of the first embodiment, which is suitable for the case of uninterrupted battery charging and discharging, including: The battery module 1, the transformer circuit 2, the buck-boost circuit 3, the inverter circuit 5, and the grid end or user end 4.
  • FIG. 4 is a circuit diagram of a battery charging and discharging circuit provided in this embodiment, and the battery module 1 is configured to receive a charging voltage or release a discharging voltage.
  • the battery module 1 includes a battery V1, and the battery V1 includes a first interface J1 and a second interface J2.
  • the voltage transformation circuit 2 is connected to the battery module 1, and the voltage transformation circuit 2 is configured to convert the first charging voltage to a charging voltage or to convert a discharging voltage to a first discharging voltage.
  • the transformer circuit 2 includes: a transistor S1, a transistor S2, a transistor S3, a transistor S4, a transistor S5, a transistor S6, a transistor S7, a transistor S8, a transformer TX, an inductor L1, a capacitor C1, and a capacitor C2.
  • the first terminal of the capacitor C1 is connected to the battery module 1, the second terminal of the capacitor C1 is connected to the battery module 1, and the first terminal of the transistor S1 is connected to the first terminal of the capacitor C1 ,
  • the second end of the transistor S1 is connected to the first end of the transistor S2, the second end of the transistor S2 is connected to the second end of the capacitor C1, and the first end of the transistor S3 is connected to the first end of the transistor S2.
  • the first end of the transistor S1, the second end of the transistor S3 is connected to the first end of the transistor S4, the second end of the transistor S4 is connected to the second end of the transistor S2, and the transistor S5
  • the first terminal of the transistor S7 is connected to the first terminal of the transistor S7
  • the second terminal of the transistor S5 is connected to the first terminal of the transistor S6, and the second terminal of the transistor S6 is connected to the first terminal of the transistor S8.
  • the second terminal of the transistor S7 is connected to the first terminal of the transistor S8, the first terminal of the positive side of the transformer TX is connected to the second terminal of the transistor S1, and the positive side of the transformer TX
  • the second terminal is connected to the first terminal of the transistor S4, the first terminal of the secondary side of the transformer TX is connected to the second terminal of the transistor S5, and the second terminal of the secondary side of the transformer TX is connected to the inductor L1.
  • the second end of the inductor L1 is connected to the first end of the capacitor C2, and the second end of the capacitor C2 is connected to the second end of the transistor S7.
  • the buck-boost circuit 3 is connected to the transformer circuit 2, and the buck-boost circuit 3 is configured to convert a second charging voltage into the first charging voltage or convert the first discharging voltage into a second discharging voltage.
  • the transformer circuit 2 includes an inductor L2, a transistor S9, a transistor S10, a capacitor C3, and a capacitor C4.
  • the first terminal of the capacitor C3 is connected to the first terminal of the transformer circuit 2
  • the second terminal of the capacitor C3 is connected to the second terminal of the transformer circuit 2
  • the first terminal of the inductor L2 Is connected to the first end of the capacitor C3
  • the second end of the inductor L2 is connected to the first end of the transistor S9
  • the second end of the transistor S9 is connected to the second end of the capacitor C3, so
  • the first end of the transistor S10 is connected to the second end of the inductor L2
  • the second end of the transistor S10 is connected to the first end of the capacitor C4
  • the second end of the capacitor C4 is connected to the transistor The second end of S9.
  • the power grid or user terminal 4 is connected to the buck-boost circuit 3, and the power grid or user terminal 4 is configured to generate a second charging voltage or receive the second discharge voltage.
  • the second charging voltage is generated by the power grid terminal.
  • the battery V1 When the power grid terminal is normally powered, the battery V1 is in the charging mode, and the second charging voltage 360V at the grid terminal is stepped down to the first charging voltage 300V through the buck-boost circuit 3. Then it is stepped down to a charging voltage of 48V by the transformer circuit 2 and input to the battery V1 for charging.
  • the discharge voltage is generated by the battery V1.
  • the battery V1 is in the discharge mode.
  • the discharge voltage of 48V is boosted by the transformer circuit 2 to the first discharge voltage of 300V, and then boosted by the buck-boost circuit 3 to the second discharge. After the voltage is 360V, it is delivered to the user terminal for use.
  • the inverter circuit 5 is arranged between the transformer circuit 2 and the power grid terminal or user terminal 4, and the inverter circuit 5 is connected to the transformer circuit 2 and the power grid terminal or user terminal 4 respectively.
  • the inverter circuit 5 is provided with To convert the second charging voltage into a direct current voltage or to convert the second discharge voltage into an alternating current voltage.
  • the inverter circuit 5 includes: a transistor S11, a transistor S12, a transistor S13, a transistor S14, a transistor S15, a transistor S16, a transistor S17, a transistor S18, a capacitor C4, a capacitor C5, an inductor L3, and an inductor L4.
  • the first end of the capacitor C4 is connected to the first end of the buck-boost circuit 3, the second end of the capacitor C4 is connected to the first end of the capacitor C5, and the second end of the capacitor C5 is connected to
  • the first end of the transistor S11 is connected to the second end of the capacitor C4, and the second end of the transistor S11 is connected to the first end of the transistor S12
  • the second terminal of the transistor S12 is connected to the first terminal of the inductor L3, the second terminal of the inductor L3 is connected to the grid terminal or the user terminal 4, and the first terminal of the transistor S15 is connected to the The second end of the capacitor C4, the second end of the transistor S15 is connected to the first end of the transistor S16, the second end of the transistor S16 is connected to the first end of the inductor L4, and the The second terminal is connected to the power grid terminal or the user terminal 4, the first terminal of the transistor S13 is connected to the first terminal of the capacitor C4, and the second terminal of the
  • the second terminal of the transistor S14 is connected to the second terminal of the capacitor C5
  • the first terminal of the transistor S17 is connected to the first terminal of the capacitor C4
  • the second terminal of the transistor S17 is connected to The first end of the transistor S18 and the second end of the transistor S18 are connected to the second end of the capacitor C5.
  • the inverter circuit 5 is an AC/DC conversion circuit.
  • the grid or user terminal 4 generally uses AC power, and the battery is charged and discharged as DC power. At this time, the inverter circuit 5 is required to perform AC/DC conversion.
  • the second charging voltage is generated by the grid terminal.
  • the grid terminal When the grid terminal is normally powered, the battery V1 is in charging mode.
  • the grid terminal’s second charging voltage 360V first converts AC power to DC power through the inverter circuit 5, and then steps down through the buck-boost circuit 3
  • the first charging voltage is 300V
  • the voltage is reduced to 48V by the transformer circuit 2 and input into the battery V1 for charging.
  • the discharge voltage is generated by the battery V1.
  • the grid terminal cannot supply power, the battery V1 is in the discharge mode.
  • the discharge voltage of 48V is boosted by the transformer circuit 2 to the first discharge voltage of 300V, and then boosted by the buck-boost circuit 3 to the second discharge. After the voltage is 360V, the DC power is converted into AC power through the inverter circuit 5 and sent to the user terminal for use.
  • An embodiment of the present application discloses a battery charging and discharging circuit, which includes: a battery module configured to receive a charging voltage or release a discharge voltage; a transformer circuit, the transformer circuit is connected to the battery module, the The voltage transformation circuit is configured to convert the first charging voltage into the charging voltage or the discharge voltage into the first discharging voltage; Set to convert the second charging voltage to the first charging voltage or to convert the first discharging voltage to the second discharging voltage; the power grid terminal or the user terminal, the power grid terminal or the user terminal and the buck-boost circuit Connected, the power grid terminal or the user terminal is set to generate a second charging voltage or to receive the second discharge voltage; an inverter circuit, the inverter circuit is set between the transformer circuit and the power grid terminal or the user terminal In between, the inverter circuit is respectively connected to the transformer circuit and the grid terminal or the user terminal, and the inverter circuit is configured to convert the second charging voltage into a direct current voltage and the second discharge voltage Converted to AC voltage.
  • the battery charging and discharging circuit charged the battery when there is mains power on the power grid, and when the power fails on the power grid, the battery provides power to the important load on the user side, which has the effect of uninterrupted charging and discharging, and realizes the user's power consumption. Safety.

Abstract

本申请实施例公开了一种电池充放电电路,包括:电池模块(1),所述电池模块(1)设置为接收充电电压或者释放放电电压;变压电路(2),所述变压电路(2)与所述电池模块(1)连接,所述变压电路(2)设置为将第一充电电压转换为充电电压或将放电电压转换为第一放电电压;升降压电路(3),所述升降压电路(3)与所述变压电路(2)连接,所述升降压电路(3)设置为将第二充电电压转换为所述第一充电电压或将所述第一放电电压转换为第二放电电压;电网端或用户端(4),所述电网端或用户端(4)与所述升降压电路(3)连接,所述电网端或用户端(4)设置为产生第二充电电压或接受所述第二放电电压。

Description

一种电池充放电电路
本申请要求在2020年6月22日提交中国专利局、申请号为202010574580.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电池充放电技术,例如一种电池充放电电路。
背景技术
储能系统包含电池和双向直流/交流(Direct CurrentAlternating Current/,DC/AC)储能逆变器。电池亦有低压和高压之分。DC/AC储能逆变器设置为将电池的直流电转换成交流电给负载供电或并网到公共电网。逆变器输出的交流电压和电流中必须具有低谐波含量;相关产业中上述电池和DC/AC储能逆变器一般分开放置,电池采用壁挂或落地方式,整套系统占地资源较大,外部接线较多,且因电池和逆变器厂家不同,必须相互通讯配对,才能整体使用;特别是在多套储能系统并联时,会占用更多资源;以及电池和逆变器外形的不匹配,在家庭使用中不搭配;储能系统的功能:在有市电时,通过DC/AC储能逆变器给电池充电,充电电流大小由电池管理系统(Battery Management System,BMS)跟逆变器的通讯来决定;在停电时,电池通过DC/AC储能逆变器给重要负载供电;相关产业,在停电时,DC/AC储能逆变器会重新启动,再由电池转换为交流电给负载供电,中间会有秒级以上的断电,重要设备不能保存数据;某些高压储能系统中,因逆变器没有隔离,存在安全隐患,不方便家庭用户使用。
发明内容
本申请提供一种电池充放电电路,以实现不间断充放电的效果。
第一方面,本申请实施例提供了一种电池充放电电路,包括:
电池模块(1),设置为接收充电电压或者释放放电电压;
变压电路(2),所述变压电路(2)与所述电池模块(1)连接,所述变压电路(2)设置为将第一充电电压转换为充电电压或将放电电压转换为第一放电电压;
升降压电路(3),所述升降压电路(3)与所述变压电路(2)连接,所述升降压电路(3)设置为将第二充电电压转换为所述第一充电电压或将所述第一放电电压转换为第二放电电压;
电网端或用户端(4),所述电网端或用户端(4)与所述升降压电路(3)连接,所述电网端或用户端(4)设置为产生第二充电电压或接受所述第二放电电压。
附图说明
图1为本申请实施例一提供的一种电池充放电电路的模块连接图;
图2为本申请实施例一中提供的一种电池充放电电路的电路图;
图3为本申请实施例二提供的一种电池充放电电路的模块连接图;
图4为本申请实施例二中提供的一种电池充放电电路的电路图。
具体实施方式
在更加详细地讨论示例性实施例之前应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各步骤描述成顺序的处理,但是其中的许多步骤可以被并行地、并发地或者同时实施。此外,各步骤的顺序可以被重新安排。当其操作完成时处理可以被终止,但是还可以具有未包括在附图中的附加步骤。处理可以对应于方法、函数、规程、子例程、子程序等等。
此外,术语“第一”、“第二”等可在本文中用于描述各种方向、动作、步骤或元件等,但这些方向、动作、步骤或元件不受这些术语限制。这些术语 仅用于将第一个方向、动作、步骤或元件与另一个方向、动作、步骤或元件区分。举例来说,在不脱离本申请的范围的情况下,可以将第一电压称为第一电压,且类似地,可将第二电压称为第一电压。第一电压和第二电压两者都是第一电压,但其不是同一第一电压。术语“第一”、“第二”等而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确的限定。
实施例一
图1为本申请实施例一提供的一种电池充放电电路的模块连接图,适用于电池不间断充放电的情况,包括:电池模块1、变压电路2、升降压电路3和电网端或用户端4。
示例性的,参阅图2,图2为本实施例中提供的一种电池充放电电路的电路图,电池模块1设置为接收充电电压或者释放放电电压。所述电池模块1包括电池V1,所述电池V1包括第一接口J1和第二接口J2。
在本实施例中,电池V1为锂电池,锂电池是一类由锂金属或锂合金为正/负极材料、使用非水电解质溶液的电池,具备可充放电的效果。电池V1的充电电压和放电电压均为48V,电池V1输出电压和充电电压也可以根据电池V1的型号进行适应性调整,在本实施例中不做限定。接口J1为电池V1正极时,接口J2为负极,接口J1为电池V1负极时,接口J2为正极,在本实施例中不做限定。
变压电路2与所述电池模块1连接,变压电路2设置为将第一充电电压转换为充电电压或将放电电压转换为第一放电电压。所述变压电路2包括:晶体管S1、晶体管S2、晶体管S3、晶体管S4、晶体管S5、晶体管S6、晶体管S7、晶体管S8、变压器TX、电感L1、电容C1和电容C2。所述电容C1的第一端 连接到所述电池模块1,所述电容C1的第二端连接到所述电池模块1,所述晶体管S1的第一端连接到所述电容C1的第一端,所述晶体管S1的第二端连接到所述晶体管S2的第一端,所述晶体管S2的第二端连接到所述电容C1的第二端,所述晶体管S3的第一端连接到所述晶体管S1的第一端,所述晶体管S3的第二端连接到所述晶体管S4的第一端,所述晶体管S4的第二端连接到所述晶体管S2的第二端,所述晶体管S5的第一端连接到所述晶体管S7的第一端,所述晶体管S5的第二端连接到所述晶体管S6的第一端,所述晶体管S6的第二端连接到所述晶体管S8的第二端,所述晶体管S7的第二端连接到所述晶体管S8的第一端,所述变压器TX的正边第一端连接到所述晶体管S1的第二端,所述变压器TX的正边第二端连接到晶体管S4的第一端,所述变压器TX的副边第一端连接到所述晶体管S5的第二端,所述变压器TX的副边第二端连接到所述电感L1的第一端,所述电感L1的第二端连接到所述电容C2的第一端,所述电容C2的第二端连接到所述晶体管S7的第二端。
在本实施例中,变压电路2为双向全桥谐振变换电路,包含一个带晶体管S1、晶体管S2,、晶体管S3、晶体管S4的全桥电路和一个高频变压器TX,和副边的晶体管S5、晶体管S6、晶体管S7和晶体管S8的全桥电路,通过高频变压器TX实现高低电压转换。第一充电电压和第一放电电压为300V,电池V1的充电电压或放电电压通过全桥谐振变换电路将电压升至300V:晶体管S1~S4固定50%占空比,以方便较小的励磁电流即能实现零电压开通且保证变压器不饱和,副边通过晶体管S5~S8体内二极管整流输出到300V。
升降压电路3与所述变压电路2连接,升降压电路3设置为将第二充电电压转换为所述第一充电电压或将所述第一放电电压转换为第二放电电压所述变压电路2包括:电感L2、晶体管S9、晶体管S10、电容C3和电容C4。所述电容C3的第一端连接到所述变压电路2的第一端,所述电容C3的第二端连接到所述变压电路2的第二端,所述电感L2的第一端连接到所述电容C3的第一端, 所述电感L2的第二端连接到所述晶体管S9的第一端,所述晶体管S9的第二端连接到所述电容C3的第二端,所述晶体管S10的第一端连接到所述电感L2的第二端,所述晶体管S10的第二端连接到所述电容C4的第一端,所述电容C4的第二端连接到所述晶体管S9的第二端。
在本实施例中,升降压电路3为双向降压/升压BUCK/BOOST电路,BUCK电路指输出电压小于输入电压的单管不隔离直流变换,BOOST电路指输出电压高于输入电压的单管不隔离直流变换。第二充电电压和第二放电电压为360V,360V的第二充电电压通过电感L2,晶体管S9和晶体管S10的体内二极管组成的降压电路变为变压电路2的第一充电电压;变压电路2的第一放电电压通过电感L2,晶体管S9和晶体管S10的体内二极管组成的升压电路变为360V的第二放电电压。
电网端或用户端4,所述电网端或用户端4与所述升降压电路3连接,电网端或用户端4设置为产生第二充电电压或接受所述第二放电电压。
在本实施例中,第二充电电压为电网端产生,当电网端正常供电时,电池V1处于充电模式,电网端的第二充电电压360V通过升降压电路3降压到第一充电电压300V,再通过变压电路2降压到充电电压48V并输入到电池V1中进行充电。放电电压为电池V1产生,当电网端无法供电时,电池V1处于放电模式,放电电压48V通过变压电路2升压到第一放电电压300V,再通过升降压电路3升压到第二放电电压360V之后输送到用户端使用。
本申请实施例公开了一种电池充放电电路,包括:电池模块,所述电池模块设置为接收充电电压或者释放放电电压;变压电路,所述变压电路与所述电池模块连接,所述变压电路设置为将第一充电电压转换为充电电压或将放电电压转换为第一放电电压;升降压电路,所述升降压电路与所述变压电路连接,所述升降压电路设置为将第二充电电压转换为所述第一充电电压或将所述第一放电电压转换为第二放电电压;电网端或用户端,所述电网端或用户端与所述 升降压电路连接,所述电网端或用户端设置为产生第二充电电压或接受所述第二放电电压。本申请实施例提供的一种电池充放电电路通过在电网端有市电时给电池充电,电网端停电时电池给用户端重要负载供电,具有不间断充放电的效果,实现了用户的用电安全。
实施例二
图3为本申请实施例二提供的一种电池充放电电路的模块连接图,本实施例是在实施例一的基础上增加了逆变模块,适用于电池不间断充放电的情况,包括:电池模块1、变压电路2、升降压电路3、逆变电路5和电网端或用户端4。
示例性的,参阅图4,图4为本实施例中提供的一种电池充放电电路的电路图,电池模块1设置为接收充电电压或者释放放电电压。所述电池模块1包括电池V1,所述电池V1包括第一接口J1和第二接口J2。
变压电路2与所述电池模块1连接,变压电路2设置为将第一充电电压转换为充电电压或将放电电压转换为第一放电电压。所述变压电路2包括:晶体管S1、晶体管S2、晶体管S3、晶体管S4、晶体管S5、晶体管S6、晶体管S7、晶体管S8、变压器TX、电感L1、电容C1和电容C2。所述电容C1的第一端连接到所述电池模块1,所述电容C1的第二端连接到所述电池模块1,所述晶体管S1的第一端连接到所述电容C1的第一端,所述晶体管S1的第二端连接到所述晶体管S2的第一端,所述晶体管S2的第二端连接到所述电容C1的第二端,所述晶体管S3的第一端连接到所述晶体管S1的第一端,所述晶体管S3的第二端连接到所述晶体管S4的第一端,所述晶体管S4的第二端连接到所述晶体管S2的第二端,所述晶体管S5的第一端连接到所述晶体管S7的第一端,所述晶体管S5的第二端连接到所述晶体管S6的第一端,所述晶体管S6的第二端连接到所述晶体管S8的第二端,所述晶体管S7的第二端连接到所述晶体管S8的第 一端,所述变压器TX的正边第一端连接到所述晶体管S1的第二端,所述变压器TX的正边第二端连接到晶体管S4的第一端,所述变压器TX的副边第一端连接到所述晶体管S5的第二端,所述变压器TX的副边第二端连接到所述电感L1的第一端,所述电感L1的第二端连接到所述电容C2的第一端,所述电容C2的第二端连接到所述晶体管S7的第二端。
升降压电路3与所述变压电路2连接,升降压电路3设置为将第二充电电压转换为所述第一充电电压或将所述第一放电电压转换为第二放电电压所述变压电路2包括:电感L2、晶体管S9、晶体管S10、电容C3和电容C4。所述电容C3的第一端连接到所述变压电路2的第一端,所述电容C3的第二端连接到所述变压电路2的第二端,所述电感L2的第一端连接到所述电容C3的第一端,所述电感L2的第二端连接到所述晶体管S9的第一端,所述晶体管S9的第二端连接到所述电容C3的第二端,所述晶体管S10的第一端连接到所述电感L2的第二端,所述晶体管S10的第二端连接到所述电容C4的第一端,所述电容C4的第二端连接到所述晶体管S9的第二端。
电网端或用户端4,所述电网端或用户端4与所述升降压电路3连接,电网端或用户端4设置为产生第二充电电压或接受所述第二放电电压。
在本实施例中,第二充电电压为电网端产生,当电网端正常供电时,电池V1处于充电模式,电网端的第二充电电压360V通过升降压电路3降压到第一充电电压300V,再通过变压电路2降压到充电电压48V并输入到电池V1中进行充电。放电电压为电池V1产生,当电网端无法供电时,电池V1处于放电模式,放电电压48V通过变压电路2升压到第一放电电压300V,再通过升降压电路3升压到第二放电电压360V之后输送到用户端使用。
所述逆变电路5设置于所述变压电路2和电网端或用户端4之间,逆变电路5分别与所述变压电路2和电网端或用户端4连接,逆变电路5设置为将所述第二充电电压转化为直流电压或将所述第二放电电压转化为交流电压。所述 逆变电路5包括:晶体管S11、晶体管S12、晶体管S13、晶体管S14、晶体管S15、晶体管S16、晶体管S17、晶体管S18、电容C4、电容C5、电感L3和电感L4。所述电容C4的第一端连接到所述升降压电路3第一端,所述电容C4的第二端连接到所述电容C5的第一端,所述电容C5的第二端连接到所述升降压电路3的第二端,所述晶体管S11的第一端连接到所述电容C4的第二端,所述晶体管S11的第二端连接到所述晶体管S12的第一端,所述晶体管S12的第二端连接到所述电感L3的第一端,所述电感L3的第二端连接到所述电网端或用户端4,所述晶体管S15的第一端连接到所述电容C4的第二端,所述晶体管S15的第二端连接到所述晶体管S16的第一端,所述晶体管S16的第二端连接到所述电感L4的第一端,所述电感L4的第二端连接到所述电网端或用户端4,所述晶体管S13的第一端连接到所述电容C4的第一端,所述晶体管S13的第二端连接到所述晶体管S14的第一端,所述晶体管S14的第二端连接到所述电容C5的第二端,所述晶体管S17的第一端连接到所述电容C4的第一端,所述晶体管S17的第二端连接到所述晶体管S18的第一端,所述晶体管S18的第二端连接到所述电容C5的第二端。
在本实施例中,逆变电路5为交流/直流转换电路,电网端或用户端4一般使用交流电,而电池充放电为直流电,此时需要逆变电路5进行交流/直流的转换。第二充电电压为电网端产生,当电网端正常供电时,电池V1处于充电模式,电网端的第二充电电压360V先通过逆变电路5将交流电转换为直流电,再通过升降压电路3降压到第一充电电压300V,再通过变压电路2降压到充电电压48V并输入到电池V1中进行充电。放电电压为电池V1产生,当电网端无法供电时,电池V1处于放电模式,放电电压48V通过变压电路2升压到第一放电电压300V,再通过升降压电路3升压到第二放电电压360V之后在通过逆变电路5将直流电转换为交流电输送到用户端使用。
本申请实施例公开了一种电池充放电电路,包括:电池模块,所述电池模 块设置为接收充电电压或者释放放电电压;变压电路,所述变压电路与所述电池模块连接,所述变压电路设置为将第一充电电压转换为充电电压或将放电电压转换为第一放电电压;升降压电路,所述升降压电路与所述变压电路连接,所述升降压电路设置为将第二充电电压转换为所述第一充电电压或将所述第一放电电压转换为第二放电电压;电网端或用户端,所述电网端或用户端与所述升降压电路连接,所述电网端或用户端设置为产生第二充电电压或接受所述第二放电电压;逆变电路,所述逆变电路设置于所述变压电路和所述电网端或用户端之间,所述逆变电路分别与与所述变压电路和所述电网端或用户端连接,所述逆变电路设置为将所述第二充电电压转化为直流电压和所述第二放电电压转化为交流电压。本申请实施例提供的一种电池充放电电路通过在电网端有市电时给电池充电,电网端停电时电池给用户端重要负载供电,具有不间断充放电的效果,实现了用户的用电安全。

Claims (10)

  1. 一种电池充放电电路,包括:
    电池模块(1),设置为接收充电电压或者释放放电电压;
    变压电路(2),所述变压电路(2)与所述电池模块(1)连接,所述变压电路(2)设置为将第一充电电压转换为充电电压或将放电电压转换为第一放电电压;
    升降压电路(3),所述升降压电路(3)与所述变压电路(2)连接,所述升降压电路(3)设置为将第二充电电压转换为所述第一充电电压或将所述第一放电电压转换为第二放电电压;
    电网端或用户端(4),所述电网端或用户端(4)与所述升降压电路(3)连接,所述电网端或用户端(4)设置为产生第二充电电压或接受所述第二放电电压。
  2. 根据权利要求1中所述的电路,其中,所述电池模块(1)包括电池(V1),所述电池(V1)包括第一接口(J1)和第二接口(J2)。
  3. 根据权利要求2中所述的电路,其中,所述电池(V1)为锂电池。
  4. 根据权利要求1中所述的电路,其中,所述变压电路(2)包括:第一晶体管(S1)、第二晶体管(S2)、第三晶体管(S3)、第四晶体管(S4)、第五晶体管(S5)、第六晶体管(S6)、第七晶体管(S7)、第八晶体管(S8)、变压器(TX)、第一电感(L1)、第一电容(C1)和第二电容(C2)。
  5. 根据权利要求4中所述的电路,其中,所述第一电容(C1)的第一端连接到所述电池模块(1),所述第一电容(C1)的第二端连接到所述电池模块(1),所述第一晶体管(S1)的第一端连接到所述第一电容(C1)的第一端,所述第一晶体管(S1)的第二端连接到所述第二晶体管(S2)的第一端,所述第二晶体管(S2)的第二端连接到所述第一电容(C1)的第二端,所述第三晶体管(S3)的第一端连接到所述第一晶体管(S1)的第一端,所述第三晶体管(S3)的第二端连接到所述第四晶体管(S4)的第一端,所述第四晶体管(S4)的第二端连接到所述第二晶体管(S2)的第二端,所述第五晶体管(S5)的第一端连接 到所述第七晶体管(S7)的第一端,所述第五晶体管(S5)的第二端连接到所述第六晶体管(S6)的第一端,所述第六晶体管(S6)的第二端连接到所述第八晶体管(S8)的第二端,所述第七晶体管(S7)的第二端连接到所述第八晶体管(S8)的第一端,所述变压器(TX)的正边第一端连接到所述第一晶体管(S1)的第二端,所述变压器(TX)的正边第二端连接到第四晶体管(S4)的第一端,所述变压器(TX)的副边第一端连接到所述第五晶体管(S5)的第二端,所述变压器(TX)的副边第二端连接到所述第一电感(L1)的第一端,所述第一电感(L1)的第二端连接到所述第二电容(C2)的第一端,所述第二电容(C2)的第二端连接到所述第七晶体管(S7)的第二端。
  6. 根据权利要求1中所述的电路,其中,所述升降压电路(3)包括:第二电感(L2)、第九晶体管(S9)、第十晶体管(S10)、第三电容(C3)和第四电容(C4)。
  7. 根据权利要求6中所述的电路,其中,所述第三电容(C3)的第一端连接到所述变压电路(2)的第一端,所述第三电容(C3)的第二端连接到所述变压电路(2)的第二端,所述第二电感(L2)的第一端连接到所述第三电容(C3)的第一端,所述第二电感(L2)的第二端连接到所述第九晶体管(S9)的第一端,所述第九晶体管(S9)的第二端连接到所述第三电容(C3)的第二端,所述第十晶体管(S10)的第一端连接到所述第二电感(L2)的第二端,所述第十晶体管(S10)的第二端连接到所述第四电容(C4)的第一端,所述第四电容(C4)的第二端连接到所述第九晶体管(S9)的第二端。
  8. 根据权利要求1中所述的电路,还包括逆变电路(5),所述逆变电路(5)设置于所述变压电路(2)和所述电网端或用户端(4)之间,所述逆变电路(5)分别与所述变压电路(2)和所述电网端或用户端(4)连接,所述逆变电路(5)设置为将所述第二充电电压转化为直流电压或将所述第二放电电压转化为交流电压。
  9. 根据权利要求8中所述的电路,其中,所述逆变电路(5)包括:第十 一晶体管(S11)、第十二晶体管(S12)、第十三晶体管(S13)、第十四晶体管(S14)、第十五晶体管(S15)、第十六晶体管(S16)、第十七晶体管(S17)、第十八晶体管(S18)、第四电容(C4)、第五电容(C5)、第三电感(L3)和第四电感(L4)。
  10. 根据权利要求9中所述的电路,其中,所述第四电容(C4)的第一端连接到所述升降压电路(3)的第一端,所述第四电容(C4)的第二端连接到所述第五电容(C5)的第一端,所述第五电容(C5)的第二端连接到所述升降压电路(3)的第二端,所述第十一晶体管(S11)的第一端连接到所述第四电容(C4)的第二端,所述第十一晶体管(S11)的第二端连接到所述第十二晶体管(S12)的第一端,所述第十二晶体管(S12)的第二端连接到所述第三电感(L3)的第一端,所述第三电感(L3)的第二端连接到所述电网端或用户端(4),所述第十五晶体管(S15)的第一端连接到所述第四电容(C4)的第二端,所述第十五晶体管(S15)的第二端连接到所述第十六晶体管(S16)的第一端,所述第十六晶体管(S16)的第二端连接到所述第四电感(L4)的第一端,所述第四电感(L4)的第二端连接到所述电网端或用户端(4),所述第十三晶体管(S13)的第一端连接到所述第四电容(C4)的第一端,所述第十三晶体管(S13)的第二端连接到所述第十四晶体管(S14)的第一端,所述第十四晶体管(S14)的第二端连接到所述第五电容(C5)的第二端,所述第十七晶体管(S17)的第一端连接到所述第四电容(C4)的第一端,所述第十七晶体管(S17)的第二端连接到所述第十八晶体管(S18)的第一端,所述第十八晶体管(S18)的第二端连接到所述第五电容(C5)的第二端。
PCT/CN2021/101556 2020-06-22 2021-06-22 一种电池充放电电路 WO2021259267A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/560,243 US20220115887A1 (en) 2020-06-22 2021-12-22 Battery charging and discharging circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010574580.0 2020-06-22
CN202010574580.0A CN111682617A (zh) 2020-06-22 2020-06-22 一种电池充放电电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/560,243 Continuation US20220115887A1 (en) 2020-06-22 2021-12-22 Battery charging and discharging circuit

Publications (1)

Publication Number Publication Date
WO2021259267A1 true WO2021259267A1 (zh) 2021-12-30

Family

ID=72436860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101556 WO2021259267A1 (zh) 2020-06-22 2021-06-22 一种电池充放电电路

Country Status (3)

Country Link
US (1) US20220115887A1 (zh)
CN (1) CN111682617A (zh)
WO (1) WO2021259267A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111682617A (zh) * 2020-06-22 2020-09-18 深圳市富兰瓦时技术有限公司 一种电池充放电电路
CN112366747A (zh) * 2020-10-29 2021-02-12 深圳市富兰瓦时技术有限公司 一种储能与光伏的交流耦合供电系统
CN114793073B (zh) * 2022-06-21 2022-11-15 阳光电源股份有限公司 燃料电池发电系统和燃料电池发电电路及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437628A (zh) * 2011-10-22 2012-05-02 华北电力大学(保定) 蓄电池化成充放电变流电路
CN102751772A (zh) * 2012-07-05 2012-10-24 西安交通大学 一种蓄电池充放电电路拓扑
JP2013162652A (ja) * 2012-02-06 2013-08-19 Sumitomo Heavy Ind Ltd 2次電池の充放電装置およびそれを用いた充放電検査装置
CN204615655U (zh) * 2015-05-12 2015-09-02 江苏固德威电源科技有限公司 用于储能逆变器的双向直流变换电路
CN106972604A (zh) * 2016-12-12 2017-07-21 华北科技学院 一种矿用铅酸蓄电池高频智能快充充电器
CN111682617A (zh) * 2020-06-22 2020-09-18 深圳市富兰瓦时技术有限公司 一种电池充放电电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810208B2 (en) * 2011-03-10 2014-08-19 Tesla Motors, Inc. Charging efficiency using selectable isolation
CN102361101B (zh) * 2011-09-30 2012-12-05 东莞市冠佳电子设备有限公司 一种电池节能充放电的方法及测试系统
CN103187785B (zh) * 2011-12-27 2016-03-09 力博特公司 一种ups模块及ups系统
CN102593910B (zh) * 2012-03-02 2014-12-10 华为技术有限公司 一种不间断电源
CN203951247U (zh) * 2014-05-12 2014-11-19 广西科技大学鹿山学院 电动车充电系统
CN204615647U (zh) * 2015-05-12 2015-09-02 江苏固德威电源科技有限公司 双向升降压直流变换电路
CN106685039A (zh) * 2015-11-11 2017-05-17 上海汽车集团股份有限公司 一种充放电装置及其控制方法
CN106505859A (zh) * 2016-11-03 2017-03-15 北京科诺伟业科技股份有限公司 一种小功率双向光储变流器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437628A (zh) * 2011-10-22 2012-05-02 华北电力大学(保定) 蓄电池化成充放电变流电路
JP2013162652A (ja) * 2012-02-06 2013-08-19 Sumitomo Heavy Ind Ltd 2次電池の充放電装置およびそれを用いた充放電検査装置
CN102751772A (zh) * 2012-07-05 2012-10-24 西安交通大学 一种蓄电池充放电电路拓扑
CN204615655U (zh) * 2015-05-12 2015-09-02 江苏固德威电源科技有限公司 用于储能逆变器的双向直流变换电路
CN106972604A (zh) * 2016-12-12 2017-07-21 华北科技学院 一种矿用铅酸蓄电池高频智能快充充电器
CN111682617A (zh) * 2020-06-22 2020-09-18 深圳市富兰瓦时技术有限公司 一种电池充放电电路

Also Published As

Publication number Publication date
CN111682617A (zh) 2020-09-18
US20220115887A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
WO2021259267A1 (zh) 一种电池充放电电路
TWI221695B (en) Uninterruptible power system
Liang et al. Novel isolated high-step-up DC–DC converter with voltage lift
EP2632015A1 (en) Ups electricity supply control circuit and ups electricity supply
CN208386212U (zh) 一种不间断电源
KR20200115785A (ko) 양방향 완속 충전기 및 그 제어 방법
US11201548B2 (en) Single-stage interleaved soft switching converter
WO2021232749A1 (zh) 三桥臂拓扑装置及不间断电源系统
Jeong et al. Electrolytic capacitor-less single-power-conversion on-board charger with high efficiency
US20210268928A1 (en) On-board integrated charging device and current distribution calculating method thereof
CN210807100U (zh) 一种功率传输电路
Mira et al. Review of high efficiency bidirectional dc-dc topologies with high voltage gain
CN112350607A (zh) 具双向功率转换的三相电源装置
CN102882417A (zh) Ups隔离型双向直流变换器
US11780342B2 (en) On-board charging and discharging apparatus, charging and discharging system thereof, and electric vehicle
Lin et al. Analysis and implementation of a bidirectional ZVS dc-dc converter with active clamp
CN112693340B (zh) 一种功能集成式车载充电机及其工作方法
CN202818147U (zh) Ups隔离型双向直流变换器
CN205123614U (zh) 一种光伏逆变器电路
CN220548943U (zh) 车载供电装置、动力总成、电动汽车
CN218243070U (zh) 一种母线电容预充电电路
CN213547169U (zh) 一种多组电池的集中充电装置
CN216904324U (zh) 双向充放电电路及移动充放电装置
CN216121915U (zh) 一种市电与太阳能双路输入的直流不间断电源电路
CN219918724U (zh) 一种用于储能变流器控制系统的供电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830169

Country of ref document: EP

Kind code of ref document: A1