WO2021259148A1 - 适用于特高压换流站消防灭火系统的运行控制方法 - Google Patents

适用于特高压换流站消防灭火系统的运行控制方法 Download PDF

Info

Publication number
WO2021259148A1
WO2021259148A1 PCT/CN2021/100777 CN2021100777W WO2021259148A1 WO 2021259148 A1 WO2021259148 A1 WO 2021259148A1 CN 2021100777 W CN2021100777 W CN 2021100777W WO 2021259148 A1 WO2021259148 A1 WO 2021259148A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
fire monitor
wind direction
wind speed
monitor
Prior art date
Application number
PCT/CN2021/100777
Other languages
English (en)
French (fr)
Inventor
张佳庆
黄玉彪
黄勇
李金忠
杨鹏程
谭静
王刘芳
程登峰
田宇
柯艳国
罗沙
谢佳
范明豪
李伟
过羿
尚峰举
刘睿
苏文
Original Assignee
国网安徽省电力有限公司电力科学研究院
国家电网有限公司
国网经济技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网安徽省电力有限公司电力科学研究院, 国家电网有限公司, 国网经济技术研究院有限公司 filed Critical 国网安徽省电力有限公司电力科学研究院
Publication of WO2021259148A1 publication Critical patent/WO2021259148A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • A62C31/03Nozzles specially adapted for fire-extinguishing adjustable, e.g. from spray to jet or vice versa
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • A62C31/05Nozzles specially adapted for fire-extinguishing with two or more outlets
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C31/00Delivery of fire-extinguishing material
    • A62C31/02Nozzles specially adapted for fire-extinguishing
    • A62C31/12Nozzles specially adapted for fire-extinguishing for delivering foam or atomised foam
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
    • A62C37/38Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device by both sensor and actuator, e.g. valve, being in the danger zone
    • A62C37/40Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device by both sensor and actuator, e.g. valve, being in the danger zone with electric connection between sensor and actuator

Definitions

  • the invention relates to the field of operation strategies of fire extinguishing systems, and more specifically to an operation control method suitable for fire extinguishing systems of ultra-high voltage converter stations.
  • the UHV converter station is an important facility to ensure long-distance DC transmission. It is responsible for the nation's DC power transmission task and belongs to the country's major infrastructure.
  • the converter transformer in the UHV converter station is a large oil-containing equipment with obvious fire hazard. Multiple converter transformer fire accidents have shown that converter transformer fires have the characteristics of rapid development and large scale. If they are not effectively controlled in time, the safety of the entire converter station may be endangered, and the economic losses and social impacts brought about are incalculable.
  • a fire extinguishing system is installed in this area. Fire monitor fire extinguishing system is a common fire extinguishing system in converter stations.
  • the converter transformer area belongs to the high voltage area, about 800KV.
  • the fire extinguishing operation involves a series of operations such as opening of the corresponding partition selection valve, operation of the fire monitor control system, and hot standby preparation of the compressed air foam generating device system, which puts huge pressure on the operation and maintenance personnel in the station to carry out fire extinguishing operations. Risks such as misoperation will seriously affect the fire extinguishing effect of converter transformers.
  • the technical problem to be solved by the present invention is that the prior art lacks an operation control method suitable for the fire extinguishing system of an ultra-high voltage converter station, so as to avoid personnel misoperation, realize instant fire extinguishing and efficient fire extinguishing, and thereby reduce the pressure of operation and maintenance personnel in the station.
  • the present invention solves the above-mentioned technical problems through the following technical means: an operation control method suitable for the fire extinguishing system of an ultra-high voltage converter station.
  • the fire extinguishing system of the ultra-high voltage converter station includes a first foam fire monitor extinguishing system and a second foam A fire monitor fire extinguishing system and a host computer control system.
  • the first foam fire monitor fire extinguishing system includes a first fire monitor and a first compressed air foam generating subsystem
  • the second foam fire monitor fire extinguishing system includes a second fire monitor and a second compressor
  • the air bubble generation subsystem, the method includes:
  • the upper computer control system After the upper computer control system receives the sound and light alarm signal, the alarm position signal and the switch position signal, it starts the fixed fire monitor jet range prediction and analysis subsystem;
  • the prediction and analysis subsystem of the fixed fire monitor's jet range determines whether the fire monitor's range effectively covers all the commutation variable areas according to the external wind direction and the size of the external wind speed;
  • the guns are automatically preset positions, and the fixed fire monitors are operated on the remote piano platform to extinguish the fire;
  • the mobile firefighting robot will replace the first fire monitor to extinguish the fire. If the second fire monitor does not meet the range requirement, the mobile firefighting robot will replace the second fire monitor to extinguish the fire. If the first fire monitor and the second fire monitor do not meet the range requirements, two mobile fire-fighting robots will replace the first fire monitor and the second fire monitor respectively to extinguish the fire.
  • the invention uses the upper computer control system to receive the alarm signal and fix the fire monitor jet range prediction analysis subsystem to judge whether the fire monitor’s range effectively covers all commutation variable areas, and perform targeted fire extinguishing operations based on the judgment results to avoid personnel misoperations, Realize instant fire extinguishing and efficient fire extinguishing, thereby reducing the pressure on the operation and maintenance personnel in the station.
  • the upper computer control system receiving the sound and light alarm signal, the alarm position signal and the switch position signal includes: acquiring the signal data of 2 cable-type temperature detectors and 2 flame detectors through the coupling of the alarm, and the combined alarm controller passes The principle of three out of two is independent research and judgment to output the sound and light alarm signal and the alarm position signal, the circuit breaker of the single-valve converter transformer will switch off, and the single-valve converter transformer will automatically cut off the power and output the switch position signal.
  • the principle of selecting two from three includes: at least one flame detector sends out an action signal, that is, it is considered that this path outputs an action signal, and two flame detectors are configured as one output and two cable-type temperature sensors. 3 outputs, when at least 2 of the 3 outputs send out action signals, the combined alarm controller will alarm.
  • the prediction and analysis subsystem of the fixed fire monitor's jet range is built in the upper computer control system.
  • the prediction and analysis subsystem of the fixed fire monitor's jet range determines whether the fire monitor's range effectively covers all the commutation variable areas according to the external wind direction and the size of the external wind speed, including:
  • the external wind direction and external wind speed determined by the wind environment fluctuation confidence determination model are input into the effective coverage performance prediction model of the fixed fire monitor to determine whether the fire monitor’s range effectively covers all the commutating areas.
  • the establishment of a wind environment fluctuation confidence level judgment model includes:
  • ⁇ base is the basic wind speed
  • Winds of time t i is the number of values of wind speed detector
  • is the confidence value of wind speed fluctuation
  • ⁇ base is the basic wind direction
  • Is the wind direction at time t i;
  • is the confidence value of wind direction angle fluctuation.
  • the determining the external wind direction and the external wind speed by the wind environment fluctuation confidence determination model includes:
  • the wind direction and wind speed probability statistics model is used to divide 12 fan-shaped area azimuth areas with every 30° as a statistical azimuth for wind direction statistics.
  • the wind direction with the highest statistical probability is taken as the reference wind direction
  • the statistical mean value of the wind speed in the fan-shaped area where the reference wind direction is located is taken as For reference wind speed, the outside wind speed adopts the reference wind speed, and the outside wind direction adopts the reference wind direction.
  • wind direction and wind speed probability statistical model includes:
  • f i is the frequency of occurrence of wind direction in azimuth i
  • n i is the number of occurrences of wind direction in azimuth i
  • k is the total recorded number of wind direction and azimuth
  • f 1 is the frequency of wind direction in azimuth 1
  • f 2 is the frequency of wind direction in azimuth 2
  • f max is the highest value of wind direction in 12 fan-shaped azimuth zones
  • a prediction model for the effective coverage performance of a fixed fire monitor includes:
  • the input of the wind direction and wind speed determined by the wind environment fluctuation confidence determination model into the effective coverage performance prediction model of the fixed fire monitor to determine whether the fire monitor range effectively covers all the commutating areas includes:
  • the range of the fire monitor can effectively cover all the commutating areas under the conditions of the initial spray speed, initial spray angle, external wind speed and external wind direction of the fire monitor;
  • the present invention receives the alarm signal through the upper computer control system and fixes the fire monitor jet range prediction and analysis subsystem to judge whether the fire monitor range effectively covers all the commutating variable areas, and performs targeted fire extinguishing operations according to the judgment results , To avoid personnel misoperation, to achieve instant fire extinguishing and efficient fire extinguishing, thereby reducing the pressure on the operation and maintenance personnel in the station.
  • Fig. 1 is a flowchart of an operation control method suitable for the fire extinguishing system of an ultra-high voltage converter station disclosed in an embodiment of the present invention
  • FIG. 2 is a detailed view of part A of the flow chart of the operation control method suitable for the fire extinguishing system of the UHV converter station disclosed in the embodiment of the present invention
  • FIG. 4 is a schematic diagram of the coupling vector calculation of the operation control method suitable for the fire extinguishing system of the UHV converter station disclosed in the embodiment of the present invention
  • Fig. 5 is a working flow chart of a fixed fire monitor jet range effective coverage prediction analysis system suitable for the operation control method of the fire extinguishing system of the UHV converter station disclosed in the embodiment of the present invention
  • FIG. 6 is a layout diagram of the UHV converter station fire extinguishing system in the operation control method suitable for the UHV converter station fire extinguishing system disclosed in the embodiment of the present invention
  • FIG. 7 is a schematic diagram of the YYA phase converter transformer fire extinguishing diagram of the single valve group converter transformer in the operation control method suitable for the fire extinguishing system of the UHV converter station disclosed by the embodiment of the present invention
  • FIG. 8 is a schematic diagram of YDB-phase converter transformer fire extinguishing of a single-valve group converter transformer in an operation control method suitable for a fire extinguishing system of an ultra-high voltage converter station disclosed in an embodiment of the present invention
  • Figure 9 is a schematic diagram of the fire extinguishing of the YYC phase converter transformer of the single valve group converter transformer in the operation control method suitable for the fire extinguishing system of the UHV converter station disclosed in the embodiment of the present invention.
  • the operation control method suitable for the fire extinguishing system of the UHV converter station includes:
  • the body of the single-valve converter transformer 100 is arranged in parallel and independently with two cable-type temperature detectors, the first temperature detector and the second temperature detector, each phase converter transformer 1 peripheral firewall 2 is arranged with 2 flame detectors, They are the first flame detector and the second flame detector.
  • the first flame detector sends out an action signal
  • the first temperature-sensing detector sends out an action signal at the same time
  • the combined alarm system sends out an audible and visual alarm signal. If only the flame detector or only the cable-type temperature detector sends out an action signal, the combined alarm system will not alarm.
  • a certain phase converter transformer 1 is abnormal, the circuit breaker switch of the single valve group converter transformer 100 sends a response action, the circuit breaker switch is in position, and the valve group is powered off.
  • the sound and light alarm signal, the alarm position signal, the circuit breaker switch position signal are transmitted to the upper computer control system 8, and the upper computer control system 8 activates the fixed fire monitor jet range prediction analysis subsystem; wherein, the principle of selecting two from three includes at least: When one flame detector sends out an action signal, it is considered that this channel outputs an action signal. Two flame detectors are used as one output and two cable-type temperature detectors to form 3 outputs. When at least 2 of the 3 outputs are sent out When the action signal, the combined alarm controller alarms.
  • the establishment of the wind environment fluctuation confidence degree judgment model, and the external wind direction and the size of the outside wind speed are determined through the wind environment fluctuation confidence degree judgment model:
  • ⁇ base is the basic wind speed
  • Winds of time t i is the number of values of wind speed detector
  • is the confidence value of wind speed fluctuation
  • ⁇ base is the basic wind direction
  • Is the wind direction at time t i;
  • is the confidence value of wind direction angle fluctuation.
  • the preset value is selected as 0.3.
  • the wind direction and wind speed probability statistics model is used to divide 12 fan-shaped area azimuth areas with every 30° as a statistical azimuth for wind direction statistics.
  • the wind direction with the highest statistical probability is taken as the reference wind direction
  • the statistical mean value of the wind speed in the fan-shaped area where the reference wind direction is located is taken as For reference wind speed, the outside wind speed adopts the reference wind speed, and the outside wind direction adopts the reference wind direction.
  • the probability statistical model of wind direction and speed includes:
  • f i is the frequency of occurrence of wind direction in azimuth i
  • n i is the number of occurrences of wind direction in azimuth i
  • k is the total recorded number of wind direction and azimuth
  • f 1 is the frequency of wind direction in azimuth 1
  • f 2 is the frequency of wind direction in azimuth 2
  • f max is the highest value of wind direction in 12 fan-shaped azimuth zones
  • the range of the fire monitor can effectively cover all the conversion variable 1 area under the conditions of the initial spray speed, initial spray angle, external wind speed and external wind direction of the fire monitor;
  • the upper computer control system 8 first Control the fire monitor to increase the jet flow rate to the maximum flow rate to increase the jet speed, return to the above steps to continue to determine whether the fire monitor’s range effectively covers all the commutation variable 1 area, if it still cannot meet the effective coverage of all commutation variable 1, then finally Determine that the range of the fire monitor cannot effectively cover all the commutating transformer 1 area, and perform the following steps.
  • the fire monitor's range effectively covers all converter transformer 1 area if the fire monitor's range effectively covers all converter transformer 1, then the first compressed air foam generating subsystem 5 and the second compressed air foam generating subsystem are activated 7.
  • the first fire monitor 4 of the first compressed air foam generating subsystem 5 and the second fire monitor 6 of the second compressed air foam generating subsystem 7 are automatically preset, and the remote console of the fixed fire monitor is operated to extinguish the fire;
  • the remote console of the fire monitor belongs to a console.
  • the mobile fire fighting robot 18 will replace the first fire monitor 4 to extinguish the fire, if the second fire monitor 6 does not meet the requirements If the range requirements are required, the mobile fire-fighting robot 18 will replace the second fire monitor 6 to extinguish the fire. If the first fire monitor 4 and the second fire monitor 6 do not meet the range requirements, the two mobile fire-fighting robots 18 will replace the first fire monitor 4 respectively. And the second fire monitor 6 to extinguish the fire.
  • the operation control method suitable for the fire extinguishing system of the UHV converter station provided by the present invention is mainly applied to the fire extinguishing system of the UHV converter station.
  • the UHV converter station and the special The layout of the fire extinguishing system of the high-voltage converter station will introduce the whole working process of the present invention in detail.
  • each single-valve converter 100 includes several converter transformers 1 arranged at equal intervals.
  • the adjacent converters 1 are separated by a firewall 2.
  • Each single-valve converter A valve hall 3 is arranged in parallel on the rear side of the rheology 100.
  • the single valve group converter 100 and the corresponding valve hall 3 form a pole, two poles and a group of poles, each group of poles includes a high-end valve group and a low-end valve Group, the two poles in the same group of poles are arranged in mirror symmetry, the low-end valve group between adjacent groups of poles is arranged back-to-back or the high-end valve group is arranged back-to-back, each converter transformer 1 valve hall 3 side casing extension Enter its corresponding valve hall 3.
  • the UHV converter station includes four poles arranged in parallel in sequence, namely, pole 1 high-end valve group 200, pole 1 low-end valve group 300, and extremely 2 low-end valve group.
  • Pole 2 high-end valve group 500, Pole 1 high-end valve group 200 and Pole 1 low-end valve group 300 are mirrored symmetrically, Pole 2 high-end valve group and Very 2 low-end valve group 400 are mirrored symmetrically, Very 1 low-end valve group 300 and extremely 2 low-end valve groups 400 are arranged back to back, wherein each single valve group converter transformer 100 has 6 converter transformers 1, and adjacent converter transformers 1 are separated by firewalls 2 and arranged at equal intervals.
  • the UHV converter station fire extinguishing system includes a first foam fire monitor fire extinguishing system, a second foam fire monitor fire extinguishing system and an upper computer control system 8.
  • the first foam fire monitor fire extinguishing system includes a first foam fire monitor fire extinguishing system.
  • a second foam fire monitor fire extinguishing system includes a second fire monitor 6 and a second compressed air foam generating subsystem 7.
  • the first compressed air foam generating subsystem 5 and the second compressed air foam generating subsystem 7 are both compressed air foam generating subsystems, and the first compressed air foam generating subsystem 5 and the second compressed air foam generating subsystem 7 output
  • the fire extinguishing medium is compressed air foam.
  • the first fire monitor 4 and the second fire monitor 6 are located on the eaves of the valve hall 3 directly above the firewall 2.
  • the first fire monitor 4 and the second fire monitor 6 are interspersedly arranged, and each two converter transformers 1 corresponds to one
  • the first fire monitor 4 and the second fire monitor 6, when the fire is extinguished, the release directions of the fire extinguishing medium of the first fire monitor 4 and the second fire monitor 6 all point to the center position of the corresponding converter transformer 1.
  • each of the single-valve group converter transformers 100 close to the first compressed air foam generating subsystem 5 and the second compressed air foam generating subsystem 7 is provided with a first partition selection valve 9 and a second partition selection valve 10, All the first fire monitors 4 in the single-valve converter transformer 100 are connected to the first partition selection valve 9 through pipelines, and all the first partition selection valves 9 in the UHV converter station are connected to the first bubble supply pipeline 11.
  • the second fire monitor 6 in the valve group converter transformer 100 is connected to the second partition selector valve 10 through a pipeline, and all the second partition selector valves 10 in the UHV converter station are connected to the second bubble supply pipeline 12, the first compression
  • the air bubble generation subsystem 5 is connected to the first bubble supply pipe 11 and the second bubble supply pipe 12 through an electric valve 15 respectively, and the second compressed air bubble generation subsystem 7 is respectively connected to the first bubble supply pipe 11 and the second bubble supply pipe 12 12Connect.
  • the first compressed air foam generation subsystem 5 is electrically connected to the upper computer control system 8 through the first local control cabinet 13
  • the second compressed air foam generation subsystem 7 is electrically connected to the upper computer control system 8 through the second local control cabinet 14 Electric connection.
  • the normal working compressed air foam generating subsystem When a certain compressed air foam generating subsystem fails, the normal working compressed air foam generating subsystem simultaneously supplies bubbles to the first fire monitor 4 and the second fire monitor 6 to ensure the full coverage of the fire converter 1. It should be noted that when the two fire extinguishing systems are both normal, one compressed air foam generating subsystem supplies foam to the first fire monitor 4, and the other compressed air foam generating subsystem supplies foam to the second fire monitor 6.
  • a compressed air foam generating subsystem distributes bubbles to ensure the amount of compressed air foam to effectively extinguish the fire.
  • the spray range covering the entire converter transformer 1 is the most important thing. Only by covering the entire converter transformer 1 can the fire be extinguished. The requirement for the amount of foam is secondary. Therefore, the compressed air foam generation subsystem that can work normally sends the first fire monitor 4 and the first fire monitor 4 arranged above the fire converter transformer 1.
  • the second fire monitor 6 is for bubbling.
  • the first compressed air foam generating subsystem 5 and the second compressed air foam generating subsystem 7 are arranged far away from the area where the converter transformer 1 is located.
  • the first compressed air foam generation subsystem 5 is arranged in the pole 1 square of the UHV converter station in operation
  • the second compressed air foam generation subsystem 7 is arranged in the pole 2 square of the UHV converter station in operation.
  • Pole 1 square and Pole 2 square are both far away from converter 1.
  • the purpose of this design is that when converter 1 catches fire, it is easy to cause explosion and damage pipelines and fire monitors. If the compressed air foam produces the subsystem distance If the rheology 1 is close, it is easy to cause damage to the system and cannot produce foam.
  • the compressed air foam generation subsystem is arranged far away from the converter 1, even if an explosion occurs or the fire monitor is damaged, it can also be produced by compressed air foam
  • the sub-system generates foam and supplies it to the ignition converter 1 position through the pipeline.
  • the working process of the present invention is as follows: as shown in Fig. 6, 4 fire monitors are arranged at intervals of the single-valve converter transformer 100, and two fire monitors correspond to each two adjacent converter transformers 1, and one fire monitor passes through
  • the first compressed air foam generating subsystem 5 provides foam
  • the other fire monitor is provided by the first compressed air foam generating subsystem 5.
  • the compressed air foam generating subsystem 5 is connected, and the second and fourth fire monitors from the bottom up are connected to the second compressed air foam generating subsystem 7.
  • the fire monitors set on the eaves of the valve hall 3 can be changed for each Rheology 1 has no difference coverage; two compressed air foam generating subsystems are respectively arranged in the two pole squares of the UHV converter station in operation.
  • No. 2 fire monitor is provided with compressed air foam by the second compressed air foam generating subsystem 7 located in Ji 2 Square, while No. 1 is provided by the first compressed air foam generating subsystem 5 on Ji 1 plaza, which is far away. Foam.
  • the fire extinguishing system of the UHV converter station also includes a first redundant connection port (not shown in the figure) and a second redundant connection.
  • the remaining connection port (not marked in the figure), the first redundant connection port is a redundant port of the first bubble supply pipe 11, and the redundant port extends to the square area of the converter substation 1, and the second redundant port
  • the remaining port is a redundant port of the second bubble supply pipe 12, the redundant port extends to the 1 square area of the converter transformer, the size of the first redundant port and the second redundant port
  • the shapes are all the same, the first redundant connection port is communicated with the external interface 17 through a manual gate valve 16, and the second redundant interface is communicated with the external interface 17 through another manual gate valve 16.
  • the fire extinguishing system of the UHV converter station also includes a mobile fire fighting robot 18 connected with a hose 19, and the hose 19 has a first redundant connection port and a second redundant connection
  • the port is also the external interface 17, and is moved to a predetermined area to realize the fire extinguishing of the YYA phase converter transformer 1; the specific effect is shown in Figure 5.
  • the movable fire-fighting robot 18 adopts RXR-M40L-16CA produced by Jiujiang Zhongshi Changan Fire-fighting Equipment Co., Ltd.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fire Alarms (AREA)

Abstract

本发明公开了适用于特高压换流站消防灭火系统的运行控制方法所述方法包括:上位机控制系统接收声光报警信号、报警位置信号以及开关分位信号后,启动固定消防炮喷射射程预测分析子系统;固定消防炮喷射射程预测分析子系统根据外界风向以及外界风速大小判断消防炮射程是否有效覆盖全部换流变区域;若是,则第一压缩空气泡沫产生子系统所属的第一消防炮以及第二压缩空气泡沫产生子系统所属的第二消防炮均自动预置位;若否,则由移动消防机器人替换消防炮进行灭火;本发明的优点在于:提供适用于特高压换流站消防灭火系统的运行控制方法,以避免人员误动作,实现即时灭火、高效灭火,进而降低站内运维人员的压力。

Description

适用于特高压换流站消防灭火系统的运行控制方法 技术领域
本发明涉及消防灭火系统运行策略领域,更具体涉及适用于特高压换流站消防灭火系统的运行控制方法。
背景技术
特高压换流站是保证直流长距离输电的重要设施,承担着全国的直流电力输送任务,属于国家重大基础设施。特高压换流站内的换流变压器属于大型含油设备,具备明显的火灾危险性。多次换流变压器火灾事故表明,换流变压器火灾具有发展迅速,规模大的特点,如不及时有效控制,可能会危及整个换流站的安全,带来的经济损失、社会影响难以估量。为保证换流变压器区域安全水平,该区域设置有消防灭火系统。消防炮灭火系统是换流站一种常见的灭火系统。然而,由于换流变压器区域属于高压区域,约800KV。火灾发生时,需现场运维人员将该阀组人工操作停电后,才可以开展换流变灭火作业。灭火作业涉及到对应分区选择阀打开、消防炮控制系统操作、压缩空气泡沫产生装置系统热备用准备等一系列操作动作,给站内运维人员开展灭火作业带来巨大压力,存在灭火时机延误、人工误操作等风险,严重影响换流变压器火灾灭火效果。
国内外关于换流变压器油火燃烧特性与火灾机理主要基于换流变压器火灾事故开展了少量研究。安徽省电力科学研究院发表文献典型变压器油燃烧特性试验研究[J].华东电力,2013,41(9):1865-1870,采用全尺寸热释放速率实验台研究了变压器油在不同油盘尺寸下的典型燃烧特性参数。天津 市消防总队发表文献油浸式电力变压器火灾抑制实验研究[J].消防科学与技术,2012,31(12):1306-1309,通过小尺度模拟试验对变压器油池火灾开展了研究。山东海普劳动安全技术咨询有限公司发表文献浅析变压器发生火灾、爆炸的原因[J].安全、健康和环境,2010,10(4):11-12,阐述了变压器发生火灾及爆炸的十个原因。沈阳市消防支队和公安部沈阳消防研究所发表文献油浸变压器火灾原因及勘查方法探讨[C]//中国消防协会电气防火专业委员会一次会议暨第十三次电气防火学术研讨会.2006,从油浸变压器结构和工作原理方面分析了油浸变压器火灾故障原因和故障模式。电力信息研究所发表文献电力变压器的防火[J].电力建设,1996(9):27-29,分析了变压器着火燃烧的机理。美国工厂保险联盟发表文献Heskestad,G.and P.H.Dobson,Pool fires of transformer oil sinking into a rock bed.Fire Safety Journal,1997.28(1):p.33-46,研究了变压器油的油池火灾燃烧特性。国际大电网委员会变压器防火安全指南对变压器火灾发生原因进行了详细说明。
综上,现有技术还没有对适用于特高压换流站消防灭火系统的运行控制方法进行研究,为了避免人员误动作,实现即时灭火、高效灭火,进而降低站内运维人员的压力,需要对消防灭火系统的控制方法进行设计。
发明内容
本发明所要解决的技术问题在于现有技术缺乏适用于特高压换流站消防灭火系统的运行控制方法,以避免人员误动作,实现即时灭火、高效灭火,进而降低站内运维人员的压力。
本发明通过以下技术手段实现解决上述技术问题的:适用于特高压换流站消防灭火系统的运行控制方法,所述特高压换流站消防灭火系统包括 第一泡沫消防炮灭火系统、第二泡沫消防炮灭火系统以及上位机控制系统,所述第一泡沫消防炮灭火系统包括第一消防炮和第一压缩空气泡沫产生子系统,第二泡沫消防炮灭火系统包括第二消防炮和第二压缩空气泡沫产生子系统,所述方法包括:
上位机控制系统接收声光报警信号、报警位置信号以及开关分位信号后,启动固定消防炮喷射射程预测分析子系统;
固定消防炮喷射射程预测分析子系统根据外界风向以及外界风速大小判断消防炮射程是否有效覆盖全部换流变区域;
若是,则启动第一压缩空气泡沫产生子系统以及第二压缩空气泡沫产生子系统,第一压缩空气泡沫产生子系统所属的第一消防炮以及第二压缩空气泡沫产生子系统所属的第二消防炮均自动预置位,固定消防炮远程琴台操作灭火;
若否,如果是第一消防炮不满足射程要求,则由移动消防机器人替换第一消防炮进行灭火,如果是第二消防炮不满足射程要求,则由移动消防机器人替换第二消防炮进行灭火,如果第一消防炮和第二消防炮均不满足射程要求则由两个移动消防机器人分别替换第一消防炮和第二消防炮进行灭火。
本发明通过上位机控制系统接收报警信号并固定消防炮喷射射程预测分析子系统对消防炮射程是否有效覆盖全部换流变区域进行判断,根据判断结果针对性的进行灭火操作,避免人员误动作,实现即时灭火、高效灭火,进而降低站内运维人员的压力。
进一步地,上位机控制系统接收声光报警信号、报警位置信号以及开关分位信号包括:获取2路缆式温感探测器以及2台火焰探测器通过耦合报 警的信号数据,组合报警控制器通过三取二原则自主研判输出声光报警信号和报警位置信号,单阀组换流变的断路器开关动作,单阀组换流变自动断电,输出开关分位信号。
更进一步地,所述三选二原则包括:至少1台火焰探测器发出动作信号,即认为该路输出动作信号,两台火焰探测器作为1路输出与2路缆式温感探测器一起构成3路输出,当3路输出中至少2路发出动作信号时,组合报警控制器报警。
进一步地,所述固定消防炮喷射射程预测分析子系统内置于上位机控制系统中。
进一步地,固定消防炮喷射射程预测分析子系统根据外界风向以及外界风速大小判断消防炮射程是否有效覆盖全部换流变区域包括:
建立风环境波动置信度判定模型;
通过风环境波动置信度判定模型确定外界风向和外界风速大小;
建立固定消防炮有效覆盖性能预测模型;
将风环境波动置信度判定模型确定的外界风向和外界风速大小输入固定消防炮有效覆盖性能预测模型判断消防炮射程是否有效覆盖全部换流变区域。
更进一步地,所述建立风环境波动置信度判定模型包括:
通过公式
Figure PCTCN2021100777-appb-000001
获取基本风速;
其中,ν 为基本风速;
Figure PCTCN2021100777-appb-000002
为t i时刻风速;n为风速探测器取值次数;
通过公式
Figure PCTCN2021100777-appb-000003
获取风速大小波动置信值;
其中,η为风速大小波动置信值;
通过公式
Figure PCTCN2021100777-appb-000004
获取基本风向;
其中,β 为基本风向;
Figure PCTCN2021100777-appb-000005
为t i时刻风向;
通过公式
Figure PCTCN2021100777-appb-000006
获取风向角度波动置信值;
其中,λ为风向角度波动置信值。
更进一步地,所述通过风环境波动置信度判定模型确定外界风向和外界风速大小包括:
当风速大小波动置信度值η和风向角度波动置信度值λ的取值均小于预设值时,则判定外界风速大小、外界风速方向条件稳定,外界风速大小采用基本风速ν ,外界风向采用基本风向β
当风速大小波动置信度值η和风向角度波动置信度值λ的取值均大于预设值时,则判定外界风速或外界风向条件波动大,消防炮受外部风环境影响程度也会随之增大,通过风向风速概率统计模型以每30°为一个统计方位划分12个扇形区方位区进行风向统计,取统计概率最高的风向作为参考风向,取该参考风向所在扇形区的风速大小统计均值作为参考风速,外界风速大小采用参考风速,外界风向采用采用参考风向。
再进一步地,所述风向风速概率统计模型包括:
通过公式
Figure PCTCN2021100777-appb-000007
获取风向在方位i出现的频率,
其中,f i为风向在方位i出现的频率;n i为风向在方位i出现的次数;k为风向方位的总记录次数;
通过公式f max=MAX[f 1,f 2,...,f 12]获取风向在12个扇形方位区中出现频率 的最高值,
其中,f 1为风向在方位1的频率,f 2为风向在方位2的频率;f max为风向在12个扇形方位区中出现频率的最高值;
通过公式
Figure PCTCN2021100777-appb-000008
获取方位i内的平均风速值,
其中,
Figure PCTCN2021100777-appb-000009
为方位i内的平均风速值;
Figure PCTCN2021100777-appb-000010
为方位i内第x次的实测风速值。
进一步地,所述建立固定消防炮有效覆盖性能预测模型包括:
通过公式
Figure PCTCN2021100777-appb-000011
获取消防炮初始喷射速度,
其中,r是炮管半径,
Figure PCTCN2021100777-appb-000012
是气液比,Q 流量是泡沫混合液流量;
通过公式
Figure PCTCN2021100777-appb-000013
获取消防炮与风速耦合条件下的速度,其中,ν o为消防炮与风速耦合条件下的速度,ν p为消防炮初始喷射速度,θ为初始喷射角度且取值范围[0°,360°],ν f为外界风速大小,β为外界风向且取值范围[0°,360°];
通过公式L=ν 0t获取消防炮覆盖区域射程理论值,其中,t为泡沫从释放到落至地面所需时间且
Figure PCTCN2021100777-appb-000014
H 1为消防炮布置高度,g为重力加速度;
通过公式
Figure PCTCN2021100777-appb-000015
获取消防炮覆盖区域实际射程,其中,λ为修正系数;
通过公式
Figure PCTCN2021100777-appb-000016
获取外界风影响下消防炮的实际喷射角度,
通过公式
Figure PCTCN2021100777-appb-000017
获取着火换流变实际所需射程,其中,L 1为消防炮距 着火换流变防火墙最远端侧距离。
更进一步地,所述将风环境波动置信度判定模型确定的风向和风速大小输入固定消防炮有效覆盖性能预测模型判断消防炮射程是否有效覆盖全部换流变区域包括:
当L 0≥L 时,消防炮在消防炮初始喷射速度、初始喷射角度、外界风速及外界风向条件下,消防炮射程有效覆盖全部换流变区域;
当L 0<L 时,消防炮在消防炮初始喷射速度、初始喷射角度、外界风速及外界风向条件下,消防炮射程无法有效覆盖全部换流变区域。
本发明的优点在于:本发明通过上位机控制系统接收报警信号并固定消防炮喷射射程预测分析子系统对消防炮射程是否有效覆盖全部换流变区域进行判断,根据判断结果针对性的进行灭火操作,避免人员误动作,实现即时灭火、高效灭火,进而降低站内运维人员的压力。
附图说明
图1为本发明实施例所公开的适用于特高压换流站消防灭火系统的运行控制方法的流程图;
图2为本发明实施例所公开的适用于特高压换流站消防灭火系统的运行控制方法的流程图的A部分细节图;
图3为本发明实施例所公开的适用于特高压换流站消防灭火系统的运行控制方法的流程图的B部分细节图;
图4为本发明实施例所公开的适用于特高压换流站消防灭火系统的运行控制方法的耦合矢量计算示意图;
图5为本发明实施例所公开的适用于特高压换流站消防灭火系统的运 行控制方法的固定消防炮喷射射程有效覆盖预测分析系统工作流程图;
图6为本发明实施例所公开的适用于特高压换流站消防灭火系统的运行控制方法中特高压换流站消防灭火系统布置图;
图7为本发明实施例所公开的适用于特高压换流站消防灭火系统的运行控制方法中单阀组换流变的YYA相换流变灭火示意图;
图8为本发明实施例所公开的适用于特高压换流站消防灭火系统的运行控制方法中单阀组换流变的YDB相换流变灭火示意图;
图9为本发明实施例所公开的适用于特高压换流站消防灭火系统的运行控制方法中单阀组换流变的YYC相换流变灭火示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1至图3所示,适用于特高压换流站消防灭火系统的运行控制方法,所述方法包括:
单阀组换流变100本体并行独立布置两路缆式感温探测器,第一感温探测器和第二感温探测器,每相换流变1周边防火墙2布置2台火焰探测器,分别为第一火焰探测器和第二火焰探测器。当第一火焰探测器发出动作信号,同时第一感温探测器发出动作信号,满足“三取二”条件时,组合报警系统发出声光报警信号。若仅火焰探测器或仅缆式感温探测器发出动作 信号时,组合报警系统则不报警。同时,某相换流变1出现异常,单阀组换流变100的断路器开关发出响应动作,断路器开关分位,该阀组停电。声光报警信号、报警位置信号,断路器开关分位信号传输到上位机控制系统8,上位机控制系统8启动固定消防炮喷射射程预测分析子系统;其中,所述三选二原则包括:至少1台火焰探测器发出动作信号,即认为该路输出动作信号,两台火焰探测器作为1路输出与2路缆式温感探测器一起构成3路输出,当3路输出中至少2路发出动作信号时,组合报警控制器报警。
图1至图3结合图4以及图5,固定消防炮喷射射程预测分析子系统启动以后,根据外界风向以及外界风速大小判断消防炮射程是否有效覆盖全部换流变1区域;具体过程包括:
首先,所述建立风环境波动置信度判定模型,通过风环境波动置信度判定模型确定外界风向和外界风速大小:
通过公式
Figure PCTCN2021100777-appb-000018
获取基本风速;
其中,ν 为基本风速;
Figure PCTCN2021100777-appb-000019
为t i时刻风速;n为风速探测器取值次数;
通过公式
Figure PCTCN2021100777-appb-000020
获取风速大小波动置信值;
其中,η为风速大小波动置信值;
通过公式
Figure PCTCN2021100777-appb-000021
获取基本风向;
其中,β 为基本风向;
Figure PCTCN2021100777-appb-000022
为t i时刻风向;
通过公式
Figure PCTCN2021100777-appb-000023
获取风向角度波动置信值;
其中,λ为风向角度波动置信值。
当风速大小波动置信度值η和风向角度波动置信度值λ的取值均小于预设值时,则判定外界风速大小、外界风速方向条件稳定,外界风速大小采用基本风速ν ,外界风向采用基本风向β ;所述预设值选取0.3。
当风速大小波动置信度值η和风向角度波动置信度值λ的取值均大于预设值时,则判定外界风速或外界风向条件波动大,消防炮受外部风环境影响程度也会随之增大,通过风向风速概率统计模型以每30°为一个统计方位划分12个扇形区方位区进行风向统计,取统计概率最高的风向作为参考风向,取该参考风向所在扇形区的风速大小统计均值作为参考风速,外界风速大小采用参考风速,外界风向采用采用参考风向。
其中,所述风向风速概率统计模型包括:
通过公式
Figure PCTCN2021100777-appb-000024
获取风向在方位i出现的频率,
其中,f i为风向在方位i出现的频率;n i为风向在方位i出现的次数;k为风向方位的总记录次数;
通过公式f max=MAX[f 1,f 2,...,f 12]获取风向在12个扇形方位区中出现频率的最高值,
其中,f 1为风向在方位1的频率,f 2为风向在方位2的频率;f max为风向在12个扇形方位区中出现频率的最高值;
通过公式
Figure PCTCN2021100777-appb-000025
获取方位i内的平均风速值,
其中,
Figure PCTCN2021100777-appb-000026
为方位i内的平均风速值;
Figure PCTCN2021100777-appb-000027
为方位i内第x次的实测风速值。
接着,建立固定消防炮有效覆盖性能预测模型,将风环境波动置信度判 定模型确定的风向和风速大小输入固定消防炮有效覆盖性能预测模型判断消防炮射程是否有效覆盖全部换流变1区域:
通过公式
Figure PCTCN2021100777-appb-000028
获取消防炮初始喷射速度,
其中,r是炮管半径,
Figure PCTCN2021100777-appb-000029
是气液比,Q 流量是泡沫混合液流量;
通过公式
Figure PCTCN2021100777-appb-000030
获取消防炮与风速耦合条件下的速度,其中,ν o为消防炮与风速耦合条件下的速度,ν p为消防炮初始喷射速度,θ为初始喷射角度且取值范围[0°,360°],ν f为外界风速大小,β为外界风向且取值范围[0°,360°];
通过公式L=ν 0t获取消防炮覆盖区域射程理论值,其中,t为泡沫从释放到落至地面所需时间且
Figure PCTCN2021100777-appb-000031
H 1为消防炮布置高度,g为重力加速度;
通过公式
Figure PCTCN2021100777-appb-000032
获取消防炮覆盖区域实际射程,其中,λ为修正系数;
通过公式
Figure PCTCN2021100777-appb-000033
获取外界风影响下消防炮的实际喷射角度,
通过公式
Figure PCTCN2021100777-appb-000034
获取着火换流变1实际所需射程,其中,L 1为消防炮距着火换流变1防火墙2最远端侧距离。
当L 0≥L 时,消防炮在消防炮初始喷射速度、初始喷射角度、外界风速及外界风向条件下,消防炮射程有效覆盖全部换流变1区域;
当L 0<L 时,消防炮在消防炮初始喷射速度、初始喷射角度、外界风速及外界风向条件下,消防炮射程无法有效覆盖全部换流变1区域,此时上 位机控制系统8首先控制消防炮将喷射流量增加至最大流量值的方式增加喷射速度,返回上述步骤继续判断消防炮射程是否有效覆盖全部换流变1区域,若还是无法满足有效覆盖全部换流变1区域,则最终判定消防炮射程无法有效覆盖全部换流变1区域,执行以下步骤。
以上完成判断消防炮射程是否有效覆盖全部换流变1区域以后,若消防炮射程有效覆盖全部换流变1区域,则启动第一压缩空气泡沫产生子系统5以及第二压缩空气泡沫产生子系统7,第一压缩空气泡沫产生子系统5所属的第一消防炮4以及第二压缩空气泡沫产生子系统7所属的第二消防炮6均自动预置位,固定消防炮远程琴台操作灭火;消防炮远程琴台属于一个操作台。
若消防炮射程不能有效覆盖全部换流变1区域,如果是第一消防炮4不满足射程要求,则由移动消防机器人18替换第一消防炮4进行灭火,如果是第二消防炮6不满足射程要求,则由移动消防机器人18替换第二消防炮6进行灭火,如果第一消防炮4和第二消防炮6均不满足射程要求则由两个移动消防机器人18分别替换第一消防炮4和第二消防炮6进行灭火。
本发明提供的适用于特高压换流站消防灭火系统的运行控制方法,主要应用于特高压换流站消防灭火系统,为了清楚的展示本发明的控制方法,以下引出特高压换流站以及特高压换流站消防灭火系统的布置,详细介绍本发明的整个工作过程。
如图6所示,提供一种在运特高压换流站的具体配置,并将灭火系统布置于该在运特高压换流站,所述在运特高压换流站包括若干组相互平行布置的单阀组换流变100,每个单阀组换流变100包括若干台等间隔布置的 换流变1,相邻换流变1之间通过防火墙2隔开,每个单阀组换流变100后侧均平行的布置一个阀厅3,单阀组换流变100与对应的阀厅3整体构成一个极,两个极为一组极,每组极包括高端阀组和低端阀组,同组极内的两个极之间镜像对称设置,相邻组极之间的低端阀组背靠背布置或者高端阀组背靠背设置,每台换流变1的阀厅3侧套管伸入其对应的阀厅3内。如图6所示,本实施例中,在运特高压换流站包括依次平行布置的四个极,分别是极1高端阀组200、极1低端阀组300、极2低端阀组400以及极2高端阀组500,极1高端阀组200和极1低端阀组300镜像对称设置,极2高端阀组和极2低端阀组400镜像对称设置,极1低端阀组300和极2低端阀组400背靠背设置,其中,每个单阀组换流变100具有6台换流变1,相邻换流变1之间由防火墙2隔开,等间距布置。
重点参阅图6,所述特高压换流站消防灭火系统,包括第一泡沫消防炮灭火系统、第二泡沫消防炮灭火系统以及上位机控制系统8,所述第一泡沫消防炮灭火系统包括第一消防炮4和第一压缩空气泡沫产生子系统5,第二泡沫消防炮灭火系统包括第二消防炮6和第二压缩空气泡沫产生子系统7。所述第一压缩空气泡沫产生子系统5以及第二压缩空气泡沫产生子系统7均为压缩空气泡沫产生子系统,第一压缩空气泡沫产生子系统5以及第二压缩空气泡沫产生子系统7输出的灭火介质均为压缩空气泡沫。
所述第一消防炮4以及第二消防炮6位于防火墙2正上方的阀厅3挑檐上,第一消防炮4以及第二消防炮6间隔穿插布置,每两个换流变1对应一个第一消防炮4以及一个第二消防炮6,灭火时,第一消防炮4以及第二消防炮6的灭火介质释放方向均指向其对应的换流变1的中心位置。
每个所述单阀组换流变100靠近第一压缩空气泡沫产生子系统5以及第二压缩空气泡沫产生子系统7的一端均设有第一分区选择阀9和第二分区选择阀10,单阀组换流变100内所有第一消防炮4通过管道与第一分区选择阀9连接,在运特高压换流站内所有的第一分区选择阀9与第一供泡管道11连接,单阀组换流变100内第二消防炮6通过管道与第二分区选择阀10连接,在运特高压换流站内所有的第二分区选择阀10与第二供泡管道12连接,第一压缩空气泡沫产生子系统5分别通过电动阀15与第一供泡管道11以及第二供泡管道12连接,第二压缩空气泡沫产生子系统7分别与第一供泡管道11以及第二供泡管道12连接。第一压缩空气泡沫产生子系统5通过第一就地控制柜13与与上位机控制系统8电连接,第二压缩空气泡沫产生子系统7通过第二就地控制柜14与上位机控制系统8电连接。
当某个压缩空气泡沫产生子系统出现故障时,由能够正常工作的压缩空气泡沫产生子系统同时向第一消防炮4以及第二消防炮6供泡,保证着火换流变1全方位覆盖。需要说明的是,在两个灭火系统均正常的情况下,一个压缩空气泡沫产生子系统向第一消防炮4供泡,另一个压缩空气泡沫产生子系统向第二消防炮6供泡,两个压缩空气泡沫产生子系统分散供泡,保证压缩空气泡沫的泡沫量从而高效灭火,但是在单个压缩空气泡沫产生子系统发生故障的时候,喷射范围覆盖整个换流变1才是最首要的,只有覆盖整个换流变1才能扑灭火灾,对于泡沫量的要求是次要的,所以由能够正常工作的压缩空气泡沫产生子系统同时向布置在着火换流变1上方的第一消防炮4以及第二消防炮6供泡。
作为进一步改进的方案,所述第一压缩空气泡沫产生子系统5以及第二压缩空气泡沫产生子系统7布置在远离换流变1所在区域的位置。本实施例中,第一压缩空气泡沫产生子系统5布置在在运特高压换流站的极1广场,第二压缩空气泡沫产生子系统7布置在在运特高压换流站的极2广场,极1广场以及极2广场均距离换流变1很远,这样设计的目的是,换流变1着火的时候极易引发爆炸损毁管道以及消防炮等,如果压缩空气泡沫产生子系统距离换流变1较近的话,容易导致系统损坏而不能产生泡沫,将压缩空气泡沫产生子系统布置在距离换流变1较远的位置,即使发生爆炸,消防炮损毁,还能够通过压缩空气泡沫产生子系统产生泡沫通过管道供到着火换流变1位置。
本发明的工作过程为:如图6所示,单阀组换流变100间隔布置4门消防炮,每两个相邻的换流变1上方对应有两门消防炮,一门消防炮通过第一压缩空气泡沫产生子系统5供泡,另一门消防炮由第一压缩空气泡沫产生子系统5供泡,例如图6中从下向上数第一个以及第三个消防炮与第一压缩空气泡沫产生子系统5连接,从下向上数第二个以及第四个消防炮与第二压缩空气泡沫产生子系统7连接,阀厅3挑檐上设置的消防炮可以实现对每个换流变1无差别覆盖;两套压缩空气泡沫产生子系统分别布置在在运特高压换流站两极广场。
当极1高端阀组的YYA相换流变1着火时,若消防炮射程有效覆盖全部换流变区域,启动两套压缩空气泡沫产生子系统,其次,选择阀室自动打开③号和④号消防炮所在的分区选择阀(图7中每个单阀组换流变100从下向上数第一个至第四个消防炮顺序编号),离YYA相换流变1较近,位 于极1广场的第一压缩空气泡沫产生子系统5优先向YYA相换流变1挑檐正上方的④号消防炮提供压缩空气泡沫,而位于极2广场的第二压缩空气泡沫产生子系统7则向③号消防炮提供压缩空气泡沫。
如图8所示,当极2低端阀组的YDB相换流变1着火时,启动离该相最近的①号和②号消防炮。其中②号消防炮由位于极2广场的第二压缩空气泡沫产生子系统7提供压缩空气泡沫,而①号炮由距离较远的极1广场上的第一压缩空气泡沫产生子系统5提供压缩空气泡沫。
以此类推,如图9所示,当YYC相着火时,则相应启动②号和③号消防炮。
若消防炮射程不能有效覆盖全部换流变区域,则需要移动消防机器人18参与灭火,所述特高压换流站消防灭火系统还包括第一冗余接驳口(图未标)和第二冗余接驳口(图未标),所述第一冗余接驳口为第一供泡管道11的一个冗余接口,该冗余接口延伸至换流变1广场区域,所述第二冗余接驳口为第二供泡管道12的一个冗余接口,该冗余接口延伸至换流变1广场区域,所述第一冗余接驳口与第二冗余接驳口接口大小以及形状均相同,第一冗余接驳口通过一个手动闸阀16与外部接口17连通,第二冗余接口通过另一个手动闸阀16与外部接口17连通。
所述特高压换流站消防灭火系统还包括可移动消防机器人18,所述可移动消防机器人18连接有水带19,水带19具有与第一冗余接驳口以及第二冗余接驳口相配合的卡口,所述卡口与外部接口17卡接,通过第一冗余接驳口或者第二冗余接驳口获取灭火介质,移动至预定区域进行定向灭火。
如图6和图7所示,当单阀组换流变100中③号或④号消防炮受外部 风环境等因素影响,其中一门炮喷射不佳时,例如,极1高端阀组的YYA相换流变1着火,③号或④号消防炮喷射效果不佳,可移动消防机器人18就近连接极1广场预留的消防管道接驳口也即外部接口17,并移动至预定区域,实现对YYA相的灭火;极2高端阀组的YYA相换流变1着火,③号或④号消防炮喷射效果不佳,可移动消防机器人18就近连接极2广场预留的消防管道接驳口也即外部接口17,并移动至预定区域,实现对YYA相换流变1的灭火;具体效果如图5所示。可移动消防机器人18采用九江中船长安消防设备有限公司生产的RXR-M40L-16CA。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,所述特高压换流站消防灭火系统包括第一泡沫消防炮灭火系统、第二泡沫消防炮灭火系统以及上位机控制系统,所述第一泡沫消防炮灭火系统包括第一消防炮和第一压缩空气泡沫产生子系统,第二泡沫消防炮灭火系统包括第二消防炮和第二压缩空气泡沫产生子系统,所述方法包括:
    上位机控制系统接收声光报警信号、报警位置信号以及开关分位信号后,启动固定消防炮喷射射程预测分析子系统;
    固定消防炮喷射射程预测分析子系统根据外界风向以及外界风速大小判断消防炮射程是否有效覆盖全部换流变区域;
    若是,则启动第一压缩空气泡沫产生子系统以及第二压缩空气泡沫产生子系统,第一压缩空气泡沫产生子系统所属的第一消防炮以及第二压缩空气泡沫产生子系统所属的第二消防炮均自动预置位,固定消防炮远程琴台操作灭火;
    若否,如果是第一消防炮不满足射程要求,则由移动消防机器人替换第一消防炮进行灭火,如果是第二消防炮不满足射程要求,则由移动消防机器人替换第二消防炮进行灭火,如果第一消防炮和第二消防炮均不满足射程要求则由两个移动消防机器人分别替换第一消防炮和第二消防炮进行灭火。
  2. 根据权利要求1所述的适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,上位机控制系统接收声光报警信号、报警位置信号以及开关分位信号包括:获取2路缆式温感探测器以及2台火焰探测器通过耦合报警的信号数据,组合报警控制器通过三取二原则自主研判输出声光报警信号和报警位置信号,单阀组换流变的断路器开关动作,单阀组换流变 自动断电,输出开关分位信号。
  3. 根据权利要求2所述的适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,所述三选二原则包括:至少1台火焰探测器发出动作信号,即认为该路输出动作信号,两台火焰探测器作为1路输出与2路缆式温感探测器一起构成3路输出,当3路输出中至少2路发出动作信号时,组合报警控制器报警。
  4. 根据权利要求1所述的适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,所述固定消防炮喷射射程预测分析子系统内置于上位机控制系统中。
  5. 根据权利要求1所述的适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,固定消防炮喷射射程预测分析子系统根据外界风向以及外界风速大小判断消防炮射程是否有效覆盖全部换流变区域包括:
    建立风环境波动置信度判定模型;
    通过风环境波动置信度判定模型确定外界风向和外界风速大小;
    建立固定消防炮有效覆盖性能预测模型;
    将风环境波动置信度判定模型确定的外界风向和外界风速大小输入固定消防炮有效覆盖性能预测模型判断消防炮射程是否有效覆盖全部换流变区域。
  6. 根据权利要求5所述的适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,所述建立风环境波动置信度判定模型包括:
    通过公式
    Figure PCTCN2021100777-appb-100001
    获取基本风速;
    其中,ν 为基本风速;
    Figure PCTCN2021100777-appb-100002
    为t i时刻风速;n为风速探测器取值次数;
    通过公式
    Figure PCTCN2021100777-appb-100003
    获取风速大小波动置信值;
    其中,η为风速大小波动置信值;
    通过公式
    Figure PCTCN2021100777-appb-100004
    获取基本风向;
    其中,β 为基本风向;
    Figure PCTCN2021100777-appb-100005
    为t i时刻风向;
    通过公式
    Figure PCTCN2021100777-appb-100006
    获取风向角度波动置信值;
    其中,λ为风向角度波动置信值。
  7. 根据权利要求6所述的适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,所述通过风环境波动置信度判定模型确定外界风向和外界风速大小包括:
    当风速大小波动置信度值η和风向角度波动置信度值λ的取值均小于预设值时,则判定外界风速大小、外界风速方向条件稳定,外界风速大小采用基本风速ν ,外界风向采用基本风向β
    当风速大小波动置信度值η和风向角度波动置信度值λ的取值均大于预设值时,则判定外界风速或外界风向条件波动大,消防炮受外部风环境影响程度也会随之增大,通过风向风速概率统计模型以每30°为一个统计方位划分12个扇形区方位区进行风向统计,取统计概率最高的风向作为参考风向,取该参考风向所在扇形区的风速大小统计均值作为参考风速,外界风速大小采用参考风速,外界风向采用采用参考风向。
  8. 根据权利要求7所述的适用于特高压换流站消防灭火系统的运行控 制方法,其特征在于,所述风向风速概率统计模型包括:
    通过公式
    Figure PCTCN2021100777-appb-100007
    获取风向在方位i出现的频率,
    其中,f i为风向在方位i出现的频率;n i为风向在方位i出现的次数;k为风向方位的总记录次数;
    通过公式f max=MAX[f 1,f 2,...,f 12]获取风向在12个扇形方位区中出现频率的最高值,
    其中,f 1为风向在方位1的频率,f 2为风向在方位2的频率;f max为风向在12个扇形方位区中出现频率的最高值;
    通过公式
    Figure PCTCN2021100777-appb-100008
    获取方位i内的平均风速值,
    其中,
    Figure PCTCN2021100777-appb-100009
    为方位i内的平均风速值;
    Figure PCTCN2021100777-appb-100010
    为方位i内第x次的实测风速值。
  9. 根据权利要求5所述的适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,所述建立固定消防炮有效覆盖性能预测模型包括:
    通过公式
    Figure PCTCN2021100777-appb-100011
    获取消防炮初始喷射速度,
    其中,r是炮管半径,
    Figure PCTCN2021100777-appb-100012
    是气液比,Q 流量是泡沫混合液流量;
    通过公式
    Figure PCTCN2021100777-appb-100013
    获取消防炮与风速耦合条件下的速度,其中,ν o为消防炮与风速耦合条件下的速度,ν p为消防炮初始喷射速度,θ为初始喷射角度且取值范围[0°,360°],ν f为外界风速大小,β为外界风向且取值范围[0°,360°];
    通过公式L=ν 0t获取消防炮覆盖区域射程理论值,其中,t为泡沫从释放到落至地面所需时间且
    Figure PCTCN2021100777-appb-100014
    H 1为消防炮布置高度,g为重力加速度;
    通过公式
    Figure PCTCN2021100777-appb-100015
    获取消防炮覆盖区域实际射程,其中,λ为修正系数;
    通过公式
    Figure PCTCN2021100777-appb-100016
    获取外界风影响下消防炮的实际喷射角度,
    通过公式
    Figure PCTCN2021100777-appb-100017
    获取着火换流变实际所需射程,其中,L 1为消防炮距着火换流变防火墙最远端侧距离。
  10. 根据权利要求9所述的适用于特高压换流站消防灭火系统的运行控制方法,其特征在于,所述将风环境波动置信度判定模型确定的风向和风速大小输入固定消防炮有效覆盖性能预测模型判断消防炮射程是否有效覆盖全部换流变区域包括:
    当L 0≥L 时,消防炮在消防炮初始喷射速度、初始喷射角度、外界风速及外界风向条件下,消防炮射程有效覆盖全部换流变区域;
    当L 0<L 时,消防炮在消防炮初始喷射速度、初始喷射角度、外界风速及外界风向条件下,消防炮射程无法有效覆盖全部换流变区域。
PCT/CN2021/100777 2020-06-22 2021-06-18 适用于特高压换流站消防灭火系统的运行控制方法 WO2021259148A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010575003.3A CN111790082B (zh) 2020-06-22 2020-06-22 适用于特高压换流站消防灭火系统的运行控制方法
CN202010575003.3 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021259148A1 true WO2021259148A1 (zh) 2021-12-30

Family

ID=72804611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100777 WO2021259148A1 (zh) 2020-06-22 2021-06-18 适用于特高压换流站消防灭火系统的运行控制方法

Country Status (2)

Country Link
CN (1) CN111790082B (zh)
WO (1) WO2021259148A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025433A (zh) * 2022-04-26 2022-09-09 西安理工大学 高风速下的消防泡沫炮射流跟踪控制系统及其控制方法
CN115177903A (zh) * 2022-07-26 2022-10-14 九江中船长安消防设备有限公司 一种压缩空气泡沫消防灭火系统
CN115554633A (zh) * 2022-08-23 2023-01-03 国网安徽省电力有限公司电力科学研究院 适用特高压换流站消防炮琴台自动识别控制方法及系统
CN115624703A (zh) * 2022-10-27 2023-01-20 国网经济技术研究院有限公司 一种水喷雾灭火系统及控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790082B (zh) * 2020-06-22 2021-05-25 国网安徽省电力有限公司电力科学研究院 适用于特高压换流站消防灭火系统的运行控制方法
CN112489842A (zh) * 2020-11-04 2021-03-12 中国核电工程有限公司 一种堆腔注水冷却系统能动执行机构的组合报警方法
CN112870615A (zh) * 2021-01-25 2021-06-01 南京南瑞继保电气有限公司 一种压缩空气泡沫系统灭火控制方法
CN115445134B (zh) * 2022-08-23 2023-05-23 国网安徽省电力有限公司电力科学研究院 消防炮灭火介质切换判别方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1002685B (el) * 1996-06-21 1997-05-02 Περιστρεφομενοι δισκοι στους μηχανισμους καθαρισμου επαναβαφης μεταλλικων επιφανειων.
KR100840837B1 (ko) * 2007-01-05 2008-06-23 위아 주식회사 무인소방로봇장치
RU2426603C1 (ru) * 2010-01-29 2011-08-20 Закрытое Акционерное Общество "Инженерный Центр Пожарной Робототехники "Эфэр" Роботизированный пожарный комплекс с азотно-водяным пожаротушением
CN206979869U (zh) * 2017-03-16 2018-02-09 成都启特安全技术有限责任公司 一种电池箱降温泡沫灭火装置
CN109603038A (zh) * 2019-01-21 2019-04-12 中国电力工程顾问集团西南电力设计院有限公司 一种用于特高压换流站的消防炮灭火系统
CN109701182A (zh) * 2018-12-23 2019-05-03 中国电建集团福建省电力勘测设计院有限公司 基于三取二模式的新型柔性直流换流变消防灭火系统
CN110882501A (zh) * 2019-11-18 2020-03-17 山东天康达安防科技有限公司 一种变压器综合式火灾防控系统
CN111068208A (zh) * 2019-12-19 2020-04-28 北京国电富通科技发展有限责任公司 一种轨道小车式室外变压器的智能灭火系统
CN111790082A (zh) * 2020-06-22 2020-10-20 国网安徽省电力有限公司电力科学研究院 适用于特高压换流站消防灭火系统的运行控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2235604B1 (es) * 2003-05-23 2006-07-01 Corta-Fuegos Capricornio, S.L. Sistema para el control y la extincion de incendios forestales.
CN201710860U (zh) * 2010-06-13 2011-01-19 贾哲 计算机控制灭火系统
CN105457195A (zh) * 2016-02-01 2016-04-06 赵明洁 电力变压器灭火系统及控制方法
CN106267627B (zh) * 2016-10-20 2022-01-25 中国能源建设集团云南省电力设计院有限公司 一种变压器爆炸火灾灭火系统
CN109568856B (zh) * 2018-10-30 2020-12-01 湖州达立智能设备制造有限公司 一种基于压强感应调整的沿海地区用自动灭火装置
CN110639144A (zh) * 2019-09-20 2020-01-03 武汉理工大学 一种基于火焰图像动态识别的消防无人艇水枪控制装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GR1002685B (el) * 1996-06-21 1997-05-02 Περιστρεφομενοι δισκοι στους μηχανισμους καθαρισμου επαναβαφης μεταλλικων επιφανειων.
KR100840837B1 (ko) * 2007-01-05 2008-06-23 위아 주식회사 무인소방로봇장치
RU2426603C1 (ru) * 2010-01-29 2011-08-20 Закрытое Акционерное Общество "Инженерный Центр Пожарной Робототехники "Эфэр" Роботизированный пожарный комплекс с азотно-водяным пожаротушением
CN206979869U (zh) * 2017-03-16 2018-02-09 成都启特安全技术有限责任公司 一种电池箱降温泡沫灭火装置
CN109701182A (zh) * 2018-12-23 2019-05-03 中国电建集团福建省电力勘测设计院有限公司 基于三取二模式的新型柔性直流换流变消防灭火系统
CN109603038A (zh) * 2019-01-21 2019-04-12 中国电力工程顾问集团西南电力设计院有限公司 一种用于特高压换流站的消防炮灭火系统
CN110882501A (zh) * 2019-11-18 2020-03-17 山东天康达安防科技有限公司 一种变压器综合式火灾防控系统
CN111068208A (zh) * 2019-12-19 2020-04-28 北京国电富通科技发展有限责任公司 一种轨道小车式室外变压器的智能灭火系统
CN111790082A (zh) * 2020-06-22 2020-10-20 国网安徽省电力有限公司电力科学研究院 适用于特高压换流站消防灭火系统的运行控制方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115025433A (zh) * 2022-04-26 2022-09-09 西安理工大学 高风速下的消防泡沫炮射流跟踪控制系统及其控制方法
CN115177903A (zh) * 2022-07-26 2022-10-14 九江中船长安消防设备有限公司 一种压缩空气泡沫消防灭火系统
CN115554633A (zh) * 2022-08-23 2023-01-03 国网安徽省电力有限公司电力科学研究院 适用特高压换流站消防炮琴台自动识别控制方法及系统
CN115554633B (zh) * 2022-08-23 2023-08-08 国网安徽省电力有限公司电力科学研究院 适用特高压换流站消防炮琴台自动识别控制方法及系统
CN115624703A (zh) * 2022-10-27 2023-01-20 国网经济技术研究院有限公司 一种水喷雾灭火系统及控制方法
CN115624703B (zh) * 2022-10-27 2023-03-21 国网经济技术研究院有限公司 一种水喷雾灭火系统及控制方法

Also Published As

Publication number Publication date
CN111790082A (zh) 2020-10-20
CN111790082B (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2021259148A1 (zh) 适用于特高压换流站消防灭火系统的运行控制方法
CN106267627B (zh) 一种变压器爆炸火灾灭火系统
CN106422122B (zh) 一种变压器爆炸火灾泡沫-注氮灭火系统
US20220118297A1 (en) Fire extinguishing system and method for ultra-high voltage (uhv) converter station, and uhv converter station
CN113599741A (zh) 箱式变电站消防安全系统
CN210472840U (zh) 一种锂离子电池储能系统火灾防控装置
CN106362330A (zh) 一种新型变压器爆炸火灾水喷雾‑注氮灭火系统
WO2023206660A1 (zh) 基于锂电池的储能电站的防火防爆方法
CN110841217A (zh) 一种基于泛在物联网技术的变电站无水消防系统
CN110201330A (zh) 一种用于高压直挂电池储能的水消防系统及其控制方法
CN112245829A (zh) 一种基于物联网技术的变电站少水消防系统
CN114452581B (zh) 特高压换流站压缩空气泡沫灭火系统故障诊断装置及方法
CN111790080A (zh) 适用特高压换流站的灭火系统、灭火方法及特高压换流站
CN211263673U (zh) 特高压换流变压器的防火防爆试验系统
CN112327105B (zh) 特高压换流变压器的防火防爆试验系统及灭火方法
CN111790089B (zh) 在运特高压换流站的灭火系统、方法及在运特高压换流站
CN210380275U (zh) 海上风电直流并网系统平台
CN114870295B (zh) 高电压电气设备火灾长距离清洁高效绝缘灭火方法及系统
CN214435986U (zh) 一种配电室气体灭火系统
CN206506220U (zh) 一种全封闭全绝缘高压充气柜
CN208611630U (zh) 一种防火墙变压器油防喷溅装置
CN220213749U (zh) 一种同时多台变压器火灾无污闪干粉-注氮灭火联用系统
CN219815144U (zh) 一种无线控制灭火装置
CN216222690U (zh) 箱式变电站消防安全系统
CN221061613U (zh) 一种消防灭火系统安装与调试实训装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828586

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21828586

Country of ref document: EP

Kind code of ref document: A1