WO2021259045A1 - 康复机器人系统的操作方法、康复机器人系统及可读介质 - Google Patents

康复机器人系统的操作方法、康复机器人系统及可读介质 Download PDF

Info

Publication number
WO2021259045A1
WO2021259045A1 PCT/CN2021/098474 CN2021098474W WO2021259045A1 WO 2021259045 A1 WO2021259045 A1 WO 2021259045A1 CN 2021098474 W CN2021098474 W CN 2021098474W WO 2021259045 A1 WO2021259045 A1 WO 2021259045A1
Authority
WO
WIPO (PCT)
Prior art keywords
rehabilitation
rehabilitation robot
control mode
trajectory parameter
robot system
Prior art date
Application number
PCT/CN2021/098474
Other languages
English (en)
French (fr)
Inventor
宋涛
高志军
李志青
田恬
Original Assignee
上海神泰医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海神泰医疗科技有限公司 filed Critical 上海神泰医疗科技有限公司
Publication of WO2021259045A1 publication Critical patent/WO2021259045A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • A61H1/0237Stretching or bending or torsioning apparatus for exercising for the lower limbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0138Support for the device incorporated in furniture
    • A61H2201/0142Beds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0138Support for the device incorporated in furniture
    • A61H2201/0149Seat or chair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2205/00Devices for specific parts of the body
    • A61H2205/10Leg

Definitions

  • the invention relates to the field of robot-assisted rehabilitation systems and methods, in particular to an operating method of a rehabilitation robot system, a rehabilitation robot system and a readable storage medium.
  • Sports rehabilitation therapy is an effective means to improve patients' motor dysfunction caused by stroke, spinal cord injury, brain injury and other reasons.
  • Early bedside rehabilitation is more helpful to improve the impaired function of patients with stroke and other diseases and reduce disability. To improve the quality of life.
  • Existing intelligent rehabilitation robots used in early bedside rehabilitation can only perform rehabilitation exercises on one side of the lower limbs, or only perform rehabilitation exercises with a single track and a single function, but cannot simultaneously perform multi-track and multi-function on both sides of the lower limbs.
  • the purpose of the present invention is to provide an operating method of a rehabilitation robot system, a rehabilitation robot system, and a readable storage medium, so as to solve the problem that the existing bedside early rehabilitation robot can only realize one-sided or single-track, single-function rehabilitation movement. .
  • the rehabilitation robot system includes two connected rehabilitation robots, one of which is set As the master station device, and the other rehabilitation robot is set as the slave station device, the operation method includes:
  • the master station device obtains the first trajectory parameter, and moves according to the first trajectory parameter
  • the slave station device refers to the first trajectory parameter to obtain a second trajectory parameter, and moves in response to the movement of the master station device according to the second trajectory parameter.
  • the operation method of the rehabilitation robot system includes setting the rehabilitation robot to a position control mode or a torque control mode;
  • the position control mode is configured to: cause the rehabilitation robot to ignore the external force received and drive the rehabilitation object to move;
  • the torque control mode is configured to: make the rehabilitation robot refer to the external force received and move under the drive of the external force; or move under the joint action of the external force and the rehabilitation robot.
  • the operation method of the rehabilitation robot system includes: setting the two rehabilitation robots to a passive training state; the passive training state is configured such that the master station device and the slave station device are both Operation in the position control mode.
  • the operating method of the rehabilitation robot system includes: setting two of the rehabilitation robots to an active training state; the active training state is configured such that the master station device is set to the torque control mode, so The slave station device is set to the position control mode or the torque control mode.
  • the second trajectory parameter is the same as the first trajectory parameter, and the operating phase is the same or opposite; or, the second trajectory parameter is a function of the first trajectory parameter.
  • a rehabilitation robot system which includes two connected rehabilitation robots; one of the rehabilitation robots is set as a master station device, and the other One of the rehabilitation robots is set as a slave device;
  • the master station device is configured to move according to the first trajectory parameter
  • the slave station device is configured to obtain a second trajectory parameter with reference to the first trajectory parameter, and to move in response to the movement of the master station device according to the second trajectory parameter.
  • At least one of the two rehabilitation robots includes at least one driving joint and a processor, and at least one of the driving joints is communicatively connected with the processor;
  • the at least one rehabilitation robot includes a position control mode and a processor.
  • the processor In a torque control mode, the processor is configured to operate in one of the position control mode and the torque control mode according to settings;
  • the position control mode is configured to ignore the external force received by the rehabilitation robot, the processor calculates the joint motion information of each driving joint according to the first trajectory parameter or the second trajectory parameter, and Drive the driving joints to move according to their respective joint motion information;
  • the torque control mode is configured to: the processor obtains joint motion information of the driving joint under the action of external force, and calculates the first trajectory parameter or the second trajectory parameter according to the joint motion information; or The processor obtains joint feedback information of the drive joint under the action of external force, and calculates the joint drive information of each drive joint based on the joint feedback information, and the processor drives the drive joint to press The respective joints drive the information movement.
  • the rehabilitation robot system includes a passive training state, and the passive training state is configured such that both the master station device and the slave station device operate in the position control mode.
  • the rehabilitation robot system includes an active training state, and the active training state is configured such that the master station device is set to the torque control mode, and the slave station device is set to the position control mode or the position control mode.
  • the torque control mode is configured such that the master station device is set to the torque control mode, and the slave station device is set to the position control mode or the position control mode. The torque control mode.
  • a readable storage medium is also provided, on which a program is stored, and when the program is executed, the operation method of the rehabilitation robot system as described above is realized.
  • the operation method of the rehabilitation robot system includes: the master station device obtains the first trajectory parameter, and according to The first trajectory parameter moves; the slave device refers to the first trajectory parameter to obtain a second trajectory parameter, and moves in response to the movement of the master device according to the second trajectory parameter.
  • the two rehabilitation robots can coordinate and cooperate to perform early bedside rehabilitation training on the patient’s bilateral limbs, and can use the movement of one limb to drive the movement of the other limb, so that both limbs of the patient can actively participate in the rehabilitation.
  • bilateral limb exercise can stimulate the patient's vision and brain nerves, and promote the patient's speedy recovery.
  • Fig. 1 is a schematic diagram of a rehabilitation robot system according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram from another angle of the rehabilitation robot system according to an embodiment of the present invention.
  • Fig. 3 is a schematic diagram of a rehabilitation robot according to an embodiment of the present invention.
  • Fig. 4 is a flowchart of an operation method of the rehabilitation robot system according to an embodiment of the present invention.
  • 01-Rehabilitation robot 02-Rehabilitation object; 03-Hospital bed;
  • the singular forms “a”, “an” and “the” include plural objects.
  • the term “or” is usually used to include “and/or”, and the term “several” It is usually used to include “at least one”, and the term “at least two” is usually used to include “two or more”.
  • the terms “first” and “first” Two” and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined as “first”, “second”, and “third” may explicitly or implicitly include one or at least two of these features.
  • proximal end usually refers to the end close to the operator.
  • Remote usually refers to the end near the patient's lesion.
  • One end and “the other end” and “proximal end” and “distal” usually refer to the corresponding two parts, which include not only the end point, unless the content clearly indicates otherwise. outside.
  • the core idea of the present invention is to provide an operating method of a rehabilitation robot system, a rehabilitation robot system and a readable storage medium, so as to solve the problem that the existing rehabilitation robot can only realize unilateral rehabilitation movement.
  • FIG. 1 is a schematic diagram of a rehabilitation robot system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of another angle of the rehabilitation robot system according to an embodiment of the present invention
  • FIG. 4 is a flowchart of the operation method of the rehabilitation robot system of an embodiment of the present invention.
  • an embodiment of the present invention provides a rehabilitation robot system, which includes two rehabilitation robots that are paired with each other; one of the rehabilitation robots is set as the master device 01a, and the other The rehabilitation robot is set as the slave device 01b.
  • the master device 01a is configured to move according to a first trajectory parameter; the slave device 01b is configured to obtain a second trajectory parameter by referring to the first trajectory parameter, and respond to the second trajectory parameter according to the second trajectory parameter.
  • the main station device 01a moves while moving, so that two rehabilitation robots operate one rehabilitation object to coordinate the movement.
  • the rehabilitation robot 01 that uses the lower limbs of a patient as the rehabilitation target 02 as an example, and an exemplary embodiment is used for explanation. It should be understood that the rehabilitation robot system provided in this embodiment is not limited to the rehabilitation robot system. For the patient's lower limbs, it can also include various parts such as upper limbs or parts of fingers. At least one of the rehabilitation robot 01 includes: casters 1, a chassis 2, a locking pedal 3, a base 4, a big arm 7 and a small arm 8 and other components.
  • a processor and other electronic devices are installed inside the chassis 2 to realize the control of the entire device; the locking pedal 3 is installed on the chassis 2, and the four casters 1 can be locked with one foot to ensure the stability of the device during operation; the base 4 is used for adjustment
  • the overall height of the equipment is adapted to the height of the hospital bed 03; one end of the big arm 7 is installed on the base 4; one end of the small arm 8 is installed on the other end of the big arm 7; the foot splint 9 and the calf splint 10 are both installed on the other end of the forearm 8. One end is used to fix the patient's foot and calf.
  • the patient can lie flat on the hospital bed 03 or sit on the chair, and fix the affected side's lower limbs on the rehabilitation robot 01.
  • the base 4, the connection between the big arm 7 and the base 4, the connection between the big arm 7 and the forearm 8, the connection between the forearm 8 and the foot splint 9, and the connection between the forearm 8 and the calf splint 10 are all rotatable joints At least one joint is provided with a servo motor to form at least one drive joint, and the servo motor can feed back at least one of a current signal, a position signal and a speed signal.
  • these drive joints have active rotation degrees of freedom and are driven by a servo motor; an absolute encoder is installed on the servo motor, which can record the rotation position, speed, acceleration and other motion information of the motor; the servo drive of the servo motor can realize torque Control and position control.
  • the servo motors are at least arranged on the base 4, the big arm 7 and the forearm 8, and the number of servo motors is preferably five.
  • the rehabilitation robot further includes a touch screen 5 through which the operator can input motion trajectory parameters, and display the motion trajectory parameters and other content through the touch screen 5.
  • the rehabilitation robot 01 includes a communication module (not shown), and the communication module is used for real-time data communication with other rehabilitation robots 01.
  • a communication module is installed inside the chassis 2 to facilitate real-time data communication with other rehabilitation robots 01, thereby facilitating master-slave device pairing; optionally, the communication module can be a wireless communication module or wired communication Module, two rehabilitation robots 01 can realize real-time data communication through wired communication connection such as wireless connection or network cable, so as to realize master-slave pairing.
  • the first trajectory parameter obtained by the master station device 01a may be input and set by an operator (such as a doctor, a rehabilitation trainer, etc.), or obtained by dragging and controlling the rehabilitation robot 01 by the operator to perform a teaching operation;
  • a trajectory parameter can also be obtained according to the movement of one limb of the patient.
  • the operator can control the main station device 01a by dragging, and apply the first external force to the main station device 01a (mainly its end, such as the foot splint 9 or the calf splint 10, etc.).
  • the servo motor of the main station device 01a In the torque mode, it can feed back the feedback signal under the action of the first external force.
  • the master station device 01a compensates the self-weight of the robotic arm (including the big arm 7, the forearm 8, the foot splint 9 and the calf splint 10, etc.), the friction of the joint part, and the weight of the rehabilitation object (such as the leg) through the control algorithm. Weight, etc.); when the first external force acts on the manipulator arm of the master station device 01a, the servo motors of each joint can feedback signal changes.
  • the feedback signal includes at least one of a current signal, a position signal, and a speed signal of the servo motor, and these feedback signals can all be provided by the servo motor itself without adding an external sensor collection device.
  • the feedback signal can also be collected and provided in whole or in part by an external sensor collection device.
  • the magnitude and direction of the first external force are calculated based on the transfer function of the mechanical arm, and the mechanical arm is driven to move in the direction of the first external force.
  • the operator can easily drag the end of the main station device 01a (such as the foot splint 9 or the calf splint 10, etc.).
  • the robotic arm moves according to the trajectory dragged by the operator, and the processor records the first movement of the trajectory. Trajectory parameters: After dragging is complete, the robotic arm returns to the initial position and repeats movement according to the first trajectory parameter.
  • the drag control method can customize the trajectory parameters of a variety of rehabilitation exercises, with easy operation and high flexibility, and it is visualized when customizing the trajectory, which is very intuitive.
  • the patient can apply a second external force to the main station device 01a through the lower limb of the healthy side to drive the main station device 01a to move, and the processor records the first trajectory parameter of the trajectory movement.
  • the second trajectory parameter obtained by the slave device 01b with reference to the first trajectory parameter may be the same as the first trajectory parameter and the operating phase is the same or opposite; or, the second trajectory parameter is related to the first trajectory parameter.
  • Function of trajectory parameters The second trajectory parameter can be exactly the same as the first trajectory parameter to form the following squatting action; the second trajectory parameter can also be the same as the trajectory of the first trajectory parameter but the phase of operation is opposite, forming an action like a stepping movement; of course the second trajectory
  • the parameters can also be different from the first trajectory parameters, but form an associated functional relationship.
  • the first trajectory parameter is a large-scale motion
  • the second trajectory parameter is a relatively small-amplitude motion.
  • At least one rehabilitation robot 01 includes a position control mode and a torque control mode, and operates in one of the position control mode and the torque control mode.
  • the position control mode is configured to ignore the external force received by the rehabilitation robot 01, and the processor calculates the joint motion information of each driving joint according to the first trajectory parameter or the second trajectory parameter, And drive the driving joints to move according to their respective joint motion information.
  • the mechanical arm of the rehabilitation robot 01 mainly performs active movement according to the first trajectory parameter or the second trajectory parameter.
  • the master station device 01a taking the master station device 01a as an example, first obtain the first trajectory parameter according to the above-mentioned method, and then the processor of the master station device 01a calculates the joint motion information of each driving joint according to the first trajectory parameter. And drive the driving joints to move according to their respective joint motion information to realize the reproduction of the trajectory expressed by the first trajectory parameter.
  • the process of the slave device 01b operating in the position control mode is similar to that of the master device 01a, and will not be repeated here.
  • the position control mode is mainly used in passive rehabilitation exercises, without the patient's effort, and is mainly suitable for the early treatment stage.
  • the torque control mode is configured as follows: the processor obtains joint motion information of a plurality of the driving joints under the action of external force, and calculates the first trajectory parameter according to the joint motion information; or, the The processor obtains the joint feedback information of the driving joint under the action of external force, and calculates the joint driving information of each driving joint based on the joint feedback information, and the processor drives the driving joints according to their respective joints. Drive information movement.
  • the rehabilitation robot 01 When the rehabilitation robot 01 is in the torque control mode, when it receives an external force from the patient's lower limbs, the servo motors that drive the joints can feed back the joint feedback torque under the external force. Furthermore, the rehabilitation robot 01 can be driven by an external force alone or jointly driven by an external force and the rehabilitation robot 01.
  • the joint motion information refers to some motion parameters of the driving joint under the action of the external force of the patient's limbs, such as information such as the direction, speed, or acceleration of the driving joint.
  • the first trajectory parameter refers to the analytical equation of the motion trajectory of the mechanical arm of the master station device 01a in the space three-dimensional coordinate system.
  • the joint feedback information refers to the parameter information fed back by the driving joint under the drag of the operator, such as at least one of a current signal, a position signal, and a speed signal fed back by a servo motor.
  • Joint drive information means that the processor calculates the required drive strength of each drive joint, such as the displacement, speed, acceleration, torque and other information that the servo motor needs to output.
  • Joint feedback torque refers to the torque information fed back by the patient’s limbs acting on the driving joint. Further, the processor can also calculate and compensate the weight of the robot body of the rehabilitation robot 01 in different positions and postures and the friction of the joints, so that the rehabilitation robot 01 is in a suspended state without external force. Two specific examples will be used to illustrate.
  • the main station device 01a is set to the torque control mode, which is driven by the patient's lower limbs to move. Specifically, the lower limbs of the patient drive the robotic arm of the master station device 01a, and the processor acquires joint movement information of multiple drive joints under the action of external force in real time, and calculates the first joint movement information according to the joint movement information. Trajectory parameters.
  • the main station device 01a can be driven by the patient's active movement. Preferably, this situation can be applied to the unaffected limb of the patient.
  • the master station device 01a is set to the torque control mode, and moves under the combined action of the patient's lower limbs and the master station device 01a.
  • the joint action of the main station device 01a and the external force exerted by the patient can include many situations.
  • the processor of the master station device 01a obtains the joint feedback information (such as feedback torque, etc.) of the driving joint under the action of external force, and calculates the required amount of each driving joint based on the joint feedback information
  • the joint drive information (such as information such as the torque required for assisting) drives the drive joints to move according to the respective joint drive information, so as to realize the assisting of the external force applied by the patient.
  • the master device 01a or the slave device 01b can also provide resistance to the external force exerted by the patient.
  • the rehabilitation exercise can be completed by exerting its own strength.
  • a certain resistance can be set to increase the intensity of the rehabilitation training, and the resistance can be gradually increased as the training progresses.
  • the patient passes Overcoming resistance during the rehabilitation exercise can further enhance the rehabilitation effect. Specifically, it can also be achieved by configuring the joint drive information as the torque information of the resistance.
  • the slave device 01b can also be set to torque control mode and correspond to the affected limb.
  • the station device 01b can follow the master station device 01a to obtain the second trajectory parameters according to the above-mentioned method, and then the affected limb applies an external force to the slave station device 01b, and the processor of the slave station device 01b is based on the second trajectory parameter defined
  • the movement trajectory guides (or provides assistance, resistance, limit, etc.) the movement of the affected limb, so that the slave device 01b realizes the movement under the combined action of the external force of the patient.
  • the slave device 01b can also correspond to the patient's uninhibited limb and move under the drive of the affected side.
  • the rehabilitation robot system includes a passive training state and an active training state, and operates in one of these two states.
  • the passive training state is configured such that both the master station device 01a and the slave station device 01b operate in the position control mode.
  • the passive training state is mainly used in the early bedside treatment of rehabilitation training. In the passive training state, both rehabilitation robots 01 are in the position control mode.
  • the passive training state can enable the patient to train both limbs at the same time, and better coordinate the movement of both limbs.
  • the active training state is configured such that the master station device 01a is set to the torque control mode, and the slave station device 01b is set to the position control mode or the torque control mode.
  • the active training state is mainly used in the later stage of rehabilitation training. After the patient’s affected limb has a certain strength, active training can be carried out.
  • the uninhibited lower extremity actively drives the affected lower extremity for passive rehabilitation exercise training.
  • the affected lower extremity can also be used for passive rehabilitation exercise. Drive the healthy lower extremities to perform rehabilitation exercises.
  • the rehabilitation robot system provided in this embodiment, there is no high requirement for the patient's position, flexible movement, and suitable for bedside treatment in various periods; the active training state and the passive training state can be passive movement for the patient's affected side , The requirement for the recovery of the affected side is not high, and the patient can perform bilateral lower extremity rehabilitation training earlier, which is more conducive to treatment.
  • the two rehabilitation robots are mechanically independent, so the rehabilitation motion trajectory on both sides is more personalized, and the use of the rehabilitation robot is more flexible. It can not only perform rehabilitation training of unilateral limbs, but also can be combined to achieve bilateral limbs For simultaneous rehabilitation training, the hospital does not need to purchase additional bilateral limb rehabilitation training equipment.
  • an embodiment of the present invention provides an operation method of a rehabilitation robot system, which includes:
  • Step S1 The master station device obtains a first trajectory parameter, and moves according to the first trajectory parameter;
  • Step S2 The slave device refers to the first trajectory parameter to obtain a second trajectory parameter, and moves in response to the movement of the master device according to the second trajectory parameter. Therefore, the two rehabilitation robots can be used to operate the coordinated movement of the rehabilitation objects on both sides of the same patient.
  • the operating method of the rehabilitation robot system includes: setting the rehabilitation robot to a position control mode or a torque control mode; the position control mode is configured to cause the rehabilitation robot to ignore the external force received and drive the The rehabilitation object moves; the torque control mode is configured to: make the rehabilitation robot refer to the external force received and move under the drive of the external force; or move under the combined action of the external force and the rehabilitation robot.
  • the operation method of the rehabilitation robot system includes: setting the two rehabilitation robots to a passive training state; the passive training state is configured such that the master station device and the slave station device are both Operation in the position control mode.
  • the operating method of the rehabilitation robot system includes: setting two of the rehabilitation robots to an active training state; the active training state is configured such that the master station device is set to the torque control mode, so The slave station device is set to the position control mode or the torque control mode.
  • this embodiment also provides a readable storage medium on which a program is stored, and when the program is executed, the above-mentioned operating method of the rehabilitation robot system is realized.
  • the above program can be integrated into a hardware device, for example, the program can be integrated into a rehabilitation robot, or separate hardware can be set up to connect to two rehabilitation robots respectively to realize the operation method of the rehabilitation robot system as described above. .
  • the operation method of the rehabilitation robot system includes: the master station device obtains the first trajectory parameter, and according to The first trajectory parameter moves; the slave device refers to the first trajectory parameter to obtain a second trajectory parameter, and moves in response to the movement of the master device according to the second trajectory parameter.
  • the two rehabilitation robots can coordinate and cooperate to perform rehabilitation training on the patient's bilateral limbs, and can use the movement of one limb to drive the movement of the other limb, so that both limbs of the patient actively participate in the rehabilitation exercise.
  • Bilateral limb movement can stimulate the patient's vision and brain nerves, and promote the patient's speedy recovery.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

提供了一种康复机器人系统的操作方式、康复机器人系统及可读存储介质。康复机器人的操作方法包括:主站设备(01a)获取第一轨迹参数,并按照第一轨迹参数运动;从站设备(01b)参考第一轨迹参数得到第二轨迹参数,并按照第二轨迹参数响应于主站设备(01a)的运动而运动。两台康复机器人可以协同配合地对患者的双侧肢体进行早期床边康复训练,可利用一侧肢体运动带动另一侧肢体运动,使患者的双侧肢体均主动参与到康复运动中,实现多轨迹、多功能的双侧康复运动。

Description

康复机器人系统的操作方法、康复机器人系统及可读介质 技术领域
本发明涉及机器人辅助康复系统和方法领域,特别涉及一种康复机器人系统的操作方法、康复机器人系统及可读存储介质。
背景技术
运动康复治疗是改善因脑卒中、脊髓损伤、脑外伤等原因造成的患者肢体运动功能障碍的有效手段,早期的床边康复更有助于改善脑卒中等疾病患者的受损功能,减轻残疾的程度,提高生存质量。研究发现,对于偏瘫患者,健康侧下肢同时参与病患侧下肢的康复运动,更有助于患者恢复健康,协调肢体运动。现有应用于早期床边康复治疗的智能康复机器人,仅可进行单侧下肢的康复运动,或仅可进行单轨迹、单一功能的康复运动,但无法同时进行双侧下肢的多轨迹、多功能康复运动。
发明内容
本发明的目的在于提供一种康复机器人系统的操作方法、康复机器人系统及可读存储介质,以解决现有的床边早期康复治疗机器人仅能实现单侧或单轨迹、单一功能康复运动的问题。
为解决上述技术问题,根据本发明的第一个方面,提供了一种康复机器人系统的操作方法,所述康复机器人系统包括两台连机配对的康复机器人,其中一台所述康复机器人设定为主站设备,另一台所述康复机器人设定为从站设备,所述操作方法包括:
所述主站设备获取第一轨迹参数,并按照所述第一轨迹参数运动;
所述从站设备参考所述第一轨迹参数得到第二轨迹参数,并按照所述第二轨迹参数响应于所述主站设备的运动而运动。
可选的,所述康复机器人系统的操作方法包括将所述康复机器人设置为位置控制模式或力矩控制模式;
所述位置控制模式被配置为:使所述康复机器人忽略所受外力,驱动所 述康复对象运动;
所述力矩控制模式被配置为:使所述康复机器人参考所受外力,并在所述外力驱动下运动;或在所述外力与所述康复机器人的共同作用下运动。
可选的,所述康复机器人系统的操作方法包括:将两台所述康复机器人设置为被动训练状态;所述被动训练状态被配置为,所述主站设备和所述从站设备均按所述位置控制模式运行。
可选的,所述康复机器人系统的操作方法包括:将两台所述康复机器人设置为主动训练状态;所述主动训练状态被配置为,所述主站设备设置为所述力矩控制模式,所述从站设备设置为所述位置控制模式或所述力矩控制模式。
可选的,所述第二轨迹参数与所述第一轨迹参数相同,且运行的相位相同或相反;或者,所述第二轨迹参数为关于所述第一轨迹参数的函数。
为解决上述技术问题,根据本发明的第二个方面,还提供了一种康复机器人系统,其包括两台连机配对的康复机器人;其中一台所述康复机器人设定为主站设备,另一台所述康复机器人设定为从站设备;
所述主站设备被配置为按照第一轨迹参数运动;
所述从站设备被配置为参考所述第一轨迹参数得到第二轨迹参数,并按照所述第二轨迹参数响应于所述主站设备的运动而运动。
可选的,所述两台康复机器人中的至少一台包括至少一个驱动关节和处理器,至少一个所述驱动关节与所述处理器通信连接;所述至少一台康复机器人包括位置控制模式与力矩控制模式,所述处理器被配置为根据设置在所述位置控制模式与所述力矩控制模式中择一运行;
所述位置控制模式被配置为:忽略所述康复机器人所受外力,所述处理器根据所述第一轨迹参数或所述第二轨迹参数计算得到每个所述驱动关节的关节运动信息,并驱动所述驱动关节按各自的关节运动信息运动;
所述力矩控制模式被配置为:所述处理器获取所述驱动关节在外力的作用下的关节运动信息,并根据所述关节运动信息计算得到所述第一轨迹参数或第二轨迹参数;或者,所述处理器获取所述驱动关节在外力的作用下的关 节反馈信息,并基于所述关节反馈信息计算得到每个所述驱动关节的关节驱动信息,所述处理器驱动所述驱动关节按各自的关节驱动信息运动。
可选的,所述康复机器人系统包括被动训练状态,所述被动训练状态被配置为,所述主站设备和所述从站设备均按所述位置控制模式运行。
可选的,所述康复机器人系统包括主动训练状态,所述主动训练状态被配置为,所述主站设备设置为所述力矩控制模式,所述从站设备设置为所述位置控制模式或所述力矩控制模式。
为解决上述技术问题,根据本发明的第三个方面,还提供了一种可读存储介质,其上存储有程序,所述程序被执行时实现如上所述的康复机器人系统的操作方法。
综上所述,在本发明提供的康复机器人系统的操作方法、康复机器人系统及可读存储介质中,所述康复机器人系统的操作方法包括:所述主站设备获取第一轨迹参数,并按照所述第一轨迹参数运动;所述从站设备参考所述第一轨迹参数得到第二轨迹参数,并按照所述第二轨迹参数响应于所述主站设备的运动而运动。如此配置,两台所述康复机器人可以协同配合地对患者的双侧肢体进行早期床边康复训练,可利用一侧肢体运动带动另一侧肢体运动,使患者的双侧肢体均主动参与到康复运动中来,以实现多轨迹、多功能的双侧康复运动;双侧肢体运动可刺激患者视觉和大脑神经,促使患者早日康复。
附图说明
本领域的普通技术人员将会理解,提供的附图用于更好地理解本发明,而不对本发明的范围构成任何限定。其中:
图1是本发明一实施例的康复机器人系统的示意图;
图2是本发明一实施例的康复机器人系统的另一角度的示意图;
图3是本发明一实施例的康复机器人的示意图;
图4是本发明一实施例的康复机器人系统的操作方法的流程图。
附图中:
01-康复机器人;02-康复对象;03-病床;
1-脚轮;2-机箱;3-锁定踏板;4-基座;5-触摸屏;7-大臂;8-小臂;9-脚部夹板;10-小腿夹板。
具体实施方式
为使本发明的目的、优点和特征更加清楚,以下结合附图和具体实施例对本发明作进一步详细说明。需说明的是,附图均采用非常简化的形式且未按比例绘制,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者靠近病灶的一端,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,除非内容另外明确指出外。
本发明的核心思想在于提供一种康复机器人系统的操作方法、康复机器人系统及可读存储介质,以解决现有的康复机器人仅能实现单侧康复运动的问题。
以下参考附图进行描述。
请参考图1至图4,其中,图1是本发明一实施例的康复机器人系统的示意图;图2是本发明一实施例的康复机器人系统的另一角度的示意图;图3是本发明一实施例的康复机器人的示意图;图4是本发明一实施例的康复机 器人系统的操作方法的流程图。
如图1至图3所示,本发明一实施例提供一种康复机器人系统,其包括两台连机配对的康复机器人;其中一台所述康复机器人设定为主站设备01a,另一台所述康复机器人设定为从站设备01b。所述主站设备01a被配置为按照第一轨迹参数运动;所述从站设备01b被配置为参考所述第一轨迹参数得到第二轨迹参数,并按照所述第二轨迹参数响应于所述主站设备01a的运动而运动,以通过两台所述康复机器人分别操作一个康复对象协调运动。
如图3所示,下面以对一患者的下肢作为康复对象02的康复机器人01为例,通过一示范性的实施例进行说明,应当理解,本实施例提供的康复机器人系统的康复对象不局限于患者的下肢,也可包括如上肢或手指局部等各个部位。至少一台所述康复机器人01包括:脚轮1、机箱2、锁定踏板3、基座4、大臂7及小臂8等部件。机箱2内部安装有处理器等电子器件,实现整个设备的控制;锁定踏板3安装在机箱2上,可实现四个脚轮1的一脚锁定,保证设备运行时的稳定;基座4用于调节设备整体高度,以适应病床03的高度;大臂7一端安装在基座4上面;小臂8一端安装在大臂7另外一端;脚部夹板9和小腿夹板10均安装在小臂8的另外一端,用来固定患者的脚和小腿。使用中,患者可以平躺于病床03上或者坐在座椅上,将患侧下肢固定于康复机器人01上。基座4、大臂7与基座4连接处、大臂7与小臂8连接处、小臂8与脚部夹板9连接处、小臂8与小腿夹板10连接处,均为可转动关节,至少一个关节设置有伺服电机,形成至少一个驱动关节,所述伺服电机能够反馈电流信号、位置信号和速度信号中的至少一种。优选的,这些驱动关节均具有主动旋转自由度,通过伺服电机驱动;伺服电机上安装有绝对值编码器,可记录电机的旋转位置、速度、加速度等运动信息;伺服电机的伺服驱动器可实现力矩控制和位置控制。所述伺服电机至少设置于所述基座4、大臂7和小臂8上,伺服电机的数量优选为5个。可选的,康复机器人还包括触摸屏5,操作者可通过触摸屏5输入运动轨迹参数,以及通过触摸屏5显示运动轨迹参数等内容。进一步的,所述康复机器人01包括通讯模块(未图示),所述通讯模块用于与其它的康复机器人01进行实时数据通信。在一个示范例 中,机箱2内部安装有通讯模块,以便于与其它的康复机器人01进行实时数据通信,从而便于进行主从设备配对;可选的,通讯模块如可为无线通讯模块或有线通讯模块,两台康复机器人01可通过无线连接或网线等有线通信连接的形式实现实时数据通信,从而实现主从配对。
可以理解的,基于单台的康复机器人01,可以实现对患者一侧的康复对象02(如下肢)进行单侧康复训练。而两台康复机器人01进行连机配对后,主站设备01a可根据第一轨迹参数主动地运动,而从站设备01b则参考主站设备01a的运动轨迹作跟随运动,由此,实现了对患者双侧下肢同步地进行康复训练的操作。需理解,本实施例提供的康复机器人系统还可以应用于患者的双侧上肢,或一侧上肢、一侧下肢、甚至多个手指等多种情况。
进一步的,主站设备01a获取的第一轨迹参数,可以是操作者(如医生、康复训练师等)输入设定的,或根据操作者拖动控制康复机器人01进行示教操作而得到;第一轨迹参数也可以根据患者的一侧肢体的运动而得到。例如,操作者可以通过拖动控制主站设备01a,对主站设备01a(主要是其末端,如脚部夹板9或小腿夹板10等)施加第一外力,此时主站设备01a的伺服电机处于力矩模式,其可以反馈第一外力作用下的反馈信号。进而主站设备01a通过控制算法补偿了机械臂(包括大臂7、小臂8、脚部夹板9和小腿夹板10等)的自重、关节部分的摩擦力、以及康复对象的重量(如腿部重量等);当第一外力作用在主站设备01a的机械臂上时,各关节部位的伺服电机能够反馈信号变化。可选的,反馈信号包括所述伺服电机的电流信号、位置信号和速度信号中的至少一种,这些反馈信号均可以由伺服电机自身提供,而无需增加外部传感采集器件。当然在其它的一些实施例中,反馈信号也可以全部或部分由外部的传感采集器件采集并提供。进一步的,根据所述反馈信号,基于机械臂传递函数解算出第一外力的大小和方向,并驱动机械臂按第一外力方向运动。由此,操作者能够轻松地拖动主站设备01a的末端(如脚部夹板9或小腿夹板10等),机械臂即按照操作者拖动的轨迹运动,处理器记录该轨迹运动的第一轨迹参数;拖动完成后,机械臂回到初始位置,并重复按第一轨迹参数运动。该拖动控制的方法可定制多种康复运动的轨迹参数,操 作简便,灵活性高,且在定制运动轨迹时是可视化的,非常直观。又例如,患者可以通过健侧下肢对主站设备01a施加第二外力,驱动主站设备01a运动,处理器记录该轨迹运动的第一轨迹参数。
从站设备01b参考所述第一轨迹参数得到的第二轨迹参数,可以与所述第一轨迹参数相同,且运行的相位相同或相反;或者,所述第二轨迹参数为关于所述第一轨迹参数的函数。第二轨迹参数可以与第一轨迹参数完全相同,形成如下蹲的动作;第二轨迹参数也可以与第一轨迹参数的轨迹相同但运行的相位相反,形成如踏步运动的动作;当然第二轨迹参数也可以与第一轨迹参数不同,但形成相关联的函数关系,例如第一轨迹参数为大幅度运动,而第二轨迹参数相对为小幅度运动等。本领域技术人员可对两侧肢体的轨迹参数关系进行灵活定义,以实现多种多样的康复运动。
进一步的,至少一台康复机器人01包括位置控制模式与力矩控制模式,并在所述位置控制模式与所述力矩控制模式中择一运行。
所述位置控制模式被配置为:忽略所述康复机器人01所受外力,所述处理器根据所述第一轨迹参数或所述第二轨迹参数计算得到每个所述驱动关节的关节运动信息,并驱动所述驱动关节按各自的关节运动信息运动。康复机器人01处于位置控制模式时,康复机器人01的机械臂主要根据第一轨迹参数或第二轨迹参数进行主动的运动。具体的,以主站设备01a为例,首先根据如上所述的方式获取第一轨迹参数,进而主站设备01a的处理器根据所述第一轨迹参数计算得到每个驱动关节的关节运动信息,并驱动所述驱动关节按各自的关节运动信息运动,实现对第一轨迹参数所表达的轨迹的重现。在驱动关节运动的过程中,可忽略主站设备01a所受到的来自患者下肢的外力或其它的外力。从站设备01b按位置控制模式运行的过程与主站设备01a相似,此处不再赘述。位置控制模式主要应用于被动康复运动,无需患者用力,主要适用于早期治疗阶段。
所述力矩控制模式被配置为:所述处理器获取多个所述驱动关节在外力的作用下的关节运动信息,并根据所述关节运动信息计算得到所述第一轨迹参数;或者,所述处理器获取所述驱动关节在外力的作用下的关节反馈信息, 并基于所述关节反馈信息计算得到每个所述驱动关节的关节驱动信息,所述处理器驱动所述驱动关节按各自的关节驱动信息运动。当康复机器人01处于力矩控制模式,在受到来自患者下肢的外力时,其驱动关节的伺服电机能够反馈在该外力下的关节反馈力矩。进而,康复机器人01可在外力单独的驱动下,或者在外力与康复机器人01的共同驱动下运动。关节运动信息是指,驱动关节在患者肢体外力的作用下,驱动关节的一些运动参数,例如该驱动关节的方向、速度或加速度等信息。第一轨迹参数是指,主站设备01a的机械臂的运动轨迹于空间三维坐标系中的解析方程式。关节反馈信息是指,驱动关节在操作者的拖动下,驱动关节所反馈的参数信息,例如伺服电机所反馈的电流信号、位置信号和速度信号中的至少一种。关节驱动信息是指,处理器计算得到每个驱动关节的所需要的驱动强度,如伺服电机所需要输出的位移、速度、加速度、力矩等信息。关节反馈力矩是指,患者肢体外力作用于驱动关节上,该驱动关节所反馈得到的力矩信息。进一步的,处理器还可以计算并补偿康复机器人01于不同位置和姿态下的机器人本体的重量和关节的摩擦力等,以使得康复机器人01在不受外力作用下处于悬浮状态。下面通过两个具体的示例进行说明。
在一个示例中,主站设备01a设置为所述力矩控制模式,其完全由患者的下肢驱动进行运动。具体的,患者的下肢驱动主站设备01a的机械臂运动,处理器实时地获取多个所述驱动关节在外力的作用下的关节运动信息,并根据所述关节运动信息计算得到所述第一轨迹参数。实际中,该主站设备01a可以由患者的主动运动进行驱动。较佳的,这种情形可应用于患者的健侧肢体。
在另一个示例中,主站设备01a设置为所述力矩控制模式,并在患者的下肢和主站设备01a的共同作用下运动。实际中,主站设备01a与患者所施加的外力共同作用可包括多种情形,一种是助力,即患者的下肢如力量不够(如主站设备01a对应于患侧肢体,或双侧肢体均为患肢等情况),则主站设备01a的处理器通过获取驱动关节在外力的作用下的关节反馈信息(如反馈力矩等信息),并基于该关节反馈信息计算每个驱动关节所需要的关节驱动信息(如 所需助力的力矩等信息),进而驱动所述驱动关节按各自的关节驱动信息运动,以实现对患者所施加的外力的助力。另一种情况下,主站设备01a或从站设备01b还可以为患者所施加的外力提供阻力。当患者的患侧肢体恢复了一定肌力后,可通过自身发力完成康复运动,此时可通过设置一定的阻力来增加康复训练的强度,并可以随着训练的进程逐步增加阻力,患者通过在康复运动过程中克服阻力,能够进一步提升康复效果。具体也可以通过将关节驱动信息配置为阻力的力矩信息来实现。
在其它的一些示例中,如在患者恢复的后期,当患侧肢体也恢复至具有足够力量的时候,也可以将从站设备01b设置为力矩控制模式并对应于患侧肢体,此时,从站设备01b可根据如上所述的方式跟随主站设备01a获取第二轨迹参数,进而患侧肢体对从站设备01b施加外力,从站设备01b的处理器基于所述第二轨迹参数所限定的运动轨迹,引导(或提供助力、阻力、限位等)患侧肢体运动,从而从站设备01b实现与患者的外力共同作用下的运动。当然从站设备01b也可以对应于患者的健侧肢体,而在患侧的带动下运动。
优选的,所述康复机器人系统包括被动训练状态与主动训练状态,并在这两种状态中择一运行。
所述被动训练状态被配置为,所述主站设备01a和所述从站设备01b均按所述位置控制模式运行。被动训练状态主要应用于康复训练的早期的床边治疗,在被动训练状态中,两台康复机器人01均处于位置控制模式下。该被动训练状态可以使患者双侧肢体同时进行训练,更好的协调双侧肢体运动。
所述主动训练状态被配置为,所述主站设备01a设置为所述力矩控制模式,所述从站设备01b设置为所述位置控制模式或所述力矩控制模式。主动训练状态主要应用于康复训练的后期,待患者的患肢具有一定的力量后,可进行主动训练,由健侧下肢主动带动患侧下肢进行被动康复运动训练,相似的也可以由患侧下肢带动健侧下肢进行康复运动。
应用本实施例提供的康复机器人系统,对于患者位置没有过高要求,移动灵活,适用于各个时期的床边治疗;主动训练状态与被动训练状态,对患 者患侧来说都可以是被动的运动,对患侧恢复要求不高,患者可较早的进行双侧下肢康复训练,更有助于治疗。此外两台康复机器人在机械上都是独立的,因此两侧的康复运动轨迹个性化更强,康复机器人的使用更灵活,既可以进行单侧肢体的康复训练,又可以进行组合实现双侧肢体同时的康复训练,医院不需要另外购买双侧肢体康复训练设备。
基于上述康复机器人系统,请参考图4,本发明实施例提供一种康复机器人系统的操作方法,其包括:
步骤S1:所述主站设备获取第一轨迹参数,并按照所述第一轨迹参数运动;
步骤S2:所述从站设备参考所述第一轨迹参数得到第二轨迹参数,并按照所述第二轨迹参数响应于所述主站设备的运动而运动。由此可以通过两台所述康复机器人分别操作同一患者两侧的康复对象协调运动。
优选的,所述康复机器人系统的操作方法包括:将所述康复机器人设置为位置控制模式或力矩控制模式;所述位置控制模式被配置为:使所述康复机器人忽略所受外力,驱动所述康复对象运动;所述力矩控制模式被配置为:使所述康复机器人参考所受外力,并在所述外力驱动下运动;或在所述外力与所述康复机器人的共同作用下运动。
可选的,所述康复机器人系统的操作方法包括:将两台所述康复机器人设置为被动训练状态;所述被动训练状态被配置为,所述主站设备和所述从站设备均按所述位置控制模式运行。
可选的,所述康复机器人系统的操作方法包括:将两台所述康复机器人设置为主动训练状态;所述主动训练状态被配置为,所述主站设备设置为所述力矩控制模式,所述从站设备设置为所述位置控制模式或所述力矩控制模式。
为解决本发明的技术问题,本实施例还提供一种可读存储介质,其上存储有程序,所述程序被执行时实现如上所述的康复机器人系统的操作方法。实际中,可将上述程序整合入一硬件装置,如将该程序整合入康复机器人中,或另设单独的硬件,分别与两台康复机器人连接,以实现如上所述的康复机 器人系统的操作方法。
综上所述,在本发明提供的康复机器人系统的操作方法、康复机器人系统及可读存储介质中,所述康复机器人系统的操作方法包括:所述主站设备获取第一轨迹参数,并按照所述第一轨迹参数运动;所述从站设备参考所述第一轨迹参数得到第二轨迹参数,并按照所述第二轨迹参数响应于所述主站设备的运动而运动。如此配置,两台所述康复机器人可以协同配合地对患者的双侧肢体进行康复训练,可利用一侧肢体运动带动另一侧肢体运动,使患者的双侧肢体均主动参与到康复运动中来;双侧肢体运动可刺激患者视觉和大脑神经,促使患者早日康复。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (10)

  1. 一种康复机器人系统的操作方法,其特征在于,所述康复机器人系统包括两台连机配对的康复机器人,其中一台所述康复机器人设定为主站设备,另一台所述康复机器人设定为从站设备,所述操作方法包括:
    所述主站设备获取第一轨迹参数,并按照所述第一轨迹参数运动;
    所述从站设备参考所述第一轨迹参数得到第二轨迹参数,并按照所述第二轨迹参数响应于所述主站设备的运动而运动。
  2. 根据权利要求1所述的康复机器人系统的操作方法,其特征在于,所述康复机器人系统的操作方法包括将所述康复机器人设置为位置控制模式或力矩控制模式;
    所述位置控制模式被配置为:使所述康复机器人忽略所受外力,驱动所述康复对象运动;
    所述力矩控制模式被配置为:使所述康复机器人参考所受外力,并在所述外力驱动下运动;或在所述外力与所述康复机器人的共同作用下运动。
  3. 根据权利要求2所述的康复机器人系统的操作方法,其特征在于,所述康复机器人系统的操作方法包括:将两台所述康复机器人设置为被动训练状态;所述被动训练状态被配置为,所述主站设备和所述从站设备均按所述位置控制模式运行。
  4. 根据权利要求2所述的康复机器人系统的操作方法,其特征在于,所述康复机器人系统的操作方法包括:将两台所述康复机器人设置为主动训练状态;所述主动训练状态被配置为,所述主站设备设置为所述力矩控制模式,所述从站设备设置为所述位置控制模式或所述力矩控制模式。
  5. 根据权利要求1~4中任一项所述的康复机器人系统的操作方法,其特征在于,所述第二轨迹参数与所述第一轨迹参数相同,且运行的相位相同或相反;或者,所述第二轨迹参数为关于所述第一轨迹参数的函数。
  6. 一种康复机器人系统,其特征在于,包括两台连机配对的康复机器人;其中一台所述康复机器人设定为主站设备,另一台所述康复机器人设定为从 站设备;
    所述主站设备被配置为按照第一轨迹参数运动;
    所述从站设备被配置为参考所述第一轨迹参数得到第二轨迹参数,并按照所述第二轨迹参数响应于所述主站设备的运动而运动。
  7. 根据权利要求6所述的康复机器人系统,其特征在于,所述两台康复机器人中的至少一台包括至少一个驱动关节和处理器,至少一个所述驱动关节与所述处理器通信连接;所述至少一台康复机器人包括位置控制模式与力矩控制模式,所述处理器被配置为根据设置在所述位置控制模式与所述力矩控制模式中择一运行;
    所述位置控制模式被配置为:忽略所述康复机器人所受外力,所述处理器根据所述第一轨迹参数或所述第二轨迹参数计算得到每个所述驱动关节的关节运动信息,并驱动所述驱动关节按各自的关节运动信息运动;
    所述力矩控制模式被配置为:所述处理器获取所述驱动关节在外力的作用下的关节运动信息,并根据所述关节运动信息计算得到所述第一轨迹参数或第二轨迹参数;或者,所述处理器获取所述驱动关节在外力的作用下的关节反馈信息,并基于所述关节反馈信息计算得到每个所述驱动关节的关节驱动信息,所述处理器驱动所述驱动关节按各自的关节驱动信息运动。
  8. 根据权利要求7所述的康复机器人系统,其特征在于,所述康复机器人系统包括被动训练状态,所述被动训练状态被配置为,所述主站设备和所述从站设备均按所述位置控制模式运行。
  9. 根据权利要求7所述的康复机器人系统,其特征在于,所述康复机器人系统包括主动训练状态,所述主动训练状态被配置为,所述主站设备设置为所述力矩控制模式,所述从站设备设置为所述位置控制模式或所述力矩控制模式。
  10. 一种可读存储介质,其上存储有程序,其特征在于,所述程序被执行时实现根据权利要求1~5中任一项所述的康复机器人系统的操作方法。
PCT/CN2021/098474 2020-06-24 2021-06-04 康复机器人系统的操作方法、康复机器人系统及可读介质 WO2021259045A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010591565.7A CN113827438A (zh) 2020-06-24 2020-06-24 康复机器人系统的操作方法、康复机器人系统及可读介质
CN202010591565.7 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021259045A1 true WO2021259045A1 (zh) 2021-12-30

Family

ID=78964740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098474 WO2021259045A1 (zh) 2020-06-24 2021-06-04 康复机器人系统的操作方法、康复机器人系统及可读介质

Country Status (2)

Country Link
CN (1) CN113827438A (zh)
WO (1) WO2021259045A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114074330B (zh) * 2022-01-19 2022-05-13 成都博恩思医学机器人有限公司 一种机器人控制方法、系统、机器人及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301250A (zh) * 2008-07-08 2008-11-12 哈尔滨工业大学 五自由度外骨骼式上肢康复机器人交互康复训练控制策略
CN105919774A (zh) * 2016-04-20 2016-09-07 中国石油大学(华东) 一种并联柔索驱动上肢康复机器人及其实施方法
CN107224384A (zh) * 2017-05-19 2017-10-03 山东建筑大学 主从臂机器人及其控制系统和控制方法
CN109330819A (zh) * 2018-09-18 2019-02-15 山东建筑大学 主从式上肢外骨骼康复机器人控制系统及其控制方法
US20190142681A1 (en) * 2017-11-10 2019-05-16 Samsung Electronics Co., Ltd. Control method and control apparatus for turning walking
CN212416291U (zh) * 2020-06-24 2021-01-29 上海神泰医疗科技有限公司 康复机器人系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101301250A (zh) * 2008-07-08 2008-11-12 哈尔滨工业大学 五自由度外骨骼式上肢康复机器人交互康复训练控制策略
CN105919774A (zh) * 2016-04-20 2016-09-07 中国石油大学(华东) 一种并联柔索驱动上肢康复机器人及其实施方法
CN107224384A (zh) * 2017-05-19 2017-10-03 山东建筑大学 主从臂机器人及其控制系统和控制方法
US20190142681A1 (en) * 2017-11-10 2019-05-16 Samsung Electronics Co., Ltd. Control method and control apparatus for turning walking
CN109330819A (zh) * 2018-09-18 2019-02-15 山东建筑大学 主从式上肢外骨骼康复机器人控制系统及其控制方法
CN212416291U (zh) * 2020-06-24 2021-01-29 上海神泰医疗科技有限公司 康复机器人系统

Also Published As

Publication number Publication date
CN113827438A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2021243918A1 (zh) 上肢功能评估装置与方法及上肢康复训练系统与方法
Aoyagi et al. A robot and control algorithm that can synchronously assist in naturalistic motion during body-weight-supported gait training following neurologic injury
US11771613B2 (en) Robot system for active and passive upper limb rehabilitation training based on force feedback technology
WO2021249315A1 (zh) 康复机器人的操作方法、康复机器人及可读存储介质
CN102614066B (zh) 一种提供主动辅助和被动拉伸的患肢训练装置及其控制方法
WO2007128225A1 (fr) Système robotique et procédé de formation pour rehabilitation utilisant des signaux emg afin d'assurer une assistance mécanique
CN106389068A (zh) 用于上肢单侧偏瘫患者自主康复训练的设备和控制方法
CN106618958A (zh) 一种体感控制的上肢外骨骼镜像康复机器人
CN109820695A (zh) 一种具有通信和自主导航移动功能的icu病房卧式双侧脑瘫下肢康复机器人
CN104921903A (zh) 多功能上肢肌力康复运动装置
CN103892989A (zh) 下肢康复训练机器人及其训练方法
CN204033704U (zh) 下肢康复训练机器人
US11135119B2 (en) Adaptable robotic gait trainer
CN212416291U (zh) 康复机器人系统
CN111759672A (zh) 一种基于下肢康复机器人的下肢康复镜像训练方法
WO2021259045A1 (zh) 康复机器人系统的操作方法、康复机器人系统及可读介质
CN113558609A (zh) 基于坐卧式下肢康复设备的训练数据处理方法和相关设备
Reinkensmeyer et al. Some key problems for robot-assisted movement therapy research: a perspective from the University of California at Irvine
CN211934790U (zh) 一种下肢康复机器人的外骨骼装置
CN206566167U (zh) 康复机器人
WO2024011824A1 (zh) 一种用于横向行走康复的髋关节外骨骼
CN111803330A (zh) 一种上肢肘关节康复装置
CN212522359U (zh) 康复设备末端组件、康复设备及康复机器人
CN214285770U (zh) 基于脑机接口的脑损伤功能训练装置
CN212416290U (zh) 康复机器人

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829030

Country of ref document: EP

Kind code of ref document: A1