WO2021259034A1 - 包络放大器、包络跟踪功率放大器以及信号处理方法 - Google Patents

包络放大器、包络跟踪功率放大器以及信号处理方法 Download PDF

Info

Publication number
WO2021259034A1
WO2021259034A1 PCT/CN2021/098170 CN2021098170W WO2021259034A1 WO 2021259034 A1 WO2021259034 A1 WO 2021259034A1 CN 2021098170 W CN2021098170 W CN 2021098170W WO 2021259034 A1 WO2021259034 A1 WO 2021259034A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
voltage
envelope
envelope signal
output
Prior art date
Application number
PCT/CN2021/098170
Other languages
English (en)
French (fr)
Inventor
孙浩
张晓毅
余敏德
秦天银
丁冲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP21829700.0A priority Critical patent/EP4156511A4/en
Publication of WO2021259034A1 publication Critical patent/WO2021259034A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/78A comparator being used in a controlling circuit of an amplifier

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an envelope amplifier, an envelope tracking power amplifier, and a signal processing method.
  • the radio frequency power amplifier is the main energy-consuming module, and its efficiency can directly affect the efficiency of the entire system.
  • Fig. 5 is a schematic diagram of a signal output by the envelope amplifier of the first embodiment of the present application.
  • FIG. 11 is a specific flowchart of the signal processing method according to the seventh embodiment of the present application.
  • module means, “component” or “unit” used to indicate elements is only for the description of the present application, and has no special meaning in itself. Therefore, “module”, “part” or “unit” can be used in a mixed manner.
  • the first embodiment of the present application provides an envelope amplifier, which is applied to an envelope tracking power amplifier.
  • the envelope tracking power amplifier can be used in wireless communication equipment such as base stations; please refer to FIG. 1, the envelope tracking power amplifier includes the In the envelope amplifier 1 and the power amplifier 2 in the embodiment, the radio frequency envelope signal is input into the envelope amplifier 1, the radio frequency input signal is input into the power amplifier 2, and the radio frequency output signal output by the power amplifier 2 is the envelope tracking power The output of the amplifier.
  • the envelope amplifier includes a comparator for comparing the voltage of the received radio frequency envelope signal with the reference voltage of the comparator, and outputting the first envelope signal and the second envelope signal, wherein the first envelope signal The envelope signal is less than or equal to the reference voltage, and the second envelope signal is greater than or equal to the reference voltage; the signal amplifier is used to amplify the first envelope signal; the multi-voltage output circuit is used to output the corresponding signal according to the second envelope signal The target voltage signal; synthesis circuit, used to synthesize the amplified first envelope signal with the target voltage signal, and output the synthesized signal.
  • the RF envelope signal is separated by the comparator, and the low voltage part of the envelope voltage range of the RF envelope signal output by the signal amplifier is less than or equal to the reference voltage, which compresses the output power of the signal amplifier to a certain extent.
  • the ratio of the total output power of the amplifier improves the overall efficiency of the envelope amplifier; the high-voltage part of the envelope voltage range of the RF envelope signal output by the multi-voltage output circuit is greater than or equal to the reference voltage, because the low-voltage part has a signal
  • the amplifier is used to output, thereby reducing the output range of the multi-voltage output circuit.
  • the voltage accuracy is improved, that is, the efficiency of the envelope amplifier is improved; that is, from both the signal amplifier and the multi-voltage output circuit. Improve the efficiency of the envelope amplifier.
  • the envelope amplifier 1 includes a comparator 11, a signal amplifier 12, a multi-voltage output circuit 13 and a synthesis circuit 14.
  • the comparator 11 is used to compare the voltage of the received radio frequency envelope signal with the reference voltage of the comparator, and output a first envelope signal with a voltage less than or equal to the reference voltage and a second envelope signal with a voltage greater than or equal to the reference voltage Signal.
  • a reference voltage is preset in the comparator 11, and when the RF envelope signal to be processed is received, the output first envelope signal and the second envelope signal are adjusted according to the magnitude of the voltage of the RF envelope signal,
  • the first envelope signal includes the low voltage part of the envelope voltage range of the radio frequency envelope signal that is less than or equal to the reference voltage
  • the second envelope signal includes the high voltage part of the envelope voltage range of the radio frequency envelope signal that is greater than or equal to the reference voltage. part.
  • the reference voltage can be set according to the envelope voltage range of the RF envelope signal to be processed, which is not limited in this embodiment.
  • the comparator 11 when the voltage of the RF envelope signal is greater than or equal to the reference voltage, the comparator 11 outputs a first envelope signal with a voltage equal to the reference voltage and a second envelope signal with a voltage equal to the RF envelope signal; and/or , When the voltage of the radio frequency envelope signal is less than the reference voltage, the output voltage is equal to the first envelope signal of the radio frequency envelope signal, and the output of the second envelope signal is prohibited.
  • the comparator 11 when the comparator 11 receives the RF envelope signal, it determines the magnitude relationship between the voltage of the RF envelope signal and the reference voltage of the comparator.
  • the signal amplifier 12 is used to amplify the first envelope signal.
  • the signal amplifier 12 is connected to the power supply V1 (for example, a DC voltage source), which can amplify the received first envelope signal sent by the comparator 11, and send the amplified first envelope signal to Synthesis circuit 14; wherein, the signal amplifier 12 can be a linear amplifier, that is, it can amplify the first envelope signal according to a preset amplification factor.
  • V1 for example, a DC voltage source
  • the second embodiment of the present application provides an envelope amplifier.
  • the main improvement of this embodiment is that the synthesis circuit 14 can adjust the difference between the amplified first envelope signal and the target voltage signal. After the delays are equal, the two are combined.
  • the synthesis circuit 14 includes a first time delay control circuit 141, a second time delay control circuit 142, a first diode D1, and a second diode D2.
  • the first time delay control circuit 141 adjusts the time delay of the amplified first envelope signal
  • the second time delay control circuit adjusts the time delay of the amplified first envelope signal.
  • the time delay is equal; then, the amplified first envelope signal is output to the first diode D1, the target voltage signal is output to the second diode D2, the cathode of the first diode D1 and the second diode
  • the cathode of D2 is connected so that the two signals can be synthesized, and the synthesized signal is output at the junction of the first diode D1 and the second diode D2, and the synthesized signal is sent to the envelope amplifier 1 as the output
  • the envelope tracks the power amplifier 2 in the power amplifier; and the RF input signal received by the power amplifier 2 is synchronized with the RF envelope signal, so the signal input by the envelope amplifier 1 to the power amplifier 2 is the same as the RF received by the power amplifier 2 The input signal is also synchronized, so that the power amplifier 2 maintains the most efficient working state as much as possible.
  • the time delay of the signal amplifier 11 is T1, that is, the time delay generated by the amplified first envelope signal relative to the radio frequency envelope signal is T1, and the time delay of the multi-voltage output circuit is T2, that is, The time delay generated by the output target voltage signal relative to the RF envelope signal is T2; taking T2>T1 as an example, the first time delay control circuit 141 generates a time delay of T2-T1 for the amplified first envelope signal.
  • the second time delay control circuit 142 does not adjust the time delay of the target voltage signal.
  • the synthesis circuit can also adjust the time delay of the amplified first envelope signal to be equal to the time delay of the target voltage signal, that is, the time delay generated by the signal amplifier and the multi-voltage output circuit is considered.
  • the time delay makes the synthesized signal synchronized with the original RF envelope signal, which improves the accuracy of the synthesized signal.
  • the third embodiment of the present application provides an envelope amplifier.
  • This embodiment is a refinement on the basis of the first embodiment.
  • the main refinement is: please refer to FIG. 7, the multi-voltage output circuit 13 includes: drive control The circuit 131, the voltage generating circuit 132 and the switching circuit 133 are respectively connected to the driving control circuit 131 and the voltage generating circuit 132.
  • the driving control circuit 131 is used for generating a control signal according to the second envelope signal and the preset voltage threshold. Specifically, at least one voltage threshold is preset in the drive control circuit 131.
  • the control signal is generated according to the relationship between the voltage of the second envelope signal and the voltage thresholds. , And send the control signal to switch 133.
  • the switching circuit 133 is used for outputting a reference voltage signal as a target voltage signal according to the control signal. Specifically, the switching circuit 133 can select a reference voltage signal from multiple reference voltage signals as the target voltage signal and output it to the synthesis circuit 14 according to the received control signal.
  • the switching circuit 133 includes multiple voltage channels 1331 (three channels are used as an example in the figure). There is a one-to-one correspondence between the voltage signals.
  • the voltage generating circuit 132 can input each reference voltage signal to the corresponding voltage channel 1331. Each voltage channel 1331 can be turned on or off according to the received control signal. When the voltage channel 1331 is turned on, The corresponding reference voltage signal is output to the synthesis circuit 14 as a target voltage signal.
  • the switching circuit 133 can also be a power inductor L1.
  • One end of each voltage channel 1331 is connected to the voltage generating circuit 132, and the other end of each voltage channel 1331 is connected to the power inductor L1.
  • the voltage channel 1331 can be controlled according to the received control
  • the power inductor L1 can play the role of energy storage and choke, and can protect the envelope amplifier at the same time.
  • each voltage channel 1331 includes a third diode D3 and a switch S1.
  • the anode of the third diode D3 is connected to the voltage generating circuit 132, and the cathode of the third diode D3 is connected to Switch S1; the drive control circuit 131 is connected to the control end of the switch S1 of each voltage channel 1331.
  • the switch S1 can be a MOS tube (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET) (as an example in the figure), and the cathode of the third diode D3 is connected to the drain of the MOS tube, and the source of the MOS tube
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the drive control circuit 131 can control the turn-on and turn-off of each switch S1 according to the relationship between the voltage of the second envelope signal and the preset voltage threshold, so that the voltage at which the turned-on switch S1 is located
  • the reference voltage signal corresponding to the channel 1331 is output as the target voltage signal.
  • the voltage generating circuit 132 outputs two reference voltage signals (represented by V1 and V2), and these two reference voltage signals are input into the corresponding voltage channel 1331.
  • the drive control A voltage threshold X1 is preset in the circuit 131, and the control signal output by the drive control circuit 131 includes at least one bit (in this embodiment, one is taken as an example), and one binary bit can represent two states, respectively 0 and 1, set 0 to correspond to the reference voltage signal V1 and 1 to the reference voltage signal V2.
  • the drive control circuit 131 When the voltage of the second envelope signal received by the drive control circuit 131 is less than the voltage threshold X1, it outputs the control signal 0 to the switching circuit 133 to switch
  • the circuit 133 presets the corresponding relationship between different control signals and the voltage channel 1331. Since 0 corresponds to the reference voltage signal V1, the switching circuit 133 controls the voltage channel 1331 corresponding to the reference voltage signal V1 to be turned on, that is, controls the voltage channel 1331
  • the switch S1 is turned on, so that the reference voltage signal V1 can be used as the target voltage signal to be output to the synthesis circuit 14 through the power inductor L1; the drive control circuit 131 outputs when the voltage of the received second envelope signal is greater than or equal to the voltage threshold X1
  • the control signal 1 is sent to the switching circuit 133.
  • the switching circuit 133 controls the voltage channel 1332 corresponding to the reference voltage V2 to turn on, that is, controls the switch S1 in the voltage channel 1331 to turn on, so that the reference voltage signal V2 can be used as the target voltage signal to pass power
  • the inductor L1 is output to the synthesis circuit 14.
  • M 3, it means that the voltage generating circuit 132 has output three reference voltage signals (represented by V1, V2, and V3), and these three reference voltage signals are respectively input into the corresponding voltage channel 1331, at this time the drive control circuit
  • Two voltage thresholds X1, X2 and X1 ⁇ X2 are preset in 131, and the control signal output by the drive control circuit 131 includes at least 2 bits (in this embodiment, 2 are taken as an example), and 2 binary bits can represent The four states are 00, 01, 10, and 11 respectively. Since this embodiment only requires three states, one state can be selected and not used (taking state 11 as an example).
  • the reference voltage signals V2 and 10 correspond to the reference voltage signal V3.
  • the drive control circuit 131 When the voltage of the second envelope signal received by the drive control circuit 131 is less than the voltage threshold X1, it outputs a control signal 00 to the switching circuit 133; When the voltage of the second envelope signal is greater than or equal to the voltage threshold X1 and less than the voltage threshold X2, output the control signal 01 to the switching circuit 133; when the circuit 131 receives the voltage of the second envelope signal greater than or equal to the voltage threshold X2, The control signal 10 is output to the switching circuit 133.
  • the specific control method of the switching circuit 133 is similar to the foregoing, and a simple description is given below by taking a control signal of 00 as an example.
  • the switching circuit 133 presets the correspondence between different control signals and the voltage channel 1331.
  • the switching circuit 133 controls the voltage channel 1331 corresponding to the reference voltage signal V1 to be turned on, that is, controls the voltage channel 1331
  • the switch S1 in is turned on, so that the reference voltage signal V1 can be used as a target voltage signal and output to the synthesis circuit 14 through the power inductor L1.
  • this embodiment provides a specific implementation of the multi-voltage output circuit.
  • this embodiment provides an envelope tracking power amplifier using the aforementioned envelope amplifier, and the overall efficiency of the envelope tracking power amplifier is improved by improving the efficiency of the envelope amplifier.
  • the fifth embodiment of the present application provides a signal processing method, which is applied to the envelope amplifier in any one of the first to third embodiments. Please refer to FIG. 2.
  • This embodiment uses the envelope amplifier in the first embodiment Take an example to explain the signal processing method.
  • Step 101 Compare the voltage of the received radio frequency envelope signal with a preset reference voltage, and output a first envelope signal whose voltage is less than or equal to the reference voltage and a second envelope signal whose voltage is greater than or equal to the reference voltage.
  • the comparator 11 in the envelope amplifier is preset with a reference voltage, and when the RF envelope signal to be processed is received, the output first envelope signal is adjusted according to the magnitude of the voltage of the RF envelope signal.
  • the second envelope signal, the first envelope signal includes the low voltage part of the envelope voltage range of the radio frequency envelope signal that is less than or equal to the reference voltage, and the second envelope signal includes the lower voltage part of the envelope voltage range of the radio frequency envelope signal that is greater than Or equal to the high voltage part of the reference voltage.
  • the reference voltage can be set according to the envelope voltage range of the RF envelope signal to be processed, which is not limited in this embodiment.
  • the voltage of the received radio frequency envelope signal is compared with the reference voltage of the comparator, and the output voltage is less than or equal to the first envelope signal of the reference voltage and the second envelope signal having the voltage greater than or equal to the reference voltage is output. , Including: when the voltage of the radio frequency envelope signal is greater than or equal to the reference voltage, the output voltage is equal to the first envelope signal of the reference voltage and the second envelope signal of the voltage equal to the radio frequency envelope signal; and/or, in the radio frequency envelope signal When the voltage of the signal is less than the reference voltage, the output voltage is equal to the first envelope signal of the radio frequency envelope signal, and the output of the second envelope signal is prohibited.
  • the comparator 11 when the comparator 11 receives the RF envelope signal, it determines the magnitude relationship between the voltage of the RF envelope signal and the reference voltage of the comparator. If the voltage of the RF envelope signal is greater than or equal to the reference voltage, output the first envelope signal with a voltage equal to the reference voltage and the second envelope signal with a voltage equal to the RF envelope signal; if the voltage of the RF envelope signal is less than the reference voltage, output The voltage is equal to the first envelope signal of the radio frequency envelope signal, and the second envelope signal is not output.
  • the solid line is the first envelope signal
  • the dashed line is the second envelope signal.
  • the comparator 11 may output a voltage equal to the second value of the voltage peak value of the radio frequency envelope signal in the signal period.
  • the envelope signal that is, in each signal period, the voltage of the second envelope signal is equal to the voltage peak value of the radio frequency envelope signal in the signal period, so that the multi-voltage output circuit can output the corresponding target voltage signal more accurately.
  • Step 102 Amplify the first envelope signal.
  • the signal amplifier 12 is connected to the power supply V1 (for example, a DC voltage source), which can amplify the received first envelope signal sent by the comparator 11, and send the amplified first envelope signal To synthesis circuit 14.
  • V1 for example, a DC voltage source
  • Step 103 Output a corresponding target voltage signal according to the second envelope signal.
  • the multi-voltage output circuit 13 can output a plurality of discrete voltage signals, and each second envelope signal corresponds to a different voltage signal, and then can obtain and from the plurality of voltage signals according to the received second envelope signal.
  • the voltage signal of the second envelope signal is used as the target voltage signal, and the target voltage signal is output to the synthesis circuit 14.
  • Step 104 Synthesize the amplified first envelope signal and the target voltage signal, and output the synthesized signal.
  • the amplified first envelope signal includes the low voltage part of the original RF envelope signal
  • the target voltage signal includes the high voltage part of the original RF envelope signal
  • the synthesis circuit 14 combines the amplified first envelope signal with the target voltage.
  • the signal is synthesized, and then the synthesized signal is sent to the power amplifier 2 in the envelope tracking power amplifier as the output of the envelope amplifier 1.
  • the synthesized signal can adjust the drain voltage of the power amplifier 2; please refer to Figure 5, which is Figure 3. After the intermediate radio frequency envelope signal is input to the envelope amplifier 1, the envelope amplifier 1 outputs the signal.
  • the voltage of the received radio frequency envelope signal is compared with a preset reference voltage, and the output voltage is less than or equal to the first envelope of the reference voltage.
  • Signal and the second envelope signal whose voltage is greater than or equal to the reference voltage, and then amplify the first envelope signal, and according to the second envelope signal, output the corresponding target voltage signal, and then the received amplified first
  • the envelope signal is synthesized with the target voltage signal, and the synthesized signal is output.
  • the radio frequency envelope signal is separated, and the low voltage part of the envelope voltage range of the radio frequency envelope signal output by the signal amplifier is less than or equal to the reference voltage, which to a certain extent compresses the output power of the signal amplifier to account for the output of the envelope amplifier
  • the ratio of total power improves the overall efficiency of the envelope amplifier; the multi-voltage output circuit outputs the high-voltage part of the envelope voltage range of the RF envelope signal that is greater than or equal to the reference voltage, because the low-voltage part has a signal amplifier to output Therefore, the output range of the multi-voltage output circuit is reduced, and the voltage accuracy is improved when the number of discrete voltages is the same, that is, the efficiency of the envelope amplifier is improved; that is, the package is improved from both the signal amplifier and the multi-voltage output circuit.
  • the efficiency of the network amplifier is provided.
  • the sixth embodiment of the present application provides a signal processing method.
  • the main improvement of this embodiment is that the time delay of the amplified first envelope signal and the target voltage signal can be adjusted to be equal Then, combine the two. Please refer to FIG. 6, which will be described below in conjunction with the envelope signal amplifier in the second embodiment.
  • Step 201 Compare the voltage of the received radio frequency envelope signal with a preset reference voltage, and output a first envelope signal whose voltage is less than or equal to the reference voltage and a second envelope signal whose voltage is greater than or equal to the reference voltage. It is roughly the same as step 101 in the fifth embodiment, and will not be repeated here.
  • Step 202 Amplify the first envelope signal. It is roughly the same as step 102 in the fifth embodiment, and will not be repeated here.
  • Step 203 Output a corresponding target voltage signal according to the second envelope signal. It is roughly the same as step 103 in the fifth embodiment, and will not be repeated here.
  • Step 204 Adjust the time delay of the amplified first envelope signal and the target voltage signal to be equal, and synthesize the first envelope signal after the time delay adjustment with the target voltage signal, and output the synthesized signal.
  • the first delay control circuit 141 adjusts the delay of the amplified first envelope signal, and the second delay control circuit
  • the time delay of the target voltage signal is adjusted, and the time delay of the amplified first envelope signal is adjusted through the time delay adjustment of the two time delay control circuits.
  • the time delay is equal to the target voltage signal; then, the amplified first envelope signal is output to the first diode D1, the target voltage signal is output to the second diode D2, and the cathode of the first diode D1 is connected to the first diode D1.
  • the cathodes of the two diodes D2 are connected, so that the two signals can be synthesized, and the synthesized signal is output at the junction of the first diode D1 and the second diode D2, and the synthesized signal is used as the envelope amplifier 1.
  • the output of the envelope is sent to the power amplifier 2 in the envelope tracking power amplifier; and the RF input signal received by the power amplifier 2 is synchronized with the RF envelope signal, so the signal input from the envelope amplifier 1 to the power amplifier 2 is the same as the power amplifier 2
  • the received radio frequency input signal is also synchronized, so that the power amplifier 2 maintains the most efficient working state as much as possible.
  • this embodiment first adjusts the time delay of the amplified first envelope signal to the time delay of the target voltage signal to be equal, that is, the time delay generated by the signal amplifier and the multi-voltage output circuit is considered. , The synthesized signal is synchronized with the original radio frequency envelope signal, and the accuracy of the synthesized signal is improved.
  • the seventh embodiment of the present application provides a signal processing method. Compared with the fifth embodiment, the main improvement of this embodiment is that it provides a method for outputting a corresponding target voltage signal according to the second envelope signal. Specific implementation method. Please refer to FIG. 7, which will be described below in conjunction with the envelope signal amplifier in the third embodiment.
  • Step 301 Compare the voltage of the received radio frequency envelope signal with a preset reference voltage, and output a first envelope signal whose voltage is less than or equal to the reference voltage and a second envelope signal whose voltage is greater than or equal to the reference voltage. It is roughly the same as step 101 in the fifth embodiment, and will not be repeated here.
  • Step 302 Amplify the first envelope signal. It is roughly the same as step 102 in the fifth embodiment, and will not be repeated here.
  • Step 303 includes the following sub-steps:
  • a control signal is generated according to the second envelope signal and a preset voltage threshold.
  • Sub-step 3032 according to the control signal, output a reference voltage signal from the multiple reference voltage signals as a target voltage signal.
  • At least one voltage threshold is preset in the drive control circuit 131.
  • the control is generated according to the relationship between the voltage of the second envelope signal and the voltage thresholds. Signal and send the control signal to switch 133.
  • the voltage generating circuit 132 is connected to the power supply V2 (for example, a DC voltage source), which can convert the DC voltage input from the power supply V2 into multiple reference voltage signals, and input the multiple reference voltage signals obtained by the conversion to the switching circuit 133 ; Among them, the voltages of the multiple reference voltage signals are not equal.
  • V2 for example, a DC voltage source
  • the switching circuit 133 can select a reference voltage signal from a plurality of reference voltage signals as the target voltage signal and output it to the synthesis circuit 14 according to the received control signal.
  • the switching circuit 133 includes multiple voltage channels 1331 (three channels are used as an example in the figure). There is a one-to-one correspondence between the voltage signals.
  • the voltage generating circuit 132 can input each reference voltage signal to the corresponding voltage channel 1331. Each voltage channel 1331 can be turned on or off according to the received control signal. When the voltage channel 1331 is turned on, The corresponding reference voltage signal is output to the synthesis circuit 14 as a target voltage signal.
  • the switching circuit 133 can also be a power inductor L1.
  • One end of each voltage channel 1331 is connected to the voltage generating circuit 132, and the other end of each voltage channel 1331 is connected to the power inductor L1.
  • the voltage channel 1331 can be controlled according to the received control
  • the power inductor L1 can play the role of energy storage and choke, and can protect the envelope amplifier at the same time.
  • each voltage channel 1331 includes a third diode D3 and a switch S1.
  • the anode of the third diode D3 is connected to the voltage generating circuit 132, and the cathode of the third diode D3 is connected to Switch S1; the drive control circuit 131 is connected to the control end of the switch S1 of each voltage channel 1331.
  • the switch S1 can be a MOS tube (in the figure as an example)
  • the cathode of the third diode D3 is connected to the drain of the MOS tube
  • the source of the MOS tube is connected to one end of the inductor L1, and the gate of the MOS tube Connected to the drive control circuit 131.
  • the drive control circuit 131 can control the turn-on and turn-off of each switch S1 according to the relationship between the voltage of the second envelope signal and the preset voltage threshold, so that the voltage at which the turned-on switch S1 is located
  • the reference voltage signal corresponding to the channel 1331 is output as the target voltage signal.
  • the voltage generating circuit 132 outputs two reference voltage signals (represented by V1 and V2), and these two reference voltage signals are input into the corresponding voltage channel 1331.
  • the drive control A voltage threshold X1 is preset in the circuit 131, and the control signal output by the drive control circuit 131 includes at least one bit (in this embodiment, one is taken as an example), and one binary bit can represent two states, respectively 0 and 1, set 0 to correspond to the reference voltage signal V1 and 1 to the reference voltage signal V2.
  • the drive control circuit 131 When the voltage of the second envelope signal received by the drive control circuit 131 is less than the voltage threshold X1, it outputs the control signal 0 to the switching circuit 133 to switch The corresponding relationship between different control signals and the voltage channel 1331 is preset in the circuit 133.
  • the switching circuit 133 controls the voltage channel 1331 corresponding to the reference voltage signal V1 to be turned on, that is, controls the voltage channel 1331
  • the switch S1 is turned on, so that the reference voltage signal V1 can be used as the target voltage signal to be output to the synthesis circuit 14 through the power inductor L1; the drive control circuit 131 outputs when the voltage of the received second envelope signal is greater than or equal to the voltage threshold X1
  • the control signal 1 is sent to the switching circuit 133.
  • the switching circuit 133 controls the voltage channel 1332 corresponding to the reference voltage V2 to turn on, that is, controls the switch S1 in the voltage channel 1331 to turn on, so that the reference voltage signal V2 can be used as the target voltage signal to pass power
  • the inductor L1 is output to the synthesis circuit 14.
  • M 3, it means that the voltage generating circuit 132 has output three reference voltage signals (represented by V1, V2, and V3), and these three reference voltage signals are respectively input into the corresponding voltage channel 1331, at this time the drive control circuit
  • Two voltage thresholds X1, X2 and X1 ⁇ X2 are preset in 131, and the control signal output by the drive control circuit 131 includes at least 2 bits (in this embodiment, 2 are taken as an example), and 2 binary bits can represent The four states are 00, 01, 10, and 11 respectively. Since this embodiment only requires three states, one state can be selected and not used (taking state 11 as an example).
  • the reference voltage signals V2 and 10 correspond to the reference voltage signal V3.
  • the drive control circuit 131 When the voltage of the second envelope signal received by the drive control circuit 131 is less than the voltage threshold X1, it outputs a control signal 00 to the switching circuit 133; When the voltage of the second envelope signal is greater than or equal to the voltage threshold X1 and less than the voltage threshold X2, output the control signal 01 to the switching circuit 133; when the circuit 131 receives the voltage of the second envelope signal greater than or equal to the voltage threshold X2, The control signal 10 is output to the switching circuit 133.
  • the specific control method of the switching circuit 133 is similar to the foregoing, and a simple description is given below by taking a control signal of 00 as an example.
  • the switching circuit 133 presets the correspondence between different control signals and the voltage channel 1331.
  • the switching circuit 133 controls the voltage channel 1331 corresponding to the reference voltage signal V1 to be turned on, that is, controls the voltage channel 1331
  • the switch S1 in is turned on, so that the reference voltage signal V1 can be used as a target voltage signal and output to the synthesis circuit 14 through the power inductor L1.
  • Step 304 Synthesize the amplified first envelope signal and the target voltage signal, and output the synthesized signal. It is roughly the same as step 104 in the fifth embodiment, and will not be repeated here.
  • this embodiment provides a specific implementation manner for outputting the corresponding target voltage signal according to the second envelope signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

一种包络放大器(1)、包络跟踪功率放大器以及信号处理方法。包络放大器(1)包括:比较器(11),用于将接收到的射频包络信号的电压与比较器的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号;信号放大器(12),用于对第一包络信号进行放大;多电压输出电路,用于根据第二包络信号,输出对应的目标电压信号;合成电路(14),用于将放大后的第一包络信号与目标电压信号合成,并输出合成的信号。

Description

包络放大器、包络跟踪功率放大器以及信号处理方法
相关申请的交叉引用
本申请基于申请号为202010595601.7、申请日为2020年6月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此以引入方式并入本申请。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种包络放大器、包络跟踪功率放大器以及信号处理方法。
背景技术
随着无线通信技术的飞速发展,对无线通信设备的性能要求也越来越高。在无线通信系统中,射频功率放大器是主要的耗能模块,其效率的大小能够直接影响到整个系统的效率。
包络跟踪技术常用于实现高效率的功率放大器,其原理是根据输入射频信号包络的电平,实时调整功率放大器的漏压,以使功率放大器尽可能的工作在饱和区域,即使得功率放大器尽可能的工作在高效率区,提升了功率放大器的效率。
对包络跟踪功率放大器来说,其效率与包络放大器的效率和功率放大器均有很大的关联,因此如何提升包络放大器的效率也是至关重要的。
发明内容
本申请实施例提供了一种包络放大器,包括:比较器,用于将接收到的射频包络信号的电压与比较器的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号;信号放大器,用于对第一包络信号进行放大;多电压输出电路,用于根据第二包络信号,输出对应的目标电压信号;合成电路,用于将放大后的第一包络信号与目标电压信号合成,并输出合成的信号。
为实现上述目的,本申请实施例还提出了一种包络跟踪功率放大器,包括:上述的包络放大器与连接于包络放大器的功率放大器。
为实现上述目的,本申请实施例还提出了一种信号处理方法,包括:将接收到的射频包络信号的电压与预设的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号;对第一包络信号进行放大;根据第二包络信号,输出对应的目标电压信号;将放大后的第一包络信号与目标电压信号合成,并输出合成的信号。
附图说明
图1是本申请第一实施例的包络放大器应用的包络跟踪功率放大器的示意图。
图2是本申请第一实施例的包络放大器的示意图。
图3是本申请第一实施例的射频包络信号的示意图。
图4是本申请第一实施例的第一包络信号与第二包络信号的示意图。
图5是本申请第一实施例的包络放大器输出的信号的示意图。
图6是本申请第二实施例的包络放大器的示意图。
图7是本申请第三实施例的包络放大器的示意图。
图8是本申请第三实施例的多电压输出电路的示意图。
图9是本申请第五实施例的信号处理方法的具体流程图。
图10是本申请第六实施例的信号处理方法的具体流程图。
图11是本申请第七实施例的信号处理方法的具体流程图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
本申请第一实施例提供了一种包络放大器,应用于包络跟踪功率放大器,该包络跟踪功率放大器可以应用在基站等无线通信设备中;请参考图1,包络跟踪功率放大器包括本实施例中的包络放大器1与功率放大器2,射频包络信号被输入到包络放大器1中,射频输入信号被输入到功率放大器2中,功率放大器2输出的射频输出信号为包络跟踪功率放大器的输出。
本实施例中,包络放大器包括:比较器,用于将接收到的射频包络信号的电压与比较器的参考电压进行对比,输出第一包络信号与第二包络信号,其中第一包络信号小于或等于参考电压,第二包络信号大于或等于参考电压;信号放大器,用于对第一包络信号进行放大;多电压输出电路,用于根据第二包络信号,输出对应的目标电压信号;合成电路,用于将放大后的第一包络信号与目标电压信号合成,并输出合成的信号。
相对于现有技术而言,本申请实施例提供的包络放大器中,比较器将接收到的射频包络信号的电压与比较器的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号到信号放大器,并输出电压大于或等于参考电压的第二包络信号到多电压输出电路,信号放大器对第一包络信号进行放大,将放大后的第一包络信号输入到合成电路,多电压输出电路则根据第二包络信号,输出对应的目标电压信号到合成电路,合成电路将接收到的放大后的第一包络信号与目标电压信号合成,并输出合成的信号。即通过比较器对射频包络信号进行分离,由信号放大器输出射频包络信号的包络电压范围中的小于或等于参考电压的低压部分,在一定程度上压缩了信号放大器的输出功率占包络放大器的输出总功率的比例,提升了包络放大器的整体效率;由多电压输出电路来输出射频包络信号的包络电压范围中的大于或等于参考电压的高压部分,由于低压部分已有信号放大器来输出,从而减小了多电压输出电路的输出范围,在离散电压数量相同的情况下,提升了电压精度,即提升了包络放大器的效率;即从信号放大器与多电压输出电路两方面提升了包络放大器的效率。
下面对本实施例的包络放大器的实现细节进行具体的说明,以下内容仅为方便理解提供 的实现细节,并非实施本方案的必须。
请参考图2,包络放大器1包括比较器11、信号放大器12、多电压输出电路13以及合成电路14。
比较器11,用于将接收到的射频包络信号的电压与比较器的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号。具体的,比较器11中预设有参考电压,当接收到待处理的射频包络信号时,根据射频包络信号的电压的大小来调整输出的第一包络信号与第二包络信号,第一包络信号包括射频包络信号的包络电压范围中的小于或等于参考电压的低压部分,第二包络信号包括射频包络信号的包络电压范围中的大于或等于参考电压的高压部分。其中,参考电压可以根据待处理的射频包络信号的包络电压范围来设定,本实施例对此不做任何限定。
在一个例子中,比较器11在射频包络信号的电压大于或等于参考电压时,输出电压等于参考电压的第一包络信号与电压等于射频包络信号的第二包络信号;和/或,在射频包络信号的电压小于参考电压时,输出电压等于射频包络信号的第一包络信号,且禁止输出第二包络信号。具体的,请结合图3与图4,比较器11在接收到射频包络信号时,判断射频包络信号的电压与比较器的参考电压的大小关系。若射频包络信号的电压大于或等于参考电压,输出电压等于参考电压的第一包络信号与电压等于射频包络信号的第二包络信号;若射频包络信号的电压小于参考电压,输出电压等于射频包络信号的第一包络信号,且不输出第二包络信号,图4中实线为第一包络信号、虚线为第二包络信号。其中,当射频包络信号的电压大于或等于参考电压时,在射频包络信号的每个信号周期中,比较器11可以输出电压等于射频包络信号在该信号周期中的电压峰值的第二包络信号,即在每个信号周期中,第二包络信号的电压等于射频包络信号在该信号周期内的电压峰值,以便于多电压输出电路更准确的输出对应的目标电压信号。
信号放大器12,用于对第一包络信号进行放大。具体的,信号放大器12连接于供电电源V1(例如为直流电压源),其能够将接收到的比较器11发送的第一包络信号进行放大,并将放大后的第一包络信号发送到合成电路14;其中,信号放大器12可以为线性放大器,即其可以按照预设的放大倍数对第一包络信号进行放大。
多电压输出电路13,用于根据第二包络信号,输出对应的目标电压信号。具体的,多电压输出电路13能够输出离散的多个电压信号,各第二包络信号对应有不同的电压信号,继而能够根据接收到的第二包络信号,从多个电压信号获取与第二包络信号的电压信号作为目标电压信号,并将该目标电压信号输出到合成电路14。
合成电路14,用于将放大后的第一包络信号与目标电压信号合成,并输出合成的信号。具体的,放大后的第一包络信号包括原始射频包络信号的低压部分,目标电压信号包括原始射频包络信号的高压部分,合成电路14将放大后的第一包络信号与目标电压信号进行合成,然后将合成的信号作为包络放大器1的输出发送到包络跟踪功率放大器中的功率放大器2,该合成信号能够调整功率放大器2的漏极电压;请参考图5,为图3中射频包络信号输入到包络放大器1后,包络放大器1输出的信号。
本申请第二实施例提供了一种包络放大器,本实施例相对于第一实施例而言,主要改进之处在于:合成电路14能够调整放大后的第一包络信号与目标电压信号的时延相等后,再将二者合成。
本实施例中,合成电路14用于调整放大后的第一包络信号与目标电压信号的时延相等,并将调整时延后的第一包络信号与目标电压信号进行合成,输出合成的信号。
请参考图6,合成电路14包括第一时延控制电路141、第二时延控制电路142、第一二极管D1以及第二二极管D2。
如图6所示,第一时延控制电路141的第一端连接于信号放大器11,第一时延控制电路141的第二端连接于第一二极管D1的阳极,第一二极管D1的阴极连接于第二二极管D2的阴极,第二二极管D2的阳极连接于第二时延控制电路142的第一端,第二时延控制电路142的第二端连接于多电压输出电路13。
第一时延控制电路141在接收到信号放大器11发送的放大后的第一包络信号后,对放大后的第一包络信号的时延进行调整,第二时延控制电路在接收到多电压输出电路13发送的目标电压信号后,对该目标电压信号的时延进行调整,通过两个时延控制电路的时延调整,使得放大后的第一包络信号的时延与目标电压信号的时延相等;然后,放大后的第一包络信号输出到第一二极管D1、目标电压信号输出到第二二极管D2,第一二极管D1的阴极与第二二极管D2的阴极是相连的,从而这两个信号能够合成,并在第一二极管D1与第二二极管D2的连接处输出合成的信号,合成的信号作为包络放大器1的输出发送到包络跟踪功率放大器中的功率放大器2;而功率放大器2接收到的射频输入信号是与射频包络信号同步的,因此包络放大器1输入到功率放大器2的信号与功率放大器2接收到的射频输入信号也是同步的,从而使得功率放大器2尽可能的保持效率最优的工作状态。
举例来说,信号放大器11的时延为T1,即其输出的放大后的第一包络信号相对于射频包络信号产生的时延为T1,多电压输出电路的时延为T2,即其输出的目标电压信号相对于射频包络信号产生的时延为T2;以T2>T1为例,第一时延控制电路141对放大后的第一包络信号产生T2-T1的时延,此时第一包络信号的时延为T2,第二时延控制电路142不对目标电压信号的时延进行调整,此时目标电压信号的时延仍为T2,使得放大后的第一包络信号的时延与目标电压信号的时延相等;或者,第一时延控制电路141对放大后的第一包络信号产生T2-T1+T3的时延,此时第一包络信号的时延为T2+T3,第二时延控制电路142对目标电压信号产生T3的时延,此时目标电压信号的时延为T2+T3,同样可以使放大后的第一包络信号的时延与目标电压信号的时延相等。
本实施例相对于第一实施例而言,合成电路还能够将放大后的第一包络信号的时延与目标电压信号的时延调整为相等,即考虑信号放大器与多电压输出电路所产生的时延,使得合成的信号与原始的射频包络信号同步,提升了合成的信号的准确度。
本申请第三实施例提供了一种包络放大器,本实施例是在第一实施例基础上的细化,主要细化之处在于:请参考图7,多电压输出电路13包括:驱动控制电路131、电压产生电路132以及切换电路133,切换电路133分别连接于驱动控制电路131与电压产生电路132。
驱动控制电路131用于根据第二包络信号与预设电压阈值,生成控制信号。具体的,驱 动控制电路131中预设有至少一个电压阈值,当接收到比较器11发送的第二包络信号时,根据第二包络信号的电压与各电压阈值的大小关系,生成控制信号,并将控制信号发送到切换133。
电压产生电路132用于生成多个参考电压信号,并将这多个参考电压信号输入到切换电路133。具体的,电压产生电路132连接于供电电源V2(例如为直流电压源),其能够将供电电源V2输入的直流电压转换为多个参考电压信号,并将转换得到的多个参考电压信号输入到切换电路133;其中,多个参考电压信号的电压不相等。
切换电路133用于根据控制信号,输出一个参考电压信号作为目标电压信号。具体而言,切换电路133能够根据接收到的控制信号,从多个参考电压信号选取一个参考电压信号作为目标电压信号输出到合成电路14。
示例性的,请参考图8,切换电路133包括多路电压通道1331(图中以3路为例),各电压通道1331分别连接于电压产生电路132与驱动控制电路131,电压通道1331与参考电压信号一一对应,电压产生电路132能够将各参考电压信号输入到对应的电压通道1331,各电压通道1331能够根据接收到的控制信号导通或关闭,电压通道1331在导通时,将与其对应的参考电压信号作为目标电压信号输出到合成电路14。
在一个例子中,切换电路133还可功率电感L1,各电压通道1331的一端连接于电压产生电路132,各电压通道1331的另一端均连接于功率电感L1,电压通道1331能够根据接收到的控制信号导通或关闭,电压通道1331在导通时,将与其对应的参考电压信号作为目标电压信号通过该功率电感L1输出到合成电路14,即目标电压信号通过功率电感L1输出合成电路14。其中,功率电感L1能够起到储能、扼流的作用,同时能够对包络放大器进行保护。
本实例中,请参考图9,每个电压通道1331包括第三二极管D3与开关S1,第三二极管D3的阳极连接于电压产生电路132、第三二极管D3的阴极连接于开关S1;驱动控制电路131连接于各电压通道1331的开关S1的控制端。其中,开关S1可以为MOS管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)(图中以此为例),第三二极管D3的阴极连接于MOS管的漏极,MOS管的源极连接于电感L1的一端,MOS管的栅极连接于驱动控制电路131。
本实施例中,驱动控制电路131能够根据第二包络信号的电压与预设的电压阈值的大小关系,来控制各开关S1的导通与关断,从而被导通的开关S1所在的电压通道1331对应的参考电压信号作为目标电压信号被输出。
具体的,驱动控制电路131根据电压产生电路132输出的参考电压信号的数量M来控制电压阈值的数量N,电压阈值的数量N=M-1,驱动控制电路131输出的控制信号包括P个比特位,则参考电压信号的数量M≤2P。
举例来说,M=2,则说明电压产生电路132输出了两个参考电压信号(分别以V1和V2表示),这两个参考电压信号分别输入到对应的电压通道1331中,此时驱动控制电路131中预设有一个电压阈值X1,驱动控制电路131输出的控制信号至少包括1个比特位(本实施例以1个为例),1个二进制的比特位可以表示两种状态,分别为0和1,设0对应参考电压信号V1、1对应参考电压信号V2,驱动控制电路131在接收到的第二包络信号的电压小于电压阈值X1时,输出控制信号0到切换电路133,切换电路133中预设了不同的控制信号与电压通道1331 的对应关系,由于0对应参考电压信号V1,则切换电路133控制参考电压信号V1对应的电压通道1331导通,即控制该电压通道1331中的开关S1导通,从而参考电压信号V1能够作为目标电压信号通过功率电感L1输出到合成电路14;驱动控制电路131在接收到的第二包络信号的电压大于或等于电压阈值X1时,输出控制信号1到切换电路133,此时切换电路133控制参考电压V2对应的电压通道1332导通,即控制该电压通道1331中的开关S1导通,从而参考电压信号V2能够作为目标电压信号通过功率电感L1输出到合成电路14。
M=3,则说明电压产生电路132输出了三个参考电压信号(分别以V1、V2和V3来表示),这三个参考电压信号分别输入到对应的电压通道1331中,此时驱动控制电路131中预设有两个电压阈值X1、X2且X1<X2,驱动控制电路131输出的控制信号至少包括2个比特位(本实施例以2个为例),2个二进制的比特位可以表示四种状态,分别为00、01、10、11,由于本实施例仅需三种状态,则可以选取一种状态不用(以状态11不用为例),设00对应参考电压信号V1、01对应参考电压信号V2、10对应参考电压信号V3,驱动控制电路131在接收到的第二包络信号的电压小于电压阈值X1时,输出控制信号00到切换电路133;驱动控制电路131在接收到的第二包络信号的电压大于或等于电压阈值X1且小于电压阈值X2时,输出控制信号01到切换电路133;电路131在接收到的第二包络信号的电压大于或等于电压阈值X2时,输出控制信号10到切换电路133。切换电路133具体控制方式与前述类似,下面以控制信号为00为例简单说明。切换电路133中预设了不同的控制信号与电压通道1331的对应关系,由于00对应参考电压信号V1,则切换电路133控制参考电压信号V1对应的电压通道1331导通,即控制该电压通道1331中的开关S1导通,从而参考电压信号V1能够作为目标电压信号通过功率电感L1输出到合成电路14。
本实施例相对于第一实施例而言,提供了多电压输出电路的一种具体实现方式。
本申请第四实施例提供了一种包络跟踪功率放大器,应用于基站等无线通信设备中;请参考图1,包络跟踪功率放大器包括第一至第三实施例中任一项的包络放大器1与连接于包络放大器1的功率放大器2;包络放大器1能够输出合成的信号到功率放大器2。
相对于现有技术而言,本实施例提供了一种应用上述包络放大器的包络跟踪功率放大器,通过包络放大器的效率的提升,提升了包络跟踪功率放大器的整体效率。
本申请第五实施例提供了一种信号处理方法,应用于第一至第三实施例中任一项的包络放大器,请参考图2,本实施例以第一实施例中的包络放大器为例对信号处理方法进行说明。
本实施例的信号处理方法的具体流程图如图9所示。
步骤101,将接收到的射频包络信号的电压与预设的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号。
具体而言,包络放大器中的比较器11中预设有参考电压,当接收到待处理的射频包络信号时,根据射频包络信号的电压的大小来调整输出的第一包络信号与第二包络信号,第一包络信号包括射频包络信号的包络电压范围中的小于或等于参考电压的低压部分,第二包络信号包括射频包络信号的包络电压范围中的大于或等于参考电压的高压部分。其中,参考电压可以根据待处理的射频包络信号的包络电压范围来设定,本实施例对此不做任何限定。
在一个例子中,将接收到的射频包络信号的电压与比较器的参考电压进行对比,输出电 压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号,包括:在射频包络信号的电压大于或等于参考电压时,输出电压等于参考电压的第一包络信号与电压等于射频包络信号的第二包络信号;和/或,在射频包络信号的电压小于参考电压时,输出电压等于射频包络信号的第一包络信号,且禁止输出第二包络信号。
具体的,请结合图3与图4,比较器11在接收到射频包络信号时,判断射频包络信号的电压与比较器的参考电压的大小关系。若射频包络信号的电压大于或等于参考电压,输出电压等于参考电压的第一包络信号与电压等于射频包络信号的第二包络信号;若射频包络信号的电压小于参考电压,输出电压等于射频包络信号的第一包络信号,且不输出第二包络信号,图4中实线为第一包络信号、虚线为第二包络信号。其中,当射频包络信号的电压大于或等于参考电压时,在射频包络信号的每个信号周期中,比较器11可以输出电压等于射频包络信号在该信号周期中的电压峰值的第二包络信号,即在每个信号周期中,第二包络信号的电压等于射频包络信号在该信号周期内的电压峰值,以便于多电压输出电路更准确的输出对应的目标电压信号。
步骤102,对第一包络信号进行放大。
具体而言,信号放大器12连接于供电电源V1(例如为直流电压源),其能够将接收到的比较器11发送的第一包络信号进行放大,并将放大后的第一包络信号发送到合成电路14。
步骤103,根据第二包络信号,输出对应的目标电压信号。
具体而言,多电压输出电路13能够输出离散的多个电压信号,各第二包络信号对应有不同的电压信号,继而能够根据接收到的第二包络信号,从多个电压信号获取与第二包络信号的电压信号作为目标电压信号,并将该目标电压信号输出到合成电路14。
步骤104,将放大后的第一包络信号与目标电压信号合成,并输出合成的信号。
具体而言,放大后的第一包络信号包括原始射频包络信号的低压部分,目标电压信号包括原始射频包络信号的高压部分,合成电路14将放大后的第一包络信号与目标电压信号进行合成,然后将合成的信号作为包络放大器1的输出发送到包络跟踪功率放大器中的功率放大器2,该合成信号能够调整功率放大器2的漏极电压;请参考图5,为图3中射频包络信号输入到包络放大器1后,包络放大器1输出的信号。
相对于现有技术而言,本申请实施例提供的信号处理方法中,将接收到的射频包络信号的电压与预设的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号,然后对第一包络信号进行放大,并根据第二包络信号,输出对应的目标电压信号,继而将接收到的放大后的第一包络信号与目标电压信号合成,输出合成的信号。即对射频包络信号进行分离,由信号放大器输出射频包络信号的包络电压范围中的小于或等于参考电压的低压部分,在一定程度上压缩了信号放大器的输出功率占包络放大器的输出总功率的比例,提升了包络放大器的整体效率;由多电压输出电路来输出射频包络信号的包络电压范围中的大于或等于参考电压的高压部分,由于低压部分已有信号放大器来输出,从而减小了多电压输出电路的输出范围,在离散电压数量相同的情况下,提升了电压精度,即提升了包络放大器的效率;即从信号放大器与多电压输出电路两方面提升了包络放大器的效率。
本申请第六实施例提供了一种信号处理方法,本实施例相对于第五实施例而言,主要改进之处在于:能够调整放大后的第一包络信号与目标电压信号的时延相等后,再将二者合成。请参考图6,下面结合第二实施例中的包络信号放大器进行说明。
本实施例的信号处理方法的具体流程图如图10所示。
步骤201,将接收到的射频包络信号的电压与预设的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号。与第五实施例中的步骤101大致相同,在此不再赘述。
步骤202,对第一包络信号进行放大。与第五实施例中的步骤102大致相同,在此不再赘述。
步骤203,根据第二包络信号,输出对应的目标电压信号。与第五实施例中的步骤103大致相同,在此不再赘述。
步骤204,调整放大后的第一包络信号与目标电压信号的时延相等,并将调整时延后的第一包络信号与目标电压信号进行合成,输出合成的信号。
具体而言,第一时延控制电路141在接收到信号放大器11发送的放大后的第一包络信号后,对放大后的第一包络信号的时延进行调整,第二时延控制电路在接收到多电压输出电路13发送的目标电压信号后,对该目标电压信号的时延进行调整,通过两个时延控制电路的时延调整,使得放大后的第一包络信号的时延与目标电压信号的时延相等;然后,放大后的第一包络信号输出到第一二极管D1、目标电压信号输出到第二二极管D2,第一二极管D1的阴极与第二二极管D2的阴极是相连的,从而这两个信号能够合成,并在第一二极管D1与第二二极管D2的连接处输出合成的信号,合成的信号作为包络放大器1的输出发送到包络跟踪功率放大器中的功率放大器2;而功率放大器2接收到的射频输入信号是与射频包络信号同步的,因此包络放大器1输入到功率放大器2的信号与功率放大器2接收到的射频输入信号也是同步的,从而使得功率放大器2尽可能的保持效率最优的工作状态。
本实施例相对于第五实施例而言,先将放大后的第一包络信号的时延与目标电压信号的时延调整为相等,即考虑信号放大器与多电压输出电路所产生的时延,使得合成的信号与原始的射频包络信号同步,提升了合成的信号的准确度。
本申请第七实施例提供了一种信号处理方法,本实施例相对于第五实施例而言,主要改进之处在于:提供了根据第二包络信号,输出对应的目标电压信号的一种具体实现方式。请参考图7,下面结合第三实施例中的包络信号放大器进行说明。
步骤301,将接收到的射频包络信号的电压与预设的参考电压进行对比,输出电压小于或等于参考电压的第一包络信号与电压大于或等于参考电压的第二包络信号。与第五实施例中的步骤101大致相同,在此不再赘述。
步骤302,对第一包络信号进行放大。与第五实施例中的步骤102大致相同,在此不再赘述。
步骤303,包括以下子步骤:
子步骤3031,根据第二包络信号与预设的电压阈值,生成控制信号。
子步骤3032,根据控制信号,从多个参考电压信号中输出一个参考电压信号作为目标电压信号。
具体而言,驱动控制电路131中预设有至少一个电压阈值,当接收到比较器11发送的第二包络信号时,根据第二包络信号的电压与各电压阈值的大小关系,生成控制信号,并将控制信号发送到切换133。
电压产生电路132连接于供电电源V2(例如为直流电压源),其能够将供电电源V2输入的直流电压转换为多个参考电压信号,并将转换得到的多个参考电压信号输入到切换电路133;其中,多个参考电压信号的电压不相等。
切换电路133能够根据接收到的控制信号,从多个参考电压信号选取一个参考电压信号作为目标电压信号输出到合成电路14。
示例性的,请参考图8,切换电路133包括多路电压通道1331(图中以3路为例),各电压通道1331分别连接于电压产生电路132与驱动控制电路131,电压通道1331与参考电压信号一一对应,电压产生电路132能够将各参考电压信号输入到对应的电压通道1331,各电压通道1331能够根据接收到的控制信号导通或关闭,电压通道1331在导通时,将与其对应的参考电压信号作为目标电压信号输出到合成电路14。
在一个例子中,切换电路133还可功率电感L1,各电压通道1331的一端连接于电压产生电路132,各电压通道1331的另一端均连接于功率电感L1,电压通道1331能够根据接收到的控制信号导通或关闭,电压通道1331在导通时,将与其对应的参考电压信号作为目标电压信号通过该功率电感L1输出到合成电路14,即目标电压信号通过功率电感L1输出合成电路14。其中,功率电感L1能够起到储能、扼流的作用,同时能够对包络放大器进行保护。
本实例中,请参考图9,每个电压通道1331包括第三二极管D3与开关S1,第三二极管D3的阳极连接于电压产生电路132、第三二极管D3的阴极连接于开关S1;驱动控制电路131连接于各电压通道1331的开关S1的控制端。其中,开关S1可以为MOS管(图中以此为例),第三二极管D3的阴极连接于MOS管的漏极,MOS管的源极连接于电感L1的一端,MOS管的栅极连接于驱动控制电路131。
本实施例中,驱动控制电路131能够根据第二包络信号的电压与预设的电压阈值的大小关系,来控制各开关S1的导通与关断,从而被导通的开关S1所在的电压通道1331对应的参考电压信号作为目标电压信号被输出。
具体的,驱动控制电路131根据电压产生电路132输出的参考电压信号的数量M来控制电压阈值的数量N,电压阈值的数量N=M-1,驱动控制电路131输出的控制信号包括P个比特位,则参考电压信号的数量M≤2P。
举例来说,M=2,则说明电压产生电路132输出了两个参考电压信号(分别以V1和V2表示),这两个参考电压信号分别输入到对应的电压通道1331中,此时驱动控制电路131中预设有一个电压阈值X1,驱动控制电路131输出的控制信号至少包括1个比特位(本实施例以1个为例),1个二进制的比特位可以表示两种状态,分别为0和1,设0对应参考电压信号V1、1对应参考电压信号V2,驱动控制电路131在接收到的第二包络信号的电压小于电压阈值X1时,输出控制信号0到切换电路133,切换电路133中预设了不同的控制信号与电压通道1331的对应关系,由于0对应参考电压信号V1,则切换电路133控制参考电压信号V1对应的电压通道1331导通,即控制该电压通道1331中的开关S1导通,从而参考电压信号V1能够作为目标电压信号通过功率电感L1输出到合成电路14;驱动控制电路131在接收到的第二包 络信号的电压大于或等于电压阈值X1时,输出控制信号1到切换电路133,此时切换电路133控制参考电压V2对应的电压通道1332导通,即控制该电压通道1331中的开关S1导通,从而参考电压信号V2能够作为目标电压信号通过功率电感L1输出到合成电路14。
M=3,则说明电压产生电路132输出了三个参考电压信号(分别以V1、V2和V3来表示),这三个参考电压信号分别输入到对应的电压通道1331中,此时驱动控制电路131中预设有两个电压阈值X1、X2且X1<X2,驱动控制电路131输出的控制信号至少包括2个比特位(本实施例以2个为例),2个二进制的比特位可以表示四种状态,分别为00、01、10、11,由于本实施例仅需三种状态,则可以选取一种状态不用(以状态11不用为例),设00对应参考电压信号V1、01对应参考电压信号V2、10对应参考电压信号V3,驱动控制电路131在接收到的第二包络信号的电压小于电压阈值X1时,输出控制信号00到切换电路133;驱动控制电路131在接收到的第二包络信号的电压大于或等于电压阈值X1且小于电压阈值X2时,输出控制信号01到切换电路133;电路131在接收到的第二包络信号的电压大于或等于电压阈值X2时,输出控制信号10到切换电路133。切换电路133具体控制方式与前述类似,下面以控制信号为00为例简单说明。切换电路133中预设了不同的控制信号与电压通道1331的对应关系,由于00对应参考电压信号V1,则切换电路133控制参考电压信号V1对应的电压通道1331导通,即控制该电压通道1331中的开关S1导通,从而参考电压信号V1能够作为目标电压信号通过功率电感L1输出到合成电路14。
步骤304,将放大后的第一包络信号与目标电压信号合成,并输出合成的信号。与第五实施例中的步骤104大致相同,在此不再赘述。
本实施例相对于第五实施例而言,提供了根据第二包络信号,输出对应的目标电压信号的一种具体实现方式。
以上参照附图说明了本申请的优选实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (14)

  1. 一种包络放大器,包括:
    比较器,用于将接收到的射频包络信号的电压与所述比较器的参考电压进行对比,输出电压小于或等于所述参考电压的第一包络信号与电压大于或等于所述参考电压的第二包络信号;
    信号放大器,用于对所述第一包络信号进行放大;
    多电压输出电路,用于根据所述第二包络信号,输出对应的目标电压信号;
    合成电路,用于将放大后的所述第一包络信号与所述目标电压信号合成,并输出合成的信号。
  2. 根据权利要求1所述的包络放大器,其中,所述比较器用于在所述射频包络信号的电压大于或等于所述参考电压时,输出电压等于所述参考电压的所述第一包络信号与电压等于所述射频包络信号的所述第二包络信号;和/或,
    所述比较器用于在所述射频包络信号的电压小于所述参考电压时,输出电压等于所述射频包络信号的所述第一包络信号,且禁止输出所述第二包络信号。
  3. 根据权利要求2所述的包络放大器,其中,在所述射频包络信号的每个信号周期中,所述第二包络信号的电压等于所述射频包络信号在所述信号周期中的电压峰值。
  4. 根据权利要求1所述的包络放大器,其中,所述合成电路用于调整放大后的所述第一包络信号与所述目标电压信号的时延相等,并将调整时延后的所述第一包络信号与所述目标电压信号进行合成,输出合成的信号。
  5. 根据权利要求4所述的包络放大器,其中,所述合成电路包括:第一时延控制电路、第二时延控制电路、第一二极管以及第二二极管;
    所述第一时延控制电路的第一端连接于所述信号放大器,所述第一时延控制电路的第二端连接于所述第一二极管的阳极,所述第一二极管的阴极连接于所述第二二极管的阴极,所述第二二极管的阳极连接于所述第二时延控制电路的第一端,所述第二时延控制电路的第二端连接于所述多电压输出电路;
    所述第一时延控制电路用于调整放大后的所述第一包络信号的时延;
    所述第二时延控制电路用于调整所述目标电压信号的时延;
    调整后的所述第一包络信号的时延与所述目标电压信号的时延相等。
  6. 根据权利要求1所述的包络放大器,其中,所述多电压输出电路包括:驱动控制电路、电压产生电路,以及分别连接于所述驱动控制电路与所述电压产生电路的切换电路;
    所述驱动控制电路用于根据所述第二包络信号与预设的电压阈值,生成控制信号;
    所述电压产生电路用于生成多个参考电压信号,并将所述多个参考电压信号输入到所述切换电路;
    所述切换电路用于根据所述控制信号,输出一个所述参考电压信号作为所述目标电压信号。
  7. 根据权利要求6所述的包络放大器,其中,所述切换电路包括多路电压通道,各所述电压通道分别连接于所述电压产生电路与所述驱动控制电路,所述电压通道与所述参考电压信号一一对应;
    所述电压产生电路用于将各所述参考电压信号输入到对应的所述电压通道;
    所述电压通道用于在被所述控制信号控制导通时,输出对应的所述参考电压信号作为所述目标电压信号。
  8. 根据权利要求7所述的包络放大器,其中,所述切换电路还包括:连接于各所述电压通道的功率电感;
    所述电压通道用于在被所述控制信号控制导通时,通过所述功率电感输出对应的所述参考电压信号作为所述目标电压信号。
  9. 根据权利要求7所述的包络放大器,其中,每个所述电压通道包括第三二极管与开关,所述第三二极管的阳极连接于所述电压产生电路、所述第三二极管的阴极连接于所述开关;所述驱动控制电路连接于各所述电压通道的所述开关的控制端。
  10. 一种包络跟踪功率放大器,包括权利要求1至9中任一项所述的包络放大器与连接于所述包络放大器的功率放大器。
  11. 一种信号处理方法,包括:
    将接收到的射频包络信号的电压与预设的参考电压进行对比,输出电压小于或等于所述参考电压的第一包络信号与电压大于或等于所述参考电压的第二包络信号;
    对所述第一包络信号进行放大;
    根据所述第二包络信号,输出对应的目标电压信号;
    将放大后的所述第一包络信号与所述目标电压信号合成,并输出合成的信号。
  12. 根据权利要求11所述的信号处理方法,其中,所述将接收到的射频包络信号的电压与所述预设的参考电压进行对比,输出电压小于或等于所述参考电压的第一包络信号与电压大于或等于所述参考电压的第二包络信号,包括:
    在所述射频包络信号的电压大于或等于所述参考电压时,输出电压等于所述参考电压的所述第一包络信号与电压等于所述射频包络信号的所述第二包络信号;和/或,
    在所述射频包络信号的电压小于所述参考电压时,输出电压等于所述射频包络信号的所述第一包络信号,且禁止输出所述第二包络信号。
  13. 根据权利要求11所述的信号处理方法,其中,所述将放大后的所述第一包络信号与所述目标电压信号合成,并输出合成的信号,包括:
    调整放大后的所述第一包络信号与所述目标电压信号的时延相等,并将调整时延后的所述第一包络信号与所述目标电压信号进行合成,输出合成的信号。
  14. 根据权利要求11所述的信号处理方法,其中,所述根据所述第二包络信号,输出对应的目标电压信号,包括:
    根据所述第二包络信号与预设的电压阈值,生成控制信号;
    根据所述控制信号,从多个参考电压信号中输出一个所述参考电压信号作为所述目标电压信号。
PCT/CN2021/098170 2020-06-24 2021-06-03 包络放大器、包络跟踪功率放大器以及信号处理方法 WO2021259034A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21829700.0A EP4156511A4 (en) 2020-06-24 2021-06-03 ENVELOPE AMPLIFIERS, ENVELOPE TRACKING POWER AMPLIFIERS AND SIGNAL PROCESSING METHODS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010595601.7A CN113839627A (zh) 2020-06-24 2020-06-24 包络放大器、包络跟踪功率放大器以及信号处理方法
CN202010595601.7 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021259034A1 true WO2021259034A1 (zh) 2021-12-30

Family

ID=78965006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098170 WO2021259034A1 (zh) 2020-06-24 2021-06-03 包络放大器、包络跟踪功率放大器以及信号处理方法

Country Status (3)

Country Link
EP (1) EP4156511A4 (zh)
CN (1) CN113839627A (zh)
WO (1) WO2021259034A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750388A (zh) * 2004-09-17 2006-03-22 索尼爱立信移动通信日本株式会社 高频功率放大器和发射机
CN101056289A (zh) * 2006-01-27 2007-10-17 马维尔国际贸易有限公司 可变功率适应性发射器
CN101505178A (zh) * 2009-03-17 2009-08-12 京信通信系统(中国)有限公司 一种包络检波装置及其方法
CN102810180A (zh) * 2012-07-04 2012-12-05 广州中大微电子有限公司 一种用于无源rfid标签芯片的宽解调范围的ask解调电路
US20140118061A1 (en) * 2012-10-31 2014-05-01 Lsis Co., Ltd. Demodulation apparatus and method for operating the same
CN109286374A (zh) * 2017-07-19 2019-01-29 陕西亚成微电子股份有限公司 一种用于包络跟踪的电源
CN109768774A (zh) * 2017-11-09 2019-05-17 陕西亚成微电子股份有限公司 一种用于包络跟踪的电源

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853244B2 (en) * 2003-06-24 2005-02-08 Northrop Grumman Corproation Multi-mode multi-amplifier architecture
WO2008105072A1 (ja) * 2007-02-27 2008-09-04 Panasonic Corporation 送信装置
WO2008105073A1 (ja) * 2007-02-27 2008-09-04 Panasonic Corporation 送信装置
JP5614273B2 (ja) * 2010-12-21 2014-10-29 富士通株式会社 増幅装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1750388A (zh) * 2004-09-17 2006-03-22 索尼爱立信移动通信日本株式会社 高频功率放大器和发射机
CN101056289A (zh) * 2006-01-27 2007-10-17 马维尔国际贸易有限公司 可变功率适应性发射器
CN101505178A (zh) * 2009-03-17 2009-08-12 京信通信系统(中国)有限公司 一种包络检波装置及其方法
CN102810180A (zh) * 2012-07-04 2012-12-05 广州中大微电子有限公司 一种用于无源rfid标签芯片的宽解调范围的ask解调电路
US20140118061A1 (en) * 2012-10-31 2014-05-01 Lsis Co., Ltd. Demodulation apparatus and method for operating the same
CN109286374A (zh) * 2017-07-19 2019-01-29 陕西亚成微电子股份有限公司 一种用于包络跟踪的电源
CN109768774A (zh) * 2017-11-09 2019-05-17 陕西亚成微电子股份有限公司 一种用于包络跟踪的电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4156511A4 *

Also Published As

Publication number Publication date
EP4156511A1 (en) 2023-03-29
EP4156511A4 (en) 2024-05-29
CN113839627A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
EP2579456B1 (en) Control method for fast tracking power source, fast tracking power source and system
US10673384B2 (en) Power amplifier, radio remote unit, and base station
US9768730B2 (en) Amplification of a radio frequency signal
US8253487B2 (en) Tracking power supply, method for controlling power supply, and communication apparatus
US8289084B2 (en) RF power amplifier device and operating method thereof
US7295064B2 (en) Doherty amplifier
US7928799B2 (en) Power amplifying apparatus and mobile communication terminal
CN101179257B (zh) 改进了尺寸和成本的高频功率放大器
TW201637355A (zh) 經由射頻輸入信號之振幅調整之壓縮控制
US8072266B1 (en) Class G amplifier with improved supply rail transition control
EP3311499B1 (en) Current enhanced driver for high-power solid-state radio frequency power amplifiers
WO2018023215A1 (zh) 包络调制器、包络跟踪功率放大器及通信设备
US8107904B2 (en) Apparatus and method for power transmitter in wireless communication system
US9634625B2 (en) Radio frequency transmitter with extended power range and related radio frequency transmission method
US7535297B2 (en) Architecture and method for improving efficiency of a class-A power amplifier by dynamically scaling biasing current thereof as well as synchronously compensating gain thereof in order to maintain overall constant gain of the class-A power amplifier at all biasing configurations thereof
WO2021259034A1 (zh) 包络放大器、包络跟踪功率放大器以及信号处理方法
US8232839B2 (en) Semiconductor integrated circuit device and transmission and reception system
US8736376B2 (en) Power amplifier module having bias circuit
US20090011723A1 (en) Transmitting apparatus
US11394372B2 (en) Wide band gap power semiconductor system and driving method thereof
CN114650016A (zh) 功率放大装置、射频拉远单元及基站
WO2012111100A1 (ja) 増幅装置
CN105264768B (zh) 包络放大器及基站
US20040027196A1 (en) Electronic circuit for converting a signal and amplifier incorporating same
Bräckle et al. Envelope tracking of a radio frequency amplifier for Long Term Evolution using a three-level class-G modulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021829700

Country of ref document: EP

Effective date: 20221219

NENP Non-entry into the national phase

Ref country code: DE