WO2021258644A1 - Procédé et système de régulation de degré sanitaire d'environnement intérieur, fondés sur la vision industrielle - Google Patents

Procédé et système de régulation de degré sanitaire d'environnement intérieur, fondés sur la vision industrielle Download PDF

Info

Publication number
WO2021258644A1
WO2021258644A1 PCT/CN2020/132843 CN2020132843W WO2021258644A1 WO 2021258644 A1 WO2021258644 A1 WO 2021258644A1 CN 2020132843 W CN2020132843 W CN 2020132843W WO 2021258644 A1 WO2021258644 A1 WO 2021258644A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
heart rate
interval
health
environment
Prior art date
Application number
PCT/CN2020/132843
Other languages
English (en)
Chinese (zh)
Inventor
李成栋
张桂青
彭伟
邓晓平
Original Assignee
山东建筑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东建筑大学 filed Critical 山东建筑大学
Publication of WO2021258644A1 publication Critical patent/WO2021258644A1/fr
Priority to ZA2022/05483A priority Critical patent/ZA202205483B/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users

Definitions

  • the invention relates to a method for judging the health of an indoor environment, in particular to an adjusting method for judging the health of an indoor environment based on machine vision.
  • the method relates to the field of smart home technology.
  • the present invention proposes a method and system for adjusting the health of the indoor environment based on machine vision.
  • the present invention provides a method for adjusting indoor environment health based on machine vision, which includes the following steps:
  • the steps of the step (1) are as follows:
  • the remote photoplethysmography heart rate monitoring method based on the joint blind source separation algorithm is adopted, and the independent vector is used for joint analysis to obtain the human heart rate data.
  • the specific steps of the step (1) are as follows:
  • step (2) the specific steps of the step (2) are as follows:
  • Step 1 Convert monitoring data to interval data
  • sample mean mi and sample standard deviation ⁇ i are first calculated, which are expressed as:
  • n i represents the total amount of data collected on the i day, and data i, j represents the jth data collected on the i day;
  • k represents the constraint coefficient, generally k is 2; after this processing, the data in the i-th day will be left n′′ i (n′′ i ⁇ n i ) Piece;
  • the maximum and minimum values are selected to form a daily interval, and the interval on the i-th day is expressed as:
  • i 1, ..., n, it represents the number of days after the data preprocessing stage above left, c i, and D i respectively represent the left end of the i-th day intervals day and right points;
  • Step 2 Interval data preprocessing
  • Q (.25) is called the lower four-digit score, which means that a quarter of the data value of all observations is smaller than it
  • Q (.75) is called the upper four-digit score , which means that a quarter of the data values in all observations are larger than it
  • IQR is called the interquartile range, which is the difference between the upper four scores and the lower four scores
  • ⁇ * ⁇ (m c ′( ⁇ ′ d ) 2 -m d ′( ⁇ ′ c ) 2 ) ⁇ c ′ ⁇ d ′[(m c ′-m d ′) 2 +2(( ⁇ ′ c ) 2 -( ⁇ ′ d ) 2 )ln( ⁇ c ′/ ⁇ d ′)] 1/2 ⁇ /(( ⁇ ′ c ) 2 -( ⁇ ′ d ) 2 ) (9)
  • Step 3 Build a language word model for environmental health
  • T q L t l [n′*q] +rem(n′*q,1)(t l [n′*q+1] -t l [n′*q] ) (10)
  • the left and right representative intervals of the environmental health language word model are Construct a language word model for environmental health.
  • the facial data in the actual environment is collected, and then the heart rate recognition module is called, and the super-sensing heart rate monitoring method based on the joint blind source separation algorithm is applied to jointly analyze the facial data to obtain the Heart rate data, and then compare the data with the environmental health language word model to determine whether the environmental temperature is high or low, so that the air conditioner can act accordingly.
  • step (3) the specific judgment rules in step (3) are as follows:
  • the monitored heart rate value of the actual environment is x
  • the present invention also provides an indoor environment health adjustment system based on machine vision, which is used to execute the steps of the above-mentioned machine vision-based indoor environment health adjustment method, including:
  • a heart rate recognition module which is used to perform the method of step (1);
  • Environmental health discrimination and adjustment module which is used to execute the method of step (3).
  • the heart rate monitoring adopts the super-sensing method, and the data collection is faster and more convenient, which improves the intelligence of the home.
  • the remote photoplethysmography heart rate monitoring method based on the combined blind source separation algorithm analyzes multiple sub-regions of the face, which can overcome the influence of light changes and exercise and improve the accuracy of the heart rate monitoring value.
  • Figure 1 is a diagram of the environmental health language word model of the present invention
  • Fig. 2 is a flow chart of judging and adjusting the indoor environment health of the present invention.
  • the high-definition camera is used to collect facial data of people living in a healthy environment for a period of time, and the heart rate data is analyzed from the facial data using the remote photoplethysmography heart rate monitoring method based on the joint blind source separation algorithm, and then the data is analyzed Preprocessing, and then convert the collected data into interval data, and then process the interval data, and build an environmental health language word model on this basis. Then, collect the human heart rate data in the actual environment and compare the data with the data in the environmental health language word model to determine whether the environmental temperature is high or low, and then give an adjustment strategy.
  • the invention is composed of a heart rate recognition module, an environmental health degree modeling module, and an environmental health degree discrimination and adjustment module.
  • the heart rate recognition module mainly uses a high-definition camera to collect human facial data, and uses independent vector analysis to analyze periodic signals from the facial data to detect the heart rate.
  • the environmental health modeling module is to call the heart rate recognition module to identify the heart rate in a healthy environment, and then preprocess the heart rate data to construct an environmental health language word model.
  • the environmental health discrimination and adjustment module collects facial data in the actual environment, calls the heart rate recognition module to obtain the heart rate data, compares it with the data in the constructed environmental health model, determines whether the environment is healthy, and gives appropriate adjustment strategies .
  • the function of this module is to analyze the person's heart rate data from the person's facial data.
  • the remote photoplethysmography heart rate monitoring method based on the joint blind source separation algorithm is adopted, and the independent vector is used for joint analysis to obtain the human heart rate data.
  • the skin area for data collection select the skin area for data collection; then calculate the spatial mean of the color RGB from the collected skin data; second, apply the signal processing method to the calculated spatial mean to obtain the components of each skin area containing the heart rate information; third, Use independent vector analysis to extract the common signal components of different mixed signal groups; finally, fast Fourier transform is applied to this component in order to estimate the corresponding frequency (or the number of peaks Ns during the processing duration T(s)).
  • the heart rate in beats per minute will be calculated as 60 ⁇ Fs (or Ns/T ⁇ 60).
  • the processed interval data is constructed into a language word model of environmental health by using the percentile method. details as follows:
  • sample mean mi and sample standard deviation ⁇ i are first calculated, which are expressed as:
  • n i represents the total amount of data collected on the i day, and data i, j represents the jth data collected on the i day;
  • k is the constraint coefficient, generally k is 2; after this processing, the data in the i-th day will be left n′′ i (n′′ i ⁇ n i ) Piece;
  • the maximum and minimum values are selected to form a daily interval, and the interval on the i-th day is expressed as:
  • i 1, ..., n, it represents the number of days after the data preprocessing stage above left, c i, and D i respectively represent the left end of the i-th day intervals day and right points;
  • Q (.25) is called the lower four-digit score, which means that a quarter of the data value of all observations is smaller than it
  • Q (.75) is called the upper four-digit score , which means that a quarter of the data values in all observations are larger than it
  • IQR is called the interquartile range, which is the difference between the upper four scores and the lower four scores
  • ⁇ * ⁇ (m c ′( ⁇ ′ d ) 2 -m d ′( ⁇ ′ c ) 2 ) ⁇ c ′ ⁇ d ′[(m c ′-m d ′) 2 +2(( ⁇ ′ c ) 2 -( ⁇ ′ d ) 2 )ln( ⁇ c ′/ ⁇ d ′)] 1/2 ⁇ /(( ⁇ ′ c ) 2 -( ⁇ ′ d ) 2 ) (9)
  • T q L t l [n′*q] +rem(n′*q,1)(t l [n′*q+1] -t l [n′*q] ) (10)
  • Collect the facial data in the actual environment then call the heart rate recognition module, apply the super-sensing heart rate monitoring method based on the joint blind source separation algorithm to jointly analyze the facial data to obtain the heart rate data in the environment, and then compare the data with the health of the environment
  • the degree language word model ( Figure 1) is compared to determine whether the ambient temperature is high or low, and the air conditioner can act accordingly.
  • the specific judgment rules are as follows: set the monitored heart rate value of the actual environment as x;

Landscapes

  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Primary Health Care (AREA)
  • Signal Processing (AREA)
  • Pathology (AREA)
  • Data Mining & Analysis (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Procédé et système de régulation du degré sanitaire d'un environnement intérieur, fondés sur la vision industrielle. Le procédé comprend les étapes suivantes consistant : (1) à collecter des données faciales d'une personne, et à appliquer une analyse vectorielle indépendante afin d'analyser un signal périodique à partir des données faciales en vue de détecter la fréquence cardiaque; (2) à pré-traiter des données de fréquence cardiaque collectées dans un environnement sanitaire afin de construire un modèle de mot de langage du degré sanitaire de l'environnement; et (3) à comparer des données de fréquence cardiaque collectées dans un environnement réel avec des données dans le modèle construit de mot de langage du degré sanitaire de l'environnement, afin de déterminer si l'environnement est sain ou non.
PCT/CN2020/132843 2020-06-24 2020-11-30 Procédé et système de régulation de degré sanitaire d'environnement intérieur, fondés sur la vision industrielle WO2021258644A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/05483A ZA202205483B (en) 2020-06-24 2022-05-18 Indoor environment health degree regulating method and system based on machine vision

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010590624.9 2020-06-24
CN202010590624.9A CN111637610B (zh) 2020-06-24 2020-06-24 基于机器视觉的室内环境健康度调节方法与系统

Publications (1)

Publication Number Publication Date
WO2021258644A1 true WO2021258644A1 (fr) 2021-12-30

Family

ID=72328412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132843 WO2021258644A1 (fr) 2020-06-24 2020-11-30 Procédé et système de régulation de degré sanitaire d'environnement intérieur, fondés sur la vision industrielle

Country Status (3)

Country Link
CN (1) CN111637610B (fr)
WO (1) WO2021258644A1 (fr)
ZA (1) ZA202205483B (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637610B (zh) * 2020-06-24 2022-04-01 山东建筑大学 基于机器视觉的室内环境健康度调节方法与系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140367079A1 (en) * 2013-06-18 2014-12-18 Lennox Industries Inc. External body temperature sensor for use with a hvac system
CN104235997A (zh) * 2013-06-08 2014-12-24 广东美的制冷设备有限公司 空调控制方法和空调系统
WO2016175219A1 (fr) * 2015-04-28 2016-11-03 Mitsubishi Electric Corporation Procédé et système de personnalisation d'un système de chauffage, de ventilation et de climatisation
CN109009052A (zh) * 2018-07-02 2018-12-18 南京工程学院 基于视觉的嵌入式心率测量系统及其测量方法
CN109028473A (zh) * 2018-07-26 2018-12-18 珠海格力电器股份有限公司 空调启动方法、装置、系统及空调
CN109631255A (zh) * 2018-12-10 2019-04-16 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN109993068A (zh) * 2019-03-11 2019-07-09 华南理工大学 一种基于心率和面部特征的非接触式的人类情感识别方法
WO2019157514A2 (fr) * 2018-02-12 2019-08-15 University Of Maryland, College Park Procédé et système de surveillance d'occupant pour gestion d'énergie de bâtiment
CN111637610A (zh) * 2020-06-24 2020-09-08 山东建筑大学 基于机器视觉的室内环境健康度调节方法与系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100557043B1 (ko) * 2003-01-30 2006-03-03 엘지전자 주식회사 냉난방기의 건강 제습 운전방법
KR20070085102A (ko) * 2004-12-02 2007-08-27 마츠시타 덴끼 산교 가부시키가이샤 컨트롤 장치, 컨트롤 방법, 컨트롤 프로그램, 컨트롤프로그램을 기록한 컴퓨터 판독 가능한 기록 매체 및컨트롤 시스템
CN104490371B (zh) * 2014-12-30 2016-09-21 天津大学 一种基于人体生理参数的热舒适检测方法
CN104864558A (zh) * 2015-04-30 2015-08-26 广东美的制冷设备有限公司 空调控制方法、装置及终端
JP6090382B2 (ja) * 2015-07-31 2017-03-08 ダイキン工業株式会社 空調制御システム
US10250403B2 (en) * 2015-11-23 2019-04-02 International Business Machines Corporation Dynamic control of smart home using wearable device
CN105352127A (zh) * 2015-11-24 2016-02-24 珠海格力电器股份有限公司 一种空调控制方法及智能家居系统
DE102016215250A1 (de) * 2016-08-16 2018-02-22 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs mithilfe eines mobilen Endgeräts eines Benutzers und physiologischen Vitaldaten
CN109099551A (zh) * 2018-07-20 2018-12-28 珠海格力电器股份有限公司 一种空调器的控制方法、装置、存储介质及空调器
CN109724217A (zh) * 2018-12-21 2019-05-07 奥克斯空调股份有限公司 一种基于医院数据与用户生理信号可控的健康空调系统及其控制方法
CN109857043A (zh) * 2019-03-29 2019-06-07 大连理工大学 一种监测室内环境与高龄者健康关联的物联网系统及监测方法
CN110751051B (zh) * 2019-09-23 2024-03-19 江苏大学 一种基于机器视觉的异常驾驶行为检测方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104235997A (zh) * 2013-06-08 2014-12-24 广东美的制冷设备有限公司 空调控制方法和空调系统
US20140367079A1 (en) * 2013-06-18 2014-12-18 Lennox Industries Inc. External body temperature sensor for use with a hvac system
WO2016175219A1 (fr) * 2015-04-28 2016-11-03 Mitsubishi Electric Corporation Procédé et système de personnalisation d'un système de chauffage, de ventilation et de climatisation
WO2019157514A2 (fr) * 2018-02-12 2019-08-15 University Of Maryland, College Park Procédé et système de surveillance d'occupant pour gestion d'énergie de bâtiment
CN109009052A (zh) * 2018-07-02 2018-12-18 南京工程学院 基于视觉的嵌入式心率测量系统及其测量方法
CN109028473A (zh) * 2018-07-26 2018-12-18 珠海格力电器股份有限公司 空调启动方法、装置、系统及空调
CN109631255A (zh) * 2018-12-10 2019-04-16 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调
CN109993068A (zh) * 2019-03-11 2019-07-09 华南理工大学 一种基于心率和面部特征的非接触式的人类情感识别方法
CN111637610A (zh) * 2020-06-24 2020-09-08 山东建筑大学 基于机器视觉的室内环境健康度调节方法与系统

Also Published As

Publication number Publication date
CN111637610A (zh) 2020-09-08
CN111637610B (zh) 2022-04-01
ZA202205483B (en) 2022-08-31

Similar Documents

Publication Publication Date Title
CN109009017B (zh) 一种智能健康监测系统及其数据处理方法
CN103400146B (zh) 基于颜色建模的中医面色识别方法
CN103479367A (zh) 一种基于面部运动单元识别的驾驶员疲劳检测方法
WO2023036015A1 (fr) Procédé et système de détection de fatigue basés sur l'exploration multidimensionnelle d'état corporel
CN109993068A (zh) 一种基于心率和面部特征的非接触式的人类情感识别方法
CN116269355B (zh) 一种基于人物姿态识别的安全监测系统
WO2021258644A1 (fr) Procédé et système de régulation de degré sanitaire d'environnement intérieur, fondés sur la vision industrielle
WO2023040577A1 (fr) Procédé et système de gestion et de commande intelligentes d'utilisation de terminal d'écran par un enfant
CN105956512A (zh) 一种基于机器视觉的空调温度自动调节系统及方法
WO2024021359A1 (fr) Procédé et système de mesure de couleur dominante d'environnement construit basés sur des données de sensibilité d'eeg d'image
CN111428655A (zh) 一种基于深度学习的头皮检测方法
CN112069986A (zh) 高龄老人眼动机器视觉跟踪方法及装置
CN111476196A (zh) 一种基于面部动作的老年残障人士护理需求识别方法
CN113362924A (zh) 一种基于医疗大数据的面瘫康复任务辅助生成方法及系统
CN106485232A (zh) 一种基于呼吸过程中鼻子图像特征的人员识别方法
CN115349828A (zh) 一种基于计算机深度学习的新生儿疼痛评估系统
CN109934179B (zh) 基于自动特征选择和集成学习算法的人体动作识别方法
CN108520283A (zh) 一种基于脑区间接关系网络构建的医学图像分类方法
Hani et al. Body surface area measurement and soft clustering for PASI area assessment
CN111658931B (zh) 一种智能经鼻高流量湿化氧疗系统
CN111281403B (zh) 一种基于嵌入式设备的细粒度人体疲劳检测方法及设备
CN115908388B (zh) 一种敏感性皮肤全周期检测方法及其系统
CN115331431B (zh) 信号灯倒计时条件下的行人过街心理负荷测试及评价方法
CN114068020A (zh) 一种智能康养监控与优化系统
CN111209816B (zh) 一种基于正则极限学习机的非接触式疲劳驾驶检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942204

Country of ref document: EP

Kind code of ref document: A1