WO2021258506A1 - 分区触控方法、装置、电子设备及存储介质 - Google Patents

分区触控方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2021258506A1
WO2021258506A1 PCT/CN2020/106733 CN2020106733W WO2021258506A1 WO 2021258506 A1 WO2021258506 A1 WO 2021258506A1 CN 2020106733 W CN2020106733 W CN 2020106733W WO 2021258506 A1 WO2021258506 A1 WO 2021258506A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
sub
coordinate data
area
overall
Prior art date
Application number
PCT/CN2020/106733
Other languages
English (en)
French (fr)
Inventor
于子鹏
Original Assignee
深圳市鸿合创新信息技术有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市鸿合创新信息技术有限责任公司 filed Critical 深圳市鸿合创新信息技术有限责任公司
Publication of WO2021258506A1 publication Critical patent/WO2021258506A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • G06F3/041661Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving using detection at multiple resolutions, e.g. coarse and fine scanning; using detection within a limited area, e.g. object tracking window
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus

Definitions

  • the present application relates to the field of touch technology, and in particular to partitioned touch methods, devices, electronic equipment, and storage media.
  • touch interactive products and devices have gradually developed to larger sizes, from the original 55-inch and 65-inch mainstream interactive products to the current 75-inch , 85 inches is the mainstream, and there are more choices for the screen ratio of the display panel of touch-sensitive interactive products.
  • the accuracy and speed of the calculation of touch point coordinates are reduced, and the interaction response speed caused by the decrease in the accuracy and speed of touch point coordinates, Various aspects of touch performance issues, such as writing fineness and following speed, have gradually become prominent.
  • the purpose of the present application is to provide a partitioned touch method, device, electronic device, and storage medium to solve the problems of reduced touch point coordinate accuracy and speed, and poor touch interaction performance.
  • the present application provides a partitioned touch method, which is applied to a touch display device.
  • the touch display device includes a touch screen, and the overall touch area of the touch screen is divided into at least two sub-sections.
  • Area and partition touch methods include:
  • the secondary coordinate data is converted into the overall coordinate data.
  • the present application also provides a partitioned touch device, which is applied to a touch display device.
  • the touch display device includes a touch screen, and the entire touch area of the touch screen is divided into at least two The sub-areas, the partitioned touch devices include:
  • the touch response module is configured to receive user touch operations on the touch screen
  • the sub-area determining module is configured to determine the sub-area to which the touch point corresponding to the touch operation belongs;
  • the touch scanning module is configured to obtain touch scanning data corresponding to the sub-region to which the touch point belongs;
  • the secondary coordinate calculation module is configured to calculate the coordinate data of the touch point in the sub-region to which the touch point belongs according to the touch scan data, and determine the coordinate data as the secondary coordinate data;
  • the coordinate conversion module is configured to convert the secondary coordinate data into overall coordinate data according to the positional relationship and geometric ratio between the sub-area to which the touch point belongs and the overall touch area.
  • the present application also provides a partitioned touch electronic device, including a memory, a processor, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the program, the first The zone touch method provided by the aspect or any of the embodiments thereof.
  • this application also provides a non-transitory computer-readable storage medium, characterized in that the non-transitory computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the first aspect Or the zone touch method provided by any of its embodiments.
  • the partitioned touch method, device, electronic device, and storage medium provided by the embodiments of the present application perform partition processing on the original large-size overall touch area, and divide it into multiple small touch sub-areas , First determine the high-accuracy touch point coordinates in the small touch sub-area, and then convert them to the touch point coordinates relative to the overall touch area, so that the final touch point coordinate data is more accurate and accurate.
  • the high accuracy of the coordinates of the touch points determined in the area is kept consistent, so as to ensure a better touch performance and experience of large-size touch interactive products.
  • FIG. 1 is a schematic diagram of a partitioned touch method provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a division result of an overall touch area in a partitioned touch method provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the size of an overall touch area division result in a partitioned touch method provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of the position of the touch point in the touch area 1 in a partitioned touch method according to an embodiment of the application;
  • FIG. 5 is a schematic diagram of the position of the touch point located in the touch area 2 in a partitioned touch method according to an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a zoned touch device provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of a partitioned touch electronic device provided by an embodiment of the application.
  • touch interactive products and devices have gradually developed to larger sizes, from the original 55-inch and 65-inch mainstream interactive products to the current 75-inch , 85 inches is the mainstream, and there are more choices for the screen ratio of the display panel of touch-sensitive interactive products.
  • people requirements for interactive experience increase, consumers have begun to pay more and more attention to the performance of human-computer interaction, such as the response speed of touch
  • touch methods and algorithms have become more complicated.
  • touch methods and algorithms have become more complicated.
  • the slower interaction response speed caused by the decrease in the coordinate accuracy of the touch point, poor writing fineness, and follow-up speed, and other aspects of touch performance problems have gradually become prominent.
  • the embodiments of the present application provide a partitioned touch method, device, and electronic device, which decompose the overall touch area of a large-size touch interactive device into multiple small-size touch areas, and for each small-size touch In terms of area, its internal touch point positioning accuracy is higher.
  • an embodiment of the present application provides a partitioned touch method.
  • a partitioned touch method provided by an embodiment of the present application is applied to a touch display device.
  • the touch display device includes a touch screen, and the overall touch area of the touch screen is divided into at least two subsections.
  • the area and partition touch method includes the following steps:
  • S4 Calculate the coordinate data of the touch point in the sub-area to which the touch point belongs according to the touch scan data, and determine the coordinate data as secondary coordinate data;
  • S5 Convert the secondary coordinate data into overall coordinate data according to the positional relationship and geometric ratio between the sub-area to which the touch point belongs and the overall touch area.
  • the overall touch area is often rectangular.
  • the overall touch area may also have other shapes than rectangles, which is not limited.
  • the overall touch area can be decomposed into at least two sub-areas, for example, the rectangular overall touch area can be decomposed into two small rectangular sub-areas on the left and right or two small rectangular sub-areas on the upper and lower sides, or Divided into three sub-regions: top, middle, bottom, left, center, and right, or top left, center, and bottom right, or divided into nine small subregions in a grid pattern.
  • the specific division method may be determined according to the overall touch area of the touch display screen in the specific touch interactive product.
  • the size of the obtained sub-area must be smaller than the overall size.
  • For each small sub-area its internal touch point positioning algorithms are independent of each other. The control point positioning must be more accurate.
  • the sub-areas when receiving the user's touch operation on the touch screen, determine the sub-areas to which the touch point belongs, so as to determine the secondary coordinate data of the touch point for the corresponding sub-areas.
  • the accuracy of the secondary coordinate data is higher.
  • the high-precision secondary coordinate data is converted into the overall coordinate data.
  • the accuracy of the coordinate data remains unchanged, and the final determination
  • the overall coordinate data also maintains high accuracy, so as to ensure a better touch performance and experience of large-size touch interactive products.
  • the method before acquiring the touch scan data corresponding to the real-time sub-areas, the method further includes:
  • the method of controlling the touch circuit to scan the sub-regions is adopted to realize the partitioned touch scanning of the whole touch area, so as to obtain the touch scan data corresponding to the sub-regions.
  • the touch scanning circuit is controlled to scan only the sub-areas to which the touch point belongs. Compared with the overall touch area, touch scanning for small-sized sub-areas reduces the touch scan area. It can improve the efficiency of touch scanning while ensuring the improvement of accuracy.
  • Step S2 includes:
  • the sub-area to which the touch point corresponding to the touch body belongs is determined.
  • the detection device set at the boundary of the overall touch area is used to detect the touch body, and can obtain corresponding position detection information, and judge the sub-area where the touch point corresponding to the touch body is located.
  • the user can perform a corresponding touch operation through the touch body, and the position where the touch body contacts the touch display screen is the touch point.
  • the touch body refers to an object to which the touch display screen can respond to its touch, such as a touch device with a touch head such as a stylus, or an organ such as a user's finger, which is not limited.
  • FIG 2 is a schematic diagram of the overall touch area partition.
  • the rectangular overall touch area is taken as an example.
  • the vertical shaded part represents the first sub-area (denoted as touch area 1)
  • the horizontal shaded area Part represents the second sub-area (denoted as touch area 2).
  • touch area 3 In a method for zoned touch control provided by an embodiment of the present application, two adjacent sub-areas have an overlapping area (denoted as touch area 3).
  • the vicinity of the boundary between two adjacent sub-areas is a special position.
  • the touch point is located in this area or even falls on the boundary line of the two sub-areas, the It becomes very difficult to locate the coordinates of the touch point, and it is also very prone to errors. Therefore, in the zone touch method, when the area is divided, there is an overlap between two adjacent sub-areas, that is, the overlapped area shown in Figure 2.
  • the width of the overlapped area should not be too wide. Generally, it will overlap.
  • the area width is set to about 30mm, which can be adjusted according to the actual situation.
  • the detection device 4 will track and detect the touch body to determine the movement trend of the touch body.
  • the movement trend of the touch body is moving from touch area 1 to touch area 2, then It is determined that the touch point is located in the touch area 2; on the contrary, when the movement trend of the touch body is moving from the touch area 2 to the touch area 1, it is determined that the touch point is located in the touch area 1.
  • the above method can ensure the continuity of the coordinate data of the touch point across the sub-regions, and ensure that the secondary coordinate data of the touch point in the sub-region to which it belongs is sufficiently accurate.
  • the detection device 4 can be any device that can obtain the relative distance and angle (direction) from the touch body.
  • the detection device can be a radar module, a camera, or a distance sensor, which can realize dynamic tracking.
  • the detection device can select a dynamic tracking sensor, which can more quickly determine the movement trend of the touch body, so as to more quickly complete the determination operation of the sub-region to which the touch point belongs, thereby reducing the number of touches. Control response time and optimize touch experience performance.
  • the validity of the global coordinate data is judged according to the status detection information
  • the overall coordinate data is invalid, and the overall coordinate data is discarded.
  • the detection equipment 4 When detecting the touch body, state detection information is also generated to indicate whether there is a touch body. If there is no touch body, the content of the state detection information is empty. When the touch body does not exist and the overall coordinate data is acquired, it means that the overall coordinate data is abnormal data, and such overall coordinate data is invalid.
  • the conversion of secondary coordinate data into overall coordinate data according to the positional relationship and geometric ratio between the sub-region and the overall touch area includes:
  • the coordinate data conversion formula is used to calculate and determine the overall coordinate data.
  • FIG. 3 which corresponds to the area division result of refer to FIG. 2 (touch area 1 on the left, touch area 2 on the right, and touch area 3 in the middle), which is a schematic diagram of the size of the entire touch area.
  • X is the maximum coordinate data S (unit: resolution) of the physical length of the overall touch area
  • X1 is the actual physical length of the coordinate size of the touch area 1
  • the maximum coordinate data S1 unit: resolution
  • X2 is the touch The actual physical length of the coordinate size of area 2
  • FIG. 4 is a schematic diagram of the position of the touch point in the touch area 1, where A represents the actual physical length of the touch point on the horizontal axis.
  • A represents the actual physical length of the touch point on the horizontal axis.
  • the touch point coordinates are (x, y) in the sub-area touch area 1
  • the converted overall coordinate data is recorded as (x', y').
  • the coordinate data conversion formula can be determined as the following formula (1):
  • FIG. 5 is a schematic diagram of the position of the touch point in the touch area 2, where B represents the actual physical length of the touch point on the horizontal axis.
  • B represents the actual physical length of the touch point on the horizontal axis.
  • the position relationship and geometric ratio can be determined by the coordinate data conversion formula as the following formula (2):
  • the coordinate data conversion formula can be determined according to the positional relationship and geometric ratio between the sub-area where the touch point is located and the overall touch area, so as to convert the high-end precision secondary coordinate data It is the overall coordinate data.
  • an embodiment of the present application also provides a zoned touch device.
  • an embodiment of the present application provides a partitioned touch device, which is applied to a touch display device.
  • the touch display device includes a touch screen, and the overall touch area of the touch screen is divided into at least two sub-sections.
  • Area, zone touch devices include:
  • the touch response module 601 is configured to receive user touch operations on the touch screen
  • the sub-region determining module 602 is configured to determine the sub-region to which the touch point corresponding to the touch operation belongs;
  • the touch scanning module 603 is configured to obtain touch scanning data corresponding to the sub-region to which the touch point belongs;
  • the secondary coordinate calculation module 604 is configured to calculate the coordinate data of the touch point in the sub-region to which the touch point belongs according to the touch scan data, and determine the coordinate data as the secondary coordinate data;
  • the coordinate conversion module 605 is configured to convert the secondary coordinate data into the overall coordinate data according to the positional relationship and geometric ratio of the sub-area and the overall touch area.
  • the touch scan module 603 also controls the touch scan circuit to pair before acquiring the touch scan data corresponding to the sub-area to which the touch point belongs.
  • the sub-area is scanned.
  • One or more embodiments of the present application provide a partitioned touch device, and its corresponding touch display device is provided with a detection device at the boundary of the overall touch area;
  • the sub-region determining module 602 is configured to determine the sub-region to which the touch point corresponding to the touch operation belongs, including:
  • the sub-area to which the touch point corresponding to the touch body belongs is determined.
  • the sub-region determination module is configured to determine the sub-region to which the touch point corresponding to the touch operation belongs, including:
  • the anti-interference module is configured to receive the state detection information of the touch body by the detection device, and after converting the overall coordinate data, judge the validity of the overall coordinate data according to the state detection information;
  • the coordinate conversion module 605 is configured to convert the secondary coordinate
  • the data is converted into global coordinate data, including:
  • the coordinate data conversion formula is used to calculate and determine the overall coordinate data.
  • the device in the foregoing embodiment is used to implement the corresponding method in the foregoing embodiment, and has the beneficial effects of the corresponding method embodiment, which will not be repeated here.
  • one or more embodiments of this specification also provide an electronic device.
  • FIG. 7 shows a more specific hardware structure diagram of an electronic device provided by this embodiment.
  • the device may include a processor 1010, a memory 1020, an input/output interface 1030, a communication interface 1040, and a bus 1050.
  • the processor 1010, the memory 1020, the input/output interface 1030, and the communication interface 1040 realize the communication connection between each other in the device through the bus 1050.
  • the processor 1010 may be implemented by a general CPU (Central Processing Unit, central processing unit), a microprocessor, an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits for execution related Program to implement the partitioned touch method provided in the embodiment of this specification.
  • a general CPU Central Processing Unit, central processing unit
  • a microprocessor an application specific integrated circuit (Application Specific Integrated Circuit, ASIC)
  • ASIC Application Specific Integrated Circuit
  • the memory 1020 may be implemented in the form of ROM (Read Only Memory), RAM (Random Access Memory, random access memory), static storage device, dynamic storage device, etc.
  • the memory 1020 may store an operating system and other application programs.
  • partitioned touch method provided in the embodiments of this specification is implemented by software or firmware, related program codes are stored in the memory 1020 and called and executed by the processor 1010.
  • the input/output interface 1030 is used to connect an input/output module to realize information input and output.
  • the input/output/module can be configured in the device as a component (not shown in the figure), or can be connected to the device to provide corresponding functions.
  • the input device may include a keyboard, a mouse, a touch screen, a microphone, various sensors, etc., and an output device may include a display, a speaker, a vibrator, an indicator light, and the like.
  • the communication interface 1040 is used to connect a communication module (not shown in the figure) to realize the communication interaction between the device and other devices.
  • the communication module can realize communication through wired means (such as USB, network cable, etc.), or through wireless means (such as mobile network, WIFI, Bluetooth, etc.).
  • the bus 1050 includes a path to transmit information between various components of the device (for example, the processor 1010, the memory 1020, the input/output interface 1030, and the communication interface 1040).
  • the above device only shows the processor 1010, the memory 1020, the input/output interface 1030, the communication interface 1040, and the bus 1050, in the specific implementation process, the device may also include the necessary equipment for normal operation. Other components.
  • the above device may also include only the components necessary to implement the partitioned touch method in the embodiment of this specification, and not necessarily include all the components shown in the figure.
  • one or more embodiments of this specification also provide a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and the computer instructions are used to make a computer execute a partitioned touch method.
  • "Machine-readable medium” may include any medium that can store or transmit information. Examples of machine-readable media include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and so on.
  • the code segment can be downloaded via a computer network such as the Internet, an intranet, and so on.
  • a computer-readable storage medium refers to a non-transitory readable medium.
  • the methods in one or more embodiments of the present application can be executed by a single device, such as a computer or a server.
  • the method in this embodiment can also be applied in a distributed scenario, and multiple devices cooperate with each other to complete.
  • one of the multiple devices can only perform one or more steps in the method of one or more embodiments of this specification, and the multiple devices will perform each other. Interaction to complete the method.
  • each block in the flowchart or block diagram may represent a module, segment, or part of code, and the module, segment, or part of code includes a component for implementing the specified logical function(s) One or more executable instructions.
  • Each block in the block diagram and/or flowchart, and the combination of blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified function or action, or can be implemented by dedicated hardware And a combination of computer instructions.
  • the accompanying drawings may or may not be shown in relation to integrated circuit (IC) chips and other components.
  • IC integrated circuit
  • Well-known power/ground connection IC
  • the device may be shown in the form of a block diagram in order to avoid making one or more embodiments of this specification difficult to understand, and this also takes into account the fact that the details about the implementation of these block diagram devices are highly dependent on the implementation of the present invention. Description of the platform of one or more embodiments (that is, these details should be fully within the understanding of those skilled in the art).
  • DRAM dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

一种分区触控方法、装置、电子设备及存储介质,能够解决大尺寸触控交互产品触控点坐标精度降低的问题,优化触控交互性能。分区触控方法,应用于触控显示设备,其整体触控区域被划分为至少两个子区域,方法包括:接收用户对触控屏的触控操作(S1);判断触控操作相应触控点所属的子区域(S2);确定触控点在子区域内的坐标数据,作为次级坐标数据;根据子区域与整体触控区域的位置关系与几何比例,将次级坐标数据转换为整体坐标数据(S5)。分区触控装置包括触控显示设备以及触控响应模块、子区域判定模块、次级坐标计算模块和坐标转换模块。电子设备与存储介质用于实现分区触控方法。

Description

分区触控方法、装置、电子设备及存储介质
相关申请的交叉引用
本申请要求享有于2020年06月22日提交的名称为“一种分区触控方法、装置、电子设备及存储介质”的中国专利申请202010575975.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及触控技术领域,尤其涉及分区触控方法、装置、电子设备及存储介质。
背景技术
随着触控技术不断发展更新,为适应消费者需求,触控交互产品与设备也逐步向大尺寸化发展,由原来的55寸、65寸为主流交互产品慢慢发展到现在的以75寸、85寸为主流,触控交互产品的显示面板的屏幕比例也出现更多选择。随着触控屏尺寸的不断增大以及大尺寸触控交互产品的广泛应用,触控点坐标计算的精度和速度降低,而由于触控点坐标精度和速度下降而带来的交互响应速度、书写细腻程度、跟随速度等各方面触控性能问题也慢慢突显。
发明内容
有鉴于此,本申请的目的在于提出一种分区触控方法、装置、电子设备及存储介质,以解决触控点坐标精度和速度降低、触控交互性能变差的问题。
基于上述目的,第一方面,本申请提供了一种分区触控方法,应用于触控显示设备,触控显示设备包括一触控屏,触控屏的整体触控区域被划分为至少两个子区域,分区触控方法包括:
接收用户对触控屏的触控操作;
判断触控操作相应的触控点所属的子区域;
获取触控点所属的子区域对应的触控扫描数据;
根据触控扫描数据计算触控点在触控点所属的子区域内的坐标数据,并将所述坐标数据确定为次级坐标数据;
根据触控点所属的子区域与整体触控区域的位置关系与几何比例,将次级坐标数据转换为整体坐标数据。
基于上述目的,第二方面,本申请还提供了一种分区触控装置,应用于触控显示设备,触控显示设备包括一触控屏,触控屏的整体触控区域被划分为至少两个子区域,分区触控装置包括:
触控响应模块,被配置为接收用户对触控屏的触控操作;
子区域判定模块,被配置为判断触控操作相应触控点所属的子区域;
触控扫描模块,被配置为获取触控点所属的子区域对应的触控扫描数据;
次级坐标计算模块,被配置为根据触控扫描数据计算触控点在触控点所属的子区域内的坐标数据,并将所述坐标数据确定为次级坐标数据;
坐标转换模块,被配置为根据触控点所属的子区域与整体触控区域的位置关系与几何比例,将次级坐标数据转换为整体坐标数据。
基于上述目的,第三方面,本申请还提供了一种分区触控电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现第一方面或其任一实施例提供的分区触控方法。
基于上述目的,第四方面,本申请还提供了一种非暂态计算机可读存储介质,其特征在于,非暂态计算机可读存储介质存储计算机指令,计算机指令用于使计算机执行第一方面或其任一实施例提供的分区触控方法。
从上面可以看出,本申请实施例提供的分区触控方法、装置、电子设备及存储介质,将原本大尺寸的整体触控区域进行分区处理,将其分解为多个小的触控子区域,先在小的触控子区域内确定高精确度的触控点坐标,再将其转换为相对整体触控区域的触控点坐标,使得最终得到的触控点坐标数据的精确度与子区域内确定的触控点坐标的高精确度保持一致,从而保证大尺寸触控交互产品的触控性能与体验更优。
附图说明
为了更清楚地说明本申请一个或多个实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书一个或多个实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种分区触控方法示意图;
图2为本申请实施例提供的一种分区触控方法中一种整体触控区域划分结果示意图;
图3为本申请实施例提供的一种分区触控方法中一种整体触控区域划分结果的尺寸示意图;
图4为本申请实施例提供的一种分区触控方法中触控点位于触控区域1的位置示意图;
图5为本申请实施例提供的一种分区触控方法中触控点位于触控区域2的位置示意图;
图6为本申请实施例提供的一种分区触控装置结构示意图;
图7为本申请实施例提供的一种分区触控电子设备结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本申请进一步详细说明。
需要说明的是,除非另外定义,本申请一个或多个实施例使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。本说明书一个或多个实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
随着触控技术不断发展更新,为适应消费者需求,触控交互产品与设备也逐步向大尺寸化发展,由原来的55寸、65寸为主流交互产品慢慢发展到现在的以75寸、85寸为主流,触控交互产品的显示面板的屏幕比例也出现更多选择。随着人们对交互体验要求的提高,消费者开始越来越多地关注到人机交互的性能,例如触控交互的响应速度、书写细腻程度、触控笔迹跟随速度等,但是随着触控交互产品尺寸不断扩大,触控方法和算法也变得比较复杂,目前大尺寸触控交互设备的交互体验效果还很难到达到人们的预期。触控点坐标精度下降而带来的交互响应速度变慢、书写细腻程度欠佳、跟随速度等各方面触控性能问题也慢慢突显。
针对上述问题,本申请实施例提供一种分区触控方法、装置与电子设备,将大尺寸触控交互设备的整体触控区域分解为多个小尺寸触控区域,对于每个小尺寸触控区 域而言,其内部触控点定位精度更高,先在小尺寸触控区域内获取高端精度触控点坐标数据,再将其汇总转换为大尺寸触控区域下的触控点坐标,触控点定位精度不会下降,从而能够有力保证大尺寸触控交互产品的触控性能与体验更优。
在一方面,本申请实施例提供了一种分区触控方法。
如图1所示,本申请实施例提供的一种分区触控方法,应用于触控显示设备,触控显示设备包括一触控屏,触控屏的整体触控区域被划分为至少两个子区域,分区触控方法包括以下步骤:
S1:接收用户对触控屏的触控操作;
S2:判断触控操作相应触控点所属的子区域;
S3:获取触控点所属的子区域对应的触控扫描数据;
S4:根据触控扫描数据计算触控点在触控点所属的子区域内的坐标数据,并将所述坐标数据确定为次级坐标数据;
S5:根据触控点所属的子区域与整体触控区域的位置关系与几何比例,将次级坐标数据转换为整体坐标数据。
其中,整体触控区域往往为矩形,此外,整体触控区域还可以为除矩形外的其他形状,对此不做限定。
利用本申请实施例中的分区触控方法可以将整体触控区域分解为至少两个子区域,例如可以将矩形的整体触控区域分解为左右两小矩形子区域或上下两小矩形子区域,或划分为上中下或者左中右三子区域,或者左上、中、右下三子区域等,或者呈井格状划分为九个小的子区域等。可以理解的是对于整体触控区域的划分有多种不同划分方式,具体采用划分方式可以根据具体的触控交互产品中触控显示屏幕的整体触控区域而定。但是不论采用何种子区域划分方式,获得的子区域其尺寸必定比整体尺寸更小,对于每个小的子区域而言,其内部触控点定位算法相互独立,在小尺寸子区域内进行触控点定位,其精确度一定更高。
在划分子区域后,在在接收到用户对触控屏的触控操作时,判断触控点所属的子区域,从而针对相应子区域确定触控点的次级坐标数据,此时所确定的次级坐标数据的精确度较高。之后再根据小尺寸子区域与整体触控区域的位置关系与几何比例,将高精度的次级坐标数据转换为整体坐标数据,在这一过程中坐标数据的精确度保持不变,最后确定的整体坐标数据也保有高精确度,从而保证大尺寸触控交互产品的触控性能与体验更优。
在本申请的一个或多个实施例所提供的一种分区触控方法中,获取实时子区域对应的触控扫描数据之前,方法还包括:
控制触控扫描电路对子区域进行扫描。
在分区触控方法中,采用控制触控电路对子区域进行扫描的方式实现对整体触控区域的分区触控扫描,从而获取子区域对应的触控扫描数据。确定触控点所属的子区 域后,控制触控扫描电路只对触控点所属的子区域进行扫描,相比整体触控区域,针对小尺寸子区域的触控扫描减少了触控扫描面积,在保证精确度提高的同时还能够提高触控扫描效率。
如图2所示,在本申请实施例提供的一种分区触控方法中,触控显示设备在整体触控区域边界处设置检测设备4,步骤S2,包括:
接收检测设备对触控体的方位检测信息,根据方位检测信息确定触控体相对检测设备的距离与方向;
根据触控体相对检测设备的距离与方向,确定触控体相应的触控点所属的子区域。
设置在整体触控区域边界的检测设备用于检测触控体,能够获取到相应的方位检测信息,据此对与触控体相对应触控点所处的子区域进行判断。
其中,用户可以通过触控体来执行相应的触控操作,则触控体与触摸显示屏幕接触的位置即为触控点。可选地,触控体表示触摸显示屏可以对其触控作出响应的物体,例如触控笔等具有触摸头的触控设备,或者用户的手指等器官,对此不作限定。
参考图2所示,图2为整体触控区域分区示意图,图中以矩形整体触控区域为例,其中竖线阴影部分表示第一个子区域(记为触控区域1),横线阴影部分表示第二个子区域(记为触控区域2)。
如图2所示,在本申请实施例提供的一种分区触控的方法中,两相邻子区域存在重叠区域(记为触控区域3)。
当检测到触控点位于重叠区域(触控区域3)时,根据监测设备4对触控体的跟踪检测,确定触控体运动趋势;
根据触控体运动趋势判定相应触控点所属的子区域。
将整体触控区域分解为至少两个子区域后,相邻两子区域相接边界附近是比较特殊的位置,当触控点位于此区域甚至恰好落在两子区域相接边界线上时,其触控点坐标定位工作就变得非常困难,也非常容易出现误差。因此,在分区触控方法中,在进行区域划分时,设置两相邻子区域间存在重叠部分即如图2所示的重叠区域,需要注意的是重叠区域的宽度不宜过宽,一般将重叠区域宽度设置为30mm左右,可以根据实际情况作出适应性调整。当触控点位于重叠区域时,检测设备4对触控体进行跟踪检测,以确定触控体的运动趋势,当触控体的运动趋势为从触控区域1向触控区域2运动,则判定触控点位于触控区域2;相反的,当触控体的运动趋势为从触控区域2向触控区域1运动,则判定触控点位于触控区域1。
采用上述方法,能够保证跨子区域触控点坐标数据连续性,保证触控点在所属的子区域内的次级坐标数据足够准确。
本领域技术人员应当理解的是,检测设备4可以是任意一种能够获取与触控体相对距离与角度(方向)的装置,例如检测设备可以是雷达模块、摄像头或距离传感器 等能够实现动态追踪功能的装置,在一个或多个实施例中检测设备可以选取动态追踪传感器,能够更迅速的确定触控体的运动趋势,从而更迅速完成对触控点所属子区域的判定操作,进而缩减触控响应时间,优化触控体验性能。
本申请的一个或多个实施例所提供的一种分区触控方法,还包括:
接收检测设备4对触控体的状态检测信息;
在转换得到整体坐标数据后,根据状态检测信息对整体坐标数据的有效性进行判定;
若状态检测信息内容为空,则整体坐标数据无效,将整体坐标数据丢弃。
考虑到大尺寸触控交互产品与设备的应用场景,触控交互产品周围往往会存在较多的干扰项,可能造成出现异常整体坐标数据,为避免异常整体坐标数据造成的影响,检测设备4在对触控体进行检测时还生成状态检测信息,用以表征是否存在触控体,若不存在触控体则状态检测信息的内容为空。当触控体不存在而又获取到了整体坐标数据,则说明整体坐标数据为异常数据,这样的整体坐标数据是无效的。
在本申请的一个或多个实施例所提供的一种分区触控方法中,根据子区域与整体触控区域的位置关系与几何比例,将次级坐标数据转换为整体坐标数据,包括:
根据位置关系与几何比例确定坐标数据转换公式;
根据次级坐标数据,利用坐标数据转换公式,计算确定整体坐标数据。
参考图3所示,与参考图2的区域划分结果相对应(左边为触控区域1,右边为触控区域2,中间重叠部分为触控区域3),为整体触控区域的尺寸示意图。其中X是整体触控区域的物理长度最大坐标数据S(单位:分辨率),X1为触控区域1的坐标尺寸实际的物理长度,最大坐标数据S1(单位:分辨率);X2是触控区域2的坐标尺寸实际的物理长度,最大坐标数据S2(单位:分辨率);X3表示的是X与X2的差,即X3=X-X2;理论上S1=S2=S,可以根据实际情况进行设定。
参考图4所示,为触控点落在触控区域1中位置示意图,其中A表示触控点横轴上的实际物理长度。此时在子区域触控区域1中确定触控点坐标为(x,y),将转换后的整体坐标数据记为(x’,y’)。根据触控区域1与整体触控区域的位置关系以及几何比例,可以确定坐标数据转换公式为下述公式(1):
Figure PCTCN2020106733-appb-000001
参考图5所示,图5为触控点落在触控区域2中位置示意图,其中B表示触控点横轴上的实际物理长度。此时在子区域触控区域2中确定触控点坐标为(x,y),将转换后的整体坐标数据记为(x’,y’).根据触控区域2与整体触控区域的位置关系以及几何比例,可以确定坐标数据转换公式为下述公式(2):
Figure PCTCN2020106733-appb-000002
相同的,当采用其他的子区域划分方式时,根据触控点所在子区域与整体触控区域的位置关系和几何比例,都可以确定坐标数据转换公式,从而将高端精度的次级坐标数据转换为整体坐标数据。
在另一方面,本申请实施例还提供了一种分区触控装置。
如图6所示,本申请实施例提供了一种分区触控装置,应用于触控显示设备,触控显示设备包括一触控屏,触控屏的整体触控区域被划分为至少两个子区域,分区触控装置包括:
触控响应模块601,被配置为接收用户对触控屏的触控操作;
子区域判定模块602,被配置为判断触控操作相应触控点所属的子区域;
触控扫描模块603,被配置为获取触控点所属的子区域对应的触控扫描数据;
次级坐标计算模块604,被配置为根据触控扫描数据计算触控点在触控点所属的子区域内的坐标数据,并将坐标数据确定为次级坐标数据;
坐标转换模块605,被配置为根据子区域与整体触控区域的位置关系与几何比例,将次级坐标数据转换为整体坐标数据。
在本申请的一个或多个实施例所提供的一种分区触控装置中,触控扫描模块603在获取触控点所属的子区域对应的触控扫描数据之前,还控制触控扫描电路对子区域进行扫描。
本申请的一个或多个实施例所提供的一种分区触控装置,其相应的触控显示设备在整体触控区域边界处设置检测设备;
子区域判定模块602,被配置为判断触控操作相应的触控点所属的子区域,包括:
接收检测设备对触控体的方位检测信息,根据方位检测信息确定触控体相对检测设备的距离与方向;
根据触控体相对检测设备的距离与方向,确定触控体相应的触控点所属的子区域。
本申请的一个或多个可选实施例所提供的一种分区触控装置,其相应的触控显示设备中两相邻子区域存在重叠区域;
子区域判定模块,被配置为判断触控操作相应触控点所属的子区域,包括:
当触控点位于重叠区域时,根据检测设备对触控体的跟踪检测,确定触控体运动趋势;
根据触控体运动趋势判定相应触控点所属的子区域。
本申请的一个或多个可选实施例所提供的一种分区触控装置,还包括:
抗干扰模块,被配置为接收检测设备对触控体的状态检测信息,并在转换得到整体坐标数据后,根据状态检测信息对整体坐标数据的有效性进行判定;
若状态检测信息内容为空,则判定整体坐标数据无效,将整体坐标数据丢弃。
在本申请的一个或多个可选实施例所提供的一种分区触控装置中,坐标转换模块605,被配置为根据子区域与整体触控区域的位置关系与几何比例,将次级坐标数据转换为整体坐标数据,包括:
根据位置关系与几何比例确定坐标数据转换公式;
根据次级坐标数据,利用坐标数据转换公式,计算确定整体坐标数据。
为了描述的方便,描述以上装置时以功能分为各种模块分别描述。当然,在实施本说明书一个或多个实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
上述实施例的装置用于实现前述实施例中相应的方法,并且具有相应的方法实施例的有益效果,在此不再赘述。
在另一方面,本说明书的一个或多个实施例还提供了一种电子设备。
图7示出了本实施例所提供的一种更为具体的电子设备硬件结构示意图,该设备可以包括:处理器1010、存储器1020、输入/输出接口1030、通信接口1040和总线1050。其中处理器1010、存储器1020、输入/输出接口1030和通信接口1040通过总线1050实现彼此之间在设备内部的通信连接。
处理器1010可以采用通用的CPU(Central Processing Unit,中央处理器)、微处理器、应用专用集成电路(Application Specific Integrated Circuit,ASIC)、或者一个或多个集成电路等方式实现,用于执行相关程序,以实现本说明书实施例所提供的分区触控方法。
存储器1020可以采用ROM(Read Only Memory,只读存储器)、RAM(Random Access Memory,随机存取存储器)、静态存储设备,动态存储设备等形式实现。存储器1020可以存储操作系统和其他应用程序,在通过软件或者固件来实现本说明书实施例所提供的分区触控方法时,相关的程序代码保存在存储器1020中,并由处理器1010来调用执行。
输入/输出接口1030用于连接输入/输出模块,以实现信息输入及输出。输入输出/模块可以作为组件配置在设备中(图中未示出),也可以外接于设备以提供相应功能。其中输入设备可以包括键盘、鼠标、触摸屏、麦克风、各类传感器等,输出设备可以包括显示器、扬声器、振动器、指示灯等。
通信接口1040用于连接通信模块(图中未示出),以实现本设备与其他设备的通信交互。其中通信模块可以通过有线方式(例如USB、网线等)实现通信,也可以通过无线方式(例如移动网络、WIFI、蓝牙等)实现通信。
总线1050包括一通路,在设备的各个组件(例如处理器1010、存储器1020、输入/输出接口1030和通信接口1040)之间传输信息。
需要说明的是,尽管上述设备仅示出了处理器1010、存储器1020、输入/输出接口1030、通信接口1040以及总线1050,但是在具体实施过程中,该设备还可以包括实现正常运行所必需的其他组件。此外,本领域的技术人员可以理解的是,上述设备中也可以仅包含实现本说明书实施例分区触控方法所必需的组件,而不必包含图中所示的全部组件。
在另一方面,本说明书的一个或多个实施例还提供了一种计算机可读存储介质,计算机可读存储介质存储计算机指令,计算机指令用于使计算机执行分区触控方法。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。在本申请的一个实施例,计算机可读存储介质是指非暂态可读介质。
需要说明的是,本申请一个或多个实施例的方法可以由单个设备执行,例如一台计算机或服务器等。本实施例的方法也可以应用于分布式场景下,由多台设备相互配合来完成。在这种分布式场景的情况下,这多台设备中的一台设备可以只执行本说明书一个或多个实施例的方法中的某一个或多个步骤,这多台设备相互之间会进行交互以完成的方法。
上述对本申请特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
附图中的流程图和框图图示了根据本申请的各种实施例的可能实现方式的体系结构、功能、和操作。在这点上,流程图或框图中的每个方框可代表一模块、片段或代码的一部分,所述模块、片段或代码的一部分包括用于实现(一个或多个)指定的逻辑功能的一个或多个可执行指令。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以由执行指定的功能或动作的专用的基于硬件的系统来实现,或者可以由专用硬件和计算机指令的组合来实现。
所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本申请的范围(包括权利要求)被限于这些例子;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实 现,并存在如上的本说明书一个或多个实施例的不同方面的许多其它变化,为了简明它们没有在细节中提供。
另外,为简化说明和讨论,并且为了不会使本说明书一个或多个实施例难以理解,在所提供的附图中可以示出或可以不示出与集成电路(IC)芯片和其它部件的公知的电源/接地连接。此外,可以以框图的形式示出装置,以便避免使本说明书一个或多个实施例难以理解,并且这也考虑了以下事实,即关于这些框图装置的实施方式的细节是高度取决于将要实施本说明书一个或多个实施例的平台的(即,这些细节应当完全处于本领域技术人员的理解范围内)。在阐述了具体细节(例如,电路)以描述本申请的示例性实施例的情况下,对本领域技术人员来说显而易见的是,可以在没有这些具体细节的情况下或者这些具体细节有变化的情况下实施本说明书一个或多个实施例。因此,这些描述应被认为是说明性的而不是限制性的。
尽管已经结合了本申请的具体实施例对本申请进行了描述,但是根据前面的描述,这些实施例的很多替换、修改和变型对本领域普通技术人员来说将是显而易见的。例如,其它存储器架构(例如,动态RAM(DRAM))可以使用所讨论的实施例。
本申请一个或多个实施例旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本说明书一个或多个实施例的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (9)

  1. 一种分区触控方法,应用于触控显示设备,其特征在于,所述触控显示设备包括一触控屏,所述触控屏的整体触控区域被划分为至少两个子区域,所述分区触控方法包括:
    接收用户对所述触控屏的触控操作;
    判断所述触控操作相应的触控点所属的子区域;
    获取所述触控点所属的子区域对应的触控扫描数据;
    根据所述触控扫描数据计算所述触控点在所述触控点所属的子区域内的坐标数据,并将所述坐标数据确定为次级坐标数据;
    根据所述触控点所属的子区域与所述整体触控区域的位置关系与几何比例,将所述次级坐标数据转换为整体坐标数据。
  2. 根据权利要求1所述的方法,其特征在于,获取所述触控点所属的子区域对应的触控扫描数据之前,还包括:
    控制触控扫描电路对所述子区域进行扫描。
  3. 根据权利要求1所述的方法,其特征在于,所述触控显示设备在所述整体触控区域边界处设置检测设备;
    所述判断所述触控操作相应的触控点所属的子区域,包括:
    接收所述检测设备对触控体的方位检测信息,根据所述方位检测信息确定所述触控体相对所述检测设备的距离与方向;
    根据所述触控体相对所述检测设备的距离与方向,确定所述触控体相应的触控点所属的子区域。
  4. 根据权利要求3所述的方法,其特征在于,所述至少两个子区域中的两相邻子区域存在重叠区域;
    当所述触控点位于所述重叠区域时,根据所述检测设备对所述触控体的跟踪检测,确定所述触控体运动趋势;
    根据所述触控体运动趋势判定相应所述触控点所属的子区域。
  5. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    接收所述检测设备对所述触控体的状态检测信息;
    在转换得到所述整体坐标数据后,根据所述状态检测信息对所述整体坐标数据的有效性进行判定;
    若所述状态检测信息内容为空,则判定所述整体坐标数据无效,将所述整体坐标数据丢弃。
  6. 根据权利要求1所述的方法,其特征在于,所述根据所述触控点所属的子区域与所述整体触控区域的位置关系与几何比例,将所述次级坐标数据转换为整体坐标数据,包括:
    根据所述位置关系与所述几何比例确定坐标数据转换公式;
    根据所述次级坐标数据,利用所述坐标数据转换公式,计算确定所述整体坐标数据。
  7. 一种分区触控装置,应用于触控显示设备,其特征在于,所述触控显示设备包括一触控屏,所述触控屏的整体触控区域被划分为至少两个子区域,所述分区触控装置包括:
    触控响应模块,被配置为接收用户对所述触控屏的触控操作;
    子区域判定模块,被配置为判断所述触控操作相应触控点所属的所述子区域;
    触控扫描模块,被配置为获取所述触控点所属的子区域对应的触控扫描数据;
    次级坐标计算模块,被配置为根据所述触控扫描数据计算所述触控点在所述子区域内的坐标数据,并将所述坐标数据确定为次级坐标数据;
    坐标转换模块,被配置为根据所述触控点所属的子区域与所述整体触控区域的位置关系与几何比例,将所述次级坐标数据转换为整体坐标数据。
  8. 一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任意一项所述的方法。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储计算机指令,所述计算机指令用于使计算机执行权利要求1至6任一所述方法。
PCT/CN2020/106733 2020-06-22 2020-08-04 分区触控方法、装置、电子设备及存储介质 WO2021258506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010575975.2 2020-06-22
CN202010575975.2A CN111880676B (zh) 2020-06-22 2020-06-22 一种分区触控方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021258506A1 true WO2021258506A1 (zh) 2021-12-30

Family

ID=73157869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106733 WO2021258506A1 (zh) 2020-06-22 2020-08-04 分区触控方法、装置、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN111880676B (zh)
WO (1) WO2021258506A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639962A (zh) * 2015-02-02 2015-05-20 惠州Tcl移动通信有限公司 一种实现电视触摸控制的方法及系统
CN106354354A (zh) * 2016-10-12 2017-01-25 青岛海信电器股份有限公司 电容式触摸屏的控制方法、装置及终端设备
CN106648408A (zh) * 2016-09-19 2017-05-10 深圳市创凯智能股份有限公司 触摸数据处理方法、装置、触摸屏及拼接显示系统
CN107506077A (zh) * 2017-08-14 2017-12-22 郑州朗睿科技有限公司 一种电阻式触摸屏校准方法
US20180356935A1 (en) * 2016-01-28 2018-12-13 Huawei Technologies Co., Ltd. Touch point positioning method and apparatus, and terminal device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355593B2 (en) * 2004-01-02 2008-04-08 Smart Technologies, Inc. Pointer tracking across multiple overlapping coordinate input sub-regions defining a generally contiguous input region
US8487910B2 (en) * 2005-05-02 2013-07-16 Smart Technologies Ulc Large scale touch system and methods for interacting with same
CN102053748A (zh) * 2009-10-28 2011-05-11 鸿富锦精密工业(深圳)有限公司 一种多点式触摸屏热键管理系统及方法
EP2507684A2 (en) * 2009-12-04 2012-10-10 Next Holdings Limited Methods and systems for position detection
CN102364428B (zh) * 2011-10-28 2013-03-20 鸿富锦精密工业(深圳)有限公司 电子设备及其页面处理方法
CN103207749B (zh) * 2012-01-17 2016-08-03 宇龙计算机通信科技(深圳)有限公司 一种触摸屏桌面视图的调整方法
CN104461197B (zh) * 2014-11-26 2017-10-31 广州中国科学院先进技术研究所 一种大尺寸电容触控膜的快速扫描检测方法
KR20160085126A (ko) * 2015-01-07 2016-07-15 삼성전자주식회사 전자 장치 및 전자 장치의 터치 스캔 방법
CN106454073B (zh) * 2016-09-12 2019-03-12 北京仁光科技有限公司 多摄像头重叠区域有效触点的识别方法
CN107885315B (zh) * 2016-09-29 2018-11-27 南京仁光电子科技有限公司 一种提高触控系统跟踪精确度的方法
CN108628561A (zh) * 2017-03-22 2018-10-09 鸿富锦精密电子(重庆)有限公司 触控装置、基于触摸屏的数据传输系统及方法
CN109933244B (zh) * 2019-05-17 2020-07-03 深圳市德明利技术股份有限公司 一种用于大尺寸触摸屏的触摸屏传感器及触摸识别方法
CN111314441B (zh) * 2020-01-21 2022-10-11 维达力实业(深圳)有限公司 基于多区域控制的终端控制方法、装置和终端
CN111240529B (zh) * 2020-03-31 2024-04-09 京东方科技集团股份有限公司 触控扫描方法及装置、芯片、存储介质、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104639962A (zh) * 2015-02-02 2015-05-20 惠州Tcl移动通信有限公司 一种实现电视触摸控制的方法及系统
US20180356935A1 (en) * 2016-01-28 2018-12-13 Huawei Technologies Co., Ltd. Touch point positioning method and apparatus, and terminal device
CN106648408A (zh) * 2016-09-19 2017-05-10 深圳市创凯智能股份有限公司 触摸数据处理方法、装置、触摸屏及拼接显示系统
CN106354354A (zh) * 2016-10-12 2017-01-25 青岛海信电器股份有限公司 电容式触摸屏的控制方法、装置及终端设备
CN107506077A (zh) * 2017-08-14 2017-12-22 郑州朗睿科技有限公司 一种电阻式触摸屏校准方法

Also Published As

Publication number Publication date
CN111880676B (zh) 2022-03-15
CN111880676A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
US8614682B2 (en) Touchscreen panel unit, scrolling control method, and recording medium
US9310457B2 (en) Baseline management for sensing device
US8847978B2 (en) Information processing apparatus, information processing method, and information processing program
JP6013623B2 (ja) タッチセンサ制御装置、タッチパネルシステム、電子情報機器
US20140267104A1 (en) Optimized adaptive thresholding for touch sensing
WO2017181844A1 (zh) 控制光标的方法及装置、显示设备
US10956663B2 (en) Controlling digital input
WO2021258506A1 (zh) 分区触控方法、装置、电子设备及存储介质
US9146666B2 (en) Touch sensor navigation
EP2975503A2 (en) Touch device and corresponding touch method
US20220197396A1 (en) Display device, display method, and recording medium recording display program
JP6773977B2 (ja) 端末装置及び操作制御プログラム
JP6898021B2 (ja) 操作入力装置、操作入力方法、及びプログラム
US20220197498A1 (en) Display device, display method, and recording medium recording display program
EP3051401B1 (en) Image display apparatus, image enlargement method, and image enlargement program
TWI452509B (zh) 3D sensing method and system of touch panel
JP6555958B2 (ja) 情報処理装置、その制御方法、プログラム、および記憶媒体
US10846878B2 (en) Multi-axis equal spacing smart guides
TW202225928A (zh) 壓力校正方法及實施該方法的觸控處理裝置與觸控系統
JP2016114857A (ja) 情報処理装置、その制御方法、プログラム、及び記憶媒体
US20160291795A1 (en) Calibration method, non-transitory computer-readable recording medium, and calibration device
TWI522871B (zh) 光學觸控系統之物件影像之處理方法
TWI775255B (zh) 用於計算壓力校正函數的觸控處理裝置與觸控系統及其方法
JP2018181169A (ja) 情報処理装置、及び、情報処理装置の制御方法、コンピュータプログラム、記憶媒体
KR101835952B1 (ko) 화면의 이동을 제어하는 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941576

Country of ref document: EP

Kind code of ref document: A1