WO2021258408A1 - 工业异构网络中多业务流融合通信的容限分析方法及装置 - Google Patents

工业异构网络中多业务流融合通信的容限分析方法及装置 Download PDF

Info

Publication number
WO2021258408A1
WO2021258408A1 PCT/CN2020/098896 CN2020098896W WO2021258408A1 WO 2021258408 A1 WO2021258408 A1 WO 2021258408A1 CN 2020098896 W CN2020098896 W CN 2020098896W WO 2021258408 A1 WO2021258408 A1 WO 2021258408A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
service
tolerance analysis
network
flow
Prior art date
Application number
PCT/CN2020/098896
Other languages
English (en)
French (fr)
Inventor
杨冬
任杰
王洪超
张宏科
高德云
郜帅
Original Assignee
北京交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京交通大学 filed Critical 北京交通大学
Publication of WO2021258408A1 publication Critical patent/WO2021258408A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • This application relates to the technical field of industrial networks, and in particular to a tolerance analysis method and device for multi-service stream fusion communication in an industrial heterogeneous network.
  • the embodiments of the present application provide a tolerance analysis method and device for multi-service stream fusion communication in an industrial heterogeneous network, so as to solve the technical problem that the fine-grained tolerance analysis of multi-service streams cannot be realized in the prior art. .
  • the first aspect of the embodiments of the present application provides a tolerance analysis method for multi-service flow converged communication in an industrial heterogeneous network.
  • the tolerance analysis method includes: obtaining service flows and service flow information applied to join the industrial heterogeneous network; The characteristics of the service flow are classified, and the service flow is divided into time-sensitive flows, real-time audio and video flows, and other service flows; obtain the network topology information and network status information of the industrial heterogeneous network; according to the network topology information, network Status information and service flow information perform tolerance analysis on the time-sensitive stream, real-time audio and video stream, and other service streams, respectively, to obtain tolerance analysis results.
  • tolerance analysis is performed on the time-sensitive stream, real-time audio and video stream, and other service streams, respectively, to obtain tolerance analysis results, including: according to satisfiability Modulus theory and multipath algorithms based on the network topology information, network status information and service flow information perform tolerance analysis on the time-sensitive flow to obtain the time-sensitive flow tolerance analysis result; according to the minimum addition deconvolution algorithm and based on The multi-path algorithm of the network topology information, network status information, and service flow information performs tolerance analysis on the real-time audio and video stream to obtain the real-time audio and video stream tolerance analysis result; based on the network topology information and network status information
  • the multi-path algorithm based on service flow information performs tolerance analysis on the remaining service flows, and obtains the tolerance analysis result of the remaining service flows.
  • the time-sensitive flow tolerance analysis result including: Calculate the bandwidth requirement and transmission delay of each time-sensitive flow based on the characteristic information of the time-sensitive flow; calculate each time-sensitive flow based on the multipath algorithm based on the network topology information, network status information, and service flow information and the bandwidth requirement All reachable forwarding paths of the stream; determine the constant of the satisfiability modulus theory solver according to the characteristic information of the time-sensitive stream and the reachable forwarding path; determine according to the stream transmission path, the network card gating period, the time slot planning table, and the transmission delay
  • the variables of the satisfiable modulus theory solver and the constraint conditions of the variables; the satisfiable modulus theory solver is operated according to the constants, variables and the constraint conditions, and the tolerance analysis result of the time-sensitive flow is obtained.
  • the tolerance analysis method for multi-service stream fusion communication in the industrial heterogeneous network further includes: determining a time slot planning result and a forwarding path planning result according to the tolerance analysis result of the time-sensitive flow; and according to the time slot planning As a result, a guard interval is added to each time slot; the available bandwidth information of the link in the network status information is updated according to the result of the forwarding path planning and the time slot in which the guard interval is added.
  • calculating all reachable forwarding paths of each time-sensitive flow according to the multi-path algorithm based on the network topology information, network state information, and service flow information and the bandwidth requirement includes: obtaining flows according to the service flow information The sender and receiver information; according to the depth-first search algorithm, find all acyclic paths from the sender to the receiver in the network topology information; filter all acyclic paths according to the link available bandwidth in the network status information and the bandwidth requirements , Get the reachable forwarding path.
  • the tolerance analysis is performed on the real-time audio and video stream to obtain the real-time audio and video stream tolerance analysis result , Including: calculating the bandwidth requirement of each real-time audio and video stream according to the characteristic information of the real-time audio and video stream; calculating each real-time bandwidth requirement according to the multi-path algorithm based on the network topology information, network status information and service flow information and the bandwidth requirement All reachable forwarding paths of audio and video streams; calculate the end-to-end delay prediction value according to the reachable forwarding path and the minimum plus deconvolution algorithm; calculate the configuration parameters of the credit-based shaper according to the preset standard specification; according to the end The end-to-end delay prediction value and the credit-based shaper configuration parameter determine the tolerance analysis result of the real-time audio and video stream.
  • performing tolerance analysis on the remaining service flows according to a multipath algorithm based on the network topology information, network status information, and service flow information to obtain the tolerance analysis results of the remaining service flows includes: according to the remaining service flows The remaining service flows are sorted according to their priority according to the characteristic information of, and all the reachable forwarding paths of each remaining service flow are calculated according to the multi-path algorithm based on the network topology information, network status information, and service flow information; The remaining service flow and the reachable forwarding path determine the tolerance analysis result of the remaining service flow.
  • a second aspect of the embodiments of the present application provides a tolerance analysis device for multi-service flow converged communication in an industrial heterogeneous network.
  • the tolerance analysis device includes: a service flow acquisition module, which is used to obtain a service flow applying for joining the industrial heterogeneous network And service flow information; a classification module, used to classify the service flow according to the characteristics of the service flow, and divide the service flow into time-sensitive flows, real-time audio and video flows, and other service flows; network information acquisition module, used to obtain industrial heterogeneity The network topology information and network status information of the network; the tolerance analysis module is used to perform capacity analysis on the time-sensitive stream, real-time audio and video stream, and other service streams according to the network topology information, network status information, and service flow information. Limit analysis to obtain the tolerance analysis result.
  • the third aspect of the embodiments of the present application provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and the computer instructions are used to make the computer execute the first aspect and the first aspect of the embodiments of the present application.
  • the tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network described in any one of the aspects.
  • a fourth aspect of the embodiments of the present application provides an electronic device, including: a memory and a processor, the memory and the processor are communicatively connected to each other, the memory stores computer instructions, and the processor executes the Computer instructions to execute the tolerance analysis method for multi-service flow converged communication in an industrial heterogeneous network as described in the first aspect and any one of the first aspect of the embodiments of the present application.
  • the method and device for analyzing the tolerance of multi-service flow converged communication in an industrial heterogeneous network can classify the obtained service flow according to the characteristics of the corresponding service flow by acquiring the service flow of different devices, and at the same time according to the characteristics of the corresponding service flow. Determine whether the network resources in the industrial heterogeneous network can support different types of business needs, so that the tolerance analysis results of different business flows can be obtained. Therefore, the method and device for tolerance analysis of multi-service stream fusion communication in an industrial heterogeneous network provided by the embodiments of the present application solves the planning problem of multi-service stream fusion communication in an industrial heterogeneous network, and improves the complexity of the tolerance analysis method. Adaptability under application scenarios.
  • the tolerance analysis method and device for multi-service stream fusion communication in industrial heterogeneous networks can perform tolerance analysis on time-sensitive streams, real-time audio and video streams, and other service streams by using different algorithms, which can be accurate and effective Determine whether the current network resources can provide services that meet their unique needs for multiple service streams.
  • the forwarding path, time slot table, and device configuration parameters that meet the needs of different types of services can be calculated to achieve time-sensitive streams and real-time audio, time-frequency streams.
  • network resources can be allocated more reasonably and network resources can be used more efficiently to accommodate more business flow work.
  • FIG. 1 is a diagram of an application scenario diagram of a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network according to an embodiment of the present application;
  • Fig. 2 is a flowchart of a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network according to an embodiment of the present application
  • Fig. 3 is a flowchart of a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application;
  • Fig. 4 is a flowchart of a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application;
  • FIG. 5 is a flowchart of a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application
  • Fig. 6 is a flowchart of a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application
  • FIG. 7 is a flowchart of a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application.
  • FIG. 8 is a flowchart of a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application.
  • FIG. 9 is a flowchart of a tolerance analysis method for multi-service flow fusion communication in an industrial heterogeneous network according to another embodiment of the present application.
  • FIG. 10 is a structural block diagram of a tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network according to an embodiment of the present application
  • FIG. 11 is a structural block diagram of a tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application.
  • FIG. 12 is a structural block diagram of a tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application.
  • FIG. 13 is a structural block diagram of a tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application.
  • FIG. 14 is a structural block diagram of a tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application.
  • 15 is a structural block diagram of a tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application;
  • 16 is a structural block diagram of a tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network according to another embodiment of the present application;
  • FIG. 17 is a schematic structural diagram of a computer-readable storage medium according to an embodiment of the present application.
  • Fig. 18 is a schematic structural diagram of an electronic device provided according to an embodiment of the present application.
  • FIG. 1 it is a schematic diagram of an application scenario of an embodiment of the present application.
  • the tolerance analysis method for multi-service flow fusion communication in an industrial heterogeneous network provided by the embodiments of the present application can be implemented in an industrial heterogeneous network controller, which obtains service flow information and network flow through its northbound interface. Topology information, network status information, the tolerance analysis method process is implemented in the controller, and the tolerance analysis results are issued through the southbound interface to complete the configuration of the switch.
  • the embodiment of the present application provides a tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network. As shown in FIG. 2, the tolerance analysis method includes the following steps:
  • Step S101 Obtain the service flow and service flow information of the application to join the industrial heterogeneous network; specifically, when an external device needs to communicate through the industrial heterogeneous network, the external device will send various types of information to the industrial heterogeneous network to form a Various business flows.
  • the business flow information can be extracted.
  • the service flow information usually includes general information and characteristic information.
  • the conventional information includes the source MAC address, destination MAC address, VLAN number, source IP address, destination IP address, transport layer protocol type, source port number, destination port number, etc. required for communication.
  • the characteristic information is information that reflects the characteristics of the service stream transmission.
  • Step S102 Classify the service flows according to the characteristics of the service flows, and divide the service flows into time-sensitive flows, real-time audio and video flows, and other service flows; specifically, the acquired service flows can be classified according to the characteristics of different service flows. Among them, those with higher delay requirements can be classified into time-sensitive streams. For example, the instruction stream of production line actions sent by assembly line automation equipment needs to ensure extremely low delay and jitter. The information sent by such devices can be classified as time-sensitive streams. Information; those with high bandwidth resource requirements can be divided into real-time audio and video streams. For example, the work of high-definition surveillance video equipment needs to ensure that the network can provide sufficient bandwidth resources and the smallest end-to-end delay. This type of equipment can send The information is classified as real-time audio and video stream information; in addition, the information sent by devices such as data collection equipment and human-computer interaction equipment can be classified as the rest of the business stream information.
  • Step S103 Obtain network topology information and network status information of the industrial heterogeneous network; specifically, the acquisition of network information can be achieved through a variety of network detection technologies.
  • the network topology information can be collected by sending and receiving LLDP (Link Layer Discovery Protocol) data packets.
  • the network topology information includes: connection information between switches, connection information between terminals and switches; query can be used
  • the network status information is obtained by monitoring the network card.
  • the network status information includes: link available bandwidth, switch processing delay, and device network card rate.
  • Step S104 Perform tolerance analysis on time-sensitive streams, real-time audio and video streams, and other service streams according to the network topology information, network status information, and service flow information to obtain tolerance analysis results.
  • the network topology information and network status information in the network can be integrated to perform tolerance analysis on various service flows to determine whether the network resources in the industrial heterogeneous network can support this type of service demand. And get the corresponding tolerance analysis results.
  • the method of tolerance analysis for multi-service stream converged communication in industrial heterogeneous networks is to obtain service streams of different devices, and classify the obtained service streams according to the characteristics of the corresponding service streams, and at the same time according to the relevant information in the network.
  • the information determines whether the network resources in the industrial heterogeneous network can support different types of business needs, so that the tolerance analysis results of different business flows can be obtained. Therefore, the tolerance analysis method for multi-service stream fusion communication in an industrial heterogeneous network provided by the embodiments of the present application solves the planning problem of multi-service stream fusion communication in an industrial heterogeneous network, and improves the tolerance analysis method in complex application scenarios. Adaptability.
  • step S104 is used to perform storage of time-sensitive streams, real-time audio and video streams, and other service streams according to network topology information, network status information, and service flow information.
  • Limit analysis to obtain the results of the tolerance analysis including the following steps:
  • Step S201 Perform tolerance analysis on the time-sensitive flow according to the satisfiability model theory and the multipath algorithm based on network topology information, network status information, and service flow information, to obtain a time-sensitive flow tolerance analysis result.
  • the reachable forwarding path can be obtained based on the multi-path algorithm.
  • the tolerance analysis result can be obtained.
  • the satisfiability modulus theory solver does not give a feasible tolerance analysis result, which means that the network resources cannot support the business demand, and the planning failure information is returned at this time.
  • Step S202 Perform tolerance analysis on the real-time audio and video stream according to the minimum plus deconvolution algorithm and the multi-path algorithm based on network topology information, network status information and service flow information to obtain a real-time audio and video stream tolerance analysis result.
  • the reachable forwarding path of the real-time audio and video stream can be obtained according to the multi-path algorithm, and the end-to-end delay prediction value of the real-time audio and video stream can be calculated based on the minimum plus deconvolution algorithm.
  • the obtained reachable forwarding path Perform traversal and combine the end-to-end delay prediction value to obtain the tolerance analysis results of real-time audio and video streams.
  • Step S203 Perform tolerance analysis on the remaining service flows according to the multipath algorithm based on the network topology information, network status information, and service flow information, and obtain the tolerance analysis results of the remaining service flows. Specifically, when performing tolerance analysis on the remaining service flows, the priority of the remaining service flows can be obtained first based on the characteristic information of the remaining service flows, and then the tolerance of the remaining service flows can be obtained based on the priority of the remaining service flows and the multipath algorithm Analyze the results.
  • step S201 performs time-sensitive flow on time-sensitive flow according to the satisfiability theory and the multipath algorithm based on network topology information, network status information, and service flow information.
  • Tolerance analysis to obtain the time-sensitive flow tolerance analysis results, includes the following steps:
  • Step S301 Calculate the bandwidth requirement and transmission delay of each time-sensitive flow according to the characteristic information of the time-sensitive flow; specifically, the characteristic information is information reflecting the transmission characteristics of the service flow, and the content contained in different service flow types is also different.
  • the characteristic information of the time-sensitive stream includes the service period, the maximum number of frames sent in the period, the maximum frame length, the earliest transmission offset, the latest transmission offset, jitter, whether to retransmit, upper limit of delay, service priority, etc.
  • Step S302 Calculate all reachable forwarding paths of each time-sensitive flow according to the multipath algorithm and bandwidth requirements based on the network topology information, network status information, and service flow information.
  • Step S401 Obtain the sender and receiver information of the flow according to the service flow information; specifically, the service flow information usually includes general information and characteristic information, and the sender and receiver information of the flow can be obtained from the general information of the time-sensitive flow.
  • Step S402 According to the depth-first search algorithm, search for all acyclic paths from the sender to the receiver in the network topology information; specifically, the depth-first search is a type of graph algorithm, which is a traversal algorithm for graphs and trees.
  • DFS Depth First Search.
  • Depth-first search is a classic algorithm in graph theory.
  • the depth-first search algorithm can generate the corresponding topological sorting table of the target graph, and the topological sorting table can easily solve many related graph theory problems. Therefore, the depth-first search can be used to detect whether there are loops in the graph, that is, the depth-first search algorithm can be used to find all acyclic paths in the network topology information.
  • Step S403 Screen all acyclic paths according to the link available bandwidth and bandwidth requirements in the network status information to obtain reachable forwarding paths. Specifically, based on the link available bandwidth in the network information, the paths whose path available bandwidth is less than the bandwidth requirement in the loop-free path may be filtered out, and the remaining paths in the loop-free path may be used as reachable forwarding paths.
  • the reference quantity W based on the number of hops and the available bandwidth may also be used to sort all the reachable forwarding paths.
  • the reference amount Where a is the weight of the number of path hops, Is the standardized value of the dispersion of the path hops, b is the weight of the path's available bandwidth, It is the normalized value of the deviation of the available bandwidth of the path.
  • the reference value W is used to judge the quality of the path. The smaller the number of hops, the larger the available bandwidth, the better the path is, and the path is ranked from good to bad according to this value.
  • Step S303 Determine the constant of the satisfiability modulus theory solver according to the characteristic information of the time-sensitive flow and the reachable forwarding path; specifically, the characteristic information of the time-sensitive flow and all reachable forwarding paths can be added to the satisfiability modulus theory In the solver, as the constant of the solver, that is, the known conditions of the solver.
  • Step S304 According to the stream transmission path, the network card gating period, the time slot planning table, and the transmission delay, determine the variables that can satisfy the modulus theory solver and the constraint conditions of the variables; specifically, the stream transmission path, the network card gating period, and time
  • the gap planning table can be added as a solution variable of the satisfiability modulus theory solver.
  • the known conditions and solution variables of the solver can be written in a custom format to ensure the correctness of the solution process and output results.
  • the constraint condition of the variable can be used to restrict the value range of the solution variable.
  • the stream transmission path is selected within the range of all reachable forwarding paths; the device network card gating period is the least common multiple of the period of all time-sensitive streams flowing through it; the length of each time slot is greater than the transmission of the time-sensitive stream flowing through at this time Time delay; the same time-sensitive flow in the same device in the same cycle, the next time slot is later than the previous time slot by more than the time interval of the flow cycle; the time slots in the same device cannot overlap; the same data packet passes through the time slot of the next device It is more than the time interval of the sum of the propagation delay, the stream transmission delay and the switch processing delay than the previous time slot; the end-to-end delay of the data packet of any time-sensitive flow is less than the upper limit of the time-sensitive flow delay.
  • Step S305 Run the satisfiability model theory solver according to the constants, variables and constraints, and obtain the tolerance analysis result of the time-sensitive flow. Specifically, by running the satisfiability model theory solver, the tolerance analysis results of the time-sensitive flow can be obtained. In addition, if the solver does not provide a feasible tolerance analysis result, it means that the network resources cannot support the business demand, and the planning failure information is returned at this time.
  • the tolerance analysis method for multi-service flow converged communication in an industrial heterogeneous network further includes the following steps:
  • Step S501 Determine the slot planning result and the forwarding path planning result according to the tolerance analysis result of the time-sensitive flow; specifically, when the satisfiability modulus theory solver gives the feasible tolerance analysis result, it can be included in the tolerance analysis result Obtain the time slot planning results and forwarding path planning results of all equipment network cards.
  • Step S502 Add a guard interval to each time slot according to the time slot planning result; specifically, the length of the guard interval is determined by the relative position of the time slot and the maximum frame length of the service flow flowing through the device network card.
  • the time-slot guard interval specified by the time-sensitive network is generally within the data transmission time range of 0-1500 bits of data. When selecting the guard interval length, it is necessary to refer to the relative position relationship with adjacent time slots and flow through the equipment. The longest frame size of the service flow of the network card.
  • the time difference between the opening time of this time slot and the closing time of the nearest adjacent time slot in the forward direction is T
  • the longest frame size of the service flow flowing through the device network card is L max
  • the network card speed is S
  • Step S503 Update the available bandwidth information of the link in the network according to the result of the forwarding path planning and the time slot to which the guard interval is added. Specifically, the link available bandwidth information in the network state information can be updated according to the forwarding path planning result and the time slot planning result with the guard interval added.
  • step S202 performs real-time audio and video analysis based on the minimum plus deconvolution algorithm and the multipath algorithm based on network topology information, network status information, and service flow information.
  • steps S202 perform tolerance analysis on the stream to obtain the real-time audio and video stream tolerance analysis results.
  • Step S601 Calculate the bandwidth requirement of each real-time audio and video stream according to the feature information of the real-time audio and video stream; specifically, the frame sending rate, frame load size, and upper limit of delay in the real-time audio and video stream feature information can be obtained, and each Bandwidth requirements for real-time audio and video streaming.
  • Step S602 Calculate all reachable forwarding paths of each real-time audio and video stream according to the multi-path algorithm and bandwidth requirements based on the network topology information, network status information, and service flow information.
  • the service flow information of the real-time audio and video stream can be collected first, and the sender and receiver information of the real-time audio and video stream can be obtained from the service stream information; then the depth-first search algorithm is used to find the real-time audio and video stream in the network topology information All the loop-free paths from the sender to the receiver; then the available link bandwidth can be obtained from the network information, and 75% of the available bandwidth of the loop-free path is less than the bandwidth requirement, and the remaining paths are used as reachable forwarding paths.
  • the reference quantity W based on the number of hops and the available bandwidth may also be used to sort all the reachable forwarding paths.
  • the reference amount Where a is the weight of the number of path hops, Is the standardized value of the dispersion of the path hops, b is the weight of the path's available bandwidth, It is the normalized value of the deviation of the available bandwidth of the path.
  • the reference value W is used to judge the quality of the path. The smaller the number of hops, the larger the available bandwidth, the better the path is, and the path is ranked from good to bad according to this value.
  • Step S603 calculate the end-to-end delay prediction value according to the reachable forwarding path and the minimum plus deconvolution algorithm.
  • Step S604 Calculate the configuration parameters of the credit-based shaper according to the preset standard specification.
  • the end-to-end delay prediction value may be calculated by using the minimum plus deconvolution algorithm of network calculation.
  • the minimum addition deconvolution algorithm may include the following steps:
  • Step S701 Calculate the first aggregate arrival curve ⁇ TT (t) containing the guard interval of all time-sensitive flows flowing through the same device network card according to the number of time-sensitive flows, specifically, when the first aggregate arrival curve ⁇ TT (t) It can be calculated using formula (1).
  • TTnum is the number of time-sensitive streams flowing through the network card
  • Slotnum is the number of transmission time slots of a stream in one gating period of the network card
  • slotduration i,j is the i-th time-sensitive stream j with guard interval
  • C is the network card rate of the device
  • P is the gating period of the network card
  • slotoccupied (st, t ⁇ P) is the period that starts from the time st and lasts for all the transmission time slots occupied by the time t ⁇ P
  • the sum of time, ⁇ is the remainder operator.
  • Step S702 According to the device network card rate in the network status information and the maximum frame length in the service flow characteristic information, calculate the first aggregated service curve ⁇ TT (t) of the device network card for time-sensitive flows, specifically, the first aggregated service curve ⁇ TT (t) can be calculated using formula (2).
  • L max is the maximum frame length flowing through the network card of the device.
  • Step S703 Calculate the second aggregate arrival curve ⁇ AVB (t) of all real-time audio and video streams of the same priority flowing through the same device network card according to the frame sending rate and frame load size in the service stream characteristic information. Specifically, the first When the second polymerization reaches the curve ⁇ AVB (t), it can be calculated by formula (3).
  • r i is the i th transmission frame rate real-time audio and video streams
  • b i is the i th real-time streaming audio and video frame size.
  • Step S704 Calculate the second aggregated service curve of the device network card for real-time audio and video streams according to the first aggregated arrival curve and the first aggregated service curve.
  • the second aggregated service curve can be calculated by using formula (4).
  • idle is the idle rate of the credit-based shaper of the device network card
  • send is the sending rate
  • hicredit is the maximum credit value. Is the minimum plus deconvolution operator.
  • Step S705 Calculate the predicted value of the queuing delay of the real-time audio and video stream on the device network card according to the second aggregated arrival curve and the second aggregated service curve of the real-time audio and video stream.
  • the predicted value of the queuing delay can adopt formula (5) Calculated.
  • sup is the supremum and inf is the infimum.
  • Step S706 Calculate the end-to-end delay prediction value D total of the real-time audio and video stream according to the queuing delay prediction value.
  • the end-to-end delay prediction value can be calculated by using formula (6).
  • Hopnum is the number of forwarding path hops
  • D i is the predicted value of queuing delay for the i-th hop
  • D trans,i is the transmission delay of the i-th hop
  • D propa,i is the propagation delay of the i-th hop
  • D proc,i is The processing delay of the i-th hop device.
  • the credit-based shaper configuration parameters can be calculated according to the IEEE 802.1Q-2014 (Local Area Network and Metropolitan Area Network. Bridge and Virtual Bridged Network) specification for the calculation method of configuration parameters.
  • you can traverse all reachable forwarding path conditions of real-time audio and video streams until the predicted end-to-end delay of each real-time audio and video stream is less than the upper limit of the corresponding real-time audio and video stream delay.
  • the forwarding path of each real-time audio and video stream and the configuration parameters of the credit-based shaper of the device network card are used as the tolerance analysis result.
  • the planning failure message is returned.
  • Step S605 Determine the tolerance analysis result of the real-time audio and video stream according to the end-to-end delay prediction value and the configuration parameter of the credit-based shaper. Specifically, after the tolerance analysis result is determined, the link available bandwidth information in the network status information can also be updated according to the tolerance analysis result.
  • step S203 performs tolerance analysis on the remaining service flows according to the multipath algorithm based on network topology information, network status information, and service flow information, and obtains the remaining service flows.
  • the business flow tolerance analysis result includes the following steps:
  • Step S801 Sort the remaining service flows according to their priority according to the characteristic information of the remaining service flows; specifically, the minimum bandwidth requirements and service priorities of all the remaining service flows can be obtained from the characteristic information of the remaining service flows, and all the remaining service flows The streams are sorted by priority.
  • Step S802 Calculate all reachable forwarding paths of each remaining service flow according to the multipath algorithm based on network topology information, network status information and service flow information; specifically, the service flow information of the remaining service flows can be collected first, and the service flow The information obtains the sender and receiver information of the remaining service flows; then, using the depth-first search algorithm, all the loopless paths from the sender to the receiver of the remaining service flows are found in the network topology information as the reachable forwarding path. If the forwarding path is not calculated, indicating that the network resources cannot support the business demand, the planning failure message will be returned.
  • the reference quantity W based on the number of hops and the available bandwidth may also be used to sort all the reachable forwarding paths.
  • the reference amount Where a is the weight of the number of path hops, Is the standardized value of the dispersion of the path hops, b is the weight of the path's available bandwidth, It is the normalized value of the deviation of the available bandwidth of the path.
  • the reference value W is used to judge the quality of the path. The smaller the number of hops, the larger the available bandwidth, the better the path is, and the path is ranked from good to bad according to this value.
  • Step S803 Determine the tolerance analysis result of all the remaining service flows according to the sorted remaining service flows and the reachable forwarding path. Specifically, if the reachable forwarding path can be found by using the depth-first search algorithm, the best path among all reachable forwarding paths can be selected as the tolerance analysis result of the remaining service flows according to the remaining service flows after sorting.
  • the tolerance analysis method for multi-service stream fusion communication in the industrial heterogeneous network can accurately and effectively determine the current tolerance by using different algorithms to perform tolerance analysis on time-sensitive streams, audio and video information streams, and other service streams.
  • network resources can provide services that meet their unique needs for multi-service streams
  • the forwarding path, time slot table, and device configuration parameters that meet the needs of different types of services can be calculated to achieve time-sensitive streams, audio-time-frequency streams, and other services
  • the overall planning of the flow compared to the sequential planning of a single business flow, can allocate network resources more reasonably and use network resources more efficiently to accommodate more business flow work.
  • An embodiment of the present application also provides a tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network.
  • the tolerance analysis device includes:
  • the service flow obtaining module 10 is used to obtain the service flow and service flow information applied to join the industrial heterogeneous network; for details, refer to the relevant description of step S101 in the foregoing method embodiment.
  • the classification module 20 is configured to classify the service flow according to the characteristics of the service flow, and divide the service flow into a time-sensitive flow, a real-time audio and video flow, and other service flows; for details, refer to the relevant description of step S102 in the foregoing method embodiment.
  • the network information obtaining module 30 is used to obtain network topology information and network status information of the industrial heterogeneous network; for details, refer to the relevant description of step S103 in the foregoing method embodiment.
  • the tolerance analysis module 40 is configured to perform tolerance analysis on time-sensitive streams, real-time audio and video streams, and other service streams according to network topology information, network status information, and service flow information to obtain tolerance analysis results. For details, refer to the related description of step S104 in the foregoing method embodiment.
  • the tolerance analysis device for multi-service stream converged communication in an industrial heterogeneous network obtaineds service streams of different devices and classifies the obtained service streams according to the characteristics of the corresponding service streams.
  • the information determines whether the network resources in the industrial heterogeneous network can support different types of business needs, so that the tolerance analysis results of different business flows can be obtained. Therefore, the tolerance analysis device for multi-service stream fusion communication in an industrial heterogeneous network provided by the embodiment of the present application solves the planning problem of multi-service stream fusion communication in an industrial heterogeneous network, and improves the tolerance analysis device in complex application scenarios. Adaptability.
  • the tolerance analysis module 40 includes:
  • the time-sensitive flow tolerance analysis module 21 is used to perform tolerance analysis on the time-sensitive flow according to the satisfiability model theory and the multipath algorithm based on the network topology information, network status information, and service flow information to obtain the time-sensitive flow Flow tolerance analysis result; for details, refer to the relevant description of step S201 in the above method embodiment.
  • the real-time audio and video stream tolerance analysis module 22 is configured to perform tolerance analysis on the real-time audio and video stream according to the minimum plus deconvolution algorithm and the multipath algorithm based on the network topology information, network status information and service flow information, Obtain the real-time audio and video stream tolerance analysis result; for details, refer to the relevant description of step S202 in the foregoing method embodiment.
  • the remaining service flow tolerance analysis module 23 is configured to perform tolerance analysis on the remaining service flows according to a multipath algorithm based on the network topology information, network status information, and service flow information to obtain the remaining service flow tolerance analysis results. For details, refer to the related description of step S203 in the foregoing method embodiment.
  • the time-sensitive flow tolerance analysis module 21 includes:
  • the first bandwidth calculation module 31 is configured to calculate the bandwidth requirement and transmission delay of each time-sensitive stream according to the characteristic information of the time-sensitive stream; for details, refer to the relevant description of step S301 in the foregoing method embodiment.
  • the first path calculation module 32 is configured to calculate all reachable forwarding paths of each time-sensitive flow according to the multi-path algorithm based on the network topology information, network status information, and service flow information and the bandwidth requirement; see the above for details Description of step S302 in the method embodiment.
  • the constant determination module 33 is used to determine the constant of the satisfiability modulus theory solver according to the characteristic information of the time-sensitive flow and the reachable forwarding path; for details, refer to the relevant description of step S303 in the foregoing method embodiment.
  • variable determining module 34 is used to determine the variables of the satisfiability modulus theory solver and the constraint conditions of the variables according to the streaming transmission path, the network card gating period, the time slot planning table, and the transmission delay; for details, refer to the above method embodiment Relevant description of step S304 in.
  • the first analysis sub-module 35 is configured to run the satisfiability modulus theory solver according to the constants, variables, and constraints, to obtain the tolerance analysis result of the time-sensitive flow. For details, refer to the relevant description of step S305 in the foregoing method embodiment.
  • the first path calculation module 32 includes:
  • the terminal information obtaining module 41 obtains the sender and receiver information of the stream according to the service stream information; for details, refer to the relevant description of step S401 in the foregoing method embodiment.
  • the search module 42 is configured to search for all acyclic paths from the sending end to the receiving end in the network topology information according to the depth-first search algorithm; for details, refer to the relevant description of step S402 in the foregoing method embodiment.
  • the path screening module 43 is configured to screen all acyclic paths according to the link available bandwidth in the network status information and the bandwidth requirement to obtain a reachable forwarding path. For details, refer to the relevant description of step S403 in the foregoing method embodiment.
  • the tolerance analysis device for multi-service stream fusion communication in the industrial heterogeneous network further includes:
  • the planning result determining module 51 is configured to determine the time slot planning result and the forwarding path planning result according to the tolerance analysis result of the time-sensitive flow; for details, refer to the relevant description of step S501 in the foregoing method embodiment.
  • the guard interval determining module 52 is configured to add a guard interval to each time slot according to the time slot planning result; for details, refer to the related description of step S502 in the above method embodiment.
  • the update module 53 is used to update the available bandwidth information of the link in the network according to the result of the forwarding path planning and the time slot to which the guard interval is added. For details, refer to the related description of step S503 in the foregoing method embodiment.
  • the real-time audio and video stream tolerance analysis module 22 includes:
  • the second bandwidth calculation module 61 is configured to calculate the bandwidth requirement of each real-time audio and video stream according to the characteristic information of the real-time audio and video stream; for details, refer to the relevant description of step S601 in the foregoing method embodiment.
  • the second path calculation module 62 calculates all reachable forwarding paths of each real-time audio and video stream according to the multi-path algorithm and bandwidth requirements based on network topology information, network status information, and service flow information; for details, refer to the steps in the above method embodiment Relevant description of S602.
  • the delay calculation module 63 is configured to calculate the end-to-end delay prediction value and the credit-based shaper configuration parameters according to the reachable forwarding path and the minimum plus deconvolution algorithm; for details, refer to the relevant step S603 in the above method embodiment describe.
  • the second analysis sub-module 64 determines the tolerance analysis result of the real-time audio and video stream according to the end-to-end delay prediction value and the configuration parameters of the credit-based shaper. For details, refer to the related description of step S604 in the foregoing method embodiment.
  • the remaining service flow tolerance analysis module 23 includes:
  • the sorting module 81 is configured to sort the remaining service flows according to their priority according to the characteristic information of the remaining service flows; for details, refer to the relevant description of step S801 in the foregoing method embodiment.
  • the third path calculation module 82 is used to calculate all reachable forwarding paths of each remaining service flow according to the multipath algorithm based on network topology information, network status information and service flow information; for details, refer to step S802 in the above method embodiment Related description.
  • the third analysis sub-module 83 is configured to determine the tolerance analysis result of the remaining service flows according to the sorted remaining service flows and the reachable forwarding path. For details, refer to the related description of step S803 in the foregoing method embodiment.
  • the tolerance analysis device for multi-service stream fusion communication in the industrial heterogeneous network can perform tolerance analysis on time-sensitive streams, audio and video information streams, and other service streams by using different algorithms, which can accurately and effectively judge the current Whether network resources can provide services that meet their unique needs for multi-service streams, the forwarding path, time slot table, and device configuration parameters that meet the needs of different types of services can be calculated to achieve time-sensitive streams, audio-time-frequency streams, and other services
  • the overall planning of the flow compared to the sequential planning of a single business flow, can allocate network resources more reasonably and use network resources more efficiently to accommodate more business flow work.
  • the tolerance analysis device for multi-service stream converged communication in the industrial heterogeneous network provided by the embodiment of the present application, please refer to the description of the tolerance analysis method for multi-service stream converged communication in the industrial heterogeneous network in the foregoing embodiment.
  • the embodiment of the present application also provides a storage medium, as shown in FIG. 17, on which a computer program 100 is stored.
  • a storage medium as shown in FIG. 17, on which a computer program 100 is stored.
  • the storage medium also stores real-time audio and video stream data, characteristic frame data, interactive request signaling, encrypted data, and preset data size.
  • the storage media can be magnetic disks, optical disks, read-only memory (Read-Only Memory, ROM), random access memory (RAM), flash memory (Flash Memory), hard disk (Hard Disk Drive) , Abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the foregoing types of memories.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), a random access memory (RAM), a flash memory (Flash Memory), a hard disk (Hard Disk Drive, abbreviation: HDD) or solid-state drive (Solid-State Drive, SSD), etc.; the storage medium may also include a combination of the foregoing types of memories.
  • the electronic device may include a processor 200 and a memory 300, where the processor 200 and the memory 300 may be connected by a bus or in other ways. Take bus connection as an example.
  • the processor 200 may be a central processing unit (CPU).
  • the processor 200 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), Application Specific Integrated Circuit (ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), or Chips such as other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or a combination of the above types of chips.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • Chips such as other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, or a combination of the above types of chips.
  • the memory 300 can be used to store non-transitory software programs, non-transitory computer executable programs and modules, such as corresponding program instructions/modules in the embodiments of the present application.
  • the processor 200 executes various functional applications and data processing of the processor by running non-transitory software programs, instructions, and modules stored in the memory 300, that is, realizing the multi-service flow in the industrial heterogeneous network in the foregoing method embodiment Tolerance analysis method for converged communication.
  • the memory 300 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created by the processor 200 and the like.
  • the memory 300 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid state storage devices.
  • the memory 300 may optionally include memories remotely provided with respect to the processor 200, and these remote memories may be connected to the processor 200 via a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 300 and, when executed by the processor 200, execute the tolerance of the multi-service stream convergence communication in the industrial heterogeneous network in the embodiment shown in FIGS. 2-9 Analytical method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种工业异构网络中多业务流融合通信的容限分析方法及装置,该容限分析方法包括:获取申请加入工业异构网络的业务流及业务流信息;根据业务流的特性进行分类,将业务流分为时间敏感流、实时音视频流以及其余业务流;获取工业异构网络的网络拓扑信息和网络状态信息;根据网络拓扑信息、网络状态信息及业务流信息分别对时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果。本申请实施例提供的工业异构网络中多业务流融合通信的容限分析方法及装置,解决了工业异构网络中多业务流融合通信的规划难题,提高了容限分析方法在复杂应用场景下的适应性。

Description

工业异构网络中多业务流融合通信的容限分析方法及装置 技术领域
本申请涉及工业网络技术领域,具体涉及一种工业异构网络中多业务流融合通信的容限分析方法及装置。
背景技术
随着我国智能制造的逐步推进,个性化定制、网络化协同等新型制造生产模式得到了广泛的发展。用于工业环境下的通信方式也越来越丰富,以太网、光网、无线局域网、2G/3G/4G公网、行业专网等各种有线、无线、公网、专网互相融合,互相补充构成了工业异构网络。工业异构网络可以实现业务认知和全网可管控,支持对已有工业以太网协议的适配,既满足新型制造生产模式的需要,又使IT(Information Technology,信息技术)区和OT(Operation Technology,操作技术)区工业网络深度融合成为可能。
然而,网络边缘侧设备日益复杂化、差异化,对工业异构网络的适应性提出了更高的要求。例如,流水线自动化设备指令信息的通信需要确保极低的时延与抖动,高清监控视频设备的工作则需要确保网络能提供充足的带宽资源和尽量小的端到端时延,数据采集业务流、人机交互流、管理信息流等等不同优先级的业务流对通信质量也有不同的需求。针对上述情况,如何判断目前网络资源能否向多类别业务提供满足其独特需求的细粒度的服务,如何科学合理地规划网络资源使其被高效地利用成为当前研究的热点问题。
现有的工业异构网络容限分析和资源分配技术,只能支持对同种类型或同种需求的流进行分析规划,无法实现多业务流细粒度的容限分析与资源分配。由此可见,多类别多需求业务流给工业异构网络的容限分析能力和适用范围带来了极大挑战。
发明内容
有鉴于此,本申请实施例提供了一种工业异构网络中多业务流融合通信的容限分析方法及装置,以解决现有技术中无法实现多业务流细粒度的容限分析的技术问题。
本申请提出的技术方案如下:
本申请实施例第一方面提供一种工业异构网络中多业务流融合通信的容限分析方法,该容限分析方法包括:获取申请加入工业异构网络的业务流及业务流信息;根据所述业务流的特性进行分类,将所述业务流分为时间敏感流、实时音视频流以及其余业务流;获取工业异构网络的网络拓扑信息和网络状态信息;根据所述网络拓扑信息、网络状态信息及业务流信息分别对所述时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果。
进一步地,根据所述网络拓扑信息、网络状态信息及业务流信息分别对所述时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果,包括:根据可满足性模理论以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述时间敏感流进行容限分析,得到时间敏感流容限分析结果;根据最小加反卷积算法以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路 径算法对所述实时音视频流进行容限分析,得到实时音视频流容限分析结果;根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述其余业务流进行容限分析,得到其余业务流容限分析结果。
进一步地,根据可满足性模理论以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述时间敏感流进行容限分析,得到时间敏感流容限分析结果,包括:根据时间敏感流的特征信息计算每一时间敏感流的带宽需求和传输时延;根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法和所述带宽需求计算每一时间敏感流的所有可达转发路径;根据时间敏感流的特征信息以及可达转发路径确定可满足性模理论求解器的常量;根据流传输路径、网卡门控周期、时隙规划表以及传输时延确定所述可满足性模理论求解器的变量及变量的约束条件;根据所述常量、变量及约束条件运行所述可满足性模理论求解器,得到时间敏感流的容限分析结果。
进一步地,该工业异构网络中多业务流融合通信的容限分析方法还包括:根据所述时间敏感流的容限分析结果确定时隙规划结果和转发路径规划结果;根据所述时隙规划结果为每一时隙添加保护间隔;根据所述转发路径规划结果以及添加保护间隔的时隙更新网络状态信息中链路的可用带宽信息。
进一步地,根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法和所述带宽需求计算每一时间敏感流的所有可达转发路径,包括:根据所述业务流信息获取流的发送端和接收端信息;根据深度优先搜索算法,在网络拓扑信息中寻找发送端到接收端的所有无环路径;根据网络状态信息中的链路可用带宽和所述带宽需求筛选所有无环路径,得到可达转发路径。
进一步地,根据最小加反卷积算法以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述实时音视频流进行容限分析,得到实时音视频流容限分析结果,包括:根据实时音视频流的特征信息计算每一实时音视频流的带宽需求;根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法和所述带宽需求计算每一实时音视频流的所有可达转发路径;根据可达转发路径和最小加反卷积算法计算得到端到端时延预测值;根据预设标准规范计算基于信用的整形器配置参数;根据所述端到端时延预测值和所述基于信用的整形器配置参数确定所述实时音视频流的容限分析结果。
进一步地,根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述其余业务流进行容限分析,得到其余业务流容限分析结果,包括:根据所述其余业务流的特征信息对所述其余业务流按照优先级进行排序;根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法计算每一其余业务流的所有可达转发路径;根据排序后的其余业务流和可达转发路径确定所述其余业务流的容限分析结果。
本申请实施例第二方面提供一种工业异构网络中多业务流融合通信的容限分析装置,该容限分析装置包括:业务流获取模块,用于获取申请加入工业异构网络的业务流及业务流信息;分类模块,用于根据所述业务流的特性进行分类,将所述业务流分为时间敏感流、实时音视频流以及其余业务流;网络信息获取模块,用于获取工业异构网络的网络拓扑信息和网络状态信息;容限分析模块,用于根据所述网络拓扑信息、网络状态信息及业务流信息分别对所述时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果。
本申请实施例第三方面提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机指令, 所述计算机指令用于使所述计算机执行如本申请实施例第一方面及第一方面任一项所述的工业异构网络中多业务流融合通信的容限分析方法。
本申请实施例第四方面提供一种电子设备,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行如本申请实施例第一方面及第一方面任一项所述的工业异构网络中多业务流融合通信的容限分析方法。
本申请提供的技术方案,具有如下效果:
本申请实施例提供的工业异构网络中多业务流融合通信的容限分析方法及装置,通过获取不同设备的业务流,将获取的业务流根据相应业务流的特性进行分类,同时根据网络中的相关信息判断该工业异构网络中的网络资源是否能支撑不同类业务需求,从而可以得到不同业务流的容限分析结果。因此,本申请实施例提供的工业异构网络中多业务流融合通信的容限分析方法及装置,解决了工业异构网络中多业务流融合通信的规划难题,提高了容限分析方法在复杂应用场景下的适应性。
本申请实施例提供的工业异构网络中多业务流融合通信的容限分析方法及装置,通过采用不同的算法对时间敏感流、实时音视频流以及其余业务流进行容限分析,可以精确有效判断目前网络资源能否向多业务流提供满足其独特需求的服务,可以计算得到满足不同类型业务需求的转发路径、时隙表及设备配置参数,实现了对时间敏感流、实时音时频流以及其余业务流的整体规划,相比单一业务流依次规划的方式,可以更合理地分配网络资源、更高效地利用网络资源以容纳更多业务流工作。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的工业异构网络中多业务流融合通信的容限分析方法的应用场景示图;
图2是根据本申请实施例的工业异构网络中多业务流融合通信的容限分析方法的流程图;
图3是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析方法的流程图;
图4是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析方法的流程图;
图5是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析方法的流程图;
图6是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析方法的流程图;
图7是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析方法的流程图;
图8是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析方法的流程图;
图9是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析方法的流程图;
图10是根据本申请实施例的工业异构网络中多业务流融合通信的容限分析装置的结构框图;
图11是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析装置的结构框图;
图12是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析装置的结构框图;
图13是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析装置的结构框图;
图14是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析装置的结构框图;
图15是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析装置的结构框图;
图16是根据本申请另一实施例的工业异构网络中多业务流融合通信的容限分析装置的结构框图;
图17是根据本申请实施例提供的计算机可读存储介质的结构示意图;
图18是根据本申请实施例提供的电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
如图1所示,是本申请实施例的应用场景示意图。本申请实施例提供的工业异构网络中多业务流融合通信的容限分析方法可以在工业异构网络控制器中实现,该工业异构网络控制器通过其北向接口获取业务流信息、网流拓扑信息、网络状态信息,在控制器内实施容限分析方法流程,通过南向接口下发容限分析结果,完成对交换机的配置。
本申请实施例提供一种工业异构网络中多业务流融合通信的容限分析方法,如图2所示,该容限分析方法包括如下步骤:
步骤S101:获取申请加入工业异构网络的业务流及业务流信息;具体地,当有外部设备需要通过工业异构网络进行通信时,外部设备会向工业异构网络发送各类信息从而形成了各类业务流。对于获取的业务流,可以提取其中的业务流信息。该业务流信息通常包括常规信息和特征信息。
其中,常规信息包括通信所需的源MAC地址、目的MAC地址、VLAN号、源IP地址、目的IP地址、传输层协议类型、源端口号、目的端口号等等。特征信息为反映该业务流传输特征的信息。
步骤S102:根据业务流的特性进行分类,将业务流分为时间敏感流、实时音视频流以及其余业务流;具体地,对于获取的业务流,可以按照不同业务流的特性对其进行分类。其中,对时延要求较高的可以分为时间敏感流,例如流水线自动化设备发送的生产线动作的指令流需要确保极低的时延和抖动,可以将此类设备发送的信息归为时间敏感流信息;对带宽资源要求较高的可以分为实时音视频流,例如高清监控视频设备的工作需要确保网络能提供充足的带宽资源和尽量小的端到端时延,可以将此类设备发送的信息归为实时音视频流信息;此外,对于数据采集设备、人机交互设备等设备发送的信息则可以归为其余业务流信息。
步骤S103:获取工业异构网络的网络拓扑信息和网络状态信息;具体地,可以通过多种网络探测技术实现网络信息的获取。其中,可以采用发送接收LLDP(Link Layer Discovery Protocol,链路层发现协议)数据包的方式收集网络拓扑信息,网络拓扑信息包括:交换机间的连接信息、终端与交换机间的连接信息;可以采用查询和监测网卡的方式获取网络状态信息,网络状态信息包括:链路可用带宽、交换机处理时延、设备网卡速率。
步骤S104:根据网络拓扑信息、网络状态信息及业务流信息分别对时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果。具体地,对于分类后的业务流,可以综合网络中的网络拓扑信息和网络状态信息对各类业务流进行容限分析,判断该工业异构网络中的网络资源是否能支撑该类业务需求,并得到相应的容限分析结果。
本申请实施例提供的工业异构网络中多业务流融合通信的容限分析方法,通过获取不同设备的业务流,将获取的业务流根据相应业务流的特性进行分类,同时根据网络中的相关信息判断该工业异构网络中的网络资源是否能支撑不同类业务需求,从而可以得到不同业务流的容限分析结果。因此,本申请实施例提供的工业异构网络中多业务流融合通信的容限分析方法,解决了工业异构网络中多业务流融合通信的规划难题,提高了容限分析方法在复杂应用场景下的适应性。
作为本申请实施例的一种可选的实施方式,如图3所示,步骤S104根据网络拓扑信息、网络状态信息及业务流信息分别对时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果,包括如下步骤:
步骤S201:根据可满足性模理论以及基于网络拓扑信息、网络状态信息及业务流信息的多路径算法对时间敏感流进行容限分析,得到时间敏感流容限分析结果。具体地,在对时间敏感流进行容限分析时,可以基于多路径算法得到可达转发路径,根据可达转发路径并运行可满足性模理论求解器可以得到其容限分析结果,其中,当可满足性模理论求解器未给出可行容限分析结果,则说明网络资源无法支撑该业务需求,此时返回规划失败信息。
步骤S202:根据最小加反卷积算法以及基于网络拓扑信息、网络状态信息及业务流信息的多路径算法对实时音视频流进行容限分析,得到实时音视频流容限分析结果。具体地,根据多路径算法可以得到实时音视频流的可达转发路径,基于最小加反卷积算法可以计算得到实时音视频流的端到端时延预测值,根据对得到的可达转发路径进行遍历,并结合端到端时延预测值获取实时音视频流的容限分析结果。
步骤S203:根据基于网络拓扑信息、网络状态信息及业务流信息的多路径算法对其余业务流进行容限分析,得到其余业务流容限分析结果。具体地,对其余业务流进行容限分析时,可以先根据其余业务流的特征信息得到其余业务流的优先级,之后可以基于其余业务流的优先级以及多路径算法得到其余业务流的容限分析结果。
作为本申请实施例的一种可选的实施方式,如图4所示,步骤S201根据可满足性模理论以及基于网络拓扑信息、网络状态信息及业务流信息的多路径算法对时间敏感流进行容限分析,得到时间敏感流容限分析结果,包括如下步骤:
步骤S301:根据时间敏感流的特征信息计算每一时间敏感流的带宽需求和传输时延;具体地,特征信息为反映该业务流传输特征的信息,不同业务流类型所包含的内容也不同。时间敏感流的特征信息包括业务周期、周期最大发送帧数、最大帧长度、最早传输偏移、最晚传输偏移、抖动、是否复传、时延上限、业务优先级等等。在计算带宽需求和传输时延时,可以根据业务周期、周期最大发送帧数、最大帧长度、时延上限计算得到。
步骤S302:根据基于网络拓扑信息、网络状态信息及业务流信息的多路径算法和带宽需求计算每一时间敏感流的所有可达转发路径。
在一实施例中,如图5所示,采用多路径算法就按可达转发路径时,可以按照以下步骤实现:
步骤S401:根据业务流信息获取流的发送端和接收端信息;具体地,业务流信息通常包括常规信息和特征信息,可以从时间敏感流的常规信息中获取流的发送端和接收端信息。
步骤S402:根据深度优先搜索算法,在网络拓扑信息中寻找发送端到接收端的所有无环路径;具体 地,深度优先搜索属于图算法的一种,是一个针对图和树的遍历算法,英文缩写为DFS即Depth First Search。深度优先搜索是图论中的经典算法,利用深度优先搜索算法可以产生目标图的相应拓扑排序表,利用拓扑排序表可以方便的解决很多相关的图论问题。因此,深度优先搜索可以用于检测图中是否存在环,即,可以采用深度优先搜索算法在网络拓扑信息中找到所有的无环路径。
步骤S403:根据网络状态信息中的链路可用带宽和带宽需求筛选所有无环路径,得到可达转发路径。具体地,可以基于网络信息中的链路可用带宽,将无环路径中路径可用带宽小于带宽需求的路径筛除,将无环路径中剩余的路径作为可达转发路径。
可选地,在得到可达转发路径后,还可以采用基于跳数和可用带宽的参考量W对所有可达转发路径进行排序。具体地,参考量
Figure PCTCN2020098896-appb-000001
其中a为路径跳数的权值,
Figure PCTCN2020098896-appb-000002
为路径跳数离差标准化后的值,b为路径可用带宽的权值,
Figure PCTCN2020098896-appb-000003
为路径可用带宽离差标准化后的值。参考量W用于判断路径优劣,跳数越少可用带宽越大则认定该路径越好,根据该值将路径由好到坏依次排列。
步骤S303:根据时间敏感流的特征信息以及可达转发路径确定可满足性模理论求解器的常量;具体地,可用将时间敏感流的特征信息和所有可达转发路径添加到可满足性模理论求解器中,作为该求解器的常量,即该求解器的已知条件。
步骤S304:根据流传输路径、网卡门控周期、时隙规划表以及传输时延确定可满足性模理论求解器的变量及变量的约束条件;具体地,流传输路径、网卡门控周期、时隙规划表可以作为可满足性模理论求解器的求解变量添加进去。同时,对于该求解器的已知条件和求解变量可以按照自定义格式写入,确保求解过程和输出结果的正确性。
可选地,变量的约束条件可以用于约束求解变量的取值范围。其中,流传输路径在所有可达转发路径范围内选取;设备网卡门控周期为流经其所有时间敏感流的周期的最小公倍数;每个时隙长度大于此时流经的时间敏感流的传输时延;同一时间敏感流在同一设备同一周期的后一个时隙要比前一个时隙晚该流周期的时间间隔以上;同一设备内时隙不可重叠;同一数据包通过后一个设备的时隙要比前一个时隙晚传播时延、流传输时延与交换机处理时延之和的时间间隔以上;任一时间敏感流的数据包端到端时延小于该时间敏感流时延上限。
步骤S305:根据常量、变量及约束条件运行可满足性模理论求解器,得到时间敏感流的容限分析结果。具体地,通过运行可满足性模理论求解器,可以获得时间敏感流的容限分析结果。此外,若求解器未给出可行容限分析结果,则说明网络资源无法支撑业务需求,此时返回规划失败信息。
作为本申请实施例的一种可选的实施方式,该工业异构网络中多业务流融合通信的容限分析方法,如图6所示,还包括如下步骤:
步骤S501:根据时间敏感流的容限分析结果确定时隙规划结果和转发路径规划结果;具体地,当可满足性模理论求解器给出可行容限分析结果后,可以在容限分析结果中获取对所有设备网卡的时隙规划结果以及转发路径规划结果。
步骤S502:根据时隙规划结果为每一时隙添加保护间隔;具体地,保护间隔的长度由时隙的相对位置和流经该设备网卡的业务流的最大帧长度决定。具体而言,时间敏感网络规定的时隙保护间隔一般在数据量为0-1500比特的数据传输时间范围内,选取保护间隔长度时需参考与相邻时隙的相对位置关系,以及流经设备网卡的业务流最长帧大小。记本时隙的开启时刻到前向最近的相邻时隙的关闭时刻的时间差为T,记流经设备网卡的业务流最长帧大小为L max,记网卡速率为S,若
Figure PCTCN2020098896-appb-000004
则保护间隔长度为T, 反之,保护间隔长度为
Figure PCTCN2020098896-appb-000005
步骤S503:根据转发路径规划结果以及添加保护间隔的时隙更新网络中链路的可用带宽信息。具体地,可以根据转发路径规划结果以及已添加保护间隔的时隙规划结果更新网络状态信息中的链路可用带宽信息。
作为本申请实施例的一种可选的实施方式,如图7所示,步骤S202根据最小加反卷积算法以及基于网络拓扑信息、网络状态信息及业务流信息的多路径算法对实时音视频流进行容限分析,得到实时音视频流容限分析结果,包括如下步骤:
步骤S601:根据实时音视频流的特征信息计算每一实时音视频流的带宽需求;具体地,可以获取实时音视频流特征信息中的帧发送速率、帧负载大小、时延上限,计算每一实时音视频流的带宽需求。
步骤S602:根据基于网络拓扑信息、网络状态信息及业务流信息的多路径算法和带宽需求计算每一实时音视频流的所有可达转发路径。
可选地,可以先收集实时音视频流的业务流信息,由业务流信息获取实时音视频流的发送端和接收端信息;然后采用深度优先搜索算法,在网络拓扑信息中寻找实时音视频流的发送端到接收端的所有无环路径;之后可以从网络信息中获取链路可用带宽,将无环路径中可用带宽的75%小于带宽需求的路径筛除,剩余路径作为可达转发路径。
可选地,在得到可达转发路径后,还可以采用基于跳数和可用带宽的参考量W对所有可达转发路径进行排序。具体地,参考量
Figure PCTCN2020098896-appb-000006
其中a为路径跳数的权值,
Figure PCTCN2020098896-appb-000007
为路径跳数离差标准化后的值,b为路径可用带宽的权值,
Figure PCTCN2020098896-appb-000008
为路径可用带宽离差标准化后的值。参考量W用于判断路径优劣,跳数越少可用带宽越大则认定该路径越好,根据该值将路径由好到坏依次排列。
步骤S603:根据可达转发路径和最小加反卷积算法计算得到端到端时延预测值。
步骤S604:根据预设标准规范计算基于信用的整形器配置参数。
在一实施例中,端到端时延预测值可以采用网络演算的最小加反卷积算法计算得到。具体地,如图8所示,该最小加反卷积算法可以包括如下步骤:
步骤S701:根据时间敏感流的数量计算流经同一设备网卡的所有时间敏感流的含保护间隔的第一聚合到达曲线α TT(t),具体地,第一聚合到达曲线α TT(t)时可以采用公式(1)计算得到。
Figure PCTCN2020098896-appb-000009
其中,TTnum为流经该网卡的时间敏感流数量,Slotnum为一条流在该网卡一个门控周期内的传输时隙数量,slotduration i,j为第i条时间敏感流第j个含保护间隔的传输时隙的持续时间,C为该设备网卡速率,P为该网卡门控周期,slotoccupied(st,t\P)为该周期从st时刻开始持续t\P时间内的所有传输时隙占用的时间之和,\为取余运算符。
步骤S702:根据网络状态信息中的设备网卡速率及业务流特征信息中的最大帧长度,计算设备网卡对时间敏感流的第一聚合服务曲线β TT(t),具体地,第一聚合服务曲线β TT(t)时可以采用公式(2)计算得到。
Figure PCTCN2020098896-appb-000010
其中,L max为流经该设备网卡的最大帧长度。
步骤S703:根据业务流特征信息中的帧发送速率、帧负载大小,计算流经同一设备网卡的同一优先级的所有实时音视频流的第二聚合到达曲线α AVB(t),具体地,第二聚合到达曲线α AVB(t)时可以采用公式(3)计算得到。
Figure PCTCN2020098896-appb-000011
其中,AVBnum为流经该网卡同优先级的实时音视频流数量,r i为第i条实时音视频流的帧发送速率,b i为第i条实时音视频流的帧大小。
步骤S704:根据第一聚合到达曲线和第一聚合服务曲线计算设备网卡对实时音视频流的第二聚合服务曲线,具体地,第二聚合服务曲线时可以采用公式(4)计算得到。
Figure PCTCN2020098896-appb-000012
其中idle为设备网卡基于信用的整形器的空闲率,send为发送率,hicredit为最大信用值,
Figure PCTCN2020098896-appb-000013
为最小加反卷积运算符。
步骤S705:根据实时音视频流的第二聚合到达曲线和第二达到聚合服务曲线计算实时音视频流在设备网卡的排队时延预测值,具体地,排队时延预测值可以采用公式(5)计算得到。
Figure PCTCN2020098896-appb-000014
其中sup为上确界,inf为下确界。
步骤S706:根据排队时延预测值计算实时音视频流的端到端时延预测值D total,具体地,端到端时延预测值可以采用公式(6)计算得到。
Figure PCTCN2020098896-appb-000015
其中,Hopnum为转发路径跳数,D i为第i跳排队时延预测值,D trans,i为第i跳传输时延,D propa,i为第i跳传播时延,D proc,i为第i跳设备处理时延。
具体地,基于信用的整形器配置参数可以根据IEEE 802.1Q-2014(局域网和城域网.桥和虚拟桥接网络)中对配置参数计算方式的规范进行计算得到。在进行容限分析时,可以遍历实时音视频流的所有可达转发路径情况,直到每一实时音视频流的预测端到端时延小于相应实时音视频流时延上限时停止遍历,获取该情况下的每一实时音视频流的转发路径及设备网卡的基于信用的整形器配置参数作为容限分析结果。此外,若未找到满足业务需求的转发路径说明网络资源无法支撑业务需求,则返回规划失败信息。
步骤S605:根据端到端时延预测值和基于信用的整形器配置参数确定所述实时音视频流的容限分析结果。具体地,当确定容限分析结果之后,还可以根据容限分析结果更新网络状态信息中的链路可用带宽信息。
作为本申请实施例的一种可选的实施方式,如图9所示,步骤S203根据基于网络拓扑信息、网络状态信息及业务流信息的多路径算法对其余业务流进行容限分析,得到其余业务流容限分析结果,包括如下步骤:
步骤S801:根据其余业务流的特征信息对其余业务流按照优先级进行排序;具体地,可以从其余业务流的特征信息中获取所有其余业务流的最小带宽需求和业务优先级,将所有其余业务流按照优先级进行排序。
步骤S802:根据基于网络拓扑信息、网络状态信息及业务流信息的多路径算法计算每一其余业务流的所有可达转发路径;具体地,可以先收集其余业务流的业务流信息,由业务流信息获取其余业务流的发送端和接收端信息;然后采用深度优先搜索算法,在网络拓扑信息中寻找其余业务流的发送端到接收端的所有无环路径作为可达转发路径。若未计算出转发路径说明网络资源无法支撑业务需求,则返回规划失败信息。
可选地,当得到可达转发路径后,还可以采用基于跳数和可用带宽的参考量W对所有可达转发路径进行排序。具体地,参考量
Figure PCTCN2020098896-appb-000016
其中a为路径跳数的权值,
Figure PCTCN2020098896-appb-000017
为路径跳数离差标准化后的 值,b为路径可用带宽的权值,
Figure PCTCN2020098896-appb-000018
为路径可用带宽离差标准化后的值。参考量W用于判断路径优劣,跳数越少可用带宽越大则认定该路径越好,根据该值将路径由好到坏依次排列。
步骤S803:根据排序后的其余业务流和可达转发路径确定所其余业务流的容限分析结果。具体地,若采用深度优先搜索算法能够找到可达转发路径,则可以根据排序后的其余业务流选择所有可达转发路径中最佳路径作为其余业务流的容限分析结果。
本申请实施例提供的工业异构网络中多业务流融合通信的容限分析方法,通过采用不同的算法对时间敏感流、音视频信息流以及其余业务流进行容限分析,可以精确有效判断目前网络资源能否向多业务流提供满足其独特需求的服务,可以计算得到满足不同类型业务需求的转发路径、时隙表及设备配置参数,实现了对时间敏感流、音时频流以及其余业务流的整体规划,相比单一业务流依次规划的方式,可以更合理地分配网络资源、更高效地利用网络资源以容纳更多业务流工作。
本申请实施例还提供一种工业异构网络中多业务流融合通信的容限分析装置,如图10所示,该容限分析装置包括:
业务流获取模块10,用于获取申请加入工业异构网络的业务流及业务流信息;详细内容参见上述方法实施例中步骤S101的相关描述。
分类模块20,用于根据业务流的特性进行分类,将业务流分为时间敏感流、实时音视频流以及其余业务流;详细内容参见上述方法实施例中步骤S102的相关描述。
网络信息获取模块30,用于获取工业异构网络的网络拓扑信息和网络状态信息;详细内容参见上述方法实施例中步骤S103的相关描述。
容限分析模块40,用于根据网络拓扑信息、网络状态信息及业务流信息分别对时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果。详细内容参见上述方法实施例中步骤S104的相关描述。
本申请实施例提供的工业异构网络中多业务流融合通信的容限分析装置,通过获取不同设备的业务流,将获取的业务流根据相应业务流的特性进行分类,同时根据网络中的相关信息判断该工业异构网络中的网络资源是否能支撑不同类业务需求,从而可以得到不同业务流的容限分析结果。因此,本申请实施例提供的工业异构网络中多业务流融合通信的容限分析装置,解决了工业异构网络中多业务流融合通信的规划难题,提高了容限分析装置在复杂应用场景下的适应性。
作为本申请实施例中一种可选的实施方式,如图11所示,容限分析模块40包括:
时间敏感流容限分析模块21,用于根据可满足性模理论以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述时间敏感流进行容限分析,得到时间敏感流容限分析结果;详细内容参见上述方法实施例中步骤S201的相关描述。
实时音视频流容限分析模块22,用于根据最小加反卷积算法以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述实时音视频流进行容限分析,得到实时音视频流容限分析结果;详细内容参见上述方法实施例中步骤S202的相关描述。
其余业务流容限分析模块23,用于根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述其余业务流进行容限分析,得到其余业务流容限分析结果。详细内容参见上述方法实施例中步骤S203的相关描述。
作为本申请实施例的一种可选的实施方式,如图12所示,时间敏感流容限分析模块21包括:
第一带宽计算模块31,用于根据时间敏感流的特征信息计算每一时间敏感流的带宽需求和传输时延;详细内容参见上述方法实施例中步骤S301的相关描述。
第一路径计算模块32,用于根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法和所述带宽需求计算每一时间敏感流的所有可达转发路径;详细内容参见上述方法实施例中步骤S302的相关描述。
常量确定模块33,用于根据时间敏感流的特征信息以及可达转发路径确定可满足性模理论求解器的常量;详细内容参见上述方法实施例中步骤S303的相关描述。
变量确定模块34,用于根据流传输路径、网卡门控周期、时隙规划表以及传输时延确定所述可满足性模理论求解器的变量及变量的约束条件;详细内容参见上述方法实施例中步骤S304的相关描述。
第一分析子模块35,用于根据所述常量、变量及约束条件运行所述可满足性模理论求解器,得到时间敏感流的容限分析结果。详细内容参见上述方法实施例中步骤S305的相关描述。
在一实施例中,如图13所示,第一路径计算模块32包括:
终端信息获取模块41,根据所述业务流信息获取流的发送端和接收端信息;详细内容参见上述方法实施例中步骤S401的相关描述。
搜索模块42,用于根据深度优先搜索算法,在网络拓扑信息中寻找发送端到接收端的所有无环路径;详细内容参见上述方法实施例中步骤S402的相关描述。
路径筛选模块43,用于根据网络状态信息中的链路可用带宽和所述带宽需求筛选所有无环路径,得到可达转发路径。详细内容参见上述方法实施例中步骤S403的相关描述。
作为本申请实施例的一种可选的实施方式,如图14所示,该工业异构网络中多业务流融合通信的容限分析装置还包括:
规划结果确定模块51,用于根据时间敏感流的容限分析结果确定时隙规划结果和转发路径规划结果;详细内容参见上述方法实施例中步骤S501的相关描述。
保护间隔确定模块52,用于根据时隙规划结果为每一时隙添加保护间隔;详细内容参见上述方法实施例中步骤S502的相关描述。
更新模块53,用于根据转发路径规划结果以及添加保护间隔的时隙更新网络中链路的可用带宽信息。详细内容参见上述方法实施例中步骤S503的相关描述。
作为本申请实施例的一种可选的实施方式,如图15所示,实时音视频流容限分析模块22包括:
第二带宽计算模块61,用于根据实时音视频流的特征信息计算每一实时音视频流的带宽需求;详细内容参见上述方法实施例中步骤S601的相关描述。
第二路径计算模块62,根据基于网络拓扑信息、网络状态信息及业务流信息的多路径算法和带宽需求计算每一实时音视频流的所有可达转发路径;详细内容参见上述方法实施例中步骤S602的相关描述。
时延计算模块63,用于根据可达转发路径和最小加反卷积算法计算得到端到端时延预测值和基于信用的整形器配置参数;详细内容参见上述方法实施例中步骤S603的相关描述。
第二分析子模块64,根据端到端时延预测值和基于信用的整形器配置参数确定实时音视频流的容限分析结果。详细内容参见上述方法实施例中步骤S604的相关描述。
作为本申请实施例的一种可选的实施方式,如图16所示,其余业务流容限分析模块23包括:
排序模块81,用于根据其余业务流的特征信息对其余业务流按照优先级进行排序;详细内容参见上述方法实施例中步骤S801的相关描述。
第三路径计算模块82,用于根据基于网络拓扑信息、网络状态信息及业务流信息的多路径算法计算每一其余业务流的所有可达转发路径;详细内容参见上述方法实施例中步骤S802的相关描述。
第三分析子模块83,用于根据排序后的其余业务流和可达转发路径确定所述其余业务流的容限分析结果。详细内容参见上述方法实施例中步骤S803的相关描述。
本申请实施例提供的工业异构网络中多业务流融合通信的容限分析装置,通过采用不同的算法对时间敏感流、音视频信息流以及其余业务流进行容限分析,可以精确有效判断目前网络资源能否向多业务流提供满足其独特需求的服务,可以计算得到满足不同类型业务需求的转发路径、时隙表及设备配置参数,实现了对时间敏感流、音时频流以及其余业务流的整体规划,相比单一业务流依次规划的方式,可以更合理地分配网络资源、更高效地利用网络资源以容纳更多业务流工作。
本申请实施例提供的工业异构网络中多业务流融合通信的容限分析装置的功能描述详细参见上述实施例中工业异构网络中多业务流融合通信的容限分析方法描述。
本申请实施例还提供一种存储介质,如图17所示,其上存储有计算机程序100,该指令被处理器执行时实现上述实施例中工业异构网络中多业务流融合通信的容限分析方法的步骤。该存储介质上还存储有实时音视频流数据,特征帧数据、交互请求信令、加密数据以及预设数据大小等。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
本申请实施例还提供了一种电子设备,如图18所示,该电子设备可以包括处理器200和存储器300,其中处理器200和存储器300可以通过总线或者其他方式连接,图18中以通过总线连接为例。
处理器200可以为中央处理器(Central Processing Unit,CPU)。处理器200还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器300作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本申请实施例中的对应的程序指令/模块。处理器200通过运行存储在存储器300中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的工业异构网络中多业务流融合通信的容限分析方法。
存储器300可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器200所创建的数据等。此外,存储器300可以包括高速随 机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器300可选包括相对于处理器200远程设置的存储器,这些远程存储器可以通过网络连接至处理器200。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器300中,当被所述处理器200执行时,执行如图2-9所示实施例中的工业异构网络中多业务流融合通信的容限分析方法。
上述电子设备具体细节可以对应参阅图2至图9所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。
虽然结合附图描述了本申请的实施例,但是本领域技术人员可以在不脱离本申请的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种工业异构网络中多业务流融合通信的容限分析方法,其特征在于,包括:
    获取申请加入工业异构网络的业务流及业务流信息;
    根据所述业务流的特性进行分类,将所述业务流分为时间敏感流、实时音视频流以及其余业务流;
    获取工业异构网络的网络拓扑信息和网络状态信息;
    根据所述网络拓扑信息、网络状态信息及业务流信息分别对所述时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果。
  2. 根据权利要求1所述的工业异构网络中多业务流融合通信的容限分析方法,其特征在于,根据所述网络拓扑信息、网络状态信息及业务流信息分别对所述时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果,包括:
    根据可满足性模理论以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述时间敏感流进行容限分析,得到时间敏感流容限分析结果;
    根据最小加反卷积算法以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述实时音视频流进行容限分析,得到实时音视频流容限分析结果;
    根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述其余业务流进行容限分析,得到其余业务流容限分析结果。
  3. 根据权利要求2所述的工业异构网络中多业务流融合通信的容限分析方法,其特征在于,根据可满足性模理论以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述时间敏感流进行容限分析,得到时间敏感流容限分析结果,包括:
    根据时间敏感流的特征信息计算每一时间敏感流的带宽需求和传输时延;
    根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法和所述带宽需求计算每一时间敏感流的所有可达转发路径;
    根据时间敏感流的特征信息以及可达转发路径确定可满足性模理论求解器的常量;
    根据流传输路径、网卡门控周期、时隙规划表以及传输时延确定所述可满足性模理论求解器的变量及变量的约束条件;
    根据所述常量、变量及约束条件运行所述可满足性模理论求解器,得到时间敏感流的容限分析结果。
  4. 根据权利要求3所述的工业异构网络中多业务流融合通信的容限分析方法,其特征在于,还包括:
    根据所述时间敏感流的容限分析结果确定时隙规划结果和转发路径规划结果;
    根据所述时隙规划结果为每一时隙添加保护间隔;
    根据所述转发路径规划结果以及添加保护间隔的时隙更新网络状态信息中链路的可用带宽信息。
  5. 根据权利要求3所述的工业异构网络中多业务流融合通信的容限分析方法,其特征在于,根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法和所述带宽需求计算每一时间敏感流的所有可达转发路径,包括:
    根据所述业务流信息获取流的发送端和接收端信息;
    根据深度优先搜索算法,在网络拓扑信息中寻找发送端到接收端的所有无环路径;
    根据网络状态信息中的链路可用带宽和所述带宽需求筛选所有无环路径,得到可达转发路径。
  6. 根据权利要求2所述的工业异构网络中多业务流融合通信的容限分析方法,其特征在于,根据最小加反卷积算法以及基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述实时音视频流进行容限分析,得到实时音视频流容限分析结果,包括:
    根据实时音视频流的特征信息计算每一实时音视频流的带宽需求;
    根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法和所述带宽需求计算每一实时音视频流的所有可达转发路径;
    根据可达转发路径和最小加反卷积算法计算得到端到端时延预测值;
    根据预设标准规范计算基于信用的整形器配置参数;
    根据所述端到端时延预测值和所述基于信用的整形器配置参数确定所述实时音视频流的容限分析结果。
  7. 根据权利要求2所述的工业异构网络中多业务流融合通信的容限分析方法,其特征在于,根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法对所述其余业务流进行容限分析,得到其余业务流容限分析结果,包括:
    根据所述其余业务流的特征信息对所述其余业务流按照优先级进行排序;
    根据基于所述网络拓扑信息、网络状态信息及业务流信息的多路径算法计算每一其余业务流的所有可达转发路径;
    根据排序后的其余业务流和可达转发路径确定所述其余业务流的容限分析结果。
  8. 一种工业异构网络中多业务流融合通信的容限分析装置,其特征在于,包括:
    业务流获取模块,用于获取申请加入工业异构网络的业务流及业务流信息;
    分类模块,用于根据所述业务流的特性进行分类,将所述业务流分为时间敏感流、实时音视频流以及其余业务流;
    网络信息获取模块,用于获取工业异构网络的网络拓扑信息和网络状态信息;
    容限分析模块,用于根据所述网络拓扑信息、网络状态信息及业务流信息分别对所述时间敏感流、实时音视频流以及其余业务流进行容限分析,得到容限分析结果。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行如权利要求1-7任一项所述的工业异构网络中多业务流融合通信的容限分析方法。
  10. 一种电子设备,其特征在于,包括:存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行如权利要求1-7任一项所述的工业异构网络中多业务流融合通信的容限分析方法。
PCT/CN2020/098896 2020-06-22 2020-06-29 工业异构网络中多业务流融合通信的容限分析方法及装置 WO2021258408A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010576797.5 2020-06-22
CN202010576797.5A CN113923125B (zh) 2020-06-22 2020-06-22 工业异构网络中多业务流融合通信的容限分析方法及装置

Publications (1)

Publication Number Publication Date
WO2021258408A1 true WO2021258408A1 (zh) 2021-12-30

Family

ID=79231260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098896 WO2021258408A1 (zh) 2020-06-22 2020-06-29 工业异构网络中多业务流融合通信的容限分析方法及装置

Country Status (2)

Country Link
CN (1) CN113923125B (zh)
WO (1) WO2021258408A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114553782A (zh) * 2022-01-28 2022-05-27 北京邮电大学 一种大规模确定性网络中基于网络边缘流量整形调度方法
CN114679395A (zh) * 2022-05-27 2022-06-28 鹏城实验室 异构网络的数据传输探测方法及系统
CN116032744A (zh) * 2023-01-03 2023-04-28 重庆邮电大学 一种工业无线网络融合时间敏感网络的统一配置方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115277306B (zh) * 2022-06-27 2023-05-26 重庆邮电大学 基于逐步逼近的面向时间敏感网络与工业无线网络的联合调度方法
CN116456373B (zh) * 2023-06-20 2023-12-01 北京智芯微电子科技有限公司 基于无线通信的配网本地通信方法、终端设备及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357068A (zh) * 2015-11-03 2016-02-24 华中科技大学 一种面向应用QoS保障的OpenFlow网络流量控制方法
CN106059960A (zh) * 2016-05-24 2016-10-26 北京交通大学 一种基于软件定义网络的空间网络QoS保障方法及管理中心
CN106341346A (zh) * 2016-09-08 2017-01-18 重庆邮电大学 基于SDN的数据中心网络中一种保障QoS的路由算法
CN108833279A (zh) * 2018-05-08 2018-11-16 西安交通大学 软件定义网络中基于业务分类的多约束QoS路由的方法
CN110048869A (zh) * 2018-01-16 2019-07-23 中国科学院沈阳自动化研究所 面向工业时间敏感软件定义网络的资源分配方法和系统
US20190349081A1 (en) * 2018-05-11 2019-11-14 Electronics And Telecommunications Research Institute Bandwidth control method and apparatus for solving service quality degradation caused by traffic overhead in sdn-based communication node

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2675120A4 (en) * 2011-02-07 2016-12-07 Nec Corp PATH SELECTION PROCEDURE AND CONTROL SERVER
CN104158753B (zh) * 2014-06-12 2017-10-24 南京工程学院 基于软件定义网络的动态流调度方法及系统
CN108307435B (zh) * 2018-01-29 2021-02-19 大连大学 一种基于sdsin的多任务路由选择方法
CN108833285A (zh) * 2018-06-08 2018-11-16 浙江捷尚人工智能研究发展有限公司 网络移动目标防御方法、电子设备、存储介质及系统
CN110677876B (zh) * 2019-10-08 2021-02-05 广东电网有限责任公司 一种流量种类预测的前传网络资源分配方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357068A (zh) * 2015-11-03 2016-02-24 华中科技大学 一种面向应用QoS保障的OpenFlow网络流量控制方法
CN106059960A (zh) * 2016-05-24 2016-10-26 北京交通大学 一种基于软件定义网络的空间网络QoS保障方法及管理中心
CN106341346A (zh) * 2016-09-08 2017-01-18 重庆邮电大学 基于SDN的数据中心网络中一种保障QoS的路由算法
CN110048869A (zh) * 2018-01-16 2019-07-23 中国科学院沈阳自动化研究所 面向工业时间敏感软件定义网络的资源分配方法和系统
CN108833279A (zh) * 2018-05-08 2018-11-16 西安交通大学 软件定义网络中基于业务分类的多约束QoS路由的方法
US20190349081A1 (en) * 2018-05-11 2019-11-14 Electronics And Telecommunications Research Institute Bandwidth control method and apparatus for solving service quality degradation caused by traffic overhead in sdn-based communication node

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114553782A (zh) * 2022-01-28 2022-05-27 北京邮电大学 一种大规模确定性网络中基于网络边缘流量整形调度方法
CN114679395A (zh) * 2022-05-27 2022-06-28 鹏城实验室 异构网络的数据传输探测方法及系统
CN114679395B (zh) * 2022-05-27 2022-08-09 鹏城实验室 异构网络的数据传输探测方法及系统
CN116032744A (zh) * 2023-01-03 2023-04-28 重庆邮电大学 一种工业无线网络融合时间敏感网络的统一配置方法

Also Published As

Publication number Publication date
CN113923125B (zh) 2022-12-06
CN113923125A (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2021258408A1 (zh) 工业异构网络中多业务流融合通信的容限分析方法及装置
Kfoury et al. An exhaustive survey on p4 programmable data plane switches: Taxonomy, applications, challenges, and future trends
US20210184983A1 (en) Performing deep packet inspection in a software defined wide area network
CN110505101B (zh) 一种网络切片编排方法及装置
WO2021118717A1 (en) Collecting an analyzing data regarding flows associated with dpi parameters
CN112491619B (zh) 一种基于sdn的服务定制网络资源自适应分配方法
CN104158753A (zh) 基于软件定义网络的动态流调度方法及系统
Zhu et al. Centralized QoS routing using network calculus for SDN-based streaming media networks
CN112994961A (zh) 传输质量检测方法及装置、系统、存储介质
CN113328902B (zh) 网络性能检测方法、装置及网络设备
WO2009086779A1 (zh) 一种转发分组报文的方法、系统及装置
US11165716B2 (en) Data flow processing method and device
Yan et al. A survey of low-latency transmission strategies in software defined networking
WO2021227947A1 (zh) 网络控制方法及设备
CN107332766B (zh) 一种基于软件定义网络流调度下的提高网络吞吐量的方法
US20180167337A1 (en) Application of network flow rule action based on packet counter
US20230224382A1 (en) Metadata prioritization
US8553539B2 (en) Method and system for packet traffic congestion management
WO2022242243A1 (zh) 通信方法、设备及系统
CN114760249B (zh) 一种基于sdn网络的数据处理方法和装置及设备
CN117395178B (zh) 一种基于网络划分的质量监控方法
WO2022253194A1 (zh) 报文转发方法、装置及通信网络
Zaw Delay-Aware Elephant Flow Rerouting in Software-Defined Networking (SDN)
WO2022253192A1 (zh) 报文转发方法、装置及通信网络
WO2022253190A1 (zh) 业务流的性能检测方法、装置及通信网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941934

Country of ref document: EP

Kind code of ref document: A1