WO2021258056A1 - Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals - Google Patents

Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals Download PDF

Info

Publication number
WO2021258056A1
WO2021258056A1 PCT/US2021/038274 US2021038274W WO2021258056A1 WO 2021258056 A1 WO2021258056 A1 WO 2021258056A1 US 2021038274 W US2021038274 W US 2021038274W WO 2021258056 A1 WO2021258056 A1 WO 2021258056A1
Authority
WO
WIPO (PCT)
Prior art keywords
hesperaloe
extract
saponin
disdehydroyuccaloiside
saponins
Prior art date
Application number
PCT/US2021/038274
Other languages
French (fr)
Inventor
Ning Wei
Thomas G. Shannon
Original Assignee
Kimberly-Clark Worldwide, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly-Clark Worldwide, Inc. filed Critical Kimberly-Clark Worldwide, Inc.
Priority to MX2022016382A priority Critical patent/MX2022016382A/en
Priority to JP2022577719A priority patent/JP2023530476A/en
Priority to AU2021292703A priority patent/AU2021292703A1/en
Priority to EP21826299.6A priority patent/EP4168017A4/en
Priority to BR112022025821A priority patent/BR112022025821A2/en
Priority to CA3182453A priority patent/CA3182453A1/en
Priority to US18/011,335 priority patent/US20230302079A1/en
Priority to CN202180043971.2A priority patent/CN115916216A/en
Publication of WO2021258056A1 publication Critical patent/WO2021258056A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/105Aliphatic or alicyclic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/60Feeding-stuffs specially adapted for particular animals for weanlings
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/896Liliaceae (Lily family), e.g. daylily, plantain lily, Hyacinth or narcissus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/002Protozoa antigens
    • A61K39/012Coccidia antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/02Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/55Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
    • A61K2039/552Veterinary vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/58Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation

Definitions

  • Plants produce a vast and diverse assortment of organic compounds, the great majority of which do not appear to participate directly in their growth and development. These substances, traditionally referred to as secondary metabolites or plant natural products, often are distributed among limited taxonomic groups within the plant kingdom. The functions of secondary metabolites remain largely unknown, although a number of compounds have been associated with attributes useful to the plants e.g. protection against herbivores and protection against microbial infection, as attractants for pollinators and seed-dispersing animals, and as compounds that influence competition among plant species (allelochemicals).
  • attributes useful to the plants e.g. protection against herbivores and protection against microbial infection, as attractants for pollinators and seed-dispersing animals, and as compounds that influence competition among plant species (allelochemicals).
  • industries including pharmaceutical industries, cosmetic industries, food industries, detergent industries, and the like.
  • Saponins are glycosylated compounds classified as either triterpenoids, steroids, or steroidal glycoalkaloids. Saponins consist of one or two sugar moieties which are coupled to the aglycon (mono- and bisdesmosides, respectively). Saponins can be hydrolyzed to sapogenins and sugar moieties by acid hydrolysis or enzymatic methods. Saponins are generally water soluble high molecular weight compounds with molecular weights ranging from 600 to more than 2,000 daltons.
  • hydrophobic (aglycone) and hydrophilic (sugar) moieties confers an amphipathic character to these compounds which are largely responsible for their detergent like properties.
  • the ability of lowering surface tension make saponins potentially well suited for use in the cosmetic and in the detergent industries.
  • Saponins also have the ability of forming insoluble complexes with cholesterol, which makes some of them suitable for use in the pharmaceutical industry as cholesterol lowering agents. Other saponins are associated with formation of immunostimulating complexes that are useful in vaccine strategies.
  • the present invention relates to compositions, methods, and kits for the administration of plant- derived immunomodulators.
  • the compositions can be useful for sensitizing the innate and adaptive immune system of a non-human subject and thus can be used to treat an infection or as an adjuvant in an immunization.
  • the plant-derived immunomodulators of the present invention are plant 10 extracts containing saponins.
  • the administration of these immunomodulators to a subject significantly enhance cell mediate immune system and enhance antibody production in the subject.
  • the present invention provides a method of treating a non- human animal having, or at risk of, an infection by administering to the animal a plant-derived immunomodulator, in an amount sufficient to treat the infection.
  • the 15 immunomodulator comprises at least one saponin extracted from non-woody plants of the genus Hesperaloe.
  • the present invention provides a method of administering to a non-human animal a plant-derived immunomodulator wherein administration of the plant-derived immunomodulator enhances the host's adaptive immune system and protects the non-human animal against a disease 20 caused by an infectious agent.
  • the administration of plant-derived immunomodulator containing one or more saponins, which are preferably prepared from non-woody plants of the genus Hesperaloe, to a subject may increase the phagocytic activity in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, in the subject being treated.
  • Th CD4 T helper
  • the present invention provides administration of a plant-derived 25 immunomodulator containing one or more saponins, which are preferably prepared from non-woody plants of the genus Hesperaloe, for the prevention, treatment, and control of one or more conditions in non-human animals, especially birds and more particularly poultry.
  • saponin containing compositions derived from Hesperaloe may be administered to non-human animals to reduce environmental ammonia and odor, to provide a hypocholesterolemic effect, reduce inflammation, 30 promote weight gain, and improve feed conversion efficiency.
  • a Hesperaloe extract comprising one or more saponins may be administered orally to poultry for the prevention and treatment of coccidiosis.
  • the present invention provides a method of enhancing an immune response to an antigen in a non-human animal comprising administration of a saponin containing Hesperaloe extract to a non-human animal in an amount sufficient to enhance the immune response of the non-human animal.
  • the saponin containing Hesperaloe 5 extract is administered to poultry and results in the increase the phagocytic activity in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, and provides for protection against Eimeria infections.
  • Th CD4 T helper
  • the present invention provides an immunological composition useful for inducing the production of antibodies to an antigen in a non-human animal comprising an immunogenically effective amount of an antigen and a saponin composition extracted from a non-woody 10 plants of the genus Hesperaloe, wherein the amount of saponin in the extract is present in an amount sufficient to enhance the immune response of the non-human animal to the antigen.
  • saponin containing extracts of the present invention are administered with an Eimeria vaccine to poultry in need thereof to increase the immune response, lower lesion scores and reduced oocyst shedding resulting from coccidiosis.
  • Figures 1A and 1B illustrate a triterpenoid saponin and a steroidal saponin, respectively;
  • Figures 2A-C illustrate various novel saponins extracted from non-woody plants of the genus Hesperaloe according to the present invention including 25(27)-dehydrofucreastatin (FIG.
  • FIG.2B 5(6),25(27)-disdehydroyuccaloiside C
  • FIG.2C 5(6)-disdehydroyuccaloiside C
  • Figure 3 is a graph plotting counts for the cecal tonsil germinal center of each member of treatment groups 1 through 6
  • Figure 4 is a graph plotting scores for gut associated lymphoid tissue for each of treatment groups 1 through 6
  • Figure 5 is a graph plotting the number of heterophils in the lamina intestinal of each member of 25 treatment groups 1 through 6
  • Figure 6 is a graph plotting the ELISA titer of each member of treatment groups 1 through 6 measured using a commercial ELISA for analysis of chicken sera (FlockChek® Newcastle Disease Antibody Test Kit, IDEXX).
  • biomass generally refers to whole plants and plant organs (i.e., leaves, stems, flowers, roots, etc.) of the genus Hesperaloe such as H. funifera, H. parviflora, H. nocturna, H. chiangii, H. tenuifolia, H. engelmannii, and H. malacophylla.
  • saponin containing compositions of the present invention may be prepared from biomass consisting essentially of the above ground portion of the plant and more particularly the portion of the plant above the crown and still more preferable the leaves of the plant.
  • bagasse generally refers to biomass that has been subjected to an extraction process such as, for example, pressing or milling, so that the resulting biomass solids have less water soluble solids than the biomass from which it is derived.
  • bagasse is prepared by subjecting biomass to high pressure, which may be achieved by passing the biomass through one or more pairs of opposed rolls, a mechanical press, a screw press as well as by direct 10 hydraulic pressure and other processes to apply pressure to the biomass and remove intercellular and intracellular liquid therefrom.
  • milling generally refers to the application of sufficient pressure to force the intercellular and intracellular liquid from the biomass.
  • saccharide is used interchangeably with the terms “polysaccharide,” 15 “oligosaccharide” and “sugar” the definitions of which are well known to those skilled in the art of carbohydrate chemistry.
  • the saccharides can be in the form of mono-, oligo- and/or polysaccharides.
  • saccharides are water soluble and do not include cellulose, hemicellulose or mono-, oligo- and/or polysaccharides bound to other compounds, such as glycosides (arabinose, glucose, galactose, xylose, and glucuronic acid) bound to a triterpenoid to form a saponin.
  • the term “saponin” generally refers to glycosides comprising a sugar component referred to as a glycone and a non-sugar component referred to as an aglycone.
  • the saponin may be classified as a triterpenoid saponin, illustrated in FIG.1A, or to steroidal saponin, illustrated in FIG.1B.
  • the aglycone portion of the saponin may be either a pentacyclic triterpenoid or a tetracyclic triterpenoid, both of which contain 30 carbon atoms.
  • saponins may be mono, bi- or tridesmodic.
  • Monodesmodic saponins have a single saccharide, normally attached at C-3.
  • Bidesmodic saponins have two saccharides, often with one attached through an ether linkage at C-3 and the other either attached through an ester linkage at C-28 or through an ether linkage at C-20 (pentacyclic and tetracyclic triterpene saponins, respectively), or through an ether linkage at C-26 (furostane saponins).
  • Hesperaloe biomass may 30 comprises at least about 5 wt% of total saponins, such as from about 5 to about 15 wt%, such as from about 8 to about 12 wt%, based upon the bone dry weight of the biomass.
  • Total saponins may be determined as described in the Test Methods section below.
  • water soluble solids generally refers to dry matter which remains after the extract has been centrifuged, filtered and all water is evaporated. The procedure for measuring water soluble solids of a biomass extract of the present invention is described in detail in the Test Methods section below. Water soluble solids may be expressed on a percentage basis relative to the mass of 5 bone dry biomass.
  • water insoluble solids generally refer to the fraction of extract that is removed by centrifugation and filtration in the course of measuring water soluble solids, as described in the Test Methods section below.
  • enhancing immune response refers to an increase the phagocytic activity in 10 in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, in a subject being treated with a saponin containing composition derived from Hesperaloe, as described herein in comparison to the same subject prior to being treated.
  • pharmaceutical composition refers to a composition at least one saponin extracted from Hesperaloe and formulated with one or more pharmaceutical-grade excipients in a 15 manner that conforms with the requirements of a governmental agency regulating the manufacture and sale of pharmaceuticals as part of a therapeutic regimen for the treatment or prevention of disease in a non-human animal.
  • compositions can be formulated, for example, for oral administration in unit dosage form (e.g., a tablet, capsule, caplet, gelcap, or syrup); for topical administration (e.g., as a cream, gel, lotion, or ointment); for intravenous administration (e.g., as a sterile solution free of 20 particulate emboli and in a solvent system suitable for intravenous use); or any other formulation described herein.
  • unit dosage form e.g., a tablet, capsule, caplet, gelcap, or syrup
  • topical administration e.g., as a cream, gel, lotion, or ointment
  • intravenous administration e.g., as a sterile solution free of 20 particulate emboli and in a solvent system suitable for intravenous use
  • subject and “non-human animal” refer to any vertebrate animal including, without limitation cattle, chickens, turkeys, ducks, quail, geese, pigs, and sheep.
  • the present invention relates to novel pharmaceutical, dietary supplements and food ingredient compositions comprising at least one component selected from the extract(s), fraction(s), active compound(s) and phytochemical(s) or mixtures thereof derived from non-woody plants of the genus Hesperaloe including, for example, H. funifera, H. parviflora, H. nocturna, H. chiangii, H. tenuifolia, H. engelmannii, and H. malacophylla, optionally containing one or more of pharmaceutically and dietetically 30 acceptable phytochemical actives, diluents, vehicles, carriers and actives or mixtures thereof.
  • the present invention provides a method of increasing the phagocytic activity in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, in a non-human animal by administering to the non-human animal a Hesperaloe derived immunomodulator containing one or more saponins.
  • the compositions of the present invention are particularly well suited for the treatment of non- human-animals including, for example, bovine, fowl, porcine, ovine, and equine species.
  • the methods and compositions of the invention can be used for the treatment of cattle, chickens, turkeys, ducks, quail, geese, pigs, and sheep.
  • the methods and compositions of the present invention can be used for the treatment of poultry and more particularly for the prevention and treatment of coccidiosis and/or necrotic enteritis.
  • the Hesperaloe derived immunomodulator of the present invention may comprise at least 10 5 wt%, based upon the bone dry weight of the composition, saponins as measured by the total saponin assay set forth in the Test Methods section below.
  • the saponin containing composition used in accordance with the invention comprises at 10 wt% saponin, more preferably at least about 10 wt% saponin and still more preferably at least about 15 wt% saponin, such as from about 5 to about 30 wt% saponin, such as from about 15 to about 25 wt%. It is believed that the effects of the 15 composition are related to the total amount of saponins present. Thus, one of skill in the art will appreciate that if a certain amount of saponins is desired it can be achieved either through varying the volume of a certain concentration composition administered, varying the concentration of a certain volume of a composition, or both.
  • Saponins useful in the present invention may also be extracted from non-woody plants of the 20 genus Hesperaloe.
  • Hesperaloe derived saponins generally have steroidal saponins.
  • Saponins derived from Hesperaloe may have at least one of the following aglycones or genins: kammogenin, manogenin, gentrogenin, hecogenin, tigogenin, sarsapogenin, chlorogenin and gitogenin or their corresponding isomer or oxidized or reduced forms with at least one of the following glycosidic moieties (in the form of acid or salt): glucose, xylose, rhamnose, arabinose, or galactose.
  • the steroidal 25 saponins may comprise agamenoside, agaveside, agavoside, magueyside, agavasaponi, cantalasaponin, sisalsaponin, gabrittonoside, dongnoside or amolonin, or other steroidal saponins.
  • Extractives may be recovered from non-woody plants of the genus Hesperaloe by extracting biomass, particularly the leaves and more particularly the leaves above the crown of the plant, with at least one solvent selected from the group consisting of water, methanol, ethanol, butanol, and 30 isopropanol, and mixtures thereof.
  • the process comprises contacting biomass with an extractant solution comprising water and separating the water soluble fraction from the insoluble biomass fraction.
  • the extractant solution may comprise, in addition to water, a surfactant, a solvent and optionally extract-bearing juice.
  • the extract-bearing juice can come from, for example, an earlier extraction step or an earlier milling step.
  • a simple water extraction of Hesperaloe biomass may yield a crude aqueous extract comprising saccharides, polysaccharides, inorganic salts, saponins and sapogenins.
  • a crude extract may also be 5 produced using methanol as a solvent, or a mixture of methanol and water, to extract biomass, which may have been previously extracted with acetone or diethyl ether to remove lipids and pigments.
  • the biomass may be extracted with a 4:1 ethanol-water solvent, followed by subsequent defatting of the extract with a non-polar solvent such as hexane.
  • the defatted extract may be subjected to further treatment to isolate specific water soluble components, such as saponins, 10 which may be purified from the defatted extract by mixing with butanol and separating the butanol phase to yield a mixture of saponins that are substantially free from proteins and free saccharides and polysaccharides.
  • Hot aqueous extractants can also be used.
  • water soluble solids may be extracted from Hesperaloe biomass, particularly the leaves, by extracting the biomass 15 with hot aqueous ethanol or isopropanol (75 to 95% by weight alcohol).
  • the aqueous alcohol extraction fluid may then be filtered and concentrated, and the fat-soluble material may be removed by mixing the extraction fluid with a non-polar solvent such as hexane.
  • a substantially pure saponin composition may then be prepared by further extracting defatted extract with a polar solvent such as butanol.
  • a simple aqueous extract may be preferred, although other extraction methods are within the scope of the present invention.
  • Hesperaloe biomass may be cut to size, pressed, and extracted with an aqueous solvent to remove water soluble extracts such as inorganic salts, saccharides, polysaccharides, organic acids and saponins.
  • the water soluble extracts are collected and may be concentrated by techniques well known in the art such as, for example, 25 evaporation, spray-drying, drum drying and the like.
  • the extract may be concentrated until it has a solids content of about 20 to about 100% solids by weight, such as from about 20 to about 95% solids by weight, such as from about 20 to about 80% solids by weight.
  • water soluble extracts are concentrated by spray drying by feeding the extract solution to atomizing equipment.
  • Suitable atomizing equipment includes, but is 30 not limited to, a rotary wheel atomizer, a pressure nozzle atomizer, and a dual fluid nozzle atomizer.
  • Rotary wheel, pressure nozzle and dual fluid nozzle atomizers are known to those of ordinary skill in the art and include those in spray dryers commercially available from a variety of sources, such as GEA Process Engineering.
  • the biomass may be milled to separate the bagasse and water soluble solids using a roll, screw, and other forms of presses.
  • biomass is passed between one or more nips of opposed counter-rotating rolls to maximize the mechanical removal of juice.
  • the bagasse can then be contacted with the juice in a 5 subsequent milling step, as will be described more fully below.
  • the biomass may be cut to size and cleaned prior to milling. Cutting and cleaning may be carried out using well known methods in the art.
  • the biomass is cleaned to remove debris such as dirt without the use of water or other solvents.
  • the extraction method of the present invention typically yields bagasse fiber that may be further processed, 15 such as by pulping, to yield pulp fibers well suited for the manufacture of paper products.
  • the water soluble solids may be recovered from biomass by diffusion.
  • the biomass brought into contact with the liquid to extract the liquid components.
  • the biomass is prepared by first cutting, but not shearing or crushing so as to minimize the damage to fibers and avoid the creation of an excessive amount of fines.
  • the prepared biomass is then washed 20 repeatedly, usually using a solvent, to extract the liquid contained in the biomass.
  • the solvent can be any of the foregoing solvents.
  • An exemplary treatment solvent is water, particularly hot water such as water heated to a temperature from about 40 to about 90°C.
  • the solvent can be circulated and reused so that the solvent used for a first extraction is reused as a solvent to extract subsequent prepared biomass. 25
  • diffusers are known in the art and can be adapted for use with biomass as described herein.
  • Suitable diffusers include a ring diffuser, a tower diffuser, or a drum diffuser. Exemplary diffusion systems are discussed, for example, in U.S. Patent Nos.4,182,632, 4,751,060, 5,885,539 and 6,193,805 the contents of which are hereby incorporated in a manner consistent with the present disclosure. Numerous other diffusion methods and devices for the diffusion method are known and can30 be adapted for use in the methods described herein.
  • One such diffuser is the continuous-loop, counter- current, shallow-bed Crown Model III Percolation Extractor, commercially available from Crown Iron Works, Blaine, MN.
  • the biomass, cut or uncut may be extracted by any suitable extraction process as discussed above.
  • the solvent used for extraction comprises water.
  • the ratio of extraction solvent to biomass will vary based on the solvent, the amount of biomass to be extracted and the extraction procedure.
  • the 5 extraction solvent is water and the ratio of extraction solvent to biomass, on the basis of liters of extraction solvent to kilogram of bone-dry biomass, is from about 1:5 to about 1:100, such as from about 1:5 to about 1:50 and more preferably from about 1:5 to about 1:20.
  • the pH of the extraction solvent can be between about pH 5.0 and 8.0, such as, for example, between about pH 6.0 and about pH 8.0, between about pH 6.5 and about pH 7.5.
  • the extraction solvent is water having a pH between about pH 6.5 and about pH 7.5.
  • the imbibition fluid may have a pH from about 4.0 to about 5.0.
  • the extraction may be carried out at temperatures between about 25 and about 90°C, such as, for example, between about 30 and about 80°C, between about 35 and about 75°C, between about 40 15 and about 70°C, between about 45 and about 65°C or between about 50 and about 60°C.
  • the duration of extraction may range from about 0.25 to about 24 hours, such as, for example, from about 0.5 to about 2 hours, from about 1 to about 8 hours, or from about 1 to about 6 hours.
  • the duration of extraction 20 may range from about 0.25 to about 5 hours, such as, for example, from about 0.5 to about 3 hours.
  • the water insoluble biomass material may be separated from the water soluble solids by filtration to provide a filtrate containing inorganic salts, saccharides, polysaccharides, organic acids and saponins (referred to herein as the “first filtrate”). Separation can be achieved by any suitable means including, but not limited to, gravity filtration, a plate-and-frame filter press, cross flow filters, 25 screen filters, Nutsche filters, belt filters, ceramic filters, membrane filters, microfilters, nanofilters, ultrafilters or centrifugation.
  • the pH of the first filtrate may be adjusted to remove additional impurities.
  • the pH of the first filtrate can be adjusted to between about 8.5 and about 10.0 by 30 treatment with a base, such as, for example, calcium oxide or hydroxide (about 1.0% from the volume of filtrate) with slow agitation.
  • a base such as, for example, calcium oxide or hydroxide (about 1.0% from the volume of filtrate) with slow agitation.
  • water soluble solids are removed from biomass, particularly Hesperaloe leaves, prior to pulping by a series of mills, such as two, three, four, five, six or seven mills arranged in tandem, optionally with imbibition and/or depithing.
  • processing biomass removes at least about 25% of the water soluble solids from 5 the biomass, more preferably at least about 50%, still more preferably at least about 75%, such as from about 25 to about 98%, such as from about 50 to about 90%, such as from about 75 to about 90%.
  • the amount of water soluble solids recovered from biomass may vary depending on the extraction efficiency, however, in certain instances from about 100 to about 400 grams of water soluble solids may be extracted per kilogram of bone dry biomass, such as from about 120 to about 350 grams 10 per kilogram, such as from about 150 to about 300 grams per kilogram.
  • the total saponins may comprise from about 5 to about 40 wt%, such as from about 10 to about 30 wt%, based upon the bone dry weight of the water soluble solids.
  • the amount of total saponins that may be extracted from biomass may range from about 10 to about 400 grams per bone dry kilogram of biomass, such as from about 20 to about 300 grams, such as from about 25 to 15 about 200 grams, such as from about 10 to about 100 grams.
  • the amounts of materials (on bone dry grams per kilogram of bone dry biomass) removed from the biomass during the extraction process may range as set forth in Table 1, below.
  • the water soluble solids may comprise saccharides, proteins, lipids, and 20 inorganic salts.
  • the water soluble solids may comprise from at least about 1 wt%, based upon the bone dry weight of water soluble solids, saccharides, such as from about 1 to about 15 wt%, such as from about 2 to about 10 wt%.
  • the saccharides may comprise monosaccharides and oligosaccharides.
  • the water soluble solids may comprise from at least about 15 wt%, based upon the bone dry weight of water soluble solids, inorganic salts, such as 25 from about 15 to about 30 wt%.
  • an aqueous solvent such as water, having a pH ranging from about 5 to about 9, such as from about 6 to about 7 to about 8.
  • the water soluble solids are generally recovered from the milling process as a crude extract and may be subjected to further processing to recover specific compounds, such as saccharides, polysaccharides, organic acids and saponins.
  • the suspended solids also referred to herein as the water insoluble fraction, may optionally be removed from the crude extract by well-known processes including, for example, clarification, filtration, 5 centrifugation, or a combination thereof.
  • the amount of water insoluble solids in the extract (on bone dry grams per kilogram of bone dry biomass) may range from about 1.0 to about 30 grams and may comprise hydrophobic substances such as waxes and the like.
  • the clarified juice may be used directly, concentrated, or subjected to further processing to isolate one or more water soluble solids such as saccharides, 10 polysaccharides, organic acids, saponins and sapogenins.
  • the clarified juice may be further purified to remove saccharides, polysaccharides, and organic acids to yield composition comprising saponins.
  • the juice resulting from the foregoing extraction process may be subjected to further extraction to obtain saponin in the form of a crude saponin extract or its substantially purified form comprising 15 saponins at a concentration from about 30 to about 90% in weight.
  • the extraction method may comprise mixing juice extracted from non-woody plants of the genus Hesperaloe with a water-immiscible polar solvent.
  • Suitable water-immiscible polar solvents include, for example, alcohols having from 4 to 6 carbon atoms, such as butyl, amyl, hexyl and cyclohexyl alcohols. Extraction of the juice with a water- immiscible polar solvent generally removes impurities such as proteins, carbohydrates, and organic 20 acids, which remain in the aqueous phase, the saponin being transferred to the solvent phase.
  • the solvent phase containing the saponin may be subjected to further treatment to separate the saponin from the alcohol phase. This can be accomplished in various ways including, for example, by cooling, by dehydrating the solvent extract, or by adding an organic solvent which is miscible with the alcohol solvent but in which the saponin is insoluble.
  • Suitable precipitating solvents include, for example, 25 diethyl ether, petroleum ether, acetone, and chloroform.
  • the saponin is separated from the alcohol by flash evaporation. Flash evaporation is a technique known in preparative chemistry for the rapid removal of a volatile component from a liquid mixture.
  • the volatile liquid is removed from solution by rapid conversion to a vapor phase by creating a thin film of the solution over a large surface area under reduced pressure 30 often accompanied by an increase of temperature of the solution above ambient but less than the boiling point of the solution at atmospheric pressure.
  • Flash evaporation avoids the prolonged use of high temperatures that may degrade the intended product and has the ability to remove almost all of the alcohol component (which makes the remaining solution suitable for the preferred practice of spray drying employed in the next step.
  • the alcohol may be recovered from this step and re- used in the extraction process. 5
  • the saponin content of the alcohol extract can be further increased by passage over an ultrafiltration membrane without significant alteration to or loss of the saponin composition.
  • This concentrated saponin fraction where the saponin content is in the range of 85-90%, can then be further purified in a liquid state or reduced to a dry state.
  • Individual saponins may be recovered by a combination of reversed-phase solid phase extraction and preparative reversed-phase HPLC.
  • the 10 alcohol extract containing saponins can be fractionated directly by a combination of reversed-phase solid phase extraction and preparative reversed-phase HPLC.
  • saponins may be purified from juice prepared according to the present invention comprises the steps of mixing the juice with a salt and a solvent to form a first solution.
  • the solvent may comprise one or more solvents selected from acetic acid, acetone, acetonitrile, benzene, 1- 15 butanol, 2-butanol, 2-butanone, t-butyl alcohol, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, 1,2-dichloroethane, diethylene glycol, diethyl ether, diglyme, 1,2-dimethoxyethane, dimethylformamide, dimethylsulfoxide, 1,4-dioxane, ethanol, ethyl acetate, ethylene glycol, glycerin, heptane, hexamethylphosphoramide, hexamethylphosphorous triamide, hexane, methanol, methyl-t- butyl ether, methylene chloride, N-methyl-2-pyrrolidinone, pentane, perchloroethylene, petroleum ether, 20 1-propanol, 2-propan
  • the solvent is water.
  • the salt may be selected from an alkali metal salt, an alkaline earth salt, a transition metal salt, an ammonium salt, or combinations of the forgoing.
  • the salt added to the plant extract to form the solution is an alkaline earth metal salt.
  • the salt is calcium chloride (CaCl2), 25 magnesium chloride (MgCl 2 ), or a mixture thereof.
  • the pH of the first solution is generally adjusted to a pH from about 6.0 to about 9.0, such as from about 6.0 to about 8.0, such as from about 6.0 to about 7.0. At least one phosphate may then be added to the first solution to form an ion-polysaccharides complex precipitate.
  • Useful phosphates include, for example, sodium hydrogen phosphate (Na2HPO4), sodium dihydrogen phosphate 30 (NaH2PO4), sodium phosphate (Na3PO4), or sodium hydrogen bisphosphate (Na2H2PO7).
  • the precipitated ion-polysaccharides complex may be removed by filtration to yield a second solution, which may be further clarified to produce an extract of purified saponins.
  • the extract can be concentrated by any filtration technique known in the prior art.
  • the concentration of the extract of purified saponins is carried out by nanofiltration, ultrafiltration and diafiltration, or any combination of these techniques.
  • the saponin extract is substantially free of proteins.
  • the saponin extract is substantially free of polysaccharides. In some embodiments, the saponin extract is substantially free of phenolic compounds. 5
  • the total amount of saponins that may be extracted from Hesperaloe biomass according to the present invention may range from about 10 to about 100 grams per bone dry kilogram of biomass, such as from about 20 to about 80 grams, such as from about 25 to about 75 grams.
  • the saponins may be provided as part of a crude juice, as part of a dried water soluble solids compositions, as a partially purified compositions or as a substantially pure composition comprising a mixture of saponins. 10
  • saponins extracted from Hesperaloe biomass may comprise 25(27)- dehydrofucreastatin (FIG.
  • compositions useful in the present invention may be prepared by blending an aqueous extract from Hesperaloe biomass with one or more polyhydroxy alcohols including glycerol, propylene glycol, 15 polyalkylene glycol such as polyethylene glycol and polypropylene glycol, and polyglycerol.
  • polyhydroxy alcohols including glycerol, propylene glycol, 15 polyalkylene glycol such as polyethylene glycol and polypropylene glycol, and polyglycerol.
  • Preferred polyhydroxy alcohols have less than about eight carbon atoms.
  • Glycerol and propylene glycol are particularly preferred polyhydroxy alcohols.
  • compositions may also comprise saccharides, which may be present in the aqueous extract or may be added after extraction during formulation.
  • Saccharides useful in compositions of the present 20 invention include monosaccharides such as glucose, disaccharides such as sucrose and polysaccharides such as starch.
  • compositions in accordance with embodiments of the invention can include various other additives known in the art to have benefits for the maintenance and well-being of non-human animals.
  • compositions can also include components such as Vitamin E,25 Vitamin A Propionate, Vitamin A Palmitate, Vitamin B1, Vitamin B2, Vitamin B6, Vitamin B12, D- Activated Animal Sterol (source of Vitamin D3), yeast components, dried egg solids, dried casein, and dried whey.
  • Saponin containing compositions of the present invention may be in liquid or dry forms.
  • a saponin containing Hesperaloe extract may be dried into a powder form.
  • the 30 saponin containing composition may be administered to an animal as a pill or bolus or mixed in with other components such as a feed ration.
  • dry powder formulations of saponin containing compositions may be added to the feed ration via a micro-ingredient machine or added to a feed mix truck and mixed thoroughly to assure even distribution in the feed.
  • Saponin containing Hesperaloe extract may also be in liquid form with an amount of a carrier liquid such as water. In this form, the saponin containing composition may be administered to an animal as a liquid drench.
  • Saponin containing compositions of the present invention may be administered to non-human 5 animals in need there of as a single dose, as multiple doses as part of a feeding regiment.
  • a non-human animal may receive an initial dose and then receive subsequent maintenance doses in lesser amounts.
  • a non-human animal may receive multiple doses of a saponin containing composition in one day or may receive multiple doses over multiple days.
  • the compositions of the present invention may be useful as an 10 immunomodulator or adjuvant.
  • saponin containing compositions derived from Hesperaloe may be administered to a non-human animal in need thereof to elicit an adaptive immune response.
  • administration of the saponin containing extracts of the present invention causes an increase in the phagocytic activity in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, in the subject.
  • the extracts of the present invention may be 15 administered as a pharmaceutical composition without the addition of an antigen to enhance the immune response of the subject.
  • the Hesperaloe extracts of the present invention may be administered to non-human animals with an antigen to enhance the immune response of the subject.
  • Suitable antigens include microbial pathogens, bacteria, viruses, proteins, glycoproteins lipoproteins, peptides, 20 glycopeptides, lipopeptides, toxoids, carbohydrates, and tumor-specific antigens.
  • compositions of the present invention may be administered with a vaccine intended for the prevention of coccidiosis in non-human animals, in particular poultry, characterized in that the coccidia are chosen from the group consisting of Eimeria, Isospora, Toxoplasma, Besnoitia, and Neospora.
  • the present invention provides an 25 adjuvant system that is particularly advantageous in making and using vaccine and other immunostimulant compositions to treat or prevent diseases, such inducing active immunity towards antigens in non-human animals.
  • the saponin containing extracts may be administered with an Eimeria vaccine to poultry in need thereof to increase the immune response, lower lesion scores 30 and reduced oocyst shedding resulting from coccidiosis.
  • the immunogenic composition of the present invention may be delivered orally or subcutaneously in a dose volume suitable for increasing an immune response, such as a does level of less than about 50 ⁇ g, such as less than about 40 ⁇ g, such as less than about 30 ⁇ g, such as from about 1 to about 50 ⁇ g, such as from about 5 to about 30 ⁇ g.
  • the compositions of the present invention exhibit adjuvant effects when administered over a wide range of dosages and a wide range of ratios to the antigen being administered.
  • the saponin is administered in a ratio of adjuvant, based upon the weight of saponin, to antigen (w/w) of 3.0 or less, preferably 1.0 or less.
  • 5 Saponins extracted from non-woody plant of the genus Hesperaloe according to the present invention may be used as adjuvants in crude or purified forms and may be admixed with other non- saponin adjuvants to achieve the enhancement of the immune response to an antigen.
  • non- saponin adjuvants useful with the present invention are oil adjuvants (for example, Freund's Complete and Incomplete), liposomes, mineral salts (for example, AlK(SO 4 ) 2 , AlNa(SO 4 ) 2 , AlNH 4 (SO 4 ), silica, 10 alum, Al(OH)3, Ca3 (PO4)2, kaolin, and carbon), polynucleotides (for example, poly IC and poly AU acids), and certain natural substances (for example, wax D from Mycobacterium tuberculosis, as well as substances found in Corynebacterium parvum, Bordetella pertussis, and members of the genus Brucella).
  • oil adjuvants for example, Freund's Complete and Incomplete
  • liposomes for example, liposomes, mineral salts (for example, AlK(SO 4 ) 2 , AlNa(SO 4 ) 2 , AlNH 4 (SO 4 ), silica, 10 alum,
  • Total biomass water soluble solids may be determined using an Accelerated Solvent Extraction system (ASE) such as a DionexTM ASETM 350 (Thermo Fisher Scientific, Waltham, MA). Approximately 10 grams of harvested biomass is dried to a constant weight in an oven, typically 4 hours at 125°C. After drying 1.5 - 2.0 grams of the bone dry biomass is accurately weighed and the weight (Wb) recorded to 20 the nearest 0.001 gram. Using water as the solvent, biomass is extracted using the conditions set forth in the table below. The ratio of biomass to solvent is generally 21:1 and five consecutive water extraction cycles are performed.
  • ASE Accelerated Solvent Extraction system
  • the liquid phase is collected, dried under vacuum at approximately 40°C and the weight of the dried material (Wi) is recorded to the nearest 0.001g.
  • the total water soluble solids in biomass extract may be determined by withdrawing an appropriate aliquot, typically about 10-50 ml, transferring to clean, dry, centrifuge tube.
  • the tube is centrifuged at 7000rpm for 20 minutes.
  • the weight of extract (W 1 ) is calculated.
  • An aliquot of the supernatant is then transferred to clean, pre-weighed beaker (D 0 ), and weighed.
  • the beaker and sample are then weighed to the nearest 0.001 g and the weight (D2) recorded.
  • the beaker containing the sample is then placed at 140°C in a hot air oven for overnight drying. The beaker is removed from the oven and desiccated to cool to room temperature then weighed to the nearest 0.001 gram (D1).
  • Total Saponins Total saponins were measured generally as described in Makkar, Harinder P.S., Sidhuraju, P., Becker, Klaus (2007) Plant Secondary Metabolites, chapter 17, pp 93-100.
  • a standard saponin solution was prepared by weighing 10 mg of diosgenin (MilliporeSigma >93%), dissolving in 16 mL of methanol and adding 4 mL of distilled water.
  • the solution was mixed thoroughly to yield a 0.5 mg/mL diosgenin 15 solution in 80% methanol solvent.
  • the standard was used to produce a calibration curve by transferring various amounts of the standard (0, 10, 20, 40, 60, 80, and 100 ⁇ L) into 13-mm glass test tubes.
  • a solution of 80% aqueous methanol was added to a total volume of 100 ⁇ L.
  • Prior to testing samples of biomass extract were adjusted to about 0.5 wt% total solids by dilution with water to ensure absorbency result fell along the saponin standard calibration curve range.
  • Samples 20 of diluted extract (20- ⁇ L) were pipetted into 13-mm glass test tubes and the volume was brought up to 100 ⁇ L with 80 ⁇ L methanol. Each sample was tested in triplicate.
  • vanillin reagent prepared by dissolving 800 mg of vanillin in 10 mL of 99.5% ethanol (analytical grade)
  • 1.0 mL of 72% (v/v) sulfuric acid 72% (v/v) sulfuric acid prepared by adding 72 mL of sulfuric acid (analytical grade, 95%, w/w) to 28 mL of distilled water
  • Solutions were mixed well and heated at 60°C for 10 minutes. Samples were then cooled in an ice bath and 1 mL of solution was transferred into respective cuvette and absorbance at 544 nm was read.
  • the total mass of saponins in the sample may be calculated based upon the standard absorbency curve as follows: Total Saponins Total saponins were measured generally as described in Makkar, Harinder P.S., Sidhuraju, P., Becker, Klaus (2007) Plant Secondary Metabolites, chapter 17, pp 93-100. A standard saponin solution was prepared by weighing 10 mg of diosgenin (MilliporeSigma >93%), dissolving in 16 mL of methanol 5 and adding 4 mL of distilled water. The solution was mixed thoroughly to yield a 0.5 mg/mL diosgenin solution in 80% methanol solvent.
  • the standard was used to produce a calibration curve by transferring various amounts of the standard (0, 10, 20, 40, 60, 80, and 100 ⁇ L) into 13-mm glass test tubes. A solution of 80% aqueous methanol was added to a total volume of 100 ⁇ L. Prior to testing samples of biomass extract were adjusted to about 0.5 wt% total solids by dilution 10 with water to ensure absorbency result fell along the saponin standard calibration curve range. Samples of diluted extract (20- ⁇ L) were pipetted into 13-mm glass test tubes and the volume was brought up to 100 ⁇ L with 80 ⁇ L methanol. Each sample was tested in triplicate.
  • vanillin reagent prepared by dissolving 800 mg of vanillin in 10 mL of 99.5% ethanol (analytical grade)
  • 1.0 mL of 72% (v/v) sulfuric acid 72% (v/v) sulfuric acid 15 prepared by adding 72 mL of sulfuric acid (analytical grade, 95%, w/w) to 28 mL of distilled water) were added.
  • Solutions were mixed well and heated at 60°C for 10 minutes. Samples were then cooled in an ice bath and 1 mL of solution was transferred into respective cuvette and absorbance at 544 nm was read.
  • the total mass of saponins in the sample may be calculated based upon the standard absorbency curve as follows: 20 EXAMPLES
  • Example 1 A total of 150 one-day-old broiler chicks were randomly distributed to six experimental groups in a 28-day cage study. Live coccidia were manually introduced to the birds at their 14th day of age.
  • FOAMATIONTM commercially available from Ingredion, Westchester, IL.
  • FOAMATIONTM comprised 50% by weight of the composition water soluble solids, of which saponins 30 comprised 10 wt%.
  • Bird body weight gain (BW) and feed consumption for each pen were measured on a weekly basis.
  • Feed conversion rate (FCR) is the ratio between kilograms of feed consumed and kilograms of body weight gain. The lower FCR value indicates a better feed.
  • TABLE 3 The inventive extract was prepared by forage harvesting mature Hesperaloe funifera leaves above the crown, cutting the leaves into pieces ranging from about 0.50 to about 8.0 cm and pressing the cut biomass using a tandem press. The biomass was pressed three times and the crude juice was 5 collected and passed through 25 mm filter and heated to concentrate the extract to 29% solid.
  • the water soluble solids comprised 21 wt% total saponins, based upon the bone dry weight of water soluble solids.
  • the challenged control (Control+) group decreased feed consumption by about 140 g/bird and body weight gain by was reduced by about 160 g/bird compared to the control without challenge. These decreases, however, were not observed in chickens administered feeds 10 comprising the inventive composition, as illustrated in Table 4, below.
  • TABLE 4 Example 2 A total of 512 one-day-old broiler chicks were randomly distributed to 8 experimental groups, 8 cages for each group and 8 birds per cage in a 21-day study. Live coccidian was manually introduced 15 to the young birds at 14 th day of age.
  • WG Bird weight gain
  • FCR feed conversion rate
  • Lesion score and oocyst counts were measured.
  • the treatment codes listed in Table 5, included basal diet with no coccidian challenge (control) and with challenge (Control+).Remaining treatment codes were coccidian challenged codes using base diet with Coban (commercially available from Elanco Animal Health, Greenfield, IN), Micro-Aid (commercially available from DPI Global, Porterville, CA) and two different 20 inventive samples at two different dosages. Base diet met the minimum National Research Council requirements for poultry.
  • Inventive sample 1 was prepared by forage harvesting mature Hesperaloe funifera leaves above the crown, cutting the leaves into pieces ranging from about 0.50 to about 8.0 cm and pressing the cut biomass using a tandem press.
  • Inventive sample 2 was prepared by forage harvesting mature Hesperaloe funifera leaves above the crown, cutting the leaves into pieces ranging from about 0.50 to about 8.0 cm and pressing the cut biomass using a tandem press once, followed by heating of the collected juice to obtain an extract having 14% solids. All treatment materials were made by mixing each additive to the base feed at the designated loading level in a mixer. 10 Chickens fed the inventive composition exhibited weight gain, improved feed conversion rate, decreased lesion score and lower oocysts as summarized in Table 6, below.
  • compositions of the present invention are particularly useful in reducing or preventing coccidial.
  • Lesion score is a means of assessing coccidial development through chicken’s intestinal damage on a score between 0-4 (0 indicates normal intestinal appearance while 4 indicates severe damaged intestine).
  • Example 3 A total of 210 day-of-hatch Ross x Ross male broiler chicks were obtained from Aviagen Hatchery, Blairsville, GA. Upon birth the birds received routine vaccinations (HVTSB1). The birds were randomly distributed to six experimental groups in a 28-day cage study. The treatment groups, listed in 10 Table 7, included a first group that received no vaccine or Hesperaloe extract, groups that received the Hesperaloe extract alone, groups that received Newcastle disease virus (Lasota strain) and Hesperaloe extract, as well as a group that received an inactivated Newcastle disease virus (Lasota strain).
  • GALT Gut associated lymphoid tissue expansion (hyperplasia) was scored on a scale from 0 to 5: 0 (not apparent), 1 (minimal presence), 2 (mild), 3 (moderate), 4 (marked), and 5 (severe). GALT expansion occurred as focal, locally extensive, and diffuse, within normal limits but to variable degrees 20 of hyperplasia. GALT score for each of treatment groups 1 through 6 is illustrated in FIG.4. Intestinal heterophils appeared as clusters of heterophils in the lamina intestinal. The total number of clusters were counted and recorded for each jejunum section. The total number of clusters in the lamina limbal for each of treatment groups 1 through 6 are illustrated in FIG.5.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Polymers & Plastics (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Birds (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physiology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

Disclosed is a process for removing water soluble extractives from non-woody plants of the genus Hesperaloe, wherein the extract contains at least one saponin. The process includes providing Hesperaloe biomass, milling and washing the biomass with a solvent to yield a crude extract and optionally further purifying and/or concentrating the crude extract. The saponins extracted from Hesperaloe biomass may comprise 25(27)-dehydrofucreastatin, 5(6), 25(27)- disdehydroyuccaloiside C, 5(6)-disdehydroyuccaloiside C, furcreastatin, and yuccaloiside C. An embodiment of present application provides a method of enhancing an immune response to an antigen in a non-human animal comprising administration of a saponin containing Hesperaloe extract. Another embodiment provides an administration of a Hesperaloe- derived immunomodulator containing one or more saponins for the prevention, treatment, and control of one or more conditions in non-human animals. Preferably, a Hesperaloe extract comprising one or more saponins may be administered orally to poultry for the prevention and treatment of coccidiosis.

Description

SAPONIN CONTAINING EXTRACTS PREPARED FROM HESPERALOE USEFUL IN THE TREATMENT OF NON-HUMAN ANIMALS
BACKGROUND
Plants produce a vast and diverse assortment of organic compounds, the great majority of which do not appear to participate directly in their growth and development. These substances, traditionally referred to as secondary metabolites or plant natural products, often are distributed among limited taxonomic groups within the plant kingdom. The functions of secondary metabolites remain largely unknown, although a number of compounds have been associated with attributes useful to the plants e.g. protection against herbivores and protection against microbial infection, as attractants for pollinators and seed-dispersing animals, and as compounds that influence competition among plant species (allelochemicals). There is a growing interest in plant natural products, since these products often have a wide range of applications in different kinds of industries, including pharmaceutical industries, cosmetic industries, food industries, detergent industries, and the like.
A particular group of plant secondary metabolites of interest are saponins. Saponins are glycosylated compounds classified as either triterpenoids, steroids, or steroidal glycoalkaloids. Saponins consist of one or two sugar moieties which are coupled to the aglycon (mono- and bisdesmosides, respectively). Saponins can be hydrolyzed to sapogenins and sugar moieties by acid hydrolysis or enzymatic methods. Saponins are generally water soluble high molecular weight compounds with molecular weights ranging from 600 to more than 2,000 daltons.
The asymmetric distribution of their hydrophobic (aglycone) and hydrophilic (sugar) moieties confers an amphipathic character to these compounds which are largely responsible for their detergent like properties. The ability of lowering surface tension make saponins potentially well suited for use in the cosmetic and in the detergent industries.
Saponins also have the ability of forming insoluble complexes with cholesterol, which makes some of them suitable for use in the pharmaceutical industry as cholesterol lowering agents. Other saponins are associated with formation of immunostimulating complexes that are useful in vaccine strategies.
Currently, a major limitation to the broad exploitation of saponins is the fact that commercially available saponins are relatively expensive. The expenses is due in large part to the limited number of plant extracts having significant amounts of saponins. Currently, commercially available plant extracts containing saponins include Saponaria officinalis, Quillaia bark and stem, Castanea sativa seeds, and extracts of various Yucca species. Plant extracts containing saponins are thus of general interest within a wide range of different industries. There is therefore a growing need in the art for alternative sources of saponin extracts and these plant sources should preferably be cheap, easy to obtain, and preferably the saponin content should be relatively high. 5 SUMMARY The present invention relates to compositions, methods, and kits for the administration of plant- derived immunomodulators. The compositions can be useful for sensitizing the innate and adaptive immune system of a non-human subject and thus can be used to treat an infection or as an adjuvant in an immunization. Preferably the plant-derived immunomodulators of the present invention are plant 10 extracts containing saponins. The administration of these immunomodulators to a subject significantly enhance cell mediate immune system and enhance antibody production in the subject. Accordingly, in one embodiment, the present invention provides a method of treating a non- human animal having, or at risk of, an infection by administering to the animal a plant-derived immunomodulator, in an amount sufficient to treat the infection. In particularly preferred embodiment the 15 immunomodulator comprises at least one saponin extracted from non-woody plants of the genus Hesperaloe. In other embodiments, the present invention provides a method of administering to a non-human animal a plant-derived immunomodulator wherein administration of the plant-derived immunomodulator enhances the host's adaptive immune system and protects the non-human animal against a disease 20 caused by an infectious agent. The administration of plant-derived immunomodulator containing one or more saponins, which are preferably prepared from non-woody plants of the genus Hesperaloe, to a subject may increase the phagocytic activity in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, in the subject being treated. In yet other embodiments, the present invention provides administration of a plant-derived 25 immunomodulator containing one or more saponins, which are preferably prepared from non-woody plants of the genus Hesperaloe, for the prevention, treatment, and control of one or more conditions in non-human animals, especially birds and more particularly poultry. For example, saponin containing compositions derived from Hesperaloe may be administered to non-human animals to reduce environmental ammonia and odor, to provide a hypocholesterolemic effect, reduce inflammation, 30 promote weight gain, and improve feed conversion efficiency. In a particularly preferred embodiment, a Hesperaloe extract comprising one or more saponins may be administered orally to poultry for the prevention and treatment of coccidiosis. In still other embodiments, the present invention provides a method of enhancing an immune response to an antigen in a non-human animal comprising administration of a saponin containing Hesperaloe extract to a non-human animal in an amount sufficient to enhance the immune response of the non-human animal. In a particularly preferred embodiment, the saponin containing Hesperaloe 5 extract is administered to poultry and results in the increase the phagocytic activity in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, and provides for protection against Eimeria infections. In other embodiments, the present invention provides an immunological composition useful for inducing the production of antibodies to an antigen in a non-human animal comprising an immunogenically effective amount of an antigen and a saponin composition extracted from a non-woody 10 plants of the genus Hesperaloe, wherein the amount of saponin in the extract is present in an amount sufficient to enhance the immune response of the non-human animal to the antigen. In particularly preferred embodiments saponin containing extracts of the present invention are administered with an Eimeria vaccine to poultry in need thereof to increase the immune response, lower lesion scores and reduced oocyst shedding resulting from coccidiosis. 15 DESCRIPTION OF THE DRAWINGS Figures 1A and 1B illustrate a triterpenoid saponin and a steroidal saponin, respectively; Figures 2A-C illustrate various novel saponins extracted from non-woody plants of the genus Hesperaloe according to the present invention including 25(27)-dehydrofucreastatin (FIG. 2A), 5(6),25(27)-disdehydroyuccaloiside C (FIG.2B), and 5(6)-disdehydroyuccaloiside C (FIG.2C); 20 Figure 3 is a graph plotting counts for the cecal tonsil germinal center of each member of treatment groups 1 through 6; Figure 4 is a graph plotting scores for gut associated lymphoid tissue for each of treatment groups 1 through 6; Figure 5 is a graph plotting the number of heterophils in the lamina propria of each member of 25 treatment groups 1 through 6; and Figure 6 is a graph plotting the ELISA titer of each member of treatment groups 1 through 6 measured using a commercial ELISA for analysis of chicken sera (FlockChek® Newcastle Disease Antibody Test Kit, IDEXX). DEFINITIONS 30 As used herein the term “biomass” generally refers to whole plants and plant organs (i.e., leaves, stems, flowers, roots, etc.) of the genus Hesperaloe such as H. funifera, H. parviflora, H. nocturna, H. chiangii, H. tenuifolia, H. engelmannii, and H. malacophylla. In particularly preferred instances saponin containing compositions of the present invention may be prepared from biomass consisting essentially of the above ground portion of the plant and more particularly the portion of the plant above the crown and still more preferable the leaves of the plant. 5 As used herein the term “bagasse” generally refers to biomass that has been subjected to an extraction process such as, for example, pressing or milling, so that the resulting biomass solids have less water soluble solids than the biomass from which it is derived. In certain embodiments bagasse is prepared by subjecting biomass to high pressure, which may be achieved by passing the biomass through one or more pairs of opposed rolls, a mechanical press, a screw press as well as by direct 10 hydraulic pressure and other processes to apply pressure to the biomass and remove intercellular and intracellular liquid therefrom. As used herein the term “milling” generally refers to the application of sufficient pressure to force the intercellular and intracellular liquid from the biomass. As used herein, the term “saccharide” is used interchangeably with the terms “polysaccharide,” 15 “oligosaccharide” and “sugar” the definitions of which are well known to those skilled in the art of carbohydrate chemistry. It should be noted that the saccharides can be in the form of mono-, oligo- and/or polysaccharides. Preferably saccharides are water soluble and do not include cellulose, hemicellulose or mono-, oligo- and/or polysaccharides bound to other compounds, such as glycosides (arabinose, glucose, galactose, xylose, and glucuronic acid) bound to a triterpenoid to form a saponin. 20 As used herein the term “saponin” generally refers to glycosides comprising a sugar component referred to as a glycone and a non-sugar component referred to as an aglycone. Depending on the structure of the aglycone the saponin may be classified as a triterpenoid saponin, illustrated in FIG.1A, or to steroidal saponin, illustrated in FIG.1B. The aglycone portion of the saponin may be either a pentacyclic triterpenoid or a tetracyclic triterpenoid, both of which contain 30 carbon atoms. Whether 25 steroidal or triterpenoid, saponins may be mono, bi- or tridesmodic. Monodesmodic saponins have a single saccharide, normally attached at C-3. Bidesmodic saponins have two saccharides, often with one attached through an ether linkage at C-3 and the other either attached through an ester linkage at C-28 or through an ether linkage at C-20 (pentacyclic and tetracyclic triterpene saponins, respectively), or through an ether linkage at C-26 (furostane saponins). In certain instances, Hesperaloe biomass may 30 comprises at least about 5 wt% of total saponins, such as from about 5 to about 15 wt%, such as from about 8 to about 12 wt%, based upon the bone dry weight of the biomass. Total saponins may be determined as described in the Test Methods section below. As used herein the term “water soluble solids” generally refers to dry matter which remains after the extract has been centrifuged, filtered and all water is evaporated. The procedure for measuring water soluble solids of a biomass extract of the present invention is described in detail in the Test Methods section below. Water soluble solids may be expressed on a percentage basis relative to the mass of 5 bone dry biomass. As used herein the term “water insoluble solids” generally refer to the fraction of extract that is removed by centrifugation and filtration in the course of measuring water soluble solids, as described in the Test Methods section below. As used herein, “enhancing immune response” refers to an increase the phagocytic activity in 10 in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, in a subject being treated with a saponin containing composition derived from Hesperaloe, as described herein in comparison to the same subject prior to being treated. As used herein, “pharmaceutical composition” refers to a composition at least one saponin extracted from Hesperaloe and formulated with one or more pharmaceutical-grade excipients in a 15 manner that conforms with the requirements of a governmental agency regulating the manufacture and sale of pharmaceuticals as part of a therapeutic regimen for the treatment or prevention of disease in a non-human animal. Pharmaceutical compositions can be formulated, for example, for oral administration in unit dosage form (e.g., a tablet, capsule, caplet, gelcap, or syrup); for topical administration (e.g., as a cream, gel, lotion, or ointment); for intravenous administration (e.g., as a sterile solution free of 20 particulate emboli and in a solvent system suitable for intravenous use); or any other formulation described herein. As used herein the terms “subject” and “non-human animal” refer to any vertebrate animal including, without limitation cattle, chickens, turkeys, ducks, quail, geese, pigs, and sheep. DETAILED DESCRIPTION 25 The present invention relates to novel pharmaceutical, dietary supplements and food ingredient compositions comprising at least one component selected from the extract(s), fraction(s), active compound(s) and phytochemical(s) or mixtures thereof derived from non-woody plants of the genus Hesperaloe including, for example, H. funifera, H. parviflora, H. nocturna, H. chiangii, H. tenuifolia, H. engelmannii, and H. malacophylla, optionally containing one or more of pharmaceutically and dietetically 30 acceptable phytochemical actives, diluents, vehicles, carriers and actives or mixtures thereof. In a particularly preferred embodiment, the present invention provides a method of increasing the phagocytic activity in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, in a non-human animal by administering to the non-human animal a Hesperaloe derived immunomodulator containing one or more saponins. The compositions of the present invention are particularly well suited for the treatment of non- human-animals including, for example, bovine, fowl, porcine, ovine, and equine species. By way of 5 example, the methods and compositions of the invention can be used for the treatment of cattle, chickens, turkeys, ducks, quail, geese, pigs, and sheep. In a particularly preferred embodiment, the methods and compositions of the present invention can be used for the treatment of poultry and more particularly for the prevention and treatment of coccidiosis and/or necrotic enteritis. The Hesperaloe derived immunomodulator of the present invention may comprise at least 10 5 wt%, based upon the bone dry weight of the composition, saponins as measured by the total saponin assay set forth in the Test Methods section below. In a particular embodiment, the saponin containing composition used in accordance with the invention comprises at 10 wt% saponin, more preferably at least about 10 wt% saponin and still more preferably at least about 15 wt% saponin, such as from about 5 to about 30 wt% saponin, such as from about 15 to about 25 wt%. It is believed that the effects of the 15 composition are related to the total amount of saponins present. Thus, one of skill in the art will appreciate that if a certain amount of saponins is desired it can be achieved either through varying the volume of a certain concentration composition administered, varying the concentration of a certain volume of a composition, or both. Saponins useful in the present invention may also be extracted from non-woody plants of the 20 genus Hesperaloe. Hesperaloe derived saponins generally have steroidal saponins. Saponins derived from Hesperaloe may have at least one of the following aglycones or genins: kammogenin, manogenin, gentrogenin, hecogenin, tigogenin, sarsapogenin, chlorogenin and gitogenin or their corresponding isomer or oxidized or reduced forms with at least one of the following glycosidic moieties (in the form of acid or salt): glucose, xylose, rhamnose, arabinose, or galactose. In other embodiments the steroidal 25 saponins may comprise agamenoside, agaveside, agavoside, magueyside, agavasaponi, cantalasaponin, sisalsaponin, gabrittonoside, dongnoside or amolonin, or other steroidal saponins. Extractives may be recovered from non-woody plants of the genus Hesperaloe by extracting biomass, particularly the leaves and more particularly the leaves above the crown of the plant, with at least one solvent selected from the group consisting of water, methanol, ethanol, butanol, and 30 isopropanol, and mixtures thereof. For example, in one embodiment, the process comprises contacting biomass with an extractant solution comprising water and separating the water soluble fraction from the insoluble biomass fraction. In other embodiments the extractant solution may comprise, in addition to water, a surfactant, a solvent and optionally extract-bearing juice. The extract-bearing juice can come from, for example, an earlier extraction step or an earlier milling step. A simple water extraction of Hesperaloe biomass may yield a crude aqueous extract comprising saccharides, polysaccharides, inorganic salts, saponins and sapogenins. A crude extract may also be 5 produced using methanol as a solvent, or a mixture of methanol and water, to extract biomass, which may have been previously extracted with acetone or diethyl ether to remove lipids and pigments. In other instances, the biomass may be extracted with a 4:1 ethanol-water solvent, followed by subsequent defatting of the extract with a non-polar solvent such as hexane. In certain instances, the defatted extract may be subjected to further treatment to isolate specific water soluble components, such as saponins, 10 which may be purified from the defatted extract by mixing with butanol and separating the butanol phase to yield a mixture of saponins that are substantially free from proteins and free saccharides and polysaccharides. Hot aqueous extractants can also be used. For example, in one embodiment water soluble solids may be extracted from Hesperaloe biomass, particularly the leaves, by extracting the biomass 15 with hot aqueous ethanol or isopropanol (75 to 95% by weight alcohol). The aqueous alcohol extraction fluid may then be filtered and concentrated, and the fat-soluble material may be removed by mixing the extraction fluid with a non-polar solvent such as hexane. A substantially pure saponin composition may then be prepared by further extracting defatted extract with a polar solvent such as butanol. For the purpose of preparing the compositions of the present invention, and for use in the 20 present method, a simple aqueous extract may be preferred, although other extraction methods are within the scope of the present invention. In a particularly preferred embodiment, Hesperaloe biomass may be cut to size, pressed, and extracted with an aqueous solvent to remove water soluble extracts such as inorganic salts, saccharides, polysaccharides, organic acids and saponins. The water soluble extracts are collected and may be concentrated by techniques well known in the art such as, for example, 25 evaporation, spray-drying, drum drying and the like. The extract may be concentrated until it has a solids content of about 20 to about 100% solids by weight, such as from about 20 to about 95% solids by weight, such as from about 20 to about 80% solids by weight. In a particularly preferred embodiment water soluble extracts are concentrated by spray drying by feeding the extract solution to atomizing equipment. Suitable atomizing equipment includes, but is 30 not limited to, a rotary wheel atomizer, a pressure nozzle atomizer, and a dual fluid nozzle atomizer. Rotary wheel, pressure nozzle and dual fluid nozzle atomizers are known to those of ordinary skill in the art and include those in spray dryers commercially available from a variety of sources, such as GEA Process Engineering. As will be described in more detail below, the biomass may be milled to separate the bagasse and water soluble solids using a roll, screw, and other forms of presses. In certain preferred embodiments biomass is passed between one or more nips of opposed counter-rotating rolls to maximize the mechanical removal of juice. The bagasse can then be contacted with the juice in a 5 subsequent milling step, as will be described more fully below. In certain instances, the biomass may be cut to size and cleaned prior to milling. Cutting and cleaning may be carried out using well known methods in the art. In a particularly preferred embodiment, the biomass is cleaned to remove debris such as dirt without the use of water or other solvents. While it may be preferable to cut the biomass to size prior to extraction, in certain embodiments it may be useful not to grind, pulp, shred or macerate the 10 biomass before it is milled. While such physical processing steps can be advantageous in that they expose more of the biomass surface to the extractant solution, they can break the plant cell walls, excessively shorten fiber length, and create an excessive amount of fines. It is generally desirable to avoid negatively affecting the bagasse in this manner during the extraction phase. In this manner, the extraction method of the present invention typically yields bagasse fiber that may be further processed, 15 such as by pulping, to yield pulp fibers well suited for the manufacture of paper products. In other embodiments the water soluble solids may be recovered from biomass by diffusion. In diffusion, the biomass brought into contact with the liquid to extract the liquid components. Usually, the biomass is prepared by first cutting, but not shearing or crushing so as to minimize the damage to fibers and avoid the creation of an excessive amount of fines. The prepared biomass is then washed 20 repeatedly, usually using a solvent, to extract the liquid contained in the biomass. The solvent can be any of the foregoing solvents. An exemplary treatment solvent is water, particularly hot water such as water heated to a temperature from about 40 to about 90°C. The solvent can be circulated and reused so that the solvent used for a first extraction is reused as a solvent to extract subsequent prepared biomass. 25 Various types of diffusers are known in the art and can be adapted for use with biomass as described herein. Suitable diffusers include a ring diffuser, a tower diffuser, or a drum diffuser. Exemplary diffusion systems are discussed, for example, in U.S. Patent Nos.4,182,632, 4,751,060, 5,885,539 and 6,193,805 the contents of which are hereby incorporated in a manner consistent with the present disclosure. Numerous other diffusion methods and devices for the diffusion method are known and can30 be adapted for use in the methods described herein. One such diffuser is the continuous-loop, counter- current, shallow-bed Crown Model III Percolation Extractor, commercially available from Crown Iron Works, Blaine, MN. The biomass, cut or uncut, may be extracted by any suitable extraction process as discussed above. In a particularly preferred embodiment, the solvent used for extraction comprises water. One of skill in the art will recognize the ratio of extraction solvent to biomass will vary based on the solvent, the amount of biomass to be extracted and the extraction procedure. In certain preferred embodiments, the 5 extraction solvent is water and the ratio of extraction solvent to biomass, on the basis of liters of extraction solvent to kilogram of bone-dry biomass, is from about 1:5 to about 1:100, such as from about 1:5 to about 1:50 and more preferably from about 1:5 to about 1:20. The pH of the extraction solvent can be between about pH 5.0 and 8.0, such as, for example, between about pH 6.0 and about pH 8.0, between about pH 6.5 and about pH 7.5. In a particular 10 embodiment, the extraction solvent is water having a pH between about pH 6.5 and about pH 7.5. In those embodiments where extraction includes imbibition with a crude juice, the imbibition fluid may have a pH from about 4.0 to about 5.0. The extraction may be carried out at temperatures between about 25 and about 90°C, such as, for example, between about 30 and about 80°C, between about 35 and about 75°C, between about 40 15 and about 70°C, between about 45 and about 65°C or between about 50 and about 60°C. In embodiments where the extraction process is a batch extraction process, the duration of extraction may range from about 0.25 to about 24 hours, such as, for example, from about 0.5 to about 2 hours, from about 1 to about 8 hours, or from about 1 to about 6 hours. In embodiments where the extraction process is a continuous process, the duration of extraction 20 may range from about 0.25 to about 5 hours, such as, for example, from about 0.5 to about 3 hours. After extraction the water insoluble biomass material may be separated from the water soluble solids by filtration to provide a filtrate containing inorganic salts, saccharides, polysaccharides, organic acids and saponins (referred to herein as the “first filtrate”). Separation can be achieved by any suitable means including, but not limited to, gravity filtration, a plate-and-frame filter press, cross flow filters, 25 screen filters, Nutsche filters, belt filters, ceramic filters, membrane filters, microfilters, nanofilters, ultrafilters or centrifugation. Optionally various filtration aids such as diatomaceous earth, bentonite, zeolite, and the like, may also be used in this process. After separation, the pH of the first filtrate may be adjusted to remove additional impurities. In one embodiment, the pH of the first filtrate can be adjusted to between about 8.5 and about 10.0 by 30 treatment with a base, such as, for example, calcium oxide or hydroxide (about 1.0% from the volume of filtrate) with slow agitation. In a particularly preferred embodiment water soluble solids are removed from biomass, particularly Hesperaloe leaves, prior to pulping by a series of mills, such as two, three, four, five, six or seven mills arranged in tandem, optionally with imbibition and/or depithing. Generally, processing biomass according to the present invention removes at least about 25% of the water soluble solids from 5 the biomass, more preferably at least about 50%, still more preferably at least about 75%, such as from about 25 to about 98%, such as from about 50 to about 90%, such as from about 75 to about 90%. The amount of water soluble solids recovered from biomass may vary depending on the extraction efficiency, however, in certain instances from about 100 to about 400 grams of water soluble solids may be extracted per kilogram of bone dry biomass, such as from about 120 to about 350 grams 10 per kilogram, such as from about 150 to about 300 grams per kilogram. Of the extracted water soluble solids, the total saponins may comprise from about 5 to about 40 wt%, such as from about 10 to about 30 wt%, based upon the bone dry weight of the water soluble solids. In certain instances the amount of total saponins that may be extracted from biomass may range from about 10 to about 400 grams per bone dry kilogram of biomass, such as from about 20 to about 300 grams, such as from about 25 to 15 about 200 grams, such as from about 10 to about 100 grams. In certain instances, the amounts of materials (on bone dry grams per kilogram of bone dry biomass) removed from the biomass during the extraction process may range as set forth in Table 1, below. TABLE 1 Total Extracted Solids Total Water Insoluble Solids Total Water Soluble Solids Total Saponins
Figure imgf000012_0001
In addition to saponins, the water soluble solids may comprise saccharides, proteins, lipids, and 20 inorganic salts. For example, in certain instances, the water soluble solids may comprise from at least about 1 wt%, based upon the bone dry weight of water soluble solids, saccharides, such as from about 1 to about 15 wt%, such as from about 2 to about 10 wt%. The saccharides may comprise monosaccharides and oligosaccharides. In other instances, the water soluble solids may comprise from at least about 15 wt%, based upon the bone dry weight of water soluble solids, inorganic salts, such as 25 from about 15 to about 30 wt%. Generally milling is carried out with the addition of an aqueous solvent, such as water, having a pH ranging from about 5 to about 9, such as from about 6 to about 7 to about 8. The water soluble solids are generally recovered from the milling process as a crude extract and may be subjected to further processing to recover specific compounds, such as saccharides, polysaccharides, organic acids and saponins. The suspended solids, also referred to herein as the water insoluble fraction, may optionally be removed from the crude extract by well-known processes including, for example, clarification, filtration, 5 centrifugation, or a combination thereof. The amount of water insoluble solids in the extract (on bone dry grams per kilogram of bone dry biomass) may range from about 1.0 to about 30 grams and may comprise hydrophobic substances such as waxes and the like. After removal of suspended solids, the clarified juice may be used directly, concentrated, or subjected to further processing to isolate one or more water soluble solids such as saccharides, 10 polysaccharides, organic acids, saponins and sapogenins. In other instances, the clarified juice may be further purified to remove saccharides, polysaccharides, and organic acids to yield composition comprising saponins. The juice resulting from the foregoing extraction process may be subjected to further extraction to obtain saponin in the form of a crude saponin extract or its substantially purified form comprising 15 saponins at a concentration from about 30 to about 90% in weight. The extraction method may comprise mixing juice extracted from non-woody plants of the genus Hesperaloe with a water-immiscible polar solvent. Suitable water-immiscible polar solvents include, for example, alcohols having from 4 to 6 carbon atoms, such as butyl, amyl, hexyl and cyclohexyl alcohols. Extraction of the juice with a water- immiscible polar solvent generally removes impurities such as proteins, carbohydrates, and organic 20 acids, which remain in the aqueous phase, the saponin being transferred to the solvent phase. The solvent phase containing the saponin may be subjected to further treatment to separate the saponin from the alcohol phase. This can be accomplished in various ways including, for example, by cooling, by dehydrating the solvent extract, or by adding an organic solvent which is miscible with the alcohol solvent but in which the saponin is insoluble. Suitable precipitating solvents include, for example, 25 diethyl ether, petroleum ether, acetone, and chloroform. In a particularly preferred embodiments, the saponin is separated from the alcohol by flash evaporation. Flash evaporation is a technique known in preparative chemistry for the rapid removal of a volatile component from a liquid mixture. The volatile liquid is removed from solution by rapid conversion to a vapor phase by creating a thin film of the solution over a large surface area under reduced pressure 30 often accompanied by an increase of temperature of the solution above ambient but less than the boiling point of the solution at atmospheric pressure. The actual thickness of the film and the area over which it is applied is chosen to provide optimum evaporation and ease of use, but evaporation may be substantially instantaneous (hence the name “flash” evaporation). Flash evaporation avoids the prolonged use of high temperatures that may degrade the intended product and has the ability to remove almost all of the alcohol component (which makes the remaining solution suitable for the preferred practice of spray drying employed in the next step. The alcohol may be recovered from this step and re- used in the extraction process. 5 The saponin content of the alcohol extract can be further increased by passage over an ultrafiltration membrane without significant alteration to or loss of the saponin composition. This concentrated saponin fraction where the saponin content is in the range of 85-90%, can then be further purified in a liquid state or reduced to a dry state. Individual saponins may be recovered by a combination of reversed-phase solid phase extraction and preparative reversed-phase HPLC. Alternatively, the 10 alcohol extract containing saponins can be fractionated directly by a combination of reversed-phase solid phase extraction and preparative reversed-phase HPLC. In still other embodiments saponins may be purified from juice prepared according to the present invention comprises the steps of mixing the juice with a salt and a solvent to form a first solution. The solvent may comprise one or more solvents selected from acetic acid, acetone, acetonitrile, benzene, 1- 15 butanol, 2-butanol, 2-butanone, t-butyl alcohol, carbon tetrachloride, chlorobenzene, chloroform, cyclohexane, 1,2-dichloroethane, diethylene glycol, diethyl ether, diglyme, 1,2-dimethoxyethane, dimethylformamide, dimethylsulfoxide, 1,4-dioxane, ethanol, ethyl acetate, ethylene glycol, glycerin, heptane, hexamethylphosphoramide, hexamethylphosphorous triamide, hexane, methanol, methyl-t- butyl ether, methylene chloride, N-methyl-2-pyrrolidinone, pentane, perchloroethylene, petroleum ether, 20 1-propanol, 2-propanol, pyridine, tetrahydrofuran, toluene, triethylamine, trifluorotoluene, water, xylene, or any combination of the forgoing. In some embodiments the solvent is water. The salt may be selected from an alkali metal salt, an alkaline earth salt, a transition metal salt, an ammonium salt, or combinations of the forgoing. In certain preferred embodiment the salt added to the plant extract to form the solution is an alkaline earth metal salt. In particularly preferred embodiments the salt is calcium chloride (CaCl2), 25 magnesium chloride (MgCl2), or a mixture thereof. The pH of the first solution is generally adjusted to a pH from about 6.0 to about 9.0, such as from about 6.0 to about 8.0, such as from about 6.0 to about 7.0. At least one phosphate may then be added to the first solution to form an ion-polysaccharides complex precipitate. Useful phosphates include, for example, sodium hydrogen phosphate (Na2HPO4), sodium dihydrogen phosphate 30 (NaH2PO4), sodium phosphate (Na3PO4), or sodium hydrogen bisphosphate (Na2H2PO7). The precipitated ion-polysaccharides complex may be removed by filtration to yield a second solution, which may be further clarified to produce an extract of purified saponins. Optionally, the extract can be concentrated by any filtration technique known in the prior art. Preferably, the concentration of the extract of purified saponins is carried out by nanofiltration, ultrafiltration and diafiltration, or any combination of these techniques. In some embodiments, the saponin extract is substantially free of proteins. In some embodiments, the saponin extract is substantially free of polysaccharides. In some embodiments, the saponin extract is substantially free of phenolic compounds. 5 The total amount of saponins that may be extracted from Hesperaloe biomass according to the present invention may range from about 10 to about 100 grams per bone dry kilogram of biomass, such as from about 20 to about 80 grams, such as from about 25 to about 75 grams. The saponins may be provided as part of a crude juice, as part of a dried water soluble solids compositions, as a partially purified compositions or as a substantially pure composition comprising a mixture of saponins. 10 In certain embodiments saponins extracted from Hesperaloe biomass may comprise 25(27)- dehydrofucreastatin (FIG. 2A), 5(6),25(27)-disdehydroyuccaloiside (FIG. 2B), 5(6)- disdehydroyuccaloiside (FIG.2C), furcreastatin and yuccaloiside. Compositions useful in the present invention may be prepared by blending an aqueous extract from Hesperaloe biomass with one or more polyhydroxy alcohols including glycerol, propylene glycol, 15 polyalkylene glycol such as polyethylene glycol and polypropylene glycol, and polyglycerol. Preferred polyhydroxy alcohols have less than about eight carbon atoms. Glycerol and propylene glycol are particularly preferred polyhydroxy alcohols. The composition may also comprise saccharides, which may be present in the aqueous extract or may be added after extraction during formulation. Saccharides useful in compositions of the present 20 invention include monosaccharides such as glucose, disaccharides such as sucrose and polysaccharides such as starch. In still other embodiments compositions in accordance with embodiments of the invention can include various other additives known in the art to have benefits for the maintenance and well-being of non-human animals. By way of example, compositions can also include components such as Vitamin E,25 Vitamin A Propionate, Vitamin A Palmitate, Vitamin B1, Vitamin B2, Vitamin B6, Vitamin B12, D- Activated Animal Sterol (source of Vitamin D3), yeast components, dried egg solids, dried casein, and dried whey. Saponin containing compositions of the present invention may be in liquid or dry forms. By way of example, a saponin containing Hesperaloe extract may be dried into a powder form. In this form, the 30 saponin containing composition may be administered to an animal as a pill or bolus or mixed in with other components such as a feed ration. For example, dry powder formulations of saponin containing compositions may be added to the feed ration via a micro-ingredient machine or added to a feed mix truck and mixed thoroughly to assure even distribution in the feed. Saponin containing Hesperaloe extract may also be in liquid form with an amount of a carrier liquid such as water. In this form, the saponin containing composition may be administered to an animal as a liquid drench. Saponin containing compositions of the present invention may be administered to non-human 5 animals in need there of as a single dose, as multiple doses as part of a feeding regiment. For example, a non-human animal may receive an initial dose and then receive subsequent maintenance doses in lesser amounts. A non-human animal may receive multiple doses of a saponin containing composition in one day or may receive multiple doses over multiple days. In certain embodiments, the compositions of the present invention, may be useful as an 10 immunomodulator or adjuvant. In certain embodiments saponin containing compositions derived from Hesperaloe may be administered to a non-human animal in need thereof to elicit an adaptive immune response. In a particularly preferred embodiment administration of the saponin containing extracts of the present invention causes an increase in the phagocytic activity in CD4 T helper (Th) cells, particularly Th1 and Th17 cells, in the subject. In this manner the extracts of the present invention may be 15 administered as a pharmaceutical composition without the addition of an antigen to enhance the immune response of the subject. In other embodiments the Hesperaloe extracts of the present invention may be administered to non-human animals with an antigen to enhance the immune response of the subject. Suitable antigens include microbial pathogens, bacteria, viruses, proteins, glycoproteins lipoproteins, peptides, 20 glycopeptides, lipopeptides, toxoids, carbohydrates, and tumor-specific antigens. Mixtures of two or more antigens may be employed. In certain preferred embodiments the compositions of the present invention may be administered with a vaccine intended for the prevention of coccidiosis in non-human animals, in particular poultry, characterized in that the coccidia are chosen from the group consisting of Eimeria, Isospora, Toxoplasma, Besnoitia, and Neospora. Thus, the present invention provides an 25 adjuvant system that is particularly advantageous in making and using vaccine and other immunostimulant compositions to treat or prevent diseases, such inducing active immunity towards antigens in non-human animals. In a particularly preferred embodiment of the saponin containing extracts may be administered with an Eimeria vaccine to poultry in need thereof to increase the immune response, lower lesion scores 30 and reduced oocyst shedding resulting from coccidiosis. The immunogenic composition of the present invention may be delivered orally or subcutaneously in a dose volume suitable for increasing an immune response, such as a does level of less than about 50 µg, such as less than about 40 µg, such as less than about 30 µg, such as from about 1 to about 50 µg, such as from about 5 to about 30 µg. The compositions of the present invention exhibit adjuvant effects when administered over a wide range of dosages and a wide range of ratios to the antigen being administered. In one embodiment, the saponin is administered in a ratio of adjuvant, based upon the weight of saponin, to antigen (w/w) of 3.0 or less, preferably 1.0 or less. 5 Saponins extracted from non-woody plant of the genus Hesperaloe according to the present invention may be used as adjuvants in crude or purified forms and may be admixed with other non- saponin adjuvants to achieve the enhancement of the immune response to an antigen. Such non- saponin adjuvants useful with the present invention are oil adjuvants (for example, Freund's Complete and Incomplete), liposomes, mineral salts (for example, AlK(SO4)2, AlNa(SO4)2, AlNH4 (SO4), silica, 10 alum, Al(OH)3, Ca3 (PO4)2, kaolin, and carbon), polynucleotides (for example, poly IC and poly AU acids), and certain natural substances (for example, wax D from Mycobacterium tuberculosis, as well as substances found in Corynebacterium parvum, Bordetella pertussis, and members of the genus Brucella). TEST METHODS 15 Water Soluble Solids Total biomass water soluble solids may be determined using an Accelerated Solvent Extraction system (ASE) such as a Dionex™ ASE™ 350 (Thermo Fisher Scientific, Waltham, MA). Approximately 10 grams of harvested biomass is dried to a constant weight in an oven, typically 4 hours at 125°C. After drying 1.5 - 2.0 grams of the bone dry biomass is accurately weighed and the weight (Wb) recorded to 20 the nearest 0.001 gram. Using water as the solvent, biomass is extracted using the conditions set forth in the table below. The ratio of biomass to solvent is generally 21:1 and five consecutive water extraction cycles are performed. At the end of each extraction cycle, the liquid phase is collected, dried under vacuum at approximately 40°C and the weight of the dried material (Wi) is recorded to the nearest 0.001g. The total weight of water soluble solids (We) is calculated by summing the weight of solids 25 recovered from each extraction cycle (Wi). Total water soluble solids as a percentage of bone dry biomass is then determined using the following equation: Water Soluble Solids (wt%) = We / Wb *100. Pressure (psi) 1500 Temperature (°C) 40 Static Time (min.) 10 Cycles (no.) 5
Figure imgf000017_0001
The total water soluble solids in biomass extract may be determined by withdrawing an appropriate aliquot, typically about 10-50 ml, transferring to clean, dry, centrifuge tube. The tube is centrifuged at 7000rpm for 20 minutes. The weight of extract (W1) is calculated. An aliquot of the supernatant is then transferred to clean, pre-weighed beaker (D0), and weighed. The beaker and sample are then weighed to the nearest 0.001 g and the weight (D2) recorded. The beaker containing the sample is then placed at 140°C in a hot air oven for overnight drying. The beaker is removed from the oven and desiccated to cool to room temperature then weighed to the nearest 0.001 gram (D1). The weight 5 percentage of soluble solids, based upon the weight of the extract, is determined using the formula belo
Figure imgf000018_0001
D1= mass of empty beaker + dried soluble solids, D0 = mass of empty beaker, D2 = mass of biomass extract and empty beaker. 10 Total Saponins Total saponins were measured generally as described in Makkar, Harinder P.S., Sidhuraju, P., Becker, Klaus (2007) Plant Secondary Metabolites, chapter 17, pp 93-100. A standard saponin solution was prepared by weighing 10 mg of diosgenin (MilliporeSigma >93%), dissolving in 16 mL of methanol and adding 4 mL of distilled water. The solution was mixed thoroughly to yield a 0.5 mg/mL diosgenin 15 solution in 80% methanol solvent. The standard was used to produce a calibration curve by transferring various amounts of the standard (0, 10, 20, 40, 60, 80, and 100 µL) into 13-mm glass test tubes. A solution of 80% aqueous methanol was added to a total volume of 100 µL. Prior to testing samples of biomass extract were adjusted to about 0.5 wt% total solids by dilution with water to ensure absorbency result fell along the saponin standard calibration curve range. Samples 20 of diluted extract (20-µL) were pipetted into 13-mm glass test tubes and the volume was brought up to 100 µL with 80 µL methanol. Each sample was tested in triplicate. To each sample 100 µL of vanillin reagent (prepared by dissolving 800 mg of vanillin in 10 mL of 99.5% ethanol (analytical grade)) and then 1.0 mL of 72% (v/v) sulfuric acid (72% (v/v) sulfuric acid prepared by adding 72 mL of sulfuric acid (analytical grade, 95%, w/w) to 28 mL of distilled water) were 25 added. Solutions were mixed well and heated at 60°C for 10 minutes. Samples were then cooled in an ice bath and 1 mL of solution was transferred into respective cuvette and absorbance at 544 nm was read. The total mass of saponins in the sample may be calculated based upon the standard absorbency curve as follows:
Figure imgf000018_0002
Total Saponins Total saponins were measured generally as described in Makkar, Harinder P.S., Sidhuraju, P., Becker, Klaus (2007) Plant Secondary Metabolites, chapter 17, pp 93-100. A standard saponin solution was prepared by weighing 10 mg of diosgenin (MilliporeSigma >93%), dissolving in 16 mL of methanol 5 and adding 4 mL of distilled water. The solution was mixed thoroughly to yield a 0.5 mg/mL diosgenin solution in 80% methanol solvent. The standard was used to produce a calibration curve by transferring various amounts of the standard (0, 10, 20, 40, 60, 80, and 100 µL) into 13-mm glass test tubes. A solution of 80% aqueous methanol was added to a total volume of 100 µL. Prior to testing samples of biomass extract were adjusted to about 0.5 wt% total solids by dilution 10 with water to ensure absorbency result fell along the saponin standard calibration curve range. Samples of diluted extract (20-µL) were pipetted into 13-mm glass test tubes and the volume was brought up to 100 µL with 80 µL methanol. Each sample was tested in triplicate. To each sample 100 µL of vanillin reagent (prepared by dissolving 800 mg of vanillin in 10 mL of 99.5% ethanol (analytical grade)) and then 1.0 mL of 72% (v/v) sulfuric acid (72% (v/v) sulfuric acid 15 prepared by adding 72 mL of sulfuric acid (analytical grade, 95%, w/w) to 28 mL of distilled water) were added. Solutions were mixed well and heated at 60°C for 10 minutes. Samples were then cooled in an ice bath and 1 mL of solution was transferred into respective cuvette and absorbance at 544 nm was read. The total mass of saponins in the sample may be calculated based upon the standard absorbency curve as follows: 20
Figure imgf000019_0001
EXAMPLES Example 1: A total of 150 one-day-old broiler chicks were randomly distributed to six experimental groups in a 28-day cage study. Live coccidia were manually introduced to the birds at their 14th day of age. The 25 treatment codes, listed in Table 3, included two control codes using basal diet with (Control+) and without (Control) coccidian challenges. Remaining treatment codes were all challenged with coccidian using base diet enriched with an inventive composition at two different dosages or a Yucca extract marketed under the tradename FOAMATION™ (commercially available from Ingredion, Westchester, IL). FOAMATION™ comprised 50% by weight of the composition water soluble solids, of which saponins 30 comprised 10 wt%. Bird body weight gain (BW) and feed consumption for each pen were measured on a weekly basis. Feed conversion rate (FCR) is the ratio between kilograms of feed consumed and kilograms of body weight gain. The lower FCR value indicates a better feed. TABLE 3
Figure imgf000020_0001
The inventive extract was prepared by forage harvesting mature Hesperaloe funifera leaves above the crown, cutting the leaves into pieces ranging from about 0.50 to about 8.0 cm and pressing the cut biomass using a tandem press. The biomass was pressed three times and the crude juice was 5 collected and passed through 25 mm filter and heated to concentrate the extract to 29% solid. The water soluble solids comprised 21 wt% total saponins, based upon the bone dry weight of water soluble solids. At the end of 28-day trial, the challenged control (Control+) group decreased feed consumption by about 140 g/bird and body weight gain by was reduced by about 160 g/bird compared to the control without challenge. These decreases, however, were not observed in chickens administered feeds 10 comprising the inventive composition, as illustrated in Table 4, below. TABLE 4
Figure imgf000020_0002
Example 2: A total of 512 one-day-old broiler chicks were randomly distributed to 8 experimental groups, 8 cages for each group and 8 birds per cage in a 21-day study. Live coccidian was manually introduced 15 to the young birds at 14th day of age. Bird weight gain (WG), feed conversion rate (FCR), lesion score and oocyst counts were measured. The treatment codes, listed in Table 5, included basal diet with no coccidian challenge (control) and with challenge (Control+).Remaining treatment codes were coccidian challenged codes using base diet with Coban (commercially available from Elanco Animal Health, Greenfield, IN), Micro-Aid (commercially available from DPI Global, Porterville, CA) and two different 20 inventive samples at two different dosages. Base diet met the minimum National Research Council requirements for poultry. TABLE 5
Figure imgf000021_0001
Inventive sample 1 was prepared by forage harvesting mature Hesperaloe funifera leaves above the crown, cutting the leaves into pieces ranging from about 0.50 to about 8.0 cm and pressing the cut biomass using a tandem press. The biomass was pressed three times and the crude juice was collected 5 and passed through 25 mm filter and heated to concentrate the extract to 29% solid. Inventive sample 2 was prepared by forage harvesting mature Hesperaloe funifera leaves above the crown, cutting the leaves into pieces ranging from about 0.50 to about 8.0 cm and pressing the cut biomass using a tandem press once, followed by heating of the collected juice to obtain an extract having 14% solids. All treatment materials were made by mixing each additive to the base feed at the designated loading level in a mixer. 10 Chickens fed the inventive composition exhibited weight gain, improved feed conversion rate, decreased lesion score and lower oocysts as summarized in Table 6, below. In many instances the improvements were the comparable to, or better, then those observed in chickens fed Coban or Micro- Aid Green. Even at relatively low dosages of saponin, the inventive compositions were effective. TABLE 6
Figure imgf000021_0002
15 Compositions of the present invention are particularly useful in reducing or preventing coccidial. Lesion score is a means of assessing coccidial development through chicken’s intestinal damage on a score between 0-4 (0 indicates normal intestinal appearance while 4 indicates severe damaged intestine). Chickens fed the inventive composition, over 3 weeks, improved lesion score (23-27%), compare to the unchallenged control. By reducing the instances of infection and protecting the chickens’ digestive system, the chickens were able to better digest and absorb nutrients and grow at a greater 5 rate. Example 3: A total of 210 day-of-hatch Ross x Ross male broiler chicks were obtained from Aviagen Hatchery, Blairsville, GA. Upon birth the birds received routine vaccinations (HVTSB1). The birds were randomly distributed to six experimental groups in a 28-day cage study. The treatment groups, listed in 10 Table 7, included a first group that received no vaccine or Hesperaloe extract, groups that received the Hesperaloe extract alone, groups that received Newcastle disease virus (Lasota strain) and Hesperaloe extract, as well as a group that received an inactivated Newcastle disease virus (Lasota strain). TABLE 7
Figure imgf000022_0001
Birds treated with the Newcastle disease virus received an oil emulsion Newcastle disease virus (Lasota 15 strain) vaccine administered at 0.10 ml S.Q. in back of neck on Day 0. The Hesperaloe extract was prepared substantially as described in Example 2 by pressing the cut biomass using a tandem press once, followed by heating of the collected juice to obtain an extract having 14% solids. Each group of 35 broiler chicks were housed in a room measuring 13.4’ x 15.7’. The isolation room environment is controlled by independent HEPA filtration systems and heat pump units with one 20 (1) heat lamp providing supplemental heat during brooding. Birds were raised under ambient humidity and provided a lighting program as per the primary breeder recommendations. At placement, each pen contained approximately 4 inches of fresh pine shavings. Litter was not replaced during the study course. Each division contained a tube feeder and a bell drinker resulting in a 35 bird/feeder and drinker ratio. All diets contained 113.5 g/ton amprolium to prevent coccidosis with no other concomitant drug 25 therapy used during the study. Starter rations were weighed and fed DOT 0 through DOT 28. Feed formulations consisted of un-medicated commercial-type broiler starter and grower diets compounded with commonly used United States feedstuffs representative of local formulations, calculated analyses to meet or exceed NRC standards. No antibiotics were added to any feed. On DOT 28 ten birds per treatment were euthanized and organ specimens (large Peyer’s Patch in duodenum, Cecal tonsil, one-half of bursa of fabricius, 0.5 cm section of jejunum) were collected and 5 placed into individual jars. The tissue sample was fixed in 10% buffered formalin and embedded in paraffin wax. Sections (approximately 5 microns) of the paraffin-embedded tissues were stained with Mayer's hematoxylin and eosin (H&E). Lymphoid follicle area and lymphoid follicular cortex were measured as described by Muniz, et al, Brazilian J Poult Sci 8, 217-220, 2006. Five follicles with full presentation of anatomic features were 10 measured per bursa. Measurements were made with the free hand tool and line to area feature in ImageJ software 1.37, Java based image processing software, which was developed at the U.S. National Institutes of Health and is freely available on the internet. Pixels to micrometers were calibrated using an AmScope MR400 calibration slide. The area of cecal tonsil and Peyer’s patch were measured similarly to the measurement of 15 lymphoid follicle area and the germinal centers were manually counted. Cecal tonsil germinal center counts for each of treatment groups 1 through 6 are illustrated in FIG.3. Gut associated lymphoid tissue (GALT) expansion (hyperplasia) was scored on a scale from 0 to 5: 0 (not apparent), 1 (minimal presence), 2 (mild), 3 (moderate), 4 (marked), and 5 (severe). GALT expansion occurred as focal, locally extensive, and diffuse, within normal limits but to variable degrees 20 of hyperplasia. GALT score for each of treatment groups 1 through 6 is illustrated in FIG.4. Intestinal heterophils appeared as clusters of heterophils in the lamina propria. The total number of clusters were counted and recorded for each jejunum section. The total number of clusters in the lamina propria for each of treatment groups 1 through 6 are illustrated in FIG.5. ON DOT 28 ten birds per treatment were bled and the serum samples were collected and 25 assessed using a commercial enzyme-linked immunosorbent assay (ELISA) Newcastle disease antibody test (FlockChek®, commercially available from IDEXX, Maine, USA). The resulting ELISA titers for each of the groups is shown in Figure 6 (treatment groups 1 through 6 shown left to right in the graph).

Claims

WHAT IS CLAIMED IS: 1. A method of enhancing the immune response in a non-human animal comprising the steps of administering to a non-human animal an immunogenically effective amount of an extract from a non-woody plant of the genus Hesperaloe comprising at least one saponin.
2. The method of claim 1 wherein the extract further comprises saccharides, proteins, and 5 lipids.
3. The method of claim 1 wherein the extract is substantially free from saccharides, proteins, and lipids.
4. The method of claim 1 wherein the at least one saponin comprises kammogenin, manogenin, gentrogenin, hecogenin, tigogenin, sarsapogenin, chlorogenin or gitogenin and 10 at least one glycosidic moiety selected from glucose, xylose, rhamnose, arabinose and galactose. 5. The method of claim 1 wherein the at least one saponin is 25(27)-dehydrofucreastatin, 5(6),25(27)-disdehydroyuccaloiside, 5(6)-disdehydroyuccaloiside, furcreastatin or yuccaloiside. 15 6. The method of claim 1 wherein the extract comprises a mixture of 25(27)- dehydrofucreastatin, 5(6),25(27)-disdehydroyuccaloiside,
5
(6)-disdehydroyuccaloiside, furcreastatin and yuccaloiside.
7. The method of claim 1 wherein the non-woody plant of the genus Hesperaloe is Hesperaloe funifera, Hesperaloe nocturna, Hesperaloe parviflora or Hesperaloe chiangii, 20
8. The method of claim 1 wherein the amount of saponin in the extract ranges from about 10 to about 25%, by weight of the extract.
9. A method of treating coccidiosis and/or necrotic enteritis in poultry comprising administering thereto a composition comprising at least one saponin extracted from a non-woody plant of the genus Hesperaloe. 25
10. The method of claim 9 wherein the extract further comprises saccharides, proteins, and lipids.
11. The method of claim 9 wherein the extract is substantially free from saccharides, proteins, and lipids.
12. The method of claim 9 wherein the at least one saponin comprises kammogenin, 30 manogenin, gentrogenin, hecogenin, tigogenin, sarsapogenin, chlorogenin or gitogenin and at least one glycosidic moiety selected from glucose, xylose, rhamnose, arabinose and galactose.
13. The method of claim 9 wherein the at least one saponin is 25(27)-dehydrofucreastatin, 5(6),25(27)-disdehydroyuccaloiside, 5(6)-disdehydroyuccaloiside, furcreastatin or 5 yuccaloiside.
14. The method of claim 9 wherein the extract comprises a mixture of 25(27)- dehydrofucreastatin, 5(6),25(27)-disdehydroyuccaloiside, 5(6)-disdehydroyuccaloiside, furcreastatin and yuccaloiside.
15. The method of claim 9 wherein the non-woody plant of the genus Hesperaloe is Hesperaloe 10 funifera, Hesperaloe nocturna, Hesperaloe parviflora or Hesperaloe chiangii,
16. The method of claim 9 wherein the amount of saponin in the extract ranges from about 10 to about 25%, by weight of the extract.
17. The method of claim 9 further comprising administering an immunogenically effective amount of an antigen. 15
18. A method for enhancing an adaptive immune response in a non-human animal which comprises administering to the non-human animal an amount of a Hesperaloe derived immunomodulator effective to increase the activity of at least one adaptive immune defense mechanism in the non-human animal, wherein the Hesperaloe derived immunomodulator comprises at least one saponin. 20
19. The method of claim 18 wherein the Hesperaloe derived immunomodulator comprises a mixture of two or more saponins.
20. The method of claim 18 wherein the at least one saponin comprises kammogenin, manogenin, gentrogenin, hecogenin, tigogenin, sarsapogenin, chlorogenin or gitogenin and at least one glycosidic moiety selected from glucose, xylose, rhamnose, arabinose and 25 galactose.
21. The method of claim 18 wherein the Hesperaloe derived immunomodulator comprises two or more saponins selected from 25(27)-dehydrofucreastatin, 5(6),25(27)- disdehydroyuccaloiside, 5(6)-disdehydroyuccaloiside, furcreastatin and yuccaloiside.
22. The method of claim 18 wherein the Hesperaloe derived immunomodulator comprises a30 mixture of 25(27)-dehydrofucreastatin, 5(6),25(27)-disdehydroyuccaloiside, 5(6)- disdehydroyuccaloiside, furcreastatin and yuccaloiside.
23. An immunogenic or a vaccine composition against coccidiosis, infectious bronchitis, infectious bursal disease, laryngotracheitis, Marek's disease or Newcastle disease in a chicken comprising: at least one parasite, microorganism, antigen, immunogen, epitope, or vaccine; and an adjuvant comprising from 1 to about 50 µg of total saponin extracted from 5 Hesperaloe.
24. The composition of claim 23 wherein the composition further comprises a pharmaceutically effective carrier.
25. The composition of claim 23 wherein at least one parasite, microorganism, antigen, immunogen, epitope, or vaccine is a coccidiosis vaccine. 10 26. The composition of claim 25 wherein the coccidiosis vaccine comprises one or more strains of E. acervulina, E. maxima, E. mitis or E. tenella. 27. The composition of claim 23 wherein the at least one parasite, microorganism, antigen, immunogen, epitope, or vaccine is selected from the group comprising infectious bronchitis vaccine, infectious bursal disease vaccine, laryngotracheitis vaccine, Marek's disease 15 vaccine and Newcastle disease vaccine.
PCT/US2021/038274 2020-06-19 2021-06-21 Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals WO2021258056A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MX2022016382A MX2022016382A (en) 2020-06-19 2021-06-21 Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals.
JP2022577719A JP2023530476A (en) 2020-06-19 2021-06-21 Saponin containing extract prepared from Hesperalae useful in the treatment of non-human animals
AU2021292703A AU2021292703A1 (en) 2020-06-19 2021-06-21 Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals
EP21826299.6A EP4168017A4 (en) 2020-06-19 2021-06-21 Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals
BR112022025821A BR112022025821A2 (en) 2020-06-19 2021-06-21 USE OF AN EXTRACT FROM A NON-WOOD PLANT OF THE GENUS HESPERALOE, USE OF A COMPOSITION COMPRISING AT LEAST ONE SAPONIN EXTRACTED FROM A NON-WOOD PLANT OF THE GENUS HESPERALOE, USE OF AN IMMUNOMODULATOR DERIVED FROM HESPERALOE, AND, IMMUNOGENIC COMPOSITION
CA3182453A CA3182453A1 (en) 2020-06-19 2021-06-21 Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals
US18/011,335 US20230302079A1 (en) 2020-06-19 2021-06-21 Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals
CN202180043971.2A CN115916216A (en) 2020-06-19 2021-06-21 Saponin-containing extract prepared from the genus Geranium for treating non-human animals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063041224P 2020-06-19 2020-06-19
US63/041,224 2020-06-19
US202063124212P 2020-12-11 2020-12-11
US63/124,212 2020-12-11

Publications (1)

Publication Number Publication Date
WO2021258056A1 true WO2021258056A1 (en) 2021-12-23

Family

ID=79025349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2021/038274 WO2021258056A1 (en) 2020-06-19 2021-06-21 Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals

Country Status (8)

Country Link
EP (1) EP4168017A4 (en)
JP (1) JP2023530476A (en)
CN (1) CN115916216A (en)
AU (1) AU2021292703A1 (en)
BR (1) BR112022025821A2 (en)
CA (1) CA3182453A1 (en)
MX (1) MX2022016382A (en)
WO (1) WO2021258056A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115626948A (en) * 2022-10-12 2023-01-20 吉林大学 Novel spirostanin monomer and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1082909A1 (en) * 1999-09-07 2001-03-14 Distributors Processing Inc. Steroidal sapogenins for the control of coccidiosis in animals
KR20110026669A (en) * 2009-09-08 2011-03-16 김충정 Compositions for preventing or treating coccidiosis
WO2015179840A1 (en) * 2014-05-23 2015-11-26 Phibro Animal Health Corporation Combination, composition, and method of administering the combination or composition to animals
EP3056214B1 (en) * 2008-06-27 2019-04-03 Zoetis Services LLC Novel adjuvant compositions
CN110464791A (en) * 2019-09-04 2019-11-19 湖南宇山玉月农业科技有限公司 A kind of application of yucca spp in prevention chicken necrotizing enterocolitis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1082909A1 (en) * 1999-09-07 2001-03-14 Distributors Processing Inc. Steroidal sapogenins for the control of coccidiosis in animals
EP3056214B1 (en) * 2008-06-27 2019-04-03 Zoetis Services LLC Novel adjuvant compositions
KR20110026669A (en) * 2009-09-08 2011-03-16 김충정 Compositions for preventing or treating coccidiosis
WO2015179840A1 (en) * 2014-05-23 2015-11-26 Phibro Animal Health Corporation Combination, composition, and method of administering the combination or composition to animals
CN110464791A (en) * 2019-09-04 2019-11-19 湖南宇山玉月农业科技有限公司 A kind of application of yucca spp in prevention chicken necrotizing enterocolitis

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MARKER, R. E. ET AL.: "Biogenesis of the Steroidal Sapogenins in Agaves Manfreda and Hesperaloe", J. AM. CHEM. SOC., vol. 69, no. 10, 1 October 1947 (1947-10-01), pages 2403 - 2404, XP055888728, [retrieved on 20211008], DOI: 10.1021/JA01202A047 *
MARKER, R. E. ET AL.: "Sterols. CLVII. Sapogenins. LXIX. Isolation and Structures of Thirteen New Steroidal Sapogenins . New Sources for Known Sapogenins", J. AM. CHEM. SOC., vol. 65, no. 6, 1 June 1943 (1943-06-01), pages 1199 - 1209, XP055888708, [retrieved on 20211008], DOI: 10.1021/JA01246A051 *
See also references of EP4168017A4 *
SIMMONS-BOYCE, J. L. ET AL.: "Steroidal Saponins and Sapogenins from the Agavaceae Family", NATURAL PRODUCT COMMUNICATIONS, vol. 2, no. 1, 1 January 2007 (2007-01-01), pages 99 - 114, XP055888742, [retrieved on 20211008], DOI: 10.1177/1934578X0700200120 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115626948A (en) * 2022-10-12 2023-01-20 吉林大学 Novel spirostanin monomer and preparation method thereof

Also Published As

Publication number Publication date
JP2023530476A (en) 2023-07-18
CN115916216A (en) 2023-04-04
CA3182453A1 (en) 2021-12-23
EP4168017A1 (en) 2023-04-26
BR112022025821A2 (en) 2023-01-10
EP4168017A4 (en) 2024-08-07
AU2021292703A1 (en) 2023-02-09
MX2022016382A (en) 2023-01-30

Similar Documents

Publication Publication Date Title
US20230302079A1 (en) Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals
US5679354A (en) Matrix with immunomodulating activity
EP0362279B2 (en) Saponin adjuvant
Fleck et al. Adjuvant activity of Quillaja brasiliensis saponins on the immune responses to bovine herpesvirus type 1 in mice
US20070059389A1 (en) Preventives or remedies for infection, anti-endotoxin agents, vaccine adjuvants and growth promoters
US7407676B2 (en) Lignan extracts and compositions including the lignan extracts
Naveed et al. Enhancement in humoral response against inactivated Newcastle disease vaccine in broiler chickens administered orally with plant-derived soyasaponin
WO2021258056A1 (en) Saponin containing extracts prepared from hesperaloe useful in the treatment of non-human animals
CN110087659B (en) Composition for preventing and treating diseases associated with reduced Brucella function containing sea cucumber extract as effective component
JP5002097B2 (en) Preventive / therapeutic agent for human or animal disease caused by coccidium and adjuvant agent for immunization of human or animal against mild coccidium infection
KR101109415B1 (en) A feed additives for prophylaxis and treatment of viral disease including newcastle disease and a feed composion
Mohammed et al. Effect of Corianderum sativum on live weight gain, lipids, hematological and some blood parameters of Awassi female and male lambs
Muliani et al. Test the Effectiveness of Bay Leaf Extract (Syzygium Polyanthum) in Lowering Uric Acid Levels in Male White Rats (Rattus Novergicus)
Rajeesh et al. Effect of vitamin E supplementation on serum alpha tocopherol and immune status of Murrah buffalo (Bubalus bubalis) calves
CN114848807A (en) Propolis adjuvant composition, and preparation method and application thereof
Abdulla et al. Clinicopathological Studies on the Effect of Origanum majorana in Broilers
Virgínio Flávia Aparecida Nogueira, Lincoln Nunes Oliveira, Rayana Brito da Silva, Patrícia Silva Nery, Gercino Ferreira
Ukwah et al. Journal of Biological and Chemical Research
Giannenas et al. The inclusion of aromatic plants in chicken diets and their potential for the control of chicken coccidiosis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826299

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3182453

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202217072706

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022577719

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022025821

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022025821

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221216

ENP Entry into the national phase

Ref document number: 2021826299

Country of ref document: EP

Effective date: 20230119

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021292703

Country of ref document: AU

Date of ref document: 20210621

Kind code of ref document: A