WO2021256716A1 - Positive electrode for secondary battery, method for manufacturing same, and lithium secondary battery comprising same - Google Patents

Positive electrode for secondary battery, method for manufacturing same, and lithium secondary battery comprising same Download PDF

Info

Publication number
WO2021256716A1
WO2021256716A1 PCT/KR2021/006503 KR2021006503W WO2021256716A1 WO 2021256716 A1 WO2021256716 A1 WO 2021256716A1 KR 2021006503 W KR2021006503 W KR 2021006503W WO 2021256716 A1 WO2021256716 A1 WO 2021256716A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
coating layer
lithium
mixture layer
Prior art date
Application number
PCT/KR2021/006503
Other languages
French (fr)
Korean (ko)
Inventor
정혜란
정범영
김용태
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2021256716A1 publication Critical patent/WO2021256716A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same.
  • a lithium secondary battery is manufactured by using a material capable of intercalation and deintercalation of lithium ions as a negative electrode and a positive electrode, and charging an electrolyte between the positive electrode and the negative electrode, and lithium ions are the positive electrode and the negative electrode It generates electrical energy by oxidation and reduction reactions when it is inserted and desorbed.
  • the negative electrode and the positive electrode include an electrode mixture layer formed on the current collector of each electrode, and for example, a slurry is prepared by mixing and stirring a binder and a solvent, a conductive material, and a dispersing agent, if necessary, in the electrode active material. After that, it is applied to a current collector made of a metal material, compressed and dried to manufacture an electrode.
  • Such a conventional electrode includes a conductive material at a certain level or more in the electrode mixture layer for securing capacity and low resistance.
  • the electrical conductivity of the electrode is increased, and thus, when an internal short circuit occurs due to tearing or folding of the separator, the battery overheats and swells. There is a problem that the stability of the battery is reduced.
  • An object of the present invention is to provide an electrode having a similar level of capacity and resistance as that of a conventional positive electrode, with enhanced internal short-circuit safety, a method for manufacturing the same, and a lithium secondary battery including the same.
  • the present invention is formed on a current collector, the positive electrode mixture layer comprising a positive electrode active material; and a coating layer formed on the positive electrode mixture layer and including a compound containing lithium and fluorine, wherein the coating layer has a specific resistance of 10 5 ⁇ cm or more.
  • the present invention comprises the steps of forming a positive electrode mixture layer including a positive electrode active material on a current collector; and forming a coating layer by applying a solution containing lithium salt including lithium and fluorine on the positive electrode mixture layer and then heat-treating it to form a coating layer.
  • the present invention provides a lithium secondary battery comprising the positive electrode according to the present invention.
  • the positive electrode according to the present invention is formed on the positive electrode mixture layer, contains a compound containing lithium and fluorine, and includes a coating layer having a specific resistance of 10 5 ⁇ cm or more, and has a capacity and resistance similar to that of a conventional positive electrode while , the internal short circuit safety may be excellent.
  • FIG. 1 is a view schematically showing an anode according to the present invention.
  • the present invention is formed on a current collector, the positive electrode mixture layer comprising a positive electrode active material; and a coating layer formed on the positive electrode mixture layer and including a compound containing lithium and fluorine, wherein the coating layer has a specific resistance of 10 5 ⁇ cm or more.
  • the specific resistance is measured by placing a probe on the electrode surface using a DC resistance measuring instrument (Hioki, RM3545-20) and allowing the current to flow only to the electrode surface.
  • a DC resistance measuring instrument Hioki, RM3545-20
  • the positive electrode for a secondary battery according to the present invention is formed on the current collector 100, the positive electrode mixture layer 200 including the positive electrode active material; and a coating layer 300 formed on the positive electrode mixture layer 200 and including a compound containing lithium and fluorine.
  • the coating layer 300 has a resistivity of 10 5 ⁇ cm or more.
  • the positive electrode for a secondary battery according to the present invention contains a compound containing lithium and fluorine, and includes a coating layer having a specific resistance of 10 5 ⁇ cm or more, thereby reducing the electrical conductivity of the surface of the positive electrode, a capacity similar to that of a conventional battery and It is possible to provide an anode having good resistance and excellent internal short-circuit safety.
  • the specific resistance of the coating layer may be 10 5 ⁇ cm or more, specifically, 10 5 ⁇ cm to 10 9 ⁇ cm, more specifically, 10 5 ⁇ cm to 10 7 ⁇ cm have.
  • the resistivity of the coating layer is within the above range, the short-circuit current flowing from the cathode to the anode is reduced due to the high resistivity of the anode surface even if the anode and the cathode contact and an internal short circuit occurs due to the contraction and folding of the separator.
  • the internal short-circuit stability of the positive electrode and, as a result, the internal short-circuit stability of the lithium secondary battery can be improved.
  • the compound containing lithium and fluorine may be a compound represented by the following formula (1).
  • the compound containing lithium and fluorine included in the coating layer is a compound represented by Formula 1
  • the electrical conductivity of the surface of the positive electrode is reduced due to the high specific resistance of the compounds, and accordingly, the short-circuit current flowing from the negative electrode to the positive electrode is reduced As a result, heat generation due to an internal short circuit is reduced, thereby improving the internal short circuit safety of the positive electrode.
  • the compound containing lithium and fluorine may be at least one selected from LiF and Li 0.52 F 0.48.
  • the internal short-circuit safety of the positive electrode and the internal short-circuit safety of the lithium secondary battery may be further improved due to the remarkably high specific resistance.
  • the compound containing lithium and fluorine may be a mixture of LiF and Li 0.52 F 0.48.
  • the compound containing lithium and fluorine may be included in an amount of 50 wt% to 90 wt% based on the total weight of the coating layer.
  • the specific resistance of the coating layer can be implemented as 10 5 ⁇ cm or more, and thus, the internal short-circuit stability of the positive electrode and the lithium secondary battery can be further improved.
  • the compound containing lithium and fluorine is a mixture of LiF and Li 0.52 F 0.48 in terms of further improving internal short-circuit safety
  • the weight ratio of LiF and Li 0.52 F 0.48 is 1:1 to 6:1, specifically , 1.5:1 to 5:1, more specifically 5:3 to 5:1 may be.
  • the coating layer may be formed to a thickness of 500nm to 3 ⁇ m. Specifically, the thickness of the coating layer may be 1 ⁇ m to 2 ⁇ m.
  • the thickness of the coating layer is within the above range, the reduction in energy density of the lithium secondary battery is insignificant, while the electrical conductivity of the surface of the positive electrode is reduced, so that the internal short circuit stability of the positive electrode may be improved.
  • the positive electrode mixture layer may be formed to a thickness of 30 ⁇ m to 150 ⁇ m. Specifically, the thickness of the positive electrode mixture layer may be 60 ⁇ m to 100 ⁇ m. When the thickness of the positive electrode mixture layer is within the above range, the energy density, capacity, and resistance of the lithium secondary battery may be improved.
  • a thickness ratio of the coating layer and the positive electrode mixture layer may be 1:300 to 1:15. In this case, due to the thin coating layer compared to the positive electrode mixture layer, the energy density reduction of the lithium secondary battery is insignificant.
  • the current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium, Those surface-treated with silver or the like may be used.
  • the current collector may typically have a thickness of 3 ⁇ m to 500 ⁇ m, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the current collector.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
  • the positive electrode mixture layer is formed on the current collector and includes a positive electrode active material, and may further include a conductive material, a binder, etc. in addition to the positive electrode active material.
  • the positive active material may include a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; lithium iron oxides such as LiFe 3 O 4 ; Lithium manganese oxide, such as Formula Li 1+c1 Mn 2-c1 O 4 (0 ⁇ c1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Formula LiNi 1-c2 M c2 O 2 (where M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, and satisfies 0.01 ⁇ c2 ⁇ 0.3) Ni site-type lithium nickel oxide; Formula LiMn 2-c3 M c3 O 2 (where M is at least one selected from the group consisting of
  • the conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it does not cause chemical change and has electronic conductivity.
  • Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers, such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one or a mixture of two or more thereof may be used.
  • the binder serves to improve adhesion between the positive electrode active material particles and the adhesive force between the positive electrode active material and the positive electrode current collector.
  • Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
  • PVDF polyvinylidene fluoride
  • PVDF-co-HFP vinylidene fluoride-hexa
  • the present invention provides a first step of forming a positive electrode mixture layer including a positive electrode active material on a current collector; and a second step of forming a coating layer by applying a solution containing a lithium salt including lithium and fluorine on the positive electrode mixture layer and then heat-treating it.
  • the first step is a step of forming a positive electrode mixture layer including a positive electrode active material on a current collector.
  • the forming of the positive electrode mixture layer may be prepared according to a conventional method of forming the positive electrode mixture layer. Specifically, the composition for forming a positive electrode mixture layer prepared by dissolving or dispersing the above-described positive electrode active material and optionally a binder, a conductive material, a dispersing agent, etc. in a solvent as needed is coated on a positive electrode current collector, followed by drying and rolling. can do.
  • a solvent generally used in the art may be used, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), dimethylformamide ( dimethyl formamide, DMF), acetone, or water may be mentioned, and one type alone or a mixture of two or more types thereof may be used.
  • the amount of the solvent used is to dissolve or disperse the positive electrode active material, the conductive material, the binder, and the dispersing agent in consideration of the application thickness of the slurry and the production yield, and then to have a viscosity that can exhibit excellent thickness uniformity when applied for the production of the positive electrode That's enough.
  • the positive electrode mixture layer may be prepared by casting the composition for forming the positive electrode mixture layer on a separate support, and then laminating a film obtained by peeling it off the support on the positive electrode current collector.
  • the second step is a step of forming a coating layer by applying a solution containing a lithium salt including lithium and fluorine on the positive electrode mixture layer and performing heat treatment.
  • the solution application may be performed by one or more methods selected from a spray spray method, an impregnation method, and a blade coating method. Specifically, the solution application may be performed by a spray method. In this case, the solution can be uniformly and thinly applied to the surface of the positive electrode mixture layer by adjusting the nozzle size and the spraying time.
  • the solution application may be applied so that the coating layer can be formed to a thickness of 500 nm to 3 ⁇ m.
  • the lithium salt containing lithium and fluorine may be at least one selected from among LiPF 6 , LiBF 4 , LiAsF 6 and LiC 4 F 9 SO 3 .
  • lithium salt is decomposed in the heat treatment process after application of the electrolyte, thereby facilitating the formation of a compound containing lithium and fluorine.
  • the solution may contain a lithium salt in a concentration of 0.8M to 1.4M. In this case, sufficient amounts of lithium and fluorine are included in the solution, so that the compound containing lithium and fluorine can be easily formed.
  • the heat treatment may be performed at 80°C to 130°C.
  • the heat treatment may be specifically performed at 100°C to 130°C.
  • the heat treatment temperature is within the above range, the activation energy required for the formation of the generated compound containing lithium and fluorine is reduced, so that it is possible to form a compound containing a large amount of lithium and fluorine in a short time.
  • the temperature is too high, the crystallinity of the binder in the positive electrode mixture layer may increase, thereby increasing resistance.
  • the present invention provides a lithium secondary battery including the positive electrode according to the present invention.
  • the lithium secondary battery includes the positive electrode; cathode; a separator interposed between the anode and the cathode; and electrolyte;
  • the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
  • the negative electrode includes a negative electrode current collector and a negative electrode mixture layer positioned on the negative electrode current collector.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used.
  • the negative electrode current collector may have a thickness of typically 3 ⁇ m to 500 ⁇ m, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material.
  • it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
  • the negative electrode mixture layer may optionally include a binder, a conductive material, and the like together with the negative electrode active material.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO ⁇ (0 ⁇ ⁇ 2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Alternatively, a composite including the metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used.
  • a metal lithium thin film may be used as the negative electrode active material.
  • both low crystalline carbon and high crystalline carbon may be used.
  • low crystalline carbon soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, flaky, spherical or fibrous shape, and Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
  • the negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the negative electrode mixture layer.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and may be typically added in an amount of 0.1 wt % to 10 wt % based on the total weight of the negative electrode mixture layer.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro and roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, and various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM
  • the conductive material is a component for further improving the conductivity of the anode active material, and may be added in an amount of 10 wt% or less, specifically 5 wt% or less, based on the total weight of the anode mixture layer.
  • a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • metal powders such as carbon fluoride, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the negative electrode mixture layer is prepared by applying and drying a composition for forming a negative electrode mixture layer prepared by dissolving or dispersing a negative electrode active material, and optionally a binder and a conductive material in a solvent on the negative electrode current collector and drying, or for forming the negative electrode mixture layer It can be prepared by casting the composition on a separate support and then laminating a film obtained by peeling it from the support onto a negative electrode current collector.
  • the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to respect and an excellent electrolyte moisture content.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer and ethylene/methacrylate copolymer, or these
  • a laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator including a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • the electrolyte may include, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte, which can be used in manufacturing a lithium secondary battery.
  • the electrolyte may include an organic solvent and a lithium salt.
  • the organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • ester solvents such as methyl acetate, ethyl acetate, ⁇ -butyrolactone, ⁇ -caprolactone
  • ether solvents such as dibutyl ether or tetrahydrofuran
  • ketone solvents such as cyclohexanone
  • aromatic hydrocarbon-based solvents such as benzene and fluorobenzene
  • alcohol solvents such as ethyl alcohol and isopropyl alcohol
  • nitriles such as R-CN (R is a linear, branched, or cyclic hydrocarbon group having 2
  • a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound (for example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable.
  • a cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte may be excellent.
  • the lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery.
  • F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - may be at least one selected from the group consisting of,
  • the lithium salt is, LiPF 6 , LiClO
  • LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used.
  • the concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
  • the lithium secondary battery including the positive electrode according to the present invention exhibits excellent capacity, low resistance and excellent safety, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles, HEV) and the like are useful in the field of electric vehicles.
  • a battery module including the lithium secondary battery as a unit cell and a battery pack including the same can be provided.
  • the battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium-to-large devices in a system for power storage.
  • Power Tool Power Tool
  • electric vehicles including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs);
  • PHEVs plug-in hybrid electric vehicles
  • the external shape of the lithium secondary battery is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch type, or a coin type.
  • the lithium secondary battery may not only be used in a battery cell used as a power source for a small device, but may also be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
  • Examples of the medium-large device include, but are not limited to, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system.
  • a positive electrode active material, PVdF binder, and carbon black conductive material were mixed in NMP in a weight ratio of 90:5:5 to prepare a composition for forming a positive electrode mixture layer.
  • composition for forming the positive electrode mixture layer was applied on an aluminum current collector (Al foil) having a thickness of 20 ⁇ m, and then dried (130° C.) to form a positive electrode mixture layer having a thickness of 80 ⁇ m.
  • a DC resistance measuring instrument Hioki, RM3545-20
  • the probe was placed on the surface of the electrode to allow current to flow only through the surface of the electrode, and the measured resistivity was 10 6 ⁇
  • a coating layer of cm was formed.
  • the content of LiF included in the coating layer was 50 wt% based on the total weight of the coating layer, and the content of Li 0.52 F 0.48 was 10 wt% based on the total weight of the coating layer.
  • a positive electrode active material, PVdF binder, and carbon black conductive material were mixed in NMP in a weight ratio of 90:5:5 to prepare a composition for forming a positive electrode mixture layer.
  • composition for forming the positive electrode mixture layer was applied on an aluminum current collector (Al foil) having a thickness of 20 ⁇ m, and then dried (130° C.) to form a positive electrode mixture layer having a thickness of 80 ⁇ m.
  • the positive electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 were cut into 3 cm ⁇ 4 cm sizes, respectively, and a porous separator having a polypropylene/polyethylene/polypropylene structure with a size of 3.5 cm ⁇ 4.5 cm and a thickness of 20 ⁇ m and a 1 cm 2 area perforated. is placed in contact with one side of the porous membrane, and a porous membrane having a thickness of 20 ⁇ m of a polypropylene structure having a size of 2 cm ⁇ 6 cm is placed on the perforated porous membrane to cover the perforated area.
  • Examples 1 and 2 and Comparative Examples 1 and 2 were cut into pieces of 5 cm ⁇ 5 cm, respectively, and placed on a vertical resistor, and then the resistance was measured by applying a current in the vertical direction. The results are shown in Table 1 below.
  • the positive electrode of Examples 1 and 2 including a coating layer having a specific resistance of 10 5 ⁇ cm or more has a specific resistance and a specific resistance of less than 10 5 ⁇ cm with the positive electrode of Comparative Example 1 not including a coating layer. It can be seen that the vertical resistance is higher than that of the anode of Fig. 2. This is because the anodes of Examples 1 and 2 include a coating layer having a specific resistance of 10 5 ⁇ cm or more, so that the electrical conductivity of the surface of the anode is reduced. , As a result, there is an advantageous effect in that the internal short-circuit stability of the lithium secondary battery can be improved.
  • the secondary batteries including the positive electrodes of Examples 1 and 2 including the coating layer having a specific resistance of 10 5 ⁇ cm or more have a level similar to that of the secondary battery including the positive electrode of Comparative Example 1 not including the coating layer. It can be seen that the discharge capacity of This is because a thin coating layer is formed only on the surface of the positive electrode, so that the positive electrode as a whole reacts during actual charging and discharging.
  • the secondary batteries including the positive electrodes of Examples 1 and 2 including the coating layer having a specific resistance of 10 5 ⁇ cm or more have a level similar to that of the secondary battery including the positive electrode of Comparative Example 1 not including the coating layer. It can be seen that the resistance of This is because, since a thin coating layer is formed only on the surface of the anode, the degree of increase in resistance is insignificant.
  • the secondary battery including the positive electrode of Examples 1 and 2 including the coating layer having a specific resistance of 10 5 ⁇ cm or more, the secondary battery including the positive electrode of Comparative Example 1 not including the coating layer, and the specific resistance It can be seen that the maximum temperature measured in the internal short circuit test is significantly lower than that of the secondary battery including the positive electrode of Comparative Example 2 including a coating layer having a specific resistance of less than 10 5 ⁇ cm. This is because current flows through the anode and cathode interface during an internal short circuit, and the resistance of the coating layer on the anode surface is very high, so that the short circuit current is reduced.
  • the positive electrode according to the present invention is formed on the positive electrode mixture layer, contains a compound containing lithium and fluorine, and includes a coating layer having a specific resistance of 10 5 ⁇ cm or more, and has a capacity similar to that of a conventional positive electrode and It can be seen that while having resistance, the internal short circuit safety is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides a positive electrode having good internal short-circuit safety, while having a similar level of capacity and resistance to those of a conventional positive electrode. The present invention relates to a positive electrode for a secondary battery, a method for manufacturing same, and a lithium secondary battery comprising same, the positive electrode including: a positive electrode mixture layer formed on a current collector and including a positive electrode active material; and a coating layer formed on the positive electrode mixture layer and including a compound containing lithium and fluorine, wherein the coating layer has a specific resistance of at least 105 Ω·cm.

Description

이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지Positive electrode for secondary battery, manufacturing method thereof, and lithium secondary battery comprising same
관련 출원과의 상호 인용Cross-Citation with Related Applications
본 출원은 2020년 06월 18일자 한국특허출원 제10-2020-0074305호에 기초한 우선권이 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims priority based on Korean Patent Application No. 10-2020-0074305 dated June 18, 2020, and all contents disclosed in the documents of the Korean patent application are incorporated as a part of this specification.
기술분야technical field
본 발명은 이차전지용 양극, 이의 제조방법 및 이를 포함하는 리튬 이차전지에 관한 것이다.The present invention relates to a positive electrode for a secondary battery, a method for manufacturing the same, and a lithium secondary battery including the same.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지의 수요가 급격히 증가하고 있고, 그 중 높은 용량 및 낮은 저항을 가지고 안전성이 우수한 리튬 이차전지에 대한 수요가 높다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among them, the demand for lithium secondary batteries with high capacity and low resistance and excellent safety is high.
일반적으로, 리튬 이차전지는 리튬 이온의 삽입(intercalation) 및 탈리(deintercalation)가 가능한 물질을 음극 및 양극으로 사용하고, 상기 양극과 음극 사이에 전해액을 충전시켜 제조하며, 리튬 이온이 상기 양극 및 음극에서 삽입 및 탈리될 때의 산화, 환원 반응에 의하여 전기적 에너지를 생성한다.In general, a lithium secondary battery is manufactured by using a material capable of intercalation and deintercalation of lithium ions as a negative electrode and a positive electrode, and charging an electrolyte between the positive electrode and the negative electrode, and lithium ions are the positive electrode and the negative electrode It generates electrical energy by oxidation and reduction reactions when it is inserted and desorbed.
이때, 상기 음극과 양극은 각 전극의 집전체 상에 형성되는 전극 합제층을 포함하며, 예를 들면, 전극 활물질에 바인더와 용매, 필요에 따라 도전재, 분산제를 혼합 및 교반하여 슬러리를 제조한 후 이를 금속 재료의 집전체에 도포하고 압축한 뒤 건조하여 전극을 제조할 수 있다.At this time, the negative electrode and the positive electrode include an electrode mixture layer formed on the current collector of each electrode, and for example, a slurry is prepared by mixing and stirring a binder and a solvent, a conductive material, and a dispersing agent, if necessary, in the electrode active material. After that, it is applied to a current collector made of a metal material, compressed and dried to manufacture an electrode.
이러한 종래의 전극은 용량 확보 및 낮은 저항을 위해 상기 전극 합제층에 도전재를 일정 수준 이상의 함량으로 포함한다. 그러나 상기 전극 합제층에 도전재가 포함됨으로써, 전극의 전기 전도도가 높아지게 되고, 이에 따라, 분리막 찢김이나 접힘 등에 의한 내부 단락 발생 시 전지가 과열되어 부풀어 오르는 등 전지의 안정성이 저하된다는 문제가 있다.Such a conventional electrode includes a conductive material at a certain level or more in the electrode mixture layer for securing capacity and low resistance. However, by including the conductive material in the electrode mixture layer, the electrical conductivity of the electrode is increased, and thus, when an internal short circuit occurs due to tearing or folding of the separator, the battery overheats and swells. There is a problem that the stability of the battery is reduced.
따라서, 기존의 전극과 용량 및 저항이 유사한 수준이나, 내부 단락 안전성이 강화된 전극이 필요한 실정이다.Accordingly, there is a need for an electrode having a similar capacity and resistance to that of an existing electrode, but with enhanced internal short-circuit safety.
본 발명은 기존의 양극과 유사한 수준의 용량 및 저항을 가지면서, 내부 단락 안전성이 강화된 전극, 이의 제조방법 및 이를 포함하는 리튬이차전지를 제공하고자 하는 것이다.An object of the present invention is to provide an electrode having a similar level of capacity and resistance as that of a conventional positive electrode, with enhanced internal short-circuit safety, a method for manufacturing the same, and a lithium secondary battery including the same.
본 발명은 집전체 상에 형성되고, 양극 활물질을 포함하는 양극 합제층; 및 상기 양극 합제층 상에 형성되고, 리튬 및 불소를 함유하는 화합물을 포함하는 코팅층;을 포함하며, 상기 코팅층은 비저항이 105Ω·cm 이상인 이차전지용 양극을 제공한다.The present invention is formed on a current collector, the positive electrode mixture layer comprising a positive electrode active material; and a coating layer formed on the positive electrode mixture layer and including a compound containing lithium and fluorine, wherein the coating layer has a specific resistance of 10 5 Ω·cm or more.
또한, 본 발명은 집전체 상에 양극 활물질을 포함하는 양극 합제층을 형성하는 단계; 및 상기 양극 합제층 상에 리튬 및 불소를 포함하는 리튬염이 포함된 용액을 도포한 후 열처리하여 코팅층을 형성하는 단계;를 포함하는 본 발명에 따른 이차전지용 양극의 제조방법을 제공한다.In addition, the present invention comprises the steps of forming a positive electrode mixture layer including a positive electrode active material on a current collector; and forming a coating layer by applying a solution containing lithium salt including lithium and fluorine on the positive electrode mixture layer and then heat-treating it to form a coating layer.
또한, 본 발명은 본 발명에 따른 양극을 포함하는 리튬 이차전지를 제공한다.In addition, the present invention provides a lithium secondary battery comprising the positive electrode according to the present invention.
본 발명에 따른 양극은 양극 합제층 상에 형성되며, 리튬 및 불소를 함유하는 화합물을 포함하고, 비저항이 105Ω·cm 이상인 코팅층을 포함하여 기존의 양극과 유사한 수준의 용량 및 저항을 가지면서, 내부 단락 안전성이 우수할 수 있다.The positive electrode according to the present invention is formed on the positive electrode mixture layer, contains a compound containing lithium and fluorine, and includes a coating layer having a specific resistance of 10 5 Ω·cm or more, and has a capacity and resistance similar to that of a conventional positive electrode while , the internal short circuit safety may be excellent.
도 1은 본 발명에 따른 양극을 개략적으로 나타낸 도면이다.1 is a view schematically showing an anode according to the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.The terms or words used in the present specification and claims should not be construed as being limited to their ordinary or dictionary meanings, and the inventor may properly define the concept of the term in order to best describe his invention. Based on the principle that there is, it should be interpreted as meaning and concept consistent with the technical idea of the present invention.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present specification, terms such as "comprise", "comprising" or "have" are intended to designate the existence of an embodied feature, number, step, element, or a combination thereof, but one or more other features or It should be understood that the existence or addition of numbers, steps, elements, or combinations thereof, is not precluded in advance.
이하, 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
이차전지용 양극Anode for secondary battery
본 발명은 집전체 상에 형성되고, 양극 활물질을 포함하는 양극 합제층; 및 상기 양극 합제층 상에 형성되고, 리튬 및 불소를 함유하는 화합물을 포함하는 코팅층;을 포함하며, 상기 코팅층은 비저항이 105Ω·cm 이상인 이차전지용 양극을 제공한다.The present invention is formed on a current collector, the positive electrode mixture layer comprising a positive electrode active material; and a coating layer formed on the positive electrode mixture layer and including a compound containing lithium and fluorine, wherein the coating layer has a specific resistance of 10 5 Ω·cm or more.
본 발명에서, 비저항은 DC 저항 측정기(히오키社, RM3545-20)을 이용하여 전극 표면에 탐침을 올려 전류가 전극 표면으로만 흐르게 하여 측정한 것이다.In the present invention, the specific resistance is measured by placing a probe on the electrode surface using a DC resistance measuring instrument (Hioki, RM3545-20) and allowing the current to flow only to the electrode surface.
도 1을 참조하면, 본 발명에 따른 이차전지용 양극은 집전체(100) 상에 형성되고, 양극 활물질을 포함하는 양극 합제층(200); 및 상기 양극 합제층(200) 상에 형성되고, 리튬 및 불소를 함유하는 화합물을 포함하는 코팅층(300);을 포함한다. 상기 코팅층(300)은 비저항이 105Ω·cm 이상인 것이다.1, the positive electrode for a secondary battery according to the present invention is formed on the current collector 100, the positive electrode mixture layer 200 including the positive electrode active material; and a coating layer 300 formed on the positive electrode mixture layer 200 and including a compound containing lithium and fluorine. The coating layer 300 has a resistivity of 10 5 Ω·cm or more.
본 발명에 따른 이차전지용 양극은 리튬 및 불소를 함유하는 화합물을 포함하고, 비저항이 105Ω·cm 이상인 코팅층을 포함하여, 양극 표면의 전기 전도도를 감소시켜, 기존의 전지와 유사한 수준의 용량 및 저항을 가지면서, 내부 단락 안전성이 우수한 양극을 제공할 수 있다.The positive electrode for a secondary battery according to the present invention contains a compound containing lithium and fluorine, and includes a coating layer having a specific resistance of 10 5 Ω·cm or more, thereby reducing the electrical conductivity of the surface of the positive electrode, a capacity similar to that of a conventional battery and It is possible to provide an anode having good resistance and excellent internal short-circuit safety.
본 발명에 따르면, 상기 코팅층의 비저항이 105Ω·cm 이상이고, 구체적으로, 105Ω·cm 내지 109Ω·cm, 더욱 구체적으로, 105Ω·cm 내지 107Ω·cm일 수 있다. 코팅층의 비저항이 상기 범위 내인 경우, 분리막 수축 및 접힘 등에 따라 양극과 음극이 닿아 내부 단락이 발생하여도 양극 표면의 높은 비저항으로 인해 음극에서 양극으로 흐르는 단락 전류가 감소하게 되고, 이로 인해 단락에 의한 발열이 감소하여, 양극의 내부 단락 안전성, 결과적으로 리튬 이차전지의 내부 단락 안정성을 개선시킬 수 있다.According to the present invention, the specific resistance of the coating layer may be 10 5 Ω·cm or more, specifically, 10 5 Ω·cm to 10 9 Ω·cm, more specifically, 10 5 Ω·cm to 10 7 Ω·cm have. When the resistivity of the coating layer is within the above range, the short-circuit current flowing from the cathode to the anode is reduced due to the high resistivity of the anode surface even if the anode and the cathode contact and an internal short circuit occurs due to the contraction and folding of the separator. By reducing heat generation, the internal short-circuit stability of the positive electrode and, as a result, the internal short-circuit stability of the lithium secondary battery can be improved.
본 발명에 따르면, 상기 리튬 및 불소를 함유하는 화합물은 하기 화학식 1로 표시되는 화합물일 수 있다. According to the present invention, the compound containing lithium and fluorine may be a compound represented by the following formula (1).
[화학식 1][Formula 1]
LixFy Li x F y
상기 화학식 1에서, 0.9≤x/y≤1.1이고, 구체적으로는 1≤x/y≤1.1일 수 있다.In Formula 1, 0.9≤x/y≤1.1, and specifically 1≤x/y≤1.1.
코팅층에 포함되는 리튬 및 불소를 함유하는 화합물이 상기 화학식 1로 표시되는 화합물인 경우, 상기 화합물들의 높은 비저항으로 인하여 양극 표면의 전기 전도도가 감소되고, 이에 따라, 음극에서 양극으로 흐르는 단락 전류가 감소하게 되며, 결과적으로, 내부 단락에 의한 발열이 감소하여, 양극의 내부 단락 안전성을 개선시킬 수 있다.When the compound containing lithium and fluorine included in the coating layer is a compound represented by Formula 1, the electrical conductivity of the surface of the positive electrode is reduced due to the high specific resistance of the compounds, and accordingly, the short-circuit current flowing from the negative electrode to the positive electrode is reduced As a result, heat generation due to an internal short circuit is reduced, thereby improving the internal short circuit safety of the positive electrode.
구체적으로, 상기 리튬 및 불소를 함유하는 화합물은 LiF 및 Li0.52F0.48 중에서 선택된 1종 이상일 수 있다. 이 경우, 현저히 높은 비저항으로 인해 양극의 내부 단락 안전성 및 리튬 이차전지의 내부 단락 안전성이 더 개선될 수 있다. 내부 단락 안전성을 더 개선하기 위한 측면에서, 상기 리튬 및 불소를 함유하는 화합물은 LiF와 Li0.52F0.48의 혼합물일 수 있다.Specifically, the compound containing lithium and fluorine may be at least one selected from LiF and Li 0.52 F 0.48. In this case, the internal short-circuit safety of the positive electrode and the internal short-circuit safety of the lithium secondary battery may be further improved due to the remarkably high specific resistance. In terms of further improving internal short-circuit safety, the compound containing lithium and fluorine may be a mixture of LiF and Li 0.52 F 0.48.
본 발명에 따르면, 상기 리튬 및 불소를 함유하는 화합물은 상기 코팅층 전체 중량에 대하여 50중량% 내지 90중량%의 함량으로 포함되는 것일 수 있다. 이 경우, 상기 코팅층의 비저항을 105Ω·cm 이상으로 구현할 수 있고, 이에 따라 양극 및 리튬 이차전지의 내부 단락 안정성을 더 개선할 수 있다. 한편, 내부 단락 안전성을 더 개선하기 위한 측면에서 상기 리튬 및 불소를 함유하는 화합물이 LiF와 Li0.52F0.48의 혼합물인 경우, LiF와 Li0.52F0.48의 중량비는 1:1 내지 6:1, 구체적으로, 1.5:1 내지 5:1, 더욱 구체적으로 5:3 내지 5:1일 수 있다.According to the present invention, the compound containing lithium and fluorine may be included in an amount of 50 wt% to 90 wt% based on the total weight of the coating layer. In this case, the specific resistance of the coating layer can be implemented as 10 5 Ω·cm or more, and thus, the internal short-circuit stability of the positive electrode and the lithium secondary battery can be further improved. On the other hand, when the compound containing lithium and fluorine is a mixture of LiF and Li 0.52 F 0.48 in terms of further improving internal short-circuit safety, the weight ratio of LiF and Li 0.52 F 0.48 is 1:1 to 6:1, specifically , 1.5:1 to 5:1, more specifically 5:3 to 5:1 may be.
본 발명에 따르면, 상기 코팅층은 500nm 내지 3㎛의 두께로 형성된 것일 수 있다. 상기 코팅층의 두께는 구체적으로, 1㎛ 내지 2㎛일 수 있다. 코팅층의 두께가 상기 범위 내인 경우, 리튬 이차전지의 에너지 밀도 감소는 미미한 반면, 양극 표면의 전기 전도도가 감소되어 양극의 내부 단락 안전성이 개선될 수 있다.According to the present invention, the coating layer may be formed to a thickness of 500nm to 3㎛. Specifically, the thickness of the coating layer may be 1㎛ to 2㎛. When the thickness of the coating layer is within the above range, the reduction in energy density of the lithium secondary battery is insignificant, while the electrical conductivity of the surface of the positive electrode is reduced, so that the internal short circuit stability of the positive electrode may be improved.
본 발명에 따르면, 상기 양극 합제층은 30㎛ 내지 150㎛의 두께로 형성된 것일 수 있다. 구체적으로, 상기 양극 합제층의 두께는 60㎛ 내지 100㎛일 수 있다. 양극 합제층의 두께가 상기 범위 내인 경우, 리튬 이차전지의 에너지 밀도, 용량, 저항이 개선될 수 있다.According to the present invention, the positive electrode mixture layer may be formed to a thickness of 30㎛ to 150㎛. Specifically, the thickness of the positive electrode mixture layer may be 60㎛ to 100㎛. When the thickness of the positive electrode mixture layer is within the above range, the energy density, capacity, and resistance of the lithium secondary battery may be improved.
상기 코팅층과 양극 합제층의 두께 비는 1:300 내지 1:15일 수 있다. 이 경우, 양극 합제층 대비 얇은 코팅층으로 인해 리튬 이차전지의 에너지 밀도 감소가 미미한 효과가 있다.A thickness ratio of the coating layer and the positive electrode mixture layer may be 1:300 to 1:15. In this case, due to the thin coating layer compared to the positive electrode mixture layer, the energy density reduction of the lithium secondary battery is insignificant.
상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 또, 상기 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The current collector is not particularly limited as long as it has conductivity without causing chemical change in the battery, and for example, stainless steel, aluminum, nickel, titanium, fired carbon, or carbon, nickel, titanium, Those surface-treated with silver or the like may be used. In addition, the current collector may typically have a thickness of 3 μm to 500 μm, and may increase the adhesion of the positive electrode active material by forming fine irregularities on the surface of the current collector. For example, it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a non-woven body.
상기 양극 합제층은 집전체 상에 형성되고, 양극 활물질을 포함하는 것으로, 양극 활물질 이외에 도전재, 바인더 등을 더 포함할 수 있다.The positive electrode mixture layer is formed on the current collector and includes a positive electrode active material, and may further include a conductive material, a binder, etc. in addition to the positive electrode active material.
상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; LiFe3O4 등의 리튬 철 산화물; 화학식 Li1+c1Mn2-c1O4 (0≤c1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-c2Mc2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 및 Ga으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-c3Mc3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 및 Ta 으로 이루어진 군에서 선택된 적어도 어느 하나이고, 0.01≤c3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 및 Zn으로 이루어진 군에서 선택된 적어도 어느 하나이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 중에서 선택된 1종 이상일 수 있다.The positive active material may include a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; lithium iron oxides such as LiFe 3 O 4 ; Lithium manganese oxide, such as Formula Li 1+c1 Mn 2-c1 O 4 (0≤c1≤0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; lithium copper oxide (Li 2 CuO 2 ); vanadium oxides such as LiV 3 O 8 , V 2 O 5 , and Cu 2 V 2 O 7 ; Formula LiNi 1-c2 M c2 O 2 (where M is at least one selected from the group consisting of Co, Mn, Al, Cu, Fe, Mg, B and Ga, and satisfies 0.01≤c2≤0.3) Ni site-type lithium nickel oxide; Formula LiMn 2-c3 M c3 O 2 (where M is at least one selected from the group consisting of Co, Ni, Fe, Cr, Zn, and Ta, and satisfies 0.01≤c3≤0.1) or Li 2 Mn 3 MO 8 (herein, M is at least one selected from the group consisting of Fe, Co, Ni, Cu and Zn.) lithium manganese composite oxide represented by; It may be at least one selected from LiMn 2 O 4 in which a part of Li in the formula is substituted with an alkaline earth metal ion.
상기 도전재는 전극에 도전성을 부여하기 위해 사용되는 것으로서, 구성되는 전지에 있어서, 화학변화를 야기하지 않고 전자 전도성을 갖는 것이면 특별한 제한없이 사용가능하다. 구체적인 예로는 천연 흑연이나 인조 흑연 등의 흑연; 카본 블랙, 아세틸렌블랙, 케첸블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙, 탄소섬유 등의 탄소계 물질; 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 또는 폴리페닐렌 유도체 등의 전도성 고분자 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.The conductive material is used to impart conductivity to the electrode, and in the configured battery, it can be used without any particular limitation as long as it does not cause chemical change and has electronic conductivity. Specific examples include graphite such as natural graphite and artificial graphite; carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, summer black, and carbon fiber; metal powders or metal fibers, such as copper, nickel, aluminum, and silver; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; or conductive polymers such as polyphenylene derivatives, and the like, and one or a mixture of two or more thereof may be used.
상기 바인더는 양극 활물질 입자들 간의 부착 및 양극 활물질과 양극 집전체와의 접착력을 향상시키는 역할을 한다. 구체적인 예로는 폴리비닐리덴플로라이드(PVDF), 비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐알코올, 폴리아크릴로니트릴(polyacrylonitrile), 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 또는 이들의 다양한 공중합체 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다.The binder serves to improve adhesion between the positive electrode active material particles and the adhesive force between the positive electrode active material and the positive electrode current collector. Specific examples include polyvinylidene fluoride (PVDF), vinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinyl alcohol, polyacrylonitrile, carboxymethyl cellulose (CMC) ), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene butadiene rubber (SBR), fluororubber, or various copolymers thereof, and any one of them or a mixture of two or more thereof may be used.
이차전지용 양극의 제조방법Manufacturing method of positive electrode for secondary battery
본 발명은 집전체 상에 양극 활물질을 포함하는 양극 합제층을 형성하는 제1단계; 및 상기 양극 합제층 상에 리튬 및 불소를 포함하는 리튬염이 포함된 용액을 도포한 후 열처리하여 코팅층을 형성하는 제2단계;를 포함하는 본 발명에 따른 이차전지용 양극의 제조방법을 제공한다.The present invention provides a first step of forming a positive electrode mixture layer including a positive electrode active material on a current collector; and a second step of forming a coating layer by applying a solution containing a lithium salt including lithium and fluorine on the positive electrode mixture layer and then heat-treating it.
이하, 본 발명의 이차전지용 양극의 제조방법을 단계별로 상세하게 설명한다.Hereinafter, the manufacturing method of the positive electrode for a secondary battery of the present invention will be described in detail step by step.
(1) 제1단계(1) Step 1
상기 제1단계는 집전체 상에 양극 활물질을 포함하는 양극 합제층을 형성하는 단계이다.The first step is a step of forming a positive electrode mixture layer including a positive electrode active material on a current collector.
상기 양극 합제층을 형성하는 단계는 통상의 양극 합제층을 형성하는 방법에 따라 제조될 수 있다. 구체적으로, 상기한 양극 활물질 및 필요에 따라 선택적으로 바인더, 도전재, 분산제 등을 용매 중에 용해 또는 분산시켜 제조한 양극 합제층 형성용 조성물을 양극 집전체 상에 도포한 후, 건조 및 압연함으로써 제조할 수 있다. The forming of the positive electrode mixture layer may be prepared according to a conventional method of forming the positive electrode mixture layer. Specifically, the composition for forming a positive electrode mixture layer prepared by dissolving or dispersing the above-described positive electrode active material and optionally a binder, a conductive material, a dispersing agent, etc. in a solvent as needed is coated on a positive electrode current collector, followed by drying and rolling. can do.
상기 용매로는 당해 기술분야에서 일반적으로 사용되는 용매가 사용될 수 있으며, 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸피롤리돈(NMP), 디메틸포름아미드(dimethyl formamide, DMF), 아세톤(acetone) 또는 물 등을 들 수 있으며, 이들 중 1종 단독 또는 2종 이상의 혼합물이 사용될 수 있다. 상기 용매의 사용량은 슬러리의 도포 두께, 제조 수율을 고려하여 상기 양극 활물질, 도전재, 바인더, 및 분산제를 용해 또는 분산시키고, 이후 양극 제조를 위한 도포시 우수한 두께 균일도를 나타낼 수 있는 점도를 갖도록 하는 정도면 충분하다.As the solvent, a solvent generally used in the art may be used, dimethyl sulfoxide (DMSO), isopropyl alcohol (isopropyl alcohol), N-methylpyrrolidone (NMP), dimethylformamide ( dimethyl formamide, DMF), acetone, or water may be mentioned, and one type alone or a mixture of two or more types thereof may be used. The amount of the solvent used is to dissolve or disperse the positive electrode active material, the conductive material, the binder, and the dispersing agent in consideration of the application thickness of the slurry and the production yield, and then to have a viscosity that can exhibit excellent thickness uniformity when applied for the production of the positive electrode That's enough.
또한, 다른 방법으로, 상기 양극 합제층은 상기 양극 합제층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 양극 집전체 상에 라미네이션함으로써 제조될 수도 있다.Alternatively, the positive electrode mixture layer may be prepared by casting the composition for forming the positive electrode mixture layer on a separate support, and then laminating a film obtained by peeling it off the support on the positive electrode current collector.
(2) 제2단계(2) Step 2
상기 제2단계는 상기 양극 합제층 상에 리튬 및 불소를 포함하는 리튬염이 포함된 용액을 도포한 후 열처리하여 코팅층을 형성하는 단계이다.The second step is a step of forming a coating layer by applying a solution containing a lithium salt including lithium and fluorine on the positive electrode mixture layer and performing heat treatment.
상기 용액 도포는 스프레이 분사법, 함침법 및 블레이드 코팅법 중에서 선택된 하나 이상의 방법으로 수행되는 것일 수 있다. 구체적으로, 상기 용액 도포는 스프레이 분사법으로 수행되는 것일 수 있다. 이 경우, 노즐 크기 및 분사 시간을 조절함으로써 양극 합제층 표면에 용액을 균일하고 얇게 도포할 수 있다.The solution application may be performed by one or more methods selected from a spray spray method, an impregnation method, and a blade coating method. Specifically, the solution application may be performed by a spray method. In this case, the solution can be uniformly and thinly applied to the surface of the positive electrode mixture layer by adjusting the nozzle size and the spraying time.
상기 용액 도포는 상기 코팅층이 500nm 내지 3㎛의 두께로 형성될 수 있도록 도포하는 것일 수 있다.The solution application may be applied so that the coating layer can be formed to a thickness of 500 nm to 3 μm.
상기 리튬 및 불소를 포함하는 리튬염은 LiPF6, LiBF4, LiAsF6 및 LiC4F9SO3 중에서 선택된 1종 이상일 수 있다. 이 경우, 전해액 도포 후 열처리 과정에서 리튬염이 분해되어 리튬 및 불소를 포함하는 화합물의 형성이 용이한 효과가 있다.The lithium salt containing lithium and fluorine may be at least one selected from among LiPF 6 , LiBF 4 , LiAsF 6 and LiC 4 F 9 SO 3 . In this case, lithium salt is decomposed in the heat treatment process after application of the electrolyte, thereby facilitating the formation of a compound containing lithium and fluorine.
상기 용액은 리튬염을 0.8M 내지 1.4M 농도로 포함할 수 있다. 이 경우, 용액 내 충분한 양의 리튬 및 불소가 포함되어 있어 리튬 및 불소를 함유하는 화합물의 형성이 용이한 효과가 있다.The solution may contain a lithium salt in a concentration of 0.8M to 1.4M. In this case, sufficient amounts of lithium and fluorine are included in the solution, so that the compound containing lithium and fluorine can be easily formed.
상기 열처리는 80℃ 내지 130℃로 수행하는 것일 수 있다. 상기 열처리는 구체적으로 100℃ 내지 130℃로 수행하는 것일 수 있다. 열처리 온도가 상기 범위 내인 경우, 생성되는 리튬 및 불소를 포함하는 화합물의 형성에 필요한 활성화 에너지가 감소하여 짧은 시간에 많은 양의 리튬 및 불소를 포함하는 화합물의 형성이 가능하다. 한편, 온도가 너무 높은 경우, 양극 합제층 내 바인더의 결정화도가 증가하여 저항이 증가할 수 있다.The heat treatment may be performed at 80°C to 130°C. The heat treatment may be specifically performed at 100°C to 130°C. When the heat treatment temperature is within the above range, the activation energy required for the formation of the generated compound containing lithium and fluorine is reduced, so that it is possible to form a compound containing a large amount of lithium and fluorine in a short time. On the other hand, when the temperature is too high, the crystallinity of the binder in the positive electrode mixture layer may increase, thereby increasing resistance.
리튬 이차전지lithium secondary battery
본 발명은 본 발명에 따른 양극을 포함하는 리튬 이차전지를 제공한다.The present invention provides a lithium secondary battery including the positive electrode according to the present invention.
상기 리튬 이차전지는 상기 양극; 음극; 상기 양극과 음극 사이에 개재된 분리막; 및 전해질;을 포함할 수 있다.The lithium secondary battery includes the positive electrode; cathode; a separator interposed between the anode and the cathode; and electrolyte;
상기 양극은 앞서 설명한 바와 동일하므로, 구체적인 설명을 생략하고, 이하 나머지 구성에 대해서만 구체적으로 설명한다. Since the positive electrode is the same as described above, a detailed description thereof will be omitted, and only the remaining components will be described in detail below.
또한, 상기 리튬 이차전지는 상기 양극, 음극, 분리막의 전극 조립체를 수납하는 전지 용기, 및 상기 전지 용기를 밀봉하는 밀봉 부재를 선택적으로 더 포함할 수 있다.In addition, the lithium secondary battery may optionally further include a battery container for accommodating the electrode assembly of the positive electrode, the negative electrode, and the separator, and a sealing member for sealing the battery container.
상기 리튬 이차전지에 있어서, 상기 음극은 음극 집전체 및 상기 음극 집전체 상에 위치하는 음극 합제층을 포함한다.In the lithium secondary battery, the negative electrode includes a negative electrode current collector and a negative electrode mixture layer positioned on the negative electrode current collector.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또, 상기 음극 집전체는 통상적으로 3㎛ 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.The negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery, and for example, copper, stainless steel, aluminum, nickel, titanium, fired carbon, copper or stainless steel surface. Carbon, nickel, titanium, silver, etc. surface-treated, aluminum-cadmium alloy, etc. may be used. In addition, the negative electrode current collector may have a thickness of typically 3 μm to 500 μm, and similarly to the positive electrode current collector, fine concavities and convexities may be formed on the surface of the current collector to strengthen the bonding force of the negative electrode active material. For example, it may be used in various forms, such as a film, a sheet, a foil, a net, a porous body, a foam, a nonwoven body.
상기 음극 합제층은 음극 활물질과 함께 선택적으로 바인더, 도전재 등을 포함할 수 있다.The negative electrode mixture layer may optionally include a binder, a conductive material, and the like together with the negative electrode active material.
상기 음극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물이 사용될 수 있다. 구체적인 예로는 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료; Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 등 리튬과 합금화가 가능한 금속질 화합물; SiOβ(0<β <2), SnO2, 바나듐 산화물, 리튬 바나듐 산화물과 같이 리튬을 도핑 및 탈도핑할 수 있는 금속산화물; 또는 Si-C 복합체 또는 Sn-C 복합체과 같이 상기 금속질 화합물과 탄소질 재료를 포함하는 복합물 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다. 또한, 상기 음극 활물질로서 금속 리튬 박막이 사용될 수도 있다. 또, 탄소재료는 저결정성 탄소 및 고결정성 탄소 등이 모두 사용될 수 있다. 저결정성 탄소로는 연화탄소 (soft carbon) 및 경화탄소 (hard carbon)가 대표적이며, 고결정성 탄소로는 무정형, 판상, 인편상, 구형 또는 섬유형의 천연 흑연 또는 인조 흑연, 키시 흑연 (Kish graphite), 열분해 탄소 (pyrolytic carbon), 액정 피치계 탄소섬유 (mesophase pitch based carbon fiber), 탄소 미소구체 (meso-carbon microbeads), 액정피치 (Mesophase pitches) 및 석유와 석탄계 코크스 (petroleum or coal tar pitch derived cokes) 등의 고온 소성탄소가 대표적이다.As the anode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specific examples include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, and amorphous carbon; metal compounds capable of alloying with lithium, such as Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si alloy, Sn alloy, or Al alloy; metal oxides capable of doping and dedoping lithium, such as SiO β (0<β <2), SnO 2 , vanadium oxide, and lithium vanadium oxide; Alternatively, a composite including the metallic compound and a carbonaceous material such as a Si-C composite or a Sn-C composite may be used, and any one or a mixture of two or more thereof may be used. In addition, a metal lithium thin film may be used as the negative electrode active material. In addition, as the carbon material, both low crystalline carbon and high crystalline carbon may be used. As low crystalline carbon, soft carbon and hard carbon are representative, and as high crystalline carbon, natural or artificial graphite of amorphous, plate-like, flaky, spherical or fibrous shape, and Kish graphite (Kish) graphite), pyrolytic carbon, mesophase pitch based carbon fiber, meso-carbon microbeads, liquid crystal pitches (Mesophase pitches), and petroleum and coal tar pitch (petroleum or coal tar pitch) High-temperature calcined carbon such as derived cokes) is a representative example.
상기 음극 활물질은 음극 합제층의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.The negative active material may be included in an amount of 80% to 99% by weight based on the total weight of the negative electrode mixture layer.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 합제층의 전체 중량을 기준으로 0.1 중량% 내지 10 중량%로 첨가될 수 있다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in bonding between the conductive material, the active material, and the current collector, and may be typically added in an amount of 0.1 wt % to 10 wt % based on the total weight of the negative electrode mixture layer. Examples of such binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoro and roethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, nitrile-butadiene rubber, fluororubber, and various copolymers thereof.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 합제층의 전체 중량을 기준으로 10 중량% 이하, 구체적으로는 5 중량% 이하로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is a component for further improving the conductivity of the anode active material, and may be added in an amount of 10 wt% or less, specifically 5 wt% or less, based on the total weight of the anode mixture layer. Such a conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery. For example, graphite such as natural graphite or artificial graphite; carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and thermal black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskers such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
상기 음극 합제층은 음극 집전체 상에 음극 활물질, 및 선택적으로 바인더 및 도전재를 용매 중에 용해 또는 분산시켜 제조한 음극 합제층 형성용 조성물을 도포하고 건조함으로써 제조되거나, 또는 상기 음극 합제층 형성용 조성물을 별도의 지지체 상에 캐스팅한 다음, 이 지지체로부터 박리하여 얻은 필름을 음극 집전체 상에 라미네이션함으로써 제조될 수 있다.The negative electrode mixture layer is prepared by applying and drying a composition for forming a negative electrode mixture layer prepared by dissolving or dispersing a negative electrode active material, and optionally a binder and a conductive material in a solvent on the negative electrode current collector and drying, or for forming the negative electrode mixture layer It can be prepared by casting the composition on a separate support and then laminating a film obtained by peeling it from the support onto a negative electrode current collector.
한편, 상기 리튬 이차 전지에 있어서, 분리막은 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 리튬 이차전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.On the other hand, in the lithium secondary battery, the separator separates the negative electrode and the positive electrode and provides a passage for lithium ions to move, and as long as it is used as a separator in a lithium secondary battery, it can be used without any particular limitation, especially for the movement of ions in the electrolyte It is preferable to have a low resistance to respect and an excellent electrolyte moisture content. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer and ethylene/methacrylate copolymer, or these A laminate structure of two or more layers of may be used. In addition, a conventional porous nonwoven fabric, for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used. In addition, in order to secure heat resistance or mechanical strength, a coated separator including a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
또한, 상기 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다. In addition, the electrolyte may include, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte, which can be used in manufacturing a lithium secondary battery.
구체적으로, 상기 전해질은 유기 용매 및 리튬염을 포함할 수 있다. Specifically, the electrolyte may include an organic solvent and a lithium salt.
상기 유기 용매로는 전지의 전기 화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 할 수 있는 것이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 유기 용매로는, 메틸 아세테이트(methyl acetate), 에틸 아세테이트(ethyl acetate), γ-부티로락톤(γ-butyrolactone), ε-카프로락톤(ε-caprolactone) 등의 에스테르계 용매; 디부틸 에테르(dibutyl ether) 또는 테트라히드로퓨란(tetrahydrofuran) 등의 에테르계 용매; 시클로헥사논(cyclohexanone) 등의 케톤계 용매; 벤젠(benzene), 플루오로벤젠(fluorobenzene) 등의 방향족 탄화수소계 용매; 디메틸카보네이트(dimethylcarbonate, DMC), 디에틸카보네이트(diethylcarbonate, DEC), 메틸에틸카보네이트(methylethylcarbonate, MEC), 에틸메틸카보네이트(ethylmethylcarbonate, EMC), 에틸렌카보네이트(ethylene carbonate, EC), 프로필렌카보네이트(propylene carbonate, PC) 등의 카보네이트계 용매; 에틸알코올, 이소프로필 알코올 등의 알코올계 용매; R-CN(R은 탄소수 2 내지 20의 직쇄상, 분지상 또는 환 구조의 탄화수소기이며, 이중결합 방향 환 또는 에테르 결합을 포함할 수 있다) 등의 니트릴류; 디메틸포름아미드 등의 아미드류; 1,3-디옥솔란 등의 디옥솔란류; 또는 설포란(sulfolane)류 등이 사용될 수 있다. 이중에서도 카보네이트계 용매가 바람직하고, 전지의 충방전 성능을 높일 수 있는 높은 이온전도도 및 고유전율을 갖는 환형 카보네이트(예를 들면, 에틸렌카보네이트 또는 프로필렌카보네이트 등)와, 저점도의 선형 카보네이트계 화합물(예를 들면, 에틸메틸카보네이트, 디메틸카보네이트 또는 디에틸카보네이트 등)의 혼합물이 보다 바람직하다. 이 경우 환형 카보네이트와 사슬형 카보네이트는 약 1:1 내지 약 1:9의 부피비로 혼합하여 사용하는 것이 전해액의 성능이 우수하게 나타날 수 있다. The organic solvent may be used without any particular limitation as long as it can serve as a medium through which ions involved in the electrochemical reaction of the battery can move. Specifically, as the organic solvent, ester solvents such as methyl acetate, ethyl acetate, γ-butyrolactone, ε-caprolactone; ether solvents such as dibutyl ether or tetrahydrofuran; ketone solvents such as cyclohexanone; aromatic hydrocarbon-based solvents such as benzene and fluorobenzene; dimethylcarbonate (DMC), diethylcarbonate (DEC), methylethylcarbonate (MEC), ethylmethylcarbonate (EMC), ethylene carbonate (EC), propylene carbonate, carbonate-based solvents such as PC); alcohol solvents such as ethyl alcohol and isopropyl alcohol; nitriles such as R-CN (R is a linear, branched, or cyclic hydrocarbon group having 2 to 20 carbon atoms, which may contain a double bond aromatic ring or ether bond); amides such as dimethylformamide; dioxolanes such as 1,3-dioxolane; Or sulfolane may be used. Among them, a carbonate-based solvent is preferable, and a cyclic carbonate (eg, ethylene carbonate or propylene carbonate, etc.) having high ionic conductivity and high dielectric constant capable of increasing the charge/discharge performance of the battery, and a low-viscosity linear carbonate-based compound ( For example, a mixture of ethyl methyl carbonate, dimethyl carbonate or diethyl carbonate) is more preferable. In this case, when the cyclic carbonate and the chain carbonate are mixed in a volume ratio of about 1:1 to about 1:9, the performance of the electrolyte may be excellent.
상기 리튬염은 리튬 이차전지에서 사용되는 리튬 이온을 제공할 수 있는 화합물이라면 특별한 제한 없이 사용될 수 있다. 구체적으로 상기 리튬염의 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군에서 선택되는 적어도 하나 이상일 수 있고, 상기 리튬염은, LiPF6, LiClO4, LiAsF6, LiBF4, LiSbF6, LiAl04, LiAlCl4, LiCF3SO3, LiC4F9SO3, LiN(C2F5SO3)2, LiN(C2F5SO2)2, LiN(CF3SO2)2. LiCl, LiI, 또는 LiB(C2O4)2 등이 사용될 수 있다. 상기 리튬염의 농도는 0.1 내지 2.0M 범위 내에서 사용하는 것이 좋다. 리튬염의 농도가 상기 범위에 포함되면, 전해질이 적절한 전도도 및 점도를 가지므로 우수한 전해질 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다.The lithium salt may be used without particular limitation as long as it is a compound capable of providing lithium ions used in a lithium secondary battery. Specifically, as an anion of the lithium salt , F - , Cl - , Br - , I - , NO 3 - , N(CN) 2 - , BF 4 - , CF 3 CF 2 SO 3 - , (CF 3 SO 2 ) 2 N - , (FSO 2 ) 2 N - , CF 3 CF 2 (CF 3 ) 2 CO - , (CF 3 SO 2 ) 2 CH - , (SF 5 ) 3 C - , (CF 3 SO 2 ) 3 C - , CF 3 (CF 2 ) 7 SO 3 - , CF 3 CO 2 - , CH 3 CO 2 - , SCN - and (CF 3 CF 2 SO 2 ) 2 N - may be at least one selected from the group consisting of, The lithium salt is, LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAl0 4 , LiAlCl 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiN(C 2 F 5 SO 3 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2. LiCl, LiI, or LiB(C 2 O 4 ) 2 , etc. may be used. The concentration of the lithium salt is preferably used within the range of 0.1 to 2.0M. When the concentration of the lithium salt is included in the above range, since the electrolyte has appropriate conductivity and viscosity, excellent electrolyte performance may be exhibited, and lithium ions may move effectively.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다. 이때 상기 첨가제는 전해질 총 중량에 대하여 0.1 내지 5 중량%로 포함될 수 있다.In the electrolyte, in addition to the electrolyte components, for the purpose of improving battery life characteristics, suppressing battery capacity reduction, and improving battery discharge capacity, for example, haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida One or more additives such as jolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included. In this case, the additive may be included in an amount of 0.1 to 5% by weight based on the total weight of the electrolyte.
상기와 같이 본 발명에 따른 양극을 포함하는 리튬 이차전지는 우수한 용량, 낮은 저항 및 우수한 안전성을 나타내기 때문에, 휴대전화, 노트북 컴퓨터, 디지털 카메라 등의 휴대용 기기, 및 하이브리드 전기자동차(hybrid electric vehicle, HEV) 등의 전기 자동차 분야 등에 유용하다.As described above, since the lithium secondary battery including the positive electrode according to the present invention exhibits excellent capacity, low resistance and excellent safety, portable devices such as mobile phones, notebook computers, digital cameras, and hybrid electric vehicles, HEV) and the like are useful in the field of electric vehicles.
이에 따라, 상기 리튬 이차전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지팩이 제공될 수 있다.Accordingly, a battery module including the lithium secondary battery as a unit cell and a battery pack including the same can be provided.
상기 전지 모듈 또는 전지팩은 파워 툴(Power Tool); 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차, 및 플러그인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함하는 전기차; 또는 전력 저장용 시스템 중 어느 하나 이상의 중대형 디바이스 전원으로 이용될 수 있다.The battery module or battery pack is a power tool (Power Tool); electric vehicles, including electric vehicles (EVs), hybrid electric vehicles, and plug-in hybrid electric vehicles (PHEVs); Alternatively, it may be used as a power source for any one or more medium-to-large devices in a system for power storage.
상기 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The external shape of the lithium secondary battery is not particularly limited, but may be a cylindrical shape using a can, a prismatic shape, a pouch type, or a coin type.
상기 리튬 이차전지는 소형 디바이스의 전원으로 사용되는 전지셀에 사용될 수 있을 뿐만 아니라, 다수의 전지셀들을 포함하는 중대형 전지모듈에 단위전지로도 바람직하게 사용될 수 있다. The lithium secondary battery may not only be used in a battery cell used as a power source for a small device, but may also be preferably used as a unit cell in a medium or large battery module including a plurality of battery cells.
상기 중대형 디바이스의 예로는 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템 등을 들 수 있으나, 이들로 한정되는 것은 아니다.Examples of the medium-large device include, but are not limited to, an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, examples will be given to describe the present invention in detail. However, the embodiment according to the present invention may be modified in various other forms, and the scope of the present invention should not be construed as being limited to the embodiment described in detail below. The embodiments of the present invention are provided to more completely explain the present invention to those of ordinary skill in the art.
실시예 및 비교예Examples and Comparative Examples
실시예 1Example 1
Ni1/3Co1/3Mn1/3O2 양극 활물질, PVdF 바인더, 카본블랙 도전재를 NMP 중에서 90:5:5의 중량비로 혼합하여 양극 합제층 형성용 조성물을 제조하였다.Ni 1/3 Co 1/3 Mn 1/3 O 2 A positive electrode active material, PVdF binder, and carbon black conductive material were mixed in NMP in a weight ratio of 90:5:5 to prepare a composition for forming a positive electrode mixture layer.
상기 양극 합제층 형성용 조성물을 두께가 20㎛인 알루미늄 집전체(Al foil) 상에 도포한 후, 건조(130℃)하여, 두께가 80㎛인 양극 합제층을 형성하였다.The composition for forming the positive electrode mixture layer was applied on an aluminum current collector (Al foil) having a thickness of 20 μm, and then dried (130° C.) to form a positive electrode mixture layer having a thickness of 80 μm.
상기 양극 합제층 상에 스프레이 분사법으로 EC/EMC의 혼합 부피비=30/70인 용매에 1.0M의 LiPF6가 포함된 용액을 코팅층의 최종 두께가 1㎛가 되도록 도포한 후, 100℃에서 5분 동안 열처리하여 LiF와 Li0.52F0.48을 포함하고, DC 저항 측정기(히오키社, RM3545-20)을 이용하여 전극 표면에 탐침을 올려 전류가 전극 표면으로만 흐르게 하여 측정한 비저항이 106Ω·cm인 코팅층을 형성하였다. 상기 코팅층에 포함되는 LiF의 함량은 상기 코팅층 전체 중량에 대하여 50중량%이었고, Li0.52F0.48의 함량은 상기 코팅층 전체 중량에 대하여 10 중량%이었다. A solution containing 1.0M LiPF 6 in a solvent having an EC/EMC mixing volume ratio = 30/70 by spraying on the positive electrode mixture layer was applied so that the final thickness of the coating layer was 1 μm, and then at 100° C. 5 Heat-treated for minutes to contain LiF and Li 0.52 F 0.48 . Using a DC resistance measuring instrument (Hioki, RM3545-20), the probe was placed on the surface of the electrode to allow current to flow only through the surface of the electrode, and the measured resistivity was 10 6 Ω A coating layer of cm was formed. The content of LiF included in the coating layer was 50 wt% based on the total weight of the coating layer, and the content of Li 0.52 F 0.48 was 10 wt% based on the total weight of the coating layer.
결과적으로, 집전체/양극 합제층/코팅층의 구조를 가지는 양극을 제조하였다.As a result, a positive electrode having a structure of a current collector/anode mixture layer/coating layer was manufactured.
실시예 2Example 2
실시예 1에서 상기 양극 합제층 상에 스프레이 분사법으로 EC/EMC의 혼합 부피비=30/70인 용매에 1.0M의 LiPF6가 포함된 용액을 코팅층의 최종 두께가 2㎛가 되도록 도포한 후, 130℃에서 10분 동안 열처리하여 LiF와 Li0.52F0.48을 포함하고(상기 코팅층에 포함되는 LiF의 함량은 상기 코팅층 전체 중량에 대하여 50중량%이었고, Li0.52F0.48의 함량은 상기 코팅층 전체 중량에 대하여 30 중량%이었음), DC 저항 측정기(히오키社, RM3545-20)을 이용하여 전극 표면에 탐침을 올려 전류가 전극 표면으로만 흐르게 하여 측정한 비저항이 107Ω·cm인 코팅층을 형성한 것을 제외하고, 실시예 1과 동일한 방법으로, 집전체/양극 합제층/코팅층의 구조를 가지는 양극을 제조하였다. In Example 1, a solution containing 1.0M LiPF 6 in a solvent having an EC/EMC mixing volume ratio = 30/70 by spraying on the positive electrode mixture layer was applied so that the final thickness of the coating layer was 2 μm, It was heat treated at 130° C. for 10 minutes to include LiF and Li 0.52 F 0.48 (the content of LiF included in the coating layer was 50% by weight based on the total weight of the coating layer, and the content of Li 0.52 F 0.48 was based on the total weight of the coating layer. It was 30% by weight) and a DC resistance measuring device (Hioki, RM3545-20) was used to place a probe on the surface of the electrode to allow current to flow only to the surface of the electrode, and a coating layer having a measured specific resistance of 10 7 Ω·cm was formed. Except that, in the same manner as in Example 1, a positive electrode having a structure of a current collector/anode mixture layer/coating layer was manufactured.
비교예 1Comparative Example 1
Ni1/3Co1/3Mn1/3O2 양극 활물질, PVdF 바인더, 카본블랙 도전재를 NMP 중에서 90:5:5의 중량비로 혼합하여 양극 합제층 형성용 조성물을 제조하였다.Ni 1/3 Co 1/3 Mn 1/3 O 2 A positive electrode active material, PVdF binder, and carbon black conductive material were mixed in NMP in a weight ratio of 90:5:5 to prepare a composition for forming a positive electrode mixture layer.
상기 양극 합제층 형성용 조성물을 두께가 20㎛인 알루미늄 집전체(Al foil) 상에 도포한 후, 건조(130℃)하여, 두께가 80㎛인 양극 합제층을 형성하였다.The composition for forming the positive electrode mixture layer was applied on an aluminum current collector (Al foil) having a thickness of 20 μm, and then dried (130° C.) to form a positive electrode mixture layer having a thickness of 80 μm.
결과적으로, 집전체/양극 합제층의 구조를 가지는 양극을 제조하였다.As a result, a positive electrode having a structure of a current collector/positive mixture layer was manufactured.
비교예 2Comparative Example 2
상기 양극 합제층 상에 스프레이 분사법으로 EC/EMC의 혼합 부피비=30/70인 용매에 1.0M의 LiPF6가 포함된 용액을 코팅층의 최종 두께가 0.1㎛가 되도록 도포한 후, 50℃에서 5분 동안 열처리하여 Li0.25F0.75와 Li0.52F0.48을 포함하고(상기 코팅층에 포함되는 Li0.25F0.75의 함량은 상기 코팅층 전체 중량에 대하여 30중량%이었고, Li0.52F0.48의 함량은 상기 코팅층 전체 중량에 대하여 10 중량%이었음), DC 저항 측정기(히오키社, RM3545-20)을 이용하여 전극 표면에 탐침을 올려 전류가 전극 표면으로만 흐르게 하여 측정한 비저항이 103Ω·cm인 코팅층을 형성한 것을 제외하고 실시예 1과 동일한 방법으로, 집전체/양극 합제층/코팅층의 구조를 가지는 양극을 제조하였다. A solution containing 1.0M LiPF 6 in a solvent having an EC/EMC mixing volume ratio = 30/70 by spraying on the positive electrode mixture layer was applied so that the final thickness of the coating layer was 0.1 μm, and then at 50° C. 5 It was heat treated for minutes to contain Li 0.25 F 0.75 and Li 0.52 F 0.48 (the content of Li 0.25 F 0.75 contained in the coating layer was 30 wt % based on the total weight of the coating layer, and the content of Li 0.52 F 0.48 was the total amount of the coating layer. It has been a 10% by weight), based on the weight, the DC resistance meter (Hi of coating Oki社, RM3545-20) using the electrodes to place the probe on the surface of the electrode surface current to flow in only one resistivity of 10 3 Ω · cm measured in A positive electrode having a structure of a current collector/anode mixture layer/coating layer was manufactured in the same manner as in Example 1, except that it was formed.
제조예: 리튬 이차전지의 제조Preparation Example: Preparation of Lithium Secondary Battery
상기 실시예 1, 2 및 비교예 1, 2의 양극을 각각 3cm×4cm 크기로 잘라 3.5cm×4.5cm 크기의 폴리프로필렌/폴리에틸렌/폴리프로필렌 구조의 두께 20㎛의 1cm2 면적으로 타공된 다공성 분리막의 일면에 접하게 하고, 타공된 다공성 분리막 위에 2cm×6cm 크기의 폴리프로필렌 구조의 두께 20㎛의 다공성 분리막을 올려 타공된 면적을 가린다. 그 후, 상기 다공성 분리막의 타면에 흑연 음극을 접하게 한 다음, 에틸렌 카보네이트(EC) 및 디에틸 카보네이트(DEC)를 30:70의 부피비로 혼합한 용매에 1M의 LiPF6가 용해된 전해액을 주입하여 리튬 이차전지를 제조하였다.The positive electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 were cut into 3 cm × 4 cm sizes, respectively, and a porous separator having a polypropylene/polyethylene/polypropylene structure with a size of 3.5 cm × 4.5 cm and a thickness of 20 μm and a 1 cm 2 area perforated. is placed in contact with one side of the porous membrane, and a porous membrane having a thickness of 20 μm of a polypropylene structure having a size of 2 cm × 6 cm is placed on the perforated porous membrane to cover the perforated area. After that, the other surface of the porous separator was brought into contact with the graphite anode, and then 1M LiPF 6 was dissolved in a solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed in a volume ratio of 30:70 by injection. A lithium secondary battery was manufactured.
실험예Experimental example
실험예 1: 양극의 전기 전도도 평가Experimental Example 1: Evaluation of the electrical conductivity of the positive electrode
상기 실시예 1, 2 및 비교예 1, 2의 양극을 각각 5cm×5cm 크기로 잘라 수직 저항기 위에 올린 후, 수직 방향으로 전류를 인가하여 저항을 측정하였다. 그 결과를 하기 표 1에 나타내었다.The anodes of Examples 1 and 2 and Comparative Examples 1 and 2 were cut into pieces of 5 cm × 5 cm, respectively, and placed on a vertical resistor, and then the resistance was measured by applying a current in the vertical direction. The results are shown in Table 1 below.
한편, 전기 전도도와 전기적 저항은 역수 관계이다.On the other hand, electrical conductivity and electrical resistance are inversely related.
수직 저항 (Ω)vertical resistance (Ω)
실시예 1Example 1 0.450.45
실시예 2Example 2 0.510.51
비교예 1Comparative Example 1 0.210.21
비교예 2Comparative Example 2 0.230.23
상기 표 1을 참조하면, 비저항이 105Ω·cm 이상인 코팅층을 포함하는 실시예 1 및 2의 양극은 코팅층을 포함하지 않는 비교예 1의 양극과 비저항이 비저항이 105Ω·cm 미만인 비교예 2의 양극에 비하여 수직 저항이 높은 것을 확인할 수 있다. 이는, 실시예 1 및 2의 양극이 비저항이 105Ω·cm 이상인 코팅층을 포함하여, 양극 표면의 전기 전도도가 감소되기 때문이다.한편, 양극 표면의 전기 전도도가 낮은 경우, 양극의 내부 단락 안정성, 결과적으로 리튬 이차전지의 내부 단락 안정성을 개선시킬 수 있다는 점에서 유리한 효과가 있다.Referring to Table 1, the positive electrode of Examples 1 and 2 including a coating layer having a specific resistance of 10 5 Ω·cm or more has a specific resistance and a specific resistance of less than 10 5 Ω·cm with the positive electrode of Comparative Example 1 not including a coating layer. It can be seen that the vertical resistance is higher than that of the anode of Fig. 2. This is because the anodes of Examples 1 and 2 include a coating layer having a specific resistance of 10 5 Ω·cm or more, so that the electrical conductivity of the surface of the anode is reduced. , As a result, there is an advantageous effect in that the internal short-circuit stability of the lithium secondary battery can be improved.
실험예 2: 리튬 이처전지의 용량 평가Experimental Example 2: Capacity evaluation of lithium hetero battery
상기 실시예 1, 2 및 비교예 1, 2의 양극을 이용하여 제작한 리튬 이차전지를 이용하여 25℃에서 0.2C 방전 용량을 측정하였다(전압 범위 3V 내지 4.2V). 그 결과를 하기 표 2에 나타내었다.0.2C discharge capacity was measured at 25°C using the lithium secondary batteries prepared using the positive electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 (voltage range 3V to 4.2V). The results are shown in Table 2 below.
0.2C 방전 용량 (mAh)0.2C discharge capacity (mAh)
실시예 1Example 1 75.375.3
실시예 2Example 2 75.375.3
비교예 1Comparative Example 1 75.375.3
비교예 2Comparative Example 2 75.375.3
상기 표 2를 참조하면, 비저항이 105Ω·cm 이상인 코팅층을 포함하는 실시예 1 및 2의 양극을 포함하는 이차전지는 코팅층을 포함하지 않는 비교예 1의 양극을 포함하는 이차전지와 유사한 수준의 방전 용량을 가지는 것을 확인할 수 있다. 이는, 양극 표면에만 얇은 코팅층이 형성되어 있어 실제 충방전 시 양극이 전체적으로 반응하기 때문이다.Referring to Table 2, the secondary batteries including the positive electrodes of Examples 1 and 2 including the coating layer having a specific resistance of 10 5 Ω·cm or more have a level similar to that of the secondary battery including the positive electrode of Comparative Example 1 not including the coating layer. It can be seen that the discharge capacity of This is because a thin coating layer is formed only on the surface of the positive electrode, so that the positive electrode as a whole reacts during actual charging and discharging.
실험예 3: 리튬 이처전지의 저항 평가Experimental Example 3: Resistance evaluation of lithium hetero battery
상기 실시예 1, 2 및 비교예 1, 2의 양극을 이용하여 제작한 리튬 이차전지를 이용하여 25℃, SOC 50에서 2.5C 방전 전류를 30초간 인가하여 저항을 측정하였다. 그 결과를 하기 표 3에 나타내었다.Using the lithium secondary batteries manufactured using the positive electrodes of Examples 1 and 2 and Comparative Examples 1 and 2, a 2.5C discharge current was applied for 30 seconds at 25° C. and SOC 50 to measure resistance. The results are shown in Table 3 below.
저항 (Ω)Resistance (Ω)
실시예 1Example 1 1.511.51
실시예 2Example 2 1.521.52
비교예 1Comparative Example 1 1.501.50
비교예 2Comparative Example 2 1.501.50
상기 표 3을 참조하면, 비저항이 105Ω·cm 이상인 코팅층을 포함하는 실시예 1 및 2의 양극을 포함하는 이차전지는 코팅층을 포함하지 않는 비교예 1의 양극을 포함하는 이차전지와 유사한 수준의 저항을 가지는 것을 확인할 수 있다. 이는, 양극 표면에만 얇은 코팅층이 형성되어 있어 저항이 증가되는 정도가 미미하기 때문이다.Referring to Table 3, the secondary batteries including the positive electrodes of Examples 1 and 2 including the coating layer having a specific resistance of 10 5 Ω·cm or more have a level similar to that of the secondary battery including the positive electrode of Comparative Example 1 not including the coating layer. It can be seen that the resistance of This is because, since a thin coating layer is formed only on the surface of the anode, the degree of increase in resistance is insignificant.
실험예 4: 리튬 이처전지의 내부 단락 시험Experimental Example 4: Internal short-circuit test of lithium hetero battery
상기 실시예 1, 2 및 비교예 1, 2의 양극을 이용하여 제작한 리튬 이차전지를 이용하여 25℃에서 SOC 100으로 충전한 후, 파우치를 잘라 타공된 다공성 분리막 위에 덮여있는 다공성 분리막을 제거한다. 다음으로 외부에서 1MPa을 인가하여 양극과 음극을 단락시켜 30분간 유지하면서 최대 온도를 측정하였다. 그 결과를 하기 표 4에 나타내었다.After charging the lithium secondary battery prepared using the positive electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 at SOC 100 at 25° C., cut the pouch and remove the porous separator covered on the perforated porous separator . Next, 1 MPa was applied from the outside to short-circuit the anode and the cathode, and the maximum temperature was measured while maintaining for 30 minutes. The results are shown in Table 4 below.
최대 온도 (℃)Maximum temperature (℃)
실시예 1Example 1 47.147.1
실시예 2Example 2 45.745.7
비교예 1Comparative Example 1 91.291.2
비교예 2Comparative Example 2 91.091.0
상기 표 4를 참조하면, 비저항이 105Ω·cm 이상인 코팅층을 포함하는 실시예 1 및 2의 양극을 포함하는 이차전지는, 코팅층을 포함하지 않는 비교예 1의 양극을 포함하는 이차전지와 비저항이 비저항이 105Ω·cm 미만인 코팅층을 포함하는 비교예 2의 양극을 포함하는 이차전지에 비하여, 내부 단락 시험에서 측정된 최대 온도가 현저히 낮은 것을 확인할 수 있다. 이는, 내부 단락 시 양극 및 음극 계면을 통해 전류가 흐르는데, 양극 표면의 코팅층의 저항이 매우 높아 단락 전류가 감소하기 때문이다.Referring to Table 4, the secondary battery including the positive electrode of Examples 1 and 2 including the coating layer having a specific resistance of 10 5 Ω·cm or more, the secondary battery including the positive electrode of Comparative Example 1 not including the coating layer, and the specific resistance It can be seen that the maximum temperature measured in the internal short circuit test is significantly lower than that of the secondary battery including the positive electrode of Comparative Example 2 including a coating layer having a specific resistance of less than 10 5 Ω·cm. This is because current flows through the anode and cathode interface during an internal short circuit, and the resistance of the coating layer on the anode surface is very high, so that the short circuit current is reduced.
결과적으로, 본 발명에 따른 양극은 양극 합제층 상에 형성되며, 리튬 및 불소를 함유하는 화합물을 포함하고, 비저항이 105Ω·cm 이상인 코팅층을 포함하여, 기존의 양극과 유사한 수준의 용량 및 저항을 가지면서, 내부 단락 안전성이 우수하다는 것을 알 수 있다.As a result, the positive electrode according to the present invention is formed on the positive electrode mixture layer, contains a compound containing lithium and fluorine, and includes a coating layer having a specific resistance of 10 5 Ω·cm or more, and has a capacity similar to that of a conventional positive electrode and It can be seen that while having resistance, the internal short circuit safety is excellent.
[부호의 설명][Explanation of code]
100: 집전체100: current collector
200: 양극 합제층200: positive electrode mixture layer
300: 코팅층300: coating layer

Claims (13)

  1. 집전체 상에 형성되고, 양극 활물질을 포함하는 양극 합제층; 및a positive electrode mixture layer formed on the current collector and including a positive electrode active material; and
    상기 양극 합제층 상에 형성되고, 리튬 및 불소를 함유하는 화합물을 포함하는 코팅층;을 포함하며,and a coating layer formed on the positive electrode mixture layer and comprising a compound containing lithium and fluorine;
    상기 코팅층은 비저항이 105Ω·cm 이상인 이차전지용 양극.The coating layer is a positive electrode for a secondary battery having a specific resistance of 10 5 Ω·cm or more.
  2. 제1항에 있어서,According to claim 1,
    상기 코팅층은 비저항이 105Ω·cm 내지 109Ω·cm인 이차전지용 양극.The coating layer has a specific resistance of 10 5 Ω·cm to 10 9 Ω·cm for a secondary battery positive electrode.
  3. 제1항에 있어서,According to claim 1,
    상기 리튬 및 불소를 함유하는 화합물은 하기 화학식 1로 표시되는 화합물인 이차전지용 양극:The compound containing lithium and fluorine is a positive electrode for a secondary battery, which is a compound represented by the following Chemical Formula 1:
    [화학식 1][Formula 1]
    LixFy Li x F y
    상기 화학식 1에서, 0.9≤x/y≤1.1이다.In Formula 1, 0.9≤x/y≤1.1.
  4. 제1항에 있어서,According to claim 1,
    상기 리튬 및 불소를 함유하는 화합물은 LiF와 Li0.52F0.48 중에서 선택된 1종 이상을 포함하는 것인 이차전지용 양극.The compound containing lithium and fluorine is a positive electrode for a secondary battery comprising at least one selected from LiF and Li 0.52 F 0.48.
  5. 제1항에 있어서,According to claim 1,
    상기 리튬 및 불소를 함유하는 화합물은 상기 코팅층 전체 중량에 대하여 50중량% 내지 90중량%의 함량으로 포함되는 것인 이차전지용 양극.The positive electrode for a secondary battery of which the compound containing lithium and fluorine is included in an amount of 50% to 90% by weight based on the total weight of the coating layer.
  6. 제1항에 있어서,According to claim 1,
    상기 코팅층은 500nm 내지 3㎛의 두께로 형성된 이차전지용 양극.The coating layer is a positive electrode for a secondary battery formed to a thickness of 500nm to 3㎛.
  7. 제1항에 있어서,According to claim 1,
    상기 양극 합제층은 30㎛ 내지 150㎛의 두께로 형성된 이차전지용 양극.The positive electrode mixture layer is a secondary battery positive electrode formed to a thickness of 30㎛ to 150㎛.
  8. 집전체 상에 양극 활물질을 포함하는 양극 합제층을 형성하는 단계; 및forming a positive electrode mixture layer including a positive electrode active material on a current collector; and
    상기 양극 합제층 상에 리튬 및 불소를 포함하는 리튬염이 포함된 용액을 도포한 후 열처리하여 코팅층을 형성하는 단계;를 포함하는 제1항에 따른 이차전지용 양극의 제조방법.A method of manufacturing a positive electrode for a secondary battery according to claim 1, comprising: coating a solution containing a lithium salt containing lithium and fluorine on the positive electrode mixture layer and then heat-treating to form a coating layer.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 용액 도포는 스프레이 분사법, 함침법 및 블레이드 코팅법 중에서 선택된 하나 이상의 방법으로 수행되는 것인 이차전지용 양극의 제조방법.The method of manufacturing a positive electrode for a secondary battery, wherein the solution application is performed by at least one method selected from a spray spraying method, an impregnation method, and a blade coating method.
  10. 제8항에 있어서,9. The method of claim 8,
    상기 리튬 및 불소를 포함하는 리튬염은 LiPF6, LiBF4, LiAsF6 및 LiC4F9SO3 중에서 선택된 1종 이상인 이차전지용 양극의 제조방법.The lithium salt containing lithium and fluorine is LiPF 6 , LiBF 4 , LiAsF 6 and LiC 4 F 9 SO 3 A method of manufacturing a positive electrode for a secondary battery at least one selected from the group consisting of.
  11. 제8항에 있어서,9. The method of claim 8,
    상기 열처리는 80℃ 내지 130℃로 수행하는 이차전지용 양극의 제조방법.The method of manufacturing a positive electrode for a secondary battery, wherein the heat treatment is performed at 80 °C to 130 °C.
  12. 제8항에 있어서,9. The method of claim 8,
    상기 코팅층을 500nm 내지 3㎛의 두께로 형성하는 이차전지용 양극의 제조방법.A method of manufacturing a positive electrode for a secondary battery in which the coating layer is formed to a thickness of 500 nm to 3 μm.
  13. 제1항 내지 제7항 중 어느 한 항에 따른 양극을 포함하는 리튬 이차전지.A lithium secondary battery comprising the positive electrode according to any one of claims 1 to 7.
PCT/KR2021/006503 2020-06-18 2021-05-25 Positive electrode for secondary battery, method for manufacturing same, and lithium secondary battery comprising same WO2021256716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200074305A KR20210156574A (en) 2020-06-18 2020-06-18 Positive electrode for secondary battery, method for preparing thereof and lithium secondary battery comprising the same
KR10-2020-0074305 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021256716A1 true WO2021256716A1 (en) 2021-12-23

Family

ID=79177328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006503 WO2021256716A1 (en) 2020-06-18 2021-05-25 Positive electrode for secondary battery, method for manufacturing same, and lithium secondary battery comprising same

Country Status (2)

Country Link
KR (1) KR20210156574A (en)
WO (1) WO2021256716A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080005995A (en) * 2005-04-28 2008-01-15 비와이디 컴퍼니 리미티드 A battery cathode, a lithium ion battery using the same and processes for preparation
KR20090040216A (en) * 2007-10-19 2009-04-23 소니 가부시끼 가이샤 Cathode active material, cathode, and non-aqueous electrolyte secondary battery
KR20190019026A (en) * 2017-08-16 2019-02-26 주식회사 포스코 Electrochemical device comprising different two gel polymer electrolytes
WO2019189866A1 (en) * 2018-03-30 2019-10-03 三井化学株式会社 Positive electrode equipped with undercoat layer containing microcapsules, and lithium-ion secondary battery
KR102086887B1 (en) * 2014-01-20 2020-03-09 가부시키가이샤 무라타 세이사쿠쇼 Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080005995A (en) * 2005-04-28 2008-01-15 비와이디 컴퍼니 리미티드 A battery cathode, a lithium ion battery using the same and processes for preparation
KR20090040216A (en) * 2007-10-19 2009-04-23 소니 가부시끼 가이샤 Cathode active material, cathode, and non-aqueous electrolyte secondary battery
KR102086887B1 (en) * 2014-01-20 2020-03-09 가부시키가이샤 무라타 세이사쿠쇼 Cell, cell pack, electronic device, electric vehicle, electricity storage apparatus, and power system
KR20190019026A (en) * 2017-08-16 2019-02-26 주식회사 포스코 Electrochemical device comprising different two gel polymer electrolytes
WO2019189866A1 (en) * 2018-03-30 2019-10-03 三井化学株式会社 Positive electrode equipped with undercoat layer containing microcapsules, and lithium-ion secondary battery

Also Published As

Publication number Publication date
KR20210156574A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
WO2018097562A1 (en) Positive electrode for secondary battery and lithium secondary battery comprising same
WO2019103460A1 (en) Positive electrode material for secondary battery and lithium secondary battery comprising same
WO2019151834A1 (en) Cathode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019164313A1 (en) Positive electrode active material for secondary battery, preparation method therefor, and lithium secondary battery comprising same
WO2019225969A1 (en) Positive electrode material for lithium rechargeable battery, positive electrode for lithium rechargeable battery, comprising same, and lithium rechargeable battery
WO2021187961A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2020111649A1 (en) Cathode for lithium secondary battery and lithium secondary battery including same
WO2020085823A1 (en) Method for manufacturing anode for lithium secondary battery
WO2019212321A1 (en) Method for cleaning positive electrode active material, positive electrode active material manufacturing method comprising same, and positive electrode active material manufactured by same
WO2019017643A9 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2019013511A2 (en) Positive electrode for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
WO2021187907A1 (en) Cathode material for lithium secondary battery, and cathode and lithium secondary battery each comprising same
WO2019078688A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2022164281A1 (en) Positive electrode, and lithium secondary battery comprising same
WO2020067830A1 (en) Positive electrode active material for secondary battery, method for producing same, and lithium secondary battery comprising same
WO2021153936A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2021125873A1 (en) Positive electrode for lithium secondary battery, and lithium secondary battery comprising same
WO2019078506A2 (en) Method for preparing cathode active material for lithium secondary battery, cathode active material prepared thereby, cathode comprising same for lithium secondary battery, and lithium secondary battery
WO2020145638A1 (en) Method for producing positive electrode active material for lithium secondary battery, and positive electrode active material produced thereby
WO2022114538A1 (en) Method for manufacturing lithium secondary battery, and lithium secondary battery manufactured thereby
WO2019066585A1 (en) Method for preparing cathode active material for secondary battery, cathode active material prepared thereby, and lithium secondary battery comprising same
WO2019078685A2 (en) Lithium secondary battery positive electrode active material, method for preparing same, and lithium secondary battery positive electrode and lithium secondary battery comprising same
WO2021075830A1 (en) Method for producing positive electrode active material for lithium secondary battery, and positive electrode active material produced thereby for lithium secondary battery
WO2022139348A1 (en) Cathode active material, and cathode and lithium secondary battery comprising same
WO2021172933A1 (en) Irreversible additive, cathode comprising irreversible additive, and lithium secondary battery comprising cathode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826096

Country of ref document: EP

Kind code of ref document: A1