WO2021256661A1 - 전지 모듈 및 이를 포함하는 전지팩 - Google Patents

전지 모듈 및 이를 포함하는 전지팩 Download PDF

Info

Publication number
WO2021256661A1
WO2021256661A1 PCT/KR2021/002554 KR2021002554W WO2021256661A1 WO 2021256661 A1 WO2021256661 A1 WO 2021256661A1 KR 2021002554 W KR2021002554 W KR 2021002554W WO 2021256661 A1 WO2021256661 A1 WO 2021256661A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
module
battery cell
conductive resin
cell stack
Prior art date
Application number
PCT/KR2021/002554
Other languages
English (en)
French (fr)
Inventor
백승률
곽정민
정재홍
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to EP21827060.1A priority Critical patent/EP4040575A4/en
Priority to US17/779,950 priority patent/US20230006274A1/en
Priority to CN202180006852.XA priority patent/CN114762174A/zh
Priority to JP2022526465A priority patent/JP7408219B2/ja
Publication of WO2021256661A1 publication Critical patent/WO2021256661A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/617Types of temperature control for achieving uniformity or desired distribution of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack including the same, and more particularly, to a battery module with improved cooling performance and a battery pack including the same.
  • secondary batteries are of great interest not only as mobile devices such as mobile phones, digital cameras, laptops, and wearable devices, but also as energy sources for power devices such as electric bicycles, electric vehicles, and hybrid electric vehicles.
  • the mid-to-large-sized battery module be manufactured as small as possible in size and weight, prismatic batteries, pouch-type batteries, etc. that can be stacked with high integration and have a small weight to capacity are mainly used as battery cells of the medium and large-sized battery modules.
  • the battery module in order to protect the battery cell stack from external impact, heat, or vibration, the front and rear are opened may include a module frame for accommodating the battery cell stack in an internal space.
  • FIG. 1 is an exploded perspective view of a conventional battery module.
  • FIG. 2 is a perspective view illustrating a state in which components constituting the battery module of FIG. 1 are combined.
  • the conventional battery module 10 is a battery cell stack 12 in which a plurality of battery cells 11 are stacked in one direction, and to accommodate the battery cell stack 12. It includes a module frame 20 , an end plate 15 covering the front and rear surfaces of the battery cell stack, and a bus bar frame 13 formed between the end plate 15 and the front and rear surfaces of the battery cell stack 12 . .
  • the module frame 20 includes a lower frame 30 covering the lower and both sides of the battery cell stack 12 and an upper plate 40 covering the upper surface of the battery cell stack 12 .
  • a thermally conductive resin layer 31 is applied to the bottom surface covering the lower portion of the battery cell stack 120 in the lower frame 30 to cool the heat generated by the battery cell stack 12. can
  • the thermally conductive resin layer 31 transfers heat generated in the battery cell stack 12 to the outside of the battery module 10, and serves to fix the battery cell stack 12 in the battery module. have.
  • FIG. 3 is a cross-sectional view taken along the cutting line A-A of FIG. 2 .
  • the conventional battery module 10 has a structure that cools the lower portion of the battery cell stack 12 , and the heat generated in the battery cell 11 is directed downward in the first cooling direction D1 . It is a flowing structure.
  • the thermal conductive resin layer 31 is formed only at a position corresponding to the lower portion of the battery cell stack 12, the portion of the battery cell 11 that is close to the thermal conductive resin layer 31 has a low temperature and , a portion of the battery cell 11 that is farther away has a high temperature, and a temperature difference occurs inside the battery cell 11 .
  • the temperature is increased in the direction toward the upper and both ends of the battery cell 11, the temperature is lowered in the direction toward the lower portion and center of the battery cell (11).
  • both ends of the battery cell 11 have a positive electrode and a negative electrode positioned so that heat is generated relatively more compared to the central portion in the charging/discharging process of the battery module 10 .
  • the thermally conductive resin layer 31 positioned under the battery cell 11 cools only the heat transferred from both ends of the battery cell 11 to the lower part, the heat generated at both ends of the battery cell 11 is It does not cool the heat fast enough.
  • the temperature of the battery cell 11 is one of the factors limiting the output of the battery, the local temperature rise occurring in the battery cell 11 is highly likely to limit the output of the battery early. , there is a need to improve it.
  • An object of the present invention is to provide a battery module with improved cooling performance of a battery cell and a battery pack including the same.
  • a battery module includes a battery cell stack in which a plurality of battery cells are stacked in a first direction, a module frame accommodating the battery cell stack, and a lower portion of the battery cell stack and the module frame A first thermally conductive resin layer positioned therebetween, and a second thermally conductive resin layer positioned between the battery cell stack and an upper portion of the module frame, wherein the thermal conductive resin is injected into the upper portion of the module frame. At least one first pouring hole is formed.
  • the at least one first injection hole may be formed in a position adjacent to an upper end of the module frame.
  • the at least one first injection hole may be formed at positions adjacent to both ends of the upper portion of the module frame, respectively, and may be formed at positions opposite to each other.
  • the at least two first pouring holes may be formed in a position adjacent to one end of the upper portion of the module frame, and spaced apart from each other in the same direction as the first direction.
  • the module frame includes a U-shaped frame including a bottom portion and two side portions connected to both sides of the bottom portion, and an upper plate covering the battery cell stack mounted on the U-shaped frame, the lower surface of the upper plate It further includes at least two blocking pads positioned in the , and the first injection hole may be positioned between the at least two pads.
  • the second thermally conductive resin layer may be formed at a position corresponding to the area between the blocking pads.
  • the blocking pad may extend in the same direction as the first direction, and the blocking pad may protrude in a direction toward the battery cell stack.
  • the first thermally conductive resin layer may be formed by coating a thermally conductive resin on the lower frame of the U-shaped frame.
  • the module frame may include a module frame including upper and lower portions corresponding to each other for accommodating the battery cell stack, and opposite sides corresponding to each other, and at least one second injection hole may be located in the lower portion of the module frame. have.
  • the first thermally conductive resin layer may be formed by injecting a thermally conductive resin into the at least one second pouring hole.
  • the at least one second injection hole may be formed at a position corresponding to the central region of the lower surface of the module frame.
  • a battery pack according to another embodiment of the present invention includes the battery module described above.
  • a thermally conductive resin layer is formed at a position corresponding to the upper portion of the battery cell stack, thereby suppressing a local temperature increase in the battery cell and reducing the temperature difference.
  • FIG. 1 is an exploded perspective view of a conventional battery module.
  • FIG. 2 is a perspective view illustrating a state in which components constituting the battery module of FIG. 1 are combined.
  • FIG. 3 is a cross-sectional view taken along the cutting line A-A of FIG. 2 .
  • FIG. 4 is an exploded perspective view of a battery module according to an embodiment of the present invention.
  • FIG. 5 is a perspective view illustrating a state in which components constituting the battery module of FIG. 4 are combined.
  • FIG. 6 is a perspective view illustrating a state in which the upper part of the module frame of the battery module of FIG. 4 is turned upside down.
  • FIG. 7 is a perspective view illustrating a state in which the upper part of the module frame is removed from the battery module of FIG. 4 .
  • FIG. 8 is a cross-sectional view taken along line B-B of FIG. 4 .
  • FIG. 9 is an exploded perspective view of a battery module according to another embodiment of the present invention.
  • FIG. 10 is a perspective view illustrating a state in which the battery module of FIG. 9 is turned upside down.
  • planar it means when the target part is viewed from above, and "cross-sectional” means when viewed from the side when a cross-section of the target part is vertically cut.
  • FIG. 4 is an exploded perspective view of the battery module according to the present embodiment.
  • 5 is a perspective view illustrating a state in which components constituting the battery module of FIG. 4 are combined.
  • the battery module 100 includes a battery cell stack 120 and a battery cell stack in which a plurality of battery cells 110 are stacked in a first direction (y-axis). Positioned between the module frame 200 for accommodating 120 , the end plate 150 respectively positioned on the front and rear surfaces of the battery cell stack 120 , and the battery cell stack 120 and the end plate 150 . and a bus bar frame 130 .
  • the module frame 200 includes a U-shaped frame 300 having an upper surface, an open front and a rear surface, and an upper plate 400 covering the upper portion of the battery cell stack 120 .
  • the first thermally conductive resin layer 310 may be positioned between the battery cell stack 120 and the bottom surface of the U-shaped frame 300 .
  • the first thermally conductive resin layer 310 may be coated with a thermally conductive resin on the bottom surface of the U-shaped frame 300 before the battery cell stack 120 is mounted on the bottom surface of the U-shaped frame 300 . have. Thereafter, as the thermally conductive resin is cured, the first thermally conductive resin layer 310 may be formed. Accordingly, the first thermally conductive resin layer 310 may fix the battery cell stack 120 while transferring heat generated from the battery cell 110 to the bottom of the battery module 100 .
  • FIG. 6 is a perspective view illustrating a state in which the upper part of the module frame of the battery module of FIG. 4 is turned upside down.
  • 7 is a perspective view illustrating a state in which the upper part of the module frame is removed from the battery module of FIG. 4 .
  • At least one first injection hole 450 may be formed in the upper plate 400 , so that the thermal conductive resin is applied to the first injection hole. 450 may be injected. Thereafter, as the thermally conductive resin is cured, the second thermally conductive resin layer 160 may be formed.
  • the first injection hole 450 may be formed on the upper plate 400 .
  • the first injection hole 450 may be formed at a position adjacent to an end of the upper plate 400 .
  • the first injection hole 450 may include at least two injection holes, and the at least two injection holes are adjacent to both ends of the upper plate 400 , but may be formed at positions facing each other.
  • the first injection hole 450 may be formed with at least two injection holes spaced apart from one end of the upper plate 400 .
  • the first pouring hole 450 may also be formed at the opposite end of the upper plate 400 as at least two injection holes are spaced apart.
  • the first pouring hole 450 may be formed at a position corresponding to a position where the cooling efficiency of the battery cell 110 is lowest. Accordingly, the second thermally conductive resin layer 160 formed by injecting the thermally conductive resin into the first pouring hole 450 may be formed at a position corresponding to the position where the cooling efficiency of the battery cell 110 is lowest.
  • the at least two injection holes are formed from each other in a direction corresponding to the first direction (y-axis). may be located apart. Accordingly, as compared to being injected and formed by a single injection hole, in the battery module 100 according to the present embodiment, the second thermally conductive resin layer 160 can be evenly injected in a direction corresponding to the first direction. have. Through this, in the battery module 100 according to the present embodiment, the cooling efficiency of the battery cells 110 can be uniformly improved regardless of the position of the battery cell stack, and the temperature difference according to the position of the battery cells 110 is also evenly can be reduced
  • At least two blocking pads 470 may be positioned on the lower surface of the upper plate 400 . At least two blocking pads 470 may extend in a direction corresponding to the first direction (y-axis). At least two blocking pads 470 may protrude in a direction corresponding to the direction (z-axis) toward the battery cell stack 120 . Preferably, the at least two blocking pads 470 may protrude in a direction corresponding to the direction (z-axis) toward the battery cell stack, and may come into contact with the upper portion of the battery cell stack. Accordingly, the blocking pad 470 may block the thermal conductive resin injected into the first injection hole 450 from being applied to a region beyond the blocking pad 470 .
  • the first injection hole 450 may be positioned between at least two blocking pads 470 . Accordingly, the second thermally conductive resin layer 160 may be formed at a position corresponding to the area between the at least two blocking pads 470 . That is, the blocking pad 470 can adjust the region in which the second thermally conductive resin layer 160 can be formed, and can prevent the thermally conductive resin injected into the first injection hole 450 from being injected to an unnecessary region. can
  • the region corresponding to the center of the battery cell 11 is sufficiently cooled with only the thermally conductive resin layer 31 located below, so that in the present embodiment, the region corresponding to the center of the battery cell 110 is This is because it is unnecessary to form the second thermally conductive resin layer 160 .
  • the blocking pad 470 is more preferably formed at a position adjacent to an area corresponding to both ends of the battery cell 110 .
  • the blocking pad 470 limits the area to which the thermal conductive resin is applied, so that the thermal conductive resin can be uniformly applied to a desired location without additional disassembly and assembly of the battery module 100 .
  • the blocking pad 470 may reduce the cost loss for the thermally conductive resin injected to an area where the thermally conductive resin is unnecessary.
  • FIG. 8 is a cross-sectional view taken along line B-B of FIG. 4 . 4 to 8 , the first thermally conductive resin layer 310 is in contact with the lower portion of the battery cell stack 120 included in the battery module 100 , and at least the upper portion of the battery cell stack 120 . In some regions, the second thermally conductive resin layer 160 may have a contacting structure. Accordingly, the battery module 100 has a structure that cools both the upper and lower portions of the battery cell stack 120, unlike the conventional battery module 10, and the heat generated in the battery cell stack 12 is and a structure that flows in the second cooling direction D2 toward the bottom.
  • the battery module 100 according to the present embodiment is a second thermally conductive resin layer to heat generated in the direction toward the upper and both ends of the battery cell stack 120. It can be cooled through (160). Through this, the battery module 100 according to the present embodiment can suppress a local temperature increase occurring at both ends of the battery cell 110 and reduce the temperature difference within the battery cell. In addition, it is possible to prevent the output of the battery including the battery cell 110 from being limited early.
  • FIG. 9 is an exploded perspective view of a battery module according to another embodiment of the present invention.
  • 10 is a perspective view illustrating a state in which the battery module of FIG. 9 is turned upside down.
  • the battery module 101 according to the present embodiment is described with the same content as the battery module 100 described in FIGS. 5 to 9 , and only different parts will be described in detail.
  • the battery module 101 includes a module frame 500, and the module frame 500 includes upper and lower portions corresponding to each other for accommodating the battery cell stack 110, and opposite sides corresponding to each other.
  • module frame (or mono frame).
  • At least one first injection hole 550 is formed on the upper portion of the module frame 500 , and details of the first injection hole 550 are shown in FIGS. 5 to 9 . The description is the same as that of the first pouring hole 450 .
  • at least one second injection hole 560 may be formed at a lower portion of the module frame 500 .
  • the at least one second injection hole 560 may be formed at a position corresponding to the central region of the lower portion of the module frame 500 .
  • At least one checking hole 570 may be formed at a lower portion of the module frame 500 .
  • At least one checking hole 570 may be formed at a position adjacent to the lower end of the module frame 500 and spaced apart from the second injection hole 560 . Accordingly, when the thermally conductive resin injected through the second injection hole 560 is injected more than necessary, the thermally conductive resin may be discharged to the outside of the battery module 101 through the checking hole 570 , You can control the amount of injection.
  • the module frame 500 is not limited thereto, and may be replaced with a frame in which two L-shaped frames are combined.
  • the first injection holes 450 and 550 may be formed in the upper portion of the module frame 500 , and the thermal conductive resin is pre-coated like a U-shaped frame, or a separate injection is performed in the lower portion of the module frame 500 .
  • a thermally conductive resin may be injected through the hole.
  • one or more battery modules according to the present embodiment may be packaged in a pack case to form a battery pack.
  • the above-described battery module and battery pack including the same may be applied to various devices.
  • a device may be applied to transportation means such as an electric bicycle, an electric vehicle, and a hybrid vehicle, but the present invention is not limited thereto and is applicable to various devices that can use a battery module and a battery pack including the same, and this It belongs to the scope of the right of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 제1 방향으로 적층되어 있는 전지셀 적층체, 상기 전지셀 적층체를 수용하는 모듈 프레임, 상기 전지셀 적층체와 모듈 프레임의 하부 사이에 위치하는 제1 열전도성 수지층, 및 상기 전지셀 적층체와 상기 모듈 프레임의 상부 사이에 위치하는 제2 열전도성 수지층을 포함하고, 상기 모듈 프레임의 상부에는 열전도성 수지를 주입하기 위한 적어도 하나의 제1 주액홀이 형성되어 있다.

Description

전지 모듈 및 이를 포함하는 전지팩
관련 출원(들)과의 상호 인용
본 출원은 2020년 6월 19일자 한국 특허 출원 제10-2020-0074749호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 이를 포함하는 전지팩에 관한 것으로, 보다 구체적으로는 냉각 성능이 향상된 전지 모듈 및 이를 포함하는 전지팩에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 특히, 이차전지는 휴대폰, 디지털 카메라, 노트북, 웨어러블 디바이스 등의 모바일 기기뿐만 아니라, 전기 자전거, 전기 자동차, 하이브리드 전기 자동차 등의 동력 장치에 대한 에너지원으로도 많은 관심을 가지고 있다.
소형 모바일 기기들에는 디바이스 1대당 하나 또는 두서너 개의 전지셀들이 사용됨에 반해, 자동차 등과 같이 중대형 디바이스들에는 고출력 대용량이 필요하다. 따라서, 다수의 전지셀을 전기적으로 연결한 중대형 전지 모듈이 사용된다.
중대형 전지 모듈은 가능하면 작은 크기와 중량으로 제조되는 것일 바람직하므로, 높은 집적도로 적층될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지 모듈의 전지셀로서 주로 사용되고 있다. 한편, 전지 모듈은, 전지셀 적층체를 외부 충격, 열 또는 진동으로부터 보호하기 위해, 전면과 후면이 개방되어 전지셀 적층체를 내부 공간에 수납하는 모듈 프레임을 포함할 수 있다.
도 1은 종래 전지 모듈의 분해 사시도이다. 도 2는 도 1의 전지 모듈을 구성하는 구성 요소들을 결합한 상태를 나타내는 사시도이다.
도 1 및 도 2를 참고하면, 종래의 전지 모듈(10)은 복수의 전지셀(11)이 일방향으로 적층된 적층되어 있는 전지셀 적층체(12), 전지셀 적층체(12)를 수용하는 모듈 프레임(20), 전지셀 적층체의 전후면을 커버하는 엔드 플레이트(15) 및 엔드 플레이트(15)와 전지셀 적층체(12)의 전후면 사이에 형성된 버스바 프레임(13)을 포함한다. 모듈 프레임(20)은 전지셀 적층체(12)의 하부 및 양 측면을 덮는 하부 프레임(30)과 전지셀 적층체(12)의 상면을 덮는 상부 플레이트(40)를 포함한다. 전지 모듈(10)은 하부 프레임(30)에서 전지셀 적층체(120)의 하부를 덮는 바닥면에 열전도성 수지층(31)이 도포되어, 전지셀 적층체(12)의 발생한 열을 냉각할 수 있다.
이 때, 열전도성 수지층(31)은 전지셀 적층체(12)에서 발생한 열을 전지 모듈(10) 바깥으로 전달하면서, 전지셀 적층체(12)를 전지 모듈 내에 고정하는 역할을 수행할 수 있다.
도 3은 도 2의 절단선 A-A를 따라 자른 단면도이다.
도 3을 참고하면, 종래의 전지 모듈(10)은 전지셀 적층체(12)의 하부를 냉각해주는 구조로, 전지셀(11)에서 발생된 열은 하부를 향하는 제1 냉각 방향(D1)으로 흐르는 구조이다. 그러나, 열전도성 수지층(31)이 전지셀 적층체(12)의 하부에 대응되는 위치에만 형성되어 있어, 열전도성 수지층(31)과 거리가 가까운 전지셀(11)의 부분은 온도가 낮고, 거리가 먼 전지셀(11)의 부분은 온도가 높아, 전지셀(11) 내부에서 온도 차가 발생한다. 특히, 전지셀(11)의 상부 및 양 단부를 향하는 방향으로 온도가 높아지고, 전지셀(11)의 하부 및 중심부를 향하는 방향으로 온도가 낮아진다.
이는 전지셀(11)의 양 단부는 양극 및 음극이 위치됨에 따라 전지 모듈(10)의 충방전 과정에서 열이 상대적으로 중심부에 비해 많이 발생된다. 하지만, 전지셀(11) 하부에 위치하는 열전도성 수지층(31)은 전지셀(11)의 양 단부에서 하부로 전달되는 열만을 냉각시키는 점에서, 전지셀(11)의 양 단부에서 발생된 열을 충분히 빠르게 냉각시키지 못한다. 특히, 전지셀(11)의 온도는 배터리의 출력을 제한하는 요인 중 하나인 점을 고려할 때, 전지셀(11) 내에서 발생되는 국부적인 온도 상승은 배터리의 출력을 조기에 제한할 가능성이 높아, 이를 개선할 필요성이 있다.
본 발명의 해결하고자 하는 과제는, 전지셀의 냉각 성능이 향상된 전지 모듈 및 이를 포함하는 전지팩을 제공하는 것이다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 제한되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 전지 모듈은, 복수의 전지셀이 제1 방향으로 적층되어 있는 전지셀 적층체, 상기 전지셀 적층체를 수용하는 모듈 프레임, 상기 전지셀 적층체와 모듈 프레임의 하부 사이에 위치하는 제1 열전도성 수지층, 및 상기 전지셀 적층체와 상기 모듈 프레임의 상부 사이에 위치하는 제2 열전도성 수지층을 포함하고, 상기 모듈 프레임의 상부에는 열전도성 수지를 주입하기 위한 적어도 하나의 제1 주액홀이 형성되어 있다.
상기 적어도 하나의 제1 주액홀은 상기 모듈 프레임의 상부의 단부에 인접한 위치에 형성될 수 있다.
상기 적어도 하나의 제1 주액홀은 상기 모듈 프레임의 상부의 양 단부에 인접한 위치에 각각 형성되되, 서로 대향하는 위치에 형성될 수 있다.
상기 적어도 둘의 제1 주액홀이 상기 모듈 프레임의 상부의 일 단부에 인접한 위치에 형성되되, 상기 제1 방향과 동일한 방향으로 서로 이격되어 위치할 수 있다.
상기 모듈 프레임은 바닥부와 상기 바닥부 양측에 연결되는 2개의 측면부를 포함하는 U자형 프레임과, 상기 U자형 프레임에 장착된 상기 전지셀 적층체를 덮는 상부 플레이트를 포함하고, 상기 상부 플레이트의 하면에 위치하는 적어도 두개의 차단 패드를 더 포함하고, 상기 적어도 두개의 패드 사이에 상기 제1 주액홀이 위치할 수 있다.
상기 제2 열전도성 수지층은 상기 차단 패드 사이의 영역과 대응되는 위치에 형성될 수 있다.
상기 차단 패드는 상기 제1 방향과 동일한 방향으로 연장되고, 상기 차단 패드는 상기 전지셀 적층체를 향하는 방향으로 돌출될 수 있다.
상기 제1 열전도성 수지층은 상기 U자형 프레임의 하부 프레임 상에 열전도성 수지가 도포되어 형성될 수 있다.
상기 모듈 프레임은 상기 전지셀 적층체를 수용하는 서로 대응하는 상부와 하부, 및 서로 대응하는 양측부를 포함하는 모듈 프레임을 포함하고, 상기 모듈 프레임의 하부에 적어도 하나의 제2 주액홀이 위치할 수 있다.
상기 제1 열전도성 수지층은 상기 적어도 하나의 제2 주액홀에 열전도성 수지가 주입되어 형성될 수 있다.
상기 적어도 하나의 제2 주액홀은 상기 모듈 프레임의 하부면의 중심 영역에 대응되는 위치에 형성될 수 있다.
본 발명의 다른 일 실시예에 따른 전지팩은 상기에서 설명한 전지 모듈을 포함한다.
실시예들에 따르면, 본 발명은 전지셀 적층체의 상부에 대응되는 위치에 열전도성 수지층이 형성되어, 전지셀 내의 국부적인 온도 상승 억제 및 온도 차를 감소시킬 수 있다.
본 발명의 효과가 상술한 효과들로 제한되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 종래 전지 모듈의 분해 사시도이다.
도 2는 도 1의 전지 모듈을 구성하는 구성 요소들을 결합한 상태를 나타내는 사시도이다.
도 3은 도 2의 절단선 A-A를 따라 자른 단면도이다.
도 4는 본 발명의 일 실시 예에 따른 전지 모듈의 분해 사시도이다.
도 5은 도 4의 전지 모듈을 구성하는 구성 요소들을 결합한 상태를 나타내는 사시도이다.
도 6은 도 4의 전지 모듈의 모듈 프레임의 상부를 상하로 뒤집은 모습을 나타내는 사시도이다.
도 7은 도 4의 전지 모듈에서 모듈 프레임의 상부를 제거한 상태를 나타내는 사시도이다.
도 8는 도 4의 절단선 B-B를 따라 자른 단면도이다.
도 9은 본 발명의 다른 실시 예에 따른 전지 모듈의 분해 사시도이다.
도 10은 도 9의 전지 모듈을 상하로 뒤집은 모습을 나타내는 사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
이하에서는, 본 발명의 실시예에 따른 전지 모듈에 대해 설명하고자 한다. 다만, 여기서 전지 모듈의 전후면 중 전면을 기준으로 설명될 것이나, 반드시 이에 한정되는 것은 아니고 후면인 경우에도 동일하거나 유사한 내용으로 설명될 수 있다.
도 4는 본 실시 예에 따른 전지 모듈의 분해 사시도이다. 도 5은 도 4의 전지 모듈을 구성하는 구성 요소들을 결합한 상태를 나타내는 사시도이다.
도 4 및 도 5을 참고하면, 본 실시예에 따른 전지 모듈(100)은 복수의 전지셀(110)이 제1 방향(y축)으로 적층되는 전지셀 적층체(120), 전지셀 적층체(120)를 수용하는 모듈 프레임(200), 전지셀 적층체(120)의 전면과 후면에 각각 위치하는 엔드 플레이트(150), 및 전지셀 적층체(120)와 엔드 플레이트(150) 사이에 위치하는 버스바 프레임(130)을 포함한다. 모듈 프레임(200)은 상부면, 전면 및 후면이 개방된 U자형 프레임(300), 전지셀 적층체(120)의 상부를 덮는 상부 플레이트(400)를 포함한다.
본 실시 예에 따른 전지 모듈(100)은 전지셀 적층체(120)와 U자형 프레임(300)의 바닥면 사이에 제1 열전도성 수지층(310)이 위치할 수 있다. 제1 열전도성 수지층(310)은 상기 전지셀 적층체(120)가 U자형 프레임(300)의 바닥면에 장착되기 전에, U자형 프레임(300)의 바닥면에 열전도성 수지가 도포될 수 있다. 이후, 열전도성 수지가 경화됨에 따라 제1 열전도성 수지층(310)이 형성될 수 있다. 이에 따라, 제1 열전도성 수지층(310)은 전지셀(110)에서 발생되는 열을 전지 모듈(100)의 바닥으로 전달하면서 전지셀 적층체(120)를 고정할 수 있다.
도 6은 도 4의 전지 모듈의 모듈 프레임의 상부를 상하로 뒤집은 모습을 나타내는 사시도이다. 도 7은 도 4의 전지 모듈에서 모듈 프레임의 상부를 제거한 상태를 나타내는 사시도이다.
도 6 및 도 7을 참고하면, 본 실시 예에 따른 전지 모듈(100)은 상부 플레이트(400)에 적어도 하나의 제1 주액홀(450)이 형성될 수 있어, 열전도성 수지가 제1 주액홀(450)에 주입될 수 있다. 이후, 열전도성 수지가 경화됨에 따라 제2 열전도성 수지층(160)이 형성될 수 있다.
제1 주액홀(450)은 상부 플레이트(400) 상에 형성될 수 있다. 제1 주액홀(450)은 상부 플레이트(400)의 단부에 인접한 위치에 형성될 수 있다. 제1 주액홀(450)은 적어도 2개의 주액홀을 포함할 수 있고, 상기 적어도 2개의 주액홀은 상부 플레이트(400)의 양 단부에 인접하되, 서로 대향하는 위치에 형성될 수 있다. 또한, 제1 주액홀(450)은 상부 플레이트(400)의 일 단부에 적어도 2개의 주액홀이 이격되어 형성될 수 있다. 이 때, 제1 주액홀(450)은 상부 플레이트(400)의 반대 단부에도 마찬가지로 적어도 2개의 주액홀이 이격되어 형성될 수도 있다.
도 1 내지 도 3의 종래 전지셀을 참조하면, 제1 주액홀(450)은 전지셀(110)의 냉각 효율이 가장 낮은 위치와 대응되는 위치에 형성될 수 있다. 이에 따라, 제1 주액홀(450)로 열전도성 수지가 주입되어 형성된 제2 열전도성 수지층(160)이 전지셀(110)의 냉각 효율이 가장 낮은 위치와 대응되는 위치에 형성될 수 있다. 이를 통해, 본 실시 예에 따른 전지 모듈(100)은 전지셀(110)의 냉각 효율이 향상될 수 있고, 전지셀(110)의 위치에 따른 온도차를 감소시킬 수 있다.
제1 주액홀(450)은 상부 플레이트(400)의 일 단부에 적어도 2개의 주액홀이 이격되어 형성되는 경우, 상기 적어도 2개의 주액홀은 상기 제1 방향(y축)과 대응되는 방향으로 서로 이격되어 위치할 수 있다. 이에 따라, 하나의 주액홀에 의해 주입되어 형성되는 것에 비해, 본 실시 예에 따른 전지 모듈(100)은 제2 열전도성 수지층(160)이 상기 제1 방향과 대응되는 방향으로 고르게 주입될 수 있다. 이를 통해, 본 실시 예에 따른 전지 모듈(100)은 전지셀(110)의 냉각 효율이 전지셀 적층체의 위치에 상관 없이 고르게 향상될 수 있고, 전지셀(110)의 위치에 따른 온도차 또한 고르게 감소시킬 수 있다.
도 6 및 도 7을 참조하면, 본 실시 예에 따른 전지 모듈(100)은 상부 플레이트(400)의 하면에 적어도 둘의 차단 패드(470)가 위치할 수 있다. 적어도 둘의 차단 패드(470)은 상기 제1 방향(y축)과 대응되는 방향으로 연장될 수 있다. 적어도 둘의 차단 패드(470)은 전지셀 적층체(120)를 향하는 방향(z축)과 대응되는 방향으로 돌출될 수 있다. 바람직하게는, 적어도 둘의 차단 패드(470)는 전지셀 적층체를 향하는 방향(z축)과 대응되는 방향으로 돌출되되, 전지셀 적층체의 상부와 접할 수 있다. 이에 따라, 차단 패드(470)는 제1 주액홀(450)에 주입되는 열전도성 수지가 차단 패드(470)를 벗어난 영역까지 열전도성 수지가 도포되는 것을 차단할 수 있다.
제1 주액홀(450)은 적어도 둘의 차단 패드(470) 사이에 위치할 수 있다. 이에 따라, 제2 열전도성 수지층(160)은 적어도 둘의 차단 패드(470) 사이의 영역과 대응되는 위치에 형성될 수 있다. 즉, 차단 패드(470)는 제2 열전도성 수지층(160)이 형성될 수 있는 영역을 조정할 수 있고, 제1 주액홀(450)에 주입되는 열전도성 수지가 불필요한 영역까지 주입되는 것을 방지할 수 있다.
일 예로, 전지셀(11)의 중심부에 해당되는 영역은 하부에 위치한 열전도성 수지층(31)만으로도 충분히 냉각이 수행되고 있어, 본 건의 실시 예에서 전지셀(110)의 중심부에 대응되는 영역까지 제2 열전도성 수지층(160)을 형성하는 것은 불필요하기 때문이다. 이에 따라, 차단 패드(470)는 전지셀(110)의 양 단부에 대응되는 영역에 인접한 위치에 형성되는 것이 보다 바람직하다.
또한, 차단 패드(470)는 열전도성 수지가 도포되는 영역을 제한하여, 전지모듈(100)을 추가적 분해 및 조립 공정을 거치지 않고, 원하는 위치에 열전도성 수지를 고르게 도포할 수 있다. 또한, 차단 패드(470)는 열전도성 수지가 불필요한 영역까지 주입된 열전도성 수지에 대한 비용 손실을 줄일 수 있다.
도 8는 도 4의 절단선 B-B를 따라 자른 단면도이다. 도 4 내지 8를 참조하면, 전지 모듈(100)에 포함된 전지셀 적층체(120)의 하부에는 제1 열전도성 수지층(310)이 접하고 있고, 전지셀 적층체(120)의 상부의 적어도 일부 영역에는 제2 열전도성 수지층(160)이 접하는 구조를 가질 수 있다. 이에 따라, 전지 모듈(100)은 종래의 전지 모듈(10)과 달리, 전지셀 적층체(120)의 상부 및 하부를 모두 냉각해주는 구조로, 전지셀 적층체(12)에서 발생된 열은 상부 및 하부를 모두 향하는 제2 냉각 방향(D2)으로 흐르는 구조이다.
이에 따라, 종래의 전지 모듈(10)과 달리, 본 실시 예에 따른 전지 모듈(100)은 전지셀 적층체(120)의 상부 및 양 단부를 향하는 방향에서 발생되는 열을 제2 열전도성 수지층(160)을 통해 냉각시킬 수 있다. 이를 통해, 본 실시 예에 따른 전지 모듈(100)은 전지셀(110)의 양 단부에서 발생되는 국부적인 온도 상승을 억제할 수 있고, 전지셀 내의 온도 차를 감소시킬 수 있다. 또한, 전지셀(110)을 포함하는 배터리의 출력이 조기에 제한되는 것을 방지할 수 있다.
도 9은 본 발명의 다른 실시 예에 따른 전지 모듈의 분해 사시도이다. 도 10은 도 9의 전지 모듈을 상하로 뒤집은 모습을 나타내는 사시도이다.
도 9 및 도 10을 참조하면, 본 실시예에 따른 전지 모듈(101)은 도 5 내지 도 9에서 설명된 전지 모듈(100)과 동일한 내용으로 설명되고, 상이한 부분에 대해서만 상세히 설명하고자 한다.
본 실시 예에 따른 전지 모듈(101)은 모듈 프레임(500)을 포함하고, 모듈 프레임(500)은 전지셀 적층체(110)를 수용하는 서로 대응하는 상부와 하부, 및 서로 대응하는 양측부를 포함하는 모듈 프레임(혹은 모노 프레임)을 포함한다.
본 실시 예에 따른 전지 모듈(101)은 모듈 프레임(500)의 상부에 적어도 하나의 제1 주액홀(550)이 형성되고, 제1 주액홀(550)에 대한 내용은 도 5 내지 도 9에서 설명된 제1 주액홀(450)과 내용이 동일하다. 추가적으로 본 실시 예에 따른 전지 모듈(101)은 모듈 프레임(500)의 하부에 적어도 하나의 제2 주액홀(560)이 형성될 수 있다. 여기서, 적어도 하나의 제2 주액홀(560)은 모듈 프레임(500)의 하부의 중심 영역에 대응되는 위치에 형성될 수 있다.
또한, 본 실시 예에 따른 전지 모듈(101)은 모듈 프레임(500)의 하부에 적어도 하나의 체킹홀(570)이 형성될 수 있다. 적어도 하나의 체킹홀(570)은 모듈 프레임(500)의 하부의 단부에 인접한 위치에 형성되되, 제2 주액홀(560)과 이격되어 형성될 수 있다. 이에 따라, 제2 주액홀(560)에 의해 주입되는 열전도성 수지가 필요 이상으로 주입되는 경우, 열전도성 수지가 체킹홀(570)을 통해 전지 모듈(101)의 바깥으로 토출될 수 있고, 이를 통해 주액량을 조절할 수 있다.
다만, 모듈 프레임(500)은 이에 한정된 것이 아니며, 두 개의 L자형 프레임이 결합되는 형상의 프레임으로 대체될 수 있다. 이 경우에도 모듈 프레임(500)의 상부에는 제1 주액홀(450, 550)이 형성될 수 있고, 모듈 프레임(500)의 하부에는 U자형 프레임과 같이 열전도성 수지가 미리 도포되거나, 별도의 주액홀을 통해 열전도성 수지가 주입될 수 있다.
한편, 본 실시 예에 따른 전지 모듈은 하나 또는 그 이상이 팩 케이스 내에 패키징되어 전지팩을 형성할 수 있다.
앞에서 설명한 전지 모듈 및 이를 포함하는 전지팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈 및 이를 포함하는 전지팩을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리 범위에 속한다.
이상에서 본 발명의 바람직한 실시 예에 대하여 상세하게 설명하였으나, 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다.
[부호의 설명 ]
100: 전지 모듈
110: 전지셀
120: 전지셀 적층체
300: U자형 프레임
400: 상부 플레이트
500: 모노 프레임

Claims (12)

  1. 복수의 전지셀이 제1 방향으로 적층되어 있는 전지셀 적층체,
    상기 전지셀 적층체를 수용하는 모듈 프레임,
    상기 전지셀 적층체와 모듈 프레임의 하부 사이에 위치하는 제1 열전도성 수지층, 및
    상기 전지셀 적층체와 상기 모듈 프레임의 상부 사이에 위치하는 제2 열전도성 수지층을 포함하고,
    상기 모듈 프레임의 상부에는 열전도성 수지를 주입하기 위한 적어도 하나의 제1 주액홀이 형성되어 있는 전지 모듈.
  2. 제1항에서,
    상기 적어도 하나의 제1 주액홀은 상기 모듈 프레임의 상부의 단부에 인접한 위치에 형성되는 전지 모듈.
  3. 제2항에서,
    상기 적어도 하나의 제1 주액홀은 상기 모듈 프레임의 상부의 양 단부에 인접한 위치에 각각 형성되되, 서로 대향하는 위치에 형성되는 전지 모듈.
  4. 제2항에서,
    상기 적어도 둘의 제1 주액홀이 상기 모듈 프레임의 상부의 일 단부에 인접한 위치에 형성되되, 상기 제1 방향과 동일한 방향으로 서로 이격되어 위치하는 전지 모듈.
  5. 제1항에서,
    상기 모듈 프레임은 바닥부와 상기 바닥부 양측에 연결되는 2개의 측면부를 포함하는 U자형 프레임과, 상기 U자형 프레임에 장착된 상기 전지셀 적층체를 덮는 상부 플레이트를 포함하고,
    상기 상부 플레이트의 하면에 위치하는 적어도 두개의 차단 패드를 더 포함하고,
    상기 적어도 두개의 패드 사이에 상기 제1 주액홀이 위치하는 전지 모듈.
  6. 제5항에서,
    상기 제2 열전도성 수지층은 상기 차단 패드 사이의 영역과 대응되는 위치에 형성되는 전지 모듈.
  7. 제5항에서,
    상기 차단 패드는 상기 제1 방향과 동일한 방향으로 연장되고,
    상기 차단 패드는 상기 전지셀 적층체를 향하는 방향으로 돌출되는 전지 모듈.
  8. 제5항에서,
    상기 제1 열전도성 수지층은 상기 U자형 프레임의 하부 프레임 상에 열전도성 수지가 도포되어 형성되는 전지 모듈.
  9. 제1항에서,
    상기 모듈 프레임은 상기 전지셀 적층체를 수용하는 서로 대응하는 상부와 하부, 및 서로 대응하는 양측부를 포함하는 모듈 프레임을 포함하고,
    상기 모듈 프레임의 하부에 적어도 하나의 제2 주액홀이 위치하는 전지 모듈.
  10. 제9항에서,
    상기 제1 열전도성 수지층은 상기 적어도 하나의 제2 주액홀에 열전도성 수지가 주입되어 형성되는 전지 모듈.
  11. 제9항에서,
    상기 적어도 하나의 제2 주액홀은 상기 모듈 프레임의 하부면의 중심 영역에 대응되는 위치에 형성되는 전지 모듈.
  12. 제1항에 따른 전지 모듈을 포함하는 전지팩.
PCT/KR2021/002554 2020-06-19 2021-03-02 전지 모듈 및 이를 포함하는 전지팩 WO2021256661A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21827060.1A EP4040575A4 (en) 2020-06-19 2021-03-02 BATTERY MODULE AND BATTERY PACK WITH IT
US17/779,950 US20230006274A1 (en) 2020-06-19 2021-03-02 Battery module and battery pack including the same
CN202180006852.XA CN114762174A (zh) 2020-06-19 2021-03-02 电池模块和包括该电池模块的电池组
JP2022526465A JP7408219B2 (ja) 2020-06-19 2021-03-02 電池モジュールおよびそれを含む電池パック

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200074749A KR20210157005A (ko) 2020-06-19 2020-06-19 전지 모듈 및 이를 포함하는 전지팩
KR10-2020-0074749 2020-06-19

Publications (1)

Publication Number Publication Date
WO2021256661A1 true WO2021256661A1 (ko) 2021-12-23

Family

ID=79178062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/002554 WO2021256661A1 (ko) 2020-06-19 2021-03-02 전지 모듈 및 이를 포함하는 전지팩

Country Status (6)

Country Link
US (1) US20230006274A1 (ko)
EP (1) EP4040575A4 (ko)
JP (1) JP7408219B2 (ko)
KR (1) KR20210157005A (ko)
CN (1) CN114762174A (ko)
WO (1) WO2021256661A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085895A1 (ko) 2021-11-15 2023-05-19 주식회사 엘지에너지솔루션 전극 및 전극의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180084539A (ko) * 2017-01-17 2018-07-25 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
CN109994798A (zh) * 2017-12-26 2019-07-09 Sk新技术株式会社 电池模块及其制造方法
KR20190092835A (ko) * 2018-01-31 2019-08-08 주식회사 엘지화학 탑 커버, 이를 구비한 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차
KR20200008624A (ko) * 2017-10-30 2020-01-28 주식회사 엘지화학 배터리 모듈 및 배터리 모듈을 조립하는 방법
WO2020116825A1 (ko) * 2018-12-05 2020-06-11 주식회사 엘지화학 전지 모듈 및 그 제조 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102201348B1 (ko) 2017-01-17 2021-01-08 주식회사 엘지화학 배터리 모듈의 제조 방법
DE102018133391A1 (de) * 2017-12-26 2019-06-27 Sk Innovation Co., Ltd. Batteriemodul und Herstellungsverfahren desselben
KR102150679B1 (ko) 2018-03-13 2020-09-01 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR102389911B1 (ko) * 2018-09-17 2022-04-21 주식회사 엘지에너지솔루션 모듈 하우징을 포함하는 배터리 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180084539A (ko) * 2017-01-17 2018-07-25 주식회사 엘지화학 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
KR20200008624A (ko) * 2017-10-30 2020-01-28 주식회사 엘지화학 배터리 모듈 및 배터리 모듈을 조립하는 방법
CN109994798A (zh) * 2017-12-26 2019-07-09 Sk新技术株式会社 电池模块及其制造方法
KR20190092835A (ko) * 2018-01-31 2019-08-08 주식회사 엘지화학 탑 커버, 이를 구비한 배터리 모듈, 그리고 이를 포함하는 배터리 팩 및 자동차
WO2020116825A1 (ko) * 2018-12-05 2020-06-11 주식회사 엘지화학 전지 모듈 및 그 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4040575A4 *

Also Published As

Publication number Publication date
JP7408219B2 (ja) 2024-01-05
JP2023500943A (ja) 2023-01-11
EP4040575A4 (en) 2023-01-04
EP4040575A1 (en) 2022-08-10
US20230006274A1 (en) 2023-01-05
CN114762174A (zh) 2022-07-15
KR20210157005A (ko) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2020262832A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2021080115A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022014966A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2021210771A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021071052A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022080754A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021256661A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021075688A1 (ko) 전지 모듈 및 이을 포함하는 전지 팩
WO2021071053A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2020166998A1 (ko) 전지 모듈, 그 제조 방법 및 전지 모듈을 포함하는 전지팩
WO2022086075A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221310A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2021221284A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021071057A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022059917A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021261702A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021221312A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021215625A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022182062A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022158954A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2023096096A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022158765A1 (ko) 전지 모듈 이를 포함하는 전지 팩
WO2022203210A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2023027483A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022158855A1 (ko) 전지 셀, 전지 모듈, 및 이를 포함하는 전지 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21827060

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022526465

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021827060

Country of ref document: EP

Effective date: 20220504

NENP Non-entry into the national phase

Ref country code: DE