WO2021256196A1 - Magnetic field generating device and electric motor provided with same - Google Patents
Magnetic field generating device and electric motor provided with same Download PDFInfo
- Publication number
- WO2021256196A1 WO2021256196A1 PCT/JP2021/019879 JP2021019879W WO2021256196A1 WO 2021256196 A1 WO2021256196 A1 WO 2021256196A1 JP 2021019879 W JP2021019879 W JP 2021019879W WO 2021256196 A1 WO2021256196 A1 WO 2021256196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- core
- magnetic
- magnetic pole
- facing
- magnet
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K1/00—Details of the magnetic circuit
- H02K1/06—Details of the magnetic circuit characterised by the shape, form or construction
- H02K1/22—Rotating parts of the magnetic circuit
- H02K1/27—Rotor cores with permanent magnets
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K41/00—Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
- H02K41/02—Linear motors; Sectional motors
- H02K41/03—Synchronous motors; Motors moving step by step; Reluctance motors
Definitions
- the present invention relates to a magnetic field generator that generates a magnetic field in a gap between a magnetic pole and a facing magnetic material facing the magnetic pole, and an electric motor provided with the magnetic field generator.
- Patent Document 1 an electric machine equipped with an armature having an armature coil and an armature is known.
- the electric motor disclosed in Patent Document 1 includes a mover including a plurality of iron cores and a plurality of permanent magnets.
- the plurality of permanent magnets are arranged so as to surround the iron core while opening a surface facing the armature with a gap between the plurality of iron cores.
- a magnetic pole block is composed of each of the plurality of iron cores and a plurality of permanent magnets arranged around each of the plurality of permanent magnets. In each magnetic pole block, the plurality of permanent magnets are arranged so that the surfaces of the plurality of permanent magnets facing the iron core have the same magnetic poles.
- a magnetic field generator exemplified by an electric motor as described above, in which a magnetic field element and a facing magnetic material facing the magnetic pole with a gap thereof are provided, the number of magnetic fluxes generated in the gap can be efficiently increased. Required.
- An object of the present invention is a magnetic field generator provided with a magnetic monopole and a facing magnetic material facing each other with a gap between the magnetic poles, which can generate a large amount of magnetic flux in the gap. To provide.
- a magnetic field generator comprising a plurality of magnetic monopoles, each of which is formed of a magnetic material, a plurality of permanent magnets, and the magnetic pole element. It comprises a facing magnetic material arranged so as to face each other in a facing direction through a gap.
- the plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic material.
- the first core is adjacent to the second core and the third core.
- the fourth core is adjacent to the second core and the third core.
- the first iron core has a first magnetic pole surface facing the facing magnetic body.
- the second iron core has a second magnetic pole surface facing the facing magnetic body.
- the third iron core has a third magnetic pole surface facing the facing magnetic body.
- the fourth iron core has a fourth magnetic pole surface facing the facing magnetic body. Both the first magnetic pole surface and the fourth magnetic pole surface form the first magnetic pole. Both the second magnetic pole surface and the third magnetic pole surface form a second magnetic pole opposite to the first magnetic pole.
- the plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes a plurality of opposite permanent magnets, each placed on the opposite side of the outer surface of each of the second core, the third core and the fourth core, facing the opposite side of the facing magnetic material. ..
- the gap has a satisfying maximum width l g represented by the following formula.
- l z, A z is the first core the effective area A thickness and effective area of the intermediate permanent magnet in the intervening permanent magnet interposed between each of the first core and the second core
- l ⁇ and A ⁇ are the thickness and effective area of the intervening permanent magnets interposed between the first core and the third core, respectively, and the effective area faces the first iron core in the intervening permanent magnets.
- l ra and A ra are the thickness and effective area of the opposite side permanent magnets arranged on the opposite side surface of the first core, respectively, and the effective area is the opposite side surface of the first core in the opposite side permanent magnet.
- l C is the sum of the thickness of the opposite permanent magnets located on the opposite side of the dimension and the first core of the first core in the opposite direction.
- a f is the area of the first magnetic pole surface.
- AC is 1 of the area occupied by the first magnetic pole surface, the second magnetic pole surface, the third magnetic pole surface, the fourth magnetic pole surface, and the surface of each of the plurality of intervening permanent magnets facing the facing magnetic body. It is / 4.
- a magnetic field generator each via a monopole containing a plurality of monopoles formed of a magnetic material, a plurality of permanent magnets, and the magnetic monopoles and voids. It includes a facing magnetic material arranged so as to face each other in the facing direction.
- the plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic material.
- the first core is adjacent to the second core and the third core.
- the fourth core is adjacent to the second core and the third core.
- the first iron core has a first magnetic pole surface facing the facing magnetic body.
- the second iron core has a second magnetic pole surface facing the facing magnetic body.
- the third iron core has a third magnetic pole surface facing the facing magnetic body.
- the fourth iron core has a fourth magnetic pole surface facing the facing magnetic body. Both the first magnetic pole surface and the fourth magnetic pole surface form the first magnetic pole. Both the second magnetic pole surface and the third magnetic pole surface form a second magnetic pole opposite to the first magnetic pole.
- the plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes a plurality of opposite permanent magnets, each placed on the opposite side of the outer surface of each of the second core, the third core and the fourth core, facing the opposite side of the facing magnetic material. ..
- the gap has a satisfying maximum width l g represented by the following formula.
- l z, A z is the first the effective area said a thickness and effective area of intervention of the permanent magnet interposed in the intermediate permanent magnet between each of the first core and the second core
- l ⁇ and A ⁇ are the thickness and effective area of the intervening permanent magnets interposed between the first core and the third core, respectively, and the effective area faces the first iron core in the intervening permanent magnets.
- l ra and A ra are the thickness and effective area of the opposite side permanent magnets arranged on the opposite side surface of the first core, respectively, and the effective area is the opposite side surface of the first core in the opposite side permanent magnet.
- l C is the sum of the thickness of the opposite permanent magnets located on the opposite side of the dimension and the first core of the first core in the opposite direction.
- a f is the area of the first magnetic pole surface.
- V D is the sum of the volumes of the plurality of intervening permanent magnets and the volumes of the plurality of opposite permanent magnets.
- V C is the respective volumes of the plurality of intervening permanent magnet, and each volume of the plurality of opposite permanent magnet, the first core, the second core, each of said third core and said fourth core The volume of and the sum of.
- FIG. 12A is a perspective view of a plurality of armature cores and armature back yokes of the armature shown in FIG. 12A. It is a perspective view of the magnetic pole element of the linear motion motor which concerns on the 2nd Embodiment. It is a perspective view of the linear motion motor which concerns on 3rd Embodiment of this invention. It is a perspective view of the armature of the linear motor which concerns on the 3rd Embodiment.
- FIG. 12A is a perspective view of a plurality of armature cores and armature back yokes of the armature shown in FIG. 12A. It is a perspective view of the magnetic pole element of the linear motion motor which concerns on the 2nd Embodiment. It is a perspective view of the linear motion motor which concerns on 3rd Embodiment of this invention. It is a perspective view of the armature of the linear motor which concerns on the 3rd Embodiment.
- FIG. 12A is a perspective view of
- FIG. 15A is a perspective view of a plurality of armature cores and armature back yokes of the armature shown in FIG. 15A. It is a perspective view of the magnetic pole element of the linear motion motor which concerns on the 3rd Embodiment 5. It is a perspective view of the radial gap type motor which concerns on 4th Embodiment of this invention. It is a perspective view of the armature of the radial gap type electric motor which concerns on the 4th Embodiment. It is a perspective view of the armature core of the radial gap type electric machine shown in FIG. 18A. It is a perspective view of the magnetic pole element of the radial gap type electric motor which concerns on the 4th Embodiment.
- FIG. 21A It is a perspective view of the magnetic pole element of the radial gap type electric motor which concerns on the 5th Embodiment.
- the unit cell 20 has a three-dimensional magnetic pole structure as shown in FIG.
- the unit cell 20 includes a plurality of magnetic monopole cores and a plurality of permanent magnets.
- Each of the plurality of magnetic pole cores is a magnetic material, and in this embodiment, a soft magnetic material having a rectangular parallelepiped shape.
- the plurality of magnetic monopoles include a first core 22A, a second core 22B, a third core 22C, and a fourth core 22D that are aligned with each other on the same array surface.
- the array plane is a plane facing the facing magnetic material, and in the posture shown in FIG. 1, a horizontal plane.
- the first core 22A is adjacent to the second core 22B and the third core 22C in two directions orthogonal to each other in the arrangement plane
- the fourth core 22D is the second core 22B and the third core. It is adjacent to 22C in the above two directions.
- the first iron core 22A has a first magnetic pole surface 24A facing the facing magnetic body
- the second iron core 22B has a second magnetic pole surface 24B facing the facing magnetic body
- the third iron core 22B has a third magnetic pole surface 24C facing the facing magnetic body
- the fourth iron core 22D has a fourth magnetic pole surface 24D facing the facing magnetic body.
- the first to fourth magnetic pole surfaces 24A to 24D are all facing upwards.
- the first magnetic pole surface 24A and the fourth magnetic pole surface 24D both form a first magnetic pole (N pole or S pole), and the second magnetic pole surface 24B and the third magnetic pole surface 24C both form the first magnetic pole. It constitutes a second magnetic pole (S pole or N pole) opposite to the above.
- the plurality of permanent magnets include a plurality of intervening permanent magnets 231 and a plurality of opposite side permanent magnets 232.
- the plurality of intervening permanent magnets 231 are interposed between the iron cores of the first core 22A, the second core 22B, the third core 22C, and the fourth core 22D, which are adjacent to each other.
- the plurality of opposite permanent magnets 232 are arranged on the opposite side surfaces of the first core 22A, the second core 22B, the third core 22C, and the fourth core 22D, respectively.
- the opposite side surface is a surface of the outer surfaces of the first to fourth iron cores 22A to 22D facing the opposite side to the facing magnetic material, and the lower surface in FIG. 1.
- the unit cell 20 is composed of a plurality of magnetic pole blocks arranged on the array surface, that is, a first magnetic pole block 21A, a second magnetic pole block 21B, a third magnetic pole block 21C, and a fourth magnetic pole block 21D.
- the first magnetic pole block 21A is adjacent to the second magnetic pole block 21B and the third magnetic pole block 21C in two directions orthogonal to each other on the array plane, and the fourth magnetic pole block 214 is said in the two directions. It is adjacent to the second magnetic pole block 212 and the third magnetic pole block 213.
- Each of the first to fourth magnetic pole blocks 211 to 214 includes one of the plurality of magnetic cores and a plurality of permanent magnets.
- the first magnetic pole block 21A, the second magnetic pole block 21B, the third magnetic pole block 21C, and the fourth magnetic pole block 214 have the first core 22A, the second core 22B, and the third as the magnetic monopoles, respectively.
- the iron core 22C and the fourth iron core 22D are included.
- Each of the plurality of intervening permanent magnets 231 and the plurality of opposite side permanent magnets 232 is equal to or higher than the outer surface of the magnetic monopole core in which the permanent magnets are to be arranged among the first to fourth cores 22A to 22D. Also has a slightly larger main surface and is attached to it so as to hide the outer surface.
- Each of the plurality of magnetic monopoles forming a rectangular parallelepiped has six outer surfaces, and the permanent magnet is attached to three outer surfaces thereof. In other words, the permanent magnet is attached to the magnetic monopole so as to open the other three outer surfaces, that is, the open outer surface.
- the plurality of intervening permanent magnets 231 and the plurality of opposite permanent magnets 232 are arranged so that the same magnetic poles face each other with respect to the magnetic monopole. At least one of the three open outer surfaces constitutes a magnetic pole surface.
- a facing magnetic material for example, an armature of an electric motor, is arranged with a gap above the first to fourth magnetic pole surfaces 24A to 24D, which are magnetic pole surfaces facing upward.
- the magnetic poles on the magnetic pole surfaces of the first to fourth cores 22A to 22D are the same as the magnetic poles formed by the first magnet surface, which is the surface facing the iron core among the permanent magnets attached to the iron core.
- the surface of each permanent magnet facing outward that is, the second magnet surface facing the side opposite to the magnetic pole core, has a magnetic pole opposite to the magnetic pole of the magnetic pole surface.
- the first magnetic pole block 21A shares the intervening permanent magnet 231 between the second magnetic pole block 21B and the third magnetic pole block 21C adjacent thereto.
- the fourth magnetic pole block 21D shares the intervening permanent magnet 231 with the second magnetic pole block 21B and the magnetic pole block 21C adjacent thereto.
- each of the first to fourth magnetic pole blocks 21A to 21D includes one opposite side permanent magnet 232 mounted on the opposite side surface of each of the first to fourth iron cores 22A to 22D.
- each of the two magnetic pole blocks adjacent to each other may include permanent magnets independent of each other.
- the first magnetic pole block 21A includes an intervening permanent magnet 23 facing each of the second magnetic pole block 21B and the third magnetic pole block 21C, and the second magnetic pole block 21B and the third magnetic pole block 21C, respectively.
- an intervening permanent magnet 231 facing the first magnetic pole block 21A may be included.
- the fourth magnetic pole block 21D includes an intervening permanent magnet 231 facing each of the second magnetic pole block 21B and the third magnetic pole block 21C, and the second magnetic pole block 21B and the third magnetic pole block 21C.
- Each may include an intervening permanent magnet 231 facing the fourth magnetic pole block 21D separately from the intervening permanent magnet 231 of the fourth magnetic pole block 21D.
- a pair of magnetic pole blocks adjacent to each other among the first to fourth magnetic pole blocks 21A to 21D form a plurality of magnetic paths.
- the following first magnetic path and second magnetic path are used as a magnetic path that enters the second magnetic pole block 21B as shown by the arrow Min in FIG. 1 and exits from the first magnetic pole block 21A as indicated by the arrow Mout.
- a path and a third magnetic path are formed.
- the first magnetic path passes through the intervening permanent magnet 231 between the first iron core 22A and the second iron core 22B, and the first magnetic path from the second magnetic pole block 21B. Enter the magnetic pole block 21A.
- the second magnetic path passes from the second magnetic pole block 21B to the fourth through the intervening permanent magnet 231 between the second core 22B and the fourth core 22D, as shown by the arrow M2 in FIG. It enters the magnetic pole block 21D, passes through the intervening permanent magnet 231 between the third magnetic pole block 21C and the fourth magnetic pole block 21D, enters the third magnetic pole block 21C from the fourth magnetic pole block 21D, and enters the first magnetic pole.
- the third magnetic pole block 21C enters the first magnetic pole block 21A through the intervening permanent magnet 23 between the block 21A and the third magnetic pole block 21C. As shown by the arrow M3 in FIG.
- the third magnetic path passes from the second magnetic pole block 21B through the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) of the second iron core 22B. It exits and enters the first magnetic pole block 21A through the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) of the first iron core 22A.
- the effective area which is the area of the portion through which the magnetic flux passes in each permanent magnet 231 and 232 is large.
- the effective areas of the plurality of intervening permanent magnets 231 and the plurality of opposite sides 232 are small, it is possible to secure a large magnetoresistance even if each permanent magnet has a small thickness. It is possible. This makes it possible to reduce the demagnetic field in the unit cell 20.
- the magnitude of the magnetic flux output to the outside by the plurality of intervening permanent magnets 231 and the plurality of opposite permanent magnets 232 is proportional to the total effective area through which the magnetic flux passes in each permanent magnet, and the countermagnetic field generated in the permanent magnets. It is inversely proportional to the size. Therefore, in the unit cell 20 having a three-dimensional magnetic pole structure as shown in FIG. 1, the plurality of permanent magnets 231 and 232 can output a large magnetic flux to the outside.
- the purpose of the three-dimensional magnetic pole structure of the unit cell 20 is to increase the energy of the magnetic field in the void.
- a magnetic field generator including the unit cell 20 is applied to an electric motor, a large electromagnetic force is applied with a small current by increasing the amount of energy of the magnetic field generated in a void, which is a place where an externally applied current easily interacts. Allows to be obtained. This is because the required voltage is large but the Joule loss is reduced.
- FIG. 2 shows the porosity and the magnetic flux density in the void in both the unit cell 20 and the structure according to the comparative example having a general magnetic pole arrangement, specifically, the comparative structure 90 as shown in FIG. It is a graph showing the relationship with.
- the comparative structure 90 is a two-dimensional magnetic pole structure as shown in FIG. 3, and is a schematic representation of a general SPM structure, that is, a structure of a surface permanent magnet type motor.
- the ratio of the magnetic flux density B g in the gap for the residual magnetic flux density B r in the case of applying the comparative structure 90 on opposite Jikyokuko through the gap facing the magnetic body is shown in dashed lines
- the Jikyokuko the ratio of the magnetic flux density B g is represented by the solid line in the gap in the space for the residual magnetic flux density B r in a case where the three-dimensional magnetic structure according to the unit cell 90 as shown in FIG. 1 is applied to.
- the comparative structure 90 which is the SPM structure, is applied to the magnetic monopole.
- the comparative structure 90 includes an iron core 92 and a permanent magnet 93 arranged in the middle of the iron core 92, and the iron core 92 has a gap 97 at a position opposite to the permanent magnet 93. It has a pair of ends facing each other across the magnet.
- a magnetic path M9 as shown in FIG. 3 is formed. The magnetic path M9 circulates through the permanent magnet 93, the upstream portion 92a of the iron core 92, the gap 97, and the downstream portion 92b of the iron core 92 in this order so as to return to the permanent magnet 93.
- the strength of the magnetic field, the magnetic flux density, and the magnetic flux in the void 97 be H g, B g , and ⁇ g , respectively.
- the thickness of the permanent magnet 93 and the area of the plane perpendicular to the magnetic path are set to l m and S m , respectively, and the length of the iron core 92 and the area of the plane perpendicular to the magnetic path are set to l i and S i, respectively.
- l g and S g be the width of and the area of the plane perpendicular to the magnetic path, respectively. Further, the residual magnetic flux density and B r, the magnetic permeability of vacuum and mu 0, the relative permeability of the iron core 92 and mu r.
- the magnetic flux densities B m , Bi , and B g in each of the permanent magnet 93, the iron core 92, and the void 97 are represented by the following equations 1, 2, and 3, respectively.
- the strength and magnetic flux density of the magnetic field in the intervening permanent magnet 231 between the first iron core 22A in the first magnetic pole block 21A and the second iron core 22B in the second magnetic pole block 21B are H z and B z, respectively.
- the strength and magnetic flux density of the magnetic field in the intervening permanent magnet 231 between the first iron core 22A in the first magnetic pole block 21A and the third iron core 22C in the third magnetic pole block 21C are H ⁇ and B ⁇ , respectively.
- the strength and magnetic flux density of the magnetic field in the opposite permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) of the first iron core 22A are defined as Hra and Bra, respectively.
- the thickness and effective area of the intervening permanent magnet 231 between the first iron core 22A in the first magnetic pole block 21A and the second iron core 22B in the second magnetic pole block 21B (the first in the intervening permanent magnet 231). 1
- the intervening permanent magnet 231 is in the case of a rectangular parallelepiped corresponding to the respective areas of the first and second magnets face.) respectively l z, and a z, the first in the first magnetic pole block 21A
- the thickness and effective area of the intervening permanent magnet 231 between the iron core 22A and the third iron core 22C in the third magnetic pole block 21C (the first magnet surface facing the first iron core 22A in the intervening permanent magnet 231 and the first magnet).
- 3 Areas of regions where the second magnet surface facing the iron core 22C overlaps with the first magnet surface and the second magnet surface in the normal direction) are set to l ⁇ and A ⁇ , respectively, and the first iron core 22A.
- the thickness and effective area of the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) (the first magnet surface facing the opposite side surface of the first iron core 22A in the opposite side permanent magnet 232 and the first magnet surface).
- the area of the region where the first magnet surface and the second magnet surface facing the opposite side of the first magnet surface overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface, and the intervening permanent magnet 231 is a rectangular body. If corresponds to the respective areas of the first and second magnets face.) respectively l ra, and a ra.
- the strength of the magnetic field, the magnetic flux density, and the magnetic flux in the gap between the first to fourth magnetic pole surfaces 24A to 24D and the facing magnetic body 10 are H g , B g , and ⁇ g , respectively, and the residual magnetic flux density is B.
- the magnetic permeability of the vacuum be ⁇
- the respective areas of the first to fourth magnetic flux surfaces 24A to 24D be A f .
- the first to fourth iron cores 22A to 22D have a sufficiently high magnetic permeability, and its magnetic resistance is considered to be zero.
- the above-mentioned three magnetic paths formed in the three-dimensional magnetic pole structure that is, the first magnetic path, the second magnetic path, and the third magnetic path will be considered.
- the first magnetic path among the three magnetic paths is emphasized by a thick arrow, and the other magnetic paths are indicated by thin arrows.
- the first magnetic path exits the first magnetic pole block 21A, passes through the facing magnetic material 10 and enters the second magnetic pole block 21B, and is said to be between the first iron core 22A and the second iron core 22B. Since it enters the magnetic pole block 21A through the intervening permanent magnet 23, the following equation holds if the magnetic path resistance of the facing magnetic body 10 is sufficiently small.
- the third magnetic path among the three magnetic paths is emphasized by a thick line arrow, and the other magnetic paths are indicated by a thin line arrow.
- the third magnetic path exits the first magnetic pole block 21A, passes through the facing magnetic material 10, enters the second magnetic pole block 21B, and is arranged on the opposite side surface (lower surface in FIG. 1) of the second iron core 22B.
- the magnetic flux density Bras of the density B ⁇ and the magnetic flux density Bra in the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) of the first iron core 22A are the following first, second, and third equations, respectively. It is represented by.
- the maximum width of the air gap in the case is less than or equal to the minimum thickness of the plurality of permanent magnets 231, 232
- the same permanent magnet thickness l g and the same gap width l m is set between the opposed magnetic body 10 and It is possible to generate a larger magnetic flux in the void than 90.
- l g / l m > 1 the effect of increasing the magnetic flux cannot be expected. This indicates that the interaction between the permanent magnets, that is, the action of any permanent magnet on the other permanent magnets, and the resulting weakening of the magnetic flux is remarkable.
- FIGS. 8A and 8C The conditions described below are the structures shown in FIGS. 8A and 8C, that is, the unit cell 30 and the unit cell 40 corresponding to the first modification and the second modification of the first embodiment, respectively.
- FIGS. 8B and 8D Based on the structures shown in FIGS. 8B and 8D, that is, the unit cells 39 and the unit cells 49 according to the first comparative example and the second comparative example corresponding to the first and second modifications, respectively. Be guided.
- the unit cell 30 according to the first modification shown in FIG. 8A and FIG. 9 is the unit cell 20 shown in FIG. 1 with a back yoke 25 added.
- the back yoke 25 is formed of a magnetic material so as to promote magnetic flux flowing between the plurality of opposite permanent magnets 232 arranged on opposite side surfaces of the first to fourth iron cores 22A to 22D.
- the plurality of permanent magnets 232 on the opposite side are arranged on the opposite side (lower side in FIG. 8A) from the first to fourth iron cores.
- the back yoke 25 exemplified in FIG. 8A is such that the plurality of the back yokes 25 are in contact with the surface (lower surface in FIG. 8A) opposite to the first to fourth iron cores 22A to 22D among the plurality of opposite permanent magnets 232. It is attached to the permanent magnet 232 on the opposite side of the.
- the second magnetic path passes from the second magnetic pole block 21B to the second magnetic path through the intervening permanent magnet 231 between the second core 22B and the fourth core 22D, as shown by the arrow M2 in FIG. It enters the 4-pole block 21D, passes through the intervening permanent magnet 231 between the third core 22C and the fourth core 22D, enters the third magnetic pole block 21C from the fourth magnetic pole block 21D, and enters the first iron core.
- the third magnetic pole block 21C enters the first magnetic pole block 21A through the intervening permanent magnet 23 between the 22A and the third iron core 22C.
- the third magnetic path passes through the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG.
- the first magnetic pole block 21A enters the first magnetic pole block 21A through the back yoke 25 and the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 9) of the first iron core 22A.
- a surface facing the armature of the electric motor that is, a surface composed of a plurality of sets of first to fourth magnetic pole surfaces 24A to 24D.
- the first magnetic pole and the second magnetic pole opposite to the first magnetic pole are arranged alternately and periodically. For example, even if the magnetic monopole moves relative to the armature in only one direction, at least a pair of N poles and S poles in both the moving direction and the direction orthogonal to the moving direction. Should be placed.
- the first to fourth iron cores 22A to 22D and the plurality of permanent magnets 231 and 232 of the unit cell 30 according to the first modification are four permanent magnets. It has been replaced by magnets, namely the first permanent magnet 26A, the second permanent magnet 26B, the third permanent magnet 26C and the fourth permanent magnet 26D.
- the first to fourth permanent magnets 26A to 26D are arranged at positions corresponding to the first core 22A to the fourth core 22D, respectively. That is, the first permanent magnet 26A is adjacent to the second permanent magnet 26B and the third permanent magnet 26C in two directions orthogonal to each other on the arrangement surface, and the fourth permanent magnet 26D is orthogonal to each other on the arrangement surface.
- the unit cell 40 according to the second modification shown in FIG. 10 includes a fifth core 22E, a sixth core 22F, a seventh core 22G, an eighth core (not shown), and these in the unit cell 20.
- a plurality of intervening permanent magnets 231 provided for the fifth iron cores 22E to 22G are added.
- the fifth iron core 22E is on the opposite side of the first iron core 22A with the opposite side permanent magnet 232 arranged on the opposite side surface of the first iron core 22A among the plurality of opposite side permanent magnets 232 (in FIG. 10). It has a fifth magnetic pole surface 24E which is arranged on the lower side) and faces the side opposite to the first iron core 22A (lower side in FIG. 10).
- the sixth core 22F is opposite to the second core 22B with the opposite side permanent magnet 232 arranged on the opposite side surface of the second core 22B among the plurality of opposite permanent magnets 232 (in FIG. 10). It has a sixth magnetic pole surface 24F which is arranged on the lower side) and faces the side opposite to the second iron core 22B (lower side in FIG. 10).
- the seventh core 22G is opposite to the third core 22C with the opposite side permanent magnet 232 arranged on the opposite side surface of the third core 22C among the plurality of opposite permanent magnets 232 (in FIG. 10). It has a seventh magnetic pole surface 24G which is arranged on the lower side) and faces the side opposite to the third iron core 22C (lower side in FIG. 10).
- the eighth core (not shown) is opposite to the fourth core 22D with the opposite permanent magnet 232 arranged on the opposite side of the fourth core 22D among the plurality of opposite permanent magnets 232 (FIG. 10). It is arranged on the lower side) and has an eighth magnetic pole surface (not shown) facing the side opposite to the fourth iron core 22D (lower side in FIG. 10).
- the fifth core 22E is orthogonal to each other in the second arrangement plane parallel to the first arrangement plane in which the first to fourth cores 22A to 22D are arranged, respectively, of the sixth core 22F and the seventh core 22G. Adjacent to each other in the direction, the eighth core is adjacent to each of the sixth core 22F and the seventh core 22G and each other in the two directions.
- the fifth magnetic pole surface 24E and the eighth magnetic pole surface both form the second magnetic pole (for example, the S pole) like the first magnetic pole surface 24A and the fourth magnetic pole surface 24D, and the sixth magnetic pole surface 24F and the sixth magnetic pole surface 24F.
- the seventh magnetic pole surface 24G all constitutes the first magnetic pole (for example, N pole) like the second magnetic pole surface 24B and the third magnetic pole surface 24C.
- the unit cell 40 includes a first magnetic pole block 21A, a second magnetic pole block 21B, a third magnetic pole block 21C, a fourth magnetic pole block 21D, a fifth magnetic pole block 21E, a sixth magnetic pole block 21F, a seventh magnetic pole block 21G, and not shown. It is composed of an eighth magnetic pole block.
- the first magnetic pole block 21A includes the first iron core 22A, shares the intervening permanent magnet 231 between the second magnetic pole block 21B and the third magnetic pole block 21C, and has the fifth magnetic pole.
- the opposite permanent magnet 232 is shared with the block 21E.
- the second magnetic pole block 21B includes the second iron core 22B, shares the intervening permanent magnet 231 between the first magnetic pole block 21A and the fourth magnetic pole block 21D, and has the sixth magnetic pole.
- the opposite permanent magnet 232 is shared with the block 21F.
- the third magnetic pole block 21C includes the third iron core 22C, shares the intervening permanent magnet 231 between the first magnetic pole block 21A and the fourth magnetic pole block 21D, and has the seventh magnetic pole.
- the opposite permanent magnet 232 is shared with the block 21G.
- the fourth magnetic pole block 21D includes the fourth iron core 22D, shares the intervening permanent magnet 231 between the second magnetic pole block 21B and the third magnetic pole block 21C, and is not shown.
- the opposite permanent magnet 232 is shared with the 8-pole block.
- the fifth magnetic pole block 21E includes the fifth iron core 22E, shares the intervening permanent magnet 231 between the sixth magnetic pole block 21F and the seventh magnetic pole block 21G, and has the first magnetic pole.
- the opposite permanent magnet 232 is shared with the block 21A.
- the sixth magnetic pole block 21F includes the sixth iron core 22F, shares the intervening permanent magnet 231 between the fifth magnetic pole block 21E and the eighth magnetic pole block (not shown), and the second.
- the opposite side permanent magnet 232 is shared with the magnetic pole block 21B.
- the 7th magnetic pole block 21G includes the 7th iron core 22G, shares the intervening permanent magnet 231 between the 5th magnetic pole block 21E and the 8th magnetic pole block (not shown), and the third magnetic pole block.
- the opposite side permanent magnet 232 is shared with the magnetic pole block 21C.
- the eighth magnetic pole block (not shown) includes the eighth iron core, shares the intervening permanent magnet 231 between the sixth magnetic pole block 21F and the seventh magnetic pole block 21G, and has the fourth magnetic pole.
- the opposite permanent magnet 232 is shared with the block 21D.
- the unit cell 40 also forms a plurality of magnetic paths in each of the magnetic pole blocks adjacent to each other among the first to eighth magnetic pole blocks. For example, as a magnetic path from entering the second magnetic pole block 21B as shown by the arrow Min in FIG. 10 and exiting from the first magnetic pole block 21A as indicated by the arrow Mout, the following first magnetic circuit, the first magnetic path. Two magnetic paths and a third magnetic path are formed. As shown by the arrow M1 in FIG. 10, the first magnetic path passes through the intervening permanent magnet 231 between the first iron core 22A and the second iron core 22B, and the first magnetic path from the second magnetic pole block 21B. Enter the magnetic pole block 21A.
- the three-dimensional magnetic pole structure of the unit cell 40 can be applied to, for example, a rotary double gap motor described in Japanese Patent Application Laid-Open No. 2010-98929.
- the unit cell 40 is formed in a fan-shaped columnar shape lacking a radial inner portion and incorporated into the rotor of the double gap motor.
- the unit cell 40 is formed in a fan-shaped columnar shape so that the first magnetic pole block 21A, the second magnetic block 21B, the fifth magnetic pole block 21E, and the sixth magnetic block 21F are located radially inside.
- the unit cell 40 is in a posture in which the first to fourth magnetic pole blocks 21A to 21D of the unit cell 40 face one of the axial directions of the rotor, and the fifth to eighth magnetic pole blocks face the other in the axial direction. It is better to incorporate it in the rotor.
- the first to eighth iron cores and the plurality of permanent magnets 231 and 232 of the unit cell 40 according to the second modification are four permanent magnets, that is, It has been replaced by a first permanent magnet 26A, a second permanent magnet 26B, a third permanent magnet 26C and a fourth permanent magnet 26D.
- the first permanent magnet 26A is arranged at a position corresponding to the first iron core 22A and the fifth iron core 22E
- the second permanent magnet 26B is a position corresponding to the second iron core 22B and the sixth iron core 22F.
- the third permanent magnet 26C is arranged at a position corresponding to the third iron core 22C and the seventh iron core 22G, and the fourth permanent magnet 26D is arranged on the fourth iron core 22D and the eighth iron core. It is located in the corresponding position. Therefore, similarly to the unit cell 39 according to the first comparative example, the first permanent magnet 26A is adjacent to the second permanent magnet 26B and the third permanent magnet 26C in two directions orthogonal to each other on the arrangement plane. The fourth permanent magnet 26D is adjacent to the second permanent magnet 26B and the third permanent magnet 26C in two directions orthogonal to each other on the arrangement plane. Also in this unit cell 49, the one corresponding to the intervening permanent magnet 23 does not intervene between the permanent magnets adjacent to each other, and the permanent magnets adjacent to each other are arranged so as to be in contact with each other.
- the first alignment dimension in which the first magnetic pole block 21A and the second magnetic pole block 21B are aligned In the unit cells 30 and 40 according to the first and second modifications shown in FIGS. 8A and 8C, the first alignment dimension in which the first magnetic pole block 21A and the second magnetic pole block 21B are aligned.
- each magnetic block i.e. the opposite direction parallel to the direction of the dimension are the respective dimensions of the first to fourth iron cores 22A ⁇ 22D on the opposite direction, the first It is the sum of the thicknesses of the opposite side permanent magnets 232 arranged on the opposite side surfaces of the fourth iron cores 22A to 22D.
- the first magnetic pole block 21A, the second magnetic pole block 21B, the third magnetic pole block 21C and the fourth magnetic pole block 21D are the fifth magnetic pole block 21E and the said, respectively.
- the opposite side permanent magnet 232 is shared between the 6th magnetic pole block 21F, the 7th magnetic pole block 21G, and the 8th magnetic pole block, the substantially height dimension of each magnetic pole block is the said magnetic pole. It is the sum of the height dimension of the iron core included in the block and 1/2 of the thickness of the opposite side permanent magnet 232 arranged on the opposite side surface of the iron core.
- the dimension in the first alignment direction which is the direction in which the first permanent magnet 26A and the second permanent magnet 26B are aligned, is a. If the dimension of the second alignment direction in which the first permanent magnet 26A and the third permanent magnet 26C are aligned, that is, the direction orthogonal to the first alignment direction is b, the first is viewed in the opposite direction.
- the area occupied by the fourth permanent magnets 26A to 26D is represented by a ⁇ b.
- the magnetic fluxes formed in the first and second modifications and the first and second comparative examples will be considered.
- the symbols used in the following description are common to the symbols used for the unit cell 20 shown in FIG. 1, except for the symbols shown in FIGS. 8A-8D.
- the magnetic flux densities and magnetic fluxes in the gap between the magnetic flux element including the unit cell 30 according to the first modification and the armature facing the armature are particularly B gD and ⁇ gD , respectively, and the same applies to the first modification.
- the magnetic flux densities and magnetic fluxes in the gap between the magnetic flux element including the unit cell 30 and the armature facing the magnetic flux element are defined as B gC and ⁇ gC , respectively.
- the magnetic flux density B gD according to the first modification is the same as the magnetic flux density B g derived for the three-dimensional magnetic pole structure according to the first unit cell 20 shown in FIG. 1, it is expressed by the following equation. To.
- the magnetic flux number ⁇ gD generated in the void is expressed by the following equation.
- the magnetic blocks of the unit cells 39 and 49 according to the first and second comparative examples shown in FIGS. 8B and 8D, that is, the unit cells 30 and 40 according to the first and second modified examples are permanently magnetized.
- the magnetic flux density B gC for the SPM structure constructed by replacing with is expressed by the following equation because it can be regarded as equivalent to the magnetic flux density B gC derived for the SPM structure shown in FIG.
- the magnetic flux number ⁇ gC generated in the void is expressed by the following equation.
- the following conditions are used as conditions for improving the magnetic flux in the void.
- the magnetic flux according to the second modification will be considered.
- the sum V D of the volume of all the permanent magnets 231 and 232 included in the three-dimensional magnetic structure in accordance with the unit cell 40, the total volume V C of the three-dimensional magnetic structure is introduced To.
- the magnetic field generated in the void by the magnetic field generator according to the present embodiment can be used, for example, for spectroscopy or a process of sieving charged particles.
- the magnetic field generator may further include a magnetic substance contained in the void, which corresponds to at least one of a magnetic fluid, a magnetic powder, and a magnetic particle.
- the encapsulation of the magnetic fluid in the void in the motor reduces the magnetic resistance in the void and collects more magnetic flux in the void. enable.
- the magnetic field generator according to the present embodiment is applied to the linear motor 100 as shown in FIG.
- the linear motor 100 is a so-called double-sided linear motor, and includes a magnetic monopole 120 and a pair of armatures 110.
- the magnetic pole element 120 includes a plurality of magnetic pole blocks arranged in a preset movable direction, and each of the plurality of magnetic pole blocks constitutes a plurality of magnetic poles in which the plurality of magnetic pole blocks are alternately inverted in the movable direction.
- the pair of armatures 110 are arranged so as to sandwich the magnetic monopole 120 in the left-right direction.
- the pair of armatures 110 form a magnetic field for linearly moving the magnetic monopole 120 relative to the pair of armatures 110 in the movable direction.
- the magnetic pole 120 may be a mover and the pair of armatures 110 may be a stator, or the pair of armatures 110 may be a mover and the magnetic pole 120 may be a stator.
- the magnetic monopole 120 is a mover and the pair of armatures 110 are stators for moving the mover will be described. In the following description, with respect to the posture shown in FIG.
- the linear motion direction is referred to as a front-rear direction
- the direction in which the pair of armatures 110 and the magnetic pole elements 120 are arranged is referred to as a left-right direction
- the direction orthogonal to both the direction and the left-right direction may be referred to as a vertical direction.
- FIG. 12A shows an armature 110 located on the left side of the magnetic monopole 120 of the pair of armatures 110.
- the armature 110 includes a plurality of armature coils 111 and an armature core 115 which is a magnetic material portion shown in FIG. 12B, and the armature core 115 includes a plurality of teeth portions 112 and a yoke portion 113.
- Each of the plurality of teeth portions 112 constitutes a coil iron core.
- the yoke portion 113 has a flat plate shape, and the plurality of teeth portions 112 project from the right side surface (the left side of the armature 110 located on the right side of the magnetic pole element 120) toward the magnetic pole element 120. do.
- the plurality of tooth portions 112 are arranged so as to be arranged in the front-rear direction in each of the upper and lower stages, and project to the right from the yoke portion 113 (to the left in the armature 110 located on the right side of the magnetic pole 120).
- the armature core 115 is made of a soft magnetic material such as soft iron or soft ferrite.
- Each of the plurality of teeth portions 112 has a rectangular parallelepiped shape shown in FIG. 12B, for example.
- the plurality of armature coils 111 are composed of conductors wound around each of the plurality of teeth portions 112.
- the armature 110 according to this embodiment includes 20 armature coils 111, and 10 armature coils 111 are arranged in each of the upper and lower stages.
- FIG. 13 is a perspective view of the magnetic monopole 120.
- the magnetic pole element 120 includes a plurality of magnetic pole blocks 121 and a plurality of (three in FIG. 13) support members 126.
- Each of the plurality of support members 126 is composed of the non-magnetic material extending in the front-rear direction, and is arranged in a posture parallel to each other and spaced apart from each other in the vertical direction.
- the plurality of magnetic poles 121 are arranged in the front-rear direction between the support members 126 adjacent to each other in the vertical direction among the plurality of support members 126, that is, over two upper and lower stages.
- Each of the plurality of magnetic pole blocks 121 includes a single magnetic pole core 122 and a plurality of permanent magnets 123 arranged around the monopole core 122.
- the plurality of magnetic pole blocks 121 are, for example, a plurality of unit cells, and each of the plurality of unit cells is a unit cell 40 as shown in FIG. 10, that is, the first to eighth magnetic pole blocks are in three directions. It is possible to be composed of the unit cells 40, which are arranged in.
- the upper portion of the monopole 40 shown in FIG. 10 coincides with the right portion of the monopole 120 shown in FIG. 13, and the lower portion of the monopole 40 shown in FIG. 10 is the said portion shown in FIG.
- the monopole 40 is arranged so as to coincide with the left side portion of the monopole 120.
- the first to eighth cores 22A to 22D constituting the unit cell 40 are included in the plurality of magnetic pole cores 122 of the plurality of magnetic pole blocks 121.
- Each monopole core 122 has a monopole surface 124 facing the armature 110.
- the plurality of permanent magnets 123 are arranged on the opposite side surfaces of the plurality of intervening permanent magnets interposed between the magnetic monopoles 122 adjacent to each other among the plurality of magnetic monopoles 122 and the respective magnetic monopoles 122. Includes multiple opposite permanent magnets.
- the plurality of magnetic pole blocks 121 are arranged so as to be in surface contact with each other.
- the magnetic monopole surfaces 124 of the two magnetic monopoles 122 adjacent to each other in the front-rear direction in each of the upper and lower stages form magnetic poles opposite to each other, and are adjacent to each other in the vertical direction.
- the magnetic monopole surfaces 124 of the monopole core 122 also form magnetic poles opposite to each other. That is, the plurality of magnetic pole blocks 121 are arranged over two rows so that the magnetic poles of the magnetic pole element magnetic pole surfaces 124 of the plurality of magnetic pole cores 122 are alternately inverted in both the front-rear direction and the vertical direction.
- one of the surfaces joined to each other in the two adjacent magnetic pole blocks 121 constitutes an S pole and the other is an N pole, which means that the two adjacent magnetic pole blocks 121 are attracted to each other by magnetic force to form a plurality of poles. Allows the magnetic pole blocks 121 to be easily arranged in two rows.
- the magnetic pole surface 124 of the plurality of magnetic monopoles 122 faces left and right, and the four outer surfaces other than the monopole surface 124 face forward, backward, upward, and downward. They are arranged so that they face each other.
- a magnetic field is generated around each of the plurality of armature coils 111 by passing a current in an appropriate direction through the plurality of armature coils 111.
- the surface of each of the plurality of teeth portions 112 facing the magnetic monopole 120 is the magnetic pole surface, that is, the armature magnetic pole surface 114.
- the armature magnetic pole surface 114 and the magnetic monopole surface 124 are attracted or repelled by magnetic force. Therefore, the magnetic monopole 120 can be moved in the front-rear direction by controlling the current flowing through the armature coil 111 so that the magnetic field generated by the plurality of armature coils 111 changes.
- the plurality of support members 126 can be omitted.
- the magnetic pole blocks 121 adjacent to each other may be directly connected to each other by an adhesive or the like.
- the magnetic field generator according to this embodiment is applied to a linear motor 200 as shown in FIG.
- the linear motor 200 is a single-sided linear motor, and includes a magnetic pole 220 and an armature 210.
- the magnetic pole element 220 includes a plurality of magnetic pole blocks 221 arranged in a preset movable direction and a left-right direction, and the plurality of magnetic pole blocks 221 have a plurality of magnetic poles that are alternately inverted in the movable direction and the left-right direction.
- the armature 210 is arranged on the magnetic monopole 220 with a gap between the magnetic monopole 220 and the magnetic monopole 220.
- the armature 210 forms a magnetic field for linearly moving the magnetic monopole 220 relative to the armature 210 in the movable direction.
- the magnetic pole 220 may be a mover and the armature 210 may be a stator, or the armature 210 may be a mover and the magnetic pole 220 may be a stator.
- the movable direction is called the front-rear direction
- the direction in which the armature 210 and the magnetic pole element 220 are lined up is called the vertical direction
- the direction orthogonal to both the movable direction and the vertical direction is the horizontal direction. Sometimes called.
- the armature 210 includes a plurality of armature coils 211 and an armature core 215 which is a magnetic material portion shown in FIG. 15B, and the armature core 215 includes a plurality of teeth.
- the portion 212 and the yoke portion 213 are integrally provided.
- Each of the plurality of teeth portions 212 constitutes a coil iron core.
- the yoke portion 213 has a flat plate shape.
- the plurality of teeth portions 212 project downward from the lower surface of the yoke portion 213 and are arranged in both the front-rear direction and the left-right direction.
- the armature core 215 is made of a soft magnetic material such as soft iron or soft ferrite.
- Each of the plurality of teeth portions 212 has a rectangular parallelepiped shape shown in FIG. 15B, for example.
- the plurality of armature coils 211 are composed of conductors wound around each of the plurality of teeth portions 212.
- the plurality of armature coils 211 are six armature coils 211 in the example shown in FIG. 15B, and three armature coils 211 are arranged in the left-right direction in each of the two rows arranged in the front-rear direction.
- FIG. 16 is a perspective view of the magnetic monopole 220. As shown in FIG. 16, the magnetic monopole 220 has a horizontal plate shape.
- the magnetic pole 220 includes a plurality of magnetic monopoles 222 each having a magnetic pole surface 224, a plurality of permanent magnets, and a back yoke 225.
- the plurality of permanent magnets include a plurality of first permanent magnets 223A and a plurality of second permanent magnets 223B.
- Each of the plurality of first permanent magnets 223A has portions 223a and 223b constituting the intervening permanent magnets interposed between the magnetic monopoles 222 adjacent to each other, and the opposite side surfaces of the plurality of magnetic monopoles 222.
- the portion 223c constituting the opposite permanent magnet arranged on the lower surface is integrally provided.
- the second permanent magnet 223B is arranged exclusively as the opposite permanent magnet.
- the magnetic pole 220 includes a plurality of magnetic blocks 221 and each of the plurality of magnetic pole blocks 221 is the magnetic monopole 222 and a plurality of permanent magnets arranged around the magnetic monopole 222. 1 and at least one of the second permanent magnets 223A and 223B).
- the plurality of magnetic pole blocks 221 are arranged on the back yoke 225 in both the front-rear direction and the left-right direction.
- the back yoke 225 is made of a rectangular parallelepiped soft magnetic material, and is arranged below the plurality of magnetic pole blocks 221.
- the back yoke 225 prevents the magnetic poles on the opposite side (lower side in FIG. 16) from the magnetic monopole surface 224 in each of the plurality of magnetic pole blocks 221 from being exposed to the outside, and magnetizes the inside of the back yoke 225. Allows the road to be formed.
- the combination of the four magnetic pole blocks 221 arranged in the front-rear direction and the left-right direction among the plurality of magnetic pole blocks 221 and the back yoke 225 corresponds to the configuration of the unit cell 30 shown in FIG.
- the upper portion of the monopole 30 shown in FIG. 9 coincides with the upper portion of the monopole 220 shown in FIG. 16, and the lower portion of the monopole 30 shown in FIG. 9 is FIG.
- the monopole 30 is incorporated into the monopole 220 so as to coincide with the lower side of the monopole 220 shown in.
- the first to fourth cores 22A to 22D constituting the unit cell 30 are included in the magnetic pole cores 222 of the plurality of magnetic pole blocks 221.
- the plurality of magnetic pole blocks 221 are arranged so as to be in surface contact with each other.
- the magnetic monopole surfaces 224 of the magnetic monopoles 222 adjacent to each other form opposite magnetic poles. That is, the plurality of magnetic pole blocks 221 are arranged in a matrix so that the magnetic poles are alternately inverted in both the front-rear direction and the left-right direction. Therefore, one of the surfaces joined to each other in the two adjacent magnetic pole blocks 221 constitutes an S pole, and the other constitutes an N pole. This allows two adjacent magnetic pole blocks 221 to be attracted to each other by a magnetic force so that the plurality of magnetic pole blocks 221 can be easily arranged in a matrix.
- the magnetic monopole surface 224 of the plurality of magnetic monopoles 222 faces upward, and the four outer surfaces other than the magnetic monopole surface 224 face forward, backward, right, and left, respectively. Arranged like this.
- a magnetic field is generated around each of the plurality of armature coils 211 by passing a current in an appropriate direction through the plurality of armature coils 211.
- the surface of each of the plurality of tooth portions 212 facing the magnetic monopole 220 is the magnetic pole surface, that is, the armature magnetic pole surface 214.
- the armature magnetic pole surface 214 and the magnetic monopole surface 224 are attracted or repelled by magnetic force. Therefore, the magnetic monopole 220 can be moved in the front-rear direction by controlling the current flowing through the armature coil 211 so that the magnetic field generated by the plurality of armature coils 211 changes.
- the magnetic field generator according to the present embodiment is applied to the radial gap electric motor 300 as shown in FIG.
- the electric motor 300 includes a cylindrical magnetic monopole 320 and a cylindrical armature 310.
- the armature 310 and the monopole 320 are arranged concentrically with a gap between them, and the armature 310 surrounds the monopole 320.
- the magnetic pole element 320 includes a plurality of magnetic pole blocks 321 and constitutes a plurality of magnetic poles in which the plurality of magnetic pole blocks 321 are alternately inverted in the circumferential direction.
- the armature 310 is arranged outside the magnetic pole 320 in the radial direction.
- the armature 310 forms a magnetic field inside the armature 310 for rotating the magnetic monopole 320 relative to the armature 310.
- the magnetic pole 320 is a rotor and the armature 310 is a stator.
- the direction of the rotation axis of the magnetic pole element 320 is referred to as an axial direction
- the rotation direction of the magnetic pole element 320 around the rotation axis is referred to as a circumferential direction
- the rotation axis of the magnetic pole element 320 is referred to as a circumferential direction.
- the direction orthogonal to is sometimes called the radial direction.
- the armature core 315 is made of a soft magnetic material such as soft iron or soft ferrite.
- the plurality of armature coils 311 are composed of conductors wound around each of the plurality of tooth portions 312.
- the plurality of armature coils 311 are 30 armature coils 311 in the example shown in FIG. 18B, and 15 armature coils are arranged in the circumferential direction in each of the two rows arranged in the axial direction.
- FIG. 19 is a perspective view of the magnetic monopole 320.
- the magnetic pole 320 includes a plurality of magnetic monopoles 322, a plurality of intervening permanent magnets 3231, a plurality of opposite permanent magnets 3322, and a back yoke 325, and each of the plurality of magnetic monopoles 322 has a magnetic pole. It has a child magnetic pole surface (radial outer surface in FIG. 19) 324.
- the plurality of intervening permanent magnets 3231 are interposed between the magnetic pole cores 322 adjacent to each other among the plurality of magnetic cores 322, and the plurality of opposite permanent magnets 3232 are formed of the plurality of magnetic cores 322. It is arranged on the opposite side surface (diametrically inner peripheral surface in FIG. 19).
- the magnetic pole element 320 includes the plurality of magnetic pole blocks 321 and the back yoke 325, and each of the plurality of magnetic pole blocks 321 has a single magnetic pole element core 322 and a plurality of magnet cores arranged around the magnetic pole block 321.
- the permanent magnets of the above include at least one of the plurality of intervening permanent magnets 3231 and one of the plurality of opposite permanent magnets 3232.
- the plurality of magnetic pole blocks 321 are arranged in the circumferential direction on the outer peripheral surface of the back yoke 325.
- the back yoke 325 is made of a cylindrical soft magnetic material and is located inside the plurality of magnetic pole blocks 321 in the radial direction. The back yoke 325 prevents the surface of each of the plurality of magnetic pole blocks 321 on the side opposite to the magnetic pole surface 324 from being exposed to the outside, so that a magnetic path is formed in the back yoke 325. enable.
- the combination of the four magnetic pole blocks 321 adjacent to each other in the circumferential direction and the axial direction among the plurality of magnetic pole blocks 321 and the back yoke 325 corresponds to the configuration of the unit cell 30 shown in FIG.
- the unit cell 30 shown in FIG. 9 is formed in a fan-shaped columnar shape lacking an inner portion in the radial direction, and the upper portion of the unit cell 30 shown in FIG. 9 is in the radial direction of the magnetic pole element 320 shown in FIG.
- the monopole 30 is incorporated into the monopole 320 in a posture that coincides with the outer portion of the monopole and the lower portion of the monopole 30 shown in FIG. 9 coincides with the radial inner portion of the monopole 320 shown in FIG. Is done.
- the first to fourth cores 22A to 22D shown in FIG. 9 are included in the magnetic pole core 322 of the plurality of magnetic pole blocks 321.
- Each of the plurality of magnetic pole blocks 321 has a pair of rectangular side surfaces facing in the circumferential direction, and the magnetic pole blocks 321 adjacent to each other are connected to each other in the circumferential direction so that one of the side surfaces of the magnetic pole block 321 touches each other. Will be done.
- the monopole surface 324 of the monopole core 322 of the two magnetic pole blocks 321 adjacent to each other in the circumferential direction constitutes opposite magnetic poles. That is, the plurality of magnetic pole blocks 321 are arranged in the circumferential direction so that the magnetic monopole surfaces 324 constituting the opposite magnetic poles are arranged alternately.
- one of the surfaces of the magnetic pole blocks 321 adjacent to each other in the circumferential direction to be joined to each other constitutes an S pole, and the other constitutes an N pole.
- the magnetic monopole 320 is composed of a plurality of annular structures stacked in the axial direction, and the plurality of annular structures are arranged in the circumferential direction as described above. It is composed of a magnetic pole block 321 of. Each of the magnetic pole blocks 321 adjacent to each other in the axial direction are connected to each other in the axial direction in a state where the side surfaces of the fan shape lacking the inner portion in the radial direction are in contact with each other.
- the magnetic monopole surfaces 324 of the monopole core 322 of the two magnetic pole blocks 321 adjacent to each other in the axial direction form opposite magnetic poles.
- the plurality of magnetic pole blocks 321 are arranged in the axial direction so that the magnetic poles opposite to each other are arranged alternately. Therefore, one of the surfaces joined to each other in the magnetic pole blocks 321 adjacent to each other in the axial direction constitutes an S pole, and the other constitutes an N pole. This makes it possible for the two magnetic pole blocks 321 adjacent to each other in the axial direction to attract each other by a magnetic force so that the plurality of magnetic pole blocks 321 can be easily arranged side by side in the axial direction.
- a magnetic field is generated around each of the plurality of armature coils 311 by passing a current in an appropriate direction through the plurality of armature coils 311.
- the surface of each of the plurality of tooth portions 312 facing the magnetic monopole 320 becomes the magnetic pole surface, that is, the armature magnetic pole surface 314.
- the armature magnetic pole surface 314 and the magnetic monopole surface 324 are attracted or repelled by the magnetic force. Therefore, by controlling the current flowing through the plurality of armature coils 311 so that the magnetic field generated by the plurality of armature coils 311 changes, the magnetic monopole 320 can be rotated inside the armature 310. Is.
- the magnetic field generator according to this embodiment is applied to the radial gap motor 400 as shown in FIG.
- the radial gap electric motor 400 includes a cylindrical magnetic monopole 420 and a cylindrical armature 410.
- the armature 410 and the magnetic monopole 420 are arranged concentrically with a gap between them, and the magnetic monopole 420 surrounds the armature 410.
- the magnetic pole element 420 includes a plurality of magnetic pole blocks 421, and each of the plurality of magnetic pole blocks 421 constitutes a plurality of magnetic poles that are alternately inverted in the circumferential direction.
- the electric element 410 is arranged inside the magnetic pole element 420 in the radial direction.
- the armature 410 forms a magnetic field outside the armature 410 for rotating the magnetic monopole 420 relative to the armature 410.
- the magnetic pole 420 is a rotor and the armature 410 is a stator.
- the direction of the rotation axis of the magnetic pole element 420 is referred to as an axial direction
- the rotation direction of the magnetic pole element 420 centered on the rotation axis is referred to as a circumferential direction
- the rotation axis of the magnetic pole element 420 is referred to as a circumferential direction.
- the direction orthogonal to is sometimes called the radial direction.
- FIG. 21A is a perspective view of the armature 410.
- the armature 410 includes a plurality of armature coils 411 and an armature core 415 which is a magnetic material portion shown in FIG. 21B, and the armature core 415 includes a plurality of tooth portions 412 and a yoke portion 413. And, in one piece.
- Each of the plurality of tooth portions 412 constitutes a coil iron core.
- the yoke portion 413 has a cylindrical shape.
- the plurality of tooth portions 412 project radially outward from the outer peripheral surface of the yoke portion 413.
- the plurality of tooth portions 412 are arranged so as to be arranged in both the circumferential direction and the axial direction.
- the armature core 415 is composed of a soft magnetic material such as soft iron and soft ferrite.
- the plurality of armature coils 411 are composed of conductors wound around each of the plurality of teeth portions 412.
- the plurality of armature coils 411 are 30 armature coils 311 in the example shown in FIG. 21B, and 15 armature coils are arranged in the circumferential direction in each of the two rows arranged in the axial direction.
- FIG. 22 is a perspective view of the magnetic monopole 420.
- the magnetic pole 420 includes a plurality of magnetic monopoles 422, a plurality of intervening permanent magnets 4231, a plurality of opposite permanent magnets 4232, and a back yoke 425, and each of the plurality of magnetic monopoles 422 has a magnetic pole. It has a child magnetic pole surface (radial outer surface in FIG. 22) 424.
- the plurality of intervening permanent magnets 4231 are interposed between the magnetic pole cores 422 adjacent to each other among the plurality of magnetic cores 422, and the plurality of opposite side permanent magnets 4232 are the plurality of magnetic cores 422 of the plurality of magnetic cores 422. It is arranged on the opposite side surface (diametrically inner peripheral surface in FIG. 22).
- the magnetic pole element 420 includes the plurality of magnetic pole blocks 421 and the back yoke 425, and each of the plurality of magnetic pole blocks 421 has a single magnetic monopole core 422 and a plurality of permanent magnets, that is, the said. Includes at least one of the plurality of intervening permanent magnets 4231 and one of the plurality of contralateral permanent magnets 4232.
- the plurality of magnetic pole blocks 421 are arranged in the circumferential direction on the inner peripheral surface of the back yoke 425.
- the back yoke 425 is made of a cylindrical soft magnetic material and is located on the outer side in the radial direction of the plurality of magnetic pole blocks 421.
- the back yoke 425 prevents the surface of the plurality of magnetic pole blocks 421 on the side opposite to the magnetic pole surface 424 of each of the magnetic pole blocks 421 from being exposed to the outside, so that a magnetic path is formed in the back yoke 425. enable.
- the combination of the four magnetic pole blocks 421 adjacent to each other in the circumferential direction and the axial direction among the plurality of magnetic pole blocks 421 and the back yoke 425 corresponds to the configuration of the unit cell 30 shown in FIG.
- the unit cell 30 shown in FIG. 9 is formed in a fan-shaped columnar shape lacking an inner portion in the radial direction, and for example, the upper portion of the unit cell 30 shown in FIG. 9 is the radius of the magnetic pole element 420 shown in FIG.
- the monopole 30 is attached to the monopole 420 in a posture that coincides with the inner portion in the direction and the lower portion of the monopole 30 shown in FIG. 9 coincides with the radial outer portion of the monopole 420 shown in FIG. Is incorporated.
- the first to fourth cores 22A to 22D shown in FIG. 9 are included in the plurality of magnetic pole cores 122 of the plurality of magnetic pole blocks 421.
- Each of the plurality of magnetic pole blocks 421 has a pair of rectangular side surfaces facing in the circumferential direction, and the magnetic pole blocks 421 adjacent to each other are connected to each other in the circumferential direction so that one of the side surfaces of the magnetic pole block 421 is in contact with each other. Will be done.
- the magnetic monopole surfaces 424 of the monopole core 422 of the two magnetic pole blocks 421 that are adjacent to each other in the circumferential direction form opposite magnetic poles. That is, the plurality of magnetic pole blocks 421 are arranged in the circumferential direction so that the magnetic monopole surfaces 424 constituting the opposite magnetic poles are arranged alternately.
- one of the surfaces of the magnetic pole blocks 421 adjacent to each other in the circumferential direction to be joined to each other constitutes an S pole, and the other constitutes an N pole.
- the magnetic monopole 420 is composed of a plurality of annular structures stacked in the axial direction, and the plurality of annular structures are arranged in the circumferential direction as described above. It is composed of a magnetic pole block 421 of. Each of the magnetic pole blocks 421 adjacent to each other in the axial direction are axially connected to each other in a state where the side surfaces of the fan shape lacking the inside in the radial direction are in contact with each other.
- the magnetic monopole surfaces 424 of the monopole core 422 of the two magnetic pole blocks 421 that are axially adjacent to each other form opposite magnetic poles.
- the plurality of magnetic pole blocks 421 are arranged in the axial direction so that the magnetic poles opposite to each other are arranged alternately. Therefore, one of the surfaces joined to each other in the magnetic pole blocks 421 adjacent to each other in the axial direction constitutes an S pole, and the other constitutes an N pole. This makes it possible for the two magnetic pole blocks 421 adjacent to each other in the axial direction to attract each other by a magnetic force so that the plurality of magnetic pole blocks 421 can be easily arranged side by side in the axial direction.
- a magnetic field is generated around the plurality of armature coils 411 by passing a current in an appropriate direction through the plurality of armature coils 411.
- the surface of each of the plurality of tooth portions 412 facing the magnetic pole 420 becomes a magnetic pole surface, that is, an armature magnetic pole surface 414.
- the armature magnetic pole surface 414 and the magnetic pole surface 424 are attracted or repelled by magnetic force. Therefore, by controlling the current flowing through the armature coil 411 so that the magnetic field generated by the plurality of armature coils 411 changes, the armature 420 can be rotated outside the armature 410.
- a magnetic field generator including a monopole and a facing magnetic material facing each other with a gap in the magnetic pole, capable of generating a large amount of magnetic flux in the gap, is available.
- a magnetic field generator comprising a plurality of magnetic monopoles, each of which is formed of a magnetic material, a plurality of permanent magnets, and the magnetic pole element. It comprises a facing magnetic material arranged so as to face each other in a facing direction through a gap.
- the plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic material.
- the first core is adjacent to the second core and the third core.
- the fourth core is adjacent to the second core and the third core.
- the first iron core has a first magnetic pole surface facing the facing magnetic body.
- the second iron core has a second magnetic pole surface facing the facing magnetic body.
- the third iron core has a third magnetic pole surface facing the facing magnetic body.
- the fourth iron core has a fourth magnetic pole surface facing the facing magnetic body. Both the first magnetic pole surface and the fourth magnetic pole surface form the first magnetic pole. Both the second magnetic pole surface and the third magnetic pole surface form a second magnetic pole opposite to the first magnetic pole.
- the plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes a plurality of opposite permanent magnets, each placed on the opposite side of the outer surface of each of the second core, the third core and the fourth core, facing the opposite side of the facing magnetic material. ..
- the gap has a satisfying maximum width l g represented by the following formula.
- l z, A z is the first core the effective area A thickness and effective area of the intermediate permanent magnet in the intervening permanent magnet interposed between each of the first core and the second core
- l ⁇ and A ⁇ are the thickness and effective area of the intervening permanent magnets interposed between the first core and the third core, respectively, and the effective area faces the first iron core in the intervening permanent magnets.
- l ra and A ra are the thickness and effective area of the opposite side permanent magnets arranged on the opposite side surface of the first core, respectively, and the effective area is the opposite side surface of the first core in the opposite side permanent magnet.
- l C is the sum of the thickness of the opposite permanent magnets located on the opposite side of the dimension and the first core of the first core in the opposite direction.
- a f is the area of the first magnetic pole surface.
- AC is 1 of the area occupied by the first magnetic pole surface, the second magnetic pole surface, the third magnetic pole surface, the fourth magnetic pole surface, and the surface of each of the plurality of intervening permanent magnets facing the facing magnetic body. It is / 4.
- a magnetic field generator comprising a plurality of magnetic monopoles, each of which is formed of a magnetic material, a plurality of permanent magnets, and the magnetic pole. It comprises a facing magnetic material arranged so as to face each other in a facing direction via a gap between the child and the child.
- the plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic material.
- the first core is adjacent to the second core and the third core.
- the fourth core is adjacent to the second core and the third core.
- the first iron core has a first magnetic pole surface facing the facing magnetic body.
- the second iron core has a second magnetic pole surface facing the facing magnetic body.
- the third iron core has a third magnetic pole surface facing the facing magnetic body.
- the fourth iron core has a fourth magnetic pole surface facing the facing magnetic body. Both the first magnetic pole surface and the fourth magnetic pole surface form the first magnetic pole. Both the second magnetic pole surface and the third magnetic pole surface form a second magnetic pole opposite to the first magnetic pole.
- the plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes a plurality of opposite permanent magnets, each placed on the opposite side of the outer surface of each of the second core, the third core and the fourth core, facing the opposite side of the facing magnetic material. ..
- the gap has a satisfying maximum width l g represented by the following formula.
- l z, A z is the first the effective area said a thickness and effective area of intervention of the permanent magnet interposed in the intermediate permanent magnet between each of the first core and the second core
- l ⁇ and A ⁇ are the thickness and effective area of the intervening permanent magnets interposed between the first core and the third core, respectively, and the effective area faces the first iron core in the intervening permanent magnets.
- l ra and A ra are the thickness and effective area of the opposite side permanent magnets arranged on the opposite side surface of the first core, respectively, and the effective area is the opposite side surface of the first core in the opposite side permanent magnet.
- l C is the sum of the thickness of the opposite permanent magnets located on the opposite side of the dimension and the first core of the first core in the opposite direction.
- a f is the area of the first magnetic pole surface.
- V D is the sum of the volumes of the plurality of intervening permanent magnets and the volumes of the plurality of opposite permanent magnets.
- V C is the respective volumes of the plurality of intervening permanent magnet, and each volume of the plurality of opposite permanent magnet, the first core, the second core, each of said third core and said fourth core The volume of and the sum of.
- All of the magnetic field generators have a size of a gap satisfying the given relational expression, so that a larger amount of magnetic flux is generated in the gap as compared with a magnetic field generator having a conventional two-dimensional magnetic pole structure. It is possible.
- the magnetic poles on the surface of the intervening permanent magnet adjacent to the core facing the core and the magnetic poles on the surface of the opposite permanent magnet facing the opposite side surface of the core are all. It is preferable that they are the same.
- the magnetic monopole further includes a back yoke formed of a magnetic material.
- the back yoke is formed by arranging the back yoke on the opposite side of the plurality of magnetic monopoles with the plurality of opposite side permanent magnets interposed therebetween so as to promote the magnetic flux flowing between the plurality of opposite side permanent magnets. It is possible to further increase the magnetic flux generated.
- the plurality of magnetic cores are arranged on the opposite side of the first iron core with the opposite side permanent magnets arranged on the opposite side surface of the first core among the plurality of opposite permanent magnets.
- the second core is sandwiched between the fifth core having a fifth magnetic pole surface facing the opposite side of the core and the opposite permanent magnet arranged on the opposite side of the second core among the plurality of opposite permanent magnets.
- a sixth core having a sixth magnetic pole surface facing the opposite side of the second core and the opposite side of the plurality of permanent magnets on the opposite side arranged on the opposite side of the third core.
- the seventh iron core which is arranged on the side opposite to the third iron core with the side permanent magnet sandwiched between them and has a seventh magnetic pole surface facing the side opposite to the third iron core, and the fourth of the plurality of opposite side permanent magnets.
- an eighth iron core arranged on the opposite side of the fourth iron core with the opposite side permanent magnet arranged on the opposite side surface of the iron core and having an eighth magnetic pole surface facing the side opposite to the fourth iron core. It may be included.
- the fifth core is adjacent to each of the sixth core and the seventh core
- the eighth core is adjacent to each of the sixth core and the seventh core
- the fifth magnetic pole surface and the fifth core are adjacent to each other.
- the eighth magnetic pole surface also constitutes the second magnetic pole, and the second magnetic pole surface and the third magnetic pole surface both constitute the first magnetic pole.
- the magnetic field generator further includes a magnetic substance contained in the void.
- the magnetic substance is at least one of a magnetic fluid, a magnetic powder, and a magnetic particle, and the magnetic field generated in the void by the magnetic field generator by being contained in the void is, for example, spectroscopic or Allows it to be used for the process of sieving charged particles.
- an electric motor which is attached to the magnetic field generator and the face-to-face magnetic body in the magnetic field generator, and moves the magnetic pole relative to the face-to-face magnetic body. It comprises a coil that forms a magnetic field.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Electromagnetism (AREA)
- Permanent Field Magnets Of Synchronous Machinery (AREA)
- Linear Motors (AREA)
Abstract
Provided is a magnetic field generating device enabling generation of a large amount of magnetic flux in a gap between a magnetic pole and a facing magnetic body. The magnetic field generating device is provided with a magnetic pole and a facing magnetic body that faces the magnetic pole with a gap therebetween. The magnetic pole comprises a first iron core, a second iron core, a third iron core, a fourth iron core, a plurality of interposed permanent magnets respectively interposed between adjacent iron cores among the first to fourth iron cores, and an opposite-side permanent magnet arranged on an opposite side of the first to fourth iron cores. The gap between the magnetic pole and the facing magnetic body satisfy a predetermined conditional expression to enable generation of a large amount of magnetic flux in the gap.
Description
本発明は、磁極子とこれに対向する対面磁性体との間の空隙に磁場を発生させる磁場発生装置及びこれを備えた電動機に関する。
The present invention relates to a magnetic field generator that generates a magnetic field in a gap between a magnetic pole and a facing magnetic material facing the magnetic pole, and an electric motor provided with the magnetic field generator.
従来、電機子コイルを有する電機子と、可動子と、を備えた電動機が知られている。特許文献1に開示される電動機は、複数の鉄心と、複数の永久磁石と、を含む可動子を備える。前記複数の永久磁石は、前記複数の鉄心において前記電機子と空隙をおいて対向する面を開放しながら当該鉄心を囲繞するように配置される。前記複数の鉄心のそれぞれと、前記複数の永久磁石のうちそれぞれの鉄心の周囲に配置される複数の永久磁石と、により磁極ブロックが構成される。それぞれの磁極ブロックにおいて、前記複数の永久磁石のうち前記鉄心を向く面が互いに同一の磁極を有するように当該複数の永久磁石が配置される。
Conventionally, an electric machine equipped with an armature having an armature coil and an armature is known. The electric motor disclosed in Patent Document 1 includes a mover including a plurality of iron cores and a plurality of permanent magnets. The plurality of permanent magnets are arranged so as to surround the iron core while opening a surface facing the armature with a gap between the plurality of iron cores. A magnetic pole block is composed of each of the plurality of iron cores and a plurality of permanent magnets arranged around each of the plurality of permanent magnets. In each magnetic pole block, the plurality of permanent magnets are arranged so that the surfaces of the plurality of permanent magnets facing the iron core have the same magnetic poles.
前記のような電動機によって例示される磁場発生装置であって、磁極子とこれに空隙をおいて対向する対面磁性体とを備えたものでは、前記空隙に生じる磁束数を効率よく増大させることが要求される。
In a magnetic field generator exemplified by an electric motor as described above, in which a magnetic field element and a facing magnetic material facing the magnetic pole with a gap thereof are provided, the number of magnetic fluxes generated in the gap can be efficiently increased. Required.
本発明の目的は、磁極子と、当該磁極子に空隙をおいて対向する対面磁性体と、を備えた磁場発生装置であって、前記空隙に多くの磁束を発生させることが可能なものを提供することにある。
An object of the present invention is a magnetic field generator provided with a magnetic monopole and a facing magnetic material facing each other with a gap between the magnetic poles, which can generate a large amount of magnetic flux in the gap. To provide.
提供されるのは、磁場発生装置であって、当該磁場発生装置は、それぞれが磁性材料により形成された複数の磁極子鉄心と、複数の永久磁石と、を含む磁極子と、当該磁極子と空隙を介して対向方向に対向するように配置された対面磁性体と、を備える。前記複数の磁極子鉄心は、前記対面磁性体に対向する配列面上で互いに並ぶ第1鉄心、第2鉄心、第3鉄心、及び第4鉄心を含む。前記第1鉄心は、前記第2鉄心及び前記第3鉄心と隣接する。前記第4鉄心は、前記第2鉄心及び前記第3鉄心と隣接する。前記第1鉄心は、前記対面磁性体に対向する第1磁極面を有する。前記第2鉄心は、前記対面磁性体に対向する第2磁極面を有する。前記第3鉄心は、前記対面磁性体に対向する第3磁極面を有する。前記第4鉄心は、前記対面磁性体に対向する第4磁極面を有する。前記第1磁極面及び前記第4磁極面はいずれも第1磁極を構成する。前記第2磁極面及び前記第3磁極面はいずれも前記第1磁極と反対の第2磁極を構成する。前記複数の永久磁石は、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のうち互いに隣接する鉄心どうしの間にそれぞれ介在する複数の介在永久磁石と、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のそれぞれの外面のうち前記対面磁性体と反対の側を向く反対側面の上にそれぞれ配置される複数の反対側永久磁石と、を含む。前記空隙は、次の式で表される条件を満たす最大幅lgを有する。
Provided is a magnetic field generator, the magnetic field generator comprising a plurality of magnetic monopoles, each of which is formed of a magnetic material, a plurality of permanent magnets, and the magnetic pole element. It comprises a facing magnetic material arranged so as to face each other in a facing direction through a gap. The plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic material. The first core is adjacent to the second core and the third core. The fourth core is adjacent to the second core and the third core. The first iron core has a first magnetic pole surface facing the facing magnetic body. The second iron core has a second magnetic pole surface facing the facing magnetic body. The third iron core has a third magnetic pole surface facing the facing magnetic body. The fourth iron core has a fourth magnetic pole surface facing the facing magnetic body. Both the first magnetic pole surface and the fourth magnetic pole surface form the first magnetic pole. Both the second magnetic pole surface and the third magnetic pole surface form a second magnetic pole opposite to the first magnetic pole. The plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes a plurality of opposite permanent magnets, each placed on the opposite side of the outer surface of each of the second core, the third core and the fourth core, facing the opposite side of the facing magnetic material. .. The gap has a satisfying maximum width l g represented by the following formula.
ここにおいて、lz,Azはそれぞれ前記第1鉄心と前記第2鉄心との間に介在する前記介在永久磁石の厚み及び有効面積であって当該有効面積は前記介在永久磁石において前記第1鉄心と対向する第1磁石面と前記第2鉄心と対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lφ,Aφはそれぞれ前記第1鉄心と前記第3鉄心との間に介在する前記介在永久磁石の厚み及び有効面積であって当該有効面積は前記介在永久磁石において前記第1鉄心と対向する第1磁石面と前記第3鉄心と対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lra,Araはそれぞれ前記第1鉄心の前記反対側面に配置される前記反対側永久磁石の厚み及び有効面積であって当該有効面積は前記反対側永久磁石において前記第1鉄心の前記反対側面と対向する第1磁石面と当該第1磁石面と反対側を向く第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lCは前記対向方向における前記第1鉄心の寸法と当該第1鉄心の前記反対側面に配置される前記反対側永久磁石の厚みとの和である。Afは前記第1磁極面の面積である。ACは前記第1磁極面と前記第2磁極面と前記第3磁極面と前記第4磁極面と前記複数の介在永久磁石のそれぞれにおいて前記対面磁性体に対向する面とが占める面積の1/4である。
Here, l z, A z is the first core the effective area A thickness and effective area of the intermediate permanent magnet in the intervening permanent magnet interposed between each of the first core and the second core The area of the region where the first magnet surface facing the surface and the second magnet surface facing the second iron core overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface. lφ and Aφ are the thickness and effective area of the intervening permanent magnets interposed between the first core and the third core, respectively, and the effective area faces the first iron core in the intervening permanent magnets. The area of the region where the first magnet surface and the second magnet surface facing the third iron core overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface. l ra and A ra are the thickness and effective area of the opposite side permanent magnets arranged on the opposite side surface of the first core, respectively, and the effective area is the opposite side surface of the first core in the opposite side permanent magnet. The area of the region where the first magnet surface facing the surface and the second magnet surface facing the opposite side of the first magnet surface overlap each other in the normal direction of the first magnet surface and the second magnet surface. l C is the sum of the thickness of the opposite permanent magnets located on the opposite side of the dimension and the first core of the first core in the opposite direction. A f is the area of the first magnetic pole surface. AC is 1 of the area occupied by the first magnetic pole surface, the second magnetic pole surface, the third magnetic pole surface, the fourth magnetic pole surface, and the surface of each of the plurality of intervening permanent magnets facing the facing magnetic body. It is / 4.
また、提供されるのは、磁場発生装置であって、それぞれが磁性材料により形成された複数の磁極子鉄心と、複数の永久磁石と、を含む磁極子と、当該磁極子と空隙を介して対向方向に対向するように配置された対面磁性体と、を備える。前記複数の磁極子鉄心は、前記対面磁性体に対向する配列面上で互いに並ぶ第1鉄心、第2鉄心、第3鉄心、及び第4鉄心を含む。前記第1鉄心は、前記第2鉄心及び前記第3鉄心と隣接する。前記第4鉄心は、前記第2鉄心及び前記第3鉄心と隣接する。前記第1鉄心は、前記対面磁性体に対向する第1磁極面を有する。前記第2鉄心は、前記対面磁性体に対向する第2磁極面を有する。前記第3鉄心は、前記対面磁性体に対向する第3磁極面を有する。前記第4鉄心は、前記対面磁性体に対向する第4磁極面を有する。前記第1磁極面及び前記第4磁極面はいずれも第1磁極を構成する。前記第2磁極面及び前記第3磁極面はいずれも前記第1磁極と反対の第2磁極を構成する。前記複数の永久磁石は、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のうち互いに隣接する鉄心どうしの間にそれぞれ介在する複数の介在永久磁石と、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のそれぞれの外面のうち前記対面磁性体と反対の側を向く反対側面の上にそれぞれ配置される複数の反対側永久磁石と、を含む。前記空隙は、次の式で表される条件を満たす最大幅lgを有する。
Also provided is a magnetic field generator, each via a monopole containing a plurality of monopoles formed of a magnetic material, a plurality of permanent magnets, and the magnetic monopoles and voids. It includes a facing magnetic material arranged so as to face each other in the facing direction. The plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic material. The first core is adjacent to the second core and the third core. The fourth core is adjacent to the second core and the third core. The first iron core has a first magnetic pole surface facing the facing magnetic body. The second iron core has a second magnetic pole surface facing the facing magnetic body. The third iron core has a third magnetic pole surface facing the facing magnetic body. The fourth iron core has a fourth magnetic pole surface facing the facing magnetic body. Both the first magnetic pole surface and the fourth magnetic pole surface form the first magnetic pole. Both the second magnetic pole surface and the third magnetic pole surface form a second magnetic pole opposite to the first magnetic pole. The plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes a plurality of opposite permanent magnets, each placed on the opposite side of the outer surface of each of the second core, the third core and the fourth core, facing the opposite side of the facing magnetic material. .. The gap has a satisfying maximum width l g represented by the following formula.
ここにおいて、lz,Azはそれぞれ前記第1鉄心と前記第2鉄心との間に介在する前記介在の永久磁石の厚み及び有効面積であって当該有効面積は前記介在永久磁石において前記第1鉄心と対向する第1磁石面と前記第2鉄心と対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lφ,Aφはそれぞれ前記第1鉄心と前記第3鉄心との間に介在する前記介在永久磁石の厚み及び有効面積であって当該有効面積は前記介在永久磁石において前記第1鉄心と対向する第1磁石面と前記第3鉄心と対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lra,Araはそれぞれ前記第1鉄心の前記反対側面に配置される前記反対側永久磁石の厚み及び有効面積であって当該有効面積は前記反対側永久磁石において前記第1鉄心の前記反対側面と対向する第1磁石面と当該第1磁石面と反対側を向く第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lCは前記対向方向における前記第1鉄心の寸法と当該第1鉄心の前記反対側面に配置される前記反対側永久磁石の厚みとの和である。Afは前記第1磁極面の面積である。ACは前記第1磁極面と前記第2磁極面と前記第3磁極面と前記第4磁極面と前記複数の介在永久磁石のそれぞれにおいて前記対面磁性体に対向する面とが占める面積の1/4である。VDは前記複数の介在永久磁石のそれぞれの体積と前記複数の反対側永久磁石のそれぞれの体積の総和である。VCは、前記複数の介在永久磁石のそれぞれの体積と、前記複数の反対側永久磁石のそれぞれの体積と、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のそれぞれの体積と、の総和である。
Here, l z, A z is the first the effective area said a thickness and effective area of intervention of the permanent magnet interposed in the intermediate permanent magnet between each of the first core and the second core The area of the region where the first magnet surface facing the iron core and the second magnet surface facing the second iron core overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface. lφ and Aφ are the thickness and effective area of the intervening permanent magnets interposed between the first core and the third core, respectively, and the effective area faces the first iron core in the intervening permanent magnets. The area of the region where the first magnet surface and the second magnet surface facing the third iron core overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface. l ra and A ra are the thickness and effective area of the opposite side permanent magnets arranged on the opposite side surface of the first core, respectively, and the effective area is the opposite side surface of the first core in the opposite side permanent magnet. The area of the region where the first magnet surface facing the surface and the second magnet surface facing the opposite side of the first magnet surface overlap each other in the normal direction of the first magnet surface and the second magnet surface. l C is the sum of the thickness of the opposite permanent magnets located on the opposite side of the dimension and the first core of the first core in the opposite direction. A f is the area of the first magnetic pole surface. AC is 1 of the area occupied by the first magnetic pole surface, the second magnetic pole surface, the third magnetic pole surface, the fourth magnetic pole surface, and the surface of each of the plurality of intervening permanent magnets facing the facing magnetic body. It is / 4. V D is the sum of the volumes of the plurality of intervening permanent magnets and the volumes of the plurality of opposite permanent magnets. V C is the respective volumes of the plurality of intervening permanent magnet, and each volume of the plurality of opposite permanent magnet, the first core, the second core, each of said third core and said fourth core The volume of and the sum of.
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The
図1は、本発明の第1の実施の形態に係る磁場発生装置の磁極子の最小単位である単位胞20を示す。前記磁極子は、少なくとも一つの前記単位胞20を含む。前記磁場発生装置は、前記磁極子と、当該磁極子に空隙を介して対向する対面磁性体と、を備える。前記対面磁性体は、永久磁石、鉄などの磁性材料により構成される。
FIG. 1 shows a unit cell 20 which is a minimum unit of a magnetic pole element of the magnetic field generator according to the first embodiment of the present invention. The monopole comprises at least one monopole 20. The magnetic field generator includes the magnetic monopole and a facing magnetic material facing the monopole via a gap. The face-to-face magnetic material is made of a magnetic material such as a permanent magnet or iron.
前記単位胞20は、図1に示されるような三次元磁極構造を有する。当該単位胞20は、複数の磁極子鉄心と、複数の永久磁石と、を含む。
The unit cell 20 has a three-dimensional magnetic pole structure as shown in FIG. The unit cell 20 includes a plurality of magnetic monopole cores and a plurality of permanent magnets.
前記複数の磁極子鉄心のそれぞれは、磁性体、この実施の形態では直方体形状を有する軟磁性体、である。前記複数の磁極子鉄心は、同一の配列面上で互いに並ぶ第1鉄心22A、第2鉄心22B、第3鉄心22C、及び第4鉄心22Dを含む。前記配列面は、この実施の形態では、前記対面磁性体に対向する平面、図1に示される姿勢では水平面、である。前記第1鉄心22Aは、前記第2鉄心22B及び前記第3鉄心22Cと、前記配列面において互いに直交する2方向に隣接し、前記第4鉄心22Dは、前記第2鉄心22B及び前記第3鉄心22Cと前記2方向に隣接する。
Each of the plurality of magnetic pole cores is a magnetic material, and in this embodiment, a soft magnetic material having a rectangular parallelepiped shape. The plurality of magnetic monopoles include a first core 22A, a second core 22B, a third core 22C, and a fourth core 22D that are aligned with each other on the same array surface. In this embodiment, the array plane is a plane facing the facing magnetic material, and in the posture shown in FIG. 1, a horizontal plane. The first core 22A is adjacent to the second core 22B and the third core 22C in two directions orthogonal to each other in the arrangement plane, and the fourth core 22D is the second core 22B and the third core. It is adjacent to 22C in the above two directions.
前記第1鉄心22Aは、前記対面磁性体に対向する第1磁極面24Aを有し、前記第2鉄心22Bは、前記対面磁性体に対向する第2磁極面24Bを有し、前記第3鉄心22Cは、前記対面磁性体に対向する第3磁極面24Cを有し、前記第4鉄心22Dは、前記対面磁性体に対向する第4磁極面24Dを有する。図1に示される姿勢では、前記第1~第4磁極面24A~24Dはいずれも上を向く面である。前記第1磁極面24A及び前記第4磁極面24Dはいずれも第1磁極(N極またはS極)を構成し、前記第2磁極面24B及び前記第3磁極面24Cはいずれも前記第1磁極と反対の第2磁極(S極またはN極)を構成する。
The first iron core 22A has a first magnetic pole surface 24A facing the facing magnetic body, and the second iron core 22B has a second magnetic pole surface 24B facing the facing magnetic body, and the third iron core 22B. The 22C has a third magnetic pole surface 24C facing the facing magnetic body, and the fourth iron core 22D has a fourth magnetic pole surface 24D facing the facing magnetic body. In the posture shown in FIG. 1, the first to fourth magnetic pole surfaces 24A to 24D are all facing upwards. The first magnetic pole surface 24A and the fourth magnetic pole surface 24D both form a first magnetic pole (N pole or S pole), and the second magnetic pole surface 24B and the third magnetic pole surface 24C both form the first magnetic pole. It constitutes a second magnetic pole (S pole or N pole) opposite to the above.
前記複数の永久磁石は、複数の介在永久磁石231と、複数の反対側永久磁石232と、を含む。前記複数の介在永久磁石231は、前記第1鉄心22A、前記第2鉄心22B、前記第3鉄心22C及び前記第4鉄心22Dのうち互いに隣接する鉄心どうしの間にそれぞれ介在する。前記複数の反対側永久磁石232は、前記第1鉄心22A、前記第2鉄心22B、前記第3鉄心22C及び前記第4鉄心22Dの反対側面の上にそれぞれ配置される。前記反対側面は、前記第1~第4鉄心22A~22Dのそれぞれの外面のうち前記対面磁性体と反対の側を向く面、図1では下面、である。
The plurality of permanent magnets include a plurality of intervening permanent magnets 231 and a plurality of opposite side permanent magnets 232. The plurality of intervening permanent magnets 231 are interposed between the iron cores of the first core 22A, the second core 22B, the third core 22C, and the fourth core 22D, which are adjacent to each other. The plurality of opposite permanent magnets 232 are arranged on the opposite side surfaces of the first core 22A, the second core 22B, the third core 22C, and the fourth core 22D, respectively. The opposite side surface is a surface of the outer surfaces of the first to fourth iron cores 22A to 22D facing the opposite side to the facing magnetic material, and the lower surface in FIG. 1.
前記単位胞20は、前記配列面上に並ぶ複数の磁極ブロック、すなわち、第1磁極ブロック21A、第2磁極ブロック21B、第3磁極ブロック21C及び第4磁極ブロック21Dにより構成される。前記第1磁極ブロック21Aは、前記配列面上で互いに直交する2方向について、前記第2磁極ブロック21B及び前記第3磁極ブロック21Cと隣接し、前記第4磁極ブロック214は、前記2方向について前記第2磁極ブロック212及び前記第3磁極ブロック213と隣接している。
The unit cell 20 is composed of a plurality of magnetic pole blocks arranged on the array surface, that is, a first magnetic pole block 21A, a second magnetic pole block 21B, a third magnetic pole block 21C, and a fourth magnetic pole block 21D. The first magnetic pole block 21A is adjacent to the second magnetic pole block 21B and the third magnetic pole block 21C in two directions orthogonal to each other on the array plane, and the fourth magnetic pole block 214 is said in the two directions. It is adjacent to the second magnetic pole block 212 and the third magnetic pole block 213.
前記第1~第4磁極ブロック211~214のそれぞれは、前記複数の磁気子鉄心のうちの一つ及び複数の永久磁石を含む。前記第1磁極ブロック21A、前記第2磁極ブロック21B、前記第3磁極ブロック21C及び前記第4磁極ブロック214は、前記磁極子鉄心としてそれぞれ前記第1鉄心22A、前記第2鉄心22B、前記第3鉄心22C及び前記第4鉄心22Dを含む。
Each of the first to fourth magnetic pole blocks 211 to 214 includes one of the plurality of magnetic cores and a plurality of permanent magnets. The first magnetic pole block 21A, the second magnetic pole block 21B, the third magnetic pole block 21C, and the fourth magnetic pole block 214 have the first core 22A, the second core 22B, and the third as the magnetic monopoles, respectively. The iron core 22C and the fourth iron core 22D are included.
前記複数の介在永久磁石231及び前記複数の反対側永久磁石232のそれぞれは、前記第1~第4鉄心22A~22Dのうち当該永久磁石が配置されるべき磁極子鉄心の外面と同等又はそれよりも若干大きい主面を有しており、当該外面を隠すようにこれに取り付けられる。直方体状をなす前記複数の磁極子鉄心のそれぞれは6つの外面を有し、そのうちの3つの外面に前記永久磁石が取り付けられる。換言すれば、当該磁極子鉄心には、他の3つの外面である開放外面を開放するように前記永久磁石が取り付けられる。それぞれの磁極子鉄心に対し、前記複数の介在永久磁石231及び前記複数の反対側永久磁石232は当該磁極子鉄心に対して互いに同一の磁極が向くように配置される。前記3つの開放外面の少なくとも一つは、磁極面を構成する。図1に示される例では、上を向く磁極面である前記第1~第4磁極面24A~24Dの上側に間隙をおいて対面磁性体、例えば電動機の電機子、が配置される。前記第1~第4鉄心22A~22Dのそれぞれの磁極面の磁極は、当該鉄心に取付けられる各永久磁石のうち当該鉄心を向く面である第1磁石面が構成する磁極と同一である。また、各永久磁石のうち外側を向く面、つまり前記磁極子鉄心と反対側を向く第2磁石面、は前記磁極面の磁極と反対の磁極を有する。
Each of the plurality of intervening permanent magnets 231 and the plurality of opposite side permanent magnets 232 is equal to or higher than the outer surface of the magnetic monopole core in which the permanent magnets are to be arranged among the first to fourth cores 22A to 22D. Also has a slightly larger main surface and is attached to it so as to hide the outer surface. Each of the plurality of magnetic monopoles forming a rectangular parallelepiped has six outer surfaces, and the permanent magnet is attached to three outer surfaces thereof. In other words, the permanent magnet is attached to the magnetic monopole so as to open the other three outer surfaces, that is, the open outer surface. For each magnetic monopole, the plurality of intervening permanent magnets 231 and the plurality of opposite permanent magnets 232 are arranged so that the same magnetic poles face each other with respect to the magnetic monopole. At least one of the three open outer surfaces constitutes a magnetic pole surface. In the example shown in FIG. 1, a facing magnetic material, for example, an armature of an electric motor, is arranged with a gap above the first to fourth magnetic pole surfaces 24A to 24D, which are magnetic pole surfaces facing upward. The magnetic poles on the magnetic pole surfaces of the first to fourth cores 22A to 22D are the same as the magnetic poles formed by the first magnet surface, which is the surface facing the iron core among the permanent magnets attached to the iron core. Further, the surface of each permanent magnet facing outward, that is, the second magnet surface facing the side opposite to the magnetic pole core, has a magnetic pole opposite to the magnetic pole of the magnetic pole surface.
前記単位胞20では、前記第1~第4磁極ブロック21A~21Dのうち互いに隣接する磁極ブロックが、当該互いに隣接する磁極ブロックのそれぞれに含まれる磁極子鉄心どうしの間に介在する前記介在永久磁石23を共有する。例えば、前記第1磁極ブロック21Aは、これに隣接する前記第2磁極ブロック21B及び前記第3磁極ブロック21Cとの間でそれぞれ前記介在永久磁石231を共有する。同様に、前記第4磁極ブロック21Dは、これに隣接する前記第2磁極ブロック21B及び磁極ブロック21Cとの間でそれぞれ前記介在永久磁石231を共有する。また、前記第1~第4磁極ブロック21A~21Dのそれぞれは、前記第1~第4鉄心22A~22Dのそれぞれの前記反対側面に装着される一つの反対側永久磁石232を含む。
In the unit cell 20, the intervening permanent magnets in which the magnetic pole blocks of the first to fourth magnetic pole blocks 21A to 21D adjacent to each other are interposed between the magnetic pole cores included in the respective magnetic pole blocks adjacent to each other. Share 23. For example, the first magnetic pole block 21A shares the intervening permanent magnet 231 between the second magnetic pole block 21B and the third magnetic pole block 21C adjacent thereto. Similarly, the fourth magnetic pole block 21D shares the intervening permanent magnet 231 with the second magnetic pole block 21B and the magnetic pole block 21C adjacent thereto. Further, each of the first to fourth magnetic pole blocks 21A to 21D includes one opposite side permanent magnet 232 mounted on the opposite side surface of each of the first to fourth iron cores 22A to 22D.
前記とは逆に、互いに隣接する2つの磁極ブロックのそれぞれが互いに独立した永久磁石を包有してもよい。例えば、前記第1磁極ブロック21Aが、前記第2磁極ブロック21B及び前記第3磁極ブロック21Cのそれぞれを向く介在永久磁石23を含むとともに、前記第2磁極ブロック21B及び前記第3磁極ブロック21Cのそれぞれが、前記第1磁極ブロック21Aの前記介在永久磁石231とは別に当該第1磁極ブロック21Aをそれぞれ向く介在永久磁石231を含んでもよい。同様に、前記第4磁極ブロック21Dが、前記第2磁極ブロック21B及び前記第3磁極ブロック21Cのそれぞれを向く介在永久磁石231を含むとともに、前記第2磁極ブロック21B及び前記第3磁極ブロック21Cのそれぞれが、前記第4磁極ブロック21Dの前記介在永久磁石231とは別に当該第4磁極ブロック21Dをそれぞれ向く介在永久磁石231を含んでもよい。換言すれば、前記第1~第4磁極ブロック21A~21Dの第1~第4鉄心22A~22Dのうち互いに隣接する鉄心どうしの間に、それぞれが隣り合う磁極ブロックに属する一対の介在永久磁石23が介在してもよい。
Contrary to the above, each of the two magnetic pole blocks adjacent to each other may include permanent magnets independent of each other. For example, the first magnetic pole block 21A includes an intervening permanent magnet 23 facing each of the second magnetic pole block 21B and the third magnetic pole block 21C, and the second magnetic pole block 21B and the third magnetic pole block 21C, respectively. However, in addition to the intervening permanent magnet 231 of the first magnetic pole block 21A, an intervening permanent magnet 231 facing the first magnetic pole block 21A may be included. Similarly, the fourth magnetic pole block 21D includes an intervening permanent magnet 231 facing each of the second magnetic pole block 21B and the third magnetic pole block 21C, and the second magnetic pole block 21B and the third magnetic pole block 21C. Each may include an intervening permanent magnet 231 facing the fourth magnetic pole block 21D separately from the intervening permanent magnet 231 of the fourth magnetic pole block 21D. In other words, a pair of intervening permanent magnets 23 belonging to adjacent magnetic pole blocks between the adjacent iron cores of the first to fourth iron cores 22A to 22D of the first to fourth magnetic pole blocks 21A to 21D. May intervene.
前記単位胞20では、前記第1~第4磁極ブロック21A~21Dのうち互いに隣接する磁極ブロックのペアが複数の磁路を形成する。例えば、図1に矢印Minで示されるように前記第2磁極ブロック21Bへ入って矢印Moutで示されるように前記第1磁極ブロック21Aから出る磁路として、次の第1磁路、第2磁路及び第3磁路が形成される。前記第1磁路は、図1に矢印M1で示されるように、前記第1鉄心22Aと前記第2鉄心22Bとの間の介在永久磁石231を通って前記第2磁極ブロック21Bから前記第1磁極ブロック21Aへ入る。前記第2磁路は、図1に矢印M2で示されるように、前記第2鉄心22Bと前記第4鉄心22Dとの間の介在永久磁石231を通って前記第2磁極ブロック21Bから前記第4磁極ブロック21Dへ入り、前記第3磁極ブロック21Cと前記第4磁極ブロック21Dとの間の介在永久磁石231を通って前記第4磁極ブロック21Dから前記第3磁極ブロック21Cへ入り、前記第1磁極ブロック21Aと前記第3磁極ブロック21Cとの間の介在永久磁石23を通って前記第3磁極ブロック21Cから前記第1磁極ブロック21Aへ入る。前記第3磁路は、図1に矢印M3で示すように、前記第2鉄心22Bの反対側面(図1では下面)に配置された反対側永久磁石232を通って前記第2磁極ブロック21Bから出て、前記第1鉄心22Aの反対側面(図1では下面)に配置された反対側永久磁石232を通って前記第1磁極ブロック21Aへ入る。
In the unit cell 20, a pair of magnetic pole blocks adjacent to each other among the first to fourth magnetic pole blocks 21A to 21D form a plurality of magnetic paths. For example, as a magnetic path that enters the second magnetic pole block 21B as shown by the arrow Min in FIG. 1 and exits from the first magnetic pole block 21A as indicated by the arrow Mout, the following first magnetic path and second magnetic path are used. A path and a third magnetic path are formed. As shown by the arrow M1 in FIG. 1, the first magnetic path passes through the intervening permanent magnet 231 between the first iron core 22A and the second iron core 22B, and the first magnetic path from the second magnetic pole block 21B. Enter the magnetic pole block 21A. The second magnetic path passes from the second magnetic pole block 21B to the fourth through the intervening permanent magnet 231 between the second core 22B and the fourth core 22D, as shown by the arrow M2 in FIG. It enters the magnetic pole block 21D, passes through the intervening permanent magnet 231 between the third magnetic pole block 21C and the fourth magnetic pole block 21D, enters the third magnetic pole block 21C from the fourth magnetic pole block 21D, and enters the first magnetic pole. The third magnetic pole block 21C enters the first magnetic pole block 21A through the intervening permanent magnet 23 between the block 21A and the third magnetic pole block 21C. As shown by the arrow M3 in FIG. 1, the third magnetic path passes from the second magnetic pole block 21B through the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) of the second iron core 22B. It exits and enters the first magnetic pole block 21A through the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) of the first iron core 22A.
このように、前記単位胞20では、当該単位胞20の中に複数の磁路が存在するため、それぞれの永久磁石231,232において磁束が通る部分の面積である有効面積が大きい。
As described above, in the unit cell 20, since a plurality of magnetic paths exist in the unit cell 20, the effective area which is the area of the portion through which the magnetic flux passes in each permanent magnet 231 and 232 is large.
また、前記単位胞20では、前記複数の介在永久磁石231及び前記複数の反対側232の有効面積が小さいため、それぞれの永久磁石が小さい厚みを有していても大きな磁気抵抗を確保することが可能である。このことは、前記単位胞20での反磁場を小さくすることを可能にする。
Further, in the unit cell 20, since the effective areas of the plurality of intervening permanent magnets 231 and the plurality of opposite sides 232 are small, it is possible to secure a large magnetoresistance even if each permanent magnet has a small thickness. It is possible. This makes it possible to reduce the demagnetic field in the unit cell 20.
前記複数の介在永久磁石231及び前記複数の反対側永久磁石232が外部に出力する磁束の大きさは、それぞれの永久磁石において磁束が通る有効面積の総和に比例し、永久磁石に生じる反磁場の大きさに反比例する。したがって、図1に示されるような三次元磁極構造をもつ前記単位胞20では、前記複数の永久磁石231,232が外部に大きな磁束を出力することが可能である。
The magnitude of the magnetic flux output to the outside by the plurality of intervening permanent magnets 231 and the plurality of opposite permanent magnets 232 is proportional to the total effective area through which the magnetic flux passes in each permanent magnet, and the countermagnetic field generated in the permanent magnets. It is inversely proportional to the size. Therefore, in the unit cell 20 having a three-dimensional magnetic pole structure as shown in FIG. 1, the plurality of permanent magnets 231 and 232 can output a large magnetic flux to the outside.
このように、前記単位胞20のもつ前記三次元磁極構造の目的は、空隙中の磁場のエネルギーの増加にある。例えば、前記単位胞20を含む磁場発生装置を電動機に適用した場合、外部から投入された電流と相互作用し易い場所である空隙に生じる磁場のエネルギー量を高めることにより、少ない電流で大きな電磁力が得られることを可能にする。これは、必要電圧は大きくなるがジュール損が低減されるからである。
As described above, the purpose of the three-dimensional magnetic pole structure of the unit cell 20 is to increase the energy of the magnetic field in the void. For example, when a magnetic field generator including the unit cell 20 is applied to an electric motor, a large electromagnetic force is applied with a small current by increasing the amount of energy of the magnetic field generated in a void, which is a place where an externally applied current easily interacts. Allows to be obtained. This is because the required voltage is large but the Joule loss is reduced.
前記のような三次元磁極構造を含む磁場発生装置が効果を発揮するには、つまり、前記空隙内に多くの磁束を発生させるには、当該空隙の寸法が重要である。図2は、前記単位胞20と、一般的な磁極配列をもつ比較例に係る構造、具体的には図3に示されるような比較構造90、と、の双方における空隙率と空隙における磁束密度との関係を示したグラフである。前記比較構造90は、図3に示されるような二次元磁極構造であって、一般的なSPM構造、すなわち表面永久磁石型電動機の構造、を模式化したものである。図2では、対面磁性体に空隙を介して対向する磁極子に前記比較構造90を適用した場合における残留磁束密度Brに対する前記空隙における磁束密度Bgの比が破線で示され、当該磁極子に図1に示されるような単位胞90に係る三次元磁極構造が適用された場合における残留磁束密度Brに対する前記空隙における前記空隙における磁束密度Bgの比が実線で示されている。
The size of the gap is important for the magnetic field generator including the three-dimensional magnetic pole structure as described above to be effective, that is, for generating a large amount of magnetic flux in the gap. FIG. 2 shows the porosity and the magnetic flux density in the void in both the unit cell 20 and the structure according to the comparative example having a general magnetic pole arrangement, specifically, the comparative structure 90 as shown in FIG. It is a graph showing the relationship with. The comparative structure 90 is a two-dimensional magnetic pole structure as shown in FIG. 3, and is a schematic representation of a general SPM structure, that is, a structure of a surface permanent magnet type motor. In Figure 2, the ratio of the magnetic flux density B g in the gap for the residual magnetic flux density B r in the case of applying the comparative structure 90 on opposite Jikyokuko through the gap facing the magnetic body is shown in dashed lines, the Jikyokuko the ratio of the magnetic flux density B g is represented by the solid line in the gap in the space for the residual magnetic flux density B r in a case where the three-dimensional magnetic structure according to the unit cell 90 as shown in FIG. 1 is applied to.
以下、前記空隙中の磁束の計算方法について述べる。当該計算は、磁路の断面積及び各永久磁石の厚みが一定であると仮定して行われる。
Hereinafter, the calculation method of the magnetic flux in the void will be described. The calculation is performed on the assumption that the cross-sectional area of the magnetic path and the thickness of each permanent magnet are constant.
まず、前記磁極子に前記SPM構造である前記比較構造90が適用された場合について説明する。前記比較構造90は、図3に示すように、鉄心92と、前記鉄心92の途中に配置される永久磁石93と、を含み、前記鉄心92は前記永久磁石93と反対側の位置において空隙97を挟んで対向する一対の端部を有する。この比較構造90では図3に示されるような磁路M9が形成される。当該磁路M9は、前記永久磁石93、前記鉄心92の上流側部分92a、前記空隙97及び前記鉄心92の下流側部分92bを順に通って前記永久磁石93に戻るように巡回する。
First, a case where the comparative structure 90, which is the SPM structure, is applied to the magnetic monopole will be described. As shown in FIG. 3, the comparative structure 90 includes an iron core 92 and a permanent magnet 93 arranged in the middle of the iron core 92, and the iron core 92 has a gap 97 at a position opposite to the permanent magnet 93. It has a pair of ends facing each other across the magnet. In this comparative structure 90, a magnetic path M9 as shown in FIG. 3 is formed. The magnetic path M9 circulates through the permanent magnet 93, the upstream portion 92a of the iron core 92, the gap 97, and the downstream portion 92b of the iron core 92 in this order so as to return to the permanent magnet 93.
ここでは、永久磁石93における磁場の強さ、磁束密度、磁束をそれぞれHm,Bm,Φmとし、鉄心92における磁場の強さ、磁束密度、磁束をそれぞれHi,Bi,Φiとし、空隙97における磁場の強さ、磁束密度、磁束をそれぞれHg、Bg、Φgとする。また、前記永久磁石93の厚み、磁路に垂直な平面の面積をそれぞれlm,Smとし、鉄心92の長さ、磁路に垂直な平面の面積をそれぞれli,Siとし、空隙の幅、磁路に垂直な平面の面積をそれぞれlg、Sgとする。さらに、残留磁束密度をBrとし、真空の透磁率をμ0とし、鉄心92の比透磁率をμrとする。
Here, the magnetic field strength in the permanent magnet 93, the magnetic flux density, respectively a magnetic flux H m, B m, and [Phi m, the magnetic field strength in the core 92, the magnetic flux density, respectively a magnetic flux H i, B i, Φ i Let the strength of the magnetic field, the magnetic flux density, and the magnetic flux in the void 97 be H g, B g , and Φ g , respectively. Further, the thickness of the permanent magnet 93 and the area of the plane perpendicular to the magnetic path are set to l m and S m , respectively, and the length of the iron core 92 and the area of the plane perpendicular to the magnetic path are set to l i and S i, respectively. Let l g and S g be the width of and the area of the plane perpendicular to the magnetic path, respectively. Further, the residual magnetic flux density and B r, the magnetic permeability of vacuum and mu 0, the relative permeability of the iron core 92 and mu r.
まず、アンペール・マクスウェルの式から、次の式が成り立つ。
First, from Ampere's Maxwell's equation, the following equation holds.
また、前記永久磁石93、前記鉄心92及び前記空隙97のそれぞれにおける磁束密度Bm,Bi,Bgはそれぞれ、次の第1式、第2式、第3式で表される。
Further, the magnetic flux densities B m , Bi , and B g in each of the permanent magnet 93, the iron core 92, and the void 97 are represented by the following equations 1, 2, and 3, respectively.
これらの式から次の式が導かれる。
The following equations are derived from these equations. The
ここで、図3の磁路M9ではΦm=Φi=Φgである。また、μr≫μ0、Sm=Sg=Sとすると、前記式は次のように変換される。
Here, in the magnetic path M9 of FIG. 3, Φ m = Φ i = Φ g . Further, if μ r >> μ 0 and S m = S g = S, the above equation is converted as follows.
そして、最終的に、次の式が得られる。これが、図2に破線で示される曲線の式である。
And finally, the following equation is obtained. This is the formula of the curve shown by the broken line in FIG. The
次に、前記磁極子に図1に示されるような三次元磁極構造を利用した場合について説明する。
Next, a case where a three-dimensional magnetic pole structure as shown in FIG. 1 is used for the magnetic pole element will be described.
ここでは、前記第1磁極ブロック21Aにおける第1鉄心22Aと前記第2磁極ブロック21Bにおける前記第2鉄心22Bとの間の介在永久磁石231における磁場の強さ及び磁束密度をそれぞれHz,Bzとし、前記第1磁極ブロック21Aにおける前記第1鉄心22Aと前記第3磁極ブロック21Cにおける前記第3鉄心22Cの間の介在永久磁石231における磁場の強さ及び磁束密度をそれぞれHφ,Bφとし、前記第1鉄心22Aの反対側面(図1では下面)に配置される反対側永久磁石232における磁場の強さ及び磁束密度をそれぞれHra,Braとする。また、前記第1磁極ブロック21Aにおける前記第1鉄心22Aと前記第2磁極ブロック21Bにおける前記第2鉄心22Bとの間の前記介在永久磁石231の厚み及び有効面積(当該介在永久磁石231において前記第1鉄心22Aと対向する第1磁石面と前記第2鉄心22Bと対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積であって、前記介在永久磁石231が直方体である場合には前記第1及び第2磁石面のそれぞれの面積に相当する。)をそれぞれlz,Azとし、前記第1磁極ブロック21Aにおける前記第1鉄心22Aと前記第3磁極ブロック21Cにおける前記第3鉄心22Cとの間の介在永久磁石231の厚み及び有効面積(当該介在永久磁石231において前記第1鉄心22Aと対向する第1磁石面と前記第3鉄心22Cと対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積)をそれぞれlφ,Aφとし、前記第1鉄心22Aの反対側面(図1では下面)に配置される反対側永久磁石232の厚み及び有効面積(当該反対側永久磁石232において前記第1鉄心22Aの前記反対側面と対向する第1磁石面と当該第1磁石面と反対側を向く第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積であって、前記介在永久磁石231が直方体である場合には前記第1及び第2磁石面のそれぞれの面積に相当する。)をそれぞれlra,Araとする。さらに、前記第1~第4磁極面24A~24Dと対面磁性体10との間の空隙における磁場の強さ、磁束密度及び磁束をそれぞれHg、Bg、Φgとし、残留磁束密度をBrとし、真空の透磁率をμ0とし、前記第1~第4磁極面24A~24Dのそれぞれの面積をAfとする。また、前記第1~第4鉄心22A~22Dは十分に高い透磁率を有していてその磁気抵抗は0であるとみなす。
Here, the strength and magnetic flux density of the magnetic field in the intervening permanent magnet 231 between the first iron core 22A in the first magnetic pole block 21A and the second iron core 22B in the second magnetic pole block 21B are H z and B z, respectively. The strength and magnetic flux density of the magnetic field in the intervening permanent magnet 231 between the first iron core 22A in the first magnetic pole block 21A and the third iron core 22C in the third magnetic pole block 21C are H φ and B φ, respectively. The strength and magnetic flux density of the magnetic field in the opposite permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) of the first iron core 22A are defined as Hra and Bra, respectively. Further, the thickness and effective area of the intervening permanent magnet 231 between the first iron core 22A in the first magnetic pole block 21A and the second iron core 22B in the second magnetic pole block 21B (the first in the intervening permanent magnet 231). 1 The area of the region where the first magnet surface facing the iron core 22A and the second magnet surface facing the second iron core 22B overlap each other in the normal direction of the first magnet surface and the second magnet surface. Te, the intervening permanent magnet 231 is in the case of a rectangular parallelepiped corresponding to the respective areas of the first and second magnets face.) respectively l z, and a z, the first in the first magnetic pole block 21A The thickness and effective area of the intervening permanent magnet 231 between the iron core 22A and the third iron core 22C in the third magnetic pole block 21C (the first magnet surface facing the first iron core 22A in the intervening permanent magnet 231 and the first magnet). 3 Areas of regions where the second magnet surface facing the iron core 22C overlaps with the first magnet surface and the second magnet surface in the normal direction) are set to l φ and A φ , respectively, and the first iron core 22A. The thickness and effective area of the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) (the first magnet surface facing the opposite side surface of the first iron core 22A in the opposite side permanent magnet 232 and the first magnet surface). The area of the region where the first magnet surface and the second magnet surface facing the opposite side of the first magnet surface overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface, and the intervening permanent magnet 231 is a rectangular body. If corresponds to the respective areas of the first and second magnets face.) respectively l ra, and a ra. Further, the strength of the magnetic field, the magnetic flux density, and the magnetic flux in the gap between the first to fourth magnetic pole surfaces 24A to 24D and the facing magnetic body 10 are H g , B g , and Φ g , respectively, and the residual magnetic flux density is B. Let r be, the magnetic permeability of the vacuum be μ 0, and the respective areas of the first to fourth magnetic flux surfaces 24A to 24D be A f . Further, the first to fourth iron cores 22A to 22D have a sufficiently high magnetic permeability, and its magnetic resistance is considered to be zero.
次に、前記三次元磁極構造において形成される上述の3つの磁路、つまり、前記第1磁路、前記第2磁路及び前記第3磁路、について考察する。
Next, the above-mentioned three magnetic paths formed in the three-dimensional magnetic pole structure, that is, the first magnetic path, the second magnetic path, and the third magnetic path will be considered.
図4は、前記3つの磁路の中の前記第1磁路を太線矢印で強調して示し、その他の磁路を細線矢印で示している。前記第1磁路は、前記第1磁極ブロック21Aから出て前記対面磁性体10を通過して前記第2磁極ブロック21Bへ入り、前記第1鉄心22Aと前記第2鉄心22Bとの間の前記介在永久磁石23を通って前記磁極ブロック21Aへ入るので、前記対面磁性体10での磁路抵抗が十分に小さいとすると次の式が成り立つ。
In FIG. 4, the first magnetic path among the three magnetic paths is emphasized by a thick arrow, and the other magnetic paths are indicated by thin arrows. The first magnetic path exits the first magnetic pole block 21A, passes through the facing magnetic material 10 and enters the second magnetic pole block 21B, and is said to be between the first iron core 22A and the second iron core 22B. Since it enters the magnetic pole block 21A through the intervening permanent magnet 23, the following equation holds if the magnetic path resistance of the facing magnetic body 10 is sufficiently small.
図5は、前記3つの磁路の中の前記第2磁路を太線矢印で強調して示し、その他の磁路を細線矢印で示している。前記第2磁路は、前記第1磁極ブロック21Aから出て前記対面磁性体10を通過して前記第2磁極ブロック21Bへ入り、前記第2鉄心22Bと前記第4鉄心22Dとの間の前記介在永久磁石231を通って前記第4磁極ブロック21Dへ入り、前記第3鉄心22Cと前記第4鉄心22Dとの間の前記介在永久磁石231を通って前記第3磁極ブロック21Cへ入り、前記第1鉄心21Aと前記第3鉄心21Cとの間の前記介在永久磁石231を通って前記第1磁極ブロック21Aへ入るので、次の式が成り立つ。
In FIG. 5, the second magnetic path among the three magnetic paths is emphasized by a thick arrow, and the other magnetic paths are indicated by thin arrows. The second magnetic path exits the first magnetic pole block 21A, passes through the facing magnetic body 10 and enters the second magnetic pole block 21B, and the second magnetic path is between the second iron core 22B and the fourth iron core 22D. It enters the fourth magnetic pole block 21D through the intervening permanent magnet 231 and enters the third magnetic pole block 21C through the intervening permanent magnet 231 between the third iron core 22C and the fourth iron core 22D, and enters the third magnetic pole block 21C. Since the first magnetic pole block 21A is entered through the intervening permanent magnet 231 between the 1 iron core 21A and the 3rd iron core 21C, the following equation holds.
図6は、前記3つの磁路の中の前記第3磁路を太線矢印で強調して示し、その他の磁路を細線矢印で示している。前記第3磁路は、前記第1磁極ブロック21Aから出て対面磁性体10を通過して前記第2磁極ブロック21Bへ入り、前記第2鉄心22Bの反対側面(図1では下面)に配置された反対側永久磁石23を通って前記第2磁極ブロック21Bから出て例えば図6に示されるバックヨーク25を通過して前記第1鉄心22Aの反対側面(図1では下面)に配置された反対側永久磁石232を通って前記第1磁極ブロック21Aへ入るので、次の式が成り立つ。
In FIG. 6, the third magnetic path among the three magnetic paths is emphasized by a thick line arrow, and the other magnetic paths are indicated by a thin line arrow. The third magnetic path exits the first magnetic pole block 21A, passes through the facing magnetic material 10, enters the second magnetic pole block 21B, and is arranged on the opposite side surface (lower surface in FIG. 1) of the second iron core 22B. Opposite side arranged on the opposite side surface (lower surface in FIG. 1) of the first iron core 22A through the opposite side permanent magnet 23, exiting from the second magnetic pole block 21B, passing through, for example, the back yoke 25 shown in FIG. Since it enters the first magnetic pole block 21A through the side permanent magnet 232, the following equation holds.
また、前記第1鉄心22Aと前記第2鉄心22Bとの間の前記介在永久磁石23における磁束密度Bz、前記第1鉄心22Aと前記第3鉄心22Cとの間の前記介在永久磁石23における磁束密度Bφ、及び前記第1鉄心22Aの反対側面(図1では下面)に配置された反対側永久磁石232における磁束密度Braは、それぞれ、次の第1式、第2式、第3式で表される。
Further, the magnetic flux density B z in the intervening permanent magnet 23 between the first iron core 22A and the second iron core 22B, and the magnetic flux in the intervening permanent magnet 23 between the first iron core 22A and the third iron core 22C. The magnetic flux density Bras of the density B φ and the magnetic flux density Bra in the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 1) of the first iron core 22A are the following first, second, and third equations, respectively. It is represented by.
図7は、前記第1磁極ブロック21Aの任意の位置Pにおける前記第1~第3磁路の磁束の保存について示す図である。前記位置Pに流入する磁束と前記位置Pから流出する磁束とは互いに等しいので、次の式が成り立つ。
FIG. 7 is a diagram showing the preservation of the magnetic flux of the first to third magnetic paths at an arbitrary position P of the first magnetic pole block 21A. Since the magnetic flux flowing into the position P and the magnetic flux flowing out from the position P are equal to each other, the following equation holds. The
これらの式から次の式が導かれる。
The following equations are derived from these equations. The
ここで、Ara=Aφ=Az=Af=S、lra=lφ=lz=lmとすると、最終的に、次の式が得られる。これが、図2に実線で示される曲線の式である。
Here, if A ra = A φ = A z = A f = S and l ra = l φ = l z = l m , the following equation is finally obtained. This is the equation of the curve shown by the solid line in FIG.
図2に示されるように、前記単位胞202か係る三次元磁極構造では、lg/lm<1という条件を満たす場合、つまり、前記単位胞20における第1~第4磁極面24A~24Dと前記対面磁性体10との間の空隙の最大幅が前記複数の永久磁石231,232の最小厚み以下である場合に、同じ永久磁石厚みlg及び同じ空隙幅lmが設定された比較構造90よりも空隙内に大きな磁束を発生させることが可能になる。逆にlg/lm>1の場合には、磁束増加の効果は期待できない。これは、永久磁石間の相互作用、つまり、任意の永久磁石がそれ以外の永久磁石に与える作用、よって生じる磁束の弱衰が顕著であることを示す。
As shown in FIG. 2, in the three-dimensional magnetic flux structure relating to the unit cell 202, when the condition of lg / l m <1 is satisfied, that is, the first to fourth magnetic flux surfaces 24A to 24D in the unit cell 20 comparative structure the maximum width of the air gap in the case is less than or equal to the minimum thickness of the plurality of permanent magnets 231, 232, the same permanent magnet thickness l g and the same gap width l m is set between the opposed magnetic body 10 and It is possible to generate a larger magnetic flux in the void than 90. On the contrary, when l g / l m > 1, the effect of increasing the magnetic flux cannot be expected. This indicates that the interaction between the permanent magnets, that is, the action of any permanent magnet on the other permanent magnets, and the resulting weakening of the magnetic flux is remarkable.
前記の条件、すなわちlg/lm<1という条件、は全ての永久磁石の厚み及び有効磁路面積が同一であるという前提において、図1に示される単位胞20に係る三次元構造と図3に示される比較構造90との対比により導かれるものであるが、一般的な永久磁石の配置よりも多くの磁束を発生させる条件は、次のようにして導かれることも可能である。
The above condition, that is, the condition of l g / l m <1, assumes that the thickness and the effective magnetic path area of all the permanent magnets are the same, and the three-dimensional structure and the figure relating to the unit cell 20 shown in FIG. Although it is derived by comparison with the comparative structure 90 shown in 3, the condition for generating more magnetic flux than the general arrangement of permanent magnets can be derived as follows.
以下に説明する条件は、図8A及び図8Cにそれぞれ示される構造、すなわち前記第1の実施の形態の第1変形例及び第2変形例にそれぞれ相当する単位胞30及び単位胞40、と、図8B及び図8Dにそれぞれ示される構造、すなわち、前記第1及び第2変形例にそれぞれ対応する第1比較例及び第2比較例に係る単位胞39及び単位胞49、との対比に基づいて導かれる。
The conditions described below are the structures shown in FIGS. 8A and 8C, that is, the unit cell 30 and the unit cell 40 corresponding to the first modification and the second modification of the first embodiment, respectively. Based on the structures shown in FIGS. 8B and 8D, that is, the unit cells 39 and the unit cells 49 according to the first comparative example and the second comparative example corresponding to the first and second modifications, respectively. Be guided.
図8Aさらには図9に示される前記第1変形例に係る前記単位胞30は、図1に示される前記単位胞20にバックヨーク25が付加されたものである。当該バックヨーク25は、磁性材料により形成され、前記第1~第4鉄心22A~22Dのそれぞれの反対側面に配置された前記複数の反対側永久磁石232どうしの間を流れる磁束を促進するように、当該複数の反対側永久磁石232を挟んで前記第1~第4鉄心と反対側(図8Aでは下側)に配置されている。図8Aに例示される前記バックヨーク25は、前記複数の反対側永久磁石232のうち前記第1~第4鉄心22A~22Dと反対側の面(図8Aでは下面)に接触するように当該複数の反対側永久磁石232に装着されている。
The unit cell 30 according to the first modification shown in FIG. 8A and FIG. 9 is the unit cell 20 shown in FIG. 1 with a back yoke 25 added. The back yoke 25 is formed of a magnetic material so as to promote magnetic flux flowing between the plurality of opposite permanent magnets 232 arranged on opposite side surfaces of the first to fourth iron cores 22A to 22D. , The plurality of permanent magnets 232 on the opposite side are arranged on the opposite side (lower side in FIG. 8A) from the first to fourth iron cores. The back yoke 25 exemplified in FIG. 8A is such that the plurality of the back yokes 25 are in contact with the surface (lower surface in FIG. 8A) opposite to the first to fourth iron cores 22A to 22D among the plurality of opposite permanent magnets 232. It is attached to the permanent magnet 232 on the opposite side of the.
前記単位胞30においても、前記第1~第4磁極ブロック21A~21Dのうち互いに隣接する磁極ブロックについて3つの磁路が形成される。例えば、図9に矢印Minで示されるように前記第2磁極ブロック21Bへ入って矢印Moutで示すように前記第1磁極ブロック21Aから出るまでの磁路として、次の第1磁路、第2磁路及び第3磁路が形成される。前記第1磁路は、図9に矢印M1で示されるように、前記第1鉄心22Aと前記第2鉄心22Bとの間の前記介在永久磁石231を通って前記第2磁極ブロック21Bから前記第1磁極ブロック21Aへ入る。前記第2磁路は、図9に矢印M2で示されるように、前記第2鉄心22Bと前記第4鉄心22Dとの間の前記介在永久磁石231を通って前記第2磁極ブロック21Bから前記第4磁極ブロック21Dへ入り、前記第3鉄心22Cと前記第4鉄心22Dとの間の前記介在永久磁石231を通って前記第4磁極ブロック21Dから前記第3磁極ブロック21Cへ入り、前記第1鉄心22Aと前記第3鉄心22Cとの間の前記介在永久磁石23を通って前記第3磁極ブロック21Cから前記第1磁極ブロック21Aへ入る。前記第3磁路は、図9に矢印M4で示すように、前記第2磁極ブロック21Bの反対側面(図9では下面)に配置された反対側永久磁石232を通って当該第2磁極ブロック21Bから出て、前記バックヨーク25を通過し、前記第1鉄心22Aの前記反対側面(図9では下面)に配置された反対側永久磁石232を通って前記第1磁極ブロック21Aへ入る。
Also in the unit cell 30, three magnetic paths are formed for the magnetic pole blocks adjacent to each other among the first to fourth magnetic pole blocks 21A to 21D. For example, as a magnetic path from entering the second magnetic pole block 21B as shown by the arrow Min in FIG. 9 and exiting from the first magnetic pole block 21A as shown by the arrow Mout, the following first magnetic circuit and the second magnetic path are used. A magnetic path and a third magnetic path are formed. The first magnetic path passes from the second magnetic pole block 21B through the intervening permanent magnet 231 between the first core 22A and the second core 22B, as shown by an arrow M1 in FIG. Enter the 1 magnetic pole block 21A. The second magnetic path passes from the second magnetic pole block 21B to the second magnetic path through the intervening permanent magnet 231 between the second core 22B and the fourth core 22D, as shown by the arrow M2 in FIG. It enters the 4-pole block 21D, passes through the intervening permanent magnet 231 between the third core 22C and the fourth core 22D, enters the third magnetic pole block 21C from the fourth magnetic pole block 21D, and enters the first iron core. The third magnetic pole block 21C enters the first magnetic pole block 21A through the intervening permanent magnet 23 between the 22A and the third iron core 22C. As shown by the arrow M4 in FIG. 9, the third magnetic path passes through the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 9) of the second magnetic pole block 21B, and the second magnetic pole block 21B. The first magnetic pole block 21A enters the first magnetic pole block 21A through the back yoke 25 and the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 9) of the first iron core 22A.
図9に示される三次元磁極構造を電動機の磁極子に適用する場合には、当該電動機の電機子に対向する面、すなわち複数組の第1~第4磁極面24A~24Dにより構成される面、において第1磁極とその反対の第2磁極(例えばN極とS極)が交互にかつ周期的に並ぶように配置されるのがよい。例えば、前記電機子に対して前記磁極子が相対的に移動する移動方向が1方向のみであっても、当該移動方向及び当該移動方向に直交する方向の双方について少なくとも一対のN極及びS極が配置されるのがよい。1軸方向のみでの磁極の配列は、多くの磁束の流入出経路を確保することができず、三次元的な磁気回路が構成できないために、発生磁束が低下し、電動機の性能が低下するからである。
When the three-dimensional magnetic pole structure shown in FIG. 9 is applied to a magnetic pole element of an electric motor, a surface facing the armature of the electric motor, that is, a surface composed of a plurality of sets of first to fourth magnetic pole surfaces 24A to 24D. In ,, it is preferable that the first magnetic pole and the second magnetic pole opposite to the first magnetic pole (for example, N pole and S pole) are arranged alternately and periodically. For example, even if the magnetic monopole moves relative to the armature in only one direction, at least a pair of N poles and S poles in both the moving direction and the direction orthogonal to the moving direction. Should be placed. With the arrangement of magnetic poles in only one axial direction, it is not possible to secure inflow and outflow paths for many magnetic fluxes, and since a three-dimensional magnetic circuit cannot be constructed, the generated magnetic flux decreases and the performance of the motor deteriorates. Because.
図8Bに示される第1比較例に係る単位胞39では、前記第1変形例に係る前記単位胞30の前記第1~第4鉄心22A~22D及び複数の永久磁石231,232が4つの永久磁石、すなわち第1永久磁石26A、第2永久磁石26B、第3永久磁石26C及び第4永久磁石26D、に置き換えられている。前記第1~第4永久磁石26A~26Dは、前記第1鉄心22A~第4鉄心22Dにそれぞれ対応する位置に配置されている。すなわち、前記第1永久磁石26Aは配列面上で互いに直交する2方向において前記第2永久磁石26B及び前記第3永久磁石26Cと互いに隣接し、前記第4永久磁石26Dは配列面上で互いに直交する2方向において前記第2永久磁石26B及び前記第3永久磁石26Cと互いに隣接している。ただし、互いに隣り合う永久磁石どうしの間に前記介在永久磁石23に相当するような別の永久磁石は介在しておらず、当該互いに隣り合う永久磁石は互いに直接接触するように配置されている。
In the unit cell 39 according to the first comparative example shown in FIG. 8B, the first to fourth iron cores 22A to 22D and the plurality of permanent magnets 231 and 232 of the unit cell 30 according to the first modification are four permanent magnets. It has been replaced by magnets, namely the first permanent magnet 26A, the second permanent magnet 26B, the third permanent magnet 26C and the fourth permanent magnet 26D. The first to fourth permanent magnets 26A to 26D are arranged at positions corresponding to the first core 22A to the fourth core 22D, respectively. That is, the first permanent magnet 26A is adjacent to the second permanent magnet 26B and the third permanent magnet 26C in two directions orthogonal to each other on the arrangement surface, and the fourth permanent magnet 26D is orthogonal to each other on the arrangement surface. The second permanent magnet 26B and the third permanent magnet 26C are adjacent to each other in two directions. However, another permanent magnet corresponding to the intervening permanent magnet 23 is not interposed between the permanent magnets adjacent to each other, and the permanent magnets adjacent to each other are arranged so as to be in direct contact with each other.
図8Cさらには図10に示される前記第2変形例に係る前記単位胞40は、前記単位胞20に第5鉄心22E、第6鉄心22F、第7鉄心22G、図示されない第8鉄心、及びこれらの第5鉄心22E~22Gについて設けられた複数の介在永久磁石231が付加されたものである。前記第5鉄心22Eは、前記複数の反対側永久磁石232のうち前記第1鉄心22Aの前記反対側面に配置された反対側永久磁石232を挟んで前記第1鉄心22Aと反対側(図10では下側)に配置され、当該第1鉄心22Aと反対の側(図10では下側)を向く第5磁極面24Eを有する。前記第6鉄心22Fは、前記複数の反対側永久磁石232のうち前記第2鉄心22Bの前記反対側面に配置された反対側永久磁石232を挟んで前記第2鉄心22Bと反対側(図10では下側)に配置され、当該第2鉄心22Bと反対の側(図10では下側)を向く第6磁極面24Fを有する。前記第7鉄心22Gは、前記複数の反対側永久磁石232のうち前記第3鉄心22Cの前記反対側面に配置された反対側永久磁石232を挟んで前記第3鉄心22Cと反対側(図10では下側)に配置され、当該第3鉄心22Cと反対の側(図10では下側)を向く第7磁極面24Gを有する。図示されない前記第8鉄心は、前記複数の反対側永久磁石232のうち前記第4鉄心22Dの前記反対側面に配置された反対側永久磁石232を挟んで前記第4鉄心22Dと反対側(図10では下側)に配置され、当該第4鉄心22Dと反対の側(図10では下側)を向く図示されない第8磁極面を有する。
8C Further, the unit cell 40 according to the second modification shown in FIG. 10 includes a fifth core 22E, a sixth core 22F, a seventh core 22G, an eighth core (not shown), and these in the unit cell 20. A plurality of intervening permanent magnets 231 provided for the fifth iron cores 22E to 22G are added. The fifth iron core 22E is on the opposite side of the first iron core 22A with the opposite side permanent magnet 232 arranged on the opposite side surface of the first iron core 22A among the plurality of opposite side permanent magnets 232 (in FIG. 10). It has a fifth magnetic pole surface 24E which is arranged on the lower side) and faces the side opposite to the first iron core 22A (lower side in FIG. 10). The sixth core 22F is opposite to the second core 22B with the opposite side permanent magnet 232 arranged on the opposite side surface of the second core 22B among the plurality of opposite permanent magnets 232 (in FIG. 10). It has a sixth magnetic pole surface 24F which is arranged on the lower side) and faces the side opposite to the second iron core 22B (lower side in FIG. 10). The seventh core 22G is opposite to the third core 22C with the opposite side permanent magnet 232 arranged on the opposite side surface of the third core 22C among the plurality of opposite permanent magnets 232 (in FIG. 10). It has a seventh magnetic pole surface 24G which is arranged on the lower side) and faces the side opposite to the third iron core 22C (lower side in FIG. 10). The eighth core (not shown) is opposite to the fourth core 22D with the opposite permanent magnet 232 arranged on the opposite side of the fourth core 22D among the plurality of opposite permanent magnets 232 (FIG. 10). It is arranged on the lower side) and has an eighth magnetic pole surface (not shown) facing the side opposite to the fourth iron core 22D (lower side in FIG. 10).
前記第5鉄心22Eは、前記第6鉄心22F及び前記第7鉄心22Gのそれぞれと、前記第1~第4鉄心22A~22Dが並ぶ第1配列面と平行な第2配列面において互いに直交する2方向に、互いに隣接し、前記第8鉄心は、前記第6鉄心22F及び前記第7鉄心22Gのそれぞれと前記2方向に互いに隣接する。前記第5磁極面24E及び前記第8磁極面はいずれも前記第1磁極面24A及び前記第4磁極面24Dと同じく前記第2磁極(例えばS極)を構成し、前記第6磁極面24F及び前記第7磁極面24Gはいずれも前記第2磁極面24B及び前記第3磁極面24Cと同じく前記第1磁極(例えばN極)を構成する。
The fifth core 22E is orthogonal to each other in the second arrangement plane parallel to the first arrangement plane in which the first to fourth cores 22A to 22D are arranged, respectively, of the sixth core 22F and the seventh core 22G. Adjacent to each other in the direction, the eighth core is adjacent to each of the sixth core 22F and the seventh core 22G and each other in the two directions. The fifth magnetic pole surface 24E and the eighth magnetic pole surface both form the second magnetic pole (for example, the S pole) like the first magnetic pole surface 24A and the fourth magnetic pole surface 24D, and the sixth magnetic pole surface 24F and the sixth magnetic pole surface 24F. The seventh magnetic pole surface 24G all constitutes the first magnetic pole (for example, N pole) like the second magnetic pole surface 24B and the third magnetic pole surface 24C.
この単位胞40は、第1磁極ブロック21A、第2磁極ブロック21B、第3磁極ブロック21C、第4磁極ブロック21D、第5磁極ブロック21E、第6磁極ブロック21F、第7磁極ブロック21G及び図示されない第8磁極ブロックにより構成される。前記第1磁極ブロック21Aは、前記第1鉄心22Aを含むとともに、前記第2磁極ブロック21B及び前記第3磁極ブロック21Cとの間でそれぞれ前記介在永久磁石231を共有し、かつ、前記第5磁極ブロック21Eとの間で前記反対側永久磁石232を共有する。前記第2磁極ブロック21Bは、前記第2鉄心22Bを含むとともに、前記第1磁極ブロック21A及び前記第4磁極ブロック21Dとの間でそれぞれ前記介在永久磁石231を共有し、かつ、前記第6磁極ブロック21Fとの間で前記反対側永久磁石232を共有する。前記第3磁極ブロック21Cは、前記第3鉄心22Cを含むとともに、前記第1磁極ブロック21A及び前記第4磁極ブロック21Dとの間でそれぞれ前記介在永久磁石231を共有し、かつ、前記第7磁極ブロック21Gとの間で前記反対側永久磁石232を共有する。前記第4磁極ブロック21Dは、前記第4鉄心22Dを含むとともに、前記第2磁極ブロック21B及び前記第3磁極ブロック21Cとの間でそれぞれ前記介在永久磁石231を共有し、かつ、図示されない前記第8磁極ブロックとの間で前記反対側永久磁石232を共有する。前記第5磁極ブロック21Eは、前記第5鉄心22Eを含むとともに、前記第6磁極ブロック21F及び前記第7磁極ブロック21Gとの間でそれぞれ前記介在永久磁石231を共有し、かつ、前記第1磁極ブロック21Aとの間で前記反対側永久磁石232を共有する。前記第6磁極ブロック21Fは、前記第6鉄心22Fを含むとともに、前記第5磁極ブロック21E及び図示されない前記第8磁極ブロックとの間でそれぞれ前記介在永久磁石231を共有し、かつ、前記第2磁極ブロック21Bとの間で前記反対側永久磁石232を共有する。前記第7磁極ブロック21Gは、前記第7鉄心22Gを含むとともに、前記第5磁極ブロック21E及び図示されない前記第8磁極ブロックとの間でそれぞれ前記介在永久磁石231を共有し、かつ、前記第3磁極ブロック21Cとの間で前記反対側永久磁石232を共有する。図示されない前記第8磁極ブロックは、前記第8鉄心を含むとともに、前記第6磁極ブロック21F及び前記第7磁極ブロック21Gとの間でそれぞれ前記介在永久磁石231を共有し、かつ、前記第4磁極ブロック21Dとの間で前記反対側永久磁石232を共有する。
The unit cell 40 includes a first magnetic pole block 21A, a second magnetic pole block 21B, a third magnetic pole block 21C, a fourth magnetic pole block 21D, a fifth magnetic pole block 21E, a sixth magnetic pole block 21F, a seventh magnetic pole block 21G, and not shown. It is composed of an eighth magnetic pole block. The first magnetic pole block 21A includes the first iron core 22A, shares the intervening permanent magnet 231 between the second magnetic pole block 21B and the third magnetic pole block 21C, and has the fifth magnetic pole. The opposite permanent magnet 232 is shared with the block 21E. The second magnetic pole block 21B includes the second iron core 22B, shares the intervening permanent magnet 231 between the first magnetic pole block 21A and the fourth magnetic pole block 21D, and has the sixth magnetic pole. The opposite permanent magnet 232 is shared with the block 21F. The third magnetic pole block 21C includes the third iron core 22C, shares the intervening permanent magnet 231 between the first magnetic pole block 21A and the fourth magnetic pole block 21D, and has the seventh magnetic pole. The opposite permanent magnet 232 is shared with the block 21G. The fourth magnetic pole block 21D includes the fourth iron core 22D, shares the intervening permanent magnet 231 between the second magnetic pole block 21B and the third magnetic pole block 21C, and is not shown. The opposite permanent magnet 232 is shared with the 8-pole block. The fifth magnetic pole block 21E includes the fifth iron core 22E, shares the intervening permanent magnet 231 between the sixth magnetic pole block 21F and the seventh magnetic pole block 21G, and has the first magnetic pole. The opposite permanent magnet 232 is shared with the block 21A. The sixth magnetic pole block 21F includes the sixth iron core 22F, shares the intervening permanent magnet 231 between the fifth magnetic pole block 21E and the eighth magnetic pole block (not shown), and the second. The opposite side permanent magnet 232 is shared with the magnetic pole block 21B. The 7th magnetic pole block 21G includes the 7th iron core 22G, shares the intervening permanent magnet 231 between the 5th magnetic pole block 21E and the 8th magnetic pole block (not shown), and the third magnetic pole block. The opposite side permanent magnet 232 is shared with the magnetic pole block 21C. The eighth magnetic pole block (not shown) includes the eighth iron core, shares the intervening permanent magnet 231 between the sixth magnetic pole block 21F and the seventh magnetic pole block 21G, and has the fourth magnetic pole. The opposite permanent magnet 232 is shared with the block 21D.
前記単位胞40も、前記第1~第8磁極ブロックのうち互いに隣接する磁極ブロックのそれぞれにおいて複数の磁路を形成する。例えば、図10に矢印Minで示されるように前記第2磁極ブロック21Bへ入って矢印Moutで示されるように前記第1磁極ブロック21Aから出るまでの磁路として、次の第1磁路、第2磁路及び第3磁路が形成される。前記第1磁路は、図10に矢印M1で示されるように、前記第1鉄心22Aと前記第2鉄心22Bとの間の介在永久磁石231を通って前記第2磁極ブロック21Bから前記第1磁極ブロック21Aへ入る。前記第2磁路は、図10に矢印M2で示されるように、前記第2鉄心22Bと前記第4鉄心22Dとの間の介在永久磁石231を通って前記第2磁極ブロック21Bから前記第4磁極ブロック21Dへ入り、前記第3鉄心22Cと前記第4鉄心22Dとの間の介在永久磁石231を通って前記第4磁極ブロック21Dから前記第3磁極ブロック21Cへ入り、前記第1鉄心22Aと前記第3鉄心21Cとの間の介在永久磁石231を通って前記第3磁極ブロック21Cから前記第1磁極ブロック21Aへ入る。前記第3磁路は、図10に矢印M5で示されるように、前記第2鉄心22Bの反対側面(図10では下面)に配置された反対側永久磁石232を通って前記第6磁極ブロック21Fへ入り、当該第6磁極ブロック21Fから出て、図9に矢印M6で示されるように前記第5磁極ブロック21Eへ入り、前記第1鉄心22Aの反対側面(図10では下面)の反対側永久磁石232を通って前記第1磁極ブロック21Aへ入る磁路である。
The unit cell 40 also forms a plurality of magnetic paths in each of the magnetic pole blocks adjacent to each other among the first to eighth magnetic pole blocks. For example, as a magnetic path from entering the second magnetic pole block 21B as shown by the arrow Min in FIG. 10 and exiting from the first magnetic pole block 21A as indicated by the arrow Mout, the following first magnetic circuit, the first magnetic path. Two magnetic paths and a third magnetic path are formed. As shown by the arrow M1 in FIG. 10, the first magnetic path passes through the intervening permanent magnet 231 between the first iron core 22A and the second iron core 22B, and the first magnetic path from the second magnetic pole block 21B. Enter the magnetic pole block 21A. The second magnetic path passes from the second magnetic pole block 21B to the fourth through the intervening permanent magnet 231 between the second core 22B and the fourth core 22D, as shown by the arrow M2 in FIG. It enters the magnetic pole block 21D, passes through the intervening permanent magnet 231 between the third iron core 22C and the fourth iron core 22D, enters the third magnetic pole block 21C from the fourth magnetic pole block 21D, and enters the first iron core 22A. It enters the first magnetic pole block 21A from the third magnetic pole block 21C through the intervening permanent magnet 231 between the third iron core 21C. As shown by the arrow M5 in FIG. 10, the third magnetic path passes through the opposite side permanent magnet 232 arranged on the opposite side surface (lower surface in FIG. 10) of the second iron core 22B, and the sixth magnetic pole block 21F. Enters the fifth magnetic pole block 21E, exits from the sixth magnetic pole block 21F, enters the fifth magnetic pole block 21E as shown by arrow M6 in FIG. 9, and is permanently opposite to the opposite side surface (lower surface in FIG. 10) of the first iron core 22A. It is a magnetic path that enters the first magnetic pole block 21A through the magnet 232.
前記単位胞40の三次元磁極構造は、例えば、特開2010-98929号公報に記載の回転式のダブルギャップモータにも適用することが可能である。この場合、前記単位胞40は径方向内側部分が欠如する扇形柱状に形成されて前記ダブルギャップモータのロータに組み込まれる。例えば、前記第1磁極ブロック21A、前記第2磁気ブロック21B、前記第5磁極ブロック21E及び前記第6磁気ブロック21Fが径方向内側に位置するように前記単位胞40が前記扇形柱状に形成され、当該単位胞40の前記第1~第4磁極ブロック21A~21Dが前記ロータの軸方向の一方を向き、前記第5~第8磁極ブロックが前記軸方向の他方を向く姿勢で当該単位胞40が前記ロータに組み込まれるのが、よい。
The three-dimensional magnetic pole structure of the unit cell 40 can be applied to, for example, a rotary double gap motor described in Japanese Patent Application Laid-Open No. 2010-98929. In this case, the unit cell 40 is formed in a fan-shaped columnar shape lacking a radial inner portion and incorporated into the rotor of the double gap motor. For example, the unit cell 40 is formed in a fan-shaped columnar shape so that the first magnetic pole block 21A, the second magnetic block 21B, the fifth magnetic pole block 21E, and the sixth magnetic block 21F are located radially inside. The unit cell 40 is in a posture in which the first to fourth magnetic pole blocks 21A to 21D of the unit cell 40 face one of the axial directions of the rotor, and the fifth to eighth magnetic pole blocks face the other in the axial direction. It is better to incorporate it in the rotor.
図8Dに示される第2比較例に係る単位胞49では、前記第2変形例に係る前記単位胞40の前記第1~第8鉄心及び複数の永久磁石231,232が4つの永久磁石、すなわち第1永久磁石26A、第2永久磁石26B、第3永久磁石26C及び第4永久磁石26Dに置き換えられている。前記第1永久磁石26Aは、前記第1鉄心22A及び前記第5鉄心22Eに対応する位置に配置され、前記第2永久磁石26Bは、前記第2鉄心22B及び前記第6鉄心22Fに対応する位置に配置され、前記第3永久磁石26Cは、前記第3鉄心22C及び前記第7鉄心22Gに対応する位置に配置され、前記第4永久磁石26Dは、前記第4鉄心22D及び前記第8鉄心に対応する位置に配置されている。従って、前記第1比較例に係る前記単位胞39と同様、前記第1永久磁石26Aは配列面上で互いに直交する2方向において前記第2永久磁石26B及び前記第3永久磁石26Cと互いに隣接し、前記第4永久磁石26Dは配列面上で互いに直交する2方向において前記第2永久磁石26B及び前記第3永久磁石26Cと互いに隣接している。この単位胞49においても、互いに隣り合う永久磁石どうしの間に前記介在永久磁石23に相当するものは介在しておらず、当該互いに隣り合う永久磁石は互いに接触するように配置されている。
In the unit cell 49 according to the second comparative example shown in FIG. 8D, the first to eighth iron cores and the plurality of permanent magnets 231 and 232 of the unit cell 40 according to the second modification are four permanent magnets, that is, It has been replaced by a first permanent magnet 26A, a second permanent magnet 26B, a third permanent magnet 26C and a fourth permanent magnet 26D. The first permanent magnet 26A is arranged at a position corresponding to the first iron core 22A and the fifth iron core 22E, and the second permanent magnet 26B is a position corresponding to the second iron core 22B and the sixth iron core 22F. The third permanent magnet 26C is arranged at a position corresponding to the third iron core 22C and the seventh iron core 22G, and the fourth permanent magnet 26D is arranged on the fourth iron core 22D and the eighth iron core. It is located in the corresponding position. Therefore, similarly to the unit cell 39 according to the first comparative example, the first permanent magnet 26A is adjacent to the second permanent magnet 26B and the third permanent magnet 26C in two directions orthogonal to each other on the arrangement plane. The fourth permanent magnet 26D is adjacent to the second permanent magnet 26B and the third permanent magnet 26C in two directions orthogonal to each other on the arrangement plane. Also in this unit cell 49, the one corresponding to the intervening permanent magnet 23 does not intervene between the permanent magnets adjacent to each other, and the permanent magnets adjacent to each other are arranged so as to be in contact with each other.
図8A及び図8Cに示される前記第1及び第2変形例に係る前記単位胞30,40において、前記第1磁極ブロック21Aと前記第2磁極ブロック21Bとが並ぶ方向である第1並びの寸法をa、前記第1磁極ブロック21Aと前記第3磁極ブロック21Cとが並ぶ第2並び方向、すなわち前記第1並び方向と直交する方向、の寸法をb、とすると、前記対向方向(図8A及び図8Cでは上下方向)に視て前記第1~第4磁極ブロック21A~21Dが占める面積、つまり、前記第1~第4磁極面24A~24Dの面積と、前記第1~第4鉄心22A~22Dのうち互いに隣接する鉄心どうしの間に介在する介在永久磁石231のそれぞれにおいて前記対向方向を向く面(図8A及び図8Cでは上面)の面積と、の総和、はa×bで表される。当該面積の総和のうち1つの磁気ブロックあたりの面積ACは、AC=a×b/4で表される。また、それぞれの磁気ブロックの高さ寸法IC、つまり前記対向方向と平行な方向の寸法、は、当該対向方向についての前記第1~第4鉄心22A~22Dのそれぞれの寸法と、当該第1~第4鉄心22A~22Dのそれぞれの反対側面に配置される反対側永久磁石232の厚みと、の和になる。ただし、図8Cに示される前記単位胞40では、前記第1磁極ブロック21A、前記第2磁極ブロック21B、前記第3磁極ブロック21C及び前記第4磁極ブロック21Dがそれぞれ前記第5磁極ブロック21E、前記第6磁極ブロック21F、前記第7磁極ブロック21G及び前記第8磁極ブロックとの間で前記反対側永久磁石232を共有しているので、それぞれの磁極ブロックの実質上の高さ寸法は、当該磁極ブロックに含まれる鉄心の高さ寸法と、当該鉄心の反対側面に配置される前記反対側永久磁石232の厚みの1/2との総和になる。
In the unit cells 30 and 40 according to the first and second modifications shown in FIGS. 8A and 8C, the first alignment dimension in which the first magnetic pole block 21A and the second magnetic pole block 21B are aligned. Let b be the dimension of the second alignment direction in which the first magnetic pole block 21A and the third magnetic pole block 21C are aligned, that is, the direction orthogonal to the first alignment direction. The area occupied by the first to fourth magnetic pole blocks 21A to 21D when viewed in the vertical direction in FIG. 8C, that is, the area of the first to fourth magnetic pole surfaces 24A to 24D and the first to fourth iron cores 22A to The sum of the areas of the surfaces (upper surfaces in FIGS. 8A and 8C) facing in the opposite direction in each of the intervening permanent magnets 231 interposed between the iron cores adjacent to each other in 22D is represented by a × b. .. Area A C per one magnetic blocks of the sum of the area is represented by A C = a × b / 4 . The height dimension I C of each magnetic block, i.e. the opposite direction parallel to the direction of the dimension are the respective dimensions of the first to fourth iron cores 22A ~ 22D on the opposite direction, the first It is the sum of the thicknesses of the opposite side permanent magnets 232 arranged on the opposite side surfaces of the fourth iron cores 22A to 22D. However, in the unit cell 40 shown in FIG. 8C, the first magnetic pole block 21A, the second magnetic pole block 21B, the third magnetic pole block 21C and the fourth magnetic pole block 21D are the fifth magnetic pole block 21E and the said, respectively. Since the opposite side permanent magnet 232 is shared between the 6th magnetic pole block 21F, the 7th magnetic pole block 21G, and the 8th magnetic pole block, the substantially height dimension of each magnetic pole block is the said magnetic pole. It is the sum of the height dimension of the iron core included in the block and 1/2 of the thickness of the opposite side permanent magnet 232 arranged on the opposite side surface of the iron core.
図8B及び図8Dに示される前記第1及び第2比較例に係る単位胞39において、前記第1永久磁石26Aと前記第2永久磁石26Bとが並ぶ方向である第1並び方向の寸法をa、前記第1永久磁石26Aと前記第3永久磁石26Cとが並ぶ第2並び方向、すなわち前記第1並び方向と直交する方向、の寸法をb、とすると、前記対向方向に視て前記第1~第4永久磁石26A~26Dが占める面積はa×bで表される。当該面積の総和のうち1つの永久磁石あたりの面積ACは、AC=a×b/4で表される。また、それぞれの永久磁石の高さ寸法ICが前記第1及び第2変形例に係る前記高さ寸法ICとの比較の対象となる。
In the unit cell 39 according to the first and second comparative examples shown in FIGS. 8B and 8D, the dimension in the first alignment direction, which is the direction in which the first permanent magnet 26A and the second permanent magnet 26B are aligned, is a. If the dimension of the second alignment direction in which the first permanent magnet 26A and the third permanent magnet 26C are aligned, that is, the direction orthogonal to the first alignment direction is b, the first is viewed in the opposite direction. The area occupied by the fourth permanent magnets 26A to 26D is represented by a × b. Area A C per one permanent magnet of the sum of the area is represented by A C = a × b / 4 . Also, it is compared with the height dimension I C of height I C of each of the permanent magnets according to the first and second modified examples.
次に、前記第1及び第2変形例並びに前記第1及び第2比較例において形成される磁束について考察する。以下の説明において用いられる記号は、図8A~図8Dに示される記号を除き、図1に示される前記単位胞20について用いられた記号と共通する。ただし、前記第1変形例に係る前記単位胞30を含む磁極子とこれに対向する電機子との空隙における磁束密度及び磁束をそれぞれ特にBgD、ΦgDとし、同じく前記第1変形例に係る前記単位胞30を含む磁極子とこれに対向する電機子との空隙における磁束密度及び磁束をそれぞれBgC、ΦgCとする。
Next, the magnetic fluxes formed in the first and second modifications and the first and second comparative examples will be considered. The symbols used in the following description are common to the symbols used for the unit cell 20 shown in FIG. 1, except for the symbols shown in FIGS. 8A-8D. However, the magnetic flux densities and magnetic fluxes in the gap between the magnetic flux element including the unit cell 30 according to the first modification and the armature facing the armature are particularly B gD and Φ gD , respectively, and the same applies to the first modification. The magnetic flux densities and magnetic fluxes in the gap between the magnetic flux element including the unit cell 30 and the armature facing the magnetic flux element are defined as B gC and Φ gC , respectively.
前記第1変形例に係る前記磁束密度BgDは、図1に示される前記第1単位胞20に係る三次元磁極構造について導出された前記磁束密度Bgと同じなので、次の式で表される。
Since the magnetic flux density B gD according to the first modification is the same as the magnetic flux density B g derived for the three-dimensional magnetic pole structure according to the first unit cell 20 shown in FIG. 1, it is expressed by the following equation. To.
また、前記空隙に生じる磁束数ΦgDは、次の式で表される。
Further, the magnetic flux number Φ gD generated in the void is expressed by the following equation.
一方、図8B及び図8Dに示される第1及び第2比較例に係る単位胞39,49、すなわち、前記第1及び第2変形例に係る単位胞30,40のそれぞれの磁気ブロックを永久磁石に置き換えてSPM構造を構築したもの、についての前記磁束密度BgCは、図3に示されるSPM構造について導出された前記磁束密度BgCと同等とみなせるため次の式で表される。
On the other hand, the magnetic blocks of the unit cells 39 and 49 according to the first and second comparative examples shown in FIGS. 8B and 8D, that is, the unit cells 30 and 40 according to the first and second modified examples are permanently magnetized. The magnetic flux density B gC for the SPM structure constructed by replacing with is expressed by the following equation because it can be regarded as equivalent to the magnetic flux density B gC derived for the SPM structure shown in FIG.
また、空隙に生じる磁束数ΦgCは、次の式で表される。
The magnetic flux number Φ gC generated in the void is expressed by the following equation.
ここで、前記第1変形例では、空隙における磁束を向上させるための条件として次の条件が用いられる。
Here, in the first modification, the following conditions are used as conditions for improving the magnetic flux in the void. The
この式から、前記空隙の寸法lgが満たすべき条件として、次の式で表される条件が求められる。
From this equation, as a condition to be satisfied dimension l g of the gap is, the condition expressed by the following equation is obtained.
次に、前記第2変形例に係る磁束について考察する。以下の説明では、新たに、前記単位胞40に係る三次元磁極構造内に含まれる全ての永久磁石231,232の体積の総和VDと、当該三次元磁極構造の総体積VCが導入される。
Next, the magnetic flux according to the second modification will be considered. In the following description, the newly, the sum V D of the volume of all the permanent magnets 231 and 232 included in the three-dimensional magnetic structure in accordance with the unit cell 40, the total volume V C of the three-dimensional magnetic structure is introduced To.
前記第1変形例と前記第1比較例については、互いに同一の体積を有する単位胞30,39の間で比較が行われるが、前記第2変形例では、永久磁石の使用量を少なくしながら前記第2比較例を上回る磁束を空隙に発生させるための条件が求められる。
In the first modification and the first comparison, comparisons are made between unit cells 30 and 39 having the same volume, but in the second modification, the amount of permanent magnet used is reduced. Conditions for generating a magnetic flux exceeding the second comparative example in the void are required.
この条件は、次の式で表される。
This condition is expressed by the following formula. The
この式から、前記空隙の寸法lgが満たすべき条件として、次の式で表される条件が求められる。
From this equation, as a condition to be satisfied dimension l g of the gap is, the condition expressed by the following equation is obtained.
本実施の形態に係る磁場発生装置が空隙に発生させた磁場は、例えば、分光や、荷電粒子を篩にかける処理のために用いられることが可能である。その場合、当該磁場発生装置は、空隙中に含まれる磁性物質であって磁性流体、磁性粉体、及び磁性粒子の少なくとも1つに該当するものをさらに備えるのがよい。
The magnetic field generated in the void by the magnetic field generator according to the present embodiment can be used, for example, for spectroscopy or a process of sieving charged particles. In that case, the magnetic field generator may further include a magnetic substance contained in the void, which corresponds to at least one of a magnetic fluid, a magnetic powder, and a magnetic particle.
また、本実施の形態に係る磁場発生装置が電動機に用いられる場合、前記電動機における空隙中の磁性流体の封入は、当該空隙での磁気抵抗を低減してより多くの磁束を空隙に集めることを可能にする。
Further, when the magnetic field generator according to the present embodiment is used in a motor, the encapsulation of the magnetic fluid in the void in the motor reduces the magnetic resistance in the void and collects more magnetic flux in the void. enable.
次に、本発明の第2の実施の形態を図11~図13を参照しながら説明する。本実施の形態に係る磁場発生装置は、図11に示すような直動電動機100に適用されている。当該直動電動機100は、いわゆる両面リニアモータであって、磁極子120と、一対の電機子110と、を備える。前記磁極子120は、予め設定された可動方向に配列された複数の磁極ブロックを含み、当該複数の磁極ブロックが前記可動方向に交互に反転する複数の磁極をそれぞれ構成する。前記一対の電機子110は、前記磁極子120を左右方向に挟むように配置されている。前記一対の電機子110は、当該一対の電機子110に対して前記磁極子120を前記可動方向に相対的に直線移動させるための磁界を形成する。前記磁極子120が可動子で前記一対の電機子110が固定子であってもよいし、前記一対の電機子110が可動子で前記磁極子120が固定子であってもよい。以下の説明では、前記磁極子120が可動子であって前記一対の電機子110が当該可動子を動かす固定子である場合について説明する。以下の説明では、図11に示される姿勢を基準として、前記直動方向が前後方向と呼ばれ、前記一対の電機子110及び前記磁極子120が並ぶ方向が左右方向と呼ばれ、前記直動方向及び前記左右方向の双方に直交する方向が上下方向と呼ばれることがある。
Next, a second embodiment of the present invention will be described with reference to FIGS. 11 to 13. The magnetic field generator according to the present embodiment is applied to the linear motor 100 as shown in FIG. The linear motor 100 is a so-called double-sided linear motor, and includes a magnetic monopole 120 and a pair of armatures 110. The magnetic pole element 120 includes a plurality of magnetic pole blocks arranged in a preset movable direction, and each of the plurality of magnetic pole blocks constitutes a plurality of magnetic poles in which the plurality of magnetic pole blocks are alternately inverted in the movable direction. The pair of armatures 110 are arranged so as to sandwich the magnetic monopole 120 in the left-right direction. The pair of armatures 110 form a magnetic field for linearly moving the magnetic monopole 120 relative to the pair of armatures 110 in the movable direction. The magnetic pole 120 may be a mover and the pair of armatures 110 may be a stator, or the pair of armatures 110 may be a mover and the magnetic pole 120 may be a stator. In the following description, a case where the magnetic monopole 120 is a mover and the pair of armatures 110 are stators for moving the mover will be described. In the following description, with respect to the posture shown in FIG. 11, the linear motion direction is referred to as a front-rear direction, and the direction in which the pair of armatures 110 and the magnetic pole elements 120 are arranged is referred to as a left-right direction. The direction orthogonal to both the direction and the left-right direction may be referred to as a vertical direction.
図12Aは、前記一対の電機子110のうち前記磁極子120の左側に位置する電機子110を示す。当該電機子110は、複数の電機子コイル111と、図12Bに示される磁性体部分である電機子鉄心115と、を含み、当該電機子鉄心115は複数のティース部112とヨーク部113とを一体に有する。前記複数のティース部112はそれぞれコイル鉄心を構成する。前記ヨーク部113は平板状をなしており、その一方の側面である右面(磁極子120の右側に位置する電機子110では左面)から前記磁極子120に向かって前記複数のティース部112が突出する。前記複数のティース部112は上段及び下段のそれぞれにおいて前後方向に並ぶように配列され、前記ヨーク部113から右向き(磁極子120の右側に位置する電機子110では左向き)に突出する。前記電機子鉄心115は、軟鉄、ソフトフェライト等の軟磁性体によって構成される。
FIG. 12A shows an armature 110 located on the left side of the magnetic monopole 120 of the pair of armatures 110. The armature 110 includes a plurality of armature coils 111 and an armature core 115 which is a magnetic material portion shown in FIG. 12B, and the armature core 115 includes a plurality of teeth portions 112 and a yoke portion 113. Have one. Each of the plurality of teeth portions 112 constitutes a coil iron core. The yoke portion 113 has a flat plate shape, and the plurality of teeth portions 112 project from the right side surface (the left side of the armature 110 located on the right side of the magnetic pole element 120) toward the magnetic pole element 120. do. The plurality of tooth portions 112 are arranged so as to be arranged in the front-rear direction in each of the upper and lower stages, and project to the right from the yoke portion 113 (to the left in the armature 110 located on the right side of the magnetic pole 120). The armature core 115 is made of a soft magnetic material such as soft iron or soft ferrite.
前記複数のティース部112のそれぞれは、例えば図12Bに示される直方体形状をなす。前記複数の電機子コイル111は、前記複数のティース部112のそれぞれの周囲に巻回される導線により構成される。この実施の形態に係る前記電機子110は20個の電機子コイル111を含み、当該20個の電機子コイル111は、上段及び下段のそれぞれにおいて10個ずつ配列されている。
Each of the plurality of teeth portions 112 has a rectangular parallelepiped shape shown in FIG. 12B, for example. The plurality of armature coils 111 are composed of conductors wound around each of the plurality of teeth portions 112. The armature 110 according to this embodiment includes 20 armature coils 111, and 10 armature coils 111 are arranged in each of the upper and lower stages.
図11に示すように、前記磁極子120は、前記一対の電機子110の間に配置される。図13は、磁極子120の斜視図である。図13に示すように、前記磁極子120は、複数の磁極ブロック121と複数(図13では3本)の支持部材126とを含む。
As shown in FIG. 11, the magnetic monopole 120 is arranged between the pair of armatures 110. FIG. 13 is a perspective view of the magnetic monopole 120. As shown in FIG. 13, the magnetic pole element 120 includes a plurality of magnetic pole blocks 121 and a plurality of (three in FIG. 13) support members 126.
前記複数の支持部材126のそれぞれは、前記前後方向に延びる非磁性体によって構成され、互いに平行な姿勢で上下方向に互いに間隔をおいて配置されている。前記複数の磁極121は、前記複数の支持部材126のうち上下方向に互いに隣接する支持部材126どうしの間で、つまり上下2段にわたり、前後方向に並べられている。
Each of the plurality of support members 126 is composed of the non-magnetic material extending in the front-rear direction, and is arranged in a posture parallel to each other and spaced apart from each other in the vertical direction. The plurality of magnetic poles 121 are arranged in the front-rear direction between the support members 126 adjacent to each other in the vertical direction among the plurality of support members 126, that is, over two upper and lower stages.
前記複数の磁極ブロック121のそれぞれは、単一の磁極子鉄心122と、その周囲に配置される複数の永久磁石123と、を含む。前記複数の磁極ブロック121は、例えば、複数の単位胞であって、当該複数の単位胞のそれぞれが図10に示されるような単位胞40、つまり、前記第1~第8磁極ブロックが3方向に配列された単位胞40、により、構成されることが可能である。例えば、図10に示される前記単位胞40の上側部分が図13に示される前記磁極子120の右側部分と一致し、図10に示される単位胞40の下側部分が図13に示される前記磁極子120の左側部分と一致するように、当該単位胞40が配置される。前記単位胞40を構成する前記第1~第8鉄心22A~22Dが前記複数の磁極ブロック121の複数の磁極子鉄心122に含まれる。それぞれの磁極子鉄心122は前記電機子110と対向する磁極子磁極面124を有する。前記複数の永久磁石123は、前記複数の磁気子鉄心122のうち互いに隣り合う磁極子鉄心122どうしの間にそれぞれ介在する複数の介在永久磁石と、それぞれの磁極子鉄心122の反対側面に配置される複数の反対側永久磁石と、を含む。
Each of the plurality of magnetic pole blocks 121 includes a single magnetic pole core 122 and a plurality of permanent magnets 123 arranged around the monopole core 122. The plurality of magnetic pole blocks 121 are, for example, a plurality of unit cells, and each of the plurality of unit cells is a unit cell 40 as shown in FIG. 10, that is, the first to eighth magnetic pole blocks are in three directions. It is possible to be composed of the unit cells 40, which are arranged in. For example, the upper portion of the monopole 40 shown in FIG. 10 coincides with the right portion of the monopole 120 shown in FIG. 13, and the lower portion of the monopole 40 shown in FIG. 10 is the said portion shown in FIG. The monopole 40 is arranged so as to coincide with the left side portion of the monopole 120. The first to eighth cores 22A to 22D constituting the unit cell 40 are included in the plurality of magnetic pole cores 122 of the plurality of magnetic pole blocks 121. Each monopole core 122 has a monopole surface 124 facing the armature 110. The plurality of permanent magnets 123 are arranged on the opposite side surfaces of the plurality of intervening permanent magnets interposed between the magnetic monopoles 122 adjacent to each other among the plurality of magnetic monopoles 122 and the respective magnetic monopoles 122. Includes multiple opposite permanent magnets.
前記複数の磁極ブロック121は互いに面接触するように配置される。前記複数の磁極子鉄心122のうち、上段及び下段のそれぞれにおいて前後方向に隣接する2つの磁極子鉄心122の前記磁極子磁極面124は互いに反対の磁極を構成し、上下方向に互いに隣接する2つの磁極子鉄心122の前記磁極子磁極面124も互いに反対の磁極を構成する。つまり、前記複数の磁極子鉄心122の磁極子磁極面124の磁極が前後方向及び上下方向の双方において交互に反転するように前記複数の磁極ブロック121が2列にわたって配列されている。従って、隣り合う2つの磁極ブロック121において互いに接合される面の一方はS極、他方はN極、を構成する、このことは、隣り合う2つの磁極ブロック121が磁力によって互いに引きつけ合って複数の磁極ブロック121が容易に2列に配置されることを可能にする。
The plurality of magnetic pole blocks 121 are arranged so as to be in surface contact with each other. Of the plurality of magnetic monopoles 122, the magnetic monopole surfaces 124 of the two magnetic monopoles 122 adjacent to each other in the front-rear direction in each of the upper and lower stages form magnetic poles opposite to each other, and are adjacent to each other in the vertical direction. The magnetic monopole surfaces 124 of the monopole core 122 also form magnetic poles opposite to each other. That is, the plurality of magnetic pole blocks 121 are arranged over two rows so that the magnetic poles of the magnetic pole element magnetic pole surfaces 124 of the plurality of magnetic pole cores 122 are alternately inverted in both the front-rear direction and the vertical direction. Therefore, one of the surfaces joined to each other in the two adjacent magnetic pole blocks 121 constitutes an S pole and the other is an N pole, which means that the two adjacent magnetic pole blocks 121 are attracted to each other by magnetic force to form a plurality of poles. Allows the magnetic pole blocks 121 to be easily arranged in two rows.
前記複数の磁極ブロック121は、前記複数の磁気子鉄心122の磁極子磁極面124が左方及び右方を向き、当該磁極子磁極面124以外の4つの外面が前方、後方、上方、下方をそれぞれ向くように配置される。
In the plurality of magnetic pole blocks 121, the magnetic pole surface 124 of the plurality of magnetic monopoles 122 faces left and right, and the four outer surfaces other than the monopole surface 124 face forward, backward, upward, and downward. They are arranged so that they face each other.
上記のような構成の直動電動機100において、前記複数の電機子コイル111に適当な向きの電流が流されることにより、当該複数の電機子コイル111のそれぞれの周囲に磁界が発生する。このとき、前記複数のティース部112のそれぞれにおいて前記磁極子120と対向する面が磁極面、すなわち電機子磁極面114、となる。そして、前記電機子磁極面114と前記磁極子磁極面124とが磁力によって互いに吸引又は反発される。従って、前記複数の電機子コイル111によって生じる磁界が変化するように当該電機子コイル111に流れる電流を制御することにより、前記磁極子120を前後方向に移動させることができる。
In the linear motor 100 having the above configuration, a magnetic field is generated around each of the plurality of armature coils 111 by passing a current in an appropriate direction through the plurality of armature coils 111. At this time, the surface of each of the plurality of teeth portions 112 facing the magnetic monopole 120 is the magnetic pole surface, that is, the armature magnetic pole surface 114. Then, the armature magnetic pole surface 114 and the magnetic monopole surface 124 are attracted or repelled by magnetic force. Therefore, the magnetic monopole 120 can be moved in the front-rear direction by controlling the current flowing through the armature coil 111 so that the magnetic field generated by the plurality of armature coils 111 changes.
前記複数の支持部材126は省略されることが可能である。例えば、互いに隣接する磁極ブロック121どうしが接着剤等で互いに直接接続されてもよい。
The plurality of support members 126 can be omitted. For example, the magnetic pole blocks 121 adjacent to each other may be directly connected to each other by an adhesive or the like.
次に、本発明の第3の実施の形態を図14~図16を参照しながら説明する。この実施の形態に係る磁場発生装置は、図14に示すような直動電動機200に適用されている。当該直動電動機200は、片面リニアモータであり、磁極子220と、電機子210と、を備える。前記磁極子220は、予め設定された可動方向及び左右方向に配列された複数の磁極ブロック221を含み、当該複数の磁極ブロック221が前記可動方向及び前記左右方向に交互に反転する複数の磁極を構成する。前記電機子210は、前記磁極子220の上に当該磁極子220と空隙をおいて配置されている。前記電機子210は、当該電機子210に対して前記磁極子220を前記可動方向に相対的に直線移動させるための磁界を形成する。前記磁極子220が可動子であって前記電機子210が固定子であってもよいし、前記電機子210が可動子であって前記磁極子220が固定子であってもよい。以下の説明では、前記磁極子220が前記可動子であって前記電機子210が前記固定子である場合について説明する。以下の説明において、前記可動方向が前後方向と呼ばれ、前記電機子210と磁極子220とが並ぶ方向が上下方向と呼ばれ、前記可動方向及び前記上下方向の双方に直交する方向が左右方向と呼ばれることがある。
Next, a third embodiment of the present invention will be described with reference to FIGS. 14 to 16. The magnetic field generator according to this embodiment is applied to a linear motor 200 as shown in FIG. The linear motor 200 is a single-sided linear motor, and includes a magnetic pole 220 and an armature 210. The magnetic pole element 220 includes a plurality of magnetic pole blocks 221 arranged in a preset movable direction and a left-right direction, and the plurality of magnetic pole blocks 221 have a plurality of magnetic poles that are alternately inverted in the movable direction and the left-right direction. Configure. The armature 210 is arranged on the magnetic monopole 220 with a gap between the magnetic monopole 220 and the magnetic monopole 220. The armature 210 forms a magnetic field for linearly moving the magnetic monopole 220 relative to the armature 210 in the movable direction. The magnetic pole 220 may be a mover and the armature 210 may be a stator, or the armature 210 may be a mover and the magnetic pole 220 may be a stator. In the following description, a case where the magnetic pole 220 is the mover and the armature 210 is the stator will be described. In the following description, the movable direction is called the front-rear direction, the direction in which the armature 210 and the magnetic pole element 220 are lined up is called the vertical direction, and the direction orthogonal to both the movable direction and the vertical direction is the horizontal direction. Sometimes called.
図15Aに示すように、前記電機子210は、複数の電機子コイル211と、図15Bに示される磁性体部分である電機子鉄心215と、を含み、当該電機子鉄心215は、複数のティース部212と、ヨーク部213と、を一体に有する。前記複数のティース部212はそれぞれコイル鉄心を構成する。前記ヨーク部213は平板状をなしている。前記複数のティース部212は前記ヨーク部213の下面から下向きに突出し、前後方向及び左右方向の双方に並んでいる。前記電機子鉄心215は、軟鉄、ソフトフェライト等の軟磁性体によって構成される。
As shown in FIG. 15A, the armature 210 includes a plurality of armature coils 211 and an armature core 215 which is a magnetic material portion shown in FIG. 15B, and the armature core 215 includes a plurality of teeth. The portion 212 and the yoke portion 213 are integrally provided. Each of the plurality of teeth portions 212 constitutes a coil iron core. The yoke portion 213 has a flat plate shape. The plurality of teeth portions 212 project downward from the lower surface of the yoke portion 213 and are arranged in both the front-rear direction and the left-right direction. The armature core 215 is made of a soft magnetic material such as soft iron or soft ferrite.
前記複数のティース部212のそれぞれは、例えば図15Bに示される直方体形状をなしている。前記複数の電機子コイル211は、前記複数のティース部212のそれぞれの周囲に巻回される導線により構成される。前記複数の電機子コイル211は、図15Bに示される例では6つの電機子コイル211であり、前後方向に並ぶ2列のそれぞれにおいて左右方向に3個の電機子コイル211が配列されている。
Each of the plurality of teeth portions 212 has a rectangular parallelepiped shape shown in FIG. 15B, for example. The plurality of armature coils 211 are composed of conductors wound around each of the plurality of teeth portions 212. The plurality of armature coils 211 are six armature coils 211 in the example shown in FIG. 15B, and three armature coils 211 are arranged in the left-right direction in each of the two rows arranged in the front-rear direction.
図14に示すように、前記磁極子220は前記電機子210の下方に空隙をおいて配置される。図16は、磁極子220の斜視図である。図16に示すように、前記磁極子220は、水平な板状をなす。
As shown in FIG. 14, the magnetic monopole 220 is arranged with a gap below the armature 210. FIG. 16 is a perspective view of the magnetic monopole 220. As shown in FIG. 16, the magnetic monopole 220 has a horizontal plate shape.
前記磁極子220は、それぞれが磁極子磁極面224をもつ複数の磁極子鉄心222と、複数の永久磁石と、バックヨーク225と、を含む。前記複数の永久磁石は、複数の第1永久磁石223Aと複数の第2永久磁石223Bとを含む。前記複数の第1永久磁石223Aのそれぞれは、互いに隣接する磁極子鉄心222どうしの間に介在する介在永久磁石を構成する部分223a,223bと、前記複数の磁極子鉄心222のそれぞれの反対側面(図16では下面)に配置される反対側永久磁石を構成する部分223cと、を一体に有する。前記第2永久磁石223Bは、専ら反対側永久磁石として配置される。
The magnetic pole 220 includes a plurality of magnetic monopoles 222 each having a magnetic pole surface 224, a plurality of permanent magnets, and a back yoke 225. The plurality of permanent magnets include a plurality of first permanent magnets 223A and a plurality of second permanent magnets 223B. Each of the plurality of first permanent magnets 223A has portions 223a and 223b constituting the intervening permanent magnets interposed between the magnetic monopoles 222 adjacent to each other, and the opposite side surfaces of the plurality of magnetic monopoles 222. In FIG. 16, the portion 223c constituting the opposite permanent magnet arranged on the lower surface) is integrally provided. The second permanent magnet 223B is arranged exclusively as the opposite permanent magnet.
換言すれば、前記磁極子220は、複数の磁気ブロック221を含み、当該複数の磁極ブロック221のそれぞれは、前記磁極子鉄心222と、その周囲に配置される複数の永久磁石であって前記第1及び第2永久磁石223A,223Bの少なくとも一方)と、を含む。前記複数の磁極ブロック221は前記バックヨーク225の上で前後方向及び左右方向の双方に並べられている。前記バックヨーク225は、直方体状の軟磁性体により構成され、前記複数の磁極ブロック221の下方に配置されている。前記バックヨーク225は、前記複数の磁極ブロック221のそれぞれにおいて前記磁極子磁極面224と反対側(図16では下側)の磁極が外部に露出するのを阻止し、当該バックヨーク225内に磁路が形成されることを可能にする。
In other words, the magnetic pole 220 includes a plurality of magnetic blocks 221 and each of the plurality of magnetic pole blocks 221 is the magnetic monopole 222 and a plurality of permanent magnets arranged around the magnetic monopole 222. 1 and at least one of the second permanent magnets 223A and 223B). The plurality of magnetic pole blocks 221 are arranged on the back yoke 225 in both the front-rear direction and the left-right direction. The back yoke 225 is made of a rectangular parallelepiped soft magnetic material, and is arranged below the plurality of magnetic pole blocks 221. The back yoke 225 prevents the magnetic poles on the opposite side (lower side in FIG. 16) from the magnetic monopole surface 224 in each of the plurality of magnetic pole blocks 221 from being exposed to the outside, and magnetizes the inside of the back yoke 225. Allows the road to be formed.
前記複数の磁極ブロック221のうち前後方向及び左右方向に並ぶ4つの磁極ブロック221と前記バックヨーク225との組み合わせは、図9に示される前記単位胞30の構成に相当する。本実施の形態では、図9に示される前記単位胞30の上側部分が図16に示される前記磁極子220の上側部分と一致し、図9に示される単位胞30の下側部分が図16に示される前記磁極子220の下側と一致するように当該単位胞30が前記磁極子220に組み込まれる。前記単位胞30を構成する前記第1~第4鉄心22A~22Dが前記複数の磁極ブロック221の磁極子鉄心222に含まれる。
The combination of the four magnetic pole blocks 221 arranged in the front-rear direction and the left-right direction among the plurality of magnetic pole blocks 221 and the back yoke 225 corresponds to the configuration of the unit cell 30 shown in FIG. In this embodiment, the upper portion of the monopole 30 shown in FIG. 9 coincides with the upper portion of the monopole 220 shown in FIG. 16, and the lower portion of the monopole 30 shown in FIG. 9 is FIG. The monopole 30 is incorporated into the monopole 220 so as to coincide with the lower side of the monopole 220 shown in. The first to fourth cores 22A to 22D constituting the unit cell 30 are included in the magnetic pole cores 222 of the plurality of magnetic pole blocks 221.
前記複数の磁極ブロック221は互いに面接触するように配置される。前記複数の磁気子鉄心222のうち互いに隣接する磁極子鉄心222の磁極子磁極面224は互いに反対の磁極を構成する。つまり、前後方向及び左右方向の双方において磁極が交互に反転するように前記複数の磁極ブロック221がマトリックス状に並べられる。従って、隣り合う2つの磁極ブロック221において互いに接合される面の一方はS極を構成し、他方はN極を構成する。このことは、隣り合う2つの磁極ブロック221が磁力によって互いに引きつけ合って前記複数の磁極ブロック221が容易にマトリックス状に配置されることを可能にする。
The plurality of magnetic pole blocks 221 are arranged so as to be in surface contact with each other. Of the plurality of magnetic monopoles 222, the magnetic monopole surfaces 224 of the magnetic monopoles 222 adjacent to each other form opposite magnetic poles. That is, the plurality of magnetic pole blocks 221 are arranged in a matrix so that the magnetic poles are alternately inverted in both the front-rear direction and the left-right direction. Therefore, one of the surfaces joined to each other in the two adjacent magnetic pole blocks 221 constitutes an S pole, and the other constitutes an N pole. This allows two adjacent magnetic pole blocks 221 to be attracted to each other by a magnetic force so that the plurality of magnetic pole blocks 221 can be easily arranged in a matrix.
前記複数の磁極ブロック221は、前記複数の磁気子鉄心222の磁極子磁極面224が上を向き、当該磁極子磁極面224以外の4つの外面が前方、後方、右方、左方をそれぞれ向くように配置される。
In the plurality of magnetic pole blocks 221, the magnetic monopole surface 224 of the plurality of magnetic monopoles 222 faces upward, and the four outer surfaces other than the magnetic monopole surface 224 face forward, backward, right, and left, respectively. Arranged like this.
上記のような構成の直動電動機200において、前記複数の電機子コイル211に適当な向きの電流が流されることにより、当該複数の電機子コイル211のそれぞれの周囲に磁界が発生する。このとき、前記複数のティース部212のそれぞれにおいて前記磁極子220と対向する面が磁極面、すなわち電機子磁極面214、となる。そして、前記電機子磁極面214と前記磁極子磁極面224とが磁力によって互いに吸引又は反発される。従って、前記複数の電機子コイル211によって生じる磁界が変化するように電機子コイル211に流れる電流を制御することにより、前記磁極子220を前後方向に移動させることができる。
In the linear motor 200 having the above configuration, a magnetic field is generated around each of the plurality of armature coils 211 by passing a current in an appropriate direction through the plurality of armature coils 211. At this time, the surface of each of the plurality of tooth portions 212 facing the magnetic monopole 220 is the magnetic pole surface, that is, the armature magnetic pole surface 214. Then, the armature magnetic pole surface 214 and the magnetic monopole surface 224 are attracted or repelled by magnetic force. Therefore, the magnetic monopole 220 can be moved in the front-rear direction by controlling the current flowing through the armature coil 211 so that the magnetic field generated by the plurality of armature coils 211 changes.
次に、本発明の第4の実施の形態を図17~図19を参照しながら説明する。本実施の形態に係る磁場発生装置は、図17に示すようなラジアルギャップ電動機300に適用されている。当該電動機300は、円筒状の磁極子320と、円筒状の電機子310と、を備える。前記電機子310と前記磁極子320とは互いに空隙をおいて同心円状に配置され、前記電機子310が前記磁極子320を囲繞する。
Next, a fourth embodiment of the present invention will be described with reference to FIGS. 17 to 19. The magnetic field generator according to the present embodiment is applied to the radial gap electric motor 300 as shown in FIG. The electric motor 300 includes a cylindrical magnetic monopole 320 and a cylindrical armature 310. The armature 310 and the monopole 320 are arranged concentrically with a gap between them, and the armature 310 surrounds the monopole 320.
前記磁極子320は、複数の磁極ブロック321を含み、当該複数の磁極ブロック321が周方向に交互に反転する複数の磁極をそれぞれ構成する。前記電機子310は、半径方向について前記磁極子320の外側に配置される。前記電機子310は、当該電機子310の内側において前記磁極子320を当該電機子310に対して相対的に回転させるための磁界を形成する。本実施の形態では、前記磁極子320が回転子であり、前記電機子310が固定子である。以下の説明では、前記磁極子320の回転軸の方向が軸方向と呼ばれ、前記磁極子320の前記回転軸を中心とする回転方向が周方向と呼ばれ、前記磁極子320の前記回転軸に直交する方向が半径方向と呼ばれることがある。
The magnetic pole element 320 includes a plurality of magnetic pole blocks 321 and constitutes a plurality of magnetic poles in which the plurality of magnetic pole blocks 321 are alternately inverted in the circumferential direction. The armature 310 is arranged outside the magnetic pole 320 in the radial direction. The armature 310 forms a magnetic field inside the armature 310 for rotating the magnetic monopole 320 relative to the armature 310. In the present embodiment, the magnetic pole 320 is a rotor and the armature 310 is a stator. In the following description, the direction of the rotation axis of the magnetic pole element 320 is referred to as an axial direction, the rotation direction of the magnetic pole element 320 around the rotation axis is referred to as a circumferential direction, and the rotation axis of the magnetic pole element 320 is referred to as a circumferential direction. The direction orthogonal to is sometimes called the radial direction.
図18Aは、前記電機子310の斜視図である。前記電機子310は、複数の電機子コイル311と、図18Bに示される磁性体部分である電機子鉄心315と、を含み、当該電機子鉄心315は、複数のティース部312と、ヨーク部313と、を一体に有する。前記複数のティース部312はそれぞれコイル鉄心を構成する。前記ヨーク部313は円筒状をなす。前記複数のティース部312のそれぞれは、前記ヨーク部313の内周面から半径方向内側に突出する。前記複数のティース部312は、周方向及び軸方向の双方において並ぶように配置されている。前記電機子鉄心315は、軟鉄、ソフトフェライト等の軟磁性体によって構成される。前記複数の電機子コイル311は、前記複数のティース部312のそれぞれの周囲に巻回された導線により構成される。前記複数の電機子コイル311は、図18Bに示される例では30個の電機子コイル311であり、軸方向に並ぶ2列のそれぞれにおいて周方向に15個ずつ並んでいる。
FIG. 18A is a perspective view of the armature 310. The armature 310 includes a plurality of armature coils 311 and an armature core 315 which is a magnetic material portion shown in FIG. 18B, and the armature core 315 includes a plurality of teeth portions 312 and a yoke portion 313. And, in one piece. Each of the plurality of tooth portions 312 constitutes a coil iron core. The yoke portion 313 has a cylindrical shape. Each of the plurality of tooth portions 312 projects inward in the radial direction from the inner peripheral surface of the yoke portion 313. The plurality of tooth portions 312 are arranged so as to be arranged in both the circumferential direction and the axial direction. The armature core 315 is made of a soft magnetic material such as soft iron or soft ferrite. The plurality of armature coils 311 are composed of conductors wound around each of the plurality of tooth portions 312. The plurality of armature coils 311 are 30 armature coils 311 in the example shown in FIG. 18B, and 15 armature coils are arranged in the circumferential direction in each of the two rows arranged in the axial direction.
図17に示すように、前記磁極子320は前記電機子310の半径方向内側に前記空隙をおいて配置される。図19は、前記磁極子320の斜視図である。前記磁極子320は、複数の磁気子鉄心322と、複数の介在永久磁石3231と、複数の反対側永久磁石3232と、バックヨーク325と、を含み、前記複数の磁気子鉄心322のそれぞれが磁極子磁極面(図19では径方向外側面)324を有する。前記複数の介在永久磁石3231は、前記複数の磁気子鉄心322のうち互いに隣り合う磁極子鉄心322どうしの間に介在し、前記複数の反対側永久磁石3232は、前記複数の磁気子鉄心322のそれぞれの反対側面(図19では径方向内周面)に配置される。
As shown in FIG. 17, the magnetic monopole 320 is arranged with the gap inside the armature 310 in the radial direction. FIG. 19 is a perspective view of the magnetic monopole 320. The magnetic pole 320 includes a plurality of magnetic monopoles 322, a plurality of intervening permanent magnets 3231, a plurality of opposite permanent magnets 3322, and a back yoke 325, and each of the plurality of magnetic monopoles 322 has a magnetic pole. It has a child magnetic pole surface (radial outer surface in FIG. 19) 324. The plurality of intervening permanent magnets 3231 are interposed between the magnetic pole cores 322 adjacent to each other among the plurality of magnetic cores 322, and the plurality of opposite permanent magnets 3232 are formed of the plurality of magnetic cores 322. It is arranged on the opposite side surface (diametrically inner peripheral surface in FIG. 19).
換言すれば、前記磁極子320は、前記複数の磁極ブロック321及びバックヨーク325を含み、前記複数の磁極ブロック321のそれぞれは、単一の前記磁極子鉄心322と、その周囲に配置される複数の永久磁石であって前記複数の介在永久磁石3231の少なくとも一つ及び前記複数の反対側永久磁石3232のうちの1つと、を含む。前記複数の磁極ブロック321は前記バックヨーク325の外周面上で周方向に並べられている。前記バックヨーク325は、円筒状の軟磁性体からなり、前記複数の磁極ブロック321の半径方向内側に位置する。前記バックヨーク325は、前記複数の磁極ブロック321のそれぞれにおいて前記磁極子磁極面324と反対側の面が外部に露出するのを阻止し、当該バックヨーク325内に磁路が形成されることを可能にする。
In other words, the magnetic pole element 320 includes the plurality of magnetic pole blocks 321 and the back yoke 325, and each of the plurality of magnetic pole blocks 321 has a single magnetic pole element core 322 and a plurality of magnet cores arranged around the magnetic pole block 321. The permanent magnets of the above include at least one of the plurality of intervening permanent magnets 3231 and one of the plurality of opposite permanent magnets 3232. The plurality of magnetic pole blocks 321 are arranged in the circumferential direction on the outer peripheral surface of the back yoke 325. The back yoke 325 is made of a cylindrical soft magnetic material and is located inside the plurality of magnetic pole blocks 321 in the radial direction. The back yoke 325 prevents the surface of each of the plurality of magnetic pole blocks 321 on the side opposite to the magnetic pole surface 324 from being exposed to the outside, so that a magnetic path is formed in the back yoke 325. enable.
前記複数の磁極ブロック321のうち周方向及び軸方向に互いに隣接する4つの磁極ブロック321と前記バックヨーク325との組み合わせは、図9に示される前記単位胞30の構成に相当する。図9に示される前記単位胞30が半径方向内側部分を欠く扇形柱状に形成されるとともに、図9に示される前記単位胞30のの上側部分が図19に示される前記磁極子320の半径方向の外側部分と一致し、図9に示される単位胞30の下側部分が図19に示される磁極子320の半径方向内側部分と一致する姿勢で、当該磁極子320に当該単位胞30が組み込まれる。また、図9に示される前記第1~第4鉄心22A~22Dが前記複数の磁極ブロック321の前記磁極子鉄心322に含まれる。
The combination of the four magnetic pole blocks 321 adjacent to each other in the circumferential direction and the axial direction among the plurality of magnetic pole blocks 321 and the back yoke 325 corresponds to the configuration of the unit cell 30 shown in FIG. The unit cell 30 shown in FIG. 9 is formed in a fan-shaped columnar shape lacking an inner portion in the radial direction, and the upper portion of the unit cell 30 shown in FIG. 9 is in the radial direction of the magnetic pole element 320 shown in FIG. The monopole 30 is incorporated into the monopole 320 in a posture that coincides with the outer portion of the monopole and the lower portion of the monopole 30 shown in FIG. 9 coincides with the radial inner portion of the monopole 320 shown in FIG. Is done. Further, the first to fourth cores 22A to 22D shown in FIG. 9 are included in the magnetic pole core 322 of the plurality of magnetic pole blocks 321.
前記複数の磁極ブロック321のそれぞれは、周方向を向く長方形状の一対の側面を有し、互いに隣り合う磁極ブロック321は、当該磁極ブロック321の側面の一方同士が接するように周方向に互いに接続される。互いに周方向に隣接する2つの磁極ブロック321の磁極子鉄心322の前記磁極子磁極面324は互いに反対の磁極を構成する。つまり、互いに反対の磁極を構成する磁極子磁極面324が交互に並ぶように前記複数の磁極ブロック321が周方向に並べられる。従って、周方向について隣り合う磁極ブロック321のうち互いに接合される面の一方はS極を構成し、他方はN極を構成する。このことは、互いに隣り合う2つの磁極ブロック321が磁力によって互いに引きつけ合って前記複数の磁極ブロック321が容易に周方向に並べて配置されることを可能にする。
Each of the plurality of magnetic pole blocks 321 has a pair of rectangular side surfaces facing in the circumferential direction, and the magnetic pole blocks 321 adjacent to each other are connected to each other in the circumferential direction so that one of the side surfaces of the magnetic pole block 321 touches each other. Will be done. The monopole surface 324 of the monopole core 322 of the two magnetic pole blocks 321 adjacent to each other in the circumferential direction constitutes opposite magnetic poles. That is, the plurality of magnetic pole blocks 321 are arranged in the circumferential direction so that the magnetic monopole surfaces 324 constituting the opposite magnetic poles are arranged alternately. Therefore, one of the surfaces of the magnetic pole blocks 321 adjacent to each other in the circumferential direction to be joined to each other constitutes an S pole, and the other constitutes an N pole. This makes it possible for the two magnetic pole blocks 321 adjacent to each other to be attracted to each other by a magnetic force so that the plurality of magnetic pole blocks 321 can be easily arranged side by side in the circumferential direction.
前記磁極子320は、前記と異なる観点からみると、軸方向に互いに積層される複数の円環状構造体により構成され、当該複数の円環状構造体が、前記のように互いに周方向に並ぶ複数の磁極ブロック321によって構成される。互いに軸方向に隣接する磁極ブロック321のそれぞれは、半径方向内側部分が欠けた扇形の側面同士が接する状態で互いに軸方向に接続される。互いに軸方向に隣接する2つの磁極ブロック321の磁極子鉄心322の磁極子磁極面324は互いに反対の磁極を構成する。つまり、互いに反対の磁極が交互に並ぶように前記複数の磁極ブロック321が軸方向に並べられる。従って、軸方向に隣り合う磁極ブロック321において互いに接合される面の一方はS極を構成し、他方はN極を構成する。このことは、軸方向に隣り合う2つの磁極ブロック321が磁力によって互いに引きつけ合って前記複数の磁極ブロック321が容易に軸方向に並べて配置されることを可能にする。
From a different point of view, the magnetic monopole 320 is composed of a plurality of annular structures stacked in the axial direction, and the plurality of annular structures are arranged in the circumferential direction as described above. It is composed of a magnetic pole block 321 of. Each of the magnetic pole blocks 321 adjacent to each other in the axial direction are connected to each other in the axial direction in a state where the side surfaces of the fan shape lacking the inner portion in the radial direction are in contact with each other. The magnetic monopole surfaces 324 of the monopole core 322 of the two magnetic pole blocks 321 adjacent to each other in the axial direction form opposite magnetic poles. That is, the plurality of magnetic pole blocks 321 are arranged in the axial direction so that the magnetic poles opposite to each other are arranged alternately. Therefore, one of the surfaces joined to each other in the magnetic pole blocks 321 adjacent to each other in the axial direction constitutes an S pole, and the other constitutes an N pole. This makes it possible for the two magnetic pole blocks 321 adjacent to each other in the axial direction to attract each other by a magnetic force so that the plurality of magnetic pole blocks 321 can be easily arranged side by side in the axial direction.
上記のような構成のラジアルギャップ電動機300において、前記複数の電機子コイル311に適当な向きの電流が流されることにより、当該複数の電機子コイル311のそれぞれの周囲に磁界が発生する。このとき、前記複数のティース部312のそれぞれにおいて前記磁極子320と対向する面が磁極面、すなわち電機子磁極面314、となる。そして、前記電機子磁極面314と前記磁極子磁極面324とが磁力によって吸引又は反発される。従って、前記複数の電機子コイル311によって生じる磁界が変化するように前記複数の電機子コイル311に流れる電流を制御することにより、前記磁極子320を前記電機子310の内側において回転させることが可能である。
In the radial gap electric machine 300 having the above configuration, a magnetic field is generated around each of the plurality of armature coils 311 by passing a current in an appropriate direction through the plurality of armature coils 311. At this time, the surface of each of the plurality of tooth portions 312 facing the magnetic monopole 320 becomes the magnetic pole surface, that is, the armature magnetic pole surface 314. Then, the armature magnetic pole surface 314 and the magnetic monopole surface 324 are attracted or repelled by the magnetic force. Therefore, by controlling the current flowing through the plurality of armature coils 311 so that the magnetic field generated by the plurality of armature coils 311 changes, the magnetic monopole 320 can be rotated inside the armature 310. Is.
次に、本発明の第5の実施の形態を図20~図22を参照しながら説明する。この実施の形態に係る磁場発生装置は、図20に示すようなラジアルギャップ電動機400に適用されている。当該ラジアルギャップ電動機400は、円筒状の磁極子420と、円筒状の電機子410と、を備える。前記電機子410と前記磁極子420とは互いに空隙をおいて同心円状に配置され、前記磁極子420が前記電機子410を囲繞する。
Next, a fifth embodiment of the present invention will be described with reference to FIGS. 20 to 22. The magnetic field generator according to this embodiment is applied to the radial gap motor 400 as shown in FIG. The radial gap electric motor 400 includes a cylindrical magnetic monopole 420 and a cylindrical armature 410. The armature 410 and the magnetic monopole 420 are arranged concentrically with a gap between them, and the magnetic monopole 420 surrounds the armature 410.
前記磁極子420は、複数の磁極ブロック421を含み、当該複数の磁極ブロック421が周方向に交互に反転する複数の磁極をそれぞれ構成する。前記電気子410は、半径方向について前記磁極子420の内側に配置される。前記電機子410は、当該電機子410の外側において前記磁極子420を当該電機子410に対して相対的に回転させるための磁界を形成する。本実施の形態では、前記磁極子420が回転子であり、前記電機子410が固定子である。以下の説明では、前記磁極子420の回転軸の方向が軸方向と呼ばれ、前記磁極子420の前記回転軸を中心とする回転方向が周方向と呼ばれ、前記磁極子420の前記回転軸に直交する方向が半径方向と呼ばれることがある。
The magnetic pole element 420 includes a plurality of magnetic pole blocks 421, and each of the plurality of magnetic pole blocks 421 constitutes a plurality of magnetic poles that are alternately inverted in the circumferential direction. The electric element 410 is arranged inside the magnetic pole element 420 in the radial direction. The armature 410 forms a magnetic field outside the armature 410 for rotating the magnetic monopole 420 relative to the armature 410. In the present embodiment, the magnetic pole 420 is a rotor and the armature 410 is a stator. In the following description, the direction of the rotation axis of the magnetic pole element 420 is referred to as an axial direction, the rotation direction of the magnetic pole element 420 centered on the rotation axis is referred to as a circumferential direction, and the rotation axis of the magnetic pole element 420 is referred to as a circumferential direction. The direction orthogonal to is sometimes called the radial direction.
図21Aは、前記電機子410の斜視図である。前記電機子410は、複数の電機子コイル411と、図21Bに示される磁性体部分である電機子鉄心415と、を含み、当該電機子鉄心415は、複数のティース部412と、ヨーク部413と、を一体に有する。前記複数のティース部412はそれぞれコイル鉄心を構成する。前記ヨーク部413は円筒状をなす。前記複数のティース部412は前記ヨーク部413の外周面から径方向外側に突出する。前記複数のティース部412は、周方向及び軸方向の双方において並ぶように配置されている。
FIG. 21A is a perspective view of the armature 410. The armature 410 includes a plurality of armature coils 411 and an armature core 415 which is a magnetic material portion shown in FIG. 21B, and the armature core 415 includes a plurality of tooth portions 412 and a yoke portion 413. And, in one piece. Each of the plurality of tooth portions 412 constitutes a coil iron core. The yoke portion 413 has a cylindrical shape. The plurality of tooth portions 412 project radially outward from the outer peripheral surface of the yoke portion 413. The plurality of tooth portions 412 are arranged so as to be arranged in both the circumferential direction and the axial direction.
前記電機子鉄心415は、軟鉄、ソフトフェライト等の軟磁性体によって構成される。前記複数の電機子コイル411は、前記複数のティース部412のそれぞれの周囲に巻回された導線により構成される。前記複数の電機子コイル411は、図21Bに示される例では30個の電機子コイル311であり、軸方向に並ぶ2列のそれぞれにおいて周方向に15個ずつ並んでいる。
The armature core 415 is composed of a soft magnetic material such as soft iron and soft ferrite. The plurality of armature coils 411 are composed of conductors wound around each of the plurality of teeth portions 412. The plurality of armature coils 411 are 30 armature coils 311 in the example shown in FIG. 21B, and 15 armature coils are arranged in the circumferential direction in each of the two rows arranged in the axial direction.
図20に示すように、前記磁極子420は、前記電機子410の半径方向外側に前記空隙をおいて配置される。図22は、前記磁極子420の斜視図である。前記磁極子420は、複数の磁気子鉄心422と、複数の介在永久磁石4231と、複数の反対側永久磁石4232と、バックヨーク425と、を含み、前記複数の磁気子鉄心422のそれぞれが磁極子磁極面(図22では径方向外側面)424を有する。前記複数の介在永久磁石4231は、前記複数の磁気子鉄心422のうち互いに隣り合う磁極子鉄心422どうしの間に介在し、前記複数の反対側永久磁石4232は、前記複数の磁気子鉄心422のそれぞれの反対側面(図22では径方向内周面)に配置される。
As shown in FIG. 20, the magnetic monopole 420 is arranged with the gap on the outer side in the radial direction of the armature 410. FIG. 22 is a perspective view of the magnetic monopole 420. The magnetic pole 420 includes a plurality of magnetic monopoles 422, a plurality of intervening permanent magnets 4231, a plurality of opposite permanent magnets 4232, and a back yoke 425, and each of the plurality of magnetic monopoles 422 has a magnetic pole. It has a child magnetic pole surface (radial outer surface in FIG. 22) 424. The plurality of intervening permanent magnets 4231 are interposed between the magnetic pole cores 422 adjacent to each other among the plurality of magnetic cores 422, and the plurality of opposite side permanent magnets 4232 are the plurality of magnetic cores 422 of the plurality of magnetic cores 422. It is arranged on the opposite side surface (diametrically inner peripheral surface in FIG. 22).
換言すれば、前記磁極子420は、前記複数の磁極ブロック421及び前記バックヨーク425を含み、当該複数の磁極ブロック421のそれぞれが、単一の前記磁極子鉄心422と、複数の永久磁石すなわち前記複数の介在永久磁石4231のうちの少なくとも一つと前記複数の反対側永久磁石4232のうちの一つと、を含む。前記複数の磁極ブロック421は、前記バックヨーク425の内周面上で周方向に並べられている。前記バックヨーク425は、円筒状の軟磁性体からなり、前記複数の磁極ブロック421の半径方向外側に位置する。前記バックヨーク425は、前記複数の磁極ブロック421のそれぞれの前記磁極子磁極面424と反対側の面が外部に露出するのを阻止し、当該バックヨーク425内に磁路が形成されることを可能にする。
In other words, the magnetic pole element 420 includes the plurality of magnetic pole blocks 421 and the back yoke 425, and each of the plurality of magnetic pole blocks 421 has a single magnetic monopole core 422 and a plurality of permanent magnets, that is, the said. Includes at least one of the plurality of intervening permanent magnets 4231 and one of the plurality of contralateral permanent magnets 4232. The plurality of magnetic pole blocks 421 are arranged in the circumferential direction on the inner peripheral surface of the back yoke 425. The back yoke 425 is made of a cylindrical soft magnetic material and is located on the outer side in the radial direction of the plurality of magnetic pole blocks 421. The back yoke 425 prevents the surface of the plurality of magnetic pole blocks 421 on the side opposite to the magnetic pole surface 424 of each of the magnetic pole blocks 421 from being exposed to the outside, so that a magnetic path is formed in the back yoke 425. enable.
前記複数の磁極ブロック421のうち周方向及び軸方向に互いに隣接する4つの磁極ブロック421と前記バックヨーク425との組み合わせは、図9に示される前記単位胞30の構成に相当する。図9に示される前記単位胞30が半径方向内側部分を欠く扇形柱状に形成されるとともに、例えば、図9に示される前記単位胞30の上側部分が図22に示される前記磁極子420の半径方向内側部分と一致し、図9に示される前記単位胞30の下側部分が図22に示される前記磁極子420の半径方向外側部分と一致する姿勢で、当該磁極子420に当該単位胞30が組み込まれる。また、図9に示される前記第1~第4鉄心22A~22Dが前記複数の磁極ブロック421の前記複数の磁気子鉄心122に含まれる。
The combination of the four magnetic pole blocks 421 adjacent to each other in the circumferential direction and the axial direction among the plurality of magnetic pole blocks 421 and the back yoke 425 corresponds to the configuration of the unit cell 30 shown in FIG. The unit cell 30 shown in FIG. 9 is formed in a fan-shaped columnar shape lacking an inner portion in the radial direction, and for example, the upper portion of the unit cell 30 shown in FIG. 9 is the radius of the magnetic pole element 420 shown in FIG. The monopole 30 is attached to the monopole 420 in a posture that coincides with the inner portion in the direction and the lower portion of the monopole 30 shown in FIG. 9 coincides with the radial outer portion of the monopole 420 shown in FIG. Is incorporated. Further, the first to fourth cores 22A to 22D shown in FIG. 9 are included in the plurality of magnetic pole cores 122 of the plurality of magnetic pole blocks 421.
前記複数の磁極ブロック421のそれぞれは、周方向を向く長方形状の一対の側面を有し、互いに隣り合う磁極ブロック421は、当該磁極ブロック421の側面の一方同士が接するように周方向に互いに接続される。互いに周方向に隣接する2つの磁極ブロック421の磁極子鉄心422の磁極子磁極面424は互いに反対の磁極を構成する。つまり、互いに反対の磁極を構成する磁極子磁極面424が交互に並ぶように前記複数の磁極ブロック421が周方向に並べられる。従って、周方向について隣り合う磁極ブロック421のうち互いに接合される面の一方がS極を構成し、他方がN極を構成する。このことは、互いに隣り合う2つの磁極ブロック421が磁力によって互いに引きつけ合って前記複数の磁極ブロック421が容易に周方向に並べて配置されることを可能にする。
Each of the plurality of magnetic pole blocks 421 has a pair of rectangular side surfaces facing in the circumferential direction, and the magnetic pole blocks 421 adjacent to each other are connected to each other in the circumferential direction so that one of the side surfaces of the magnetic pole block 421 is in contact with each other. Will be done. The magnetic monopole surfaces 424 of the monopole core 422 of the two magnetic pole blocks 421 that are adjacent to each other in the circumferential direction form opposite magnetic poles. That is, the plurality of magnetic pole blocks 421 are arranged in the circumferential direction so that the magnetic monopole surfaces 424 constituting the opposite magnetic poles are arranged alternately. Therefore, one of the surfaces of the magnetic pole blocks 421 adjacent to each other in the circumferential direction to be joined to each other constitutes an S pole, and the other constitutes an N pole. This makes it possible for the two magnetic pole blocks 421 adjacent to each other to be attracted to each other by a magnetic force so that the plurality of magnetic pole blocks 421 can be easily arranged side by side in the circumferential direction.
前記磁極子420は、前記と異なる観点からみると、軸方向に互いに積層される複数の円環状構造体により構成され、当該複数の円環状構造体が、前記のように互いに周方向に並ぶ複数の磁極ブロック421によって構成される。互いに軸方向に隣接する磁極ブロック421のそれぞれは、半径方向内側が欠けた扇形の側面同士どうしが接する状態で互いに軸方向に接続される。互いに軸方向に隣接する2つの磁極ブロック421の磁極子鉄心422の磁極子磁極面424は互いに反対の磁極を構成する。つまり、互いに反対の磁極が交互に並ぶように前記複数の磁極ブロック421が軸方向に並べられる。従って、軸方向に隣り合う磁極ブロック421において互いに接合される面の一方がS極を構成し、他方がN極を構成する。このことは、軸方向に隣り合う2つの磁極ブロック421が磁力によって互いに引きつけ合って前記複数の磁極ブロック421が容易に軸方向に並べて配置されることを可能にする。
From a different point of view, the magnetic monopole 420 is composed of a plurality of annular structures stacked in the axial direction, and the plurality of annular structures are arranged in the circumferential direction as described above. It is composed of a magnetic pole block 421 of. Each of the magnetic pole blocks 421 adjacent to each other in the axial direction are axially connected to each other in a state where the side surfaces of the fan shape lacking the inside in the radial direction are in contact with each other. The magnetic monopole surfaces 424 of the monopole core 422 of the two magnetic pole blocks 421 that are axially adjacent to each other form opposite magnetic poles. That is, the plurality of magnetic pole blocks 421 are arranged in the axial direction so that the magnetic poles opposite to each other are arranged alternately. Therefore, one of the surfaces joined to each other in the magnetic pole blocks 421 adjacent to each other in the axial direction constitutes an S pole, and the other constitutes an N pole. This makes it possible for the two magnetic pole blocks 421 adjacent to each other in the axial direction to attract each other by a magnetic force so that the plurality of magnetic pole blocks 421 can be easily arranged side by side in the axial direction.
上記のような構成のラジアルギャップ電動機400において、前記複数の電機子コイル411に適当な向きの電流が流されることにより、当該複数の電機子コイル411の周囲に磁界が発生する。このとき、前記複数のティース部412のそれぞれにおいて前記磁極子420と対向する面が磁極面、すなわち電機子磁極面414、となる。そして、前記電機子磁極面414と前記磁気子磁極面424とが磁力によって吸引又は反発される。従って、前記複数の電機子コイル411によって生じる磁界が変化するように電機子コイル411に流れる電流を制御することにより、前記磁極子420を前記電機子410の外側において回転させることができる。
In the radial gap electric machine 400 having the above configuration, a magnetic field is generated around the plurality of armature coils 411 by passing a current in an appropriate direction through the plurality of armature coils 411. At this time, the surface of each of the plurality of tooth portions 412 facing the magnetic pole 420 becomes a magnetic pole surface, that is, an armature magnetic pole surface 414. Then, the armature magnetic pole surface 414 and the magnetic pole surface 424 are attracted or repelled by magnetic force. Therefore, by controlling the current flowing through the armature coil 411 so that the magnetic field generated by the plurality of armature coils 411 changes, the armature 420 can be rotated outside the armature 410.
以上のように、磁極子と、当該磁極子に空隙をおいて対向する対面磁性体と、を備えた磁場発生装置であって、前記空隙に多くの磁束を発生させることが可能なものが、提供される。
As described above, a magnetic field generator including a monopole and a facing magnetic material facing each other with a gap in the magnetic pole, capable of generating a large amount of magnetic flux in the gap, is available. Provided.
提供されるのは、磁場発生装置であって、当該磁場発生装置は、それぞれが磁性材料により形成された複数の磁極子鉄心と、複数の永久磁石と、を含む磁極子と、当該磁極子と空隙を介して対向方向に対向するように配置された対面磁性体と、を備える。前記複数の磁極子鉄心は、前記対面磁性体に対向する配列面上で互いに並ぶ第1鉄心、第2鉄心、第3鉄心、及び第4鉄心を含む。前記第1鉄心は、前記第2鉄心及び前記第3鉄心と隣接する。前記第4鉄心は、前記第2鉄心及び前記第3鉄心と隣接する。前記第1鉄心は、前記対面磁性体に対向する第1磁極面を有する。前記第2鉄心は、前記対面磁性体に対向する第2磁極面を有する。前記第3鉄心は、前記対面磁性体に対向する第3磁極面を有する。前記第4鉄心は、前記対面磁性体に対向する第4磁極面を有する。前記第1磁極面及び前記第4磁極面はいずれも第1磁極を構成する。前記第2磁極面及び前記第3磁極面はいずれも前記第1磁極と反対の第2磁極を構成する。前記複数の永久磁石は、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のうち互いに隣接する鉄心どうしの間にそれぞれ介在する複数の介在永久磁石と、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のそれぞれの外面のうち前記対面磁性体と反対の側を向く反対側面の上にそれぞれ配置される複数の反対側永久磁石と、を含む。前記空隙は、次の式で表される条件を満たす最大幅lgを有する。
Provided is a magnetic field generator, the magnetic field generator comprising a plurality of magnetic monopoles, each of which is formed of a magnetic material, a plurality of permanent magnets, and the magnetic pole element. It comprises a facing magnetic material arranged so as to face each other in a facing direction through a gap. The plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic material. The first core is adjacent to the second core and the third core. The fourth core is adjacent to the second core and the third core. The first iron core has a first magnetic pole surface facing the facing magnetic body. The second iron core has a second magnetic pole surface facing the facing magnetic body. The third iron core has a third magnetic pole surface facing the facing magnetic body. The fourth iron core has a fourth magnetic pole surface facing the facing magnetic body. Both the first magnetic pole surface and the fourth magnetic pole surface form the first magnetic pole. Both the second magnetic pole surface and the third magnetic pole surface form a second magnetic pole opposite to the first magnetic pole. The plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes a plurality of opposite permanent magnets, each placed on the opposite side of the outer surface of each of the second core, the third core and the fourth core, facing the opposite side of the facing magnetic material. .. The gap has a satisfying maximum width l g represented by the following formula.
ここにおいて、lz,Azはそれぞれ前記第1鉄心と前記第2鉄心との間に介在する前記介在永久磁石の厚み及び有効面積であって当該有効面積は前記介在永久磁石において前記第1鉄心と対向する第1磁石面と前記第2鉄心と対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lφ,Aφはそれぞれ前記第1鉄心と前記第3鉄心との間に介在する前記介在永久磁石の厚み及び有効面積であって当該有効面積は前記介在永久磁石において前記第1鉄心と対向する第1磁石面と前記第3鉄心と対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lra,Araはそれぞれ前記第1鉄心の前記反対側面に配置される前記反対側永久磁石の厚み及び有効面積であって当該有効面積は前記反対側永久磁石において前記第1鉄心の前記反対側面と対向する第1磁石面と当該第1磁石面と反対側を向く第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lCは前記対向方向における前記第1鉄心の寸法と当該第1鉄心の前記反対側面に配置される前記反対側永久磁石の厚みとの和である。Afは前記第1磁極面の面積である。ACは前記第1磁極面と前記第2磁極面と前記第3磁極面と前記第4磁極面と前記複数の介在永久磁石のそれぞれにおいて前記対面磁性体に対向する面とが占める面積の1/4である。
Here, l z, A z is the first core the effective area A thickness and effective area of the intermediate permanent magnet in the intervening permanent magnet interposed between each of the first core and the second core The area of the region where the first magnet surface facing the surface and the second magnet surface facing the second iron core overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface. lφ and Aφ are the thickness and effective area of the intervening permanent magnets interposed between the first core and the third core, respectively, and the effective area faces the first iron core in the intervening permanent magnets. The area of the region where the first magnet surface and the second magnet surface facing the third iron core overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface. l ra and A ra are the thickness and effective area of the opposite side permanent magnets arranged on the opposite side surface of the first core, respectively, and the effective area is the opposite side surface of the first core in the opposite side permanent magnet. The area of the region where the first magnet surface facing the surface and the second magnet surface facing the opposite side of the first magnet surface overlap each other in the normal direction of the first magnet surface and the second magnet surface. l C is the sum of the thickness of the opposite permanent magnets located on the opposite side of the dimension and the first core of the first core in the opposite direction. A f is the area of the first magnetic pole surface. AC is 1 of the area occupied by the first magnetic pole surface, the second magnetic pole surface, the third magnetic pole surface, the fourth magnetic pole surface, and the surface of each of the plurality of intervening permanent magnets facing the facing magnetic body. It is / 4.
また、提供されるのは、磁場発生装置であって、当該磁場発生装置は、それぞれが磁性材料により形成された複数の磁極子鉄心と、複数の永久磁石と、を含む磁極子と、当該磁極子と空隙を介して対向方向に対向するように配置された対面磁性体と、を備える。前記複数の磁極子鉄心は、前記対面磁性体に対向する配列面上で互いに並ぶ第1鉄心、第2鉄心、第3鉄心、及び第4鉄心を含む。前記第1鉄心は、前記第2鉄心及び前記第3鉄心と隣接する。前記第4鉄心は、前記第2鉄心及び前記第3鉄心と隣接する。前記第1鉄心は、前記対面磁性体に対向する第1磁極面を有する。前記第2鉄心は、前記対面磁性体に対向する第2磁極面を有する。前記第3鉄心は、前記対面磁性体に対向する第3磁極面を有する。前記第4鉄心は、前記対面磁性体に対向する第4磁極面を有する。前記第1磁極面及び前記第4磁極面はいずれも第1磁極を構成する。前記第2磁極面及び前記第3磁極面はいずれも前記第1磁極と反対の第2磁極を構成する。前記複数の永久磁石は、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のうち互いに隣接する鉄心どうしの間にそれぞれ介在する複数の介在永久磁石と、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のそれぞれの外面のうち前記対面磁性体と反対の側を向く反対側面の上にそれぞれ配置される複数の反対側永久磁石と、を含む。前記空隙は、次の式で表される条件を満たす最大幅lgを有する。
Also provided is a magnetic field generator, the magnetic field generator comprising a plurality of magnetic monopoles, each of which is formed of a magnetic material, a plurality of permanent magnets, and the magnetic pole. It comprises a facing magnetic material arranged so as to face each other in a facing direction via a gap between the child and the child. The plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic material. The first core is adjacent to the second core and the third core. The fourth core is adjacent to the second core and the third core. The first iron core has a first magnetic pole surface facing the facing magnetic body. The second iron core has a second magnetic pole surface facing the facing magnetic body. The third iron core has a third magnetic pole surface facing the facing magnetic body. The fourth iron core has a fourth magnetic pole surface facing the facing magnetic body. Both the first magnetic pole surface and the fourth magnetic pole surface form the first magnetic pole. Both the second magnetic pole surface and the third magnetic pole surface form a second magnetic pole opposite to the first magnetic pole. The plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes a plurality of opposite permanent magnets, each placed on the opposite side of the outer surface of each of the second core, the third core and the fourth core, facing the opposite side of the facing magnetic material. .. The gap has a satisfying maximum width l g represented by the following formula.
ここにおいて、lz,Azはそれぞれ前記第1鉄心と前記第2鉄心との間に介在する前記介在の永久磁石の厚み及び有効面積であって当該有効面積は前記介在永久磁石において前記第1鉄心と対向する第1磁石面と前記第2鉄心と対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lφ,Aφはそれぞれ前記第1鉄心と前記第3鉄心との間に介在する前記介在永久磁石の厚み及び有効面積であって当該有効面積は前記介在永久磁石において前記第1鉄心と対向する第1磁石面と前記第3鉄心と対向する第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lra,Araはそれぞれ前記第1鉄心の前記反対側面に配置される前記反対側永久磁石の厚み及び有効面積であって当該有効面積は前記反対側永久磁石において前記第1鉄心の前記反対側面と対向する第1磁石面と当該第1磁石面と反対側を向く第2磁石面とが当該第1磁石面及び当該第2磁石面の法線方向にみて互いに重複する領域の面積である。lCは前記対向方向における前記第1鉄心の寸法と当該第1鉄心の前記反対側面に配置される前記反対側永久磁石の厚みとの和である。Afは前記第1磁極面の面積である。ACは前記第1磁極面と前記第2磁極面と前記第3磁極面と前記第4磁極面と前記複数の介在永久磁石のそれぞれにおいて前記対面磁性体に対向する面とが占める面積の1/4である。VDは前記複数の介在永久磁石のそれぞれの体積と前記複数の反対側永久磁石のそれぞれの体積の総和である。VCは、前記複数の介在永久磁石のそれぞれの体積と、前記複数の反対側永久磁石のそれぞれの体積と、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のそれぞれの体積と、の総和である。
Here, l z, A z is the first the effective area said a thickness and effective area of intervention of the permanent magnet interposed in the intermediate permanent magnet between each of the first core and the second core The area of the region where the first magnet surface facing the iron core and the second magnet surface facing the second iron core overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface. lφ and Aφ are the thickness and effective area of the intervening permanent magnets interposed between the first core and the third core, respectively, and the effective area faces the first iron core in the intervening permanent magnets. The area of the region where the first magnet surface and the second magnet surface facing the third iron core overlap each other when viewed in the normal direction of the first magnet surface and the second magnet surface. l ra and A ra are the thickness and effective area of the opposite side permanent magnets arranged on the opposite side surface of the first core, respectively, and the effective area is the opposite side surface of the first core in the opposite side permanent magnet. The area of the region where the first magnet surface facing the surface and the second magnet surface facing the opposite side of the first magnet surface overlap each other in the normal direction of the first magnet surface and the second magnet surface. l C is the sum of the thickness of the opposite permanent magnets located on the opposite side of the dimension and the first core of the first core in the opposite direction. A f is the area of the first magnetic pole surface. AC is 1 of the area occupied by the first magnetic pole surface, the second magnetic pole surface, the third magnetic pole surface, the fourth magnetic pole surface, and the surface of each of the plurality of intervening permanent magnets facing the facing magnetic body. It is / 4. V D is the sum of the volumes of the plurality of intervening permanent magnets and the volumes of the plurality of opposite permanent magnets. V C is the respective volumes of the plurality of intervening permanent magnet, and each volume of the plurality of opposite permanent magnet, the first core, the second core, each of said third core and said fourth core The volume of and the sum of.
前記の磁場発生装置は、いずれも、与えられた前記関係式を満たす空隙の寸法を有することにより、従来の二次元磁極構造をもつ磁場発生装置に比べてより多くの磁束を前記空隙に発生させることが可能である。
All of the magnetic field generators have a size of a gap satisfying the given relational expression, so that a larger amount of magnetic flux is generated in the gap as compared with a magnetic field generator having a conventional two-dimensional magnetic pole structure. It is possible.
前記複数の磁極子鉄心のそれぞれについて、当該鉄心に隣接する前記介在永久磁石の当該鉄心に対向する面の磁極及び当該鉄心の前記反対側面に対向する前記反対側永久磁石の面の磁極は、全て同一であることが、好ましい。
For each of the plurality of magnetic pole cores, the magnetic poles on the surface of the intervening permanent magnet adjacent to the core facing the core and the magnetic poles on the surface of the opposite permanent magnet facing the opposite side surface of the core are all. It is preferable that they are the same.
前記磁極子は、磁性材料により形成されたバックヨークをさらに含むことが、好ましい。当該バックヨークは、前記複数の反対側永久磁石どうしの間を流れる磁束を促進するように当該複数の反対側永久磁石を挟んで前記複数の磁極子鉄心と反対側に配置されることにより、形成される磁束をさらに増やすことが可能である。
It is preferable that the magnetic monopole further includes a back yoke formed of a magnetic material. The back yoke is formed by arranging the back yoke on the opposite side of the plurality of magnetic monopoles with the plurality of opposite side permanent magnets interposed therebetween so as to promote the magnetic flux flowing between the plurality of opposite side permanent magnets. It is possible to further increase the magnetic flux generated.
前記複数の磁気子鉄心は、前記複数の反対側永久磁石のうち前記第1鉄心の前記反対側面に配置された反対側永久磁石を挟んで前記第1鉄心と反対側に配置され、当該第1鉄心と反対の側を向く第5磁極面を有する第5鉄心と、前記複数の反対側永久磁石のうち前記第2鉄心の前記反対側面に配置された反対側永久磁石を挟んで前記第2鉄心と反対側に配置され、当該第2鉄心と反対の側を向く第6磁極面を有する第6鉄心と、前記複数の反対側永久磁石のうち前記第3鉄心の前記反対側面に配置された反対側永久磁石を挟んで前記第3鉄心と反対側に配置され、当該第3鉄心と反対の側を向く第7磁極面を有する第7鉄心と、前記複数の反対側永久磁石のうち前記第4鉄心の前記反対側面に配置された反対側永久磁石を挟んで前記第4鉄心と反対側に配置され、当該第4鉄心と反対の側を向く第8磁極面を有する第8鉄心と、をさらに含んでもよい。前記第5鉄心は、前記第6鉄心及び前記第7鉄心のそれぞれと互いに隣接し、前記第8鉄心は、前記第6鉄心及び前記第7鉄心のそれぞれと互いに隣接し、前記第5磁極面及び前記第8磁極面はいずれも前記第2磁極を構成し、前記第2磁極面及び前記第3磁極面はいずれも前記第1磁極を構成する。
The plurality of magnetic cores are arranged on the opposite side of the first iron core with the opposite side permanent magnets arranged on the opposite side surface of the first core among the plurality of opposite permanent magnets. The second core is sandwiched between the fifth core having a fifth magnetic pole surface facing the opposite side of the core and the opposite permanent magnet arranged on the opposite side of the second core among the plurality of opposite permanent magnets. A sixth core having a sixth magnetic pole surface facing the opposite side of the second core and the opposite side of the plurality of permanent magnets on the opposite side arranged on the opposite side of the third core. The seventh iron core, which is arranged on the side opposite to the third iron core with the side permanent magnet sandwiched between them and has a seventh magnetic pole surface facing the side opposite to the third iron core, and the fourth of the plurality of opposite side permanent magnets. Further, an eighth iron core arranged on the opposite side of the fourth iron core with the opposite side permanent magnet arranged on the opposite side surface of the iron core and having an eighth magnetic pole surface facing the side opposite to the fourth iron core. It may be included. The fifth core is adjacent to each of the sixth core and the seventh core, the eighth core is adjacent to each of the sixth core and the seventh core, and the fifth magnetic pole surface and the fifth core are adjacent to each other. The eighth magnetic pole surface also constitutes the second magnetic pole, and the second magnetic pole surface and the third magnetic pole surface both constitute the first magnetic pole.
前記磁場発生装置は、前記空隙中に含まれる磁性物質をさらに備えることが、好ましい。当該磁性物質は、磁性流体、磁性粉体、及び磁性粒子のうちの少なくとも1つであり、前記空隙中に含まれることによって、前記磁場発生装置が空隙に発生させた磁場が、例えば、分光や、荷電粒子を篩にかける処理のために用いられることを可能にする。
It is preferable that the magnetic field generator further includes a magnetic substance contained in the void. The magnetic substance is at least one of a magnetic fluid, a magnetic powder, and a magnetic particle, and the magnetic field generated in the void by the magnetic field generator by being contained in the void is, for example, spectroscopic or Allows it to be used for the process of sieving charged particles.
また、提供されるのは、電動機であって、当該電動機は、前記磁場発生装置と、前記磁場発生装置における前記対面磁性体に取付けられ、当該対面磁性体に対して前記磁極子を相対移動させる磁界を形成するコイルと、を備える。
Further provided is an electric motor, which is attached to the magnetic field generator and the face-to-face magnetic body in the magnetic field generator, and moves the magnetic pole relative to the face-to-face magnetic body. It comprises a coil that forms a magnetic field.
Claims (7)
- 磁場発生装置であって、
それぞれが磁性材料により形成された複数の磁極子鉄心と、複数の永久磁石と、を含む磁極子と、
当該磁極子と空隙を介して対向方向に対向するように配置された対面磁性体と、を備え、
前記複数の磁極子鉄心は、前記対面磁性体に対向する配列面上で互いに並ぶ第1鉄心、第2鉄心、第3鉄心、及び第4鉄心を含み、前記第1鉄心は、前記第2鉄心及び前記第3鉄心と隣接し、前記第4鉄心は、前記第2鉄心及び前記第3鉄心と隣接し、
前記第1鉄心は、前記対面磁性体に対向する第1磁極面を有し、前記第2鉄心は、前記対面磁性体に対向する第2磁極面を有し、前記第3鉄心は、前記対面磁性体に対向する第3磁極面を有し、前記第4鉄心は、前記対面磁性体に対向する第4磁極面を有し、前記第1磁極面及び前記第4磁極面はいずれも第1磁極を構成し、前記第2磁極面及び前記第3磁極面はいずれも前記第1磁極と反対の第2磁極を構成し、
前記複数の永久磁石は、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のうち互いに隣接する鉄心どうしの間にそれぞれ介在する複数の介在永久磁石と、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のそれぞれの外面のうち前記対面磁性体と反対の側を向く反対側面の上にそれぞれ配置される複数の反対側永久磁石と、を含み、
前記空隙は、次の式で表される条件を満たす最大幅lgを有する、磁場発生装置。
A monopole containing a plurality of magnetic monopoles, each of which is made of a magnetic material, and a plurality of permanent magnets.
The magnetic monopole is provided with a facing magnetic material arranged so as to face each other in the opposite direction via a gap.
The plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic body, and the first core is the second core. And adjacent to the 3rd core, and the 4th core is adjacent to the 2nd core and the 3rd core.
The first iron core has a first magnetic pole surface facing the facing magnetic body, the second iron core has a second magnetic pole surface facing the facing magnetic body, and the third iron core has the facing magnetic body. The fourth iron core has a third magnetic pole surface facing the magnetic body, the fourth iron core has a fourth magnetic pole surface facing the facing magnetic material, and both the first magnetic pole surface and the fourth magnetic pole surface are first. The magnetic poles are formed, and the second magnetic pole surface and the third magnetic pole surface both form a second magnetic pole opposite to the first magnetic pole.
The plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes, a plurality of opposite permanent magnets, respectively, arranged on opposite side surfaces of the outer surfaces of the second core, the third core, and the fourth core, facing the opposite side of the facing magnetic material. ,
The gap has a satisfying maximum width l g of the following formula, the magnetic field generator.
- 磁場発生装置であって、
それぞれが磁性材料により形成された複数の磁極子鉄心と、複数の永久磁石と、を含む磁極子と、
当該磁極子と空隙を介して対向方向に対向するように配置された対面磁性体と、を備え、
前記複数の磁極子鉄心は、前記対面磁性体に対向する配列面上で互いに並ぶ第1鉄心、第2鉄心、第3鉄心、及び第4鉄心を含み、前記第1鉄心は、前記第2鉄心及び前記第3鉄心と隣接し、前記第4鉄心は、前記第2鉄心及び前記第3鉄心と隣接し、
前記第1鉄心は、前記対面磁性体に対向する第1磁極面を有し、前記第2鉄心は、前記対面磁性体に対向する第2磁極面を有し、前記第3鉄心は、前記対面磁性体に対向する第3磁極面を有し、前記第4鉄心は、前記対面磁性体に対向する第4磁極面を有し、前記第1磁極面及び前記第4磁極面はいずれも第1磁極を構成し、前記第2磁極面及び前記第3磁極面はいずれも前記第1磁極と反対の第2磁極を構成し、
前記複数の永久磁石は、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のうち互いに隣接する鉄心どうしの間にそれぞれ介在する複数の介在永久磁石と、前記第1鉄心、前記第2鉄心、前記第3鉄心及び前記第4鉄心のそれぞれの外面のうち前記対面磁性体と反対の側を向く反対側面の上にそれぞれ配置される複数の反対側永久磁石と、を含み、
前記空隙は、次の式で表される条件を満たす最大幅lgを有する、磁場発生装置。
A monopole containing a plurality of magnetic monopoles, each of which is made of a magnetic material, and a plurality of permanent magnets.
The magnetic monopole is provided with a facing magnetic material arranged so as to face each other in the opposite direction via a gap.
The plurality of magnetic monopoles include a first core, a second core, a third core, and a fourth core that are aligned with each other on an array surface facing the facing magnetic body, and the first core is the second core. And adjacent to the 3rd core, and the 4th core is adjacent to the 2nd core and the 3rd core.
The first iron core has a first magnetic pole surface facing the facing magnetic body, the second iron core has a second magnetic pole surface facing the facing magnetic body, and the third iron core has the facing magnetic body. The fourth iron core has a third magnetic pole surface facing the magnetic body, the fourth iron core has a fourth magnetic pole surface facing the facing magnetic material, and both the first magnetic pole surface and the fourth magnetic pole surface are first. The magnetic poles are formed, and the second magnetic pole surface and the third magnetic pole surface both form a second magnetic pole opposite to the first magnetic pole.
The plurality of permanent magnets include a plurality of intervening permanent magnets interposed between adjacent iron cores of the first core, the second core, the third core, and the fourth core, and the first core. Includes, a plurality of opposite permanent magnets, respectively, arranged on opposite side surfaces of the outer surfaces of the second core, the third core, and the fourth core, facing the opposite side of the facing magnetic material. ,
The gap has a satisfying maximum width l g of the following formula, the magnetic field generator.
- 請求項1または2に記載の磁場発生装置であって、前記複数の磁極子鉄心のそれぞれについて、当該鉄心に隣接する前記介在永久磁石の当該鉄心に対向する面の磁極及び当該鉄心の前記反対側面に対向する前記反対側永久磁石の面の磁極が全て同一である、磁場発生装置。 The magnetic field generator according to claim 1 or 2, for each of the plurality of magnetic pole cores, the magnetic poles of the surface of the intervening permanent magnet adjacent to the core facing the core and the opposite side surface of the core. A magnetic field generator in which the magnetic poles on the surfaces of the opposite permanent magnets facing the magnet are all the same.
- 請求項3記載の磁場発生装置であって、前記磁極子は、磁性材料により形成されたバックヨークをさらに含み、当該バックヨークは、前記複数の反対側永久磁石どうしの間を流れる磁束を促進するように当該複数の反対側永久磁石を挟んで前記複数の磁極子鉄心と反対側に配置されている、磁場発生装置。 The magnetic field generator according to claim 3, wherein the magnetic pole element further includes a back yoke formed of a magnetic material, and the back yoke promotes a magnetic flux flowing between the plurality of opposite permanent magnets. A magnetic field generator arranged on the opposite side of the plurality of magnetic flux cores with the plurality of permanent magnets on the opposite sides interposed therebetween.
- 請求項3記載の磁場発生装置であって、前記複数の磁極子鉄心は、前記複数の反対側永久磁石のうち前記第1鉄心の前記反対側面に配置された反対側永久磁石を挟んで前記第1鉄心と反対側に配置され、当該第1鉄心と反対の側を向く第5磁極面を有する第5鉄心と、前記複数の反対側永久磁石のうち前記第2鉄心の前記反対側面に配置された反対側永久磁石を挟んで前記第2鉄心と反対側に配置され、当該第2鉄心と反対の側を向く第6磁極面を有する第6鉄心と、前記複数の反対側永久磁石のうち前記第3鉄心の前記反対側面に配置された反対側永久磁石を挟んで前記第3鉄心と反対側に配置され、当該第3鉄心と反対の側を向く第7磁極面を有する第7鉄心と、前記複数の反対側永久磁石のうち前記第4鉄心の前記反対側面に配置された反対側永久磁石を挟んで前記第4鉄心と反対側に配置され、当該第4鉄心と反対の側を向く第8磁極面を有する第8鉄心と、をさらに含み、前記第5鉄心は、前記第6鉄心及び前記第7鉄心のそれぞれと互いに隣接し、前記第8鉄心は、前記第6鉄心及び前記第7鉄心のそれぞれと互いに隣接し、前記第5磁極面及び前記第8磁極面はいずれも前記第2磁極を構成し、前記第2磁極面及び前記第3磁極面はいずれも前記第1磁極を構成する、磁場発生装置。 In the magnetic field generator according to claim 3, the plurality of magnetic pole cores sandwich the opposite side permanent magnet arranged on the opposite side surface of the first core among the plurality of opposite side permanent magnets. A fifth iron core which is arranged on the opposite side of one iron core and has a fifth magnetic pole surface facing the side opposite to the first iron core, and a fifth iron core which is arranged on the opposite side surface of the second iron core among the plurality of permanent magnets on the opposite side. A sixth core having a sixth magnetic pole surface facing the side opposite to the second core, which is arranged on the opposite side of the second core with the opposite permanent magnet sandwiched between the magnets, and the plurality of permanent magnets on the opposite side. A seventh core arranged on the opposite side of the third core with a permanent magnet on the opposite side arranged on the opposite side of the third core and having a seventh magnetic pole surface facing the opposite side of the third core, and a seventh core. Of the plurality of permanent magnets on the opposite side, the permanent magnets on the opposite side of the fourth core are arranged on the opposite side of the fourth core with the opposite permanent magnets interposed therebetween and face the side opposite to the fourth core. Further including an eighth core having eight magnetic pole surfaces, the fifth core is adjacent to each of the sixth core and the seventh core, and the eighth core is the sixth core and the seventh core. Adjacent to each of the iron cores, the fifth magnetic pole surface and the eighth magnetic pole surface both form the second magnetic pole, and the second magnetic pole surface and the third magnetic pole surface both form the first magnetic pole. Magnet generator.
- 請求項1または2に記載の磁場発生装置であって、前記空隙中に含まれる磁性物質をさらに備え、当該磁性物質は、磁性流体、磁性粉体、及び磁性粒子のうちの少なくとも1つである、磁場発生装置。 The magnetic field generator according to claim 1 or 2, further comprising a magnetic substance contained in the void, the magnetic substance being at least one of a magnetic fluid, a magnetic powder, and a magnetic particle. , Magnetic field generator.
- 電動機であって、
請求項1または2に記載の磁場発生装置と、
前記磁場発生装置における前記対面磁性体に取付けられ、当該対面磁性体に対して前記磁極子を相対移動させる磁界を形成するコイルと、を備えた、電動機。 It ’s an electric motor,
The magnetic field generator according to claim 1 or 2,
An electric motor provided with a coil attached to the facing magnetic body in the magnetic field generator and forming a magnetic field for relatively moving the magnetic monopole with respect to the facing magnetic body.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020103407A JP2021197837A (en) | 2020-06-15 | 2020-06-15 | Magnetic field generation device and motor |
JP2020-103407 | 2020-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021256196A1 true WO2021256196A1 (en) | 2021-12-23 |
Family
ID=79196216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/019879 WO2021256196A1 (en) | 2020-06-15 | 2021-05-25 | Magnetic field generating device and electric motor provided with same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021197837A (en) |
WO (1) | WO2021256196A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6469248A (en) * | 1987-09-04 | 1989-03-15 | Hitachi Ltd | Permanent magnet field motor |
JP2019075848A (en) * | 2017-10-12 | 2019-05-16 | 株式会社神戸製鋼所 | Electric motor |
-
2020
- 2020-06-15 JP JP2020103407A patent/JP2021197837A/en active Pending
-
2021
- 2021-05-25 WO PCT/JP2021/019879 patent/WO2021256196A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6469248A (en) * | 1987-09-04 | 1989-03-15 | Hitachi Ltd | Permanent magnet field motor |
JP2019075848A (en) * | 2017-10-12 | 2019-05-16 | 株式会社神戸製鋼所 | Electric motor |
Also Published As
Publication number | Publication date |
---|---|
JP2021197837A (en) | 2021-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5870072B2 (en) | Electromechanical assembly | |
KR100860606B1 (en) | Inner rotor type permanent magnet excited transverse flux motor | |
US6700271B2 (en) | Hybrid synchronous motor equipped with toroidal winding | |
US7535145B2 (en) | Axial air gap-type electric motor | |
WO2021041580A1 (en) | An improved multi-tunnel electric machine | |
US20220045559A1 (en) | Segmented stator for a permanent magnet electric machine having a fractional-slot concentrated winding | |
JP2018503786A (en) | Improvements in and related to electromechanical actuators | |
JP2016518097A (en) | Magnetic flux switching modulation pole machine | |
JP4075226B2 (en) | Permanent magnet rotor permanent magnet | |
WO2021256196A1 (en) | Magnetic field generating device and electric motor provided with same | |
EP1826886A2 (en) | Hybrid permanent magnet type electric rotating machine and manufacturing method thereof | |
WO2018077788A1 (en) | An axial flux switched reluctance machine and an electric vehicle comprising the machine | |
Bastiaens et al. | Design of an axial-flux permanent magnet machine for an in-wheel direct drive application | |
KR101348636B1 (en) | Stator of transverse flux electric machine having multi-phase in circumferencial direction | |
He et al. | Comparative study of two degree-of-freedom rotary-linear machines with permanent-magnet mover for high dynamic performance | |
US20210336494A1 (en) | Axial Gap Motor | |
US20230032576A1 (en) | Single sided axial flux electrical machine with additional passive stator | |
US20230402909A1 (en) | Magnetic field generating device and electric motor including the same | |
CN106972659A (en) | Motor | |
WO2021256195A1 (en) | Linear motor | |
CN115699519A (en) | Rotor and rotating electric machine using the same | |
JP4551684B2 (en) | Cylinder type linear motor | |
JP6732921B2 (en) | Electric machine | |
WO2024135211A1 (en) | Electromagnetic rotating power machine | |
JP3793874B2 (en) | Permanent magnet type linear motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21827113 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21827113 Country of ref document: EP Kind code of ref document: A1 |