WO2021256102A1 - Sensor device, control method, and program - Google Patents

Sensor device, control method, and program Download PDF

Info

Publication number
WO2021256102A1
WO2021256102A1 PCT/JP2021/017005 JP2021017005W WO2021256102A1 WO 2021256102 A1 WO2021256102 A1 WO 2021256102A1 JP 2021017005 W JP2021017005 W JP 2021017005W WO 2021256102 A1 WO2021256102 A1 WO 2021256102A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
detection
control unit
event signal
sensor device
Prior art date
Application number
PCT/JP2021/017005
Other languages
French (fr)
Japanese (ja)
Inventor
立太 岡元
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021256102A1 publication Critical patent/WO2021256102A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • This technology relates to sensor devices, control methods, and programs, especially to detect changes in the amount of incident light.
  • An asynchronous solid-state image sensor provided with a detection circuit for detecting in real time as an event signal that the amount of light of the pixel exceeds the threshold value for each pixel has been proposed.
  • Such a solid-state image sensor that detects an event signal for each pixel is called a DVS (Dynamic Vision Sensor).
  • This technology was created in view of such a situation, and aims to flexibly detect an event signal according to the situation in a sensor device having a solid-state image sensor that detects the event signal.
  • the sensor device is an event in which a light receiving unit that photoelectrically converts incident light to generate an electric signal and an event that obtains a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value. It includes a detection circuit for executing signal detection, a solid-state image sensor having a plurality of pixels having the same, and a control unit for setting parameters related to detection of the event signal according to the detection status of the event signal in the plurality of pixels. This makes it possible to suppress the detection of event signals when signal processing becomes difficult due to an increase in the number of event signals detected, for example. Further, when the signal processing becomes difficult due to the decrease in the number of detected event signals, it is possible to relax the detection of the event signal.
  • the parameter is a parameter that changes the detection sensitivity of the event signal. For example, when signal processing becomes difficult due to an increase in the number of detected event signals, the detection sensitivity of the event signal is lowered to suppress the detection of the event signal. Further, when signal processing becomes difficult due to a decrease in the number of detected event signals, the detection of the event signal is suppressed by increasing the detection sensitivity of the event signal.
  • the control unit sets the sensitivity at which the electric signal changes with respect to the change in luminance or the threshold value with respect to the change in the electric signal as a parameter for changing the detection sensitivity of the event signal. Is possible. For example, by setting a predetermined threshold value strictly, the detection of the event signal is suppressed. Further, by setting a predetermined threshold value gently, the detection of the event signal is promoted.
  • the control unit sets the parameters according to the event occurrence frequency.
  • the event occurrence frequency is estimated by, for example, obtaining the integrated amount of event signals in the plurality of pixels at predetermined time intervals or the reciprocal of the time required for the number of output events to reach a predetermined value. That is, the control unit determines a state in which signal processing becomes difficult based on the integrated amount of the event signal.
  • control unit sets the parameter so as to reduce the detection sensitivity of the event signal when the event occurrence frequency exceeds the first reference value.
  • the detection sensitivity of the event signal is lowered to suppress the detection of the event signal.
  • control unit sets the parameters so as to improve the detection sensitivity of the event signal when the event occurrence frequency does not exceed the second reference value.
  • the detection sensitivity of the event signal is increased to alleviate the detection of the event signal.
  • control unit sets the parameter according to the distribution state of the detected amount of the event signal in the plurality of pixels. For example, when the detection amount of the event signal in a plurality of pixels varies, it is determined that the image pickup target can be recognized.
  • the control unit sets a first specific value indicating the distribution state of event signals in the row direction based on the average value of the detected amounts of event signals in each column in the plurality of pixels. It is conceivable to calculate and set the parameter based on the first specific value. This makes it possible to determine that the event signals are concentrated and detected in a specific row in a plurality of pixels.
  • the control unit calculates a second specific value indicating the distribution status of event signals in the column direction based on the average value of the detected amounts of event signals in each row in the plurality of pixels. Then, it is conceivable to set the parameter based on the second specific value. This makes it possible to determine that the event signals are concentrated and detected in a specific row in a plurality of pixels.
  • the control unit sets a first specific value indicating the distribution state of event signals in the row direction based on the average value of the detected amounts of event signals in each column in the plurality of pixels.
  • a second specific value indicating the distribution status of the event signal in the column direction is calculated based on the average value of the detected amounts of the event signals in each row in the plurality of pixels, and the first specific value and the second specific value are calculated. It is conceivable to set the parameter based on the specific value of. Thereby, it can be determined that the event signals are concentrated and detected in a specific row or column in a plurality of pixels.
  • control unit sets the illuminance of the illumination unit as the parameter and causes the illumination unit to irradiate the image pickup target with the set illuminance.
  • the detection amount of the event signal is controlled by adjusting the illuminance of the illumination unit with respect to the image pickup target.
  • the control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency exceeds the first reference value, the illuminance of the lighting unit is increased from the present. It is conceivable to set the parameter for lowering. As a result, for example, when signal processing becomes difficult due to an increase in the integrated amount of the event signal, the detection of the event signal is suppressed by lowering the illuminance of the illumination unit with respect to the image pickup target.
  • the control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency becomes lower than the second reference value, the illuminance of the illumination unit is lower than the present. It is conceivable to set the above parameters for increasing. Thereby, for example, when signal processing becomes difficult due to a decrease in the integrated amount of the event signal, the detection of the event signal is relaxed by increasing the illuminance of the illumination unit with respect to the image pickup target.
  • the control unit sets a detection area including an image pickup target from the plurality of pixels, and sets the parameter according to the detection status of an event signal in the set detection area. Can be considered.
  • the parameter is set based on the detection status of the event signal in the detection area in the detection area including the image pickup target.
  • the control method is an event in which a light receiving unit that photoelectrically converts incident light to generate an electric signal and an event that obtains a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value.
  • the sensor device sets parameters related to detection of the event signal according to the detection status of the event signal in the plurality of pixels. It is what you do.
  • the program related to this technology is a program that causes the sensor device to execute each process corresponding to the above control method.
  • the above-mentioned control unit can be easily realized by an information processing device, a microcomputer, or the like. Further, the above-mentioned operation can be realized by the sensor device provided with the control unit.
  • FIG. 1 is a diagram showing a detection state of an event signal in the second embodiment.
  • FIG. 3 is a diagram showing a detection state of an event signal in the second embodiment. It is a figure which shows the application example of the image pickup apparatus in 3rd Embodiment. It is a flowchart of the processing example executed by the control unit in 3rd Embodiment. It is a figure which shows the application example of the image pickup apparatus in 4th Embodiment. It is a flowchart of the processing example executed by the control unit in 4th Embodiment.
  • FIG. 1 is a diagram showing a detection state of an event signal in the fourth embodiment. It is a 2nd figure which shows the detection state of the event signal of 4th Embodiment.
  • Configuration example of sensor device> A configuration example of the sensor device according to the embodiment of the present technology will be described with reference to FIG. In this embodiment, the image pickup device 1 will be described as an example of the sensor device 1.
  • the image pickup apparatus 1 has a DVS function.
  • the image pickup device 1 includes an image pickup lens 2, a solid-state image pickup element 3, a data processing unit 4, and a sensor control unit 5.
  • the image pickup lens 2 collects the incident light and guides it to the solid-state image pickup element 3.
  • the solid-state image sensor 3 photoelectrically converts incident light to capture image data.
  • the solid-state image sensor 3 photoelectrically converts the incident light to obtain a voltage signal according to the received light amount, and also performs event signal detection for detecting a change in the received light amount based on the changed amount of the voltage signal as an event signal Evt.
  • the detected event signal Evt is supplied to the data processing unit 4.
  • the data processing unit 4 records the event signal Evt from the solid-state image sensor 3.
  • the sensor control unit 5 includes, for example, a microcomputer equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and the CPU executes processing according to a program. This controls the operation of the image pickup device 1.
  • the sensor control unit 5 controls the solid-state image sensor 3 to execute the above-mentioned event signal Evt detection operation, controls the data processing unit 4 to record the event signal Evt, and causes the data processing unit 4 to record the event signal Evt. The process of reading the event signal Evt is executed.
  • the solid-state image sensor 3 includes a pixel array unit 10, a row arbiter 12, a column arbiter 13, a signal processing unit 14, and a pixel control unit 15.
  • the pixel array unit 10 has a configuration in which a plurality of pixel units 11 are two-dimensionally arranged on a matrix in the row direction and the column direction.
  • the row direction means the pixel arrangement direction in the horizontal direction
  • the column direction means the pixel arrangement direction in the vertical direction.
  • the row direction is shown as the horizontal direction
  • the column direction is shown as the vertical direction.
  • Each pixel unit 11 has one or a plurality of pixels 20 and can detect an event signal Evt indicating a change in the amount of received light.
  • the pixel unit 11 has a single pixel as the pixel 20, and the pixel 20 is configured to be able to detect the event signal Evt.
  • the pixel 20 includes a light receiving unit 21, a logarithmic conversion unit 22, a buffer 23, and an event detection circuit 24.
  • the light receiving unit 21 supplies the photocurrent obtained by photoelectric conversion of the incident light to the logarithmic conversion unit 22.
  • the logarithmic conversion unit 22 converts the photocurrent from the corresponding light receiving unit 21 into a logarithmically converted voltage signal.
  • the logarithmic conversion unit 22 supplies the converted voltage signal to the buffer 23.
  • the buffer 23 corrects the voltage signal from the logarithmic conversion unit 22.
  • the buffer 23 supplies the corrected voltage signal to the event detection circuit 24.
  • the event detection circuit 24 includes a subtractor 25 and a quantizer 26.
  • the quantizer 26 detects a change in the amount of received light as an event by obtaining a difference from the current level of the received light signal with the level of the received light signal in the past as a reference level. Specifically, the quantizer 26 includes an event in which the amount of received light changes to the increasing side, that is, an event in which the difference from the reference level becomes positive (hereinafter referred to as “on event”) and an event in which the amount of received light decreases to the decreasing side. It is configured to be able to detect and distinguish changing events, that is, events in which the difference from the reference level is negative (hereinafter referred to as "off event"). The quantizer 26 outputs an event signal Evt indicating an on-event detection result as an on-event signal Vop. Further, the quantizer 26 outputs an event signal Evt indicating an off-event detection result as an off-event signal Vom.
  • the subtractor 25 resets the reference level to the current level of the received light signal based on the reference level reset signal RST input by control from the pixel control unit 15, for example.
  • the reset of the reference level functions as a process of controlling the event detection circuit 24 so that a new event can be detected.
  • the logarithmic conversion unit 22 includes a transistor Q1, a transistor Q2, and a transistor Q3.
  • the transistor Q1 and the transistor Q3 are N-type transistors.
  • the transistor Q2 is a P-type transistor.
  • the source of the transistor Q1 is connected to the cathode of the photodiode PD of the light receiving unit 21. Further, the drain of the transistor Q1 is connected to the power supply terminal (reference potential VDD).
  • Transistor Q2 and transistor Q3 are connected in series between the power supply terminal and the ground terminal. Further, the connection point between the transistor Q2 and the transistor Q3 is connected to the gate of the transistor Q1 and the input terminal of the buffer 23 (the gate of the transistor Q5 described later). Further, a predetermined bias voltage Vbias is applied to the gate of the transistor Q2.
  • the drains of the transistor Q1 and the transistor Q3 are connected to the power supply side (reference potential VDD), and a source follower circuit is formed. These two source followers connected in a loop convert the photocurrent from the photodiode PD into its logarithmic voltage signal. Further, the transistor Q2 supplies a constant current to the transistor Q3.
  • the buffer 23 includes a transistor Q4 and a transistor Q5, which are P-type transistors, respectively.
  • the transistor Q4 and the transistor Q5 are connected in series between the power supply terminal and the ground terminal.
  • connection point between the transistor Q4 and the transistor Q5 is used as an output terminal of the buffer 23, and the corrected voltage signal is output from the output terminal to the subtractor 25 of the event detection circuit 24 as a light receiving signal.
  • the subtractor 25 includes a capacitor C1, a capacitor C2, a transistor Q7, a transistor Q8, and a reset switch SWr.
  • the transistor Q7 is a P-type transistor.
  • the transistor Q8 is an N-type transistor.
  • Transistor Q7 and transistor Q8 are connected in series between the power supply terminal and the ground terminal to form an inverter. Specifically, the source of the transistor Q7 is connected to the power supply terminal. Further, the drain of the transistor Q7 is connected to the drain of the transistor Q8. Further, the source of the transistor Q8 is connected to the ground terminal. A predetermined bias voltage Vbdif is applied to the gate of the transistor Q8.
  • One end of the capacitor C1 is connected to the output terminal of the buffer 23.
  • the other end of the capacitor C1 is connected to the gate (input terminal of the inverter) of the transistor Q7.
  • One end of the capacitor C2 is connected to the other end of the capacitor C1.
  • the other end of the capacitor C2 is connected to the connection point between the transistor Q7 and the transistor Q8.
  • the reset switch SWr is connected to the connection point between the capacitor C1 and the capacitor C2.
  • the other end of the reset switch SWr is connected to the connection point between the transistor Q7 and the transistor Q8 and the connection point between the capacitor C2.
  • the reset switch SWr is connected in parallel to the capacitor C2.
  • the reset switch SWr is a switch that is turned ON / OFF according to the reference level reset signal RST.
  • the inverter by the transistor Q7 and the transistor Q8 inverts the light receiving signal input through the capacitor C1 and outputs it to the quantizer 26.
  • the potential generated on the buffer 23 side of the capacitor C1 at a certain point in time is defined as the potential Vinit.
  • the reset switch SWr is turned on.
  • the side opposite to the buffer 23 of the capacitor C1 becomes a virtual ground terminal.
  • the potential of this virtual ground terminal is set to zero for convenience.
  • the charge CHinit stored in the capacitor C1 is expressed by the following [Equation 1], where the capacitance of the capacitor C1 is Cp1.
  • CHinit Cp1 ⁇ Vinit ⁇ ⁇ ⁇ [Equation 1]
  • both ends of the capacitor C2 are short-circuited, so that the accumulated charge becomes zero.
  • the subtractor 25 outputs a signal representing the difference between the level of the received light signal in the past (Vinit) and the level of the current received signal (Vafter).
  • the potential Vinit corresponds to the above-mentioned reference level. From the above explanation, this potential Vinit, that is, the reference level is reset to the current received signal level when the reset switch SWr is turned on, in other words, to the received signal level at the time when the reset switch SWr is turned on. Become.
  • the quantizer 26 includes a transistor Q9, a transistor Q10, a transistor Q11, and a transistor Q12.
  • the transistor Q9 and the transistor Q11 are P-type transistors. Further, the transistor Q10 and the transistor Q12 are N-type transistors.
  • Transistor Q9 and transistor Q10 are connected in series between the power supply terminal and the ground terminal. Further, the transistor Q11 and the transistor Q12 are connected in series between the power supply terminal and the ground terminal. The output voltage Vout of the subtractor 25 is input to each gate of the transistor Q9 and the transistor Q11.
  • the upper limit voltage Vhigh is applied to the gate of the transistor Q10. Further, a lower limit voltage Vlow is applied to the gate of the transistor Q12.
  • the on-event signal Vop indicating the on-event detection result is output.
  • an off-event signal Vom indicating an off-event detection result is output.
  • the pixel unit 11 in FIG. 2 detects the event signal Evt from the pixel 20.
  • the pixel unit 11 When the pixel unit 11 detects the event signal Evt, the pixel unit 11 supplies a request for transfer of the event signal Evt to the row arbiter 12 and the column arbiter 13.
  • the row arbiter 12 mediates the request from the pixel unit 11 in the row direction and supplies the response based on the mediation result to the pixel unit 11. Further, the column arbiter 13 mediates the request from the pixel unit 11 in the column direction and supplies the response based on the mediation result to the pixel unit 11.
  • the detected event signal Evt is supplied to the signal processing unit 14 based on the response.
  • the signal processing unit 14 has an event number detection unit 17.
  • the event number detection unit 17 counts the number of detected event signals Evt.
  • a binary counter is used in the event number detection unit 17.
  • the signal processing unit 14 supplies the count data of the event signal Evt by the event number detection unit 17 to the pixel control unit 15.
  • the signal processing unit 14 executes predetermined signal processing such as image recognition processing for the event signal Evt supplied from each pixel unit 11.
  • the signal processing unit 14 supplies data indicating the signal processing result (hereinafter, also referred to as signal processing result data) to the data processing unit 4.
  • the signal processing result data supplied to the data processing unit 4 is recorded in the recording unit 18.
  • the pixel control unit 15 is configured to include, for example, a timing generator, a shift register, an address decoder, etc. that generate various timing signals, and outputs various signals to the pixel array unit 10 to output each pixel unit 11. It is driven and controls the generation and reading of the event signal Evt.
  • the pixel control unit 15 has a sensitivity adjusting circuit 16.
  • the sensitivity adjustment circuit 16 is composed of, for example, a logic circuit or a microcomputer.
  • the sensitivity adjustment circuit 16 sets parameters related to the detection of the event signal Evt (hereinafter referred to as event signal detection parameters) according to the detection status of the event signal Evt. That is, the sensitivity setting for event detection is realized according to the detection status of the event signal Evt.
  • the detection status of the event signal Evt for example, the integrated amount of the detected number of the event signal Evt per a predetermined time Tm set in advance, the distribution status of the detected amount of the event signal Evt in the pixel array unit 10, and the like can be considered. ..
  • the event signal detection parameter is a parameter for adjusting the number of detected event signals Evt.
  • the event signal detection parameter for example, a control parameter of the upper limit voltage Vhigh which is a threshold value for detecting the on-event signal Vop and the lower limit voltage Vlow which is a threshold value for detecting the off-event signal Vom can be considered.
  • the threshold value for detecting the event signal Evt By controlling the setting of the threshold value for detecting the event signal Evt in this way, the number of detected event signals Evt can be directly adjusted.
  • the detection sensitivity of the event signal Evt decreases due to either or both of the increase in the upper limit voltage Vhigh and the decrease in the lower limit voltage Vlow. In the following description, such a state will be described as "lowering the sensitivity setting for event detection”.
  • the detection sensitivity of the event signal Evt is improved by either or both of the decrease of the upper limit voltage Vhigh and the increase of the lower limit voltage Vlow.
  • the sensitivity setting for event detection can also be adjusted by changing the number of transistors to which the voltage is applied. It is also possible to set the sensitivity at which the electric signal changes with respect to the change in luminance.
  • the event signal detection parameter is, for example, a control parameter of the illuminance of the illumination unit 6 shown in FIG.
  • the imaging environment becomes brighter and the amount of light received by the imaging device 1 increases. This increases the detection sensitivity of the event signal Evt.
  • the imaging environment becomes darker, and the amount of light received by the imaging device 1 decreases. As a result, the detection sensitivity of the event signal Evt is lowered.
  • the pixel control unit 15 is provided with a sensitivity adjustment circuit 16.
  • the pixel control unit 15 controls the setting of the upper limit voltage Vhigh and the lower limit voltage Vlow by the sensitivity adjustment circuit 16.
  • the data processing unit 4 includes a recording unit 18 and a data generation unit 19.
  • the recording unit 18 records the signal processing result data supplied from the signal processing unit 14 of the solid-state image sensor 3.
  • the data generation unit 19 generates post-processing data in which the signal processing result data recorded in the recording unit 18 is subjected to predetermined signal processing such as codec processing.
  • the processed data is supplied from the data processing unit 4 to a predetermined device as needed.
  • the sensor control unit 5 controls the solid-state image sensor 3. Further, the sensor control unit 5 can control other devices as needed. For example, the sensor control unit 5 can control the illumination unit 6 for irradiating the image pickup target Tg.
  • the event number detection unit 17 may be provided in the data processing unit 4 as shown in FIG. 4, for example. good. As described above, the event number detection unit 17 may be provided separately from the solid-state image pickup device 3. At this time, the pixel control unit 15 may acquire information regarding the detection status of the event signal Evt detected by the event number detection unit 17 from the data processing unit 4, as shown by the broken line in the figure. Then, the pixel control unit 15 can generate an event signal detection parameter based on the information regarding the detection status of the event signal Evt acquired from the event number detection unit 17.
  • the event number detection unit 17 may be provided in a configuration other than the signal processing unit 14 in the solid-state image pickup device 3, such as a pixel control unit 15.
  • the pixel control unit 15 executes a process of setting the event signal detection parameter according to the detection status of the event signal Evt in the plurality of pixels 20, but the sensor control unit 5 executes the process. May be.
  • the sensor control unit 5 generates an event signal detection parameter based on the information regarding the detection status of the event signal Evt acquired from the event number detection unit 17 as shown by the alternate long and short dash line in the figure, and the pixel is based on the parameter. It is also possible to control the control unit 15.
  • control unit CT the main body that executes the process of setting the event signal detection parameter according to the detection status of the event signal Evt. It is assumed that the control unit CT includes a control main body such as a sensor control unit 5 and a pixel control unit 15 that execute the process.
  • the first embodiment is an example in which the sensitivity of event detection is set based on the integrated value Etotal of the event signal Evt detected at a predetermined time Tm.
  • the control unit CT sets the initial parameters in step S101.
  • the control unit CT sets, for example, a time Tm for counting the number of detected event signals Evt.
  • the time Tm is an arbitrary value set in advance.
  • control unit CT sets an upper limit threshold value Emax as an initial parameter for comparison with the integrated value Etotal of the event signal Evt.
  • the upper limit threshold value Emax is set as a value that makes signal processing difficult due to the lack of the event signal Evt or the like in the case of a high-speed response or the like when an event signal Evt exceeding the threshold value is detected.
  • control unit CT sets a lower limit threshold value Emin as an initial parameter for comparison with the integrated value Etotal of the event signal Evt.
  • the lower limit threshold value Emin is set as a value such that when the number of detected event signals Evt becomes smaller than the threshold value, signal processing becomes difficult because the event signal Evt is too small.
  • step S102 the control unit CT acquires data such as detection information of the event signal Evt from the signal processing unit 14.
  • the control unit CT acquires the count data (number of events) of the event signal Evt detected by the event number detection unit 17.
  • the control unit CT calculates the integrated value Etotal of the number of events acquired per predetermined time Tm in step S103.
  • the control unit CT may calculate the integrated value Etotal by integrating the detected number of the event signal Evt acquired from the signal processing unit 14 at a predetermined time Tm, or the event number detecting unit 17 counts.
  • the integrated value Etotal may be calculated by acquiring the detection number information of the event signal Evt at the predetermined time Tm.
  • step S104 the control unit CT compares the integrated value Etotal of the number of events with the upper limit threshold value Emax.
  • the control unit CT proceeds to step S105 and executes a process for lowering the sensitivity setting for event detection. Specifically, the control unit CT controls so that the upper limit voltage Vhigh applied to the gate of the transistor Q10 in the quantizer 26 shown in FIG. 3 is higher than the current value. Further, the control unit CT controls so that the lower limit voltage Vlow applied to the gate of the transistor Q12 is lower than the current value.
  • the absolute values of the upper limit voltage Vhigh and the lower limit voltage Vlow are set higher than the current values, so that the detection of the event signal Evt in the pixel array unit 10 is suppressed. It should be noted that the number of detected event signals Evt can also be suppressed by controlling either the upper limit voltage Vhigh or the lower limit voltage Vlow. After that, the control unit CT proceeds from step S105 to step S102, and then executes the same processing.
  • step S104 the control unit CT proceeds to the process in step S106.
  • step S106 the control unit CT compares the integrated value Etotal of the number of events with the lower limit threshold value Emin.
  • step S107 the control unit CT proceeds to step S102 without changing the sensitivity setting for event detection (without changing the absolute values of the upper limit voltage Vhigh and the lower limit voltage Vlow from the current values), and then performs the same processing thereafter. Run.
  • step S106 the control unit CT proceeds to step S108 and executes a process for increasing the sensitivity setting for event detection. Specifically, the control unit CT controls so that the upper limit voltage Vhigh applied to the gate of the transistor Q10 in the quantizer 26 shown in FIG. 3 is lower than the current value. Further, the control unit CT controls so that the lower limit voltage Vlow applied to the gate of the transistor Q12 is higher than the current value.
  • the control unit CT proceeds from step S108 to step S102, and then executes the same processing.
  • the first embodiment is realized by executing the above processing by the control unit CT.
  • Second Embodiment> An example of processing of the control unit CT in the second embodiment will be described with reference to FIGS. 6 to 10.
  • the process by the control unit CT is executed when, for example, a vegetable such as a potato flowing in the direction of the arrow on the belt conveyor BC as shown in FIG. 6 is used as an image pickup target Tg and the image pickup device 1 performs an image pickup.
  • control unit CT sets the initial parameters in step S201.
  • the control unit CT sets, for example, the time Tm for counting the number of detected event signals Evt as an initial parameter. Further, the control unit CT sets the upper limit threshold value Emax and the lower limit threshold value Emin for comparison with the integrated value Etotal of the event signal Evt as initial parameters.
  • control unit CT sets the setting threshold value ⁇ used for comparison with the specific value ⁇ E as an initial parameter.
  • the specific value ⁇ E is a value indicating the distribution state of the event signal Evt in the spatial direction of the pixel array unit 10. The method for calculating the specific value ⁇ E will be described later.
  • control unit CT sets a setting threshold value ⁇ for comparison with the specific value ⁇ Ei indicating the distribution status of the event signal Evt in the row direction in the pixel array unit 10 as an initial parameter. Further, the control unit CT sets as an initial parameter a setting threshold value ⁇ for comparison with a specific value ⁇ Ej indicating the distribution status of the event signal Evt in the column direction in the pixel array unit 10. The calculation method of the specific value ⁇ Ei and the specific value ⁇ Ej will be described later.
  • step S202 the control unit CT acquires data such as detection information of the event signal Evt from the signal processing unit 14. Then, the control unit CT calculates the integrated value Etotal of the number of events acquired per predetermined time Tm in step S203.
  • step S204 the control unit CT compares the integrated value Etotal of the number of events with the upper limit threshold value Emax. When the integrated value Etotal exceeds the upper limit threshold value Emax, the control unit CT proceeds to step S205 and executes a process for lowering the sensitivity setting for event detection in the same manner as described above. After that, the control unit CT proceeds to step S202 and then performs the same processing.
  • step S204 the control unit CT proceeds to the process in step S206.
  • step S206 the control unit CT calculates a specific value ⁇ E indicating the distribution status of the event signal Evt in the spatial direction of the pixel array unit 10.
  • the number of pixel units 11 in the column direction in the pixel array unit 10 is N, and the number of pixel units 11 in the row direction is M.
  • the pixel unit 11 is configured as a subblock having a plurality of pixels 20 having 16 pixels in the row direction and 12 pixels in the column direction, for example.
  • the integrated value of the number of events in the pixel unit 11 which is the i-th in the row direction from the left end of the pixel array unit 10 and the j-th in the column direction from the upper end of the pixel array unit 10 with reference to FIG. 2 is expressed as the integrated value Eij.
  • the specific value ⁇ E is calculated by the following [Equation 6].
  • the number of pixel units 11 in the column direction in the pixel array unit 10 will be described as N, and the number of pixel units 11 in the row direction will be described as M.
  • step S207 the control unit CT compares the specific value ⁇ E with the set threshold value ⁇ .
  • the specific value ⁇ E is larger than the set threshold value ⁇ , for example, as shown in FIG. 8, it is a state in which the variation in event detection for each pixel unit 11 in the pixel array unit 10 is sufficiently secured. Therefore, the image pickup target Tg moving on the belt conveyor BC can be normally detected, and the image pickup target Tg can be recognized based on the event signal Evt.
  • the area where the event signal Evt is detected is indicated by a satin finish. This also applies to FIGS. 9 and 10 in the following description.
  • the control unit CT proceeds from step S207 to step S205, and executes a process for lowering the sensitivity setting for event detection.
  • step S207 when the specific value ⁇ E is larger than the set threshold value ⁇ in step S207, the control unit CT proceeds to step S208 and calculates the specific value ⁇ Ei indicating the distribution status of the event signal Evt in the row direction in the pixel array unit 10. do. At this time, the control unit CT calculates a specific value ⁇ Ej indicating the distribution status of the event signal Evt in the column direction in the pixel array unit 10.
  • control unit CT In calculating the specific value ⁇ Ei, the control unit CT first uses the integrated value Eij of the number of events for each pixel unit 11 in the pixel array unit 10 and uses the following [Equation 7] to determine the number of events in each column of the pixel array unit 10. Calculate the average value Ei.
  • control unit CT uses the average value Ei calculated in the above [Equation 7] to obtain a specific value ⁇ Ei indicating the distribution status (variation) of the event signal Evt in the row direction in the pixel array unit 10 by the following [Equation 8]. calculate.
  • control unit CT first uses the integrated value Eij of the number of events for each pixel unit 11 in the pixel array unit 10 and uses the following [Equation 9] to determine the number of events in each row of the pixel array unit 10. Calculate the average value Ej.
  • control unit CT uses the average value Ej calculated in the above [Equation 9] to obtain a specific value ⁇ Ej indicating the distribution status (variation) of the event signal Evt in the column direction in the pixel array unit 10 by the following [Equation 10]. calculate.
  • step S208 the control unit CT proceeds to the process in step S209.
  • step S209 the control unit CT compares the specific value ⁇ Ei with the set threshold value ⁇ . Further, the control unit CT compares the specific value ⁇ Ej with the set threshold value ⁇ .
  • the control unit CT proceeds from step S209 to step S205, and executes a process for lowering the sensitivity setting for event detection. Then, the control unit CT proceeds from step S205 to step S202, and then executes the same processing.
  • control unit CT proceeds from step S209 to step S210.
  • step S209 the control unit CT executes a process for lowering the sensitivity setting for event detection when the specific value ⁇ Ej does not exceed the predetermined setting threshold value and the specific value ⁇ Ei exceeds the predetermined setting threshold value. It may be that. As a result, it is possible to execute a process for lowering the sensitivity setting of event detection even when the event is detected excessively in the column direction.
  • step S210 the control unit CT compares the integrated value Etotal of the number of events with the lower limit threshold value Emin.
  • the control unit CT proceeds to step S202 without changing the sensitivity setting for event detection in step S211 and then executes the same processing.
  • step S210 If the integrated value Etotal does not exceed the lower limit threshold value Emin in step S210, the control unit CT proceeds to step S212 and executes a process for increasing the sensitivity setting for event detection. After that, the control unit CT proceeds from step S212 to step S202, and thereafter executes the same process.
  • the second embodiment is realized by the control unit CT executing the above processing.
  • the control unit CT lowers the sensitivity setting for event detection according to the comparison result between the specific value ⁇ E and the setting threshold value ⁇ in steps S206 and S207. May be omitted. This is because the event signal Evt is detected from the entire pixel array unit 10 when the vehicle equipped with the in-vehicle camera makes a right / left turn or when the person wearing the VR camera turns to the left or right. This is to prevent the process of lowering the sensitivity setting of event detection from being executed in such a situation.
  • the control unit CT sets the initial parameters in step S301.
  • the initial parameters here are, for example, the time Tm for counting the number of detected event signals Evt, the upper limit threshold value Emax and the lower limit threshold value Emin for comparison with the integrated value Etotal of the event signal Evt, and the setting threshold value for comparison with the specific value ⁇ Ei. ⁇ , a setting threshold value ⁇ for comparison with a specific value ⁇ Ej, and the like.
  • step S302 the control unit CT acquires data such as detection information of the event signal Evt from the signal processing unit 14. Then, the control unit CT calculates the integrated value Etotal of the number of events acquired per predetermined time Tm in step S303.
  • step S304 the control unit CT compares the integrated value Etotal of the number of events with the upper limit threshold value Emax. When the integrated value Etotal exceeds the upper limit threshold value Emax, the control unit CT proceeds to step S305 and executes a process for lowering the sensitivity setting for event detection in the same manner as described above.
  • control unit CT also executes operation control for the lighting unit 6 (hereinafter, also referred to as "processing for reducing the illuminance of the lighting unit 6") so that the illuminance of the lighting unit 6 becomes lower than the current one.
  • processing for reducing the illuminance of the lighting unit 6 processing for reducing the illuminance of the lighting unit 6
  • the control unit CT also executes operation control for the lighting unit 6 (hereinafter, also referred to as "processing for reducing the illuminance of the lighting unit 6") so that the illuminance of the lighting unit 6 becomes lower than the current one.
  • control unit CT may perform only one of the processing for lowering the sensitivity setting for event detection and the processing for lowering the illuminance of the lighting unit 6 in step S305.
  • control unit CT proceeds from step S305 to step S302, and then performs the same processing.
  • step S304 If the integrated value Etotal does not exceed the upper limit threshold value Emax in step S304, the control unit CT proceeds to process in step S306.
  • step S306 the control unit CT calculates a specific value ⁇ Ei indicating the distribution status of the event signal Evt in the row direction in the pixel array unit 10. Further, the control unit CT calculates a specific value ⁇ Ej indicating the distribution status of the event signal Evt in the column direction in the pixel array unit 10. Then, in step S307, the control unit CT compares the specific value ⁇ Ei with the set threshold value ⁇ . Further, the control unit CT compares the specific value ⁇ Ej with the set threshold value ⁇ .
  • control unit CT proceeds from step S307 to step S305 to lower the sensitivity setting for event detection. Executes the processing of. At this time, the control unit CT executes a process for reducing the illuminance of the illumination unit 6. After that, the control unit CT proceeds from step S305 to step S302, and thereafter executes the same process.
  • control unit CT proceeds from step S307 to step S308.
  • step S308 the control unit CT compares the integrated value Etotal of the number of events with the lower limit threshold value Emin. When the integrated value Etotal exceeds the lower limit threshold value Emin, the control unit CT proceeds to step S302 without changing the sensitivity setting for event detection in step S309, and then executes the same process. At this time, the control unit CT does not change the illumination degree of the illumination unit 6.
  • control unit CT proceeds to step S310 and executes a process for increasing the sensitivity setting for event detection.
  • control unit CT also executes operation control (hereinafter, also referred to as "process for increasing the illuminance of the lighting unit 6") for the lighting unit 6 so that the illuminance of the lighting unit 6 is higher than the current one.
  • operation control hereinafter, also referred to as "process for increasing the illuminance of the lighting unit 6
  • the control unit CT also executes operation control (hereinafter, also referred to as "process for increasing the illuminance of the lighting unit 6") for the lighting unit 6 so that the illuminance of the lighting unit 6 is higher than the current one.
  • control unit CT may perform only one of the processing for increasing the sensitivity setting for event detection and the processing for increasing the illuminance of the illumination unit 6 in step S310.
  • control unit CT proceeds from step S310 to step S302, and then performs the same processing.
  • the third embodiment is realized by executing the above processing by the control unit CT.
  • the control unit CT sets the initial parameters in step S401. At this time, the control unit CT sets the event detection area AR1 for detecting the event signal Evt in the subsequent processing.
  • the event detection region AR1 is, for example, an arbitrary region in the pixel array unit 10 preset according to the image pickup target Tg.
  • the region where the liquid which is the image pickup target Tg is ejected can be specified in advance. Therefore, as shown in FIG. 15, the region where the liquid is ejected is defined as the region.
  • the region where the liquid is ejected is defined as the region.
  • the event detection area AR1 This also identifies the event non-detection region AR2 in which the event signal Evt is not detected.
  • the event non-detection region AR2 is shown by diagonal lines, and the other regions are shown as the event detection region AR1.
  • the control unit CT has, for example, a time Tm for counting the number of detected event signals Evt, an upper limit threshold value Emax and a lower limit threshold value Emin for comparison with the integrated value Etotal of the event signal Evt, and a specific value ⁇ Ei.
  • the setting threshold value ⁇ , the setting threshold value ⁇ for comparison with the specific value ⁇ Ej, and the like are set.
  • the control unit CT sets the various initial parameters in the event detection area AR1.
  • step S402 the control unit CT acquires data such as detection information of the event signal Evt in the event detection area AR1 from the signal processing unit 14. Then, in step S403, the control unit CT calculates the integrated value Etotal of the number of events in the event detection area AR1 acquired per predetermined time Tm.
  • step S404 the control unit CT compares the integrated value Etotal of the number of events with the upper limit threshold value Emax. When the integrated value Etotal exceeds the upper limit threshold value Emax, the control unit CT proceeds to step S405 and executes a process for lowering the sensitivity setting of event detection in the event detection area AR1. After that, the control unit CT proceeds from step S405 to step S402, and then performs the same processing.
  • step S404 If the integrated value Etotal does not exceed the upper limit threshold value Emax in step S404, the control unit CT proceeds to process in step S406.
  • step S406 the control unit CT calculates a specific value ⁇ Ei indicating the distribution status of the event signal Evt in the row direction in the pixel array unit 10. Further, the control unit CT calculates a specific value ⁇ Ej indicating the distribution status of the event signal Evt in the column direction in the pixel array unit 10.
  • "N" indicating the number of blocks in the column direction in the pixel array unit 10 is the column in the event detection area AR1. The number of blocks in the direction is used.
  • M indicating the number of blocks in the row direction in the pixel array unit 10
  • the number of blocks in the row direction in the event detection region AR1 as shown in FIG. 15 is used.
  • step S407 the control unit CT compares the specific value ⁇ Ei with the set threshold value ⁇ . Further, the control unit CT compares the specific value ⁇ Ej with the set threshold value ⁇ .
  • step S407 when the specific value ⁇ Ei does not exceed the set threshold value ⁇ and the specific value ⁇ Ej exceeds the set threshold value ⁇ , the control unit CT proceeds from step S407 to step S405 to lower the sensitivity setting for event detection. Executes the processing of. This is because, as shown in FIG. 16, an area in which the event signal Evt is detected in the row direction is generated in the event detection area AR1. Here, the area where the event signal Evt is detected is indicated by a satin finish. After that, the control unit CT proceeds from step S405 to step S402, and then executes the same processing.
  • control unit CT proceeds from step S407 to step S408.
  • step S408 the control unit CT compares the integrated value Etotal of the number of events with the lower limit threshold value Emin. When the integrated value Etotal exceeds the lower limit threshold value Emin, the control unit CT proceeds to step S402 without changing the sensitivity setting for event detection in step S409, and then executes the same process.
  • control unit CT proceeds to step S410 and executes a process for increasing the sensitivity setting for event detection.
  • control unit CT proceeds from step S410 to step S402, and then performs the same processing.
  • the fourth embodiment is realized by executing the above processing by the control unit CT.
  • the sensor device 1 in the above embodiment has a light receiving unit 21 that photoelectrically converts incident light to generate an electric signal, and a change amount (output voltage Vout) of the electric signal generated by the light receiving unit 21.
  • An event detection circuit 24 that executes detection of an event signal Evt that obtains a detection result by comparing a predetermined threshold value (upper limit voltage Vhigh, lower limit voltage Vlow), and a plurality of solid-state imaging elements 3 having a plurality of pixels 20.
  • the control unit CT for setting parameters (event signal detection parameters) related to the detection of the event signal Evt according to the detection status of the event signal Evt in the pixel 20 (pixel unit 11) is provided (see FIGS. 2, 5, etc.).
  • the event signal detection parameter is considered to be a parameter that changes the detection sensitivity of the event signal Evt (see S105, S108, etc. in FIGS. 3 and 5). For example, when signal processing becomes difficult due to an increase in the number of event signal Evt detected, the detection of the event signal Evt is suppressed by lowering the detection sensitivity of the event signal Evt. Further, when signal processing becomes difficult due to a decrease in the number of detected event signals Evt, the detection of the event signal Evt is suppressed by increasing the detection sensitivity of the event signal Evt.
  • the detection amount of the event signal Evt can be adjusted so that the amount does not make signal processing difficult. Therefore, it is possible to flexibly recognize the Tg to be imaged according to the purpose of use.
  • the control unit CT sets a predetermined threshold value (upper limit voltage Vhigh, lower limit voltage Vlow) for detecting the event signal Evt as an event signal detection parameter (S105, S108, etc. in FIG. 5). reference). For example, by strictly setting a predetermined threshold value (upper limit voltage Vhigh, lower limit voltage Vlow), the detection of the event signal Evt (on-event signal Vop, off-event signal Vom) is suppressed. Further, by setting a predetermined threshold value gently, the detection of the event signal is promoted. Therefore, the detection amount of the event signal Evt can be directly controlled by setting the upper limit voltage Vhigh and the lower limit voltage Vlow to be compared with the output voltage Vout when detecting the event signal Evt. Therefore, it is possible to flexibly recognize the Tg to be imaged according to the purpose of use.
  • a predetermined threshold value upper limit voltage Vhigh, lower limit voltage Vlow
  • the control unit CT sets the event signal detection parameter according to the integrated amount (integrated value Etotal) of the event signal Evt in the plurality of pixels 20 (pixel unit 11) for each predetermined time Tm. (See S103, S104, S106, etc. in FIG. 5). That is, the control unit CT can determine a state in which signal processing becomes difficult based on the integrated value Etotal of the event signal Evt.
  • the control unit CT determines that the event signal Evt is less likely to be detected than at present.
  • the threshold value (upper limit voltage Vhigh) is set (see S105 and the like in FIG. 5).
  • the control unit CT determines that when the integrated amount (integrated value Etotal) of the event signal Evt becomes lower than the second integrated value (lower limit threshold value Emin), the event signal Evt is more easily detected than at present.
  • the threshold value (lower limit voltage Vlow) is set (see S108 and the like in FIG. 5).
  • the control unit CT calculates the event occurrence frequency by calculating the reciprocal of the time required for the number of output events to reach the specified value. Then, when the event occurrence frequency exceeds the first reference value, the control unit CT sets a predetermined threshold value (upper limit voltage Vhigh) so that the event signal Evt is less likely to be detected than at present. At this time, the control unit CT can also set an event signal detection parameter for lowering the illuminance of the illumination unit 6 from the current level.
  • a predetermined threshold value upper limit voltage Vhigh
  • the control unit CT sets a predetermined threshold value (lower limit voltage Vrow) so that the event signal Evt can be detected more easily than at present.
  • the control unit CT can also set an event signal detection parameter for increasing the illuminance of the illumination unit 6 from the current level.
  • the control unit CT sets the parameter according to the distribution state (specific value ⁇ E) of the detected amount of the event signal Evt in the plurality of pixels 20 (pixel unit 11) (specific value ⁇ E). See S205, S206, S207, etc. in FIG. 7). That is, when the detection amount of the event signal of the plurality of pixels 20 (pixel unit 11) varies in the pixel array unit 10, the control unit CT determines that the image pickup target Tg can be recognized. According to this example, for example, the image pickup target Tg can be suitably detected in an environment in which a large number of image pickup target Tg flows in the captured image.
  • the control unit CT is in the row direction based on the average value (average value Ei) of the detected amount of the event signal Evt of each column in the plurality of pixels 20 (pixel unit 11).
  • a first specific value (specific value ⁇ Ei) indicating the distribution status of the event signal Evt is calculated, and the average value (average value Ej) of the detected amount of the event signal Evt of each row in the plurality of pixels 20 (pixel unit 11) is calculated.
  • a second specific value (specific value ⁇ Ej) indicating the distribution status of the event signal Evt in the column direction is calculated, and based on the first specific value (specific value ⁇ Ei) and the second specific value (specific value ⁇ Ej).
  • the parameters are set (see S205, S208, S209, etc. in FIG. 7).
  • the control unit CT can determine that the event signal Evt is concentrated and detected in a specific row or column in the pixel array unit 10. Therefore, when the event signal Evt is concentrated in a specific row or column, the detection of the event signal Evt is suppressed by lowering the detection sensitivity of the event signal Evt, thereby improving the identification accuracy of the Tg to be imaged. Can be done. It should be noted that the detection of the concentration of the event signal Evt in any of the specific rows or columns also has the effect of improving the identification accuracy of the image pickup target Tg in the relevant direction.
  • the control unit CT sets the illuminance of the illumination unit 6 as an event signal detection parameter, and causes the illumination unit 6 to irradiate the image pickup target Tg with the set illuminance (the illuminance unit 6). See S305, S310, etc. in FIG. 12).
  • the detection amount of the event signal Evt is controlled.
  • the control unit CT sets an event signal detection parameter for lowering the illuminance of the lighting unit 6 from the present. Set (see S304, S305, etc. in FIG. 12).
  • the detection of the event signal Evt is suppressed by lowering the illuminance of the illumination unit 6 with respect to the image pickup target Tg.
  • the control unit CT sets an event signal detection parameter for increasing the illuminance of the lighting unit 6 than the present. Set (see S308, S310, etc. in FIG. 12).
  • the detection of the event signal Evt is relaxed by increasing the illuminance of the illumination unit 6 with respect to the image pickup target Tg.
  • the detection amount of the event signal Evt can also be controlled by adjusting the illuminance of the illumination unit 6 with respect to the image pickup target Tg according to the integrated value Etotal of the event signal Evt.
  • the control unit CT sets the event detection area AR1 including the image pickup target Tg from the plurality of pixels 20 (pixel unit 11), and detects the event signal Evt in the event detection area AR1.
  • Event signal detection parameters can be set according to the situation (see S401 and the like in FIG. 14). This eliminates the need to determine the detection status of the event signal Evt in the region (event non-detection region AR2 in FIG. 15) that does not include the image pickup target Tg, so that the signal processing load can be reduced.
  • the event detection circuit 24 in the embodiment compares both the upper limit voltage Vhigh and the lower limit voltage Vlow with the output voltage Vout as shown in FIG. 3, only one of them may be compared with the output voltage Vout. .. In this case, unnecessary transistors can be reduced. For example, when comparing only with the upper limit voltage Vhigh, only the transistor Q9 and the transistor Q10 are arranged. In this case, the on-event signal Vop detected based on the comparison with the upper limit voltage Vhigh is detected as the event signal Evt.
  • the control method in the embodiment is a light receiving unit 21 that photoelectrically converts incident light to generate an electric signal, a change amount (output voltage Vout) of the electric signal generated by the light receiving unit 21, and a predetermined threshold value (upper limit voltage Vhigh).
  • the event detection circuit 24 that executes the detection of the event signal Evt to obtain the detection result by comparing with the lower limit voltage (Vlow), and the solid-state image sensor 3 having the plurality of pixels 20 having the plurality of pixels 20 (pixel unit).
  • This is a control method in which the sensor device 1 (image sensor 1) executes to set the event signal detection parameter according to the detection status of the event signal Evt in 11).
  • control unit CT the function by the control unit CT described so far can be realized as software processing by, for example, a CPU, a DSP, or the like.
  • the software processing is executed based on the program.
  • the program in the present embodiment has a light receiving unit 21 that photoelectrically converts incident light to generate an electric signal, a change amount (output voltage Vout) of the electric signal generated by the light receiving unit 21, and a predetermined threshold value (upper limit voltage Vhigh).
  • the event detection circuit 24 that executes the detection of the event signal Evt to obtain the detection result by comparing with the lower limit voltage (Vlow), and the solid-state image sensor 3 having the plurality of pixels 20 having the plurality of pixels 20 (pixel unit).
  • This is a program for causing the sensor device 1 (imaging device 1) to set the event signal detection parameters according to the detection status of the event signal Evt in 11).
  • the control unit CT as the above-described embodiment can be realized.
  • a program as described above can be recorded in advance in a recording medium built in a device such as a computer device, a ROM in a microcomputer having a CPU, or the like.
  • removable discs such as flexible discs, CD-ROMs (Compact Disc Read Only Memory), MO (Magnet optical) discs, DVDs, Blu-ray discs (Blu-ray Disc (registered trademark)), magnetic discs, semiconductor memories, and memory cards. It can be temporarily or permanently stored (recorded) on a recording medium.
  • Such removable recording media can be provided as so-called package software.
  • the program can also be downloaded from a download site via a network such as the Internet or a LAN (Local Area Network).
  • a detection circuit that executes detection of an event signal to obtain a detection result by comparing a light receiving unit that photoelectrically converts incident light to generate an electric signal and a change amount of the electric signal generated by the light receiving unit with a predetermined threshold value.
  • a solid-state image sensor having a plurality of pixels having A sensor device including a control unit for setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels.
  • the control unit sets the predetermined threshold value for the sensitivity for changing the electric signal or the threshold value for the change of the electric signal as a parameter for changing the detection sensitivity of the event signal in the above (2).
  • the sensor device described. (4) The sensor device according to any one of (1) to (3) above, wherein the control unit sets the parameters according to the frequency of event occurrence. (5) The sensor device according to (4) above, wherein the control unit sets the parameters so as to reduce the detection sensitivity of the event signal when the event occurrence frequency exceeds the first reference value. (6) The sensor device according to (4) or (5) above, wherein the control unit sets the parameters so as to improve the detection sensitivity of the event signal when the event occurrence frequency does not exceed the second reference value.
  • the sensor device according to any one of (1) to (6) above, wherein the control unit sets the parameters according to the distribution state of the detected amount of the event signal in the plurality of pixels.
  • the control unit calculates a first specific value indicating the distribution state of the event signal in the row direction based on the average value of the detected amounts of the event signals in each column in the plurality of pixels, and sets the first specific value as the first specific value.
  • the sensor device according to any one of (1) to (7) above, wherein the parameters are set based on the above.
  • the control unit calculates a second specific value indicating the distribution status of the event signal in the column direction based on the average value of the detected amounts of the event signals in each row in the plurality of pixels, and is based on the second specific value.
  • the sensor device according to any one of (1) to (8) above, wherein the parameters are set.
  • the control unit calculates a first specific value indicating the distribution state of the event signal in the row direction based on the average value of the detected amounts of the event signals in each column in the plurality of pixels.
  • a second specific value indicating the distribution status of the event signal in the column direction is calculated based on the average value of the detected amounts of the event signals in each row in the plurality of pixels.
  • the sensor device according to any one of (1) to (9) above, wherein the parameters are set based on the first specific value and the second specific value.
  • the sensor device according to any one of (1) to (10) above, wherein the control unit sets the illuminance of the illumination unit as the parameter and causes the illumination unit to irradiate the image pickup target with the set illuminance. (12) The control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency exceeds the first reference value, sets the parameter for lowering the illuminance of the lighting unit from the present. 11) The sensor device according to. (13) The control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency becomes lower than the second reference value, sets the parameter for increasing the illuminance of the lighting unit from the present. The sensor device according to (11) or (12).
  • the control unit sets a detection area including an image pickup target from the plurality of pixels, and sets the parameters according to the detection status of an event signal in the set detection area. Any of the above (1) to (13).
  • the sensor device described in. (15) A light receiving unit that photoelectrically converts incident light to generate an electric signal, and a detection circuit that executes event signal detection to obtain a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value. For a solid-state image sensor having a plurality of pixels having Setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels can be used. The control method performed by the sensor device.
  • a light receiving unit that photoelectrically converts incident light to generate an electric signal
  • a detection circuit that executes event signal detection to obtain a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value.
  • a solid-state image sensor having a plurality of pixels having Setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels can be used.
  • a program to be executed by the sensor device For a solid-state image sensor having a plurality of pixels having Setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels can be used.
  • a program to be executed by the sensor device.
  • the effects described in the present disclosure are exemplary and not limited, and may have other effects or are part of the effects described in the present disclosure. You may. Further, the embodiments described in the present disclosure are merely examples, and the present technology is not limited to the above-described embodiments. Therefore, it goes without saying that various changes can be made according to the design and the like as long as the technical idea of the present technology is not deviated from the above-described embodiment. It should be noted that not all combinations of configurations described in the embodiments are indispensable for solving the problem.
  • Imaging device 2 Image sensor 3 Solid-state image sensor 5 Sensor control unit 10 Pixel array unit 11 Pixel unit 14 Signal processing unit 15 Pixel control unit 16 Sensitivity adjustment circuit 17 Event number detection unit 20 Pixel 21 Light receiving unit 24 Event detection circuit CT control unit Evt Event signal Vop on-event signal Vom off-event signal

Abstract

The purpose of the present invention is to flexibly detect an event signal in accordance with a situation. This sensor device is provided with: a solid-state imaging element including a plurality of pixels each having a light receiving unit that performs photoelectric conversion on incident light and generates an electric signal, and a detection circuit that executes event signal detection for obtaining a detection result by comparing a change amount of the electric signal generated by the light receiving unit and a prescribed threshold value; and a control unit that sets a parameter pertaining to event signal detection, in accordance with the state of event signal detection in the plurality of pixels.

Description

センサ装置、制御方法、プログラムSensor device, control method, program
 本技術はセンサ装置、制御方法、プログラムに関し、特に入射光の光量の変化を検出する技術に関する。 This technology relates to sensor devices, control methods, and programs, especially to detect changes in the amount of incident light.
 画素ごとに、その画素の光量が閾値を超えた旨をイベント信号としてリアルタイムに検出する検出回路を設けた非同期型の固体撮像素子が提案されている。このような画素ごとにイベント信号を検出する固体撮像素子はDVS(Dynamic Vision Sensor)と呼ばれる。 An asynchronous solid-state image sensor provided with a detection circuit for detecting in real time as an event signal that the amount of light of the pixel exceeds the threshold value for each pixel has been proposed. Such a solid-state image sensor that detects an event signal for each pixel is called a DVS (Dynamic Vision Sensor).
WO2018/122798号公報WO2018 / 122798
 このようなDVSにおいては、検出したイベント信号に基づいて画像出力を行う際に、輝度変化の大きい画素が多い場合、全てのイベントを出力できず信号処理が困難となることがある。また一方で、被写界全体の輝度変化が小さいとイベント信号の検出数が不足することにより信号処理が困難となることがある。 In such a DVS, when the image is output based on the detected event signal, if there are many pixels with a large change in luminance, all the events cannot be output and signal processing may be difficult. On the other hand, if the change in brightness of the entire field is small, the number of event signals detected may be insufficient, which may make signal processing difficult.
 本技術はこのような状況に鑑みて創作されたものであり、イベント信号を検出する固体撮像素子を有するセンサ装置において、イベント信号を状況に応じて柔軟に検出することを目的とする。 This technology was created in view of such a situation, and aims to flexibly detect an event signal according to the situation in a sensor device having a solid-state image sensor that detects the event signal.
 本技術に係るセンサ装置は、入射光を光電変換して電気信号を生成する受光部と、前記受光部が生成する前記電気信号の変化量と所定の閾値とを比較して検出結果を得るイベント信号の検出を実行する検出回路と、を有する画素を複数有する固体撮像素子と、前記複数の画素におけるイベント信号の検出状況に応じてイベント信号の検出に関するパラメータを設定する制御部と、を備える。
 これにより、例えばイベント信号の検出数の増加により信号処理が困難となるようなときにはイベント信号の検出を抑制することが可能となる。またイベント信号の検出数の減少により信号処理が困難になるときにはイベント信号の検出を緩和することが可能となる。
The sensor device according to the present technology is an event in which a light receiving unit that photoelectrically converts incident light to generate an electric signal and an event that obtains a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value. It includes a detection circuit for executing signal detection, a solid-state image sensor having a plurality of pixels having the same, and a control unit for setting parameters related to detection of the event signal according to the detection status of the event signal in the plurality of pixels.
This makes it possible to suppress the detection of event signals when signal processing becomes difficult due to an increase in the number of event signals detected, for example. Further, when the signal processing becomes difficult due to the decrease in the number of detected event signals, it is possible to relax the detection of the event signal.
 上記した本技術に係るセンサ装置において、前記パラメータはイベント信号の検出感度を変化させるパラメータであることが考えられる。
 例えばイベント信号の検出数の増加により信号処理が困難となるようなときにはイベント信号の検出感度を下げることでイベント信号の検出を抑制する。またイベント信号の検出数の減少により信号処理が困難となるようなときにはイベント信号の検出感度を上げることでイベント信号の検出を抑制する。
In the sensor device according to the present technology described above, it is considered that the parameter is a parameter that changes the detection sensitivity of the event signal.
For example, when signal processing becomes difficult due to an increase in the number of detected event signals, the detection sensitivity of the event signal is lowered to suppress the detection of the event signal. Further, when signal processing becomes difficult due to a decrease in the number of detected event signals, the detection of the event signal is suppressed by increasing the detection sensitivity of the event signal.
 上記した本技術に係るセンサ装置において、前記制御部は、前記イベント信号の検出感度を変化させるパラメータとして、輝度変化に対して前記電気信号が変化する感度又は前記電気信号の変化に対する閾値を設定することが考えられる。
 例えば所定の閾値を厳しく設定することでイベント信号の検出が抑制される。また所定の閾値を緩やかに設定することでイベント信号の検出が促進される。
In the sensor device according to the present technology described above, the control unit sets the sensitivity at which the electric signal changes with respect to the change in luminance or the threshold value with respect to the change in the electric signal as a parameter for changing the detection sensitivity of the event signal. Is possible.
For example, by setting a predetermined threshold value strictly, the detection of the event signal is suppressed. Further, by setting a predetermined threshold value gently, the detection of the event signal is promoted.
 上記した本技術に係るセンサ装置において、前記制御部は、イベント発生頻度に応じて前記パラメータを設定することが考えられる。
 ここでイベント発生頻度とは、例えば所定時間ごとの前記複数の画素におけるイベント信号の積算量、又は出力イベント数が規定の値に達するまでの所要時間の逆数を得る等の手法で推定される。
 すなわち制御部は、イベント信号の積算量に基づいて信号処理が困難となるような状態を判定する。
In the sensor device according to the present technology described above, it is conceivable that the control unit sets the parameters according to the event occurrence frequency.
Here, the event occurrence frequency is estimated by, for example, obtaining the integrated amount of event signals in the plurality of pixels at predetermined time intervals or the reciprocal of the time required for the number of output events to reach a predetermined value.
That is, the control unit determines a state in which signal processing becomes difficult based on the integrated amount of the event signal.
 上記した本技術に係るセンサ装置において、前記制御部は、前記イベント発生頻度が第1の基準値を超えた場合にイベント信号の検出感度を低下させるように前記パラメータを設定することが考えられる。
 これにより、イベント信号の積算量の増加により信号処理が困難となるようなときにはイベント信号の検出感度を下げることでイベント信号の検出を抑制する。
In the sensor device according to the present technology described above, it is conceivable that the control unit sets the parameter so as to reduce the detection sensitivity of the event signal when the event occurrence frequency exceeds the first reference value.
As a result, when signal processing becomes difficult due to an increase in the integrated amount of the event signal, the detection sensitivity of the event signal is lowered to suppress the detection of the event signal.
 上記した本技術に係るセンサ装置において、前記制御部は、前記イベント発生頻度が第2の基準値を超えない場合にイベント信号の検出感度を向上させるように前記パラメータを設定することが考えられる。
 これにより、イベント信号の積算量の減少により信号処理が困難になるようなときにはイベント信号の検出感度を上げることでイベント信号の検出を緩和する。
In the sensor device according to the present technology described above, it is conceivable that the control unit sets the parameters so as to improve the detection sensitivity of the event signal when the event occurrence frequency does not exceed the second reference value.
As a result, when signal processing becomes difficult due to a decrease in the integrated amount of the event signal, the detection sensitivity of the event signal is increased to alleviate the detection of the event signal.
 上記した本技術に係るセンサ装置において、前記制御部は、前記複数の画素におけるイベント信号の検出量の分布状況に応じて前記パラメータを設定することが考えられる。
 例えば複数の画素におけるイベント信号の検出量にばらつきがある場合は、撮像対象が認識できているものと判定される。
In the sensor device according to the present technology described above, it is conceivable that the control unit sets the parameter according to the distribution state of the detected amount of the event signal in the plurality of pixels.
For example, when the detection amount of the event signal in a plurality of pixels varies, it is determined that the image pickup target can be recognized.
 上記した本技術に係るセンサ装置において、前記制御部は、前記複数の画素における各列のイベント信号の検出量の平均値に基づいて行方向のイベント信号の分布状況を示す第1の特定値を算出し、前記第1の特定値に基づいて前記パラメータを設定することが考えられる。
 これにより、複数の画素における特定の行にイベント信号が集中して検出されていることを判定することができる。
In the sensor device according to the present technology described above, the control unit sets a first specific value indicating the distribution state of event signals in the row direction based on the average value of the detected amounts of event signals in each column in the plurality of pixels. It is conceivable to calculate and set the parameter based on the first specific value.
This makes it possible to determine that the event signals are concentrated and detected in a specific row in a plurality of pixels.
 上記した本技術に係るセンサ装置において、前記制御部は、前記複数の画素における各行のイベント信号の検出量の平均値に基づいて列方向のイベント信号の分布状況を示す第2の特定値を算出し、前記第2の特定値に基づいて前記パラメータを設定することが考えられる。
 これにより、複数の画素における特定の列にイベント信号が集中して検出されていることを判定することができる。
In the sensor device according to the present technology described above, the control unit calculates a second specific value indicating the distribution status of event signals in the column direction based on the average value of the detected amounts of event signals in each row in the plurality of pixels. Then, it is conceivable to set the parameter based on the second specific value.
This makes it possible to determine that the event signals are concentrated and detected in a specific row in a plurality of pixels.
 上記した本技術に係るセンサ装置において、前記制御部は、前記複数の画素における各列のイベント信号の検出量の平均値に基づいて行方向のイベント信号の分布状況を示す第1の特定値を算出し、前記複数の画素における各行のイベント信号の検出量の平均値に基づいて列方向のイベント信号の分布状況を示す第2の特定値を算出し、前記第1の特定値及び前記第2の特定値に基づいて前記パラメータを設定することが考えられる。
 これにより、複数の画素における特定の行又は列にイベント信号が集中して検出されていることを判定することができる。
In the sensor device according to the present technology described above, the control unit sets a first specific value indicating the distribution state of event signals in the row direction based on the average value of the detected amounts of event signals in each column in the plurality of pixels. A second specific value indicating the distribution status of the event signal in the column direction is calculated based on the average value of the detected amounts of the event signals in each row in the plurality of pixels, and the first specific value and the second specific value are calculated. It is conceivable to set the parameter based on the specific value of.
Thereby, it can be determined that the event signals are concentrated and detected in a specific row or column in a plurality of pixels.
 上記した本技術に係るセンサ装置において、前記制御部は、前記パラメータとして照明部の照度を設定し、前記設定した照度による撮像対象への照射を前記照明部に実行させることが考えられる。
 撮像対象に対する照明部の照度を調整することでイベント信号の検出量が制御される。
In the sensor device according to the present technology described above, it is conceivable that the control unit sets the illuminance of the illumination unit as the parameter and causes the illumination unit to irradiate the image pickup target with the set illuminance.
The detection amount of the event signal is controlled by adjusting the illuminance of the illumination unit with respect to the image pickup target.
 上記した本技術に係るセンサ装置において、前記制御部は、イベント発生頻度に応じて前記パラメータを設定し、前記イベント発生頻度が第1の基準値を超えると、現在よりも前記照明部の照度を下げるための前記パラメータを設定することが考えられる。
 これにより、例えばイベント信号の積算量の増加により信号処理が困難となるようなときには撮像対象に対する照明部の照度を下げることでイベント信号の検出を抑制する。
In the sensor device according to the present technology described above, the control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency exceeds the first reference value, the illuminance of the lighting unit is increased from the present. It is conceivable to set the parameter for lowering.
As a result, for example, when signal processing becomes difficult due to an increase in the integrated amount of the event signal, the detection of the event signal is suppressed by lowering the illuminance of the illumination unit with respect to the image pickup target.
 上記した本技術に係るセンサ装置において、前記制御部は、イベント発生頻度に応じて前記パラメータを設定し、前記イベント発生頻度が第2の基準値よりも低くなると、現在よりも前記照明部の照度を上げるための前記パラメータを設定することが考えられる。
 これにより、例えばイベント信号の積算量の減少により信号処理が困難になるようなときには撮像対象に対する照明部の照度を上げることでイベント信号の検出を緩和する。
In the sensor device according to the present technology described above, the control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency becomes lower than the second reference value, the illuminance of the illumination unit is lower than the present. It is conceivable to set the above parameters for increasing.
Thereby, for example, when signal processing becomes difficult due to a decrease in the integrated amount of the event signal, the detection of the event signal is relaxed by increasing the illuminance of the illumination unit with respect to the image pickup target.
 上記した本技術に係るセンサ装置において、前記制御部は、前記複数の画素から撮像対象を含む検出領域を設定し、前記設定した検出領域におけるイベント信号の検出状況に応じて前記パラメータを設定することが考えられる。
 これにより、撮像対象を含む検出領域における検出領域におけるイベント信号の検出状況に基づいて前記パラメータが設定される。
In the sensor device according to the present technology described above, the control unit sets a detection area including an image pickup target from the plurality of pixels, and sets the parameter according to the detection status of an event signal in the set detection area. Can be considered.
As a result, the parameter is set based on the detection status of the event signal in the detection area in the detection area including the image pickup target.
 本技術に係る制御方法は、入射光を光電変換して電気信号を生成する受光部と、前記受光部が生成する前記電気信号の変化量と所定の閾値とを比較して検出結果を得るイベント信号検出を実行する検出回路と、を有する画素を複数有する固体撮像素子に対して、前記複数の画素におけるイベント信号の検出状況に応じてイベント信号の検出に関するパラメータを設定することを、センサ装置が実行するものである。 The control method according to the present technology is an event in which a light receiving unit that photoelectrically converts incident light to generate an electric signal and an event that obtains a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value. For a solid-state image sensor having a plurality of pixels having a detection circuit for executing signal detection, the sensor device sets parameters related to detection of the event signal according to the detection status of the event signal in the plurality of pixels. It is what you do.
 本技術に係るプログラムは、上記の制御方法に相当する各処理をセンサ装置に実行させるプログラムである。これにより、情報処理装置、マイクロコンピュータ等により上述の制御部を容易に実現することができる。また当該制御部を備えるセンサ装置により、上述の動作を実現することができる。 The program related to this technology is a program that causes the sensor device to execute each process corresponding to the above control method. As a result, the above-mentioned control unit can be easily realized by an information processing device, a microcomputer, or the like. Further, the above-mentioned operation can be realized by the sensor device provided with the control unit.
本技術の実施の形態におけるセンサ装置の構成例を示す図である。It is a figure which shows the configuration example of the sensor device in embodiment of this technique. 実施の形態における撮像装置等の構成例を示す図である。It is a figure which shows the structural example of the image pickup apparatus and the like in Embodiment. 実施の形態における画素の構成例を示す図である。It is a figure which shows the structural example of a pixel in an embodiment. 実施の形態における撮像装置等の構成の変形例を示す図である。It is a figure which shows the modification of the structure of the image pickup apparatus and the like in embodiment. 第1の実施の形態における制御部が実行する処理例のフローチャートである。It is a flowchart of the processing example executed by the control unit in 1st Embodiment. 第2の実施の形態における撮像装置の適用例を示す図である。It is a figure which shows the application example of the image pickup apparatus in the 2nd Embodiment. 第2の実施の形態における制御部が実行する処理例のフローチャートである。It is a flowchart of the processing example executed by the control unit in 2nd Embodiment. 第2の実施の形態におけるイベント信号の検出状態を示す第1図である。FIG. 1 is a diagram showing a detection state of an event signal in the second embodiment. 第2の実施の形態におけるイベント信号の検出状態を示す第2図である。It is a 2nd figure which shows the detection state of the event signal in 2nd Embodiment. 第2の実施の形態におけるイベント信号の検出状態を示す第3図である。FIG. 3 is a diagram showing a detection state of an event signal in the second embodiment. 第3の実施の形態における撮像装置の適用例を示す図である。It is a figure which shows the application example of the image pickup apparatus in 3rd Embodiment. 第3の実施の形態における制御部が実行する処理例のフローチャートである。It is a flowchart of the processing example executed by the control unit in 3rd Embodiment. 第4の実施の形態における撮像装置の適用例を示す図である。It is a figure which shows the application example of the image pickup apparatus in 4th Embodiment. 第4の実施の形態における制御部が実行する処理例のフローチャートである。It is a flowchart of the processing example executed by the control unit in 4th Embodiment. 第4の実施の形態におけるイベント信号の検出状態を示す第1図である。FIG. 1 is a diagram showing a detection state of an event signal in the fourth embodiment. 第4の実施の形態のイベント信号の検出状態を示す第2図である。It is a 2nd figure which shows the detection state of the event signal of 4th Embodiment.
 以下、本技術の実施の形態を次の順序で説明する。
<1.センサ装置の構成例>
<2.各構成の詳細>
<3.第1の実施の形態>
<4.第2の実施の形態>
<5.第3の実施の形態>
<6.第4の実施の形態>
<7.まとめ及び変形例>
<8.本技術>
Hereinafter, embodiments of the present technology will be described in the following order.
<1. Configuration example of sensor device>
<2. Details of each configuration>
<3. First Embodiment>
<4. Second Embodiment>
<5. Third Embodiment>
<6. Fourth Embodiment>
<7. Summary and modification>
<8. This technology>
 なお、説明にあたり参照する図面に記載された各構成は、本技術に係る要部の構成のみ抽出したものであり、図面に記載された構成は、本技術の技術的思想を逸脱しない範囲であれば設計などに応じて種々な変更が可能である。
 また、以下で一度説明した構成は、それ以降同一の符号を付して説明を省略することがある。さらに、本技術は本実施の形態に限定されるものではなく、本技術の目的を達成できる範囲での変形、改良等は本技術に含まれるものである。
It should be noted that each configuration described in the drawings referred to in the explanation is an extraction of only the configuration of the main part related to the present technology, and the configuration described in the drawings does not deviate from the technical idea of the present technology. For example, various changes can be made according to the design and the like.
Further, the configuration once described below may be referred to with the same reference numerals thereafter, and the description thereof may be omitted. Further, the present technology is not limited to the present embodiment, and modifications, improvements, etc. to the extent that the object of the present technology can be achieved are included in the present technology.
<1.センサ装置の構成例>
 図1を参照して、本技術の実施の形態におけるセンサ装置の構成例を説明する。本実施の形態ではセンサ装置1の一例として撮像装置1について説明する。撮像装置1はDVSの機能を有している。撮像装置1としては、例えば産業用ロボットに搭載されるカメラ、車載カメラ、ドローン等に搭載されるカメラ、監視カメラ、VR(Virtual Reality)カメラなど様々な例が想定される。
<1. Configuration example of sensor device>
A configuration example of the sensor device according to the embodiment of the present technology will be described with reference to FIG. In this embodiment, the image pickup device 1 will be described as an example of the sensor device 1. The image pickup apparatus 1 has a DVS function. As the image pickup device 1, various examples such as a camera mounted on an industrial robot, an in-vehicle camera, a camera mounted on a drone, a surveillance camera, a VR (Virtual Reality) camera, and the like are assumed.
 撮像装置1は、撮像レンズ2、固体撮像素子3、データ処理部4、及びセンサ制御部5を備える。 The image pickup device 1 includes an image pickup lens 2, a solid-state image pickup element 3, a data processing unit 4, and a sensor control unit 5.
 撮像レンズ2は、入射光を集光して固体撮像素子3に導く。
 固体撮像素子3は、入射光を光電変換して画像データを撮像するものである。固体撮像素子3は、入射光を光電変換して受光量に応じた電圧信号を得ると共に、電圧信号の変化量に基づく受光量の変化をイベント信号Evtとして検出するイベント信号検出を行う。検出されたイベント信号Evtはデータ処理部4に供給される。
The image pickup lens 2 collects the incident light and guides it to the solid-state image pickup element 3.
The solid-state image sensor 3 photoelectrically converts incident light to capture image data. The solid-state image sensor 3 photoelectrically converts the incident light to obtain a voltage signal according to the received light amount, and also performs event signal detection for detecting a change in the received light amount based on the changed amount of the voltage signal as an event signal Evt. The detected event signal Evt is supplied to the data processing unit 4.
 データ処理部4は、固体撮像素子3からのイベント信号Evtを記録する。
 センサ制御部5は、例えばCPU(Central Processing Unit)やROM(Read Only Memory)、RAM(Random Access Memory)等を備えたマイクロコンピュータを有して構成され、CPUがプログラムに従った処理を実行することで撮像装置1の動作を制御する。特に、センサ制御部5は、固体撮像素子3を制御して上記したイベント信号Evtの検出動作を実行させたり、データ処理部4を制御してイベント信号Evtを記録させたり、データ処理部4からイベント信号Evtを読み出す処理を実行する。
The data processing unit 4 records the event signal Evt from the solid-state image sensor 3.
The sensor control unit 5 includes, for example, a microcomputer equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and the CPU executes processing according to a program. This controls the operation of the image pickup device 1. In particular, the sensor control unit 5 controls the solid-state image sensor 3 to execute the above-mentioned event signal Evt detection operation, controls the data processing unit 4 to record the event signal Evt, and causes the data processing unit 4 to record the event signal Evt. The process of reading the event signal Evt is executed.
<2.各構成の詳細>
 図2を参照して、本実施の形態における固体撮像素子3、データ処理部4、及びセンサ制御部5のそれぞれの構成例について説明する。
 固体撮像素子3は、画素アレイ部10、行アービタ12、列アービタ13、信号処理部14、及び画素制御部15を備える。
<2. Details of each configuration>
With reference to FIG. 2, configuration examples of the solid-state image sensor 3, the data processing unit 4, and the sensor control unit 5 in the present embodiment will be described.
The solid-state image sensor 3 includes a pixel array unit 10, a row arbiter 12, a column arbiter 13, a signal processing unit 14, and a pixel control unit 15.
 画素アレイ部10は、複数の画素部11が行方向及び列方向の行列上に二次元に配置された構成となっている。ここで、行方向とは、水平方向の画素配列方向をいい、列方向とは、垂直方向の画素配列方向をいう。図中では、行方向を横方向、列方向を縦方向として示している。 The pixel array unit 10 has a configuration in which a plurality of pixel units 11 are two-dimensionally arranged on a matrix in the row direction and the column direction. Here, the row direction means the pixel arrangement direction in the horizontal direction, and the column direction means the pixel arrangement direction in the vertical direction. In the figure, the row direction is shown as the horizontal direction and the column direction is shown as the vertical direction.
 各画素部11は、一又は複数の画素20を有し受光量の変化を示すイベント信号Evtを検出することができる。画素部11は、画素20としての単一の画素を有し、該画素20がイベント信号Evtを検出可能に構成されている。 Each pixel unit 11 has one or a plurality of pixels 20 and can detect an event signal Evt indicating a change in the amount of received light. The pixel unit 11 has a single pixel as the pixel 20, and the pixel 20 is configured to be able to detect the event signal Evt.
 ここで図3を参照して画素20の構成の一例について説明する。
 画素20は、受光部21、対数変換部22、バッファ23、及びイベント検出回路24を備える。
Here, an example of the configuration of the pixel 20 will be described with reference to FIG.
The pixel 20 includes a light receiving unit 21, a logarithmic conversion unit 22, a buffer 23, and an event detection circuit 24.
 受光部21は、入射光を光電変換することにより得られた光電流を対数変換部22に供給する。 The light receiving unit 21 supplies the photocurrent obtained by photoelectric conversion of the incident light to the logarithmic conversion unit 22.
 対数変換部22は、対応する受光部21からの光電流を対数変換された電圧信号に変換する。対数変換部22は、当該変換した電圧信号をバッファ23に供給する。 The logarithmic conversion unit 22 converts the photocurrent from the corresponding light receiving unit 21 into a logarithmically converted voltage signal. The logarithmic conversion unit 22 supplies the converted voltage signal to the buffer 23.
 バッファ23は、対数変換部22からの電圧信号を補正する。バッファ23は、補正後の電圧信号をイベント検出回路24に供給する。 The buffer 23 corrects the voltage signal from the logarithmic conversion unit 22. The buffer 23 supplies the corrected voltage signal to the event detection circuit 24.
 イベント検出回路24は、減算器25及び量子化器26を備える。 The event detection circuit 24 includes a subtractor 25 and a quantizer 26.
 量子化器26は、過去における受光信号のレベルを基準レベルとして、現在における受光信号のレベルとの差分を求めることで、受光量の変化をイベントとして検出する。
 具体的に、量子化器26は、受光量が増加側に変化するイベント、即ち基準レベルとの差分がプラスとなるイベント(以下、「オンイベント」と表記する)と、受光量が減少側に変化するイベント、つまり基準レベルとの差分がマイナスとなるイベント(以下、「オフイベント」と表記する)とを検出し分けることが可能に構成されている。
 量子化器26は、オンイベントの検出結果を示すイベント信号Evtをオンイベント信号Vopとして出力する。また量子化器26は、オフイベントの検出結果を示すイベント信号Evtをオフイベント信号Vomとして出力する。
The quantizer 26 detects a change in the amount of received light as an event by obtaining a difference from the current level of the received light signal with the level of the received light signal in the past as a reference level.
Specifically, the quantizer 26 includes an event in which the amount of received light changes to the increasing side, that is, an event in which the difference from the reference level becomes positive (hereinafter referred to as “on event”) and an event in which the amount of received light decreases to the decreasing side. It is configured to be able to detect and distinguish changing events, that is, events in which the difference from the reference level is negative (hereinafter referred to as "off event").
The quantizer 26 outputs an event signal Evt indicating an on-event detection result as an on-event signal Vop. Further, the quantizer 26 outputs an event signal Evt indicating an off-event detection result as an off-event signal Vom.
 このとき減算器25は、例えば画素制御部15からの制御により入力された基準レベルリセット信号RSTに基づき、基準レベルを現在における受光信号のレベルにリセットする。
 このような基準レベルのリセットを行うことで、該リセットを行った時点からの受光信号レベルの変化に基づき、新たなイベントを検出することが可能となる。すなわち、基準レベルのリセットは、イベント検出回路24において新たなイベント検出が可能な状態に制御する処理として機能するものである。
At this time, the subtractor 25 resets the reference level to the current level of the received light signal based on the reference level reset signal RST input by control from the pixel control unit 15, for example.
By resetting the reference level in this way, it becomes possible to detect a new event based on the change in the received signal level from the time when the reset is performed. That is, the reset of the reference level functions as a process of controlling the event detection circuit 24 so that a new event can be detected.
 対数変換部22は、トランジスタQ1、トランジスタQ2、及びトランジスタQ3を備えている。本例ではトランジスタQ1及びトランジスタQ3はN型トランジスタとされる。またトランジスタQ2はP型トランジスタとされる。 The logarithmic conversion unit 22 includes a transistor Q1, a transistor Q2, and a transistor Q3. In this example, the transistor Q1 and the transistor Q3 are N-type transistors. Further, the transistor Q2 is a P-type transistor.
 トランジスタQ1のソースは受光部21のフォトダイオードPDのカソードに接続される。またトランジスタQ1のドレインは電源端子(基準電位VDD)に接続される。 The source of the transistor Q1 is connected to the cathode of the photodiode PD of the light receiving unit 21. Further, the drain of the transistor Q1 is connected to the power supply terminal (reference potential VDD).
 トランジスタQ2及びトランジスタQ3は、電源端子と接地端子との間において直列に接続される。またトランジスタQ2とトランジスタQ3の接続点は、トランジスタQ1のゲートとバッファ23の入力端子(後述するトランジスタQ5のゲート)とに接続される。またトランジスタQ2のゲートには、所定のバイアス電圧Vbiasが印加される。 Transistor Q2 and transistor Q3 are connected in series between the power supply terminal and the ground terminal. Further, the connection point between the transistor Q2 and the transistor Q3 is connected to the gate of the transistor Q1 and the input terminal of the buffer 23 (the gate of the transistor Q5 described later). Further, a predetermined bias voltage Vbias is applied to the gate of the transistor Q2.
 トランジスタQ1及びトランジスタQ3のドレインは電源側(基準電位VDD)に接続されており、ソースフォロワ回路が形成されている。これらのループ状に接続された二つのソースフォロワにより、フォトダイオードPDからの光電流は、その対数の電圧信号に変換される。またトランジスタQ2は一定の電流をトランジスタQ3に供給する。 The drains of the transistor Q1 and the transistor Q3 are connected to the power supply side (reference potential VDD), and a source follower circuit is formed. These two source followers connected in a loop convert the photocurrent from the photodiode PD into its logarithmic voltage signal. Further, the transistor Q2 supplies a constant current to the transistor Q3.
 バッファ23は、それぞれP型トランジスタとされたトランジスタQ4及びトランジスタQ5を備えている。トランジスタQ4とトランジスタQ5は電源端子と接地端子との間において直列に接続される。 The buffer 23 includes a transistor Q4 and a transistor Q5, which are P-type transistors, respectively. The transistor Q4 and the transistor Q5 are connected in series between the power supply terminal and the ground terminal.
 トランジスタQ4とトランジスタQ5の接続点がバッファ23の出力端子とされ、該出力端子より補正後の電圧信号が受光信号としてイベント検出回路24の減算器25に出力される。 The connection point between the transistor Q4 and the transistor Q5 is used as an output terminal of the buffer 23, and the corrected voltage signal is output from the output terminal to the subtractor 25 of the event detection circuit 24 as a light receiving signal.
 減算器25は、コンデンサC1、コンデンサC2、トランジスタQ7、トランジスタQ8、及びリセットスイッチSWrを備える。トランジスタQ7はP型トランジスタとされる。またトランジスタQ8はN型トランジスタとされる。 The subtractor 25 includes a capacitor C1, a capacitor C2, a transistor Q7, a transistor Q8, and a reset switch SWr. The transistor Q7 is a P-type transistor. Further, the transistor Q8 is an N-type transistor.
 トランジスタQ7及びトランジスタQ8は、電源端子と接地端子との間において直列に接続され、インバータを構成する。具体的に、トランジスタQ7はソースが電源端子に接続される。またトランジスタQ7はドレインがトランジスタQ8のドレインに接続される。さらにトランジスタQ8はソースが接地端子に接続される。なお、トランジスタQ8のゲートには所定のバイアス電圧Vbdifが印加される。 Transistor Q7 and transistor Q8 are connected in series between the power supply terminal and the ground terminal to form an inverter. Specifically, the source of the transistor Q7 is connected to the power supply terminal. Further, the drain of the transistor Q7 is connected to the drain of the transistor Q8. Further, the source of the transistor Q8 is connected to the ground terminal. A predetermined bias voltage Vbdif is applied to the gate of the transistor Q8.
 コンデンサC1は一端がバッファ23の出力端子に接続される。またコンデンサC1は他端がトランジスタQ7のゲート(インバータの入力端子)に接続される。
 コンデンサC2は一端がコンデンサC1の他端と接続される。またコンデンサC2は他端がトランジスタQ7とトランジスタQ8の接続点に接続される。
One end of the capacitor C1 is connected to the output terminal of the buffer 23. The other end of the capacitor C1 is connected to the gate (input terminal of the inverter) of the transistor Q7.
One end of the capacitor C2 is connected to the other end of the capacitor C1. The other end of the capacitor C2 is connected to the connection point between the transistor Q7 and the transistor Q8.
 リセットスイッチSWrは一端がコンデンサC1とコンデンサC2との接続点に接続される。またリセットスイッチSWrは他端がトランジスタQ7とトランジスタQ8の接続点とコンデンサC2との接続点に接続される。リセットスイッチSWrはコンデンサC2に対して並列接続される。
 リセットスイッチSWrは、基準レベルリセット信号RSTに従ってON/OFFされるスイッチである。
One end of the reset switch SWr is connected to the connection point between the capacitor C1 and the capacitor C2. The other end of the reset switch SWr is connected to the connection point between the transistor Q7 and the transistor Q8 and the connection point between the capacitor C2. The reset switch SWr is connected in parallel to the capacitor C2.
The reset switch SWr is a switch that is turned ON / OFF according to the reference level reset signal RST.
 トランジスタQ7及びトランジスタQ8によるインバータは、コンデンサC1を介して入力された受光信号を反転して量子化器26に出力する。 The inverter by the transistor Q7 and the transistor Q8 inverts the light receiving signal input through the capacitor C1 and outputs it to the quantizer 26.
 ここで減算器25において、或る時点でコンデンサC1のバッファ23側に生じている電位を電位Vinitとする。このとき、リセットスイッチSWrがONされたとする。リセットスイッチSWrがONの場合、コンデンサC1のバッファ23とは逆側は仮想接地端子となる。この仮想接地端子の電位を便宜上、ゼロとする。このとき、コンデンサC1に蓄積されている電荷CHinitは、コンデンサC1の容量をCp1とすると、次の[式1]により表される。

 CHinit=Cp1×Vinit ・・・[式1]

 また、リセットスイッチSWrがONのとき、コンデンサC2の両端は短絡されているため、その蓄積電荷はゼロとなる。
Here, in the subtractor 25, the potential generated on the buffer 23 side of the capacitor C1 at a certain point in time is defined as the potential Vinit. At this time, it is assumed that the reset switch SWr is turned on. When the reset switch SWr is ON, the side opposite to the buffer 23 of the capacitor C1 becomes a virtual ground terminal. The potential of this virtual ground terminal is set to zero for convenience. At this time, the charge CHinit stored in the capacitor C1 is expressed by the following [Equation 1], where the capacitance of the capacitor C1 is Cp1.

CHinit = Cp1 × Vinit ・ ・ ・ [Equation 1]

Further, when the reset switch SWr is ON, both ends of the capacitor C2 are short-circuited, so that the accumulated charge becomes zero.
 次いで、リセットスイッチSWrがOFFされたとする。受光量の変化が生じていれば、コンデンサC1のバッファ23側の電位は上記したVinitから変化している。変化後の該電位をVafterとすると、コンデンサC1に蓄積される電荷CHafterは、次の[式2]により表される。

 CHafter=Cp1×Vafter ・・・[式2]
Next, it is assumed that the reset switch SWr is turned off. If the amount of received light is changed, the potential on the buffer 23 side of the capacitor C1 is changed from the above-mentioned Vinit. Assuming that the potential after the change is Vaffer, the charge table stored in the capacitor C1 is represented by the following [Equation 2].

Chapter = Cp1 × Vafter ・ ・ ・ [Equation 2]
 一方、コンデンサC2に蓄積される電荷CH2は、コンデンサC2の容量をCp2、減算器25の出力電圧をVoutとすると、次の[式3]により表される。

 CH2=-Cp2×Vout ・・・[式3]
On the other hand, the charge CH2 stored in the capacitor C2 is represented by the following [Equation 3], where the capacitance of the capacitor C2 is Cp2 and the output voltage of the subtractor 25 is Vout.

CH2 = -Cp2 x Vout ... [Equation 3]
 このとき、コンデンサC1及びC2の総電荷量は変化しないため、次の[式4]が成立する。

 CHinit=CHafter+CH2 ・・・[式4]
At this time, since the total charge amounts of the capacitors C1 and C2 do not change, the following [Equation 4] is established.

CHinit = CHafter + CH2 ・ ・ ・ [Equation 4]
 [式4]に[式1]から[式3]を代入して変形すると、次の[式5]が得られる。

 Vout=-(Cp1/Cp2)×(Vafter-Vinit) ・・・[式5]

 [式5]は、電圧信号の減算動作を表し、減算結果の利得はCp1/Cp2となる。
By substituting [Equation 1] to [Equation 3] into [Equation 4] and transforming it, the following [Equation 5] is obtained.

Vout =-(Cp1 / Cp2) x (Vafter-Vinit) ... [Equation 5]

[Equation 5] represents the subtraction operation of the voltage signal, and the gain of the subtraction result is Cp1 / Cp2.
 この[式5]より、減算器25は、過去における受光信号のレベル(Vinit)と現在の受光信号のレベル(Vafter)との差分を表す信号を出力することが分かる。
 ここで、電位Vinitは、上述した基準レベルに相当するものである。上記説明より、この電位Vinit、つまり基準レベルは、リセットスイッチSWrがONされることで、現在の受光信号のレベル、換言すればリセットスイッチSWrのON時点における受光信号のレベルにリセットされることになる。
From this [Equation 5], it can be seen that the subtractor 25 outputs a signal representing the difference between the level of the received light signal in the past (Vinit) and the level of the current received signal (Vafter).
Here, the potential Vinit corresponds to the above-mentioned reference level. From the above explanation, this potential Vinit, that is, the reference level is reset to the current received signal level when the reset switch SWr is turned on, in other words, to the received signal level at the time when the reset switch SWr is turned on. Become.
 量子化器26は、トランジスタQ9、トランジスタQ10、トランジスタQ11、及びトランジスタQ12を備える。
 トランジスタQ9及びトランジスタQ11はP型トランジスタとされる。またトランジスタQ10及びトランジスタQ12はN型トランジスタとされる。
The quantizer 26 includes a transistor Q9, a transistor Q10, a transistor Q11, and a transistor Q12.
The transistor Q9 and the transistor Q11 are P-type transistors. Further, the transistor Q10 and the transistor Q12 are N-type transistors.
 トランジスタQ9とトランジスタQ10は、電源端子と接地端子との間において直列に接続されている。またトランジスタQ11とトランジスタQ12は、電源端子と接地端子との間において直列に接続されている。トランジスタQ9とトランジスタQ11の各ゲートには減算器25の出力電圧Voutが入力される。 Transistor Q9 and transistor Q10 are connected in series between the power supply terminal and the ground terminal. Further, the transistor Q11 and the transistor Q12 are connected in series between the power supply terminal and the ground terminal. The output voltage Vout of the subtractor 25 is input to each gate of the transistor Q9 and the transistor Q11.
 トランジスタQ10のゲートには上限電圧Vhighが印加される。またトランジスタQ12のゲートには下限電圧Vlowが印加される。 The upper limit voltage Vhigh is applied to the gate of the transistor Q10. Further, a lower limit voltage Vlow is applied to the gate of the transistor Q12.
 トランジスタQ9とトランジスタQ10の接続点の出力電圧Voutが上限電圧Vhighより高い場合に、オンイベントの検出結果を表すオンイベント信号Vopが出力される。 When the output voltage Vout at the connection point between the transistor Q9 and the transistor Q10 is higher than the upper limit voltage Vhigh, the on-event signal Vop indicating the on-event detection result is output.
 またトランジスタQ11とトランジスタQ12の接続点の出力電圧Voutが下限電圧Vlowより低い場合に、オフイベントの検出結果を表すオフイベント信号Vomが出力される。
 以上により、図2の画素部11は画素20からイベント信号Evtを検出する。
Further, when the output voltage Vout at the connection point between the transistor Q11 and the transistor Q12 is lower than the lower limit voltage Vlow, an off-event signal Vom indicating an off-event detection result is output.
As described above, the pixel unit 11 in FIG. 2 detects the event signal Evt from the pixel 20.
 画素部11は、イベント信号Evtを検出すると、当該イベント信号Evtの転送を要求するリクエストを行アービタ12、列アービタ13に供給する。 When the pixel unit 11 detects the event signal Evt, the pixel unit 11 supplies a request for transfer of the event signal Evt to the row arbiter 12 and the column arbiter 13.
 行アービタ12は、行方向における画素部11からのリクエストを調停して調停結果に基づく応答を画素部11に供給する。
 また列アービタ13は、列方向における画素部11からのリクエストを調停して調停結果に基づく応答を画素部11に供給する。
The row arbiter 12 mediates the request from the pixel unit 11 in the row direction and supplies the response based on the mediation result to the pixel unit 11.
Further, the column arbiter 13 mediates the request from the pixel unit 11 in the column direction and supplies the response based on the mediation result to the pixel unit 11.
 画素部11は、リクエストに対する応答を行アービタ12、列アービタ13から受け取ると、検出したイベント信号Evtを当該応答に基づいて信号処理部14に供給する。 When the pixel unit 11 receives the response to the request from the row arbiter 12 and the column arbiter 13, the detected event signal Evt is supplied to the signal processing unit 14 based on the response.
 信号処理部14は、イベント数検出部17を有する。
 イベント数検出部17は、検出したイベント信号Evtの数をカウントする。イベント数検出部17には、例えばバイナリカウンタが用いられる。
 信号処理部14は、イベント数検出部17によるイベント信号Evtのカウントデータを画素制御部15に供給する。
The signal processing unit 14 has an event number detection unit 17.
The event number detection unit 17 counts the number of detected event signals Evt. For example, a binary counter is used in the event number detection unit 17.
The signal processing unit 14 supplies the count data of the event signal Evt by the event number detection unit 17 to the pixel control unit 15.
 また信号処理部14は、各画素部11から供給されたイベント信号Evtに対し、画像認識処理などの所定の信号処理を実行する。信号処理部14は、当該信号処理結果を示すデータ(以下、信号処理結果データとも表記する)をデータ処理部4に供給する。
 データ処理部4に供給された信号処理結果データは記録部18に記録される。
Further, the signal processing unit 14 executes predetermined signal processing such as image recognition processing for the event signal Evt supplied from each pixel unit 11. The signal processing unit 14 supplies data indicating the signal processing result (hereinafter, also referred to as signal processing result data) to the data processing unit 4.
The signal processing result data supplied to the data processing unit 4 is recorded in the recording unit 18.
 画素制御部15は、例えば各種のタイミング信号を生成するタイミングジェネレータやシフトレジスタ、アドレスデコーダ等を有して構成され、画素アレイ部10に対して各種信号の出力を行うことで各画素部11を駆動し、イベント信号Evtの生成や読み出しについての制御を行う。 The pixel control unit 15 is configured to include, for example, a timing generator, a shift register, an address decoder, etc. that generate various timing signals, and outputs various signals to the pixel array unit 10 to output each pixel unit 11. It is driven and controls the generation and reading of the event signal Evt.
 また画素制御部15は、感度調整回路16を有している。感度調整回路16は、例えばロジック回路やマイクロコンピュータなどにより構成される。
 感度調整回路16により、イベント信号Evtの検出状況に応じてイベント信号Evtの検出に関するパラメータ(以下、イベント信号検出パラメータと表記する)を設定する。すなわち、イベント信号Evtの検出状況に応じてイベント検出の感度設定が実現される。
Further, the pixel control unit 15 has a sensitivity adjusting circuit 16. The sensitivity adjustment circuit 16 is composed of, for example, a logic circuit or a microcomputer.
The sensitivity adjustment circuit 16 sets parameters related to the detection of the event signal Evt (hereinafter referred to as event signal detection parameters) according to the detection status of the event signal Evt. That is, the sensitivity setting for event detection is realized according to the detection status of the event signal Evt.
 ここでイベント信号Evtの検出状況には、例えばあらかじめ設定された所定時間Tmあたりのイベント信号Evtの検出数の積算量や、画素アレイ部10におけるイベント信号Evtの検出量の分布状況などが考えられる。 Here, as the detection status of the event signal Evt, for example, the integrated amount of the detected number of the event signal Evt per a predetermined time Tm set in advance, the distribution status of the detected amount of the event signal Evt in the pixel array unit 10, and the like can be considered. ..
 イベント信号検出パラメータは、イベント信号Evtの検出数を調整するためのパラメータである。イベント信号検出パラメータとしては、例えばオンイベント信号Vopを検出のするための閾値となる上限電圧Vhighや、オフイベント信号Vomを検出するための閾値となる下限電圧Vlowの制御パラメータが考えられる。このようにイベント信号Evtを検出するための閾値の設定を制御することで、直接的にイベント信号Evtの検出数を調整することができる。 The event signal detection parameter is a parameter for adjusting the number of detected event signals Evt. As the event signal detection parameter, for example, a control parameter of the upper limit voltage Vhigh which is a threshold value for detecting the on-event signal Vop and the lower limit voltage Vlow which is a threshold value for detecting the off-event signal Vom can be considered. By controlling the setting of the threshold value for detecting the event signal Evt in this way, the number of detected event signals Evt can be directly adjusted.
 例えば上限電圧Vhighを上昇させることでオンイベント信号Vopの検出されにくくなる。また下限電圧Vlowを低下させることでオフイベント信号Vomが検出されにくくなる。すなわち、上限電圧Vhighの上昇と下限電圧Vlowの低下の何れか又は両方によりイベント信号Evtの検出感度が低下する。
 以降の説明では、このような状態を「イベント検出の感度設定を下げる」といったように説明する。
For example, by increasing the upper limit voltage Vhigh, it becomes difficult to detect the on-event signal Vop. Further, by lowering the lower limit voltage Vlow, it becomes difficult to detect the off-event signal Vom. That is, the detection sensitivity of the event signal Evt decreases due to either or both of the increase in the upper limit voltage Vhigh and the decrease in the lower limit voltage Vlow.
In the following description, such a state will be described as "lowering the sensitivity setting for event detection".
 また上限電圧Vhighを低下させることでオンイベント信号Vopが検出されやすくなる。また下限電圧Vlowを上昇させることでオフイベント信号Vomが検出されやすくなる。すなわち、上限電圧Vhighの低下と下限電圧Vlowの上昇の何れか又は両方によりイベント信号Evtの検出感度が向上する。
 以降の説明では、このような状態を「イベント検出の感度設定を上げる」といったように説明する。
 なお、上記の感度設定は、電圧を印加するトランジスタ数を変化させることにより調整することも可能である。また輝度変化に対して前記電気信号が変化する感度を設定することもできる。
Further, by lowering the upper limit voltage voltage, the on-event signal Vop can be easily detected. Further, by increasing the lower limit voltage Vlow, the off-event signal Vom can be easily detected. That is, the detection sensitivity of the event signal Evt is improved by either or both of the decrease of the upper limit voltage Vhigh and the increase of the lower limit voltage Vlow.
In the following description, such a state will be described as "increasing the sensitivity setting for event detection".
The above sensitivity setting can also be adjusted by changing the number of transistors to which the voltage is applied. It is also possible to set the sensitivity at which the electric signal changes with respect to the change in luminance.
 また撮像装置1の撮像環境を変化させることで間接的にイベント信号Evtの検出数を調整することも可能である。この場合、イベント信号検出パラメータは、例えば図2に示す照明部6の照度の制御パラメータである。
 例えば照明部6の照度が高くなることで撮像環境が明るくなり、撮像装置1の受光量が増加する。これによりイベント信号Evtの検出感度が上昇する。また照明部6の照度が低下することで撮像環境が暗くなり、撮像装置1の受光量が減少する。これによりイベント信号Evtの検出感度が低下する。
It is also possible to indirectly adjust the number of detected event signals Evt by changing the imaging environment of the imaging device 1. In this case, the event signal detection parameter is, for example, a control parameter of the illuminance of the illumination unit 6 shown in FIG.
For example, as the illuminance of the illumination unit 6 becomes higher, the imaging environment becomes brighter and the amount of light received by the imaging device 1 increases. This increases the detection sensitivity of the event signal Evt. Further, as the illuminance of the illumination unit 6 decreases, the imaging environment becomes darker, and the amount of light received by the imaging device 1 decreases. As a result, the detection sensitivity of the event signal Evt is lowered.
 また画素制御部15には、感度調整回路16が設けられている。画素制御部15は、感度調整回路16により、上限電圧Vhigh及び下限電圧Vlowの設定制御が行われる。 Further, the pixel control unit 15 is provided with a sensitivity adjustment circuit 16. The pixel control unit 15 controls the setting of the upper limit voltage Vhigh and the lower limit voltage Vlow by the sensitivity adjustment circuit 16.
 データ処理部4は、記録部18とデータ生成部19を備える。
 記録部18には、固体撮像素子3の信号処理部14から供給された信号処理結果データが記録される。
The data processing unit 4 includes a recording unit 18 and a data generation unit 19.
The recording unit 18 records the signal processing result data supplied from the signal processing unit 14 of the solid-state image sensor 3.
 データ生成部19は、記録部18に記録された信号処理結果データに例えばコーデック処理などの所定の信号処理を施した処理後データを生成する。当該処理後データは、必要に応じてデータ処理部4から所定の機器に供給される。 The data generation unit 19 generates post-processing data in which the signal processing result data recorded in the recording unit 18 is subjected to predetermined signal processing such as codec processing. The processed data is supplied from the data processing unit 4 to a predetermined device as needed.
 センサ制御部5は、固体撮像素子3の制御を実行する。またセンサ制御部5は、必要に応じて他の機器の制御を行うことができる。例えばセンサ制御部5は、撮像対象Tgを照射するための照明部6を制御することができる。 The sensor control unit 5 controls the solid-state image sensor 3. Further, the sensor control unit 5 can control other devices as needed. For example, the sensor control unit 5 can control the illumination unit 6 for irradiating the image pickup target Tg.
 なお、図2ではイベント数検出部17が信号処理部14に設けられている例について説明したが、イベント数検出部17は、例えば図4に示すようにデータ処理部4に設けられていてもよい。このように、イベント数検出部17は、固体撮像素子3と別体として設けられていてもよい。
 このとき画素制御部15は、図中の破線で示すようにイベント数検出部17で検出した当該イベント信号Evtの検出状況に関する情報をデータ処理部4から取得してもよい。そして画素制御部15は、イベント数検出部17から取得した当該イベント信号Evtの検出状況に関する情報に基づいてイベント信号検出パラメータを生成することができる。
Although the example in which the event number detection unit 17 is provided in the signal processing unit 14 has been described in FIG. 2, the event number detection unit 17 may be provided in the data processing unit 4 as shown in FIG. 4, for example. good. As described above, the event number detection unit 17 may be provided separately from the solid-state image pickup device 3.
At this time, the pixel control unit 15 may acquire information regarding the detection status of the event signal Evt detected by the event number detection unit 17 from the data processing unit 4, as shown by the broken line in the figure. Then, the pixel control unit 15 can generate an event signal detection parameter based on the information regarding the detection status of the event signal Evt acquired from the event number detection unit 17.
またイベント数検出部17は、例えば画素制御部15など、固体撮像素子3における信号処理部14以外の構成に設けられていてもよい。 Further, the event number detection unit 17 may be provided in a configuration other than the signal processing unit 14 in the solid-state image pickup device 3, such as a pixel control unit 15.
 また、ここでは画素制御部15が複数の画素20におけるイベント信号Evtの検出状況に応じてイベント信号検出パラメータを設定する処理を実行することとしたが、当該処理はセンサ制御部5が実行することとしてもよい。
 例えばセンサ制御部5は、図中の一点鎖線で示すようにイベント数検出部17から取得した当該イベント信号Evtの検出状況に関する情報に基づいてイベント信号検出パラメータを生成し、当該パラメータに基づいて画素制御部15を制御することも可能である。
Further, here, it is decided that the pixel control unit 15 executes a process of setting the event signal detection parameter according to the detection status of the event signal Evt in the plurality of pixels 20, but the sensor control unit 5 executes the process. May be.
For example, the sensor control unit 5 generates an event signal detection parameter based on the information regarding the detection status of the event signal Evt acquired from the event number detection unit 17 as shown by the alternate long and short dash line in the figure, and the pixel is based on the parameter. It is also possible to control the control unit 15.
 以降の説明においては、イベント信号Evtの検出状況に応じてイベント信号検出パラメータを設定する処理を実行する主体を総称して制御部CTと表記する。
 制御部CTには、当該処理を実行するセンサ制御部5や画素制御部15などの制御主体が含まれるものとする。
In the following description, the main body that executes the process of setting the event signal detection parameter according to the detection status of the event signal Evt is collectively referred to as the control unit CT.
It is assumed that the control unit CT includes a control main body such as a sensor control unit 5 and a pixel control unit 15 that execute the process.
<3.第1の実施の形態>
 図5を参照して第1の実施の形態における制御部CTの処理例について説明する。
 第1の実施の形態は、所定時間Tmに検出されたイベント信号Evtの積算値Etotalに基づいてイベント検出の感度設定を行う例である。
<3. First Embodiment>
An example of processing of the control unit CT in the first embodiment will be described with reference to FIG.
The first embodiment is an example in which the sensitivity of event detection is set based on the integrated value Etotal of the event signal Evt detected at a predetermined time Tm.
 制御部CTは、ステップS101において初期パラメータを設定する。
 制御部CTは、初期パラメータとして、例えばイベント信号Evtの検出数をカウントする時間Tmを設定する。時間Tmはあらかじめ設定される任意の値である。
The control unit CT sets the initial parameters in step S101.
As an initial parameter, the control unit CT sets, for example, a time Tm for counting the number of detected event signals Evt. The time Tm is an arbitrary value set in advance.
 また制御部CTは、イベント信号Evtの積算値Etotalと比較するための上限閾値Emaxを初期パラメータとして設定する。上限閾値Emaxは、当該閾値を超えるイベント信号Evtを検出すると、高速応答などの場合にイベント信号Evtの欠落などにより信号処理が困難となるような値として設定される。 Further, the control unit CT sets an upper limit threshold value Emax as an initial parameter for comparison with the integrated value Etotal of the event signal Evt. The upper limit threshold value Emax is set as a value that makes signal processing difficult due to the lack of the event signal Evt or the like in the case of a high-speed response or the like when an event signal Evt exceeding the threshold value is detected.
 さらに制御部CTは、イベント信号Evtの積算値Etotalと比較するための下限閾値Eminを初期パラメータとして設定する。下限閾値Eminは、イベント信号Evtの検出数が当該閾値よりも小さくなると、イベント信号Evtが少なすぎることにより信号処理が困難となるような値として設定される。 Further, the control unit CT sets a lower limit threshold value Emin as an initial parameter for comparison with the integrated value Etotal of the event signal Evt. The lower limit threshold value Emin is set as a value such that when the number of detected event signals Evt becomes smaller than the threshold value, signal processing becomes difficult because the event signal Evt is too small.
 続いて制御部CTは、ステップS102において、信号処理部14からイベント信号Evtの検出情報などのデータ取得を行う。ここで制御部CTは、イベント数検出部17で検出されたイベント信号Evtのカウントデータ(イベント数)を取得する。 Subsequently, in step S102, the control unit CT acquires data such as detection information of the event signal Evt from the signal processing unit 14. Here, the control unit CT acquires the count data (number of events) of the event signal Evt detected by the event number detection unit 17.
 そして制御部CTは、ステップS103において、所定時間Tmあたりに取得したイベント数の積算値Etotalを算出する。
 なお、ここで制御部CTは、所定時間Tmに信号処理部14から取得したイベント信号Evtの検出数を積算することで積算値Etotalを算出してもよいし、イベント数検出部17がカウントした所定時間Tmにおけるイベント信号Evtの検出数情報を取得することで、積算値Etotalを算出してもよい。
Then, the control unit CT calculates the integrated value Etotal of the number of events acquired per predetermined time Tm in step S103.
Here, the control unit CT may calculate the integrated value Etotal by integrating the detected number of the event signal Evt acquired from the signal processing unit 14 at a predetermined time Tm, or the event number detecting unit 17 counts. The integrated value Etotal may be calculated by acquiring the detection number information of the event signal Evt at the predetermined time Tm.
 制御部CTは、ステップS104において、イベント数の積算値Etotalと上限閾値Emaxとを比較する。 In step S104, the control unit CT compares the integrated value Etotal of the number of events with the upper limit threshold value Emax.
 積算値Etotalが上限閾値Emaxを超えている場合、制御部CTは、ステップS105に処理を進め、イベント検出の感度設定を下げるための処理を実行する。具体的に制御部CTは、図3に示す量子化器26におけるトランジスタQ10のゲートに印加する上限電圧Vhighが現在の値よりも高くなるように制御する。また制御部CTは、トランジスタQ12のゲートに印加する下限電圧Vlowが現在の値よりも低くなるように制御する。 When the integrated value Etotal exceeds the upper limit threshold value Emax, the control unit CT proceeds to step S105 and executes a process for lowering the sensitivity setting for event detection. Specifically, the control unit CT controls so that the upper limit voltage Vhigh applied to the gate of the transistor Q10 in the quantizer 26 shown in FIG. 3 is higher than the current value. Further, the control unit CT controls so that the lower limit voltage Vlow applied to the gate of the transistor Q12 is lower than the current value.
 これにより、上限電圧Vhigh及び下限電圧Vlowの絶対値が現在の値よりも高く設定されるため、画素アレイ部10におけるイベント信号Evtの検出が抑制される。なお、上限電圧Vhigh又は下限電圧Vlowの何れか一方を制御することによってもイベント信号Evtの検出数を抑制することができる。
 その後、制御部CTはステップS105からステップS102に処理を進め、以降同様の処理を実行する。
As a result, the absolute values of the upper limit voltage Vhigh and the lower limit voltage Vlow are set higher than the current values, so that the detection of the event signal Evt in the pixel array unit 10 is suppressed. It should be noted that the number of detected event signals Evt can also be suppressed by controlling either the upper limit voltage Vhigh or the lower limit voltage Vlow.
After that, the control unit CT proceeds from step S105 to step S102, and then executes the same processing.
 一方、ステップS104で積算値Etotalが上限閾値Emaxを超えていない場合、制御部CTはステップS106に処理を進める。制御部CTは、ステップS106において、イベント数の積算値Etotalと下限閾値Eminとを比較する。 On the other hand, if the integrated value Etotal does not exceed the upper limit threshold value Emax in step S104, the control unit CT proceeds to the process in step S106. In step S106, the control unit CT compares the integrated value Etotal of the number of events with the lower limit threshold value Emin.
 積算値Etotalが下限閾値Eminを超えている場合、制御部CTは、ステップS107に処理を進める。ステップS107において制御部CTは、イベント検出の感度設定を変えることなく(上限電圧Vhigh及び下限電圧Vlowの絶対値を現在の値から変更することなく)ステップS102に処理を進め、以降同様の処理を実行する。 When the integrated value Etotal exceeds the lower limit threshold value Emin, the control unit CT proceeds to the process in step S107. In step S107, the control unit CT proceeds to step S102 without changing the sensitivity setting for event detection (without changing the absolute values of the upper limit voltage Vhigh and the lower limit voltage Vlow from the current values), and then performs the same processing thereafter. Run.
 一方、ステップS106で積算値Etotalが下限閾値Eminを超えない場合、制御部CTは、ステップS108に処理を進め、イベント検出の感度設定を上げるための処理を実行する。具体的に制御部CTは、図3に示す量子化器26におけるトランジスタQ10のゲートに印加する上限電圧Vhighが現在の値よりも低くなるように制御する。また制御部CTは、トランジスタQ12のゲートに印加する下限電圧Vlowが現在の値よりも高くなるように制御する。 On the other hand, if the integrated value Etotal does not exceed the lower limit threshold value Emin in step S106, the control unit CT proceeds to step S108 and executes a process for increasing the sensitivity setting for event detection. Specifically, the control unit CT controls so that the upper limit voltage Vhigh applied to the gate of the transistor Q10 in the quantizer 26 shown in FIG. 3 is lower than the current value. Further, the control unit CT controls so that the lower limit voltage Vlow applied to the gate of the transistor Q12 is higher than the current value.
 これにより、上限電圧Vhigh及び下限電圧Vlowの絶対値が現在の値よりも低く設定され、以降のイベント信号Evtの検出が緩和される。なお、上記の上限電圧Vhigh及び下限電圧Vlowの何れか一方を制御することによってもイベント信号Evtの検出を緩和することができる。その後、制御部CTはステップS108からステップS102に処理を進め、以降同様の処理を実行する。
 以上の処理を制御部CTが実行することで第1の実施の形態が実現される。
As a result, the absolute values of the upper limit voltage Vhigh and the lower limit voltage Vlow are set lower than the current values, and the subsequent detection of the event signal Evt is relaxed. It should be noted that the detection of the event signal Evt can be relaxed by controlling either the upper limit voltage Vhigh or the lower limit voltage Vlow. After that, the control unit CT proceeds from step S108 to step S102, and then executes the same processing.
The first embodiment is realized by executing the above processing by the control unit CT.
<4.第2の実施の形態>
 図6から図10を参照して第2の実施の形態における制御部CTの処理例について説明する。当該制御部CTによる処理は、例えば図6に示すようなベルトコンベアBCを矢印方向に流れるじゃがいもなどの野菜を撮像対象Tgとして撮像装置1による撮像を行う際に実行される。
<4. Second Embodiment>
An example of processing of the control unit CT in the second embodiment will be described with reference to FIGS. 6 to 10. The process by the control unit CT is executed when, for example, a vegetable such as a potato flowing in the direction of the arrow on the belt conveyor BC as shown in FIG. 6 is used as an image pickup target Tg and the image pickup device 1 performs an image pickup.
 図7に示すように制御部CTは、ステップS201において初期パラメータを設定する。
 制御部CTは、例えばイベント信号Evtの検出数をカウントする時間Tmを初期パラメータとして設定する。また制御部CTは、イベント信号Evtの積算値Etotalと比較するための上限閾値Emax及び下限閾値Eminを初期パラメータとして設定する。
As shown in FIG. 7, the control unit CT sets the initial parameters in step S201.
The control unit CT sets, for example, the time Tm for counting the number of detected event signals Evt as an initial parameter. Further, the control unit CT sets the upper limit threshold value Emax and the lower limit threshold value Emin for comparison with the integrated value Etotal of the event signal Evt as initial parameters.
 また制御部CTは、特定値σEとの比較に用いられる設定閾値αを初期パラメータとして設定する。特定値σEとは、画素アレイ部10の空間方向におけるイベント信号Evtの分布状況を示す値である。特定値σEの算出手法については後述する。 Further, the control unit CT sets the setting threshold value α used for comparison with the specific value σE as an initial parameter. The specific value σE is a value indicating the distribution state of the event signal Evt in the spatial direction of the pixel array unit 10. The method for calculating the specific value σE will be described later.
 さらに制御部CTは、画素アレイ部10における行方向のイベント信号Evtの分布状況を示す特定値σEiと比較するための設定閾値βを初期パラメータとして設定する。また制御部CTは、画素アレイ部10における列方向のイベント信号Evtの分布状況を示す特定値σEjと比較するための設定閾値γを初期パラメータとして設定する。特定値σEi及び特定値σEjの算出手法については後述する。 Further, the control unit CT sets a setting threshold value β for comparison with the specific value σEi indicating the distribution status of the event signal Evt in the row direction in the pixel array unit 10 as an initial parameter. Further, the control unit CT sets as an initial parameter a setting threshold value γ for comparison with a specific value σEj indicating the distribution status of the event signal Evt in the column direction in the pixel array unit 10. The calculation method of the specific value σEi and the specific value σEj will be described later.
 続いて制御部CTは、ステップS202において、信号処理部14からイベント信号Evtの検出情報などのデータ取得を行う。そして制御部CTは、ステップS203において、所定時間Tmあたりに取得したイベント数の積算値Etotalを算出する。 Subsequently, in step S202, the control unit CT acquires data such as detection information of the event signal Evt from the signal processing unit 14. Then, the control unit CT calculates the integrated value Etotal of the number of events acquired per predetermined time Tm in step S203.
 制御部CTは、ステップS204において、イベント数の積算値Etotalと上限閾値Emaxとを比較する。積算値Etotalが上限閾値Emaxを超えている場合、制御部CTは、ステップS205に処理を進め、上述と同様にイベント検出の感度設定を下げるための処理を実行する。その後、制御部CTはステップS202に処理を進め以降同様の処理を行う。 In step S204, the control unit CT compares the integrated value Etotal of the number of events with the upper limit threshold value Emax. When the integrated value Etotal exceeds the upper limit threshold value Emax, the control unit CT proceeds to step S205 and executes a process for lowering the sensitivity setting for event detection in the same manner as described above. After that, the control unit CT proceeds to step S202 and then performs the same processing.
 ステップS204で積算値Etotalが上限閾値Emaxを超えていない場合、制御部CTは、ステップS206に処理を進める。
 制御部CTは、ステップS206において、画素アレイ部10の空間方向におけるイベント信号Evtの分布状況を示す特定値σEを算出する。
If the integrated value Etotal does not exceed the upper limit threshold value Emax in step S204, the control unit CT proceeds to the process in step S206.
In step S206, the control unit CT calculates a specific value σE indicating the distribution status of the event signal Evt in the spatial direction of the pixel array unit 10.
 ここで画素アレイ部10における列方向の画素部11の数をN個、行方向の画素部11の数をM個とする。また画素部11は、例えば行方向に16個、列方向に12個の複数の画素20を有するサブブロックとして構成される。このとき図2を基準としたときに画素アレイ部10の左端から行方向にi番目、かつ上端から列方向にj番目の画素部11におけるイベント数の積算値を積算値Eijとして表記する。
 この場合、特定値σEは下記[式6]により算出される。なお、以降の説明では、便宜上、別途説明のない限り画素アレイ部10における列方向の画素部11の数をN個、行方向の画素部11の数をM個として説明する。
Here, the number of pixel units 11 in the column direction in the pixel array unit 10 is N, and the number of pixel units 11 in the row direction is M. Further, the pixel unit 11 is configured as a subblock having a plurality of pixels 20 having 16 pixels in the row direction and 12 pixels in the column direction, for example. At this time, the integrated value of the number of events in the pixel unit 11 which is the i-th in the row direction from the left end of the pixel array unit 10 and the j-th in the column direction from the upper end of the pixel array unit 10 with reference to FIG. 2 is expressed as the integrated value Eij.
In this case, the specific value σE is calculated by the following [Equation 6]. In the following description, for convenience, unless otherwise specified, the number of pixel units 11 in the column direction in the pixel array unit 10 will be described as N, and the number of pixel units 11 in the row direction will be described as M.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001


 制御部CTは、ステップS207において、特定値σEと設定閾値αを比較する。
 特定値σEが設定閾値αよりも大きい場合は、例えば図8に示すように画素アレイ部10における画素部11ごとのイベント検出のばらつきが十分に確保されている状態である。
 そのため、ベルトコンベアBC上を移動する撮像対象Tgが正常に検出され、イベント信号Evtに基づいて撮像対象Tgを認識することができる。なお、ここではイベント信号Evtが検出されている領域を梨地により示している。これは以降の説明における図9及び図10についても同様である。
In step S207, the control unit CT compares the specific value σE with the set threshold value α.
When the specific value σE is larger than the set threshold value α, for example, as shown in FIG. 8, it is a state in which the variation in event detection for each pixel unit 11 in the pixel array unit 10 is sufficiently secured.
Therefore, the image pickup target Tg moving on the belt conveyor BC can be normally detected, and the image pickup target Tg can be recognized based on the event signal Evt. Here, the area where the event signal Evt is detected is indicated by a satin finish. This also applies to FIGS. 9 and 10 in the following description.
 また特定値σEが設定閾値αよりも小さい場合は、例えば図9に示すように画素アレイ部10におけるほとんどの画素部11においてイベント信号Evtが検出され、画素アレイ部10における画素部11ごとのイベント検出のばらつきが十分に確保されていない状態である。これは例えばベルトコンベアBCの汚れ等がイベント信号Evtとして検出されてしまった状態である。
 このような場合、制御部CTは、ステップS207からステップS205に処理を進め、イベント検出の感度設定を下げるための処理を実行する。
When the specific value σE is smaller than the set threshold value α, for example, as shown in FIG. 9, the event signal Evt is detected in most of the pixel units 11 in the pixel array unit 10, and the event for each pixel unit 11 in the pixel array unit 10 is detected. The detection variation is not sufficiently secured. This is a state in which, for example, dirt on the belt conveyor BC has been detected as an event signal Evt.
In such a case, the control unit CT proceeds from step S207 to step S205, and executes a process for lowering the sensitivity setting for event detection.
 一方、ステップS207で特定値σEが設定閾値αよりも大きい場合、制御部CTは、ステップS208に処理を進め、画素アレイ部10における行方向のイベント信号Evtの分布状況を示す特定値σEiを算出する。またこのとき制御部CTは、画素アレイ部10における列方向のイベント信号Evtの分布状況を示す特定値σEjを算出する。 On the other hand, when the specific value σE is larger than the set threshold value α in step S207, the control unit CT proceeds to step S208 and calculates the specific value σEi indicating the distribution status of the event signal Evt in the row direction in the pixel array unit 10. do. At this time, the control unit CT calculates a specific value σEj indicating the distribution status of the event signal Evt in the column direction in the pixel array unit 10.
 制御部CTは、特定値σEiの算出にあたり、まず画素アレイ部10における画素部11ごとのイベント数の積算値Eijを用いて、下記[式7]により画素アレイ部10の各列のイベント数の平均値Eiを算出する。 In calculating the specific value σEi, the control unit CT first uses the integrated value Eij of the number of events for each pixel unit 11 in the pixel array unit 10 and uses the following [Equation 7] to determine the number of events in each column of the pixel array unit 10. Calculate the average value Ei.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002


 そして制御部CTは、上記[式7]で算出した平均値Eiを用いて、下記[式8]により画素アレイ部10における行方向のイベント信号Evtの分布状況(ばらつき)を示す特定値σEiを算出する。 Then, the control unit CT uses the average value Ei calculated in the above [Equation 7] to obtain a specific value σEi indicating the distribution status (variation) of the event signal Evt in the row direction in the pixel array unit 10 by the following [Equation 8]. calculate.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003


 また制御部CTは、特定値σEjの算出にあたり、まず画素アレイ部10における画素部11ごとのイベント数の積算値Eijを用いて、下記[式9]により画素アレイ部10の各行のイベント数の平均値Ejを算出する。 Further, in calculating the specific value σEj, the control unit CT first uses the integrated value Eij of the number of events for each pixel unit 11 in the pixel array unit 10 and uses the following [Equation 9] to determine the number of events in each row of the pixel array unit 10. Calculate the average value Ej.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004


 そして制御部CTは、上記[式9]で算出した平均値Ejを用いて、下記[式10]により画素アレイ部10における列方向のイベント信号Evtの分布状況(ばらつき)を示す特定値σEjを算出する。 Then, the control unit CT uses the average value Ej calculated in the above [Equation 9] to obtain a specific value σEj indicating the distribution status (variation) of the event signal Evt in the column direction in the pixel array unit 10 by the following [Equation 10]. calculate.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005


 ステップS208で特定値σEi及び特定値σEjを算出した後、制御部CTはステップS209に処理を進める。
 制御部CTは、ステップS209において、特定値σEiと設定閾値βとの比較を行う。また制御部CTは特定値σEjと設定閾値γとの比較を行う。
After calculating the specific value σEi and the specific value σEj in step S208, the control unit CT proceeds to the process in step S209.
In step S209, the control unit CT compares the specific value σEi with the set threshold value β. Further, the control unit CT compares the specific value σEj with the set threshold value γ.
 ここで特定値σEiが設定閾値βを超えず、かつ、特定値σEjが設定閾値γを超える場合は、図10に示すように画素アレイ部10において、行方向に過度にイベント検出がされてしまい、図8に示すような撮像対象Tgの領域が検出できない状態が想定される。
 このような場合、制御部CTは、ステップS209からステップS205に処理を進め、イベント検出の感度設定を下げるための処理を実行する。そして制御部CTはステップS205からステップS202に処理を進め、以降同様の処理を実行する。
Here, if the specific value σEi does not exceed the set threshold value β and the specific value σEj exceeds the set threshold value γ, the pixel array unit 10 excessively detects an event in the row direction as shown in FIG. It is assumed that the region of the image pickup target Tg as shown in FIG. 8 cannot be detected.
In such a case, the control unit CT proceeds from step S209 to step S205, and executes a process for lowering the sensitivity setting for event detection. Then, the control unit CT proceeds from step S205 to step S202, and then executes the same processing.
 一方、特定値σEiが設定閾値βを超えず、かつ、特定値σEjが設定閾値γを超えるものではない場合、制御部CTは、ステップS209からステップS210に処理を進める。 On the other hand, if the specific value σEi does not exceed the set threshold value β and the specific value σEj does not exceed the set threshold value γ, the control unit CT proceeds from step S209 to step S210.
 なお、制御部CTはステップS209において、特定値σEjが所定の設定閾値を超えず、かつ、特定値σEiが所定の設定閾値を超える場合において、イベント検出の感度設定を下げるための処理を実行することとしてもよい。これにより、列方向に過度にイベント検出がされてしまっている場合についてもイベント検出の感度設定を下げるための処理を実行することができる。 In step S209, the control unit CT executes a process for lowering the sensitivity setting for event detection when the specific value σEj does not exceed the predetermined setting threshold value and the specific value σEi exceeds the predetermined setting threshold value. It may be that. As a result, it is possible to execute a process for lowering the sensitivity setting of event detection even when the event is detected excessively in the column direction.
 続いて制御部CTは、ステップS210において、イベント数の積算値Etotalと下限閾値Eminとを比較する。
 積算値Etotalが下限閾値Eminを超える場合、制御部CTは、ステップS211においてイベント検出の感度設定を変えることなくステップS202に処理を進め、以降同様の処理を実行する。
Subsequently, in step S210, the control unit CT compares the integrated value Etotal of the number of events with the lower limit threshold value Emin.
When the integrated value Etotal exceeds the lower limit threshold value Emin, the control unit CT proceeds to step S202 without changing the sensitivity setting for event detection in step S211 and then executes the same processing.
 またステップS210で積算値Etotalが下限閾値Eminを超えない場合、制御部CTは、ステップS212に処理を進め、イベント検出の感度設定を上げるための処理を実行する。その後、制御部CTはステップS212からステップS202に処理を進め、以降同様の処理を実行する。
 以上の処理を制御部CTが実行することで第2の実施の形態が実現される。
If the integrated value Etotal does not exceed the lower limit threshold value Emin in step S210, the control unit CT proceeds to step S212 and executes a process for increasing the sensitivity setting for event detection. After that, the control unit CT proceeds from step S212 to step S202, and thereafter executes the same process.
The second embodiment is realized by the control unit CT executing the above processing.
 なお、撮像装置1が車載カメラやVRカメラとして用いられる場合、制御部CTは、ステップS206及びステップS207での特定値σEと設定閾値αとの比較結果に応じてイベント検出の感度設定を下げる処理を省略することとしてもよい。
 これは、車載カメラを搭載した車両が右左折をする際や、VRカメラを装着した人が左右を向くといった動作をする際には、画素アレイ部10の全体からイベント信号Evtが検出される。このような状況の際にイベント検出の感度設定を下げる処理が実行されることを回避するためである。
When the image pickup device 1 is used as an in-vehicle camera or a VR camera, the control unit CT lowers the sensitivity setting for event detection according to the comparison result between the specific value σE and the setting threshold value α in steps S206 and S207. May be omitted.
This is because the event signal Evt is detected from the entire pixel array unit 10 when the vehicle equipped with the in-vehicle camera makes a right / left turn or when the person wearing the VR camera turns to the left or right. This is to prevent the process of lowering the sensitivity setting of event detection from being executed in such a situation.
<5.第3の実施の形態>
 図11及び図12を参照して第3の実施の形態における制御部CTの処理例について説明する。当該制御部CTによる処理は、例えば図11に示すような振動を伴う駆動装置Drにおける模様を撮像対象Tgとして撮像する際に実行される。本実施の形態は、照明部6により撮像対象Tgが照射されている状態である。
 なお、このような振動を伴う撮像対象Tgを撮像する例においては、画素アレイ部10の全体からイベント信号Evtが検出されることが想定される。そのため、ここでは第2の実施の形態の図7におけるステップS206及びステップS207での特定値σEと設定閾値αとの比較結果に応じてイベント検出の感度設定を下げる処理は実行しないことが考えられる。
<5. Third Embodiment>
An example of processing of the control unit CT in the third embodiment will be described with reference to FIGS. 11 and 12. The process by the control unit CT is executed, for example, when a pattern in the driving device Dr with vibration as shown in FIG. 11 is imaged as an image pickup target Tg. In this embodiment, the Tg to be imaged is irradiated by the illumination unit 6.
In the example of imaging the image pickup target Tg accompanied by such vibration, it is assumed that the event signal Evt is detected from the entire pixel array unit 10. Therefore, here, it is conceivable that the process of lowering the sensitivity setting of event detection according to the comparison result between the specific value σE and the setting threshold value α in steps S206 and S207 in FIG. 7 of the second embodiment is not executed. ..
 図12に示すように制御部CTは、ステップS301において初期パラメータを設定する。ここでの初期パラメータは、例えばイベント信号Evtの検出数をカウントする時間Tm、イベント信号Evtの積算値Etotalと比較するための上限閾値Emax及び下限閾値Emin、特定値σEiと比較するための設定閾値β、特定値σEjと比較するための設定閾値γなどである。 As shown in FIG. 12, the control unit CT sets the initial parameters in step S301. The initial parameters here are, for example, the time Tm for counting the number of detected event signals Evt, the upper limit threshold value Emax and the lower limit threshold value Emin for comparison with the integrated value Etotal of the event signal Evt, and the setting threshold value for comparison with the specific value σEi. β, a setting threshold value γ for comparison with a specific value σEj, and the like.
 続いて制御部CTは、ステップS302において、信号処理部14からイベント信号Evtの検出情報などのデータ取得を行う。そして制御部CTは、ステップS303において、所定時間Tmあたりに取得したイベント数の積算値Etotalを算出する。 Subsequently, in step S302, the control unit CT acquires data such as detection information of the event signal Evt from the signal processing unit 14. Then, the control unit CT calculates the integrated value Etotal of the number of events acquired per predetermined time Tm in step S303.
 制御部CTは、ステップS304において、イベント数の積算値Etotalと上限閾値Emaxとを比較する。積算値Etotalが上限閾値Emaxを超えている場合、制御部CTは、ステップS305に処理を進め、上述と同様にイベント検出の感度設定を下げるための処理を実行する。 In step S304, the control unit CT compares the integrated value Etotal of the number of events with the upper limit threshold value Emax. When the integrated value Etotal exceeds the upper limit threshold value Emax, the control unit CT proceeds to step S305 and executes a process for lowering the sensitivity setting for event detection in the same manner as described above.
 またこのとき制御部CTは、照明部6による照度が現在よりも低くなるような照明部6に対する動作制御(以下、「照明部6の照度を下げるための処理」とも表記する)を実行する。撮像対象Tgに対する照明部6からの照明が弱まることで、画素アレイ部10の各画素部11の受光量が低下しイベントが検出されづらくなる。従って、時間Tmにおける過度なイベント信号Evtの検出を抑制することができるようになる。 At this time, the control unit CT also executes operation control for the lighting unit 6 (hereinafter, also referred to as "processing for reducing the illuminance of the lighting unit 6") so that the illuminance of the lighting unit 6 becomes lower than the current one. When the illumination from the illumination unit 6 with respect to the image pickup target Tg is weakened, the amount of light received by each pixel unit 11 of the pixel array unit 10 decreases, making it difficult to detect an event. Therefore, it becomes possible to suppress the detection of the excessive event signal Evt at the time Tm.
 なお、制御部CTは、ステップS305において、イベント検出の感度設定を下げるための処理、及び照明部6の照度を下げるための処理の何れか一方のみ行うこととしてもよい。 Note that the control unit CT may perform only one of the processing for lowering the sensitivity setting for event detection and the processing for lowering the illuminance of the lighting unit 6 in step S305.
 その後、制御部CTは、ステップS305からステップS302に処理を進め、以降同様の処理を行う。 After that, the control unit CT proceeds from step S305 to step S302, and then performs the same processing.
 ステップS304で積算値Etotalが上限閾値Emaxを超えていない場合、制御部CTは、ステップS306に処理を進める。 If the integrated value Etotal does not exceed the upper limit threshold value Emax in step S304, the control unit CT proceeds to process in step S306.
 制御部CTは、ステップS306において、画素アレイ部10における行方向のイベント信号Evtの分布状況を示す特定値σEiを算出する。また制御部CTは、画素アレイ部10における列方向のイベント信号Evtの分布状況を示す特定値σEjを算出する。
 そして制御部CTは、ステップS307において、特定値σEiと設定閾値βとの比較を行う。また制御部CTは特定値σEjと設定閾値γとの比較を行う。
In step S306, the control unit CT calculates a specific value σEi indicating the distribution status of the event signal Evt in the row direction in the pixel array unit 10. Further, the control unit CT calculates a specific value σEj indicating the distribution status of the event signal Evt in the column direction in the pixel array unit 10.
Then, in step S307, the control unit CT compares the specific value σEi with the set threshold value β. Further, the control unit CT compares the specific value σEj with the set threshold value γ.
 ここで特定値σEiが設定閾値βを超えず、かつ、特定値σEjが設定閾値γを超える場合は、制御部CTは、ステップS307からステップS305に処理を進め、イベント検出の感度設定を下げるための処理を実行する。またこのとき制御部CTは、照明部6の照度を下げるための処理を実行する。
 その後、制御部CTはステップS305からステップS302に処理を進め、以降同様の処理を実行する。
Here, when the specific value σEi does not exceed the set threshold value β and the specific value σEj exceeds the set threshold value γ, the control unit CT proceeds from step S307 to step S305 to lower the sensitivity setting for event detection. Executes the processing of. At this time, the control unit CT executes a process for reducing the illuminance of the illumination unit 6.
After that, the control unit CT proceeds from step S305 to step S302, and thereafter executes the same process.
 一方、特定値σEiが設定閾値βを超えず、かつ、特定値σEjが設定閾値γを超えるものではない場合、制御部CTは、ステップS307からステップS308に処理を進める。 On the other hand, if the specific value σEi does not exceed the set threshold value β and the specific value σEj does not exceed the set threshold value γ, the control unit CT proceeds from step S307 to step S308.
 制御部CTは、ステップS308において、イベント数の積算値Etotalと下限閾値Eminとを比較する。
 積算値Etotalが下限閾値Eminを超える場合、制御部CTは、ステップS309においてイベント検出の感度設定を変えることなくステップS302に処理を進め、以降同様の処理を実行する。なおこのとき制御部CTは、照明部6の照明度合いについても変更を行わない。
In step S308, the control unit CT compares the integrated value Etotal of the number of events with the lower limit threshold value Emin.
When the integrated value Etotal exceeds the lower limit threshold value Emin, the control unit CT proceeds to step S302 without changing the sensitivity setting for event detection in step S309, and then executes the same process. At this time, the control unit CT does not change the illumination degree of the illumination unit 6.
 またステップS308で積算値Etotalが下限閾値Eminを超えない場合、制御部CTは、ステップS310に処理を進め、イベント検出の感度設定を上げるための処理を実行する。 If the integrated value Etotal does not exceed the lower limit threshold value Emin in step S308, the control unit CT proceeds to step S310 and executes a process for increasing the sensitivity setting for event detection.
 またこのとき制御部CTは、照明部6による照度が現在よりも高くなるような照明部6に対する動作制御(以下、「照明部6の照度を上げるための処理」とも表記する)を実行する。撮像対象Tgに対する照明部6からの照明が強まることで、画素アレイ部10の各画素部11の受光量が増加しイベントが検出されやすくなる。従って、時間Tmにおけるイベント信号Evtの検出が少なすぎることで信号処理が困難になるような場合に、イベント信号Evtの検出数を増加させることができる。 At this time, the control unit CT also executes operation control (hereinafter, also referred to as "process for increasing the illuminance of the lighting unit 6") for the lighting unit 6 so that the illuminance of the lighting unit 6 is higher than the current one. By increasing the illumination from the illumination unit 6 to the image pickup target Tg, the amount of light received by each pixel unit 11 of the pixel array unit 10 increases, and an event is easily detected. Therefore, when the signal processing becomes difficult due to the detection of the event signal Evt at the time Tm being too small, the number of detected event signals Evt can be increased.
 なお、制御部CTは、ステップS310において、イベント検出の感度設定を上げるための処理、及び照明部6の照度を上げるための処理の何れか一方のみ行うこととしてもよい。 Note that the control unit CT may perform only one of the processing for increasing the sensitivity setting for event detection and the processing for increasing the illuminance of the illumination unit 6 in step S310.
その後、制御部CTは、ステップS310からステップS302に処理を進め、以降同様の処理を行う。
 以上の処理を制御部CTが実行することで第3の実施の形態が実現される。
After that, the control unit CT proceeds from step S310 to step S302, and then performs the same processing.
The third embodiment is realized by executing the above processing by the control unit CT.
<6.第4の実施の形態>
 図13から図16を参照して第4の実施の形態における制御部CTの処理例について説明する。本実施の形態は、画素アレイ部10の一部の領域についてのみイベント信号Evtの検出処理を行う例である。
 当該制御部CTによる処理は、例えば図13に示すような射出装置Dvから矢印の方向に射出された液体を撮像対象Tgとして撮像する際に実行される。
<6. Fourth Embodiment>
An example of processing of the control unit CT in the fourth embodiment will be described with reference to FIGS. 13 to 16. This embodiment is an example in which the event signal Evt detection processing is performed only for a part of the area of the pixel array unit 10.
The process by the control unit CT is executed, for example, when the liquid ejected from the injection device Dv as shown in FIG. 13 in the direction of the arrow is imaged as the image pickup target Tg.
 図14に示すように制御部CTは、ステップS401において初期パラメータを設定する。
 このとき制御部CTは、以降の処理においてイベント信号Evtの検出を行うイベント検出領域AR1を設定する。イベント検出領域AR1は、例えば撮像対象Tgに応じてあらかじめ設定された画素アレイ部10における任意の領域である。
As shown in FIG. 14, the control unit CT sets the initial parameters in step S401.
At this time, the control unit CT sets the event detection area AR1 for detecting the event signal Evt in the subsequent processing. The event detection region AR1 is, for example, an arbitrary region in the pixel array unit 10 preset according to the image pickup target Tg.
 本実施の形態の例では、図15に示すように撮像対象Tgである液体が射出される領域はあらかじめ特定することが可能であるため、図15で示すように当該液体が射出される領域をイベント検出領域AR1として設定する。またこれにより、イベント信号Evtの検出が行われないイベント非検出領域AR2も特定される。図15では、イベント非検出領域AR2を斜線で示しており、その他の領域をイベント検出領域AR1として示している。 In the example of the present embodiment, as shown in FIG. 15, the region where the liquid which is the image pickup target Tg is ejected can be specified in advance. Therefore, as shown in FIG. 15, the region where the liquid is ejected is defined as the region. Set as the event detection area AR1. This also identifies the event non-detection region AR2 in which the event signal Evt is not detected. In FIG. 15, the event non-detection region AR2 is shown by diagonal lines, and the other regions are shown as the event detection region AR1.
 制御部CTは、初期パラメータとして、例えばイベント信号Evtの検出数をカウントする時間Tm、イベント信号Evtの積算値Etotalと比較するための上限閾値Emax及び下限閾値Emin、特定値σEiと比較するための設定閾値β、特定値σEjと比較するための設定閾値γなどを設定する。このとき制御部CTは、イベント検出領域AR1における上記各種初期パラメータを設定する。 As initial parameters, the control unit CT has, for example, a time Tm for counting the number of detected event signals Evt, an upper limit threshold value Emax and a lower limit threshold value Emin for comparison with the integrated value Etotal of the event signal Evt, and a specific value σEi. The setting threshold value β, the setting threshold value γ for comparison with the specific value σEj, and the like are set. At this time, the control unit CT sets the various initial parameters in the event detection area AR1.
 続いて制御部CTは、ステップS402において、信号処理部14からイベント検出領域AR1におけるイベント信号Evtの検出情報などのデータ取得を行う。そして制御部CTは、ステップS403において、所定時間Tmあたりに取得したイベント検出領域AR1におけるイベント数の積算値Etotalを算出する。 Subsequently, in step S402, the control unit CT acquires data such as detection information of the event signal Evt in the event detection area AR1 from the signal processing unit 14. Then, in step S403, the control unit CT calculates the integrated value Etotal of the number of events in the event detection area AR1 acquired per predetermined time Tm.
 制御部CTは、ステップS404において、イベント数の積算値Etotalと上限閾値Emaxとを比較する。積算値Etotalが上限閾値Emaxを超えている場合、制御部CTは、ステップS405に処理を進め、イベント検出領域AR1におけるイベント検出の感度設定を下げるための処理を実行する。
 その後、制御部CTは、ステップS405からステップS402に処理を進め、以降同様の処理を行う。
In step S404, the control unit CT compares the integrated value Etotal of the number of events with the upper limit threshold value Emax. When the integrated value Etotal exceeds the upper limit threshold value Emax, the control unit CT proceeds to step S405 and executes a process for lowering the sensitivity setting of event detection in the event detection area AR1.
After that, the control unit CT proceeds from step S405 to step S402, and then performs the same processing.
 ステップS404で積算値Etotalが上限閾値Emaxを超えていない場合、制御部CTは、ステップS406に処理を進める。 If the integrated value Etotal does not exceed the upper limit threshold value Emax in step S404, the control unit CT proceeds to process in step S406.
 制御部CTは、ステップS406において、画素アレイ部10における行方向のイベント信号Evtの分布状況を示す特定値σEiを算出する。また制御部CTは、画素アレイ部10における列方向のイベント信号Evtの分布状況を示す特定値σEjを算出する。
 なお、特定値σEi及び特定値σEjを算出するための上記[式7]から[式10]において、画素アレイ部10における列方向のブロック数を示す「N」には、イベント検出領域AR1における列方向のブロック数が用いられる。また同様に画素アレイ部10における行方向のブロック数を示す「M」には、図15に示すようなイベント検出領域AR1における行方向のブロック数が用いられる。
In step S406, the control unit CT calculates a specific value σEi indicating the distribution status of the event signal Evt in the row direction in the pixel array unit 10. Further, the control unit CT calculates a specific value σEj indicating the distribution status of the event signal Evt in the column direction in the pixel array unit 10.
In the above [Equation 7] to [Equation 10] for calculating the specific value σEi and the specific value σEj, "N" indicating the number of blocks in the column direction in the pixel array unit 10 is the column in the event detection area AR1. The number of blocks in the direction is used. Similarly, as “M” indicating the number of blocks in the row direction in the pixel array unit 10, the number of blocks in the row direction in the event detection region AR1 as shown in FIG. 15 is used.
 続いて制御部CTは、ステップS407において、特定値σEiと設定閾値βとの比較を行う。また制御部CTは特定値σEjと設定閾値γとの比較を行う。 Subsequently, in step S407, the control unit CT compares the specific value σEi with the set threshold value β. Further, the control unit CT compares the specific value σEj with the set threshold value γ.
 ここで特定値σEiが設定閾値βを超えず、かつ、特定値σEjが設定閾値γを超える場合は、制御部CTは、ステップS407からステップS405に処理を進め、イベント検出の感度設定を下げるための処理を実行する。
 これは図16に示すようにイベント検出領域AR1において行方向にイベント信号Evtが検出されている領域が発生するためである。なお、ここではイベント信号Evtが検出されている領域を梨地により示している。
 その後、制御部CTはステップS405からステップS402に処理を進め、以降同様の処理を実行する。
Here, when the specific value σEi does not exceed the set threshold value β and the specific value σEj exceeds the set threshold value γ, the control unit CT proceeds from step S407 to step S405 to lower the sensitivity setting for event detection. Executes the processing of.
This is because, as shown in FIG. 16, an area in which the event signal Evt is detected in the row direction is generated in the event detection area AR1. Here, the area where the event signal Evt is detected is indicated by a satin finish.
After that, the control unit CT proceeds from step S405 to step S402, and then executes the same processing.
 一方、特定値σEiが設定閾値βを超えず、かつ、特定値σEjが設定閾値γを超えるものでない場合、制御部CTは、ステップS407からステップS408に処理を進める。 On the other hand, if the specific value σEi does not exceed the set threshold value β and the specific value σEj does not exceed the set threshold value γ, the control unit CT proceeds from step S407 to step S408.
 制御部CTは、ステップS408において、イベント数の積算値Etotalと下限閾値Eminとを比較する。積算値Etotalが下限閾値Eminを超える場合、制御部CTは、ステップS409においてイベント検出の感度設定を変えることなくステップS402に処理を進め、以降同様の処理を実行する。 In step S408, the control unit CT compares the integrated value Etotal of the number of events with the lower limit threshold value Emin. When the integrated value Etotal exceeds the lower limit threshold value Emin, the control unit CT proceeds to step S402 without changing the sensitivity setting for event detection in step S409, and then executes the same process.
 またステップS408で積算値Etotalが下限閾値Eminを超えない場合、制御部CTは、ステップS410に処理を進め、イベント検出の感度設定を上げるための処理を実行する。 If the integrated value Etotal does not exceed the lower limit threshold value Emin in step S408, the control unit CT proceeds to step S410 and executes a process for increasing the sensitivity setting for event detection.
 その後、制御部CTは、ステップS410からステップS402に処理を進め、以降同様の処理を行う。
 以上の処理を制御部CTが実行することで第4の実施の形態が実現される。
After that, the control unit CT proceeds from step S410 to step S402, and then performs the same processing.
The fourth embodiment is realized by executing the above processing by the control unit CT.
<7.まとめ及び変形例>
 以上の実施の形態におけるセンサ装置1(撮像装置1)は、入射光を光電変換して電気信号を生成する受光部21と、受光部21が生成する前記電気信号の変化量(出力電圧Vout)と所定の閾値(上限電圧Vhigh、下限電圧Vlow)とを比較して検出結果を得るイベント信号Evtの検出を実行するイベント検出回路24と、を有する画素20を複数有する固体撮像素子3と、複数の画素20(画素部11)におけるイベント信号Evtの検出状況に応じてイベント信号Evtの検出に関するパラメータ(イベント信号検出パラメータ)を設定する制御部CTと、を備える(図2、図5等参照)。
 これにより、例えばイベント信号Evtの検出数の増加により信号処理が困難となるようなときにはイベント信号Evtの検出を抑制することが可能となる。またイベント信号Evtの検出数の減少により信号処理が困難になるときにはイベント信号Evtの検出を緩和することが可能となる。
 従って、イベント信号Evtの検出状況に応じて、信号処理が困難とならないような量のイベント信号Evtの検出を維持することができる。そのため、撮像対象Tgに対する適切な認識を使用目的に応じて柔軟に行うことができる。
<7. Summary and modification>
The sensor device 1 (imaging device 1) in the above embodiment has a light receiving unit 21 that photoelectrically converts incident light to generate an electric signal, and a change amount (output voltage Vout) of the electric signal generated by the light receiving unit 21. An event detection circuit 24 that executes detection of an event signal Evt that obtains a detection result by comparing a predetermined threshold value (upper limit voltage Vhigh, lower limit voltage Vlow), and a plurality of solid-state imaging elements 3 having a plurality of pixels 20. The control unit CT for setting parameters (event signal detection parameters) related to the detection of the event signal Evt according to the detection status of the event signal Evt in the pixel 20 (pixel unit 11) is provided (see FIGS. 2, 5, etc.). ..
This makes it possible to suppress the detection of the event signal Evt when signal processing becomes difficult due to an increase in the number of detected event signals Evt, for example. Further, when the signal processing becomes difficult due to the decrease in the number of detected event signals Evt, it is possible to relax the detection of the event signal Evt.
Therefore, depending on the detection status of the event signal Evt, it is possible to maintain the detection of the event signal Evt in an amount that does not make signal processing difficult. Therefore, it is possible to flexibly recognize the Tg to be imaged according to the purpose of use.
 実施の形態の撮像装置1において、イベント信号検出パラメータは、イベント信号Evtの検出感度を変化させるパラメータであることが考えられる(図3、図5のS105、S108等参照)。
 例えばイベント信号Evtの検出数の増加により信号処理が困難となるようなときにはイベント信号Evtの検出感度を下げることでイベント信号Evtの検出を抑制する。またイベント信号Evtの検出数の減少により信号処理が困難となるようなときにはイベント信号Evtの検出感度を上げることでイベント信号Evtの検出を抑制する。
 このようにイベント信号Evtの検出感度を変更することで、信号処理が困難とならないような量となるようにイベント信号Evtの検出量を調整することができる。従って、撮像対象Tgに対する適切な認識を使用目的に応じて柔軟に行うことができる。
In the image pickup apparatus 1 of the embodiment, the event signal detection parameter is considered to be a parameter that changes the detection sensitivity of the event signal Evt (see S105, S108, etc. in FIGS. 3 and 5).
For example, when signal processing becomes difficult due to an increase in the number of event signal Evt detected, the detection of the event signal Evt is suppressed by lowering the detection sensitivity of the event signal Evt. Further, when signal processing becomes difficult due to a decrease in the number of detected event signals Evt, the detection of the event signal Evt is suppressed by increasing the detection sensitivity of the event signal Evt.
By changing the detection sensitivity of the event signal Evt in this way, the detection amount of the event signal Evt can be adjusted so that the amount does not make signal processing difficult. Therefore, it is possible to flexibly recognize the Tg to be imaged according to the purpose of use.
 実施の形態の撮像装置1において、制御部CTは、イベント信号検出パラメータとしてイベント信号Evtを検出するための所定の閾値(上限電圧Vhigh、下限電圧Vlow)を設定する(図5のS105、S108等参照)。
 例えば所定の閾値(上限電圧Vhigh、下限電圧Vlow)を厳しく設定することでイベント信号Evt(オンイベント信号Vop、オフイベント信号Vom)の検出が抑制される。また所定の閾値を緩やかに設定することでイベント信号の検出が促進される。
 従って、イベント信号Evtを検出する際の出力電圧Voutと比較する上限電圧Vhigh及び下限電圧Vlowを設定することで、直接的にイベント信号Evtの検出量を制御することができる。従って、撮像対象Tgに対する適切な認識を使用目的に応じて柔軟に行うことができる。
In the image pickup apparatus 1 of the embodiment, the control unit CT sets a predetermined threshold value (upper limit voltage Vhigh, lower limit voltage Vlow) for detecting the event signal Evt as an event signal detection parameter (S105, S108, etc. in FIG. 5). reference).
For example, by strictly setting a predetermined threshold value (upper limit voltage Vhigh, lower limit voltage Vlow), the detection of the event signal Evt (on-event signal Vop, off-event signal Vom) is suppressed. Further, by setting a predetermined threshold value gently, the detection of the event signal is promoted.
Therefore, the detection amount of the event signal Evt can be directly controlled by setting the upper limit voltage Vhigh and the lower limit voltage Vlow to be compared with the output voltage Vout when detecting the event signal Evt. Therefore, it is possible to flexibly recognize the Tg to be imaged according to the purpose of use.
 実施の形態の撮像装置1において、制御部CTは、所定時間Tmごとの複数の画素20(画素部11)におけるイベント信号Evtの積算量(積算値Etotal)に応じてイベント信号検出パラメータを設定する(図5のS103、S104、S106等参照)。
 すなわち制御部CTは、イベント信号Evtの積算値Etotalに基づいて信号処理が困難となるような状態を判定することができる。
In the image pickup apparatus 1 of the embodiment, the control unit CT sets the event signal detection parameter according to the integrated amount (integrated value Etotal) of the event signal Evt in the plurality of pixels 20 (pixel unit 11) for each predetermined time Tm. (See S103, S104, S106, etc. in FIG. 5).
That is, the control unit CT can determine a state in which signal processing becomes difficult based on the integrated value Etotal of the event signal Evt.
 またこのとき、制御部CTは、イベント信号Evtの積算量(積算値Etotal)が第1の積算値(上限閾値Emax)を超えると、現在よりもイベント信号Evtの検出がされにくくなるように所定の閾値(上限電圧Vhigh)を設定する(図5のS105等参照)。
 これにより、イベント信号Evtの積算値Etotalの増加により信号処理が困難となるようなときにはイベント信号Evtの検出感度を下げることでイベント信号Evtの検出を抑制することができる。即ち、イベント信号Evtの積算値Etotalを用いることによってもイベント信号Evtの検出量を制御することができる。
Further, at this time, when the integrated amount (integrated value Etotal) of the event signal Evt exceeds the first integrated value (upper limit threshold value Emax), the control unit CT determines that the event signal Evt is less likely to be detected than at present. The threshold value (upper limit voltage Vhigh) is set (see S105 and the like in FIG. 5).
As a result, when signal processing becomes difficult due to an increase in the integrated value Ebt of the event signal Evt, the detection of the event signal Evt can be suppressed by lowering the detection sensitivity of the event signal Evt. That is, the detection amount of the event signal Evt can also be controlled by using the integrated value Etotal of the event signal Evt.
 一方で、制御部CTは、イベント信号Evtの積算量(積算値Etotal)が第2の積算値(下限閾値Emin)よりも低くなると、現在よりもイベント信号Evtの検出がされやすくなるように所定の閾値(下限電圧Vlow)を設定する(図5のS108等参照)。
 これにより、イベント信号Evtの積算値Etotalの減少により信号処理が困難となるようなときにはイベント信号Evtの検出感度を上げることでイベント信号Evtの検出を緩和することができる。即ち、イベント信号Evtの積算値Etotalを用いることによってもイベント信号Evtの検出量を制御することができる。
 なお、図5では、イベント発生頻度としてイベント信号Evtの積算量を用いる例について説明したが、イベント発生頻度は、出力イベント数が規定の値に達するまでの所要時間の逆数を得る等の手法で推定することができる。
 この場合、制御部CTは、出力イベント数が規定の値に達するまでの所要時間の逆数を算出することイベント発生頻度を算出する。
 そして制御部CTは、イベント発生頻度が第1の基準値を超えると、現在よりもイベント信号Evtの検出がされにくくなるように所定の閾値(上限電圧Vhigh)を設定する。このとき、制御部CTは、現在よりも照明部6の照度を下げるためのイベント信号検出パラメータを設定することもできる。
 一方、制御部CTは、イベント発生頻度が第2の基準値よりも低くなると、現在よりもイベント信号Evtの検出がされやすくなるように所定の閾値(下限電圧Vlow)を設定する。このとき、制御部CTは、現在よりも照明部6の照度を上げるためのイベント信号検出パラメータを設定することもできる。
On the other hand, the control unit CT determines that when the integrated amount (integrated value Etotal) of the event signal Evt becomes lower than the second integrated value (lower limit threshold value Emin), the event signal Evt is more easily detected than at present. The threshold value (lower limit voltage Vlow) is set (see S108 and the like in FIG. 5).
As a result, when signal processing becomes difficult due to a decrease in the integrated value Ebt of the event signal Evt, the detection of the event signal Evt can be alleviated by increasing the detection sensitivity of the event signal Evt. That is, the detection amount of the event signal Evt can also be controlled by using the integrated value Etotal of the event signal Evt.
In FIG. 5, an example in which the integrated amount of the event signal Evt is used as the event occurrence frequency has been described, but the event occurrence frequency is obtained by obtaining the reciprocal of the time required for the number of output events to reach the specified value. Can be estimated.
In this case, the control unit CT calculates the event occurrence frequency by calculating the reciprocal of the time required for the number of output events to reach the specified value.
Then, when the event occurrence frequency exceeds the first reference value, the control unit CT sets a predetermined threshold value (upper limit voltage Vhigh) so that the event signal Evt is less likely to be detected than at present. At this time, the control unit CT can also set an event signal detection parameter for lowering the illuminance of the illumination unit 6 from the current level.
On the other hand, when the event occurrence frequency becomes lower than the second reference value, the control unit CT sets a predetermined threshold value (lower limit voltage Vrow) so that the event signal Evt can be detected more easily than at present. At this time, the control unit CT can also set an event signal detection parameter for increasing the illuminance of the illumination unit 6 from the current level.
 第2の実施の形態の撮像装置1において、制御部CTは、複数の画素20(画素部11)におけるイベント信号Evtの検出量の分布状況(特定値σE)に応じて前記パラメータを設定する(図7のS205、S206、S207等参照)。
 すなわち、複数の画素20(画素部11)のイベント信号の検出量が、画素アレイ部10においてばらつきがある場合、制御部CTは、撮像対象Tgが認識できているものと判定する。本例によれば、例えば撮像画像において多数の撮像対象Tgが流れる環境において好適に撮像対象Tgを検出することができる。
In the image pickup apparatus 1 of the second embodiment, the control unit CT sets the parameter according to the distribution state (specific value σE) of the detected amount of the event signal Evt in the plurality of pixels 20 (pixel unit 11) (specific value σE). See S205, S206, S207, etc. in FIG. 7).
That is, when the detection amount of the event signal of the plurality of pixels 20 (pixel unit 11) varies in the pixel array unit 10, the control unit CT determines that the image pickup target Tg can be recognized. According to this example, for example, the image pickup target Tg can be suitably detected in an environment in which a large number of image pickup target Tg flows in the captured image.
 第2の実施の形態の撮像装置1において、制御部CTは、複数の画素20(画素部11)における各列のイベント信号Evtの検出量の平均値(平均値Ei)に基づいて行方向のイベント信号Evtの分布状況を示す第1の特定値(特定値σEi)を算出し、複数の画素20(画素部11)における各行のイベント信号Evtの検出量の平均値(平均値Ej)に基づいて列方向のイベント信号Evtの分布状況を示す第2の特定値(特定値σEj)を算出し、第1の特定値(特定値σEi)及び第2の特定値(特定値σEj)に基づいて前記パラメータを設定する(図7のS205、S208、S209等参照)。
 これにより、制御部CTは、画素アレイ部10における特定の行又は列にイベント信号Evtが集中して検出されていることを判定することができる。
 従って、特定の行又は列にイベント信号Evtが集中している際に、イベント信号Evtの検出感度を下げることでイベント信号Evtの検出を抑制することで、撮像対象Tgの特定精度を向上させることができる。
 なお、特定の行又は列の何れかのイベント信号Evtの集中を検出することによっても当該方向における撮像対象Tgの特定精度を向上させる効果を奏するものである。
In the image pickup apparatus 1 of the second embodiment, the control unit CT is in the row direction based on the average value (average value Ei) of the detected amount of the event signal Evt of each column in the plurality of pixels 20 (pixel unit 11). A first specific value (specific value σEi) indicating the distribution status of the event signal Evt is calculated, and the average value (average value Ej) of the detected amount of the event signal Evt of each row in the plurality of pixels 20 (pixel unit 11) is calculated. A second specific value (specific value σEj) indicating the distribution status of the event signal Evt in the column direction is calculated, and based on the first specific value (specific value σEi) and the second specific value (specific value σEj). The parameters are set (see S205, S208, S209, etc. in FIG. 7).
As a result, the control unit CT can determine that the event signal Evt is concentrated and detected in a specific row or column in the pixel array unit 10.
Therefore, when the event signal Evt is concentrated in a specific row or column, the detection of the event signal Evt is suppressed by lowering the detection sensitivity of the event signal Evt, thereby improving the identification accuracy of the Tg to be imaged. Can be done.
It should be noted that the detection of the concentration of the event signal Evt in any of the specific rows or columns also has the effect of improving the identification accuracy of the image pickup target Tg in the relevant direction.
 第3の実施の形態の撮像装置1において、制御部CTは、イベント信号検出パラメータとして照明部6の照度を設定し、当該設定した照度による撮像対象Tgへの照射を照明部6に実行させる(図12のS305、S310等参照)。
 撮像対象Tgに対する照明部6の照度を調整することで、イベント信号Evtの検出量が制御される。
In the image pickup apparatus 1 of the third embodiment, the control unit CT sets the illuminance of the illumination unit 6 as an event signal detection parameter, and causes the illumination unit 6 to irradiate the image pickup target Tg with the set illuminance (the illuminance unit 6). See S305, S310, etc. in FIG. 12).
By adjusting the illuminance of the illumination unit 6 with respect to the image pickup target Tg, the detection amount of the event signal Evt is controlled.
 このとき制御部CTは、イベント信号Evtの積算量(積算値Etotal)が第1の積算値(上限閾値Emax)を超えると、現在よりも照明部6の照度を下げるためのイベント信号検出パラメータを設定する(図12のS304、S305等参照)。
 このようにイベント信号Evtの積算値Etotalの増加により信号処理が困難となるようなときには撮像対象Tgに対する照明部6の照度を下げることでイベント信号Evtの検出を抑制する。
At this time, when the integrated amount (integrated value Etotal) of the event signal Evt exceeds the first integrated value (upper limit threshold value Emax), the control unit CT sets an event signal detection parameter for lowering the illuminance of the lighting unit 6 from the present. Set (see S304, S305, etc. in FIG. 12).
When signal processing becomes difficult due to an increase in the integrated value Ebt of the event signal Evt as described above, the detection of the event signal Evt is suppressed by lowering the illuminance of the illumination unit 6 with respect to the image pickup target Tg.
 また制御部CTは、イベント信号Evtの積算量(積算値Etotal)が第2の積算値(下限閾値Emin)よりも低くなると、現在よりも照明部6の照度を上げるためのイベント信号検出パラメータを設定する(図12のS308、S310等参照)。
 このようにイベント信号Evtの積算値Etotalの減少により信号処理が困難になるようなときには撮像対象Tgに対する照明部6の照度を上げることでイベント信号Evtの検出を緩和する。
 上述のようにイベント信号Evtの積算値Etotalに応じて撮像対象Tgに対する照明部6の照度を調整することによってもイベント信号Evtの検出量を制御することができる。
Further, when the integrated amount (integrated value Etotal) of the event signal Evt becomes lower than the second integrated value (lower limit threshold value Emin), the control unit CT sets an event signal detection parameter for increasing the illuminance of the lighting unit 6 than the present. Set (see S308, S310, etc. in FIG. 12).
When signal processing becomes difficult due to a decrease in the integrated value Ebt of the event signal Evt as described above, the detection of the event signal Evt is relaxed by increasing the illuminance of the illumination unit 6 with respect to the image pickup target Tg.
As described above, the detection amount of the event signal Evt can also be controlled by adjusting the illuminance of the illumination unit 6 with respect to the image pickup target Tg according to the integrated value Etotal of the event signal Evt.
 第4の実施の形態の撮像装置1において、制御部CTは、複数の画素20(画素部11)から撮像対象Tgを含むイベント検出領域AR1を設定し、イベント検出領域AR1におけるイベント信号Evtの検出状況に応じてイベント信号検出パラメータを設定することができる(図14のS401等参照)。
 これにより、撮像対象Tgを含まない領域(図15のイベント非検出領域AR2)のイベント信号Evtの検出状況を判定する必要がなくなるため、信号処理負担を軽減することができる。
In the image pickup apparatus 1 of the fourth embodiment, the control unit CT sets the event detection area AR1 including the image pickup target Tg from the plurality of pixels 20 (pixel unit 11), and detects the event signal Evt in the event detection area AR1. Event signal detection parameters can be set according to the situation (see S401 and the like in FIG. 14).
This eliminates the need to determine the detection status of the event signal Evt in the region (event non-detection region AR2 in FIG. 15) that does not include the image pickup target Tg, so that the signal processing load can be reduced.
 なお、実施の形態におけるイベント検出回路24は、図3に示すように上限電圧Vhigh及び下限電圧Vlowの両方を出力電圧Voutと比較しているが、一方のみを出力電圧Voutと比較してもよい。この場合には、不要なトランジスタを削減することができる。例えば上限電圧Vhighとのみ比較する際には、トランジスタQ9及びトランジスタQ10のみが配置される。
 この場合においては、上限電圧Vhighとの比較に基づき検出されるオンイベント信号Vopをイベント信号Evtとして検出する。
Although the event detection circuit 24 in the embodiment compares both the upper limit voltage Vhigh and the lower limit voltage Vlow with the output voltage Vout as shown in FIG. 3, only one of them may be compared with the output voltage Vout. .. In this case, unnecessary transistors can be reduced. For example, when comparing only with the upper limit voltage Vhigh, only the transistor Q9 and the transistor Q10 are arranged.
In this case, the on-event signal Vop detected based on the comparison with the upper limit voltage Vhigh is detected as the event signal Evt.
 実施の形態における制御方法は、入射光を光電変換して電気信号を生成する受光部21と、受光部21が生成する前記電気信号の変化量(出力電圧Vout)と所定の閾値(上限電圧Vhigh、下限電圧Vlow)とを比較して検出結果を得るイベント信号Evtの検出を実行するイベント検出回路24と、を有する画素20を複数有する固体撮像素子3に対して、複数の画素20(画素部11)におけるイベント信号Evtの検出状況に応じてイベント信号検出パラメータを設定することを、センサ装置1(撮像装置1)が実行する制御方法である。 The control method in the embodiment is a light receiving unit 21 that photoelectrically converts incident light to generate an electric signal, a change amount (output voltage Vout) of the electric signal generated by the light receiving unit 21, and a predetermined threshold value (upper limit voltage Vhigh). The event detection circuit 24 that executes the detection of the event signal Evt to obtain the detection result by comparing with the lower limit voltage (Vlow), and the solid-state image sensor 3 having the plurality of pixels 20 having the plurality of pixels 20 (pixel unit). This is a control method in which the sensor device 1 (image sensor 1) executes to set the event signal detection parameter according to the detection status of the event signal Evt in 11).
 このような実施の形態としての制御方法によっても上記した実施の形態としてのセンサ装置1(撮像装置1)と同様の作用及び効果を得ることができる。 The same operation and effect as the sensor device 1 (imaging device 1) as the above-described embodiment can be obtained by the control method as the embodiment.
 ここで、これまで説明した制御部CTによる機能は、例えばCPU、DSP等によるソフトウェア処理として実現することができる。該ソフトウェア処理は、プログラムに基づき実行される。 Here, the function by the control unit CT described so far can be realized as software processing by, for example, a CPU, a DSP, or the like. The software processing is executed based on the program.
 本実施の形態におけるプログラムは、入射光を光電変換して電気信号を生成する受光部21と、受光部21が生成する前記電気信号の変化量(出力電圧Vout)と所定の閾値(上限電圧Vhigh、下限電圧Vlow)とを比較して検出結果を得るイベント信号Evtの検出を実行するイベント検出回路24と、を有する画素20を複数有する固体撮像素子3に対して、複数の画素20(画素部11)におけるイベント信号Evtの検出状況に応じてイベント信号検出パラメータを設定することを、センサ装置1(撮像装置1)に実行させるプログラムである。
 このようなプログラムによって、上記した実施の形態としての制御部CTを実現することができる。
The program in the present embodiment has a light receiving unit 21 that photoelectrically converts incident light to generate an electric signal, a change amount (output voltage Vout) of the electric signal generated by the light receiving unit 21, and a predetermined threshold value (upper limit voltage Vhigh). The event detection circuit 24 that executes the detection of the event signal Evt to obtain the detection result by comparing with the lower limit voltage (Vlow), and the solid-state image sensor 3 having the plurality of pixels 20 having the plurality of pixels 20 (pixel unit). This is a program for causing the sensor device 1 (imaging device 1) to set the event signal detection parameters according to the detection status of the event signal Evt in 11).
With such a program, the control unit CT as the above-described embodiment can be realized.
 上記のようなプログラムは、コンピュータ装置等の機器に内蔵されている記録媒体や、CPUを有するマイクロコンピュータ内のROM等に予め記録しておくことができる。
 或いはまた、フレキシブルディスク、CD-ROM(Compact Disc Read Only Memory)、MO(Magnet optical)ディスク、DVD、ブルーレイディスク(Blu-ray Disc(登録商標))、磁気ディスク、半導体メモリ、メモリカードなどのリムーバブル記録媒体に、一時的あるいは永続的に格納(記録)しておくことができる。このようなリムーバブル記録媒体は、いわゆるパッケージソフトウェアとして提供することができる。
 また、当該プログラムは、リムーバブル記録媒体からパーソナルコンピュータ等にインストールする他、ダウンロードサイトから、インターネット、LAN(Local Area Network)などのネットワークを介してダウンロードすることもできる。
A program as described above can be recorded in advance in a recording medium built in a device such as a computer device, a ROM in a microcomputer having a CPU, or the like.
Alternatively, removable discs such as flexible discs, CD-ROMs (Compact Disc Read Only Memory), MO (Magnet optical) discs, DVDs, Blu-ray discs (Blu-ray Disc (registered trademark)), magnetic discs, semiconductor memories, and memory cards. It can be temporarily or permanently stored (recorded) on a recording medium. Such removable recording media can be provided as so-called package software.
In addition to installing the program from a removable recording medium on a personal computer or the like, the program can also be downloaded from a download site via a network such as the Internet or a LAN (Local Area Network).
<8.本技術>
 また本技術は以下のような構成も採ることができる。
(1)
 入射光を光電変換して電気信号を生成する受光部と、前記受光部が生成する前記電気信号の変化量と所定の閾値とを比較して検出結果を得るイベント信号の検出を実行する検出回路と、を有する画素を複数有する固体撮像素子と、
 前記複数の画素におけるイベント信号の検出状況に応じてイベント信号の検出に関するパラメータを設定する制御部と、を備える
 センサ装置。
(2)
 前記パラメータはイベント信号の検出感度を変化させるパラメータである
 上記(1)に記載のセンサ装置。
(3)
 前記制御部は、前記イベント信号の検出感度を変化させるパラメータとして、輝度変化に対して前記電気信号が変化する感度又は前記電気信号の変化に対する閾値を前記所定の閾値を設定する
 上記(2)に記載のセンサ装置。
(4)
 前記制御部は、イベント発生頻度に応じて前記パラメータを設定する
 上記(1)から(3)の何れかに記載のセンサ装置。
(5)
 前記制御部は、前記イベント発生頻度が第1の基準値を超えた場合にイベント信号の検出感度を低下させるように前記パラメータを設定する
 上記(4)に記載のセンサ装置。
(6)
 前記制御部は、前記イベント発生頻度が第2の基準値を超えない場合にイベント信号の検出感度を向上させるように前記パラメータを設定する
 上記(4)又は(5)に記載のセンサ装置。
(7)
 前記制御部は、前記複数の画素におけるイベント信号の検出量の分布状況に応じて前記パラメータを設定する
 上記(1)から(6)の何れかに記載のセンサ装置。
(8)
 前記制御部は、前記複数の画素における各列のイベント信号の検出量の平均値に基づいて行方向のイベント信号の分布状況を示す第1の特定値を算出し、前記第1の特定値に基づいて前記パラメータを設定する
 上記(1)から(7)の何れかに記載のセンサ装置。
(9)
 前記制御部は、前記複数の画素における各行のイベント信号の検出量の平均値に基づいて列方向のイベント信号の分布状況を示す第2の特定値を算出し、前記第2の特定値に基づいて前記パラメータを設定する
 上記(1)から(8)の何れかに記載のセンサ装置。
(10)
 前記制御部は、前記複数の画素における各列のイベント信号の検出量の平均値に基づいて行方向のイベント信号の分布状況を示す第1の特定値を算出し、
 前記複数の画素における各行のイベント信号の検出量の平均値に基づいて列方向のイベント信号の分布状況を示す第2の特定値を算出し、
 前記第1の特定値及び前記第2の特定値に基づいて前記パラメータを設定する
 上記(1)から(9)の何れかに記載のセンサ装置。
(11)
 前記制御部は、前記パラメータとして照明部の照度を設定し、前記設定した照度による撮像対象への照射を前記照明部に実行させる
 上記(1)から(10)の何れかに記載のセンサ装置。
(12)
 前記制御部は、イベント発生頻度に応じて前記パラメータを設定し、前記イベント発生頻度が第1の基準値を超えると、現在よりも前記照明部の照度を下げるための前記パラメータを設定する
 上記(11)に記載のセンサ装置。
(13)
 前記制御部は、イベント発生頻度に応じて前記パラメータを設定し、前記イベント発生頻度が第2の基準値よりも低くなると、現在よりも前記照明部の照度を上げるための前記パラメータを設定する
 上記(11)又は(12)に記載のセンサ装置。
(14)
 前記制御部は、前記複数の画素から撮像対象を含む検出領域を設定し、前記設定した検出領域におけるイベント信号の検出状況に応じて前記パラメータを設定する
 上記(1)から(13)の何れかに記載のセンサ装置。
(15)
 入射光を光電変換して電気信号を生成する受光部と、前記受光部が生成する前記電気信号の変化量と所定の閾値とを比較して検出結果を得るイベント信号検出を実行する検出回路と、を有する画素を複数有する固体撮像素子に対して、
 前記複数の画素におけるイベント信号の検出状況に応じてイベント信号の検出に関するパラメータを設定することを、
 センサ装置が実行する制御方法。
(16)
 入射光を光電変換して電気信号を生成する受光部と、前記受光部が生成する前記電気信号の変化量と所定の閾値とを比較して検出結果を得るイベント信号検出を実行する検出回路と、を有する画素を複数有する固体撮像素子に対して、
 前記複数の画素におけるイベント信号の検出状況に応じてイベント信号の検出に関するパラメータを設定することを、
 センサ装置に実行させるプログラム。
<8. This technology>
In addition, this technology can also adopt the following configurations.
(1)
A detection circuit that executes detection of an event signal to obtain a detection result by comparing a light receiving unit that photoelectrically converts incident light to generate an electric signal and a change amount of the electric signal generated by the light receiving unit with a predetermined threshold value. A solid-state image sensor having a plurality of pixels having
A sensor device including a control unit for setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels.
(2)
The sensor device according to (1) above, wherein the parameter is a parameter that changes the detection sensitivity of the event signal.
(3)
The control unit sets the predetermined threshold value for the sensitivity for changing the electric signal or the threshold value for the change of the electric signal as a parameter for changing the detection sensitivity of the event signal in the above (2). The sensor device described.
(4)
The sensor device according to any one of (1) to (3) above, wherein the control unit sets the parameters according to the frequency of event occurrence.
(5)
The sensor device according to (4) above, wherein the control unit sets the parameters so as to reduce the detection sensitivity of the event signal when the event occurrence frequency exceeds the first reference value.
(6)
The sensor device according to (4) or (5) above, wherein the control unit sets the parameters so as to improve the detection sensitivity of the event signal when the event occurrence frequency does not exceed the second reference value.
(7)
The sensor device according to any one of (1) to (6) above, wherein the control unit sets the parameters according to the distribution state of the detected amount of the event signal in the plurality of pixels.
(8)
The control unit calculates a first specific value indicating the distribution state of the event signal in the row direction based on the average value of the detected amounts of the event signals in each column in the plurality of pixels, and sets the first specific value as the first specific value. The sensor device according to any one of (1) to (7) above, wherein the parameters are set based on the above.
(9)
The control unit calculates a second specific value indicating the distribution status of the event signal in the column direction based on the average value of the detected amounts of the event signals in each row in the plurality of pixels, and is based on the second specific value. The sensor device according to any one of (1) to (8) above, wherein the parameters are set.
(10)
The control unit calculates a first specific value indicating the distribution state of the event signal in the row direction based on the average value of the detected amounts of the event signals in each column in the plurality of pixels.
A second specific value indicating the distribution status of the event signal in the column direction is calculated based on the average value of the detected amounts of the event signals in each row in the plurality of pixels.
The sensor device according to any one of (1) to (9) above, wherein the parameters are set based on the first specific value and the second specific value.
(11)
The sensor device according to any one of (1) to (10) above, wherein the control unit sets the illuminance of the illumination unit as the parameter and causes the illumination unit to irradiate the image pickup target with the set illuminance.
(12)
The control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency exceeds the first reference value, sets the parameter for lowering the illuminance of the lighting unit from the present. 11) The sensor device according to.
(13)
The control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency becomes lower than the second reference value, sets the parameter for increasing the illuminance of the lighting unit from the present. The sensor device according to (11) or (12).
(14)
The control unit sets a detection area including an image pickup target from the plurality of pixels, and sets the parameters according to the detection status of an event signal in the set detection area. Any of the above (1) to (13). The sensor device described in.
(15)
A light receiving unit that photoelectrically converts incident light to generate an electric signal, and a detection circuit that executes event signal detection to obtain a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value. For a solid-state image sensor having a plurality of pixels having
Setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels can be used.
The control method performed by the sensor device.
(16)
A light receiving unit that photoelectrically converts incident light to generate an electric signal, and a detection circuit that executes event signal detection to obtain a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value. For a solid-state image sensor having a plurality of pixels having
Setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels can be used.
A program to be executed by the sensor device.
 最後に、本開示に記載された効果は例示であって限定されるものではなく、他の効果を奏するものであってもよいし、本開示に記載された効果の一部を奏するものであってもよい。
 また本開示に記載された実施の形態はあくまでも一例であり、本技術が上述の実施の形態に限定されることはない。従って、上述した実施の形態以外であっても本技術の技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能なことはもちろんである。なお、実施の形態で説明されている構成の組み合わせの全てが課題の解決に必須であるとは限らない。
Finally, the effects described in the present disclosure are exemplary and not limited, and may have other effects or are part of the effects described in the present disclosure. You may.
Further, the embodiments described in the present disclosure are merely examples, and the present technology is not limited to the above-described embodiments. Therefore, it goes without saying that various changes can be made according to the design and the like as long as the technical idea of the present technology is not deviated from the above-described embodiment. It should be noted that not all combinations of configurations described in the embodiments are indispensable for solving the problem.
1 撮像装置(センサ装置)
2 撮像レンズ
3 固体撮像素子
5 センサ制御部
10 画素アレイ部
11 画素部
14 信号処理部
15 画素制御部
16 感度調整回路
17 イベント数検出部
20 画素
21 受光部
24 イベント検出回路
CT 制御部
Evt イベント信号
Vop オンイベント信号
Vom オフイベント信号
1 Imaging device (sensor device)
2 Image sensor 3 Solid-state image sensor 5 Sensor control unit 10 Pixel array unit 11 Pixel unit 14 Signal processing unit 15 Pixel control unit 16 Sensitivity adjustment circuit 17 Event number detection unit 20 Pixel 21 Light receiving unit 24 Event detection circuit CT control unit Evt Event signal Vop on-event signal Vom off-event signal

Claims (16)

  1.  入射光を光電変換して電気信号を生成する受光部と、前記受光部が生成する前記電気信号の変化量と所定の閾値とを比較して検出結果を得るイベント信号の検出を実行する検出回路と、を有する画素を複数有する固体撮像素子と、
     前記複数の画素におけるイベント信号の検出状況に応じてイベント信号の検出に関するパラメータを設定する制御部と、を備える
     センサ装置。
    A detection circuit that executes detection of an event signal to obtain a detection result by comparing a light receiving unit that photoelectrically converts incident light to generate an electric signal and a change amount of the electric signal generated by the light receiving unit with a predetermined threshold value. A solid-state image sensor having a plurality of pixels having
    A sensor device including a control unit for setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels.
  2.  前記パラメータはイベント信号の検出感度を変化させるパラメータである
     請求項1に記載のセンサ装置。
    The sensor device according to claim 1, wherein the parameter is a parameter that changes the detection sensitivity of an event signal.
  3.  前記制御部は、前記イベント信号の検出感度を変化させるパラメータとして、輝度変化に対して前記電気信号が変化する感度又は前記電気信号の変化に対する閾値を設定する
     請求項2に記載のセンサ装置。
    The sensor device according to claim 2, wherein the control unit sets a sensitivity at which the electric signal changes with respect to a change in luminance or a threshold value with respect to a change in the electric signal as a parameter for changing the detection sensitivity of the event signal.
  4.  前記制御部は、イベント発生頻度に応じて前記パラメータを設定する
     請求項1に記載のセンサ装置。
    The sensor device according to claim 1, wherein the control unit sets the parameters according to the frequency of event occurrence.
  5.  前記制御部は、前記イベント発生頻度が第1の基準値を超えた場合にイベント信号の検出感度を低下させるように前記パラメータを設定する
     請求項4に記載のセンサ装置。
    The sensor device according to claim 4, wherein the control unit sets the parameters so as to reduce the detection sensitivity of the event signal when the event occurrence frequency exceeds the first reference value.
  6.  前記制御部は、前記イベント発生頻度が第2の基準値を超えない場合にイベント信号の検出感度を向上させるように前記パラメータを設定する
     請求項4に記載のセンサ装置。
    The sensor device according to claim 4, wherein the control unit sets the parameters so as to improve the detection sensitivity of the event signal when the event occurrence frequency does not exceed the second reference value.
  7.  前記制御部は、前記複数の画素におけるイベント信号の検出量の分布状況に応じて前記パラメータを設定する
     請求項1に記載のセンサ装置。
    The sensor device according to claim 1, wherein the control unit sets the parameters according to the distribution state of the detected amount of the event signal in the plurality of pixels.
  8.  前記制御部は、前記複数の画素における各列のイベント信号の検出量の平均値に基づいて行方向のイベント信号の分布状況を示す第1の特定値を算出し、前記第1の特定値に基づいて前記パラメータを設定する
     請求項1に記載のセンサ装置。
    The control unit calculates a first specific value indicating the distribution state of the event signal in the row direction based on the average value of the detected amounts of the event signals in each column in the plurality of pixels, and sets the first specific value as the first specific value. The sensor device according to claim 1, wherein the parameters are set based on the above.
  9.  前記制御部は、前記複数の画素における各行のイベント信号の検出量の平均値に基づいて列方向のイベント信号の分布状況を示す第2の特定値を算出し、前記第2の特定値に基づいて前記パラメータを設定する
     請求項1に記載のセンサ装置。
    The control unit calculates a second specific value indicating the distribution status of the event signal in the column direction based on the average value of the detected amounts of the event signals in each row in the plurality of pixels, and is based on the second specific value. The sensor device according to claim 1, wherein the parameters are set.
  10.  前記制御部は、前記複数の画素における各列のイベント信号の検出量の平均値に基づいて行方向のイベント信号の分布状況を示す第1の特定値を算出し、
     前記複数の画素における各行のイベント信号の検出量の平均値に基づいて列方向のイベント信号の分布状況を示す第2の特定値を算出し、
     前記第1の特定値及び前記第2の特定値に基づいて前記パラメータを設定する
     請求項1に記載のセンサ装置。
    The control unit calculates a first specific value indicating the distribution state of the event signal in the row direction based on the average value of the detected amounts of the event signals in each column in the plurality of pixels.
    A second specific value indicating the distribution status of the event signal in the column direction is calculated based on the average value of the detected amounts of the event signals in each row in the plurality of pixels.
    The sensor device according to claim 1, wherein the parameters are set based on the first specific value and the second specific value.
  11.  前記制御部は、前記パラメータとして照明部の照度を設定し、前記設定した照度による撮像対象への照射を前記照明部に実行させる
     請求項1に記載のセンサ装置。
    The sensor device according to claim 1, wherein the control unit sets the illuminance of the illumination unit as the parameter, and causes the illumination unit to irradiate the image pickup target with the set illuminance.
  12.  前記制御部は、イベント発生頻度に応じて前記パラメータを設定し、前記イベント発生頻度が第1の基準値を超えると、現在よりも前記照明部の照度を下げるための前記パラメータを設定する
     請求項11に記載のセンサ装置。
    The control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency exceeds the first reference value, the control unit sets the parameter for lowering the illuminance of the lighting unit from the present. 11. The sensor device according to 11.
  13.  前記制御部は、イベント発生頻度に応じて前記パラメータを設定し、前記イベント発生頻度が第2の基準値よりも低くなると、現在よりも前記照明部の照度を上げるための前記パラメータを設定する
     請求項11に記載のセンサ装置。
    The control unit sets the parameter according to the event occurrence frequency, and when the event occurrence frequency becomes lower than the second reference value, the control unit sets the parameter for increasing the illuminance of the lighting unit from the present. Item 11. The sensor device according to item 11.
  14.  前記制御部は、前記複数の画素から撮像対象を含む検出領域を設定し、前記設定した検出領域におけるイベント信号の検出状況に応じて前記パラメータを設定する
     請求項1に記載のセンサ装置。
    The sensor device according to claim 1, wherein the control unit sets a detection region including an image pickup target from the plurality of pixels, and sets the parameters according to the detection status of an event signal in the set detection region.
  15.  入射光を光電変換して電気信号を生成する受光部と、前記受光部が生成する前記電気信号の変化量と所定の閾値とを比較して検出結果を得るイベント信号検出を実行する検出回路と、を有する画素を複数有する固体撮像素子に対して、
     前記複数の画素におけるイベント信号の検出状況に応じてイベント信号の検出に関するパラメータを設定することを、
     センサ装置が実行する制御方法。
    A light receiving unit that photoelectrically converts incident light to generate an electric signal, and a detection circuit that executes event signal detection to obtain a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value. For a solid-state image sensor having a plurality of pixels having
    Setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels can be used.
    The control method performed by the sensor device.
  16.  入射光を光電変換して電気信号を生成する受光部と、前記受光部が生成する前記電気信号の変化量と所定の閾値とを比較して検出結果を得るイベント信号検出を実行する検出回路と、を有する画素を複数有する固体撮像素子に対して、
     前記複数の画素におけるイベント信号の検出状況に応じてイベント信号の検出に関するパラメータを設定することを、
     センサ装置に実行させるプログラム。
    A light receiving unit that photoelectrically converts incident light to generate an electric signal, and a detection circuit that executes event signal detection to obtain a detection result by comparing the amount of change in the electric signal generated by the light receiving unit with a predetermined threshold value. For a solid-state image sensor having a plurality of pixels having
    Setting parameters related to event signal detection according to the event signal detection status in the plurality of pixels can be used.
    A program to be executed by the sensor device.
PCT/JP2021/017005 2020-06-18 2021-04-28 Sensor device, control method, and program WO2021256102A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-105359 2020-06-18
JP2020105359A JP2021197710A (en) 2020-06-18 2020-06-18 Sensor device, control method, and program

Publications (1)

Publication Number Publication Date
WO2021256102A1 true WO2021256102A1 (en) 2021-12-23

Family

ID=79196134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017005 WO2021256102A1 (en) 2020-06-18 2021-04-28 Sensor device, control method, and program

Country Status (2)

Country Link
JP (1) JP2021197710A (en)
WO (1) WO2021256102A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134271A (en) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state image sensor, imaging apparatus, and control method of solid-state image sensor
JP2020072317A (en) * 2018-10-30 2020-05-07 ソニーセミコンダクタソリューションズ株式会社 Sensor and control method
JP2020088676A (en) * 2018-11-28 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 Sensor and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019134271A (en) * 2018-01-31 2019-08-08 ソニーセミコンダクタソリューションズ株式会社 Solid-state image sensor, imaging apparatus, and control method of solid-state image sensor
JP2020072317A (en) * 2018-10-30 2020-05-07 ソニーセミコンダクタソリューションズ株式会社 Sensor and control method
JP2020088676A (en) * 2018-11-28 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 Sensor and control method

Also Published As

Publication number Publication date
JP2021197710A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
TWI803506B (en) Pixel and method for operating the pixel
US20180270405A1 (en) Imaging device and imaging system
US9030583B2 (en) Imaging system with foveated imaging capabilites
US8643132B2 (en) In-pixel high dynamic range imaging
KR101361788B1 (en) System and method for a high dynamic range image sensor sensitive array
US10382707B2 (en) Imaging device
CN108886049B (en) Imaging device, driving method, and electronic apparatus
US10141364B2 (en) Imaging device including unit pixel cell
JP7174928B2 (en) Imaging device, camera system, and imaging device driving method
WO2021084833A1 (en) Object recognition system, signal processing method of object recognition system, and electronic device
US8957359B2 (en) Compact in-pixel high dynamic range imaging
CN101959009B (en) Image processing apparatus
US9986194B2 (en) Solid state imaging device and imaging system
US20210044766A1 (en) Photoelectric conversion device, imaging system, moving body, and exposure control device
JP6953263B2 (en) Solid-state image sensor and imaging system
CN110139047B (en) Image pickup apparatus, camera system, and method for driving image pickup apparatus
WO2020066432A1 (en) Solid-state imaging element, control method for solid-state imaging element, and electronic device
US20160014358A1 (en) Solid-state image pickup device and method of controlling solid-state image pickup device
JP2016076914A (en) Image sensor
US9179084B2 (en) Solid-state imaging device
US10348991B2 (en) Solid-state image pickup device with load transistors, method for controlling the same, and electronic apparatus
WO2021256102A1 (en) Sensor device, control method, and program
US11451724B2 (en) Imaging device and imaging system
EP3445037B1 (en) Varying exposure time of pixels in photo sensor using motion prediction
US6972399B2 (en) Reset voltage generation circuit for CMOS imagers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826241

Country of ref document: EP

Kind code of ref document: A1