WO2021255883A1 - 需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体 - Google Patents

需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2021255883A1
WO2021255883A1 PCT/JP2020/023898 JP2020023898W WO2021255883A1 WO 2021255883 A1 WO2021255883 A1 WO 2021255883A1 JP 2020023898 W JP2020023898 W JP 2020023898W WO 2021255883 A1 WO2021255883 A1 WO 2021255883A1
Authority
WO
WIPO (PCT)
Prior art keywords
demand
new
meta information
existing
information
Prior art date
Application number
PCT/JP2020/023898
Other languages
English (en)
French (fr)
Inventor
守 井口
沙樹 長城
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2020/023898 priority Critical patent/WO2021255883A1/ja
Priority to US18/009,822 priority patent/US20230245056A1/en
Priority to JP2022531189A priority patent/JPWO2021255883A5/ja
Publication of WO2021255883A1 publication Critical patent/WO2021255883A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/087Inventory or stock management, e.g. order filling, procurement or balancing against orders
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06315Needs-based resource requirements planning or analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/08Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
    • G06Q10/083Shipping
    • G06Q10/0838Historical data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities

Definitions

  • the present invention relates to a demand forecasting device and a demand forecasting method for forecasting the demand for parts, and further to a computer-readable recording medium in which a program for realizing these is recorded.
  • Patent Document 1 discloses a system for calculating a demand forecast value of a future shipment quantity of maintenance parts used for product maintenance by using a demand forecast model.
  • the demand forecast model is constructed based on the shipping record and the demand record of maintenance parts.
  • Patent Document 1 has a problem that it is difficult to predict the demand for new maintenance parts.
  • An example of an object of the present invention provides a demand forecasting device, a demand forecasting method, and a computer-readable recording medium that can solve the above-mentioned problems and predict demand even for parts that have not been shipped in the past. To do.
  • the first demand forecasting device in one aspect of the present invention is By inputting the meta information of the new part and the information about the use of the new part into the machine learning model that predicts the demand of the existing part by inputting the meta information of the existing part and the information about the use of the existing part, the new part It has a demand forecasting department that predicts the demand of It is characterized by being characterized by that.
  • the second demand forecasting device in one aspect of the present invention is By inputting the meta information of the existing part and outputting the forecast value for the demand of the existing part, the meta information of the new part is input to the machine learning model for the demand forecast of the existing part, and the forecast for the new part is predicted.
  • the predicted value acquisition unit that acquires the value
  • a model that builds a machine learning model for forecasting demand for new parts by machine learning the relationship between the meta information of the existing parts, the acquired predicted values for the new parts, and the meta information of the new parts.
  • the first demand forecasting method in one aspect of the present invention is: By inputting the meta information of the new part and the information about the use of the new part into the machine learning model that predicts the demand of the existing part by inputting the meta information of the existing part and the information about the use of the existing part, the new part Forecasting the demand of, having a demand forecasting step, It is characterized by that.
  • the second demand forecasting method in one aspect of the present invention is: By inputting the meta information of the existing part and outputting the forecast value for the demand of the existing part, the meta information of the new part is input to the machine learning model for the demand forecast of the existing part, and the forecast for the new part is predicted.
  • the predicted value acquisition step and A model that builds a machine learning model for forecasting demand for new parts by machine learning the relationship between the meta information of the existing parts, the acquired predicted values for the new parts, and the meta information of the new parts.
  • Learning steps and A demand forecasting step for forecasting the demand for the new component by inputting the meta information of the new component into the machine learning model for forecasting the demand for the new component. It is characterized by having.
  • the first computer-readable recording medium in one aspect of the present invention is On the computer
  • the new part Demand forecasting step which forecasts the demand of It is characterized by recording a program, including instructions to be executed.
  • the second computer-readable recording medium in one aspect of the present invention is On the computer
  • the meta information of the new part is input to the machine learning model for the demand forecast of the existing part, and the forecast for the new part is predicted.
  • Learning steps and A demand forecasting step for forecasting the demand for the new component by inputting the meta information of the new component into the machine learning model for forecasting the demand for the new component. It is characterized by recording a program including an instruction to execute.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a demand forecasting device according to the first embodiment.
  • FIG. 2 is a block diagram specifically showing the configuration of the demand forecasting device according to the first embodiment.
  • FIG. 3 is a diagram conceptually showing the learning process and the prediction process of the machine learning model in the first embodiment.
  • FIG. 4 is a flow chart showing the operation of the demand forecasting device according to the first embodiment.
  • FIG. 5 is a configuration diagram showing a schematic configuration of the demand forecasting device according to the second embodiment.
  • FIG. 6 is a block diagram specifically showing the configuration of the demand forecasting device according to the second embodiment.
  • FIG. 7 is a diagram conceptually showing the learning process and the prediction process of the machine learning model in the second embodiment.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a demand forecasting device according to the first embodiment.
  • FIG. 2 is a block diagram specifically showing the configuration of the demand forecasting device according to the first embodiment.
  • FIG. 3 is a diagram conceptually showing
  • FIG. 8 is a flow chart showing the operation of the demand forecasting device during the learning process according to the second embodiment.
  • FIG. 9 shows the meta information, the explanatory variables, and the objective variables in the first embodiment.
  • FIG. 10 shows the meta information, the explanatory variables, and the objective variables in the second embodiment.
  • FIG. 11 shows the meta information, the explanatory variables, and the objective variables in the third embodiment.
  • FIG. 12 is a block diagram showing an example of a computer that realizes the demand forecasting device according to the first and second embodiments.
  • FIG. 1 is a configuration diagram showing a schematic configuration of a demand forecasting device according to the first embodiment.
  • the demand forecasting device 10 in the first embodiment shown in FIG. 1 is a device for predicting the demand for parts such as mechanical devices and vehicles. As shown in FIG. 1, the demand forecasting device 10 includes a demand forecasting unit 20.
  • the demand forecasting unit 20 inputs meta information of a new part and information on the use of a new part into a machine learning model that predicts the demand of an existing part by inputting meta information of an existing part and information on the use of the existing part. Forecast demand for new parts.
  • Existing parts are, in many cases, parts that have been shipped in the past.
  • the information about the new part is input to the machine learning model that predicts the demand of the existing part, and the demand of the new part is predicted.
  • the demand can be predicted even for a new part that has not been shipped in the past or has not been shipped in the past.
  • new parts include parts used in new products such as mechanical equipment and vehicles.
  • the new parts are often similar to the existing parts, but they are designed according to the specifications of the new product, and the existing parts used in the old products are the replacement cycle, the number of used parts, etc. Often different in. Therefore, it is difficult to forecast the demand for new parts from the demand forecast results for existing parts.
  • FIG. 2 is a block diagram specifically showing the configuration of the demand forecasting device according to the first embodiment.
  • the demand forecasting device 10 further includes a data acquisition unit 30, a model learning unit 40, a model storage unit 50, and an output unit. It is equipped with 60.
  • the data acquisition unit 30 acquires training data in the machine learning model.
  • the training data of the machine learning model includes meta information of existing parts as explanatory variables, information on the use of existing parts as explanatory variables, and information indicating demand for existing parts as objective variables. Is.
  • the data acquisition unit 30 receives meta information on existing parts, information on the use of existing parts, and existing parts from an external device, for example, a terminal device connected to a demand forecasting device 10 via a network. Get information that indicates the demand for.
  • the meta information of the part is, for example, information that may be related to the demand of the part and represents the characteristics of the part.
  • Specific examples of the meta information of the part include the name (part name), the name of the device to be mounted (device name), the type, the mounting location, the material, the function, the application, the model number, and the like.
  • the meta information of the parts is not limited to the above-mentioned information.
  • Information (explanatory variable) regarding the use of parts is, for example, information obtained when parts are used.
  • Specific examples of the information regarding the use of the parts include information indicating the usage record, information indicating the operating status, information indicating the usage environment, and the like.
  • the information regarding the use of parts is not limited to the above-mentioned information.
  • the information (objective variable) indicating the demand for parts is, for example, information related to the necessity of parts (necessity of parts replacement). Specific examples of the information indicating the demand for parts include information indicating the inspection date, the presence / absence of replacement, the replacement time, the number of replacements, the replacement probability, and the like. The information indicating the demand for parts is not limited to the above-mentioned information.
  • the model learning unit 40 executes machine learning using the training data acquired by the data acquisition unit 30 to construct a machine learning model.
  • Examples of the machine learning method in this case include zero-shot learning, deep learning, ridge regression, logistic regression, support vector machine, and gradient boosting. Further, the model learning unit 40 stores the constructed machine learning model in the model storage unit 50.
  • FIG. 3 is a diagram conceptually showing the learning process and the prediction process of the machine learning model in the first embodiment.
  • the machine learning model uses the explanatory variable set (including meta information and information on use) prepared for each of the existing parts A to C as training data, and the zero shot using the objective variable. It is constructed by learning (see Reference 1 below).
  • the model learning unit 40 constructs a machine learning model that forecasts demand from an explanatory variable set of existing parts.
  • the constructed machine learning model is constructed by zero-shot learning, and weights are set for each meta information at the time of learning. Therefore, when the explanatory variable set (including meta information and information about use) of the new part is input to the constructed machine learning model, the predicted value of the demand of the new part can be output.
  • the demand forecasting unit 20 first metamorphoses a new component to be a demand forecast from an external device, for example, a user's terminal device connected to the demand forecasting device 10 via a network. Get information and information about use.
  • the demand forecasting unit 20 acquires a machine learning model from the model storage unit 50, and inputs meta information and information on use of the new part to be the target of the demand forecast into the acquired machine learning model.
  • the machine learning model outputs, for example, whether or not a new part is replaced or the number of replacements on a certain inspection date as an objective variable, that is, as a result of demand forecasting.
  • the output unit 60 transmits the prediction result by the demand forecast unit 20, specifically, the output objective variable to an external device, for example, a user's terminal device. This allows the user to know the demand forecast for new parts.
  • FIG. 4 is a flow chart showing the operation of the demand forecasting device according to the first embodiment.
  • FIGS. 1 to 3 will be referred to as appropriate.
  • the demand forecasting method is implemented by operating the demand forecasting device 10. Therefore, the description of the demand forecasting method in the first embodiment is replaced with the following operation description of the demand forecasting device.
  • the data acquisition unit 30 acquires meta information of existing parts, information on use of existing parts, and information indicating demand for existing parts from an external device (step A1).
  • the model learning unit 40 uses machine learning using the meta information of the existing parts, the information regarding the use of the existing parts (explanatory variable), and the information indicating the demand for the existing parts (objective variable) acquired in step A1. To build a machine learning model (step A2).
  • the demand forecasting unit 20 acquires meta information and usage information of the new parts subject to demand forecasting from an external device (step A3).
  • the demand forecasting unit 20 inputs the meta information of the new part to be the target of the demand forecast acquired in step A3 and the information on the use into the machine learning model constructed in step A2, and makes a demand forecast (). Step A4).
  • the demand forecasting unit 20 transmits the forecast result to an external device (step A5).
  • the external device is the terminal device of the user who desires the demand forecast
  • the forecast result is displayed on the screen of the terminal device.
  • the user can know the forecast result of the new part for which the demand forecast is obtained.
  • the demand for new parts can be predicted only by inputting the meta information of the new parts and the information regarding the use into the machine learning model for forecasting the demand for the existing parts.
  • the program in the first embodiment may be any program as long as it causes a computer to execute steps A1 to A5 shown in FIG.
  • the computer processor functions as a demand forecasting unit 20, a data acquisition unit 30, a model learning unit 40, and an output unit 60, and performs processing.
  • the model storage unit 50 may be realized by storing the data files constituting them in a storage device such as a hard disk provided in the computer, or may be stored in another computer. It may be realized by a device.
  • a storage device such as a hard disk provided in the computer
  • computers include smartphones and tablet terminal devices.
  • the program in the first embodiment may be executed by a computer system constructed by a plurality of computers.
  • each computer may function as any of the demand forecasting unit 20, the data acquisition unit 30, the model learning unit 40, and the output unit 60, respectively.
  • FIG. 5 is a configuration diagram showing a schematic configuration of the demand forecasting device according to the second embodiment.
  • the demand forecasting device 110 in the second embodiment shown in FIG. 5 is also a device for predicting the demand for parts such as mechanical devices and vehicles, like the demand forecasting device 10 in the first embodiment.
  • the demand forecasting device 110 in the second embodiment is different from the demand forecasting device 10 in the first embodiment in the processing of the demand forecasting.
  • the differences from the first embodiment will be mainly described.
  • the demand forecasting device 110 includes a forecast value acquisition unit 170, a model learning unit 140, and a demand forecast unit 120.
  • the forecast value acquisition unit 170 inputs the meta information of the new part into the machine learning model for forecasting the demand of the existing part, and acquires the forecast value for the new part.
  • the machine learning model for forecasting the demand of existing parts (hereinafter referred to as "existing parts demand forecast model”) inputs the meta information of the existing parts and outputs the forecast value for the demand of the existing parts. It is a model.
  • the model learning unit 140 is different from the first embodiment in that the relationship between the meta information of the existing part, the predicted value of the new part acquired by the predicted value acquisition unit 170, and the meta information of the new part. Is machine-learned to build a machine learning model for forecasting the demand for new parts (hereinafter referred to as "new parts demand forecast model").
  • the demand forecasting unit 120 inputs meta information of new parts into the new parts demand forecasting model to forecast the demand of new parts.
  • the relationship between the existing parts and the new parts is machine-learned by using the machine learning model for forecasting the demand of the existing parts that have been shipped in the past. Therefore, even in the second embodiment, the demand can be predicted even for new parts that have not been shipped in the past.
  • FIG. 6 is a block diagram specifically showing the configuration of the demand forecasting device according to the second embodiment.
  • the demand forecasting device 110 has a data acquisition unit 130 and a model storage unit in addition to the predicted value acquisition unit 170, the model learning unit 140, and the demand forecast unit 120 described above. It includes 150 and an output unit 160.
  • the data acquisition unit 130 uses an external device, for example, a terminal device connected to the demand forecast device 110 via a network, to generate an existing component demand forecast model. Get training data. Further, the data acquisition unit 130 inputs the acquired training data to the model learning unit 140.
  • an external device for example, a terminal device connected to the demand forecast device 110 via a network
  • the training data of the existing parts demand forecast model is the meta information of the existing parts as the explanatory variable and the actual value of the demand of the existing parts as the objective variable. Also in the second embodiment, the meta information is as described in the first embodiment.
  • the actual value of demand is the actual replacement time, number of replacements, etc. of existing parts.
  • the data acquisition unit 130 further acquires meta information of a new part from an external device.
  • the data acquisition unit 130 inputs the acquired meta information of the new component to the forecast value acquisition unit 170, the model learning unit 140, and the demand forecast unit 120.
  • the model learning unit 140 executes machine learning using the training data acquired by the data acquisition unit 130 to construct an existing parts demand forecast model.
  • Examples of the machine learning method in this case include deep learning, ridge regression, logistic regression, support vector machine, and gradient boosting. Further, the model learning unit 140 stores the constructed existing component demand forecast model in the model storage unit 150.
  • the model learning unit 140 builds a new parts demand forecast model.
  • the meta information of the existing part and the new part are used by using the predicted value of the new part acquired by the predicted value acquisition unit 170, the meta information of the existing part, and the meta information of the new part.
  • Build a new parts demand forecasting model by weighting the parts meta information.
  • FIG. 7 is a diagram conceptually showing the learning process and the prediction process of the machine learning model in the second embodiment.
  • the existing parts demand forecast model is constructed by machine learning using meta information and actual demand values prepared for each of the existing parts A to C as training data.
  • the model learning unit 140 performs zero-shot learning in the second embodiment to build a new component demand forecast model.
  • the zero-shot learning method is a learning method used to classify unknown classes using a known machine learning model.
  • the model learning unit 140 uses the predicted value output by inputting the meta information of the new part into the existing part prediction model, the meta information of the existing part, and the meta information of the new part. By weighting the meta information of the part and the meta information of the new part, a new part demand forecast model is constructed (see Reference 2 below).
  • the demand forecasting unit 120 inputs the meta information of the new parts acquired by the data acquisition unit 130 into the new parts demand forecasting model.
  • the inspection date, the presence / absence of replacement, the replacement time, the number of replacements, etc. of the new parts are output from the new parts demand forecast model as the result of the demand forecast.
  • the output unit 160 transmits the prediction result by the demand forecast unit 120, specifically, the output objective variable to an external device, for example, a user's terminal device. This allows the user to know the demand forecast for new parts.
  • FIG. 8 is a flow chart showing the operation of the demand forecasting device during the learning process according to the second embodiment.
  • FIGS. 6 and 7 will be referred to as appropriate.
  • the demand forecasting method is implemented by operating the demand forecasting device 110. Therefore, the description of the demand forecasting method in the second embodiment is replaced with the following operation description of the demand forecasting device.
  • the data acquisition unit 30 acquires the meta information of the existing part, the actual value of the demand of the existing part, and the meta information of the new part from the external device (step C1).
  • the model learning unit 40 executes machine learning using the meta information (explanatory variable) of the existing part and the actual value of the demand of the existing part (objective variable) acquired in step C1, and the existing part.
  • Build a demand forecast model step C2.
  • the forecast value acquisition unit 170 inputs the meta information of the new component acquired in step C1 into the existing component demand forecast model constructed in step C2, and acquires the output forecast value (step C3).
  • the model learning unit 140 performs zero-shot learning using the prediction result acquired in step C3, the meta information of the existing part acquired in step C1, and the meta information of the new component also acquired in step C1. Run. As a result, the model learning unit 140 builds a new component demand forecast model in which the relationship between the meta information of the existing component and the meta information of the new component is learned (step C4).
  • the demand forecasting unit 120 inputs the meta information of the new parts acquired in step C1 into the new parts demand forecasting model constructed in step C4, and makes a demand forecast (step C5).
  • the output unit 160 transmits the prediction result to an external device (step C6).
  • the external device is the terminal device of the user who desires the demand forecast
  • the forecast result is displayed on the screen of the terminal device.
  • the user can know the forecast result of the new part for which the demand forecast is obtained.
  • the program in the second embodiment may be any program as long as it causes a computer to execute steps C1 to C6 shown in FIG.
  • the computer processor functions as a demand forecasting unit 120, a data acquisition unit 130, a model learning unit 140, an output unit 160, and a predicted value acquisition unit 170, and performs processing.
  • the model storage unit 150 may be realized by storing the data files constituting them in a storage device such as a hard disk provided in the computer, or may be stored in another computer. It may be realized by a device.
  • a storage device such as a hard disk provided in the computer
  • computers include smartphones and tablet terminal devices.
  • the program in the second embodiment may be executed by a computer system constructed by a plurality of computers.
  • each computer may function as one of a demand forecasting unit 120, a data acquisition unit 130, a model learning unit 140, an output unit 160, and a forecast value acquisition unit 170, respectively.
  • Specific example 1 is an example of predicting the demand for maintenance parts owned by an automobile dealer by using the demand forecasting device 10 or 110.
  • information on the component side (part type, component mounting location, component material) and information on the vehicle body side to which the component is mounted (vehicle type, fuel Type) etc. are used.
  • Information on the use of explanatory variables includes the environment in which the parts are used, such as driving performance, average weight, average mileage / time from departure to stop, and climate in the area where the vehicle mainly travels (for example, temperature, etc.). Humidity, rainfall, presence or absence of snowfall), etc. are used.
  • inspection dates, presence / absence of replacement, etc. are used.
  • Automobile dealers can specify the meta information and usage environment even for new parts. Therefore, as shown in Specific Example 1, according to the demand forecasting device 10 or 110, even if it is a new part, it is predicted whether or not the maintenance part will be replaced at the time of periodic inspection. According to Specific Example 1, an automobile dealer can optimize the inventory of maintenance parts by forecasting the demand for repair parts. Further, at automobile dealers, it is possible to improve customer satisfaction by shortening the repair period and improve the operation efficiency of the parking lot.
  • Specific example 2 is an example of predicting the demand for maintenance parts of the server device by the demand forecasting device 10 or 110.
  • the product name, the device name, the article type, and the like are used as the meta information.
  • operating results for example, past failure records in server equipment, number of operating equipment, number of operating days, start date of use, environment in which the server equipment is installed, etc. are used. ..
  • As information on the demand for parts that serve as objective variables, inspection dates, presence / absence of replacement, and the like are used.
  • the administrator of the server device can specify the meta information even if it is a new part. Therefore, as shown in Specific Example 2, according to the demand forecasting device 10 or 110, it is predicted whether or not the parts will be replaced regularly even if they are new parts. According to the second embodiment, the administrator of the server device can quickly respond when a failure of the server device occurs.
  • Specific Example 3 is an example in which the demand forecasting device 10 or 110 predicts the demand for maintenance parts of a mechanical device having seasonal fluctuations. As shown in FIG. 11, in Specific Example 3, a product name, an article type, a place of use, a material, a scale, and the like are used as meta information. As information on the use of parts that serve as explanatory variables, operation results, for example, past failure results, number of operating devices, number of operating days, weather conditions, and the like are used. As information on the demand for parts that serve as objective variables, the year, month, number of replacements, and the like are used.
  • the manager of the mechanical device can specify the meta information even if it is a new part. Therefore, as shown in Specific Example 3, according to the demand forecasting device 10 or 110, the replacement time is predicted even for new parts. According to the third embodiment, the manager of the mechanical device can predict the replacement demand of the maintenance component for each season of the mechanical device, and can quickly replace the maintenance component.
  • FIG. 12 is a block diagram showing an example of a computer that realizes the demand forecasting device according to the second embodiment.
  • the computer 210 includes a CPU (Central Processing Unit) 211, a main memory 212, a storage device 213, an input interface 214, a display controller 215, a data reader / writer 216, and a communication interface 217. And prepare. Each of these parts is connected to each other via a bus 221 so as to be capable of data communication.
  • CPU Central Processing Unit
  • the computer 210 may include a GPU (Graphics Processing Unit) or an FPGA (Field-Programmable Gate Array) in addition to the CPU 211 or in place of the CPU 211.
  • the GPU or FPGA can execute the program in the embodiment.
  • the CPU 211 expands the program in the embodiment composed of the code group stored in the storage device 213 into the main memory 212, and executes various codes in a predetermined order to perform various operations.
  • the main memory 212 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory).
  • the program in the embodiment is provided in a state of being stored in a computer-readable recording medium 220.
  • the program in the present embodiment may be distributed on the Internet connected via the communication interface 217.
  • the storage device 213 include a semiconductor storage device such as a flash memory in addition to a hard disk drive.
  • the input interface 214 mediates data transmission between the CPU 211 and an input device 218 such as a keyboard and mouse.
  • the display controller 215 is connected to the display device 219 and controls the display on the display device 219.
  • the data reader / writer 216 mediates data transmission between the CPU 211 and the recording medium 220, reads a program from the recording medium 220, and writes the processing result of the computer 210 to the recording medium 220.
  • the communication interface 217 mediates data transmission between the CPU 211 and another computer.
  • the recording medium 220 include general-purpose semiconductor storage devices such as CF (Compact Flash (registered trademark)) and SD (Secure Digital), magnetic recording media such as flexible disks, and CD-. Examples include optical recording media such as ROM (Compact Disk Read Only Memory).
  • the demand forecasting device in the embodiment can also be realized by using the hardware corresponding to each part instead of the computer in which the program is installed. Further, the demand forecaster may be partially realized by a program and the rest may be realized by hardware.
  • the demand forecasting device described in Appendix 1 The meta information of the new part includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the new part.
  • the information regarding the use of the new part includes at least one of information indicating the usage record, information indicating the operating status, and information indicating the usage environment of the new part.
  • the meta information of the existing part includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the existing part.
  • the information regarding the use of the existing part includes at least one of information indicating the usage record, information indicating the operating status, and information indicating the usage environment of the existing part.
  • the meta information of the new part is input to the machine learning model for the demand forecast of the existing part, and the forecast for the new part is predicted.
  • the predicted value acquisition unit that acquires the value
  • a model that builds a machine learning model for forecasting demand for new parts by machine learning the relationship between the meta information of the existing parts, the acquired predicted values for the new parts, and the meta information of the new parts.
  • a demand forecasting unit that predicts the demand for the new parts by inputting the meta information of the new parts into the machine learning model for forecasting the demand for the new parts.
  • the demand forecaster is characterized by being equipped with.
  • the demand forecasting device described in Appendix 3 includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the new part.
  • the meta information of the existing component includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the existing component.
  • the demand forecasting device uses the acquired predicted value for the new part, the meta information of the existing part, and the meta information of the new part to obtain the meta information of the existing part and the meta information of the new part. By executing the weighting, a machine learning model for forecasting the demand of the new part is constructed.
  • the demand forecasting method described in Appendix 6 The meta information of the new part includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the new part.
  • the information regarding the use of the new part includes at least one of information indicating the usage record, information indicating the operating status, and information indicating the usage environment of the new part.
  • the meta information of the existing part includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the existing part.
  • the information regarding the use of the existing part includes at least one of information indicating the usage record, information indicating the operating status, and information indicating the usage environment of the existing part.
  • the demand forecasting method described in Appendix 8 The meta information of the new part includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the new part.
  • the meta information of the existing component includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the existing component.
  • Appendix 10 The demand forecasting method described in Appendix 8 or 9, In the model learning step, the acquired predicted value for the new part, the meta information of the existing part, and the meta information of the new part are used to obtain the meta information of the existing part and the meta information of the new part. By executing the weighting, a machine learning model for forecasting the demand of the new part is constructed. A demand forecasting method characterized by that.
  • the computer-readable recording medium according to Appendix 11, wherein the recording medium is readable.
  • the meta information of the new part includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the new part.
  • the information regarding the use of the new part includes at least one of information indicating the usage record, information indicating the operating status, and information indicating the usage environment of the new part.
  • the meta information of the existing part includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the existing part.
  • the information regarding the use of the existing part includes at least one of information indicating the usage record, information indicating the operating status, and information indicating the usage environment of the existing part.
  • a computer-readable recording medium characterized by that.
  • Appendix 14 The computer-readable recording medium according to Appendix 13, which is a computer-readable recording medium.
  • the meta information of the new part includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the new part.
  • the meta information of the existing component includes at least one of the name, the name of the device to be mounted, the type, the mounting location, and the material of the existing component.
  • Appendix 15 A computer-readable recording medium according to Appendix 13 or 14, wherein the recording medium is readable.
  • the model learning step the acquired predicted value for the new part, the meta information of the existing part, and the meta information of the new part are used to obtain the meta information of the existing part and the meta information of the new part.
  • a machine learning model for forecasting the demand of the new part is constructed.
  • the present invention it is possible to predict the demand even for parts that have not been shipped in the past.
  • the present invention is useful in devices that require maintenance, such as automobiles, machines, railroads, and computers.

Abstract

需要予測装置10は、第1の機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、新規部品の需要を予測する、需要予測部11を備えている。第1の機械学習モデルは、既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として既存部品の需要を予測する第2の機械学習モデルと、第2の機械学習モデルの訓練データとなった既存部品のメタ情報と、新規部品のメタ情報と、を用いた機械学習によって構築されている。

Description

需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体
 本発明は、部品の需要を予測するための、需要予測装置、及び需要予測方法に関し、更には、これらを実現するためのプログラムを記録したコンピュータ読み取り可能な記録媒体に関する。
 機械設備、車両等を運用する場合において、保守部品の在庫を多くかかえることは、運用コストの上昇を招いてしまう。このため、近年においては、保守部品の在庫の最適化を図るため保守部品の需要を予測するシステムが提案されている。
 例えば、特許文献1は、需要予測モデルを用いて、製品の保守に用いられる保守部品の将来における出荷数量の需要予測値を算出するシステムを開示している。特許文献1に開示されたシステムにおいて、需要予測モデルは、保守部品の出荷実績及び需要実績に基づいて構築される。
特開2013-182498号公報
 しかしながら、製品に改良が加えられたり、新しい製品が発売されたりすると、保守部品が新しくなることがあるが、新しくなった保守部品については、出荷実績及び需要実績が皆無又は僅かである。このため、上記特許文献1に開示されたシステムには、新しい保守部品について需要を予測することが難しいという問題がある。
 本発明の目的の一例は、上記問題を解消し、過去に出荷された実績の少ない部品であっても需要を予測し得る、需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体を提供することにある。
 上記目的を達成するため、本発明の一側面における第1の需要予測装置は、
 既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測する、需要予測部を備えている、
ことを特徴とすることを特徴とする。
 上記目的を達成するため、本発明の一側面における第2の需要予測装置は、
 既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得する、予測値取得部と、
 前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築する、モデル学習部と、
 前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測する、需要予測部と、
を備えている、ことを特徴とする。
 また、上記目的を達成するため、本発明の一側面における第1の需要予測方法は、
 既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測する、需要予測ステップを有する、
ことを特徴とする。
 また、上記目的を達成するため、本発明の一側面における第2の需要予測方法は、
 既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得する、予測値取得ステップと、
 前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築する、モデル学習ステップと、
 前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測する、需要予測ステップと、
を備えている、ことを特徴とする。
 更に、上記目的を達成するため、本発明の一側面における第1のコンピュータ読み取り可能な記録媒体は、
コンピュータに、
 既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測する、需要予測ステップを、
実行させる命令を含む、プログラムを記録している、ことを特徴とする。
 更に、上記目的を達成するため、本発明の一側面における第2のコンピュータ読み取り可能な記録媒体は、
コンピュータに、
 既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得する、予測値取得ステップと、
 前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築する、モデル学習ステップと、
 前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測する、需要予測ステップと、
を実行させる命令を含む、プログラムを記録していることを特徴とする。
 以上のように本発明によれば、過去に出荷された実績の少ない部品であっても需要を予測することができる。
図1は、実施の形態1における需要予測装置の概略構成を示す構成図である。 図2は、実施の形態1における需要予測装置の構成を具体的に示すブロック図である。 図3は、実施の形態1における機械学習モデルの学習処理及び予測処理を概念的に示す図である。 図4は、実施の形態1における需要予測装置の動作を示すフロー図である。 図5は、実施の形態2における需要予測装置の概略構成を示す構成図である。 図6は、実施の形態2における需要予測装置の構成を具体的に示すブロック図である。 図7は、実施の形態2における機械学習モデルの学習処理及び予測処理を概念的に示す図である。 図8は、実施の形態2における需要予測装置の学習処理時の動作を示すフロー図である。 図9は、具体例1におけるメタ情報、説明変数、及び目的変数を示している。 図10は、具体例2におけるメタ情報、説明変数、及び目的変数を示している。 図11は、具体例3におけるメタ情報、説明変数、及び目的変数を示している。 図12は、実施の形態1及び2における需要予測装置を実現するコンピュータの一例を示すブロック図である。
(実施の形態1)
 実施の形態1における、需要予測装置、需要予測方法、及びプログラムについて、図1~図4を参照しながら説明する。
[装置構成]
 最初に、実施の形態1における需要予測装置の概略構成について図1を用いて説明する。図1は、実施の形態1における需要予測装置の概略構成を示す構成図である。
 図1に示す、実施の形態1における需要予測装置10は、機械装置、車両等の部品の需要を予測するための装置である。図1に示すように、需要予測装置10は、需要予測部20を備えている。
 需要予測部20は、既存部品のメタ情報及び既存部品の使用に関する情報を入力として既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び新規部品の使用に関する情報を入力して、新規部品の需要を予測する。既存部品は、多くの場合において、過去に出荷実績のある部品である。
 このように、実施の形態1では、既存部品の需要予測を行う機械学習モデルに、新規部品についての情報が入力されて、新規部品の需要が予測される。実施の形態によれば、過去に出荷された実績のない、又は出荷された実績が少ない新規部品であっても需要を予測することができる。
 新規部品としては、例えば、機械設備、車両等における新製品で用いられる部品が挙げられる。この場合、新規部品は、既存部品に類似していることが多いが、新製品の仕様に合わせて設計されており、旧型の製品で用いられていた既存部品とは、交換サイクル、使用個数等において異なっている場合が多い。このため、既存部品の需要予測結果から、新規部品の需要を予測することは困難である。
 続いて、図2及び図3を用いて、実施の形態における需要予測装置の構成及び機能について具体的に説明する。図2は、実施の形態1における需要予測装置の構成を具体的に示すブロック図である。
 図2に示すように、実施の形態1では、需要予測装置10は、上述した需要予測部20に加えて、更に、データ取得部30と、モデル学習部40と、モデル格納部50と出力部60と、を備えている。
 データ取得部30は、機械学習モデルにおける訓練データを取得する。実施の形態1において、機械学習モデルの訓練データは、説明変数となる既存部品のメタ情報と、同じく説明変数となる既存部品の使用に関する情報と、目的変数となる既存部品の需要を示す情報とである。
 具体的には、データ取得部30は、外部の装置、例えば、需要予測装置10にネットワークを介して接続された端末装置等から、既存部品のメタ情報、既存部品の使用に関する情報、及び既存部品の需要を示す情報を取得する。
 ここで、部品のメタ情報は、例えば、部品の需要に関連する可能性がある情報であって、部品についての特徴を表す情報である。部品のメタ情報の具体例としては、部品についての、名称(部品名)、取り付けられる装置の名称(装置名)、種類、取付箇所、材質、機能、用途、型番等が挙げられる。なお、部品のメタ情報は、上述した情報に限定されることはない。
 部品の使用に関する情報(説明変数)は、例えば、部品が使用された場合に得られる情報である。部品の使用に関する情報の具体例としては、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報等が挙げられる。なお、部品の使用に関する情報は、上述した情報に限定されることはない。
 部品の需要を示す情報(目的変数)は、例えば、部品の必要性(部品交換の必要性)に関連する情報である。部品の需要を示す情報の具体例としては、検査日、交換の有無、交換時期、交換数、交換確率等を示す情報が挙げられる。なお、部品の需要を示す情報は、上述した情報に限定されることはない。
 モデル学習部40は、データ取得部30が取得した訓練データを用いて、機械学習を実行して、機械学習モデルを構築する。この場合の機械学習の手法としては、ゼロショット学習、ディープラーニング、リッジ回帰、ロジスティック回帰、サポートベクトルマシン、勾配ブースティング等が挙げられる。また、モデル学習部40は、構築した機械学習モデルをモデル格納部50に格納する。
 図3を用いて、機械学習モデルの構築及び需要予測について説明する。図3は、実施の形態1における機械学習モデルの学習処理及び予測処理を概念的に示す図である。図3の例では、機械学習モデルは、訓練データとして、既存部品A~Cそれぞれ毎に用意された、説明変数セット(メタ情報及び使用に関する情報を含む)、及び目的変数を用いた、ゼロショット学習によって構築されている(以下の参考文献1を参照)。モデル学習部40は、図3に示すように、既存部品の説明変数セットとから需要予測を行う機械学習モデルを構築する。
 但し、構築された機械学習モデルは、ゼロショット学習によって構築されており、学習時にメタ情報毎に重みが設定されている。このため、構築された機械学習モデルに、新規部品の説明変数セット(メタ情報及び使用に関する情報を含む)が入力されると、新規部品の需要の予測値を出力することができる。
 参考文献1:坂井智哉、十河康弘著、「運用中の予測器を使って道のクラスを分類する方法」、The 33rd Annual Conference of the Japanese Society for Artificial Intelligence, 2019,<https://www.jstage.jst.go.jp/article/pjsai/JSAI2019/0/JSAI2019_3Rin206/_article/-char/ja/>
 需要予測部20は、図3に示すように、まず、外部の装置、例えば、需要予測装置10にネットワークを介して接続されたユーザの端末装置等から、需要予測の対象となる新規部品のメタ情報及び使用に関する情報を取得する。
 続いて、需要予測部20は、モデル格納部50から機械学習モデルを取得し、取得した機械学習モデルに、需要予測の対象となる新規部品のメタ情報及び使用に関する情報を入力する。これにより、機械学習モデルから、目的変数として、即ち、需要予測の結果として、例えば、新規部品について、ある検査日における交換の有無や交換数等が出力される。
 出力部60は、需要予測部20による予測結果、具体的には、出力された目的変数を、外部の装置、例えば、ユーザの端末装置に送信する。これにより、ユーザは、新規部品の需要予測を知ることができる。
[装置動作]
 次に、実施の形態1における需要予測装置10の動作について図4を用いて説明する。図4は、実施の形態1における需要予測装置の動作を示すフロー図である。以下の説明においては、適宜図1~図3を参照する。また、実施の形態1では、需要予測装置10を動作させることによって、需要予測方法が実施される。よって、実施の形態1における需要予測方法の説明は、以下の需要予測装置の動作説明に代える。
 図4に示すように、最初に、データ取得部30は、外部の装置から、既存部品のメタ情報、既存部品の使用に関する情報、及び既存部品の需要を示す情報を取得する(ステップA1)。
 次に、モデル学習部40は、ステップA1で取得した、既存部品のメタ情報、既存部品の使用に関する情報(説明変数)、及び既存部品の需要を示す情報(目的変数)を用いて、機械学習を実行して、機械学習モデルを構築する(ステップA2)。
 次に、需要予測部20は、外部の装置から、需要予測の対象となる新規部品のメタ情報及び使用に関する情報を取得する(ステップA3)。
 次に、需要予測部20は、ステップA2で構築された機械学習モデルに、ステップA3で取得した需要予測の対象となる新規部品のメタ情報及び使用に関する情報を入力して、需要予測を行う(ステップA4)。
 その後、需要予測部20は、予測結果を、外部の装置に送信する(ステップA5)。外部の装置が、需要予測を希望したユーザの端末装置である場合は、予測結果が、端末装置の画面に表示される。これにより、ユーザは、需要予測を求めた新規部品の予測結果を知ることができる。
[実施の形態1における効果]
 このように、実施の形態1によれば、既存部品の需要予測を行う機械学習モデルに、新規部品のメタ情報及び使用に関する情報を入力するだけで、新規部品の需要を予測することができる。
[プログラム]
 実施の形態1におけるプログラムは、コンピュータに、図4に示すステップA1~A5を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、実施の形態1における需要予測装置10と需要予測方法とを実現することができる。この場合、コンピュータのプロセッサは、需要予測部20、データ取得部30、モデル学習部40、及び出力部60として機能し、処理を行なう。
 また、実施の形態1では、モデル格納部50は、コンピュータに備えられたハードディスク等の記憶装置に、これらを構成するデータファイルを格納することによって実現されていても良いし、別のコンピュータの記憶装置によって実現されていても良い。また、コンピュータとしては、汎用のPCの他に、スマートフォン、タブレット型端末装置が挙げられる。
 実施の形態1におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、需要予測部20、データ取得部30、モデル学習部40、及び出力部60のいずれかとして機能しても良い。
(実施の形態2)
 続いて、実施の形態2における、需要予測装置、需要予測方法、及びプログラムについて、図5~図8を参照しながら説明する。
[装置構成]
 最初に、実施の形態2における需要予測装置の概略構成について図5を用いて説明する。図5は、実施の形態2における需要予測装置の概略構成を示す構成図である。
 図5に示す、実施の形態2における需要予測装置110も、実施の形態1における需要予測装置10と同様に、機械装置、車両等の部品の需要を予測するための装置である。但し、実施の形態2における需要予測装置110は、需要予測の処理において、実施の形態1における需要予測装置10と異なっている。以下、実施の形態1との相違点を中心に説明する。
 図5に示すように、実施の形態2における需要予測装置110は、予測値取得部170と、モデル学習部140と、需要予測部120とを備えている。
 予測値取得部170は、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、新規部品についての予測値を取得する。ここで、既存部品の需要予測用の機械学習モデル(以下、「既存部品需要予測モデル」と表記する。)は、既存部品のメタ情報を入力として、既存部品の需要についての予測値を出力するモデルである。
 モデル学習部140は、実施の形態2では、実施の形態1と異なり、既存部品のメタ情報と、予測値取得部170が取得した新規部品についての予測値と、新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデル(以下「新規部品需要予測モデル」と表記する。)を構築する。
 需要予測部120は、新規部品需要予測モデルに、新規部品のメタ情報を入力して、新規部品の需要を予測する。
 このように、実施の形態2では、過去に出荷された実績のある既存部品の需要予測を行う機械学習モデルを用いて、既存部品と新規部品との関係が機械学習される。このため、実施の形態2によっても、過去に出荷された実績のない新規部品であっても需要を予測することができる。
 続いて、図6を用いて、実施の形態2における需要予測装置の構成及び機能について具体的に説明する。図6は、実施の形態2における需要予測装置の構成を具体的に示すブロック図である。
 図6に示すように、実施の形態2における需要予測装置110は、上述した、予測値取得部170、モデル学習部140、及び需要予測部120に加えて、データ取得部130と、モデル格納部150と、出力部160とを備えている。
 データ取得部130は、まず、実施の形態1におけるデータ取得部30と同様に、外部の装置、例えば、需要予測装置110にネットワークを介して接続された端末装置等から、既存部品需要予測モデルの訓練データを取得する。また、データ取得部130は、取得した訓練データを、モデル学習部140に入力する。
 既存部品需要予測モデルの訓練データは、説明変数となる既存部品のメタ情報と、目的変数となる既存部品の需要の実績値である。実施の形態2においても、メタ情報は、実施の形態1で説明した通りである。需要の実績値は、既存部品における実際の交換時期、交換数等である。
 また、データ取得部130は、更に、外部の装置から、新規部品のメタ情報を取得する。データ取得部130は、取得した新規部品のメタ情報を、予測値取得部170、モデル学習部140、及び需要予測部120に入力する。
 モデル学習部140は、まず、データ取得部130が取得した訓練データを用いて、機械学習を実行して、既存部品需要予測モデルを構築する。この場合の機械学習の手法としては、ディープラーニング、リッジ回帰、ロジスティック回帰、サポートベクトルマシン、勾配ブースティング等が挙げられる。また、モデル学習部140は、構築した既存部品需要予測モデルをモデル格納部150に格納する。
 続いて、モデル学習部140は、新規部品需要予測モデルを構築する。具体的には、実施の形態2では、予測値取得部170で取得された新規部品についての予測値、既存部品のメタ情報、及び新規部品のメタ情報を用いて、既存部品のメタ情報と新規部品のメタ情報とに重み付けを実行することによって、新規部品需要予測モデルを構築する。
 ここで、図7を用いて、新規部品需要予測モデルの構築について説明する。図7は、実施の形態2における機械学習モデルの学習処理及び予測処理を概念的に示す図である。図7の例では、既存部品需要予測モデルは、訓練データとして、既存部品A~Cそれぞれ毎に用意された、メタ情報及び需要の実績値を用いた、機械学習によって構築されている。
 モデル学習部140は、図7に示すように、実施の形態2では、ゼロショット学習を行って、新規部品需要予測モデルを構築する。ゼロショット学習法は、既知の機械学習モデルを用いて、未知のクラスを分類するために行う学習法である。
 具体的には、モデル学習部140は、既存部品予測モデルに新規部品のメタ情報を入力して出力された予測値と、既存部品のメタ情報と、新規部品のメタ情報とを用いて、既存部品のメタ情報と新規部品のメタ情報とに重み付けを実行することによって、新規部品需要予測モデルを構築する(以下の参考文献2を参照)。
 参考文献2:Wiradee Imrattanatrai、加藤 誠、吉川正俊著、「ゼロショット学習によるテキストからのエンティティプロパティ同定」、DEIM Forum 2019、<URL: https://db-event.jpn.org/deim2019/post/papers/343.pdf>
 また、需要予測部120は、図7に示すように、データ取得部130で取得された新規部品のメタ情報を、新規部品需要予測モデルに入力する。これにより、新規部品需要予測モデルから、需要予測の結果として、例えば、新規部品についての、検査日、交換の有無、交換時期、交換数等が出力される。
 出力部160は、需要予測部120による予測結果、具体的には、出力された目的変数を、外部の装置、例えば、ユーザの端末装置に送信する。これにより、ユーザは、新規部品の需要予測を知ることができる。
[装置動作]
 次に、実施の形態2における需要予測装置110の動作について図8を用いて説明する。図8は、実施の形態2における需要予測装置の学習処理時の動作を示すフロー図である。以下の説明においては、適宜図6及び図7を参照する。また、実施の形態2では、需要予測装置110を動作させることによって、需要予測方法が実施される。よって、実施の形態2における需要予測方法の説明は、以下の需要予測装置の動作説明に代える。
 図8に示すように、最初に、データ取得部30は、外部の装置から、既存部品のメタ情報、既存部品の需要の実績値、新規部品のメタ情報を取得する(ステップC1)。
 次に、モデル学習部40は、ステップC1で取得した、既存部品のメタ情報(説明変数)、及び既存部品の需要の実績値(目的変数)を用いて、機械学習を実行して、既存部品需要予測モデルを構築する(ステップC2)。
 次に、予測値取得部170は、ステップC2で構築された既存部品需要予測モデルに、ステップC1で取得した新規部品のメタ情報を入力し、出力された予測値を取得する(ステップC3)。
 次に、モデル学習部140は、ステップC3で取得した予測結果と、ステップC1で取得した既存部品のメタ情報と、同じくステップC1で取得した新規部品のメタ情報とを用いて、ゼロショット学習を実行する。これにより、モデル学習部140は、既存部品のメタ情報と新規部品のメタ情報との関係が学習された、新規部品需要予測モデルを構築する(ステップC4)。
 次に、需要予測部120は、ステップC4で構築された新規部品需要予測モデルに、ステップC1で取得した新規部品のメタ情報を入力して、需要予測を行う(ステップC5)。
 その後、出力部160は、予測結果を、外部の装置に送信する(ステップC6)。外部の装置が、需要予測を希望したユーザの端末装置である場合は、予測結果が、端末装置の画面に表示される。これにより、ユーザは、需要予測を求めた新規部品の予測結果を知ることができる。
[実施の形態2における効果]
 実施の形態2では、このように、既存部品の需要予測を行う機械学習モデルを用いて、既存部品のメタ情報と新規部品のメタ情報との関係がゼロショット学習される。このため、実施の形態2によれば、新規部品であっても、需要を予測することができる。
[プログラム]
 実施の形態2におけるプログラムは、コンピュータに、図8に示すステップC1~C6を実行させるプログラムであれば良い。このプログラムをコンピュータにインストールし、実行することによって、実施の形態2における需要予測装置110と需要予測方法とを実現することができる。この場合、コンピュータのプロセッサは、需要予測部120、データ取得部130、モデル学習部140、出力部160、及び予測値取得部170として機能し、処理を行なう。
 また、実施の形態2では、モデル格納部150は、コンピュータに備えられたハードディスク等の記憶装置に、これらを構成するデータファイルを格納することによって実現されていても良いし、別のコンピュータの記憶装置によって実現されていても良い。また、コンピュータとしては、汎用のPCの他に、スマートフォン、タブレット型端末装置が挙げられる。
 実施の形態2におけるプログラムは、複数のコンピュータによって構築されたコンピュータシステムによって実行されても良い。この場合は、例えば、各コンピュータが、それぞれ、需要予測部120、データ取得部130、モデル学習部140、出力部160、及び予測値取得部170のいずれかとして機能しても良い。
(具体例)
 続いて、図9~図11を用いて、実施の形態1及び2の具体例について説明する。図9~図11は、それぞれ、各具体例で用いられる情報を示している。
 具体例1:
 具体例1は、需要予測装置10又は110によって、自動車の販売店が保有する保守部品の需要を予測する例である。図9に示すように、具体例1では、メタ情報として、部品側の情報(部品の種類、部品取付箇所、部品の材質)、当該部品が取り付けられる車体側の情報(車両の種類、燃料の種類)等が用いられている。説明変数となる部品の使用に関する情報としては、部品の使用環境、例えば、走行実績、平均重量、発車から停車までの平均走行距離・時間、車両が主に走行した地域の気候(例えば、気温、湿度、雨量、降雪の有無)等が用いられている。目的変数となる部品の需要に関する情報として、検査日、交換の有無等が用いられている。
 自動車の販売店は、新規部品であっても、そのメタ情報及び使用環境を特定することは可能である。よって、具体例1に示すように、需要予測装置10又は110によれば、新規部品であっても、定期検査の際の保守部品の交換の有無が予測される。具体例1によれば、自動車の販売店では、補修部品の需要を予測することで、保守部品の在庫の最適化を図ることができる。更に、自動車の販売店では、修理期間の短縮による顧客満足度の向上、及び駐車場の運用効率の向上も図ることができる。
 具体例2:
 具体例2は、需要予測装置10又は110によって、サーバ装置の保守部品の需要を予測する例である。図10に示すように、具体例2では、メタ情報として、品名、装置名、物品種類等が用いられている。説明変数となる部品の使用に関する情報としては、稼働実績、例えば、サーバ装置における、過去の障害実績、稼働機器数、稼働日数、使用開始日、サーバ装置が設置された環境等が用いられている。目的変数となる部品の需要に関する情報としては、検査日、交換の有無等が用いられている。
 サーバ装置の管理者は、新規部品であっても、そのメタ情報を特定することは可能である。よって、具体例2に示すように、需要予測装置10又は110によれば、新規部品であっても、定期的な交換の有無が予測される。具体例2によれば、サーバ装置の管理者は、サーバ装置の障害発生時において、迅速に対応することができる。
 具体例3:
 具体例3は、需要予測装置10又は110によって、季節変動性のある機械装置の保守部品の需要を予測する例である。図11に示すように、具体例3では、メタ情報として、品名、物品種類、使用箇所、材質、規模等が用いられている。説明変数となる部品の使用に関する情報としては、稼働実績、例えば、過去の障害実績、稼働機器数、稼働日数、気象状況等が用いられている。目的変数となる部品の需要に関する情報としては、年月、交換数等が用いられている。
 機械装置の管理者は、新規部品であっても、そのメタ情報を特定することは可能である。よって、具体例3に示すように、需要予測装置10又は110によれば、新規部品であっても、交換時期が予測される。具体例3によれば、機械装置の管理者は、機械装置の季節毎の保守部品の交換需要を予測でき、迅速に保守部品を交換することができる。
[物理構成]
 ここで、実施の形態1及び2におけるプログラムを実行することによって、需要予測装置を実現するコンピュータについて図12を用いて説明する。図12は、実施の形態2における需要予測装置を実現するコンピュータの一例を示すブロック図である。
 図12に示すように、コンピュータ210は、CPU(Central Processing Unit)211と、メインメモリ212と、記憶装置213と、入力インターフェイス214と、表示コントローラ215と、データリーダ/ライタ216と、通信インターフェイス217とを備える。これらの各部は、バス221を介して、互いにデータ通信可能に接続される。
 また、コンピュータ210は、CPU211に加えて、又はCPU211に代えて、GPU(Graphics Processing Unit)、又はFPGA(Field-Programmable Gate Array)を備えていても良い。この態様では、GPU又はFPGAが、実施の形態におけるプログラムを実行することができる。
 CPU211は、記憶装置213に格納された、コード群で構成された実施の形態におけるプログラムをメインメモリ212に展開し、各コードを所定順序で実行することにより、各種の演算を実施する。メインメモリ212は、典型的には、DRAM(Dynamic Random Access Memory)等の揮発性の記憶装置である。
 また、実施の形態におけるプログラムは、コンピュータ読み取り可能な記録媒体220に格納された状態で提供される。なお、本実施の形態におけるプログラムは、通信インターフェイス217を介して接続されたインターネット上で流通するものであっても良い。
 また、記憶装置213の具体例としては、ハードディスクドライブの他、フラッシュメモリ等の半導体記憶装置が挙げられる。入力インターフェイス214は、CPU211と、キーボード及びマウスといった入力機器218との間のデータ伝送を仲介する。表示コントローラ215は、ディスプレイ装置219と接続され、ディスプレイ装置219での表示を制御する。
 データリーダ/ライタ216は、CPU211と記録媒体220との間のデータ伝送を仲介し、記録媒体220からのプログラムの読み出し、及びコンピュータ210における処理結果の記録媒体220への書き込みを実行する。通信インターフェイス217は、CPU211と、他のコンピュータとの間のデータ伝送を仲介する。
 また、記録媒体220の具体例としては、CF(Compact Flash(登録商標))及びSD(Secure Digital)等の汎用的な半導体記憶デバイス、フレキシブルディスク(Flexible Disk)等の磁気記録媒体、又はCD-ROM(Compact Disk Read Only Memory)などの光学記録媒体が挙げられる。
 なお、実施の形態における需要予測装置は、プログラムがインストールされたコンピュータではなく、各部に対応したハードウェアを用いることによっても実現可能である。更に、需要予測装置は、一部がプログラムで実現され、残りの部分がハードウェアで実現されていてもよい。
 上述した実施の形態の一部又は全部は、以下に記載する(付記1)~(付記15)によって表現することができるが、以下の記載に限定されるものではない。
(付記1)
 既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測する、需要予測部を備えている、
ことを特徴とする需要予測装置。
(付記2)
 付記1に記載の需要予測装置であって、
 前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記新規部品の使用に関する情報が、前記新規部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含み、
 前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記既存部品の使用に関する情報が、前記既存部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含む、
ことを特徴とする需要予測装置。
(付記3)
 既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得する、予測値取得部と、
 前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築する、モデル学習部と、
 前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測する、需要予測部と、
を備えている、ことを特徴とする需要予測装置。
(付記4)
 付記3に記載の需要予測装置であって、
 前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含む、
ことを特徴とする需要予測装置。
(付記5)
 付記3または4に記載の需要予測装置であって、
 前記モデル学習部が、取得された前記新規部品についての予測値、前記既存部品のメタ情報、及び前記新規部品のメタ情報を用いて、前記既存部品のメタ情報と前記新規部品のメタ情報とに重み付けを実行することによって、前記新規部品の需要予測用の機械学習モデルを構築する、
ことを特徴とする需要予測装置。
(付記6)
 既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測する、需要予測ステップを有する、
ことを特徴とする需要予測方法。
(付記7)
 付記6に記載の需要予測方法であって、
 前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記新規部品の使用に関する情報が、前記新規部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含み、
 前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記既存部品の使用に関する情報が、前記既存部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含む、
ことを特徴とする需要予測方法。
(付記8)
 既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得する、予測値取得ステップと、
 前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築する、モデル学習ステップと、
 前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測する、需要予測ステップと、
を備えている、ことを特徴とする需要予測方法。
(付記9)
 付記8に記載の需要予測方法であって、
 前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含む、
ことを特徴とする需要予測方法。
(付記10)
 付記8または9に記載の需要予測方法であって、
 前記モデル学習ステップにおいて、取得された前記新規部品についての予測値、前記既存部品のメタ情報、及び前記新規部品のメタ情報を用いて、前記既存部品のメタ情報と前記新規部品のメタ情報とに重み付けを実行することによって、前記新規部品の需要予測用の機械学習モデルを構築する、
ことを特徴とする需要予測方法。
(付記11)
コンピュータに、
 既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測する、需要予測ステップを、
実行させる命令を含む、プログラムを記録している、コンピュータ読み取り可能な記録媒体。
(付記12)
 付記11に記載のコンピュータ読み取り可能な記録媒体であって、
 前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記新規部品の使用に関する情報が、前記新規部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含み、
 前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記既存部品の使用に関する情報が、前記既存部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含む、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記13)
コンピュータに、
 既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得する、予測値取得ステップと、
 前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築する、モデル学習ステップと、
 前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測する、需要予測ステップと、
を実行させる命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
(付記14)
 付記13に記載のコンピュータ読み取り可能な記録媒体であって、
 前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
 前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含む、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
(付記15)
 付記13または14に記載のコンピュータ読み取り可能な記録媒体であって、
 前記モデル学習ステップにおいて、取得された前記新規部品についての予測値、前記既存部品のメタ情報、及び前記新規部品のメタ情報を用いて、前記既存部品のメタ情報と前記新規部品のメタ情報とに重み付けを実行することによって、前記新規部品の需要予測用の機械学習モデルを構築する、
ことを特徴とするコンピュータ読み取り可能な記録媒体。
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記実施の形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 以上のように本発明によれば、過去に出荷された実績のない部品であっても需要を予測することができる。本発明は、自動車、機械、鉄道、コンピュータ等の保守が必要な機器において有用である。
 10 需要予測装置(実施の形態1)
 20 需要予測部
 30 データ取得部
 40 モデル学習部
 50 モデル格納部
 60 出力部
 110 需要予測装置(実施の形態2)
 120 需要予測部
 130 データ取得部
 140 モデル学習部
 150 モデル格納部
 160 出力部
 170 予測値取得部
 210 コンピュータ
 211 CPU
 212 メインメモリ
 213 記憶装置
 214 入力インターフェイス
 215 表示コントローラ
 216 データリーダ/ライタ
 217 通信インターフェイス
 218 入力機器
 219 ディスプレイ装置
 220 記録媒体
 221 バス

Claims (15)

  1.  既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測する、需要予測手段を備えている、
    ことを特徴とする需要予測装置。
  2.  請求項1に記載の需要予測装置であって、
     前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記新規部品の使用に関する情報が、前記新規部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含み、
     前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記既存部品の使用に関する情報が、前記既存部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含む、
    ことを特徴とする需要予測装置。
  3.  既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得する、予測値取得手段と、
     前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築する、モデル学習手段と、
     前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測する、需要予測手段と、
    を備えている、ことを特徴とする需要予測装置。
  4.  請求項3に記載の需要予測装置であって、
     前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含む、
    ことを特徴とする需要予測装置。
  5.  請求項3または4に記載の需要予測装置であって、
     前記モデル学習手段が、取得された前記新規部品についての予測値、前記既存部品のメタ情報、及び前記新規部品のメタ情報を用いて、前記既存部品のメタ情報と前記新規部品のメタ情報とに重み付けを実行することによって、前記新規部品の需要予測用の機械学習モデルを構築する、
    ことを特徴とする需要予測装置。
  6.  既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測する、
    ことを特徴とする需要予測方法。
  7.  請求項6に記載の需要予測方法であって、
     前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記新規部品の使用に関する情報が、前記新規部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含み、
     前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記既存部品の使用に関する情報が、前記既存部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含む、
    ことを特徴とする需要予測方法。
  8.  既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得し、
     前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築し、
     前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測する、
    ことを特徴とする需要予測方法。
  9.  請求項8に記載の需要予測方法であって、
     前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含む、
    ことを特徴とする需要予測方法。
  10.  請求項8または9に記載の需要予測方法であって、
     前記機械学習モデルの構築において、取得された前記新規部品についての予測値、前記既存部品のメタ情報、及び前記新規部品のメタ情報を用いて、前記既存部品のメタ情報と前記新規部品のメタ情報とに重み付けを実行することによって、前記新規部品の需要予測用の機械学習モデルを構築する、
    ことを特徴とする需要予測方法。
  11. コンピュータに、
     既存部品のメタ情報及び前記既存部品の使用に関する情報を入力として前記既存部品の需要を予測する機械学習モデルに、新規部品のメタ情報及び前記新規部品の使用に関する情報を入力して、前記新規部品の需要を予測させる、
    命令を含む、プログラムを記録している、コンピュータ読み取り可能な記録媒体。
  12.  請求項11に記載のコンピュータ読み取り可能な記録媒体であって、
     前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記新規部品の使用に関する情報が、前記新規部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含み、
     前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記既存部品の使用に関する情報が、前記既存部品についての、使用実績を示す情報、稼働状況を示す情報、使用環境を示す情報のうち少なくとも1つを含む、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
  13. コンピュータに、
     既存部品のメタ情報を入力として、前記既存部品の需要についての予測値を出力する、既存部品の需要予測用の機械学習モデルに、新規部品のメタ情報を入力して、前記新規部品についての予測値を取得させ、
     前記既存部品のメタ情報と、取得された前記新規部品についての予測値と、前記新規部品のメタ情報との関係を機械学習して、新規部品の需要予測用の機械学習モデルを構築させ、
     前記新規部品の需要予測用の機械学習モデルに、前記新規部品のメタ情報を入力して、前記新規部品の需要を予測させる、
    命令を含む、プログラムを記録しているコンピュータ読み取り可能な記録媒体。
  14.  請求項13に記載のコンピュータ読み取り可能な記録媒体であって、
     前記新規部品のメタ情報が、前記新規部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含み、
     前記既存部品のメタ情報が、前記既存部品についての、名称、取り付けられる装置の名称、種類、取付箇所、材質のうち少なくとも1つを含む、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
  15.  請求項13または14に記載のコンピュータ読み取り可能な記録媒体であって、
     前記機械学習モデルの構築において、取得された前記新規部品についての予測値、前記既存部品のメタ情報、及び前記新規部品のメタ情報を用いて、前記既存部品のメタ情報と前記新規部品のメタ情報とに重み付けを実行することによって、前記新規部品の需要予測用の機械学習モデルを構築する、
    ことを特徴とするコンピュータ読み取り可能な記録媒体。
PCT/JP2020/023898 2020-06-18 2020-06-18 需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体 WO2021255883A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/023898 WO2021255883A1 (ja) 2020-06-18 2020-06-18 需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体
US18/009,822 US20230245056A1 (en) 2020-06-18 2020-06-18 Demand estimation apparatus, demand estimation method, and computer-readable recording medium
JP2022531189A JPWO2021255883A5 (ja) 2020-06-18 需要予測装置、需要予測方法、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/023898 WO2021255883A1 (ja) 2020-06-18 2020-06-18 需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体

Publications (1)

Publication Number Publication Date
WO2021255883A1 true WO2021255883A1 (ja) 2021-12-23

Family

ID=79267663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023898 WO2021255883A1 (ja) 2020-06-18 2020-06-18 需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体

Country Status (2)

Country Link
US (1) US20230245056A1 (ja)
WO (1) WO2021255883A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053806A1 (ja) * 2021-09-28 2023-04-06 本田技研工業株式会社 需要予測装置、需要予測方法、および記憶媒体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169946A (ja) * 2000-11-30 2002-06-14 Mitsubishi Electric Corp 新商品売行予測装置及び新商品売行予測方法
JP2009230555A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 需要予測方法、在庫計画策定方法、需要予測システムおよび在庫計画策定システム
US20160321606A1 (en) * 2015-04-28 2016-11-03 Accenture Global Services Limited Automated, new spare parts forecasting and demand planning system
JP2017027632A (ja) * 2016-11-10 2017-02-02 キヤノンマーケティングジャパン株式会社 需要予測装置、需要予測システム、制御方法、及びプログラム
WO2017163278A1 (ja) * 2016-03-25 2017-09-28 日本電気株式会社 商品需要予測システム、商品需要予測方法および商品需要予測プログラム
JP2018147385A (ja) * 2017-03-08 2018-09-20 三菱日立パワーシステムズ株式会社 保守作業計画システム、保守作業計画方法及びプログラム
JP2019215749A (ja) * 2018-06-13 2019-12-19 株式会社日立物流 物流予測システム及び予測方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002169946A (ja) * 2000-11-30 2002-06-14 Mitsubishi Electric Corp 新商品売行予測装置及び新商品売行予測方法
JP2009230555A (ja) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp 需要予測方法、在庫計画策定方法、需要予測システムおよび在庫計画策定システム
US20160321606A1 (en) * 2015-04-28 2016-11-03 Accenture Global Services Limited Automated, new spare parts forecasting and demand planning system
WO2017163278A1 (ja) * 2016-03-25 2017-09-28 日本電気株式会社 商品需要予測システム、商品需要予測方法および商品需要予測プログラム
JP2017027632A (ja) * 2016-11-10 2017-02-02 キヤノンマーケティングジャパン株式会社 需要予測装置、需要予測システム、制御方法、及びプログラム
JP2018147385A (ja) * 2017-03-08 2018-09-20 三菱日立パワーシステムズ株式会社 保守作業計画システム、保守作業計画方法及びプログラム
JP2019215749A (ja) * 2018-06-13 2019-12-19 株式会社日立物流 物流予測システム及び予測方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IMRATTANATRAI WIRADEE WIRADEE@DB.SOC.I.KYOTO-U.AC.JP; KATO MAKOTO P. MPKATO@SLIS.TSUKUBA.AC.JP; YOSHIKAWA MASATOSHI YOSHIKAWA@I.KY: "Identifying Entity Properties from Text with Zero-shot Learning", PROCEEDINGS OF THE 42ND INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, ACMPUB27, NEW YORK, NY, USA, 18 July 2019 (2019-07-18) - 25 July 2019 (2019-07-25), New York, NY, USA , pages 195 - 204, XP058454335, ISBN: 978-1-4503-6172-9, DOI: 10.1145/3331184.3331220 *
SAKAI, TOMOYA: "An Approach to Unseen Class Classification with In-Service Predictors", THE 33RD ANNUAL CONFERENCE OF THE JAPANESE SOCIETY FOR ARTIFICIAL INTELLIGENCE, 7 June 2019 (2019-06-07) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053806A1 (ja) * 2021-09-28 2023-04-06 本田技研工業株式会社 需要予測装置、需要予測方法、および記憶媒体

Also Published As

Publication number Publication date
US20230245056A1 (en) 2023-08-03
JPWO2021255883A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
US9477224B2 (en) Physics-based lifespan modeling
US9910751B2 (en) Adaptive handling of abnormal-condition indicator criteria
US11868101B2 (en) Computer system and method for creating an event prediction model
US11449921B2 (en) Using machine learning to predict a usage profile and recommendations associated with a computing device
EP1569148A2 (en) Systems and methods for automatically determining and/or inferring component end of life (EOL)
JP5444110B2 (ja) 需要予測装置、需要予測方法、及び需要予測プログラム
JP2002516003A (ja) 遺伝的アルゴリズムスケジュール作成装置及び方法
US11119472B2 (en) Computer system and method for evaluating an event prediction model
GB2590161A (en) Systems and methods for dynamic demand sensing
US20200065405A1 (en) Computer System & Method for Simplifying a Geospatial Dataset Representing an Operating Environment for Assets
CN113168172B (zh) 模型生成装置、模型生成方法及程序
JP2007233944A (ja) 商品販売予測システム
US20160155129A1 (en) Information processing system, server system, and information processing apparatus
WO2021255883A1 (ja) 需要予測装置、需要予測方法、及びコンピュータ読み取り可能な記録媒体
WO2018198450A1 (ja) 車両保守計画装置、及び車両保守計画評価方法
US20210012263A1 (en) Computer System and Method of Evaluating Fuel Efficiency of Assets Using a Predictive Model
US20210191726A1 (en) Methods and apparatus for continuous monitoring of telemetry in the field
US20190156262A1 (en) System and method for evaluating a corporate strategy in a data network
Verma et al. Reliability Assessment of Multi-release Software System Under Imperfect Fault Removal Phenomenon
Giannoulidis et al. A context-aware unsupervised predictive maintenance solution for fleet management
JP2022032684A (ja) 設備保全支援システム及び設備保全支援方法
US20230230100A1 (en) System and method to predict and prevent customer churn in servicing business
US20090070164A1 (en) Real time self adjusting test process
WO2020262510A1 (ja) 管理システム、メンテナンススケジュール決定方法、コンピュータプログラム及び学習済モデルの生成方法
US20220351066A1 (en) System and Method for Identification of Replacement Parts Using Artificial Intelligence/Machine Learning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940779

Country of ref document: EP

Kind code of ref document: A1