WO2021254247A1 - 频谱管理方法、设备和计算机可读存储介质 - Google Patents

频谱管理方法、设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2021254247A1
WO2021254247A1 PCT/CN2021/099400 CN2021099400W WO2021254247A1 WO 2021254247 A1 WO2021254247 A1 WO 2021254247A1 CN 2021099400 W CN2021099400 W CN 2021099400W WO 2021254247 A1 WO2021254247 A1 WO 2021254247A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission mode
subcarrier
maximum
noise ratio
port
Prior art date
Application number
PCT/CN2021/099400
Other languages
English (en)
French (fr)
Inventor
张永学
张环宇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021254247A1 publication Critical patent/WO2021254247A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Definitions

  • the embodiments of the present application relate to, but are not limited to, the field of communication technologies, and in particular, to a spectrum management method, device, and computer-readable storage medium.
  • DSL Digital Subscriber Line Access Multiplexer
  • ADSL Asymmetric Digital Subscriber Line
  • VDSL Very High Speed Digital Subscriber Line
  • G.Vector G.fast, etc.
  • ADSL, VDSL, G.Vector, and G.FAST are called transmission modes in DSL equipment.
  • central office equipment that supports the new transmission mode that cannot be compatible with the customer terminal equipment of the old transmission mode.
  • Crosstalk will exist in the shared frequency band between the new transmission mode and the old transmission mode, resulting in the establishment of a port link Instability, causing frequent link drop, or jamming during use, which affects user experience.
  • the embodiments of the present application propose a spectrum management method, device, and computer-readable storage medium.
  • the embodiment of the present application provides a spectrum management method.
  • the spectrum management method includes the following steps: acquiring the maximum rate of each port in the first transmission mode; determining according to the maximum rate of each port in the first transmission mode The sub-carrier cut-off frequency point occupied by each client terminal equipment in the first transmission mode to establish a chain; the largest sub-carrier cut-off frequency point among the sub-carrier cut-off frequency points occupied by all the client terminal equipment in the first transmission mode to be chained As the starting frequency point of the subcarrier occupied by the second transmission mode link establishment.
  • An embodiment of the present application also proposes a spectrum management device.
  • the device includes a memory, a processor, and a computer program that is stored in the memory and can run on the processor.
  • the processor implements the foregoing method when the computer program is executed. A step of.
  • the embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are used to implement the steps of the foregoing method.
  • FIG. 1 is a schematic diagram of a communication connection between a central office DSL device and a client CPE in a DSLAM system provided by an embodiment of the present application;
  • FIG. 2 is a flowchart of a spectrum management method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the relationship between the first transmission mode frequency band and the second transmission mode frequency band in FIG. 2;
  • FIG. 4 is a specific flowchart of step S101 in FIG. 2;
  • FIG. 5 is a specific flowchart of step S401 in FIG. 4;
  • FIG. 6 is a flowchart of steps of the spectrum management method provided by an embodiment of the present application after the link is established;
  • FIG. 7 is a flowchart of the spectrum management method provided by an embodiment of the present application in practical application.
  • module means, “component” or “unit” used to indicate elements is only for the description of the present application, and has no special meaning in itself. Therefore, “module”, “part” or “unit” can be used in a mixed manner.
  • the central office In the DSLAM system, due to the continuous development of DSL technology, the new transmission needs to be compatible with the old transmission mode so that the network can be smoothly upgraded. In terms of spectrum compatibility, there are mainly spectrum compatibility issues between G.Vector mode and VDSL2 mode, between G.Vector mode and ADSL mode, and between GFAST mode and G.Vector mode.
  • the central office In practical applications, the central office generally replaces the equipment first (that is, upgrades to a new DSL equipment), and as the client's demand for bandwidth increases, the customer premise equipment (CPE) is gradually replaced.
  • the central office includes at least one DSL device, and the client includes at least one CPE.
  • Figure 1 shows the general application scenario of the communication connection between the central office DSL equipment and the client CPE in the DSLAM system.
  • the central office is upgraded to a new DSL equipment, but the client still retains the CPE of the first transmission mode (old transmission mode) And part of the second transmission mode (new transmission mode), there is a common part of spectrum between the first transmission mode and the second transmission mode.
  • the bandwidth used by the second transmission mode is greater than that of the first transmission mode, and the second transmission mode is updated Technology can provide wider bandwidth.
  • the frequency band that overlaps the first transmission mode in the frequency band occupied by the second transmission mode is generally closed.
  • the frequency band occupied by the entire first transmission mode defined in the standard is closed.
  • the rate of the second transmission mode will drop a lot, which will affect the use of clients in the second transmission mode.
  • the client in the first transmission mode may not occupy the entire frequency band due to distance or speed limitation, and completely closes the frequency band occupied by the first transmission mode, resulting in a great waste of resources.
  • the operator can preset the frequency band used by the first transmission mode and the frequency band used by the second transmission mode. In this way, the rate used by the clients of the existing first transmission mode may not reach the operation rate.
  • the rate provided by the provider may also have too many resources for the first transmission mode reserved by the central office, resulting in a waste of resources.
  • this application proposes a spectrum management method , The electronic device and the computer-readable storage medium, by obtaining the maximum rate of each port in the first transmission mode, determine the sub-carrier cutoff frequency occupied by each client terminal device in the first transmission mode to establish the chain, and then all The maximum sub-carrier cut-off frequency point of the sub-carrier cut-off frequency points occupied by the client terminal equipment in the first transmission mode for link establishment is used as the sub-carrier start frequency point occupied by the link establishment of the second transmission mode, and the second transmission mode is dynamically adjusted The starting frequency of the sub-carrier, so as to realize the dynamic adjustment of the frequency range of the second transmission mode, enabling the central office equipment supporting the second transmission mode (new transmission mode) to be compatible with the client terminal equipment of the first transmission mode (old transmission mode) , In order to reduce the crosstalk and unstable
  • FIG. 2 is a flowchart of a spectrum management method provided by an embodiment of the present application.
  • the spectrum management method may be, but is not limited to, starting from step S101.
  • S101 Acquire the maximum rate of each port in the first transmission mode; wherein, the maximum rate of each port in the first transmission mode is configured by the client;
  • S102 Determine, according to the maximum rate of each port in the first transmission mode, the subcarrier cutoff frequency occupied by the CPE chain in each first transmission mode;
  • S103 Use the largest subcarrier cutoff frequency point among all the subcarrier cutoff frequency points occupied by the CPE link establishment of the first transmission mode as the subcarrier start frequency point occupied by the second transmission mode link establishment.
  • the spectrum management method further includes:
  • the link is established by configuring the maximum sub-carrier cutoff frequency to the corresponding link establishment port.
  • the frequency band of the first transmission mode is defined as the first frequency band
  • the frequency band of the second transmission mode is defined as the second frequency band
  • the maximum subcarrier cut-off frequency FMAX occupied by the first transmission mode link establishment is taken as one of the first transmission mode and the second transmission mode.
  • the node where the inter-spectrum is divided is called the maximum sub-carrier cut-off frequency of the DSLAM access equipment, that is, the maximum sub-carrier cut-off frequency FMAX occupied by the first transmission mode link establishment starts from the sub-carrier occupied by the second transmission mode link establishment
  • the starting frequency that is, the starting frequency of the subcarriers occupied by the second transmission mode to establish a link is the starting frequency of the subcarriers in the frequency band of the second transmission mode, and the starting frequency of the subcarriers in the frequency band of the second transmission mode is also That is, the minimum sub-carrier frequency of the second transmission mode frequency band.
  • step S101 in the embodiment of the present application includes:
  • S401 Estimate the channel characteristics of the line according to the distance between the central office equipment and the CPE;
  • S402 Estimate the maximum number of bits carried by each subcarrier according to the estimated channel characteristics
  • S403 Calculate the maximum rate according to the maximum number of bits carried by each subcarrier
  • i is the port number
  • j is the subcarrier index
  • bj is the maximum number of bits carried by the subcarrier (that is, the maximum number of bits carried by the subcarrier)
  • Fmax_i is the number of the most found subcarrier
  • SymboleRate is the discrete multi-tone (Discrete Multi-Tone (DMT) modulation symbol rate
  • SymboleRate is a fixed value
  • MaxDataRate is the maximum rate.
  • step S401 in the embodiments of the present application includes:
  • step S501 Estimate the distance between the central office equipment and the client terminal equipment; the distance between the central office equipment and the client terminal equipment can be, but is not limited to, the electrical length (kl0), or according to the previous link establishment of the port Electrical length (kl1), the distance between the authority's equipment and the client's terminal equipment is based on the electrical length (kl1) of the port when the link was established last time, and the electrical length (kl1) of the port when the link was established last time (kl1) is used as an estimate Electrical length (kl).
  • step S501 includes: estimating the electrical length between the central office device and the client terminal device according to the physical distance between the central office device and the client terminal device. The embodiment of the present application does not limit the algorithm for estimating the electrical length between the central office equipment and the client terminal equipment.
  • step S502 Estimate the channel characteristics according to the estimated distance between the central office equipment and the client terminal equipment and the physical parameters of the line; in an embodiment, the channel characteristics may include but are not limited to line attenuation, and the physical parameters of the line may include but are not limited to Including the line diameter.
  • step S502 includes: estimating the line attenuation based on the estimated electrical length and line diameter between the central office equipment and the client terminal equipment. Among them, the algorithm for estimating the line attenuation is not done in this embodiment of the application. limited.
  • step S402 includes:
  • step S402 includes:
  • the device parameters may include, but are not limited to, transmit power spectral density
  • system parameters may include, but are not limited to, background noise
  • channel characteristics may include, but are not limited to, line attenuation
  • step S402 includes: according to transmit power Spectral density, background noise, and line attenuation are used to estimate the signal-to-noise ratio of each sub-carrier; among them, the formula for predicting the signal-to-noise ratio of each sub-carrier is shown in the following formula (2):
  • SNR(f) is the estimated signal-to-noise ratio
  • TXPSD(f) is the transmit power spectral density
  • Qln(f) is the background noise
  • LATN(f) is the line attenuation
  • each subcarrier is calculated based on the signal-to-noise ratio.
  • the algorithm for the maximum number of bits carried by each subcarrier is not limited in the embodiments of this application.
  • the signal-to-noise ratio includes the uplink signal-to-noise ratio and the downlink signal-to-noise ratio; when calculating the uplink signal-to-noise ratio, the device parameter refers to the uplink device parameter (device parameter of the client terminal device), and the system parameter is the uplink system parameter (System parameters of the client terminal equipment), the estimated channel characteristics refer to the uplink channel characteristics; when calculating the downlink signal-to-noise ratio, the equipment parameters refer to the downlink equipment parameters (equipment parameters of the central office equipment), and the system parameters are the downlink system parameters (System parameters of the central office equipment), the estimated channel characteristics refer to the downlink channel characteristics.
  • step S402 includes: estimating the downlink signal-to-noise ratio of each subcarrier of the line according to device parameters, system parameters, and channel characteristics; in the second embodiment, step S402 includes: according to device parameters, system parameters Estimating the uplink signal-to-noise ratio of each sub-carrier of the line and the channel characteristics; in the third embodiment, step S402 includes: respectively estimating the uplink signal-to-noise ratio of each sub-carrier of the line and the channel characteristics according to device parameters, system parameters and channel characteristics.
  • steps S402 includes: estimating the downlink signal-to-noise ratio of each subcarrier of the line according to the downlink transmission power spectral density, the downlink background noise and the downlink attenuation; in the second embodiment, step S402 includes: according to the uplink transmission power spectral density, the uplink background Noise and uplink attenuation estimate the uplink signal-to-noise ratio of each subcarrier of the line; in the third embodiment, step S402 includes: predicting each subcarrier of the line based on the uplink transmission power spectral density, the uplink background noise and the uplink attenuation The uplink signal-to-noise ratio of each subcarrier of the line is estimated based on the downlink transmit power spectral density, down
  • SNR(f) can represent the estimated uplink signal-to-noise ratio or the downlink signal-to-noise ratio; in the third embodiment of the present application, for each subcarrier of the estimated line
  • the sequence of steps for estimating the uplink signal-to-noise ratio of each subcarrier of the line or the uplink signal-to-noise ratio of each subcarrier of the line is not limited.
  • the signal-to-noise ratio can also be estimated by first predicting the downlink signal-to-noise ratio of each sub-carrier of the line, and then predicting the uplink signal-to-noise ratio of each sub-carrier of the line, and it can also estimate the uplink signal-to-noise ratio of each sub-carrier of the line at the same time And the downlink signal-to-noise ratio.
  • the step of "calculating the maximum number of bits according to the estimated signal-to-noise ratio of each subcarrier of the line” includes: calculating the maximum number of downlink bits according to the estimated downlink signal-to-noise ratio; in the second embodiment, The step "calculating the maximum number of bits according to the estimated signal-to-noise ratio of each subcarrier of the line” includes: calculating the maximum number of uplink bits according to the estimated uplink signal-to-noise ratio; in the third embodiment, the step "according to the estimated The maximum number of bits calculated from the signal-to-noise ratio of each subcarrier of the line” includes: calculating the maximum number of uplink bits according to the estimated uplink signal-to-noise ratio and calculating the maximum number of downlink bits according to the estimated downlink signal-to-noise ratio; among them, the maximum The number of downlink bits is the maximum number of bits that can be carried by each subcarrier, and the maximum number of uplink bits is the maximum number of bits that can be
  • the maximum downlink The number of bits is to meet the requirements of the maximum downlink rate configured by the client, and the maximum number of uplink bits is to meet the requirements of the maximum uplink rate configured by the client.
  • the maximum downlink rate needs to be obtained, that is, the maximum value of the maximum downlink rate is used as the subcarrier cutoff frequency of the port.
  • the step S102 in the embodiment of the present application includes: obtaining the maximum value of all the calculated maximum rates, and using the maximum value of the maximum rate as the subcarrier cutoff frequency of the port; in other embodiments, the maximum rate may also be set The maximum value of the port plus the preset margin value is used as the subcarrier cutoff frequency point of the port; in addition, the maximum value of the maximum rate can be transformed into the subcarrier cutoff frequency point of the port in other ways. This application implements The example does not limit this.
  • step S102 includes: obtaining the maximum value of all the calculated maximum downlink rates, and using the maximum value of the maximum downlink rate as the subcarrier cutoff frequency of the port; in the second embodiment, step S102 Including: obtaining the maximum value of all the calculated maximum uplink rates, and using the maximum value of the maximum uplink rate as the subcarrier cutoff frequency point of the port; in the third embodiment, step S102 includes: obtaining all the calculated maximum values separately The maximum value of the uplink rate and the maximum value of all the calculated maximum downlink rates, the maximum value of the maximum uplink rate and the maximum value of the maximum downlink rate are used as the subcarrier cutoff frequency of the port; in other embodiments , The maximum value of the maximum uplink rate and the maximum value of the maximum downlink rate can also be respectively added to the corresponding preset margin value as the subcarrier cutoff frequency of the port; in addition, the maximum The maximum value in the uplink rate and the maximum value in the maximum downlink rate are transformed into the subcarrier cutoff frequency of the port,
  • the spectrum management method further includes:
  • S601 Record electrical length, equipment parameters, system parameters, and transmission characteristics; in one embodiment, the transmission characteristics include loss characteristics, dispersion characteristics, etc.;
  • S602 Update the recorded electrical length to the subcarrier cutoff frequency table of the first transmission mode
  • step S603 Determine whether the difference between the electrical length recorded this time and the electrical length estimated last time is greater than the preset threshold, if the difference between the electrical length recorded this time and the electrical length estimated last time is greater than the preset threshold , Then return to step S101; otherwise, end. That is, if the difference between the electrical length and the last estimated electrical length is greater than the preset threshold, it means that the DSLAM equipment central office has dropped the link at this time and the link establishment needs to be re-initiated, that is, return to step S101.
  • Table 1 is a table of subcarrier cut-off frequency points of the first transmission mode, including port serial numbers, sub-carrier cut-off frequency points of the first transmission mode, and estimated electrical length; wherein, port 1 corresponds to The cutoff frequency of the subcarrier is Fmax_1, the corresponding estimated electrical length is kl_1, the cutoff frequency of the subcarrier corresponding to port 2 is Fmax_2, and the corresponding estimated electrical length is kl_2, and the cutoff frequency of the subcarrier corresponding to port 5 is Fmax_5 , The corresponding estimated electrical length is kl_3, the sub-carrier cut-off frequency corresponding to port 8 is Fmax_8, and the corresponding estimated electrical length is kl_4.
  • the maximum subcarrier cut-off frequency of the first transmission mode in this embodiment of the application is used as the subcarrier starting frequency of the second transmission mode frequency band, that is, as the minimum subcarrier of the second transmission mode frequency band Starting frequency.
  • the electrical length is the attenuation at the 1 MHz (Mega Hertz) frequency defined in the standard; in other embodiments, the electrical length may also be based on the attenuation at other frequencies.
  • the implementation of this application The example does not limit the electrical length.
  • the updated maximum subcarrier cut-off frequency FMAX is used as the subcarrier starting frequency of the second transmission mode to establish the link. It can be understood that, in actual applications, when the client terminal equipment in the second transmission mode establishes a link, a guard band can also be added to the updated maximum subcarrier cut-off frequency FMAX as a starting position.
  • the second transmission mode is G.Vector, that is, the central office device is a device that supports the G.Vector transmission mode, and the second transmission mode in the client terminal device is G.Vector.
  • the first transmission mode is ADSL or VDSL2 mode.
  • the configuration of the first transmission mode includes the standard transmission modes G992.1, G992.3, and G992.5; the configuration of the second transmission mode includes the standard transmission mode G993.5.
  • the maximum sub-carrier cut-off frequency FMAX is initialized to 0M by default.
  • the sub-carrier cut-off frequency table of the first transmission mode is empty, and the sub-carrier start frequency table of the second transmission mode is empty.
  • the subcarrier cutoff frequency table of the first transmission mode may include, but is not limited to, including port serial numbers, subcarrier cutoff frequencies of the first transmission mode, and estimated electrical length; subcarriers of the second transmission mode
  • the start frequency point table may include, but is not limited to, the port sequence number and the start frequency point of the subcarrier of the second transmission mode. If it is detected that the port uses the second transmission mode of G.Vector to establish a link, the following steps are included:
  • the full frequency band is used to establish the link, and then the following steps are performed:
  • S701a Update the subcarrier starting frequency table of the second transmission mode
  • S702a Detect whether the port is in the subcarrier cutoff frequency table of the first transmission mode, and if it is detected that the port is in the subcarrier cutoff frequency table of the first transmission mode, perform step S703a; otherwise, perform step S704;
  • S703a Delete the port from the subcarrier cutoff frequency table of the first transmission mode.
  • step S704 is performed after step S703a: if the second transmission mode with a port is established next time, the link is established by using the latest maximum subcarrier cut-off frequency.
  • S702b Calculate the subcarrier cutoff frequency of the port according to the estimated electrical length
  • S703b Configure the subcarrier cutoff frequency of the port to the record information of the corresponding port, and update the maximum subcarrier cutoff frequency FMAX.
  • step S703b After the execution of step S703b is completed, wait for the port in the first transmission mode to establish a link.
  • S704b Update the subcarrier cut-off frequency table of the first transmission mode
  • S705b Acquire the electrical length of the updated subcarrier cut-off frequency table of the first transmission mode
  • S706b Calculate the latest maximum subcarrier cut-off frequency
  • S707b Detect whether the port is included in the subcarrier start frequency table of the second transmission mode; if it is detected that the port is included in the subcarrier start frequency table of the second transmission mode, perform step S708b, otherwise, perform step S704 .
  • S708b Delete the port from the subcarrier starting frequency table of the second transmission mode.
  • step S704 is performed after step S708b.
  • the digital user access device in G.Vector mode can cancel the far-end crosstalk (FEXT) crosstalk between the DSL lines connected to the device, but because ADSL CPE does not support crosstalk cancellation Mode:
  • FXT far-end crosstalk
  • the interference generated in the ADSL frequency band cannot be offset in the Vector system.
  • the ADSL CPE link is established and the link is dropped, it will cause greater interference to the lines in the Vetor system. Affect the stability of the Vector system.
  • Vector CPE generally G.
  • Vector CPE and ADSL CPE are configured by frequency division.
  • the second transmission mode is G.fast, that is, the central office device is a device that supports the G.fast transmission mode, and the second transmission mode in the client terminal device is the G.fast mode, and the first transmission mode is G.fast.
  • the transmission mode is G.Vector, VDSL2 or ADSL mode.
  • configure the first transmission mode to include standard transmission modes G992.1, G992.3, G992.5, G993.2, and G993.5; configure the second transmission mode to include standard transmission mode G9701.
  • the maximum sub-carrier cut-off frequency FMAX is initialized to 0M by default.
  • the sub-carrier cut-off frequency table of the first transmission mode is empty
  • the sub-carrier start frequency table of the second transmission mode is empty.
  • G.Vector CPE may work in normal VDSL2 mode. Since G.fast's CPE working frequency band is 106M or even as high as 212M or higher, it can provide a throughput of up to 2G or more, but the G.fast working mode is time division mode, G.Vector mode, normal VDSL2 mode and ADSL mode are frequency. In the early stage of networking, if there are these two uplink and downlink multiplexing methods in the system, frequency division must be adopted; among them, time division mode refers to distinguishing uplink and downlink according to time slots, and frequency division mode refers to frequency division. Distinguish between upstream and downstream.
  • the memory can be used to store non-transitory software programs and non-transitory computer-executable programs.
  • the memory may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory may include a memory remotely arranged with respect to the processor, and these remote memories may be connected to the processor through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the spectrum management method shown in FIG. 2 does not constitute a limitation to the embodiment of the present application, and may include more or fewer steps than shown in the figure, or a combination of certain steps, or different step.
  • An embodiment of the present application also provides a spectrum management device.
  • the spectrum management device includes a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor implements the above description when the computer program is executed.
  • the non-transitory software programs and instructions required to implement the spectrum management method of the foregoing embodiment are stored in the memory.
  • the spectrum management method of the foregoing embodiment is executed, for example, the method in FIG. 2 described above is executed. Steps S101 to S104, method steps S401 to S403 in FIG. 4, method steps S501 to S502 in FIG. 5, method steps S601 to S603 in FIG. 6, or method steps S701a-S703a, S704, S701b-S708b in FIG. .
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • an embodiment of the present application also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are executed by a processor or a controller, for example, by the aforementioned
  • the execution of one processor in the node embodiment can make the above-mentioned processor execute the method for creating the intermediate point of the maintenance entity group in the above-mentioned embodiment, for example, execute the above-described method steps S101 to S104 in FIG. 2 and the method in FIG. 4 Steps S401 to S403, method steps S501 to S502 in FIG. 5, method steps S601 to S603 in FIG. 6, or method steps S701a-S703a, S704, S701b-S708b in FIG.
  • the spectrum management method, device, and storage medium proposed in the embodiments of the present application determine that the subcarriers occupied by the client terminal device of each first transmission mode to establish a link are cut off by obtaining the maximum rate of the port of each first transmission mode. Then, the largest sub-carrier cut-off frequency of all the sub-carrier cut-off frequencies occupied by the client terminal equipment in the first transmission mode to establish the chain is used as the sub-carrier start frequency of the second transmission mode to establish the chain, and dynamically adjusted The starting frequency of the sub-carriers of the second transmission mode, so as to dynamically adjust the frequency range of the second transmission mode, which can make the central office equipment that supports the second transmission mode (new transmission mode) compatible with the first transmission mode (older transmission mode). Transmission mode) client terminal equipment to reduce crosstalk and unstable port establishment.
  • the embodiments of the present application propose a spectrum management method, equipment, and computer-readable storage medium, which can make the central office equipment supporting the new transmission mode compatible with the client terminal equipment of the old transmission mode, so as to reduce crosstalk and unstable port establishment.
  • the spectrum management method, device and storage medium proposed in this application determine the cutoff frequency of the subcarrier occupied by the client terminal device of each first transmission mode to establish a chain by obtaining the maximum rate of the port of each first transmission mode , And then take the largest sub-carrier cut-off frequency point of the sub-carrier cut-off frequency points occupied by all the client terminal equipment in the first transmission mode as the sub-carrier cut-off frequency point occupied by the link establishment of the second transmission mode, and dynamically adjust the second transmission mode
  • the starting frequency of the sub-carriers of the two transmission modes so as to realize the dynamic adjustment of the frequency range of the second transmission mode, which can make the central office equipment supporting the second transmission mode compatible with the client terminal equipment of the first transmission mode to reduce crosstalk and port Instability of the establishment of the chain.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other storage technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually contain computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Telephonic Communication Services (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

一种频谱管理方法、设备和计算机可读存储介质。其中,频谱方法包括:获取每个第一传输模式的端口的最大速率(S101);根据每个第一传输模式的端口的最大速率,确定每个第一传输模式的客户终端设备建链占用的子载波截止频点(S102);将所有第一传输模式的客户终端设备建链占用的子载波截止频点中最大子载波截止频点作为第二传输模式建链占用的子载波起始频点(S103)。

Description

频谱管理方法、设备和计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202010543482.0、申请日为2020年06月15日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及但不限于通信技术领域,尤其涉及一种频谱管理方法、设备和计算机可读存储介质。
背景技术
数字用户线接入复用器(Digital Subscriber Line Access Multiplexer,DSLAM)系统中,数字用户线(Digital Subscriber Line,DSL)技术经历了非对称数字用户线路(Asymmetric DigitalSubscriber Line,ADSL)、超高速数字用户线路(Very High Speed Digital Subscriber Line,VDSL)、G.Vector、G.fast等,以适应越来越高的带宽要求。ADSL、VDSL、G.Vector、G.FAST在DSL设备中称为传输模式。随着DSL新技术设备部署,存在支持新传输模式的局端设备无法兼容旧传输模式的客户终端设备,新传输模式和旧传输模式之间在频谱上共用频段部分会存在串扰,导致端口建链不稳定,引起频繁掉链,或者使用过程中出现卡顿等影响用户体验。
发明内容
本申请实施例提出一种频谱管理方法、设备和计算机可读存储介质。
本申请实施例提供了一种频谱管理方法,所述频谱管理方法包括以下步骤:获取每个第一传输模式的端口的最大速率;根据每个所述第一传输模式的端口的最大速率,确定每个所述第一传输模式的客户终端设备建链占用的子载波截止频点;将所有所述第一传输模式的客户终端设备建链占用的子载波截止频点中最大子载波截止频点作为第二传输模式建链占用的子载波起始频点。
本申请实施例还提出了一种频谱管理设备,所述设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现前述方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于实现前述方法的步骤。
附图说明
图1是本申请实施例提供的DSLAM系统中局端DSL设备与客户端CPE的通信连接的示意图;
图2是本申请实施例提供的频谱管理方法的流程图;
图3是图2中第一传输模式频段与第二传输模式频段之间的关系的示意图;
图4是图2中步骤S101的具体流程图;
图5是图4中步骤S401的具体流程图;
图6是本申请实施例提供的频谱管理方法在建链之后的步骤流程图;
图7是本申请实施例提供的频谱管理方法在实际应用中的流程图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
在DSLAM系统中,由于DSL技术的不断发展,新传输需要兼容旧传输模式,以便网络能够平滑升级。在频谱兼容性方面,主要是G.Vector模式和VDSL2模式之间,G.Vector模式和ADSL模式之间,GFAST模式和G.Vector模式之间存在频谱兼容性问题。实际应用中,一般是局端先更换设备(即升级到了新的DSL设备),随着客户端对带宽需求增大,逐步替换客户终端设备(Customer Premise Equipment,CPE)。局端包括至少一DSL设备,客户端包括至少一CPE。
图1所示为DSLAM系统中局端DSL设备与客户端CPE进行通信连接的一般应用场景,局端升级到了新的DSL设备,但是客户端还保留着第一传输模式(旧传输模式)的CPE和部分第二传输模式(新传输模式),第一传输模式 和第二传输模式之间存在频谱共用部分,一般第二传输模式使用的带宽大于第一传输模式的带宽,第二传输模式为更新技术,可提供更宽带宽。
一般地,如果DSLAM系统中的第一传输模式的CPE和第二传输模式的CPE之间存在频谱共用时,一般是将第二传输模式占用的频段中与第一传输模式重叠的频段关闭。一般是关闭在标准中定义的整个第一传输模式占用的频段。通过这种方式,第二传输模式的速率会下降很多,会影响第二传输模式的客户端的使用。第一传输模式的客户端由于距离或者限速的原因有可能没有占用整个频段,而完全关闭第一传输模式占用的频段,产生很大资源浪费。另外,运营商可以通过预设好第一传输模式使用的频段和第二传输模式使用的频段,通过这种方式,可能影响了已有的第一传输模式的客户端使用的速率达不到运营商提供的速率,也有可能局端预留的第一传输模式的资源过多,造成资源浪费。
基于此,为了提高DSLAM系统中客户端建链的稳定性和可靠性,以确保已有第一传输模式的CPE能够满足原来的速率要求、充分利用频率资源,本申请提出了一种频谱管理方法、电子设备及计算机可读存储介质,通过获取到每个第一传输模式的端口的最大速率确定每个所述第一传输模式的客户终端设备建链占用的子载波截止频点,然后将所有所述第一传输模式的客户终端设备建链占用的子载波截止频点中最大子载波截止频点作为第二传输模式建链占用的子载波起始频点,动态调整第二种传输模式的子载波起始频点,从而实现动态调整第二种传输模式的频段范围,能够使得支持第二传输模式(新传输模式)的局端设备兼容第一传输模式(旧传输模式)的客户终端设备、以减少串扰和端口建链不稳定的情况,动态地、自动地进行调整,减少局端的运维工作。
下面结合附图,对本申请实施例作进一步阐述。
如图2所示,图2是本申请一个实施例提供的频谱管理方法的流程图,频谱管理方法可以是但不限于是从步骤S101开始。
S101:获取每个第一传输模式的端口的最大速率;其中,每个第一传输模式的端口的最大速率由客户端进行配置;
S102:根据每个第一传输模式的端口的最大速率,确定每个第一传输模式的CPE建链占用的子载波截止频点;
S103:将所有第一传输模式的CPE建链占用的子载波截止频点中最大子载波截止频点作为第二种传输模式建链占用的子载波起始频点。
在一些实施例中,频谱管理方法还包括:
S104:将最大子载波截止频点配置到相应的建链的端口。
通过将最大子载波截止频点配置到相应的建链的端口,以进行建链。
在本申请实施例中,定义第一传输模式的频段为第一频段,第二传输模式的频段为第二频段
参图3所述,在本申请实施例中,在第一传输模式频段中,将第一传输模式建链占用的最大子载波截止频点FMAX作为第一种传输模式和第二种传输模式之间频谱划分的节点,称为该DSLAM接入设备的最大子载波截止频点,即第一传输模式建链占用的最大子载波截止频点FMAX作为第二种传输模式建链占用的子载波起始频点,也即第二种传输模式建链占用的子载波起始频点为第二种传输模式频段的子载波起始频点,第二种传输模式频段的子载波起始频点也即为第二种传输模式频段的最小子载波频点。
在目前DSLAM系统中,局端设备无法直接通知客户终端设备采用何种方式进行建链。请参阅图4,在公开实施例中,为了第一传输模式的客户端能够 尽量少的占用频率资源,以在各个子载波上进行合理的比特分配,本申请实施例中的步骤S101包括:
S401:根据局端设备与CPE之间的距离预估线路的信道特征;
S402:根据预估的信道特征预估每个子载波承载的最大比特数;
S403:根据每个子载波承载的最大比特数计算出最大速率;
其中,在一实施例中,最大速率的公式为:最大速率=每个子载波承载比特之和乘以符号速率,具体为:将每个子载波承载的最大比特数从低到高进行累加以得到每个子载波承载比特之和,每个子载波承载比特之和乘以符号速率,以计算出最大速率;其中,计算最大速率的公式为以下公式(1)所示:
Figure PCTCN2021099400-appb-000001
其中,i为端口号,j为子载波索引,bj为子载波承载的最大比特数(即子载波承载的最大比特数),Fmax_i为找到的最的子载波序号,SymboleRate为离散多音频(Discrete Multi Tone,DMT)调制的符号速率,SymboleRate为定值,MaxDataRate为最大速率。
请参阅图5,在一些实施例中,本申请实施例中的步骤S401包括:
S501:预估局端设备和客户终端设备之间的距离;其中,局端设备和客户终端设备之间的距离可以是但不限于是电气长度(kl0)、或者根据端口上一次建链时的电气长度(kl1),当局端设备和客户终端设备之间的距离是根据端口上一次建链时的电气长度(kl1)时,将端口上一次建链时的电气长度(kl1)作为预估的电气长度(kl)。在一实施例中,步骤S501包括:根据局端设备和客户终端设备之间的物理距离预估局端设备和客户终端设备之间的电气长度。本申请实施例对预估局端设备和客户终端设备之间的电气长度的算法不做限定。
S502:根据预估的局端设备和客户终端设备之间的距离和线路物理参数估算信道特征;在一实施例中,信道特征可以包括但不限于包括线路衰减,线路物理参数可以包括但不限于包括线径,在一些实例中,步骤S502包括:根据预估的局端设备和客户终端设备之间的电气长度和线径估算线路衰减,其中,估算线路衰减的算法,本申请实施例不做限定。
在一实施例中,步骤S402包括:
根据预估的信道特征预估每个子载波的信噪比;
根据每个子载波的信噪比计算每个子载波承载的最大比特数。
在一些实例中,步骤S402包括:
根据设备参数、系统参数和预估的信道特征预估每个子载波的信噪比;
根据每个子载波的信噪比计算每个子载波承载的最大比特数;
其中,设备参数可以包括但不限于包括发送功率谱密度,系统参数可以包括但不限于包括背景噪声,信道特征可以包括但不限于包括线路衰减;在一实施例中,步骤S402包括:根据发送功率谱密度、背景噪声和线路衰减,预估每个子载波的信噪比;其中,预估每个子载波的信噪比的公式如下公式(2)所示:
SNR(f)=TXPSD(f)-LATN(f)-Qln(f)          公式(2)
其中,SNR(f)为预估的信噪比,TXPSD(f)为发送功率谱密度,Qln(f)为背景噪声,LATN(f)为线路衰减;根据每个子载波的信噪比计算每个子载波承载的最大比特数的算法,本申请实施例不做限定,例如可以是:最大比特数等于信噪比-信噪比余量之差除以3,即最大比特数=(信噪比-信噪比余量)÷3。
在一实施例中,信噪比包括上行信噪比和下行信噪比;当计算上行信噪 比时,设备参数是指上行设备参数(客户终端设备的设备参数),系统参数是上行系统参数(客户终端设备的系统参数),预估的信道特征是指上行信道特征;当计算下行信噪比时,设备参数是指下行设备参数(局端设备的设备参数),系统参数是下行系统参数(局端设备的系统参数),预估的信道特征是指下行信道特征。
根据每个子载波的信噪比计算每个子载波承载的最大比特数,包括:
根据每个子载波的上行信噪比计算每个子载波承载的上最大比特数;或/和
根据每个子载波的下行信噪比计算每个子载波承载的下最大比特数。
在第一实施例中,步骤S402包括:根据设备参数、系统参数和信道特征预估线路的每个子载波的下行信噪比;在第二实施例中,步骤S402包括:根据设备参数、系统参数和信道特征预估线路的每个子载波的上行信噪比;在第三实施例中,步骤S402包括:根据设备参数、系统参数和信道特征分别预估线路的每个子载波的上行信噪比和下行信噪比;其中,设备参数可以包括但不限于包括发送功率谱密度,系统参数可以包括但不限于包括背景噪声,信道特征可以包括但不限于包括线路衰减;在第一实施例中,步骤S402包括:根据下行发送功率谱密度、下行背景噪声和下行线路衰减预估线路的每个子载波的下行信噪比;在第二实施例中,步骤S402包括:根据上行发送功率谱密度、上行背景噪声和上行线路衰减预估线路的每个子载波的上行信噪比;在第三实施例中,步骤S402包括:根据上行发送功率谱密度、上行背景噪声和上行线路衰减预估线路的每个子载波的上行信噪比,根据下行发送功率谱密度、下行背景噪声和下行线路衰减预估线路的每个子载波的下行信噪比;其中,预估线路的每个子载波的上行信噪比和下行信噪比计算方法均可参上 述公式(2)所示,SNR(f)可以表示预估的上行信噪比或者下行信噪比;本申请第三实施例中,对预估线路的每个子载波的上行信噪比或者预估线路的每个子载波的上行信噪比的步骤顺序不做限定,可以先预估线路的每个子载波的上行信噪比、后预估线路的每个子载波的下行信噪比,也可以是先预估线路的每个子载波的下行信噪比、后预估线路的每个子载波的上行信噪比,还可以同时预估线路的每个子载波的上行信噪比和下行信噪比。
在第一实施例,步骤“根据预估的线路的每个子载波的信噪比计算出最大比特数”包括:根据预估出的下行信噪比计算最大下行比特数;在第二实施例,步骤“根据预估的线路的每个子载波的信噪比计算出最大比特数”包括:根据预估出的上行信噪比计算最大上行比特数;在第三实施例,步骤“根据预估的线路的每个子载波的信噪比计算出最大比特数”包括:根据预估出的上行信噪比计算最大上行比特数和根据预估出的下行信噪比计算最大下行比特数;其中,最大下行比特数是每个子载波可以承载的最大比特数,最大上行比特数是每个子载波可以承载的最大比特数,由上述公式(1)中最大比特数与最大速率之间的关系可知,最大下行比特数即为满足客户端配置的最大下行速率的需求,最大上行比特数即为满足客户端配置的最大上行速率的需求。在实际应用中,一般只需要获取到最大下行速率即可,即将最大下行速率的最大值作为端口的子载波截止频点。
本申请实施例中的S102步骤包括:获取所有计算出的最大速率中的最大值,将最大速率中的最大值作为端口的子载波截止频点;在其他的实施例中,也可以将最大速率中的最大值加上预设裕度值作为端口的子载波截止频点;另外,还可以以其他方式,将最大速率中的最大值做一些变换作为端口的子载波截止频点,本申请实施例对此不做限定。
在第一实施例中,步骤S102包括:获取所有计算出的最大下行速率中的最大值,将最大下行速率中的最大值作为端口的子载波截止频点;在第二实施例中,步骤S102包括:获取所有计算出的最大上行速率中的最大值,将最大上行速率中的最大值作为端口的子载波截止频点;在第三实施例中,步骤S102包括:分别获取所有计算出的最大上行速率中的最大值和所有计算出的最大下行速率中的最大值,将最大上行速率中的最大值和最大下行速率中的最大值作为端口的子载波截止频点;在其他的实施例中,也可以分别将最大上行速率中的最大值和最大下行速率中的最大值分别加上相应的预设裕度值作为端口的子载波截止频点;另外,还可以以其他方式,分别将最大上行速率中的最大值和最大下行速率中的最大值做一些变换作为端口的子载波截止频点,本申请实施例对此不做限定。
请参阅图6,本申请实施例中,在端口建链之后,频谱管理方法还包括:
S601:记录电气长度、设备参数、系统参数和传输特性;在一实施例中,传输特性包括损耗特性、色散特性等;
S602:将记录的电气长度更新到第一传输模式的子载波截止频点表;
S603:判断本次记录的电气长度和上一次预估的电气长度之差是否大于预设门限值,如果本次记录的电气长度和上一次预估的电气长度之差大于预设门限值,则返回步骤S101;否则结束。即,如果电气长度和上一次预估的电气长度之差大于预设门限值,则说明此时DSLAM设备局端掉链,需重新发起建链,即返回到步骤S101。
在一实施例中,请参阅表1,为第一传输模式的子载波截止频点表,包括端口序号、第一传输模式的子载波截止频点和预估的电气长度;其中,端口1对应的子载波截止频点为Fmax_1、对应预估的电气长度为kl_1,端口2对应 的子载波截止频点为Fmax_2、对应预估的电气长度为kl_2,端口5对应的子载波截止频点为Fmax_5、对应预估的电气长度为kl_3,端口8对应的子载波截止频点为Fmax_8、对应预估的电气长度为kl_4。
端口序号 子载波截止频点 预估的电气长度
1 Fmax_1 kl_1
2 Fmax_2 kl_2
5 Fmax_5 kl_3
9 Fmax_9 kl_4
表1
可以理解的是,本申请实施例中的第一传输模式的最大子载波截止频点作为第二种传输模式频段的子载波起始频点,也即作为第二种传输模式频段的最小子载波起始频点。
在一实施例中,电气长度为标准中定义的1兆赫(Mega Hertz,MHz)频点上的衰减;在其他的实施例中,电气长度也可以是基于其他频点上的衰减,本申请实施例对电气长度不做限定。
本申请实施例中,当有第一传输模式的新的客户终端设备i建链时,评估满足客户终端设备i需要的子载波截止频点Fmax_i,获取第一传输模式的客户终端设备i中索引值最大的子载波截止频点FMAX。可以理解的是,在实际应用中,索引值最大的子载波截止频点FMAX可以适当增加一些余量。
如果Fmax_i<=FMAX,则索引值最大的子载波截止频点FMAX保持不变;
如果Fmax_i>FMAX,则将Fmax_i作为FMAX,并记录该更新事件。
下一次有第二传输模式的客户终端设备建链时,采用更新过的最大子载波截止频点FMAX作为第二传输模式的子载波起始频点进行建链。可以理解的是,在实际应用中,第二传输模式的客户终端设备建链时,也可以在更新过 的最大子载波截止频点FMAX上增加一个保护带作为起始位置。
请参阅图7,在一实施例的实际应用中,第二传输模式为G.Vector,即局端设备为支持G.Vector传输模式的设备,客户终端设备中的第二传输模式为G.Vector模式、第一传输模式为ADSL或者VDSL2模式。在系统控制界面上,配置第一传输模式包括标准传输模式G992.1、G992.3、G992.5;配置第二传输模式包括标准传输模式G993.5。在系统启动时,最大子载波截止频点FMAX初始化默认为0M,此时第一传输模式的子载波截止频点表为空,第二传输模式的子载波起始频点表为空。在一实施例中,第一传输模式的子载波截止频点表可以包括但不限于包括端口序号、第一传输模式的子载波截止频点和预估的电气长度;第二传输模式的子载波起始频点表可以包括但不限于包括端口序号、第二传输模式的子载波起始频点。若检测到端口以G.Vector的第二传输模式建链,则包括以下步骤:
若检测到端口以第二传输模式建链,则采用全频段建链,然后执行以下步骤:
S701a:更新第二传输模式的子载波起始频点表;
S702a:检测第一传输模式的子载波截止频点表中是否有该端口,如果检测到第一传输模式的子载波截止频点表中有该端口,则执行步骤S703a;否则,执行步骤S704;
S703a:从第一传输模式的子载波截止频点表中删除该端口。
在一实施例中步骤S703a之后执行步骤S704:若下一次有端口第二传输模式建链,则采用将最新的最大子载波截止频点进行建链。
若检测到端口以第一传输模式建链,则查看第一传输模式的子载波截止频点表,然后执行以下步骤:
S701b:预估电气长度;
S702b:根据预估的电气长度计算该端口的子载波截止频点;
S703b:将该端口的子载波截止频点配置到相应的端口的记录信息,并更新最大子载波截止频点FMAX。
步骤S703b执行完成之后,等待该第一传输模式的端口建链。
在第一传输模式的端口建链之后,还执行以下步骤:
S704b:更新第一传输模式的子载波截止频点表;
S705b:获取更新后的第一传输模式的子载波截止频点表的电气长度;
S706b:计算最新的最大子载波截止频点;
S707b:检测第二传输模式的子载波起始频点表中是否包含这个端口;如果检测到第二传输模式的子载波起始频点表中包含这个端口则执行步骤S708b,否则,执行步骤S704。
S708b:将该端口从第二传输模式的子载波起始频点表中删除。
在一实施例中,步骤S708b之后执行步骤S704。
在一些实施例中,支持G.Vector模式的数字用户线路接入设备在部署初期可能还存在大量的ADSL,ADSL2,ADSL2+。在本实施例中,G.Vector模式的数字用户接入设备可以对本设备连接的DSL线路之间的远端串音(Far-End Crosstalk,FEXT)串扰进行抵消,但是由于ADSL CPE不支持串扰抵消模式,ADSL CPE建链之后,在ADSL频段产生的干扰,在Vector系统中不能够抵消,ADSL CPE的建链掉链时对Vetor系统中的线路产生较大干扰。对Vector系统稳定性产生影响。为了减少ADSL CPE建链掉链对G.Vector CPE影响,一般G.Vector CPE和ADSL CPE采用频率划分的方式来配置。
在另一实施例的实际应用中,第二传输模式为G.fast,即局端设备为支 持G.fast传输模式的设备,客户终端设备中的第二传输模式为G.fast模式、第一传输模式为G.Vector、VDSL2或者ADSL模式。在系统控制界面上,配置第一传输模式包括标准传输模式G992.1,G992.3,G992.5,G993.2,G993.5;配置第二传输模式包括标准传输模式G9701。在系统启动时,最大子载波截止频点FMAX初始化默认为0M,此时第一传输模式的子载波截止频点表为空,第二传输模式的子载波起始频点表为空。
若检测到端口以G.fast的第二传输模式建链,则步骤参照图7的步骤S701a-S703a、S704、S701b-S708b执行。
在G.fast部署初期,系统中可能存在17A的G.Vector、35B的G.Vector、和G.fast的CPE共存方式,其中G.Vector的CPE可能工作在普通VDSL2模式。由于G.fast的CPE工作频段为106M甚至高达212M或者更高,所以可以提供高达2G以上的吞吐量,但是G.fast工作模式为时分模式,G.Vector模式、普通VDSL2模式和ADSL模式为频分模式,在组网初期,如果系统中存在这两种上下行复用方式,必须采用频率划分方式;其中,时分模式是指根据时隙来区分上行和下行,频分模式是指根据频段来区分上行和下行。
存储器作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序。此外,存储器可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器可能包括相对于处理器远程设置的存储器,这些远程存储器可以通过网络连接至该处理器。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
本申请实施例描述的实施例是为了更加清楚的说明本申请实施例的技术 方案,并不构成对于本申请实施例提供的技术方案的限定,本领域技术人员可知,随着技术的演变和新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本领域技术人员可以理解的是,图2中示出的频谱管理方法并不构成对本申请实施例的限定,可以包括比图示更多或更少的步骤,或者组合某些步骤,或者不同的步骤。
本申请的一个实施例还提供了一种频谱管理设备,频谱管理设备包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行所述计算机程序时实现以上描述的图2中的方法步骤S101至S104、图4中的方法步骤S401至S403、图5中的方法步骤S501至S502、图6中的方法步骤S601至S603或图7中的方法步骤S701a-S703a、S704、S701b-S708b。
实现上述实施例的频谱管理方法所需的非暂态软件程序以及指令存储在存储器中,当被处理器执行时,执行上述实施例的频谱管理方法,例如,执行以上描述的图2中的方法步骤S101至S104、图4中的方法步骤S401至S403、图5中的方法步骤S501至S502、图6中的方法步骤S601至S603或图7中的方法步骤S701a-S703a、S704、S701b-S708b。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
此外,本申请的一个实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个处理器或控制器执行,例如,被上述节点实施例中的一个处理器执行,可使得上 述处理器执行上述实施例中的维护实体组中间点创建方法,例如,执行以上描述的图2中的方法步骤S101至S104、图4中的方法步骤S401至S403、图5中的方法步骤S501至S502、图6中的方法步骤S601至S603或图7中的方法步骤S701a-S703a、S704、S701b-S708b。
本申请实施例提出的频谱管理方法、设备和存储介质,其通过获取到每个第一传输模式的端口的最大速率确定每个所述第一传输模式的客户终端设备建链占用的子载波截止频点,然后将所有所述第一传输模式的客户终端设备建链占用的子载波截止频点中最大子载波截止频点作为第二传输模式建链占用的子载波起始频点,动态调整第二种传输模式的子载波起始频点,从而实现动态调整第二种传输模式的频段范围,能够使得支持第二种传输模式(新传输模式)的局端设备兼容第一传输模式(旧传输模式)的客户终端设备、以减少串扰和端口建链不稳定的情况。
本申请实施例提出一种频谱管理方法、设备和计算机可读存储介质,能够使得支持新传输模式的局端设备兼容旧传输模式的客户终端设备、以减少串扰和端口建链不稳定的情况。
本申请提出的频谱管理方法、设备和存储介质,其通过获取到每个第一传输模式的端口的最大速率确定每个所述第一传输模式的客户终端设备建链占用的子载波截止频点,然后将所有所述第一传输模式的客户终端设备建链占用的子载波截止频点中最大子载波截止频点作为第二传输模式建链占用的子载波起始频点,动态调整第二种传输模式的子载波起始频点,从而实现动态调整第二种传输模式的频段范围,能够使得支持第二传输模式的局端设备兼容第一传输模式的客户终端设备、以减少串扰和端口建链不稳定的情况。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、 设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的一些实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请范围的前提下还可作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

  1. 一种频谱管理方法,包括:
    获取每个第一传输模式的端口的最大速率;
    根据每个所述第一传输模式的端口的最大速率,确定每个所述第一传输模式的客户终端设备建链占用的子载波截止频点;
    将所有所述第一传输模式的客户终端设备建链占用的子载波截止频点中最大子载波截止频点作为第二传输模式建链占用的子载波起始频点。
  2. 根据权利要求1所述的频谱管理方法,还包括:
    将所述最大子载波截止频点配置到相应的建链的端口。
  3. 根据权利要求1或2所述的频谱管理方法,其中,所述获取每个第一传输模式的端口的最大速率包括:
    根据局端设备与所述客户终端设备之间的距离预估线路的信道特征;
    根据所述预估的信道特征预估每个子载波承载的最大比特数;
    根据每个所述子载波承载的最大比特数计算出最大速率。
  4. 根据权利要求3所述的频谱管理方法,其中,所述根据局端设备与所述客户终端设备之间的距离预估线路的信道特征,包括:
    预估所述局端设备和所述客户终端设备之间的距离;
    根据预估的局端设备和用户终端设备之间的距离和线路物理参数估算所述信道特征。
  5. 根据权利要求3所述的频谱管理方法,其中,所述根据所述预估的信道特征预估每个子载波承载的最大比特数,包括:
    根据所述预估的信道特征预估每个子载波的信噪比;
    根据每个所述子载波的信噪比计算每个所述子载波承载的最大比特数。
  6. 根据权利要求5所述的频谱管理方法,其中,所述信噪比包括下行信噪比,所述根据所述预估的信道特征预估每个子载波承载的最大比特数,包括:
    根据所述预估的信道特征预估每个子载波的下行信噪比;
    根据每个所述子载波的下行信噪比计算每个所述子载波承载的最大下行比特数;
    所述根据每个所述子载波承载的最大比特数计算出最大速率,包括:
    根据每个所述子载波承载的最大下行比特数计算出最大下行速率;
    所述根据每个所述第一传输模式的端口的最大速率,确定每个所述第一传输模式的客户终端设备建链占用的子载波截止频点,包括:
    根据每个所述第一传输模式的端口的最大下行速率,确定每个所述第一传输模式的客户终端设备建链占用的子载波截止频点。
  7. 根据权利要求5所述的频谱管理方法,其中,所述信噪比还包括上行信噪比,所述根据所述预估的信道特征预估每个子载波承载的最大比特数,包括:
    根据所述预估的信道特征预估每个子载波的上行信噪比;
    根据每个所述子载波的上行信噪比计算每个所述子载波承载的最大上行比特数;
    所述根据每个所述子载波承载的最大比特数计算出最大速率,包括:
    根据每个所述子载波承载的最大上行比特数计算出最大上行速率;
    所述根据每个所述第一传输模式的端口的最大速率,确定每个所述第一传输模式的客户终端设备建链占用的子载波截止频点,包括:
    根据每个所述第一传输模式的端口的最大上行速率,确定每个所述第一 传输模式的客户终端设备建链占用的子载波截止频点。
  8. 根据权利要求5所述的频谱管理方法,其中,所述根据所述预估的信道特征预估每个子载波的信噪比,包括:
    根据设备参数、系统参数和所述预估的信道特征预估每个所述子载波的信噪比。
  9. 一种频谱管理设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其中,所述处理器执行所述计算机程序时实现如权利要求1至8中任意一项所述的频谱管理方法。
  10. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行权利要求1至8中任意一项所述的频谱管理方法。
PCT/CN2021/099400 2020-06-15 2021-06-10 频谱管理方法、设备和计算机可读存储介质 WO2021254247A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010543482.0 2020-06-15
CN202010543482.0A CN113810130A (zh) 2020-06-15 2020-06-15 频谱管理方法、设备和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021254247A1 true WO2021254247A1 (zh) 2021-12-23

Family

ID=78944435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099400 WO2021254247A1 (zh) 2020-06-15 2021-06-10 频谱管理方法、设备和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN113810130A (zh)
WO (1) WO2021254247A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9774367B2 (en) * 2016-01-12 2017-09-26 Arcadyan Technology Corp. Method for automatically removing crosstalk and an apparatus thereof
US20170279634A1 (en) * 2014-09-22 2017-09-28 British Telecommunications Public Limited Company Data communication
CN108964790A (zh) * 2017-05-23 2018-12-07 中兴通讯股份有限公司 一种G.fast与VDSL2串扰条件下PSD的管理方法和装置
WO2019096014A1 (zh) * 2017-11-18 2019-05-23 中兴通讯股份有限公司 共线传输方法及装置
CN109981139A (zh) * 2019-03-29 2019-07-05 湖北师范大学 一种降低g.fast端口串扰的方法、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170279634A1 (en) * 2014-09-22 2017-09-28 British Telecommunications Public Limited Company Data communication
US9774367B2 (en) * 2016-01-12 2017-09-26 Arcadyan Technology Corp. Method for automatically removing crosstalk and an apparatus thereof
CN108964790A (zh) * 2017-05-23 2018-12-07 中兴通讯股份有限公司 一种G.fast与VDSL2串扰条件下PSD的管理方法和装置
WO2019096014A1 (zh) * 2017-11-18 2019-05-23 中兴通讯股份有限公司 共线传输方法及装置
CN109981139A (zh) * 2019-03-29 2019-07-05 湖北师范大学 一种降低g.fast端口串扰的方法、设备及存储介质

Also Published As

Publication number Publication date
CN113810130A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
KR100640320B1 (ko) 스플리터없는 멀티캐리어 모뎀
US8000219B2 (en) Method and apparatus for spectrum management
US8908834B2 (en) Method, apparatus, and system for reducing digital subscriber line interference
US10097238B2 (en) Line synchronization method in OSD system, system, and vectoring control entity
JP2005278150A (ja) チャネル状態モデルを使用してビットローディングを行うデジタル加入者回線モデム
JP2005278150A5 (zh)
WO2007033579A1 (fr) Procede et organe de reglage de puissance adaptative fondee sur la reduction de diaphonie parmi les lignes dsl
US10264136B2 (en) Resource allocation in a digital communication network
US8031760B2 (en) Fast modem reconfiguration
US20170026521A1 (en) Data communication
EP3350933A1 (en) Method and apparatus for operating a digital subscriber line arrangement
US20090180526A1 (en) Power Reduction for Digital Subscriber Line
WO2021254247A1 (zh) 频谱管理方法、设备和计算机可读存储介质
EP1804450A1 (en) Allocating data in a multi-carrier digital subscriber line system
US8923454B2 (en) Method, apparatus and system for eliminating aliasing noise in multi-carrier modulation system
US20110176588A1 (en) Method and device for data processing and communication system comprising such device
WO2010048896A1 (zh) 数字用户线中上行功率下调方法、装置及系统
WO2007033605A1 (fr) Procede permettant d&#39;effectuer une selection automatique de mode de fonctionnement dans un reseau xdsl et appareil a cet effet
WO2009140890A1 (zh) 一种实现符号同步的方法、系统及装置
US20110134975A1 (en) Method and device for data processing and communication system comprising such device
US8917863B2 (en) Method and device for data processing in a digital subscriber line environment
JACOBSEN Last Mile Copper Access
EP2146496B1 (en) Method and device for data processing and communication system comprising such device
WO2008017274A1 (fr) Procédé et dispositif pour contrôler la qualité de communication en ligne
JP2004343578A (ja) Adsl動作モード設定システム、集線装置及びそれらに用いる動作モード設定方法並びにそのプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.04.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21825939

Country of ref document: EP

Kind code of ref document: A1