WO2021253824A1 - Procédé de protection contre l'affouillement autour des piles de pont, combinant une surface de révolution normale concave et un matériau particulaire - Google Patents

Procédé de protection contre l'affouillement autour des piles de pont, combinant une surface de révolution normale concave et un matériau particulaire Download PDF

Info

Publication number
WO2021253824A1
WO2021253824A1 PCT/CN2021/072817 CN2021072817W WO2021253824A1 WO 2021253824 A1 WO2021253824 A1 WO 2021253824A1 CN 2021072817 W CN2021072817 W CN 2021072817W WO 2021253824 A1 WO2021253824 A1 WO 2021253824A1
Authority
WO
WIPO (PCT)
Prior art keywords
pier
normal
bridge
scour
normal curved
Prior art date
Application number
PCT/CN2021/072817
Other languages
English (en)
Chinese (zh)
Inventor
孙志林
董海洋
孙逸之
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2022514627A priority Critical patent/JP7261525B2/ja
Publication of WO2021253824A1 publication Critical patent/WO2021253824A1/fr
Priority to US17/723,461 priority patent/US11987941B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/02Piers; Abutments ; Protecting same against drifting ice
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/20Equipment for shipping on coasts, in harbours or on other fixed marine structures, e.g. bollards
    • E02B3/26Fenders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the invention belongs to the field of partial scour protection of bridge foundations, and in particular relates to a bridge pier scour protection method combining a concave rotating normal curved surface and a bulk body.
  • the local scour protection measures of bridge piers are mainly divided into two categories: (1) Active protection. To reduce the scouring energy of the water flow on the piers, that is, to weaken the downflow and the horseshoe vortex flow in the scouring process of the water flow. Measures such as enlarging the foundation plane of the piers or setting foot guards are usually adopted to reduce the scouring energy of the water flow. (2) Passive protection. To improve the anti-scouring ability of the bottom bed near the bridge pier, usually by throwing rocks or twisting the king block around the foundation of the bridge pier, in an attempt to improve the anti-scouring ability of the bridge pier.
  • Ripple protection has always been the most widely used form of passive protection for large and medium-sized bridge piers. It has disadvantages such as enhanced eddy current, poor protection effect, large operation and maintenance costs and workload. Especially under the action of extreme hydrodynamic force, a strong vortex is formed around the riprap, which intensifies the erosion of the vortex on the bed surface. Not only does it fail to protect, it may even have the opposite effect.
  • the present invention proposes a method for protecting bridge piers from erosion by combining a concave rotating normal surface with granular bodies.
  • the specific technical solutions are as follows:
  • a method for pier scour protection combined with a concave rotating normal surface and bulk particles is used to protect the foundation scour of bridge piers across the sea or river.
  • the method is used to protect the foundation scour of bridge piers across the sea or river.
  • the normal curved protection structure is a section of rotating normal curved shell with a thickness of a.
  • the point of intersection between the center of the pier and the unwashed river bed plane is the origin, the water flow direction is the positive direction of the x-axis, and the horizontal plane is perpendicular to the The direction of the water flow is the y-axis, and the pier axis downward is the positive direction of the z-axis, then the inner surface of the normal curved shell is a curved surface that satisfies the following equation:
  • x, y, z are the coordinates of the points on the inner surface of the normal curved shell
  • l is the gap distance between the inner surface of the normal curved shell and the surface of the pier after the normal curved shell is sleeved on the pier
  • is the scouring pit
  • h 0 is the distance from the upper part of the normal curved shell to the bed surface.
  • the ratio ⁇ of the thickness ⁇ h of the granular body layer to the maximum depth h b of the scour pit satisfies the following conditions:
  • G' is the equivalent gravity of the granular particles
  • F w is the water flow force
  • is the friction coefficient of the scouring pit bed surface
  • L is the length of the scouring pit
  • Angle ⁇ w is the water density.
  • the normal curved surface protection structure further includes a cylindrical sleeve-shaped base inserted into the river bed for fixing the normal curved shell, the thickness of which is the same as that of the normal curved shell, and the inner surface of the base meets the following requirements relation:
  • a 0.1 to 0.3 m
  • h c 1 to 2 m.
  • the particle size d of the granular particles is 3 to 5 times the initial particle size of the sediment under the extreme velocity of the local natural conditions.
  • the protection system of the present invention organically combines the normal curved surface structure in the scour pit to resist downwashing water flow with the weakened horseshoe-shaped vortex of the granular body layer.
  • the normal curved surface structure is mainly used to resist the downwashing current in front of the pier, and the granular body layer can reduce the bridge pier.
  • the protection system can reduce the energy of downwashing and horseshoe vortex around the pier during the use of the bridge, reduce local scour, and effectively protect the foundation of the pier.
  • Figure 1 is a diagram of the force on the granular body on the slope
  • Figure 2 is a side view of the local scour protection around the bridge pier combined with a concave normal curved surface and granular body.
  • Figure 3 is a top view of the local scour protection around the bridge pier combined with the concave rotating normal surface and the granular body.
  • the force of the granular body in the pier scour pit can be simplified as: gravity, bed resistance, buoyancy, and water flow.
  • A is the waterfront area:
  • C D is the thrust coefficient
  • the length of the scour pits before and after the pier is basically the same, and the angle between the slopes of the scour pits of the front and rear ends and the horizontal direction is also roughly the same, as shown in Figure 2, which is the invention
  • the pier scour protection device combined with the concave rotating normal curved surface protection structure and the granular body.
  • the concave rotating normal curved surface protection structure is laid and the rotating normal surface is rotated.
  • a specific thickness of granular material is laid inside the surface protection structure.
  • the rotating normal curved surface protection structure is a section of rotating normal curved shell with a thickness of a. The following specifically introduces the shape of the pier scour protection device.
  • x, y, z are the coordinates of the points on the inner surface of the normal curved shell
  • l is the gap distance between the inner surface of the normal curved shell and the surface of the pier after the normal curved shell is sleeved on the pier
  • is the scouring pit
  • h 0 is the distance from the upper part of the normal curved shell to the bed surface.
  • the normal curved structure is sunk into the scouring pit. Due to its own weight, the structure will compact the silt in the pit and fix it on the surface of the scouring pit.
  • the normal curved surface protection structure also includes a cylindrical sleeve-shaped base inserted in the river bed for fixing the normal curved shell, the thickness of which is the same as that of the normal curved shell, and the inner surface of the cylindrical sleeve-shaped base satisfies the following relationship:
  • Figure 3 is a top view of the protective structure and granular bodies.
  • the particle size d and thickness ⁇ h of the laid granular material are determined by the calculation method of the starting flow velocity of the granular material slope and the force analysis of the granular material on the normal curved surface to play the most effective protective effect.
  • the particle size d and laying thickness ⁇ h of the granular body ensure that the granular body will not be moved out of the scouring pit, and on the other hand, it can avoid the abrasion of the structure by the granular body.
  • G' is the equivalent gravity of the granular particles
  • F w is the water flow force
  • is the friction coefficient of the scouring pit bed surface
  • L is the length of the scouring pit
  • Angle ⁇ w is the water density.
  • the particle size of the granular particles used is 3 to 5 times the initial particle size of the sediment under the extreme flow velocity under local natural conditions (without bridge construction).
  • the pier scour protection device with the combination of the concave normal curved surface and the granular body of the present invention is laid in the local scour pit around the bridge pier, and uses the granular body gap to eliminate vortex and the movement of the granular body on the slope to consume the vortex energy to reduce the surrounding area of the bridge pier.
  • the turbulence of the water flow and the strength of the horseshoe vortex reduce the erosion effect of the horseshoe vortex on the bridge pier and its protective structure.
  • the gap between the granular bodies can reduce the wake vortex around the bridge piers and effectively absorb the horseshoe vortex energy; at the same time, the granular bodies will move diagonally away from the pier along the normal curved surface under the action of downwashing current, and then fall back under the action of gravity. Converting the kinetic energy of the water flow into the kinetic energy and potential energy of the granular body can further consume the energy of the downwash and the horseshoe vortex.
  • the weight of the granular layer increases, and the normal curved surface structure compacts the sediment below it, which helps to maintain the stability of the protective structure.
  • the corresponding curved structures and granular bodies can be designed with reference to the protection method provided by the present invention.
  • the present invention has a guiding effect on the erosion protection of the foundation of wading buildings.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

Procédé de protection contre l'affouillement autour des piles de pont, combinant une surface de révolution normale concave et un matériau particulaire. Le procédé est utilisé pour la protection contre l'affouillement autour des fondations des piles dans un pont à poutres enjambant la mer ou une rivière. Lorsqu'une zone d'affouillement dans la région locale entourant le bas d'une pile de pont ou d'une colonne de pont atteint une profondeur définie, une structure de protection de surface de révolution normale concave est prévue, et un matériau particulaire d'une épaisseur spécifique est disposé à l'intérieur de la structure de protection de surface de révolution normale concave. Le présent procédé de protection combine de manière organique la défense contre un écoulement d'eau sous affouillement par une structure de surface normale dans une zone d'afouillement avec l'affaiblissement des vortex en fer à cheval par une couche de matériau particulaire. La structure de surface normale est principalement utilisée pour protéger contre l'écoulement d'eau sous affouillement devant une pile, et la couche de matériau particulaire peut affaiblir les vortex en fer à cheval autour de la pile. Pendant l'utilisation du pont, le présent système de protection est capable de réduire le flux sous affouillement et l'énergie des tourbillons de fer à cheval autour des piles de pont et de réduire l'affouillement local, et d'avoir ainsi un effet protecteur efficace sur les fondations des piles de pont et est efficace pour protéger les fondations de constructions partiellement immergées.
PCT/CN2021/072817 2021-01-12 2021-01-20 Procédé de protection contre l'affouillement autour des piles de pont, combinant une surface de révolution normale concave et un matériau particulaire WO2021253824A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022514627A JP7261525B2 (ja) 2021-01-12 2021-01-20 下凹型回転正規曲面と散粒体とを組み合わせた橋脚ウォッシュ防護方法
US17/723,461 US11987941B2 (en) 2021-01-12 2022-04-19 Pier scour protection method by combinating a downward bivariate normal distribution surface and granular mixture

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202120077345.2 2021-01-12
CN202120077345.2U CN215562387U (zh) 2021-01-12 2021-01-12 下凹型旋转正态曲面与散粒体结合的桥墩冲刷防护装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/723,461 Continuation US11987941B2 (en) 2021-01-12 2022-04-19 Pier scour protection method by combinating a downward bivariate normal distribution surface and granular mixture

Publications (1)

Publication Number Publication Date
WO2021253824A1 true WO2021253824A1 (fr) 2021-12-23

Family

ID=79269119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072817 WO2021253824A1 (fr) 2021-01-12 2021-01-20 Procédé de protection contre l'affouillement autour des piles de pont, combinant une surface de révolution normale concave et un matériau particulaire

Country Status (2)

Country Link
CN (1) CN215562387U (fr)
WO (1) WO2021253824A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214975A (zh) * 2022-01-12 2022-03-22 广州市鲁班建筑科技集团股份有限公司 一种桥墩的修缮方法及桥墩的防护结构
CN115329451A (zh) * 2022-10-17 2022-11-11 西南交通大学 基于能量守恒及数值流场的桥梁局部冲深计算方法和装置
CN115387208A (zh) * 2022-09-15 2022-11-25 四川省交通勘察设计研究院有限公司 一种桥墩的防护结构、防护桥及安装方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112746556B (zh) 2021-01-12 2022-04-19 浙江大学 一种下凹型旋转正态曲面与散粒体结合的桥墩冲刷防护方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895007A (zh) * 2015-05-19 2015-09-09 浙江大学 一种呈双变量正态曲面形态的丁坝
US20160083925A1 (en) * 2013-10-08 2016-03-24 Applied University Research, Inc. Scour preventing apparatus for hydraulic structures
CN108411802A (zh) * 2018-05-30 2018-08-17 扬州大学 一种水下修复桩基础及冲刷坑的方法
CN108867343A (zh) * 2018-07-09 2018-11-23 浙江大学 一种桥墩或丁坝头部局部冲刷的散粒体防护结构及其施工方法
CN110804957A (zh) * 2019-09-29 2020-02-18 安徽省交通控股集团有限公司 一种桥墩局部冲刷的防护方法
CN111926805A (zh) * 2020-09-03 2020-11-13 华电重工股份有限公司 一种桩基防护结构及防护方法
CN112160288A (zh) * 2020-07-31 2021-01-01 浙江大学 一种旋转正态曲面的桥墩局部冲刷防护装置
CN112746556A (zh) * 2021-01-12 2021-05-04 浙江大学 一种下凹型旋转正态曲面与散粒体结合的桥墩冲刷防护方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160083925A1 (en) * 2013-10-08 2016-03-24 Applied University Research, Inc. Scour preventing apparatus for hydraulic structures
CN104895007A (zh) * 2015-05-19 2015-09-09 浙江大学 一种呈双变量正态曲面形态的丁坝
CN108411802A (zh) * 2018-05-30 2018-08-17 扬州大学 一种水下修复桩基础及冲刷坑的方法
CN108867343A (zh) * 2018-07-09 2018-11-23 浙江大学 一种桥墩或丁坝头部局部冲刷的散粒体防护结构及其施工方法
CN110804957A (zh) * 2019-09-29 2020-02-18 安徽省交通控股集团有限公司 一种桥墩局部冲刷的防护方法
CN112160288A (zh) * 2020-07-31 2021-01-01 浙江大学 一种旋转正态曲面的桥墩局部冲刷防护装置
CN111926805A (zh) * 2020-09-03 2020-11-13 华电重工股份有限公司 一种桩基防护结构及防护方法
CN112746556A (zh) * 2021-01-12 2021-05-04 浙江大学 一种下凹型旋转正态曲面与散粒体结合的桥墩冲刷防护方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214975A (zh) * 2022-01-12 2022-03-22 广州市鲁班建筑科技集团股份有限公司 一种桥墩的修缮方法及桥墩的防护结构
CN114214975B (zh) * 2022-01-12 2023-09-26 广州市鲁班建筑科技集团股份有限公司 一种桥墩的修缮方法及桥墩的防护结构
CN115387208A (zh) * 2022-09-15 2022-11-25 四川省交通勘察设计研究院有限公司 一种桥墩的防护结构、防护桥及安装方法
CN115329451A (zh) * 2022-10-17 2022-11-11 西南交通大学 基于能量守恒及数值流场的桥梁局部冲深计算方法和装置
CN115329451B (zh) * 2022-10-17 2022-12-27 西南交通大学 基于能量守恒及数值流场的桥梁局部冲深计算方法和装置

Also Published As

Publication number Publication date
CN215562387U (zh) 2022-01-18

Similar Documents

Publication Publication Date Title
WO2021253824A1 (fr) Procédé de protection contre l'affouillement autour des piles de pont, combinant une surface de révolution normale concave et un matériau particulaire
CN112746556B (zh) 一种下凹型旋转正态曲面与散粒体结合的桥墩冲刷防护方法
CN206157667U (zh) 一种山区斜交桥桥墩防冲刷防撞装置
Sumer The mechanics of scour in the marine environment
Takahashi et al. Typical failures of composite breakwaters in Japan
CN108867343B (zh) 一种桥墩或丁坝头部局部冲刷的散粒体防护结构及其施工方法
US20090052989A1 (en) Covering Element for Protecting Structures Against Scouring and Drag Force
CN112160288A (zh) 一种旋转正态曲面的桥墩局部冲刷防护装置
CN107254864A (zh) 一种翼型消能板及含有翼型消能板的泥石流排导槽
Chen et al. Protection mechanisms, countermeasures, assessments and prospects of local scour for cross-sea bridge foundation: A review
Palmer et al. Design and construction of rubble mound breakwaters
CN106638501B (zh) 适用于弯道陡槽溢洪道的水沙分离建筑物布置形式
Zhang Study on local scour protection countermeasures of bridge pier
Takahashi Breakwater design
CN208767755U (zh) 连锁-单体石笼相嵌式抗船锚水下管线保护结构
US20120027526A1 (en) Method and structure for reducing turbulence around and erosion of underwater structures
Chen Experimental study of scour around monopile and jacket-type offshore wind turbine foundations
Williams Mechanisms of wave transport of megaclasts on elevated cliff-top platforms: examples from western Ireland relevant to the storm-wave versus tsunami controversy
CN111910581A (zh) 适用于近海段海底电缆保护的水泥沙袋坝体及评估方法
Chee et al. STABLE PROFILES OF PLUNGE BASINS 1
Chock et al. Tsunami design criteria and load cases of the ASCE 7-16 chapter 6, tsunami loads and effects
CN217174575U (zh) 生态友好型堤坝
Gris Sheath for reducing local scour in bridge piers
CN216339293U (zh) 一种港口水利工程用消浪护面体结构
JPS58210205A (ja) 土石流規制ダム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022514627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21824754

Country of ref document: EP

Kind code of ref document: A1