WO2021253814A1 - 一种数据处理方法、装置、系统及计算机可读存储介质 - Google Patents

一种数据处理方法、装置、系统及计算机可读存储介质 Download PDF

Info

Publication number
WO2021253814A1
WO2021253814A1 PCT/CN2021/070715 CN2021070715W WO2021253814A1 WO 2021253814 A1 WO2021253814 A1 WO 2021253814A1 CN 2021070715 W CN2021070715 W CN 2021070715W WO 2021253814 A1 WO2021253814 A1 WO 2021253814A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing unit
positioning
positioning system
information
data
Prior art date
Application number
PCT/CN2021/070715
Other languages
English (en)
French (fr)
Inventor
周文杰
Original Assignee
出门问问信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010550508.4A external-priority patent/CN111831098B/zh
Priority claimed from CN202010550309.3A external-priority patent/CN111781616A/zh
Priority claimed from CN202010549076.5A external-priority patent/CN111836187A/zh
Application filed by 出门问问信息科技有限公司 filed Critical 出门问问信息科技有限公司
Priority to EP21826898.5A priority Critical patent/EP4167053A1/en
Publication of WO2021253814A1 publication Critical patent/WO2021253814A1/zh
Priority to US18/082,079 priority patent/US20230122488A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/329Power saving characterised by the action undertaken by task scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/34Power consumption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/421Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system
    • G01S19/423Determining position by combining or switching between position solutions or signals derived from different satellite radio beacon positioning systems; by combining or switching between position solutions or signals derived from different modes of operation in a single system by combining or switching between position solutions derived from different satellite radio beacon positioning systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1684Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675
    • G06F1/1694Constructional details or arrangements related to integrated I/O peripherals not covered by groups G06F1/1635 - G06F1/1675 the I/O peripheral being a single or a set of motion sensors for pointer control or gesture input obtained by sensing movements of the portable computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3293Power saving characterised by the action undertaken by switching to a less power-consuming processor, e.g. sub-CPU

Definitions

  • the present invention relates to the technical field of wearable devices, and in particular to a data processing method, device, system and computer-readable storage medium.
  • wearable devices such as smart watches and sports bracelets enter the lives of more people
  • people have put forward higher requirements for the low power consumption and practicability of wearable devices. Both have more practical functions and reduce power consumption.
  • users of wearable devices such as smart watches and sports bracelets put forward higher requirements for the real-time positioning function, and hope that the positioning function will not generate high power consumption.
  • the positioning function is turned on on these smart wearable devices, especially in sports scenes, it consumes a lot of power, which brings great inconvenience to users and also affects the practicality of wearable devices to a certain extent. sex.
  • the embodiments of the present invention creatively provide a data processing method, device, system, and computer-readable storage medium.
  • a data processing method applied to a first electronic device including a first processing unit and a second processing unit, the first processing unit running a first operating system , The second processing unit runs a second operating system, the work energy consumption of the first processing unit is less than the work energy consumption of the second processing unit, and the method includes: the first processing unit executes the positioning system Select and save the selected positioning system information; when it is determined that the first trigger condition for performing positioning system information synchronization is met, the first processing unit synchronizes the saved positioning system information to the second processing unit ; The second processing unit performs positioning-related processing according to the obtained positioning system information.
  • a data processing method applied to a first electronic device including a first processing unit and a second processing unit, the first processing unit running a first operating system , The second processing unit runs a second operating system, the work energy consumption of the first processing unit is less than the work energy consumption of the second processing unit, and the method includes:
  • the positioning system for performing the positioning function obtains the positioning information of the first electronic device, and the positioning information includes the position information and time stamp information of the first electronic device within a certain period of time;
  • the first processing unit synchronizes the obtained positioning information to the second processing unit; the second processing unit performs positioning-related processing according to the obtained positioning information.
  • a data processing method applied to a first electronic device including a first processing unit and a second processing unit, the first processing unit running a first operating system , The second processing unit runs a second operating system, the work energy consumption of the first processing unit is less than the work energy consumption of the second processing unit, and the method includes: The positioning system for performing the positioning function obtains the positioning data of the first electronic device; when it is determined that the first trigger condition for performing positioning data synchronization is met, the first processing unit synchronizes the obtained positioning data to the The second processing unit; the second processing unit performs positioning-related processing according to the obtained positioning data.
  • a data processing device applied to a first electronic device, the first electronic device including a first processing unit and a second processing unit, the first processing unit running a first operating system , The second processing unit runs a second operating system, the work energy consumption of the first processing unit is less than the work energy consumption of the second processing unit, and the device includes: a selected module configured in the first The processing unit is used to perform the selection of the positioning system and save the selected positioning system information; the information synchronization module is used to determine that the first trigger condition for performing the positioning system information synchronization is met, the first processing unit will The stored positioning system information is synchronized to the second processing unit; an information processing module is configured in the second processing unit and is configured to perform positioning-related processing according to the obtained positioning system information.
  • a data processing device applied to a first electronic device, the first electronic device including a first processing unit and a second processing unit, the first processing unit running a first operating system , The second processing unit runs a second operating system, the work energy consumption of the first processing unit is less than the work energy consumption of the second processing unit, and the device includes: an information acquisition module configured in the first A processing unit, configured to obtain positioning information of the first electronic device from a positioning system for performing a positioning function connected to the first processing unit, where the positioning information includes the location information of the first electronic device within a certain period of time Position information and time stamp information; an information synchronization module, which is used for the first processing unit to synchronize the obtained positioning information to the second processing unit when it is determined that the first trigger condition for performing positioning information synchronization is met;
  • the processing module is configured in the second processing unit and is configured to perform positioning-related processing according to the obtained positioning information.
  • a data processing device applied to a first electronic device, the first electronic device including a first processing unit and a second processing unit, the first processing unit running a first operating system, The second processing unit runs a second operating system, the work energy consumption of the first processing unit is less than the work energy consumption of the second processing unit, and the device includes: a positioning data acquisition module configured in the first The processing unit is configured to obtain the positioning data of the first electronic device from the positioning system for performing the positioning function connected to the first processing unit; the data synchronization module is used to determine that the first trigger for performing positioning data synchronization is met When conditions are met, the first processing unit synchronizes the obtained positioning data to the second processing unit; the data processing module is configured in the second processing unit and is used to perform and position according to the obtained positioning data.
  • a positioning data acquisition module configured in the first The processing unit is configured to obtain the positioning data of the first electronic device from the positioning system for performing the positioning function connected to the first processing unit; the data synchronization module is used to determine that the first trigger for performing positioning data synchron
  • a data processing system including a processor and a memory, wherein the memory stores computer program instructions, and the computer program instructions are used to execute the foregoing when the processor is running.
  • a computer-readable storage medium including a set of computer-executable instructions, when the instructions are executed, they are used to execute the data of the first to third aspects. Approach.
  • the data processing method, device, system, and computer-readable storage medium of the embodiments of the present invention realize that the positioning data of the dual operating systems of the electronic device are stored independently, thereby ensuring that both the dual systems can independently use the positioning data.
  • the positioning function of the operating system with higher energy consumption can synchronize the positioning information from the operating system with lower energy consumption when the positioning function of the operating system with higher energy consumption is started, avoiding the process of searching and determining the satellite navigation system when the positioning system with higher energy consumption is started, and effectively reducing the electronic equipment Energy consumption increases the battery life of electronic equipment and further enhances the user experience.
  • FIG. 1 shows a schematic diagram of an application scenario of a data processing method according to an embodiment of the present invention
  • FIG. 2 shows a schematic diagram of an implementation flow of a data processing method according to an embodiment of the present invention
  • FIG. 3 shows a schematic diagram of the composition structure of a data processing device according to an embodiment of the present invention
  • FIG. 4 shows a schematic diagram of another implementation flow of a data processing method according to an embodiment of the present invention
  • FIG. 5 shows another structural schematic diagram of a data processing device according to an embodiment of the present invention.
  • FIG. 6 shows a schematic diagram of another implementation flow of a data processing method according to an embodiment of the present invention.
  • FIG. 7 shows another structural schematic diagram of a data processing device according to an embodiment of the present invention.
  • Fig. 1 shows a schematic diagram of an application scenario of a data processing method according to an embodiment of the present invention.
  • MCU Microcontroller Unit
  • the positioning information receiving device 103 may include GPS (Global Positioning System, Global Positioning System). Chip, for example: Broadcom's BCM 4775X.
  • An embedded operating system such as RTOS (Real Time Operating System, real-time operating system) runs on the MCU 100, and the embedded operating system includes a positioning information service 1001.
  • the positioning information service 1001 executes the data processing method in the embodiment of the present invention.
  • the positioning information service 1001 controls the positioning information receiving device 103 through the hardware abstraction layer program 1002, which includes startup, initialization, and reading operations.
  • the positioning information service 1001 can receive program call instructions, collect positioning data, and organize these positioning data to generate system-level positioning information, which is returned to the calling program.
  • the positioning information service 1001 can provide system positioning information alone, or it can define the language interface program 101 through the hardware abstraction layer of the global navigation satellite system to run the intelligent operating system (for example: Android intelligent operating system) to the CPU (Central Processing Unit, central processing unit) And its applications provide location information.
  • the intelligent operating system for example: Android intelligent operating system
  • CPU Central Processing Unit, central processing unit
  • its applications provide location information.
  • the smart operating system and its applications can use the standard positioning providers provided by the smart operating system, such as Global Positioning System provider 104 (Gps Location Provider), Fusion Positioning Provider 105 (Flp Location Provider), to obtain the required positioning information .
  • the standard positioning supply program provided by the intelligent operating system can call the global navigation satellite system hardware abstraction layer definition language interface program 101 provided by the embodiment of the present invention to obtain application-level positioning information.
  • Fig. 2 shows a schematic diagram of an implementation flow of a data processing method according to an embodiment of the present invention.
  • the data processing method of the embodiment of the present invention is applied to a first electronic device.
  • the first electronic device includes a first processing unit and a second processing unit.
  • the first processing unit runs a first operating system
  • the second processing unit runs a second processing unit.
  • the second operating system the working energy consumption of the first processing unit is less than the working energy consumption of the second processing unit, at least including the following operation flow: operation 201, the first processing unit executes the selection of the positioning system, and saves the selected positioning system Information; operation 202, when it is determined that the first trigger condition for performing positioning system information synchronization is met, the first processing unit synchronizes the stored positioning system information to the second processing unit; operation 203, the second processing unit is based on the obtained positioning system information Perform positioning-related processing.
  • the first electronic device is a wearable electronic device
  • the first processing unit is a micro-control unit MCU
  • the second processing unit is a central processing unit CPU.
  • the first processing unit running a first operating system is RTOS (Real Time Operating System, real-time operating system)
  • the second processing unit running a second operating system is a smart operating system, such as an Android system.
  • the working energy consumption of MCU running RTOS is less than the working energy consumption of CPU running Android.
  • the first electronic device is a smart watch, which includes an MCU running RTOS and a CPU running an Android system.
  • the first electronic device is the smart watch
  • the first processing unit is the running The MCU of the RTOS
  • the second processing unit is the CPU running the Android system as an example
  • the solution of the embodiment of the present invention will be explained.
  • the first electronic device of the embodiment of the present invention is not limited to smart watches
  • the first processing unit is not limited to MCU
  • the second processing unit is not limited to CPU.
  • the first operating system is not limited to RTOS
  • the second operating system is not limited to Limited to Android.
  • the first processing unit performs selection of a positioning system, and saves the selected positioning system information.
  • the first processing unit supports communication connections with multiple positioning systems, and the first processing unit performs the selection of the positioning system in the following manner: the first processing unit obtains signals corresponding to the multiple positioning systems Intensity, select the positioning system with the highest signal strength; determine the selected positioning system as the corresponding positioning system used by the first processing unit to perform positioning functions, and control the positioning module corresponding to the selected positioning system in the first processing unit to work , The positioning module corresponding to the non-selected positioning system in the first processing unit is in a non-working state.
  • the positioning system may include: BDS (BeiDou Navigation Satellite System), GPS (Global Positioning System), GLONASS (Glonass Positioning System), Galileo Satellite Navigation System.
  • BDS BeiDou Navigation Satellite System
  • GPS Global Positioning System
  • GLONASS Global Navigation Satellite System
  • Galileo Satellite Navigation System The MCU obtains the signal strengths corresponding to multiple positioning systems, and selects the positioning system with the highest signal strength. For example, if the BDS in a certain area is the positioning system with the highest signal strength among the multiple positioning systems, the MCU determines the corresponding positioning function performed by the BDS Positioning system, and control the positioning module corresponding to the BDS in the MCU to work, and at the same time control the positioning modules corresponding to the GPS, GLONASS and Galileo satellite navigation systems in the MCU to be adjusted to the non-working state.
  • the MCU selects a positioning system from multiple positioning systems, mainly to adjust the positioning modules in the MCU corresponding to other unselected positioning systems to a non-working state, so as to save energy consumption and extend the battery life of the smart watch. It can also avoid the connection delay caused by the frequent switching of the MCU between multiple positioning systems, because under normal circumstances, it takes a long time for the positioning modules running on smart watches, mobile phones, car navigation systems and other systems to establish a connection with the satellite positioning system. This time can be intuitively perceived by people, for example: about 1 minute.
  • the positioning module running in the first processing unit selects the positioning system with the highest signal strength from the multiple positioning systems through the star search process in the working state, and saves the positioning system of the selected positioning system information.
  • the signal strength corresponding to the positioning system with the highest strength is compared with the first threshold; the signal strength corresponding to the positioning system with the highest strength is greater than or equal to the first threshold.
  • the positioning system with the highest strength is determined to be the selected positioning system; when the signal strength corresponding to the positioning system with the highest strength is less than the first threshold, the second electronic device with positioning function connected to the first electronic device is determined to be the selected positioning system. GPS.
  • the second electronic device is a smart terminal, such as a mobile phone, a tablet computer, and so on.
  • the second electronic device is taken as an example of a smart terminal.
  • the program is explained.
  • the first threshold may be a signal strength that is set according to actual requirements and can ensure that the positioning module running in the MCU can communicate with the positioning system relatively quickly.
  • the MCU selects BDS, the positioning system with the highest signal strength among positioning systems such as BDS, GPS, GLONASS, and Galileo satellite navigation systems. Compare the signal strength corresponding to the BDS with the first threshold. If the signal strength corresponding to the BDS is greater than the first threshold, it means that the positioning module running in the MCU can communicate with the BDS effectively, which can ensure that the positioning module running in the MCU is normal Obtain positioning data from the positioning system. At this time, BDS is determined as the selected positioning system.
  • the positioning module running in the MCU cannot effectively communicate with multiple positioning systems, and it cannot be guaranteed that the positioning module running in the MCU normally obtains positioning data from the positioning system.
  • MCU can communicate with smart terminals through BLE (Bluetooth Low Energy, Bluetooth low energy).
  • the first processing when the signal strength corresponding to the positioning system with the highest strength is less than the first threshold, and the signal strength between the second electronic device and the positioning system with which it is communicating is also less than the first threshold, the first processing is described.
  • the unit cannot normally obtain the positioning information of the positioning system through the second electronic device. At this time, the first processing unit can re-execute the selected operation of the positioning system.
  • the signal strengths between the positioning module running in the MCU and multiple positioning systems are all less than the first threshold.
  • the MCU tries to connect to the smart terminal through BLE and synchronize positioning information from the smart terminal.
  • the signal strength between the smart terminal and the positioning system BDS that it is communicating with is also less than the first threshold, and the MCU can try to connect with multiple positioning systems again. Until successfully connected to one of the positioning systems.
  • the following specific operations are used to determine the second electronic device with positioning function connected to the first electronic device as the selected positioning system: obtain the signal between the second electronic device and the positioning system that is being communicatively connected When the signal strength is greater than or equal to the first threshold, the second electronic device with a positioning function connected to the first electronic device is determined as the selected positioning system of the first processing unit.
  • the positioning system with the highest signal strength among the positioning systems such as MCU and BDS, GPS, GLONASS, and Galileo satellite positioning system is BDS.
  • the signal strength between MCU and BDS is X, and X is less than the first threshold.
  • the signal strength of the communication between the MCU and the smart terminal is Y, and the MCU and the smart terminal can communicate through BLE. If Y is greater than the first threshold, the MCU can be selected to communicate with the smart terminal to synchronize satellite data from the smart terminal.
  • the signals of the first processing unit and the corresponding positioning system currently used to perform the positioning function are also obtained And compare the obtained signal strength with the second threshold; when the obtained signal strength is less than the second threshold, re-obtain the first processing unit to obtain the current signal strength corresponding to each positioning system, and select the highest current signal strength from it Positioning system; when the corresponding signal strength of the positioning system with the highest current signal strength is greater than or equal to the first threshold, the positioning system with the highest current signal strength is determined as the new selected positioning system; if the new selected positioning system is the same as the current When the positioning system used to perform the positioning function is not the same positioning system, the positioning system used to perform the positioning function is switched to the new selected system; wherein the second threshold is the same or different from the first threshold.
  • the MCU when the MCU performs the selection operation of the positioning system last time, it determines that the positioning system with the highest signal strength among multiple positioning systems is the BDS.
  • the signal strength between the MCU and the BDS is X, and X is greater than the first threshold.
  • the MCU After the BDS is selected as the corresponding positioning system used by the current first processing unit to perform the positioning function, the MCU will again obtain the current signal strength Y of the communication between the selected positioning system BDS and the MCU to confirm the selected positioning system BDS
  • the current signal strength of the communication with the MCU can still guarantee the normal communication between the MCU and the BDS.
  • the second threshold can be set to the lowest signal strength that guarantees normal communication between the positioning module of the first processing unit and the positioning system. If the positioning module of the first processing unit is between the positioning system, the first processing unit Unable to obtain positioning data from the positioning system normally.
  • the first processing unit synchronizes the stored positioning system information to the second processing unit.
  • the first trigger condition may be at least one of the following: the second processing unit starts to enter the working state; the first processing unit obtains the positioning data synchronization instruction sent by the second processing unit; the second processing unit Launch applications related to positioning.
  • the general application in the first electronic device in the embodiment of the present invention can be operated based on the RTOS system run by the MCU.
  • the RTOS system running on the MCU and the intelligent operating system running on the CPU save their positioning data independently.
  • the intelligent operating system based on the CPU can quickly start or quickly turn on the positioning function, when the CPU enters the working state from the off state or the CPU enters the working state from the sleep state, for example: press the power button, click the smart watch display device, In the system switch setting of the RTOS system, enter the intelligent operating system, etc., and the MCU synchronizes the positioning system information saved in operation 201 to the CPU.
  • the intelligent operating system based on the CPU can also request to synchronize the positioning data from the MCU side when the positioning function needs to be turned on, for example: the key is turned on by the positioning function, including virtual keys and physical keys. It can also trigger the MCU to send the saved positioning system information to the CPU when the application program that requires positioning data is started in the CPU. For example: navigation or map applications running in the CPU.
  • the positioning system information includes the positioning system selected by the MCU, such as one of BDS, GPS, GLONASS, and Galileo satellite positioning system.
  • the CPU can directly communicate with the selected positioning system based on the positioning system information obtained from the MCU when entering the working state or turning on the positioning function, avoiding repeated operations such as star search to determine which positioning system to use Produces higher energy consumption and brings about problems such as delay in starting the positioning function.
  • the positioning system information may also include parameters such as GGA and UTC obtained during the ephemeris process.
  • GGA is the positioning data of the designated position system and has a standard data specification. For example: $GPGGA, ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 6>, ⁇ 7>, ⁇ 8>, ⁇ 9>,M, ⁇ 10>,M, ⁇ 11>, ⁇ 12>*xx ⁇ CR> ⁇ LF>, where: $GPGGA: initial guide character and sentence format description (this sentence is GPS positioning data);
  • the ⁇ 1> field is used to describe UTC time, the format is hhmmss.sss;
  • the ⁇ 2> field is used to describe the latitude, the format is ddmm.mmmm (the first digit is zero will also be transmitted);
  • the ⁇ 3> field is used to describe the latitude hemisphere, N or S (north latitude or south latitude);
  • the ⁇ 4> field is used to describe the longitude, the format is dddmm.mmmm (the first zero will also be transmitted);
  • the ⁇ 5> field is used to describe the longitude hemisphere, E or W (east longitude or west longitude)
  • the ⁇ 7> field is used to describe the number of satellites used, from 00 to 12 (the first zero will also be transmitted)
  • the ⁇ 8> field is used to describe the horizontal accuracy, 0.5 to 99.9
  • the ⁇ 9> field is used to describe the height of the antenna from the sea level, -9999.9 to 9999.9 meters M refers to the unit meter
  • the ⁇ 10> field is used to describe the height of the geoid, -9999.9 to 9999.9 meters M refers to the unit meter
  • the ⁇ 11> field is used to describe the differential GPS data period (RTCMSC-104), and finally set up the number of seconds for RTCM transmission
  • the ⁇ 12> field is used to describe the differential reference base station number, from 0000 to 1023 (the first 0 will also be transmitted).
  • the units of sea level height and geoid height in the fields ⁇ 9> and ⁇ 10> are meters.
  • UTC Coordinated Universal Time
  • UTC Coordinated Universal Time
  • CUT Chinese
  • TUC French
  • UTC time adopts hhmmss (hours, minutes and seconds) format.
  • the CPU can use the satellite-to-ephemeris data obtained from the MCU synchronized with the MCU, so that the intelligent operating system based on the CPU can achieve rapid positioning, effectively shortening the TTFF (Time to First Fix) time and realizing the CPU On the basis of the quick start, effectively reduce the communication time with the satellite communication in the positioning system to obtain the current positioning data, and further improve the user experience. For example: you can quickly locate the current location.
  • TTFF Time to First Fix
  • the positioning system information may also include position information and time stamp information of the first electronic device within a certain period of time.
  • the second processing unit performs positioning-related processing according to the obtained positioning system information.
  • the positioning system information includes the positioning system selected by the MCU, and the second processing unit performs the positioning operation according to the obtained positioning system information.
  • the CPU when the CPU enters the working state or starts the positioning function, it can directly communicate with the determined positioning system based on the positioning system information obtained from the MCU to obtain the current position and other information, avoiding repeated operations such as star finding. Determine which positioning system to use will cause higher energy consumption and bring about problems such as delay in starting the positioning function.
  • the positioning system information may also include parameters such as GGA and UTC obtained in the ephemeris process.
  • the second processing unit realizes rapid positioning according to the obtained positioning system information.
  • the positioning system information may also include position information and time stamp information of the first electronic device within a certain period of time.
  • the second processing unit may execute processing of the positioning system information according to the acquired positioning system information.
  • the position information and time stamp in the positioning system information can be directly synchronized from the MCU, for example: the set time before the CPU startup time to the CPU At the start-up time, the location information of the first electronic device determined by the MCU and the time stamp information corresponding thereto, such as longitude, latitude, and time stamp information corresponding to the longitude and latitude.
  • the CPU can use the corresponding application program to perform time-sensitive positioning information processing based on the above-mentioned positioning system information, for example: drawing a motion route diagram within a set time period.
  • the integrity and timeliness of the positioning system information of the CPU can be ensured, and the intelligent operating system based on the CPU cannot obtain the positioning information during the sleep or shutdown period of the CPU. It is ensured that the position information with the time stamp information is needed to analyze the positioning data.
  • the application can be used normally.
  • the data processing method, device, system, and computer-readable storage medium of the embodiments of the present invention realize that the positioning data of the dual operating systems of the electronic device are stored independently, thereby ensuring that both the dual systems can independently use the positioning data.
  • the positioning function of the operating system with higher energy consumption can synchronize the positioning information from the operating system with lower energy consumption when the positioning function of the operating system with higher energy consumption is started, avoiding the process of searching and determining the satellite navigation system when the positioning system with higher energy consumption is started, and effectively reducing the electronic equipment Energy consumption increases the battery life of electronic equipment and further enhances the user experience.
  • embodiments of the present invention also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a program.
  • the processor is caused to perform at least the following operation steps :
  • the first processing unit performs the selection of the positioning system and saves the selected positioning system information;
  • the first processing unit saves the The positioning system information is synchronized to the second processing unit; in operation 203, the second processing unit performs positioning-related processing according to the obtained positioning system information.
  • an embodiment of the present invention also provides a data processing system, including a processor and a memory, where computer program instructions are stored in the memory, and the computer program instructions are used to execute the foregoing when the processor is running. Data processing method.
  • an embodiment of the present invention also provides a data processing device applied to a first electronic device.
  • the first electronic device includes a first processing unit and a second processing unit, and the first processing unit runs the first processing unit.
  • Fig. 3 shows a schematic diagram of the composition structure of a data processing device according to an embodiment of the present invention.
  • the device 30 includes: a selection module 301, configured in the first processing unit, used to perform the selection of the positioning system, and save the selected positioning system information; the information synchronization module 302, used to determine the implementation of When the positioning system information is synchronized as the first trigger condition, the first processing unit synchronizes the saved positioning system information to the second processing unit; the information processing module 303 is configured in the second processing unit and is used to perform the and Positioning related processing.
  • the first processing unit supports communication connections with multiple positioning systems;
  • the selection module 301 includes: an intensity determination sub-module, configured in the first processing unit, for obtaining signals corresponding to multiple positioning systems Intensity, the positioning system with the highest signal strength is selected; the state control sub-module is used to determine the selected positioning system as the corresponding positioning system used by the first processing unit to perform the positioning function, and control the first processing unit and the selected positioning system
  • the corresponding positioning module is in a working state, and the positioning module corresponding to the non-selected positioning system in the first processing unit is in a non-working state.
  • Fig. 1 shows a schematic diagram of an application scenario of a data processing method according to an embodiment of the present invention.
  • MCU Microcontroller Unit
  • the positioning information receiving device 103 may include GPS (Global Positioning System, Global Positioning System). Chip, for example: Broadcom's BCM 4775X.
  • An embedded operating system such as RTOS (Real Time Operating System, real-time operating system) runs on the MCU 100, and the embedded operating system includes a positioning information service 1001.
  • the positioning information service 1001 executes the data processing method in the embodiment of the present invention.
  • the positioning information service 1001 controls the positioning information receiving device 103 through the hardware abstraction layer program 1002, which includes startup, initialization, and reading operations.
  • the positioning information service 1001 may receive program call instructions, collect positioning information, and organize the positioning information to generate system-level positioning information, which is returned to the calling program.
  • the positioning information service 1001 can provide system positioning information alone, or it can define the language interface program 101 through the hardware abstraction layer of the global navigation satellite system to run the intelligent operating system (for example: Android intelligent operating system) to the CPU (Central Processing Unit, central processing unit) And its applications provide location information.
  • the intelligent operating system for example: Android intelligent operating system
  • CPU Central Processing Unit, central processing unit
  • its applications provide location information.
  • the smart operating system and its applications can use the standard positioning providers provided by the smart operating system, such as Global Positioning System provider 104 (Gps Location Provider), Fusion Positioning Provider 105 (Flp Location Provider), to obtain the required positioning information .
  • the standard positioning supply program provided by the intelligent operating system can call the global navigation satellite system hardware abstraction layer definition language interface program 101 provided by the embodiment of the present invention to obtain application-level positioning information.
  • Fig. 4 shows a schematic diagram of an implementation flow of a data processing method according to an embodiment of the present invention.
  • the data processing method of the embodiment of the present invention is applied to a first electronic device.
  • the first electronic device includes a first processing unit and a second processing unit.
  • the first processing unit runs a first operating system
  • the second processing unit runs a second processing unit.
  • the second operating system the working energy consumption of the first processing unit is less than the working energy consumption of the second processing unit
  • the method at least includes the following operation flow: Operation 401, the first processing unit obtains from the positioning system connected to it for performing the positioning function Positioning information of the first electronic device, where the positioning information includes position information and time stamp information of the first electronic device within a certain period of time; in operation 402, when it is determined that the first trigger condition for performing positioning information synchronization is met, the first processing unit will The obtained positioning information is synchronized to the second processing unit; in operation 403, the second processing unit performs positioning-related processing according to the obtained positioning information.
  • the first processing unit obtains location information of the first electronic device from a location system connected to it for performing a location function.
  • the location information includes location information and time stamp information of the first electronic device in a certain period of time.
  • the first electronic device is a wearable electronic device
  • the first processing unit is a micro-control unit MCU
  • the second processing unit is a central processing unit CPU.
  • the first processing unit running a first operating system is RTOS (Real Time Operating System, real-time operating system)
  • the second processing unit running a second operating system is a smart operating system, such as an Android system.
  • the working energy consumption of MCU running RTOS is less than the working energy consumption of CPU running Android.
  • the first electronic device is a smart watch, which includes an MCU running RTOS and a CPU running an Android system.
  • the first electronic device is the smart watch
  • the first processing unit is the running The MCU of the RTOS
  • the second processing unit is the CPU running the Android system as an example
  • the solution of the embodiment of the present invention will be explained.
  • the first electronic device of the embodiment of the present invention is not limited to smart watches
  • the first processing unit is not limited to MCU
  • the second processing unit is not limited to CPU.
  • the first operating system is not limited to RTOS
  • the second operating system is not limited to Limited to Android.
  • the first processing unit only supports a communication connection with one positioning system, for example: BDS (BeiDou Navigation Satellite System), GPS (Global Positioning System, Global Positioning System), GLONASS (Glonass Positioning System), one of Galileo satellite navigation systems.
  • the first processing unit may also only be able to communicate with a second electronic device with a positioning function, and use the second electronic device as a positioning system.
  • a positioning system for example: smart terminals such as mobile phones and tablet computers with positioning functions. Then the first processing unit can directly obtain the positioning information from the positioning system to which it is connected, without determining which positioning system it communicates with.
  • the first processing unit supports communication connections with multiple positioning systems.
  • the first processing unit can communicate with two or more of the BDS, GPS, GLONASS, Galileo satellite navigation system, or the second electronic device with positioning function.
  • the first processing unit it is necessary to first determine the positioning system selected by the first processing unit, communicate with the selected positioning system, and obtain positioning information from the positioning system.
  • the specific form and content of the positioning information acquired by the first processing unit will be described in detail in operation 402, and will not be repeated here.
  • the first processing unit selects the positioning system used to perform the positioning function in the following manner: the first processing unit obtains the signal strengths corresponding to multiple positioning systems, and selects the positioning system with the highest signal strength; The selected positioning system is determined as the corresponding positioning system used by the first processing unit to perform the positioning function, and the positioning module corresponding to the selected positioning system in the first processing unit is controlled to work, and the first processing unit corresponds to the non-selected positioning system The positioning module is not working.
  • the positioning system may include: BDS, GPS, GLONASS, Galileo satellite navigation system.
  • the MCU obtains the signal strengths corresponding to multiple positioning systems, and selects the positioning system with the highest signal strength. For example, if the BDS in a certain area is the positioning system with the highest signal strength among the multiple positioning systems, the MCU determines the corresponding positioning function performed by the BDS Positioning system, and control the positioning module corresponding to the BDS in the MCU to work, and at the same time control the positioning modules corresponding to the GPS, GLONASS and Galileo satellite navigation systems in the MCU to be adjusted to the non-working state.
  • the MCU selects a positioning system from multiple positioning systems, mainly to adjust the positioning modules in the MCU corresponding to other unselected positioning systems to a non-working state, so as to save energy consumption and extend the battery life of the smart watch. It can also avoid the connection delay caused by the frequent switching of the MCU between multiple positioning systems, because under normal circumstances, it takes a long time for the positioning modules running on smart watches, mobile phones, car navigation systems and other systems to establish a connection with the satellite positioning system. This time can be intuitively perceived by people, for example: about 1 minute.
  • the positioning module running in the first processing unit selects a positioning system with the highest signal strength from a plurality of positioning systems through a star search process in a working state.
  • the signal strength corresponding to the positioning system with the highest strength is compared with the first threshold; the signal strength corresponding to the positioning system with the highest strength is greater than or equal to the first threshold.
  • the positioning system with the highest strength is determined to be the selected positioning system; when the signal strength corresponding to the positioning system with the highest strength is less than the first threshold, the second electronic device with positioning function connected to the first electronic device is determined to be the selected positioning system. GPS.
  • the second electronic device is a smart terminal, such as a mobile phone, a tablet computer, and so on.
  • the second electronic device is taken as an example of a smart terminal.
  • the program is explained.
  • the second electronic device is not limited to smart terminals.
  • the first threshold may be a signal strength that is set according to actual requirements and can ensure that the positioning module running in the MCU can communicate with the positioning system relatively quickly.
  • the MCU selects BDS, the positioning system with the highest signal strength among positioning systems such as BDS, GPS, GLONASS, and Galileo satellite navigation systems. Compare the signal strength corresponding to the BDS with the first threshold. If the signal strength corresponding to the BDS is greater than the first threshold, it means that the positioning module running in the MCU can communicate with the BDS effectively, which can ensure that the positioning module running in the MCU is normal Obtain positioning information from the positioning system. At this time, BDS is determined as the selected positioning system.
  • the positioning module running in the MCU cannot effectively communicate with multiple positioning systems, and it cannot be guaranteed that the positioning module running in the MCU normally obtains positioning information from the positioning system.
  • MCU can communicate with smart terminals through BLE (Bluetooth Low Energy, Bluetooth low energy).
  • the first processing when the signal strength corresponding to the positioning system with the highest strength is less than the first threshold, and the signal strength between the second electronic device and the positioning system with which it is communicating is also less than the first threshold, the first processing is described.
  • the unit cannot normally obtain the positioning information of the positioning system through the second electronic device. At this time, the first processing unit can re-execute the selected operation of the positioning system.
  • the signal strengths between the positioning module running in the MCU and multiple positioning systems are all less than the first threshold.
  • the MCU tries to connect to the smart terminal through BLE and synchronize positioning information from the smart terminal.
  • the signal strength between the smart terminal and the positioning system BDS that it is communicating with is also less than the first threshold, and the MCU can try to connect with multiple positioning systems again. Until successfully connected to one of the positioning systems.
  • the following specific operations are used to determine the second electronic device with positioning function connected to the first electronic device as the selected positioning system: obtain the signal between the second electronic device and the positioning system that is being communicatively connected When the signal strength is greater than or equal to the first threshold, the second electronic device with a positioning function connected to the first electronic device is determined as the selected positioning system of the first processing unit.
  • the positioning system with the highest signal strength among the positioning systems such as MCU and BDS, GPS, GLONASS, and Galileo satellite positioning system is BDS.
  • the signal strength between MCU and BDS is X, and X is less than the first threshold.
  • the signal strength of the communication between the MCU and the smart terminal is Y, and the MCU and the smart terminal can communicate through BLE. If Y is greater than the first threshold, the MCU can be selected to communicate with the smart terminal to synchronize satellite data from the smart terminal.
  • the signals of the first processing unit and the corresponding positioning system currently used to perform the positioning function are also obtained And compare the obtained signal strength with the second threshold; when the obtained signal strength is less than the second threshold, re-obtain the first processing unit to obtain the current signal strength corresponding to each positioning system, and select the highest current signal strength from it Positioning system; when the corresponding signal strength of the positioning system with the highest current signal strength is greater than or equal to the first threshold, the positioning system with the highest current signal strength is determined as the new selected positioning system; if the new selected positioning system is the same as the current When the positioning system used to perform the positioning function is not the same positioning system, the positioning system used to perform the positioning function is switched to the new selected system; wherein the second threshold is the same or different from the first threshold.
  • the MCU when the MCU performs the selection operation of the positioning system last time, it determines that the positioning system with the highest signal strength among multiple positioning systems is the BDS.
  • the signal strength between the MCU and the BDS is X, and X is greater than the first threshold.
  • the MCU After the BDS is selected as the corresponding positioning system used by the current first processing unit to perform the positioning function, the MCU will again obtain the current signal strength Y of the communication between the selected positioning system BDS and the MCU to confirm the selected positioning system BDS
  • the current signal strength of the communication with the MCU can still guarantee the normal communication between the MCU and the BDS.
  • the second threshold can be set to the lowest signal strength that ensures normal communication between the positioning module of the first processing unit and the positioning system. If the positioning module of the first processing unit is between the positioning system, the first processing unit Unable to obtain positioning information from the positioning system normally.
  • the positioning information includes position information and time stamp information of the first electronic device within a certain period of time.
  • the first processing unit obtains the positioning information of the first electronic device from the positioning system connected to it for performing the positioning function, and saves the obtained positioning information for a set time, for example: one year , Half a year, one month, ten days, one week, etc.
  • the second processing unit synchronizes the positioning information from the first processing unit, the positioning information within a certain period of time can be selected for synchronization, and the positioning-related processing can be performed according to the synchronized positioning information.
  • the first processing unit synchronizes the obtained positioning information to the second processing unit.
  • the location information and time stamp information within a certain period of time may include the time when the first electronic device turns on the positioning function, switches from the sleep state to the working state, or turns on the power when the second electronic device is turned on, and the previous settings.
  • Location information and time stamp information within a certain period of time may also be the time period information carried in the positioning information synchronization instruction sent by the second processing unit.
  • the MCU can synchronize the positioning information to the CPU within a set time period before the time when the CPU is turned on or switched to the working state by default. It can also be opened in an application of the CPU, for example: sports health, you need to use the location information of the smart watch from the first moment to the second moment obtained by the MCU to draw the exercise route map, then a certain period of time refers to the first moment The period of time between the second moment. Among them, the first time is earlier than the second time.
  • the second time can be the time when the MCU turns on the positioning function in the CPU, switches from the sleep state to the working state, or turns on the power, or the first electronic device turns on the positioning function in the CPU, from A certain moment before the sleep state is switched to the working state or the power is turned on.
  • the first trigger condition may be at least one of the following: the second processing unit starts to enter the working state; the first processing unit obtains the positioning information synchronization instruction sent by the second processing unit; the second processing unit Launch applications related to positioning.
  • the general application in the first electronic device in the embodiment of the present invention can be operated based on the RTOS system run by the MCU.
  • the RTOS system running on the MCU and the intelligent operating system running on the CPU save their positioning information independently.
  • the intelligent operating system based on the CPU can quickly start or quickly turn on the positioning function, when the CPU enters the working state from the off state or the CPU enters the working state from the sleep state, for example: press the power button, click the smart watch display device, In the system switching setting of the RTOS system, the intelligent operating system is entered, and the MCU synchronizes the positioning information of the first electronic device acquired in operation 401 to the CPU.
  • the intelligent operating system based on the CPU can also request the synchronization of the positioning information from the MCU side when the positioning function needs to be turned on, for example: turning on the buttons through the positioning function, including virtual buttons and physical buttons. It can also be that when an application program that requires positioning information in the CPU is started, the MCU is triggered to send the saved positioning system information to the CPU. For example: navigation or map applications running in the CPU.
  • the second processing unit performs positioning-related processing according to the obtained positioning information.
  • the second processing unit performing positioning-related processing according to the obtained positioning information may be the direct use of positioning information such as the display of position information and corresponding timestamp information, or may be the direct use of position information and Analysis and processing of corresponding timestamp information.
  • applications such as sports health and maps in smart watches can perform motion trajectory graph drawing, calculation of motion kilometers in a set time period, and set time based on the location information and time stamp information synchronized by the CPU from the MCU.
  • Functions such as calculation of exercise duration within a segment, and analysis of exercise speed within a set time segment. You can also determine the location information at a certain moment based on the location information and the time stamp information for viewing.
  • the first processing unit after the first processing unit synchronizes the obtained positioning information to the second processing unit, when it is determined that the second trigger condition for suspending the positioning information synchronization is met, the first processing unit stops the positioning information to be obtained.
  • the information is synchronized to the second processing unit.
  • the second trigger condition is at least one of the following: the second processing unit enters a non-working state; the first processing unit obtains a synchronization instruction to stop positioning information sent by the second processing unit; and the application program running by the second processing unit does not exist and Locate related applications.
  • the stop of the first processing unit to synchronize the obtained positioning information to the second processing unit refers to the current position information in the positioning information obtained by the first processing unit.
  • the MCU synchronizes the positioning information obtained by the MCU from the time the CPU state is switched to 10 minutes before the time to the CPU, and the positioning information includes the position within the 10 minutes Information and time stamp information.
  • the MCU has synchronized the positioning information from the time when the CPU state acquired by the MCU is switched to 10 minutes before the time to the CPU. At this time, the MCU stops synchronizing the location information with the CPU, which actually stops synchronizing the current location information of the smart watch.
  • the CPU-based intelligent operating system has high energy consumption when it is working, and the positioning module running in the CPU also consumes high energy, but in order to ensure that the intelligent operating system running on the CPU can have better users
  • the best time to turn on and turn off the positioning module of the CPU. Therefore, the first processing unit to synchronize the obtained positioning information to the first trigger condition of the second processing unit and the first processing unit to stop synchronizing the obtained positioning information to the second trigger condition of the second processing unit can both be based on needs. Make settings.
  • the first processing unit stops when the second processing unit enters the non-working state.
  • the obtained positioning information is synchronized to the second processing unit.
  • the power off button of the smart watch is used to determine that the CPU enters the non-working state, including the off state and the sleep state.
  • the power-off button may be a virtual button or a physical button, and may also be the same button as the power-on button.
  • the first processing unit stops synchronizing the obtained positioning information to the second processing unit: the first processing unit enters the non-working state when the second processing unit When; the first processing unit obtains the positioning information synchronization instruction that is sent by the second processing unit; there are no positioning-related applications in the application programs run by the second processing unit.
  • the MCU After the MCU synchronizes the positioning information to the CPU, it can detect whether the CPU is running a positioning-related application within a set time. If not, stop synchronizing the obtained positioning information to the second processing unit. For example: the navigation or map application running in the CPU is closed.
  • that the first processing unit can obtain the suspend positioning information synchronization instruction sent by the second processing unit includes: the second processing unit detects that a positioning-related application program is incorrectly running in the background of the current first electronic device; For example: sports health, etc., choose to close the corresponding application, click the application close button, and send a synchronization instruction to stop the positioning information to the first processing unit.
  • the second processing unit sends a positioning information synchronization instruction to the first processing unit when it establishes a communication connection with the selected positioning system or when it is determined that the communication with the selected positioning system is smooth.
  • the MCU when the MCU synchronizes the acquired positioning information to the CPU, it will synchronize repeatedly, and send a message to detect whether the synchronization is successful to the CPU, until the CPU returns the successful synchronization message, stop the synchronization of the positioning information, the MCU and the CPU control separately Its positioning module, and receives the positioning information sent by the respective selected positioning system.
  • the first processing unit stops the operation of synchronizing the obtained positioning information to the second processing unit, which can be executed before the completion of operation 403, or when operation 403 is not processed or partially completed, as long as it is determined to be in line with the suspension of positioning
  • the second trigger condition of the information synchronization can stop the operation of the first unit to synchronize the acquired positioning information to the second processing unit.
  • the data processing method, device, system, and computer-readable storage medium of the embodiments of the present invention when it is determined that the first trigger condition for performing positioning information synchronization is met, the first processing unit synchronizes the obtained positioning information to the first A second processing unit, so that the second processing unit performs positioning-related processing according to the obtained positioning information, where the positioning information includes position information and time stamp information of the first electronic device within a certain period of time. It can effectively avoid the problem that after the second processing unit is restarted or switched to the working state and executes the positioning function, the positioning information during its shutdown or sleep period cannot be obtained. Achieve quick acquisition of time-related positioning information to perform time-related positioning functions.
  • embodiments of the present invention also provide a computer-readable storage medium that stores a program, and when the program is executed by a processor, the processor is caused to perform at least the following operation steps: Operation 401, the first processing unit obtains the positioning information of the first electronic device from the positioning system connected to it for performing the positioning function, and the positioning information includes the position information and time stamp information of the first electronic device within a certain period of time; operation 402 When it is determined that the first trigger condition for performing positioning information synchronization is met, the first processing unit synchronizes the obtained positioning information to the second processing unit; in operation 403, the second processing unit performs positioning-related processing according to the obtained positioning information.
  • an embodiment of the present invention also provides a data processing system, including a processor and a memory, where computer program instructions are stored in the memory, and the computer program instructions are used to execute the above data when the processor is running. Approach.
  • an embodiment of the present invention also provides a data processing device applied to a first electronic device.
  • the first electronic device includes a first processing unit and a second processing unit.
  • the first processing unit runs the first processing unit.
  • Operating system, the second processing unit runs the second operating system, and the working energy consumption of the first processing unit is less than the working energy consumption of the second processing unit.
  • FIG. 5 shows a schematic diagram of the composition structure of a data processing device 50 according to an embodiment of the present invention.
  • the positioning system connected to the processing unit for performing positioning functions obtains positioning information of the first electronic device, where the positioning information includes position information and time stamp information of the first electronic device within a certain period of time; an information synchronization module 502.
  • the first processing unit synchronizes the obtained positioning information to the second processing unit;
  • the data processing module 503 is configured in the second processing unit;
  • the second processing unit is configured to perform positioning-related processing according to the obtained positioning information.
  • the first trigger condition is at least one of the following: the second processing unit starts to enter the working state; the first processing unit obtains the positioning information synchronization instruction sent by the second processing unit; The second processing unit starts an application in the first list, and the application in the first list is an application that needs to use the positioning information during the running process.
  • the device 50 further includes: a data suspension module, configured to: after the first processing unit synchronizes the obtained positioning information to the second processing unit, it is determined that the positioning information complies with the suspension of the positioning information
  • the first processing unit stops synchronizing the obtained positioning information to the second processing unit; wherein, the second trigger condition is at least one of the following: the second processing The unit enters a non-working state; the first processing unit obtains the suspending positioning information synchronization instruction sent by the second processing unit; the application running by the second processing unit does not exist in the first list.
  • Fig. 1 shows a schematic diagram of an application scenario of a data processing method according to an embodiment of the present invention.
  • MCU Microcontroller Unit
  • the positioning information receiving device 103 may include GPS (Global Positioning System, Global Positioning System). Chip, for example: Broadcom's BCM 4775X.
  • An embedded operating system such as RTOS (Real Time Operating System, real-time operating system) runs on the MCU 100, and the embedded operating system includes a positioning information service 1001.
  • the positioning information service 1001 executes the data processing method in the embodiment of the present invention.
  • the positioning information service 1001 controls the positioning information receiving device 103 through the hardware abstraction layer program 1002, which includes startup, initialization, and reading operations.
  • the positioning information service 1001 can receive program call instructions, collect positioning data, and organize these positioning data to generate system-level positioning information, which is returned to the calling program.
  • the positioning information service 1001 can provide system positioning information alone, or it can define the language interface program 101 through the hardware abstraction layer of the global navigation satellite system to run the intelligent operating system (for example: Android intelligent operating system) to the CPU (Central Processing Unit, central processing unit) And its applications provide location information.
  • the intelligent operating system for example: Android intelligent operating system
  • CPU Central Processing Unit, central processing unit
  • its applications provide location information.
  • the smart operating system and its applications can use the standard positioning providers provided by the smart operating system, such as Global Positioning System provider 104 (Gps Location Provider), Fusion Positioning Provider 105 (Flp Location Provider), to obtain the required positioning information .
  • the standard positioning supply program provided by the intelligent operating system can call the global navigation satellite system hardware abstraction layer definition language interface program 101 provided by the embodiment of the present invention to obtain application-level positioning information.
  • Fig. 6 shows a schematic diagram of an implementation flow of a data processing method according to an embodiment of the present invention.
  • the data processing method of the embodiment of the present invention is applied to a first electronic device.
  • the first electronic device includes a first processing unit and a second processing unit.
  • the first processing unit runs a first operating system
  • the second processing unit runs a second processing unit. 2.
  • the working energy consumption of the first processing unit is less than the working energy consumption of the second processing unit.
  • the method includes at least the following operation flow: Operation 601, the first processing unit obtains from the positioning system connected to it for performing the positioning function The positioning data of the first electronic device; operation 602, when it is determined that the first trigger condition for performing positioning data synchronization is met, the first processing unit synchronizes the obtained positioning data to the second processing unit; operation 603, the second processing unit obtains The positioning data performs positioning-related processing.
  • the first processing unit obtains the positioning data of the first electronic device from the positioning system connected to it for performing the positioning function.
  • the first electronic device is a wearable electronic device
  • the first processing unit is a micro-control unit MCU
  • the second processing unit is a central processing unit CPU.
  • the first processing unit running a first operating system is RTOS (Real Time Operating System, real-time operating system)
  • the second processing unit running a second operating system is a smart operating system, such as an Android system.
  • the working energy consumption of MCU running RTOS is less than the working energy consumption of CPU running Android.
  • the first electronic device is a smart watch, which includes an MCU running RTOS and a CPU running an Android system.
  • the first electronic device is the smart watch
  • the first processing unit is the running The MCU of the RTOS
  • the second processing unit is the CPU running the Android system as an example
  • the solution of the embodiment of the present invention will be explained.
  • the first electronic device of the embodiment of the present invention is not limited to smart watches
  • the first processing unit is not limited to MCU
  • the second processing unit is not limited to CPU.
  • the first operating system is not limited to RTOS
  • the second operating system is not limited to Limited to Android.
  • the first processing unit only supports a communication connection with one positioning system, for example: BDS (BeiDou Navigation Satellite System), GPS (Global Positioning System, Global Positioning System), GLONASS (Glonass Positioning System), one of Galileo satellite navigation systems.
  • the first processing unit may also only be able to communicate with a second electronic device with a positioning function, and use the second electronic device as a positioning system.
  • a positioning system for example: smart terminals such as mobile phones and tablet computers with positioning functions. Then the first processing unit can directly obtain the positioning data from the positioning system to which it is connected, without determining which positioning system it communicates with.
  • the first processing unit supports communication connections with multiple positioning systems.
  • the first processing unit can communicate with two or more of the BDS, GPS, GLONASS, Galileo satellite navigation system, or the second electronic device with positioning function.
  • the first processing unit it is necessary to first determine the positioning system selected by the first processing unit, communicate with the selected positioning system, and obtain positioning data from the positioning system.
  • the first processing unit selects the positioning system used to perform the positioning function in the following manner: the first processing unit obtains the signal strengths corresponding to multiple positioning systems, and selects the positioning system with the highest signal strength; The selected positioning system is determined as the corresponding positioning system used by the first processing unit to perform the positioning function, and the positioning module corresponding to the selected positioning system in the first processing unit is controlled to work, and the first processing unit corresponds to the non-selected positioning system The positioning module is not working.
  • the positioning system may include: BDS, GPS, GLONASS, Galileo satellite navigation system.
  • the MCU obtains the signal strengths corresponding to multiple positioning systems, and selects the positioning system with the highest signal strength. For example, if the BDS in a certain area is the positioning system with the highest signal strength among the multiple positioning systems, the MCU determines the corresponding positioning function performed by the BDS Positioning system, and control the positioning module corresponding to the BDS in the MCU to work, and at the same time control the positioning modules corresponding to the GPS, GLONASS and Galileo satellite navigation systems in the MCU to be adjusted to the non-working state.
  • the MCU selects a positioning system from multiple positioning systems, mainly to adjust the positioning modules in the MCU corresponding to other unselected positioning systems to a non-working state, so as to save energy consumption and extend the battery life of the smart watch. It can also avoid the connection delay caused by the frequent switching of the MCU between multiple positioning systems, because under normal circumstances, it takes a long time for the positioning modules running on smart watches, mobile phones, car navigation systems and other systems to establish a connection with the satellite positioning system. This time can be intuitively perceived by people, for example: about 1 minute.
  • the positioning module running in the first processing unit selects a positioning system with the highest signal strength from a plurality of positioning systems through a star search process in a working state.
  • the signal strength corresponding to the positioning system with the highest strength is compared with the first threshold; the signal strength corresponding to the positioning system with the highest strength is greater than or equal to the first threshold.
  • the positioning system with the highest strength is determined to be the selected positioning system; when the signal strength corresponding to the positioning system with the highest strength is less than the first threshold, the second electronic device with positioning function connected to the first electronic device is determined to be the selected positioning system. GPS.
  • the second electronic device is a smart terminal, such as a mobile phone, a tablet computer, and so on.
  • the second electronic device is taken as an example of a smart terminal.
  • the program is explained.
  • the second electronic device is not limited to smart terminals.
  • the first threshold may be a signal strength that is set according to actual requirements and can ensure that the positioning module running in the MCU can communicate with the positioning system relatively quickly.
  • the MCU selects BDS, the positioning system with the highest signal strength among positioning systems such as BDS, GPS, GLONASS, and Galileo satellite navigation systems. Compare the signal strength corresponding to the BDS with the first threshold. If the signal strength corresponding to the BDS is greater than the first threshold, it means that the positioning module running in the MCU can communicate with the BDS effectively, which can ensure that the positioning module running in the MCU is normal Obtain positioning data from the positioning system. At this time, BDS is determined as the selected positioning system.
  • the positioning module running in the MCU cannot effectively communicate with multiple positioning systems, and it cannot be guaranteed that the positioning module running in the MCU normally obtains positioning data from the positioning system.
  • MCU can communicate with smart terminals through BLE (Bluetooth Low Energy, Bluetooth low energy).
  • the first processing when the signal strength corresponding to the positioning system with the highest strength is less than the first threshold, and the signal strength between the second electronic device and the positioning system with which it is communicating is also less than the first threshold, the first processing is described.
  • the unit cannot normally obtain the positioning information of the positioning system through the second electronic device. At this time, the first processing unit can re-execute the selected operation of the positioning system.
  • the signal strengths between the positioning module running in the MCU and multiple positioning systems are all less than the first threshold.
  • the MCU tries to connect to the smart terminal through BLE and synchronize positioning information from the smart terminal.
  • the signal strength between the smart terminal and the positioning system BDS that it is communicating with is also less than the first threshold, and the MCU can try to connect with multiple positioning systems again. Until successfully connected to one of the positioning systems.
  • the following specific operations are used to determine the second electronic device with positioning function connected to the first electronic device as the selected positioning system: obtain the signal between the second electronic device and the positioning system that is being communicatively connected When the signal strength is greater than or equal to the first threshold, the second electronic device with a positioning function connected to the first electronic device is determined as the selected positioning system of the first processing unit.
  • the positioning system with the highest signal strength among the positioning systems such as MCU and BDS, GPS, GLONASS, and Galileo satellite positioning system is BDS.
  • the signal strength between MCU and BDS is X, and X is less than the first threshold.
  • the signal strength of the communication between the MCU and the smart terminal is Y, and the MCU and the smart terminal can communicate through BLE. If Y is greater than the first threshold, the MCU can be selected to communicate with the smart terminal to synchronize satellite data from the smart terminal.
  • the signals of the first processing unit and the corresponding positioning system currently used to perform the positioning function are also obtained And compare the obtained signal strength with the second threshold; when the obtained signal strength is less than the second threshold, re-obtain the first processing unit to obtain the current signal strength corresponding to each positioning system, and select the highest current signal strength from it Positioning system; when the corresponding signal strength of the positioning system with the highest current signal strength is greater than or equal to the first threshold, the positioning system with the highest current signal strength is determined as the new selected positioning system; if the new selected positioning system is the same as the current When the positioning system used to perform the positioning function is not the same positioning system, the positioning system used to perform the positioning function is switched to the new selected system; wherein the second threshold is the same or different from the first threshold.
  • the MCU when the MCU performs the selection operation of the positioning system last time, it determines that the positioning system with the highest signal strength among multiple positioning systems is the BDS.
  • the signal strength between the MCU and the BDS is X, and X is greater than the first threshold.
  • the MCU After the BDS is selected as the corresponding positioning system used by the current first processing unit to perform the positioning function, the MCU will again obtain the current signal strength Y of the communication between the selected positioning system BDS and the MCU to confirm the selected positioning system BDS
  • the current signal strength of the communication with the MCU can still guarantee the normal communication between the MCU and the BDS.
  • the second threshold can be set to the lowest signal strength that guarantees normal communication between the positioning module of the first processing unit and the positioning system. If the positioning module of the first processing unit is between the positioning system, the first processing unit Unable to obtain positioning data from the positioning system normally.
  • the first processing unit obtains the positioning data of the first electronic device from the positioning system connected to it for performing the positioning function in the following manner: the positioning module of the first processing unit obtains the positioning data during the execution of the ephemeris The parameters GGA and UTC etc.
  • GGA is the positioning data of the designated bit system and has a standard data specification. For example: $GPGGA, ⁇ 1>, ⁇ 2>, ⁇ 3>, ⁇ 4>, ⁇ 5>, ⁇ 6>, ⁇ 7>, ⁇ 8>, ⁇ 9>,M, ⁇ 10>,M, ⁇ 11>, ⁇ 12>*xx ⁇ CR> ⁇ LF>, where: $GPGGA: initial guide character and sentence format description (this sentence is GPS positioning data);
  • the ⁇ 1> field is used to describe UTC time, the format is hhmmss.sss;
  • the ⁇ 2> field is used to describe the latitude, the format is ddmm.mmmm (the first digit is zero will also be transmitted);
  • the ⁇ 3> field is used to describe the latitude hemisphere, N or S (north latitude or south latitude);
  • the ⁇ 4> field is used to describe the longitude, the format is dddmm.mmmm (the first zero will also be transmitted);
  • the ⁇ 5> field is used to describe the longitude hemisphere, E or W (east longitude or west longitude)
  • the ⁇ 7> field is used to describe the number of satellites used, from 00 to 12 (the first zero will also be transmitted)
  • the ⁇ 8> field is used to describe the horizontal accuracy, 0.5 to 99.9
  • the ⁇ 9> field is used to describe the height of the antenna from the sea level, -9999.9 to 9999.9 meters M refers to the unit meter
  • the ⁇ 10> field is used to describe the height of the geoid, -9999.9 to 9999.9 meters M refers to the unit meter
  • the ⁇ 11> field is used to describe the differential GPS data period (RTCMSC-104), and finally set up the number of seconds for RTCM transmission
  • the ⁇ 12> field is used to describe the differential reference base station number, from 0000 to 1023 (the first 0 will also be transmitted).
  • the units of sea level height and geoid height in the fields ⁇ 9> and ⁇ 10> are meters.
  • UTC Coordinated Universal Time
  • UTC Coordinated Universal Time
  • CUT Chinese
  • TUC French
  • UTC time adopts hhmmss (hours, minutes and seconds) format.
  • the first processing unit acquiring positioning data from a positioning system with a positioning function connected to the first processing unit includes acquiring current position information in real time.
  • the first processing unit synchronizes the obtained positioning data to the second processing unit.
  • the first trigger condition may be at least one of the following: the second processing unit starts to enter the working state; the first processing unit obtains the positioning data synchronization instruction sent by the second processing unit; the second processing unit starts and Locate related applications.
  • the general application in the first electronic device in the embodiment of the present invention can be operated based on the RTOS system run by the MCU.
  • the RTOS system running on the MCU and the intelligent operating system running on the CPU save their positioning data independently.
  • the intelligent operating system based on the CPU can quickly start or quickly turn on the positioning function, when the CPU enters the working state from the off state or the CPU enters the working state from the sleep state, for example: press the power button, click the smart watch display device, In the system switching setting of the RTOS system, the intelligent operating system is entered, and the MCU synchronizes the positioning data of the first electronic device acquired in operation 601 to the CPU.
  • the intelligent operating system based on the CPU can also request to synchronize the positioning data from the MCU side when the positioning function needs to be turned on, for example: the key is turned on by the positioning function, including virtual keys and physical keys. It can also be that when an application program that requires positioning data in the CPU is started, the MCU is triggered to send the saved positioning data to the CPU, for example: weather, map, sports health and other applications running in the CPU.
  • the first processing unit synchronizes positioning data such as GGA and UTC in the obtained positioning data to the second processing unit.
  • the MCU communicates with the selected positioning system BDS, obtains positioning data such as GGA and UTC through the ephemeris, and synchronizes the positioning data to the CPU when the CPU switches from the sleep state to the working state.
  • the CPU can use the satellite-to-ephemeris data obtained from the MCU synchronized with the MCU, so that the intelligent operating system based on the CPU can achieve rapid positioning, effectively shortening the TTFF (Time to First Fix) time and realizing the CPU
  • TTFF Time to First Fix
  • the first processing unit synchronizes the current position information in the obtained positioning data to the second processing unit.
  • the second processing unit can directly execute processing related to the location information based on the current location information on the basis of quick start.
  • the MCU obtains the current location information from the selected positioning system BDS.
  • the MCU synchronizes the current location information to the CPU.
  • the CPU can determine the current location information from the current location information synchronized from the MCU. Weather information corresponding to the current location information and display it.
  • the second processing unit performs positioning-related processing according to the obtained positioning data.
  • the positioning data may include parameters such as GGA and UTC obtained in the ephemeris process.
  • the second processing unit realizes rapid positioning according to the obtained positioning data.
  • the weather application of the second processing unit is opened, and the weather information of the current location needs to be displayed according to the current location information.
  • the second processing unit may directly synchronize the current location information from the first processing unit, and display weather information corresponding to the current location information according to the current location information.
  • the Android system running based on the CPU is started, and the main page of the system displays the current time and weather information corresponding to the current location.
  • the CPU obtains the positioning data such as GGA and UTC of the positioning system and the current position information from the MCU, and starts the positioning module running in the CPU according to the positioning data, and at the same time quickly displays the weather information corresponding to the current position according to the current position.
  • the first processing unit after the first processing unit synchronizes the obtained positioning data to the second processing unit, when it is determined that the second trigger condition for suspending the synchronization of the positioning data is met, the first processing unit stops the positioning that will be obtained.
  • the data is synchronized to the second processing unit.
  • the second trigger condition is at least one of the following: the second processing unit enters a non-working state; the first processing unit obtains a positioning data synchronization instruction to stop the positioning data sent by the second processing unit; and the application program running by the second processing unit does not exist and Locate related applications.
  • the CPU-based intelligent operating system has higher energy consumption when it is working, and the positioning module running in the CPU also has higher energy consumption, however, in order to ensure that the intelligent operating system running on the CPU can To have a better user experience, it is necessary to comprehensively consider the battery life parameters of the first electronic device, the current power level, the user's demand for the positioning function and the frequency of use of the first electronic device, and the power consumption of the positioning module in the CPU within a set time And other factors, set the best time to turn on and turn off the positioning module of the CPU. Therefore, the first trigger condition for the first processing unit to synchronize the acquired positioning data to the second processing unit and the second trigger condition for the first processing unit to stop synchronizing the acquired positioning data to the second processing unit can be set as required. Certainly.
  • the first processing unit can continue to connect from it to The positioning system performing the positioning function obtains and saves the positioning data of the first electronic device.
  • the positioning function of the second processing unit is turned off or the positioning module of the second processing unit itself is used to communicate with the positioning system with positioning function connected to it to obtain positioning data.
  • stopping the first processing unit to synchronize the positioning data with the second processing unit may include stopping to synchronize the current position information with the second unit.
  • the first processing unit regardless of the first trigger condition that triggers the first processing unit to synchronize the obtained positioning data to the second processing unit, the first processing unit stops when the second processing unit enters the non-working state. Synchronize the obtained positioning data to the second processing unit.
  • the power off button of the smart watch is used to determine that the CPU enters the non-working state, including the off state and the sleep state.
  • the power-off button may be a virtual button or a physical button, and may also be the same button as the power-on button.
  • the first processing unit stops synchronizing the obtained positioning data to the second processing unit: the first processing unit is all when the second processing unit enters the non-working state; first The processing unit obtains the positioning data synchronization instruction that is sent by the second processing unit; there is no positioning-related application program among the application programs run by the second processing unit. For example, after the MCU synchronizes the positioning data to the CPU, it can detect whether the CPU is running a positioning-related application within a set time, and if not, stop synchronizing the obtained positioning data to the second processing unit. For example: the navigation or map application running in the CPU is closed.
  • that the first processing unit can obtain the suspend positioning data synchronization instruction sent by the second processing unit includes: the second processing unit detects that a positioning-related application program is incorrectly running in the background of the current first electronic device; For example: sports health, etc., choose to close the corresponding application, click the application close button, and send the stop positioning data synchronization instruction to the first processing unit.
  • the second processing unit sends a positioning data synchronization instruction to the first processing unit when it establishes a communication connection with the selected positioning system or when it is determined that the communication with the selected positioning system is smooth.
  • the MCU when the MCU synchronizes the acquired positioning data to the CPU, it will synchronize repeatedly, and send a message to detect whether the synchronization is successful to the CPU, until the CPU returns the synchronization success message, stop the synchronization of the positioning data, the MCU and the CPU control separately Its positioning module, and receives the positioning data sent by the respective selected positioning system.
  • the first processing unit stops the operation of synchronizing the obtained positioning data to the second processing unit, which can be executed before the completion of operation 603, or when operation 603 is not processed or partially completed, as long as it is determined to be in line with the suspension of positioning
  • the second trigger condition of data synchronization can stop the operation of the first unit to synchronize the acquired positioning data to the second processing unit.
  • the data processing method, device, system, and computer-readable storage medium of the embodiments of the present invention synchronize the positioning data of the first processing unit when the system or the positioning function is started by the second processing unit with higher energy consumption.
  • the second processing unit solves the problems of high start-up energy consumption of the second processing unit, long start-up delay, and long delay in positioning data, which effectively reduces the start-up energy consumption of the second processing unit and reduces the start-up delay. Time and time provide the system with more accurate positioning data, which improves the user experience of electronic devices.
  • embodiments of the present invention also provide a computer-readable storage medium that stores a program, and when the program is executed by a processor, the processor is caused to perform at least the following operation steps:
  • the first processing unit obtains the positioning data of the first electronic device from the positioning system connected to it for performing the positioning function; in operation 602, when it is determined that the first trigger condition for performing the positioning data synchronization is met, the first processing unit will The obtained positioning data is synchronized to the second processing unit; in operation 603, the second processing unit performs positioning-related processing according to the obtained positioning data.
  • an embodiment of the present invention also provides a data processing system, including a processor and a memory, where computer program instructions are stored in the memory, and the computer program instructions are used to execute the above data when the processor is running. Approach.
  • an embodiment of the present invention also provides a data processing device applied to a first electronic device.
  • the first electronic device includes a first processing unit and a second processing unit.
  • the first processing unit runs the first processing unit.
  • Operating system, the second processing unit runs the second operating system, and the working energy consumption of the first processing unit is less than the working energy consumption of the second processing unit.
  • FIG. 7 shows a schematic diagram of the composition structure of a data processing device 70 according to an embodiment of the present invention. As shown in FIG.
  • the device 70 includes: a positioning data acquisition module 701, which is configured in the first processing unit and is used to connect from the first processing unit The positioning system for performing the positioning function obtains the positioning data of the first electronic device; the data synchronization module 702 is configured to, when determining that the first trigger condition for performing positioning data synchronization is met, the first processing unit synchronizes the obtained positioning data to The second processing unit; the data processing module 703, configured in the second processing unit, for performing positioning-related processing according to the obtained positioning data.
  • a positioning data acquisition module 701 which is configured in the first processing unit and is used to connect from the first processing unit
  • the positioning system for performing the positioning function obtains the positioning data of the first electronic device
  • the data synchronization module 702 is configured to, when determining that the first trigger condition for performing positioning data synchronization is met, the first processing unit synchronizes the obtained positioning data to The second processing unit; the data processing module 703, configured in the second processing unit, for performing positioning-related processing according to the obtained positioning data.
  • the first trigger condition is at least one of the following: the second processing unit starts to enter the working state; the first processing unit obtains the positioning data synchronization instruction sent by the second processing unit; the second processing unit starts to be related to positioning s application.
  • the device 70 further includes: a data termination module, which is used to, after the first processing unit synchronizes the obtained positioning data to the second processing unit, when it is determined that the second trigger condition for suspending the synchronization of the positioning data is met, The first processing unit stops synchronizing the obtained positioning data to the second processing unit; wherein the second trigger condition is at least one of the following: the second processing unit enters a non-working state; the first processing unit obtains the suspension sent by the second processing unit Positioning data synchronization instruction; there is no positioning-related application program in the application program run by the second processing unit.
  • a data termination module which is used to, after the first processing unit synchronizes the obtained positioning data to the second processing unit, when it is determined that the second trigger condition for suspending the synchronization of the positioning data is met, The first processing unit stops synchronizing the obtained positioning data to the second processing unit; wherein the second trigger condition is at least one of the following: the second processing unit enters a non-working state; the first processing unit obtains the suspension sent by
  • the disclosed device and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, such as: multiple units or components can be combined or integrated To another system, or some features can be ignored, or not implemented.
  • the coupling, or direct coupling, or communication connection between the components shown or discussed can be indirect coupling or communication connection through some interfaces, devices or units, and can be electrical, mechanical or other forms. of.
  • the units described above as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units; they may be located in one place or distributed on multiple network units; Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • the functional units in the embodiments of the present invention can be all integrated into one processing unit, or each unit can be individually used as a unit, or two or more units can be integrated into one unit; the above-mentioned integration
  • the unit of can be implemented in the form of hardware, or in the form of hardware plus software functional units.
  • the foregoing program can be stored in a computer readable storage medium.
  • the execution includes The steps of the foregoing method embodiment; and the foregoing storage medium includes: various media that can store program codes, such as a removable storage device, a read only memory (Read Only Memory, ROM), a magnetic disk, or an optical disk.
  • ROM Read Only Memory
  • the aforementioned integrated unit of the present invention is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the methods in the various embodiments of the present invention.
  • the aforementioned storage media include: removable storage devices, ROMs, magnetic disks, or optical disks and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种数据处理方法、装置、系统及计算机可读存储介质,该方法应用于第一电子设备,第一电子设备包括运行第一操作系统的第一处理单元和运行第二操作系统的第二处理单元,第一处理单元的工作能耗小于第二处理单元的工作能耗,方法包括:第一处理单元执行定位系统的选定,并保存所选定的定位系统信息;在确定符合执行定位系统信息同步的第一触发条件时,将保存的定位系统信息同步到第二处理单元;第二处理单元根据获得的所述定位系统信息执行与定位相关的处理。能耗较高的操作系统启动定位功能时能够从能耗较低的操作系统同步定位信息,避免了重复查找和确定卫星导航系统产生的能耗,有效降低设备能耗,提升用户体验。

Description

一种数据处理方法、装置、系统及计算机可读存储介质
本申请要求了2020年6月16日提交的、申请号为202010550309.3、发明名称为“一种数据处理方法、装置、系统及计算机可读存储介质”和2020年6月16日提交的、申请号为202010550508.4、发明名称为“一种信息同步的方法、装置、系统及计算机可读存储介质”和2020年6月16日提交的、申请号为202010549076.5、发明名称为“一种数据处理方法、装置、系统及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及可穿戴设备技术领域,尤其涉及一种数据处理方法、装置、系统及计算机可读存储介质。
背景技术
随着智能手表、运动手环等可穿戴设备走进更多人的生活,人们对可穿戴设备的低功耗和实用性提出了更高的要求。既要具有较多的实用性功能,又要降低功耗。例如:目前,智能手表和运动手环等可穿戴设备的使用者对定位功能实时性提出了较高要求,同时希望定位功能不会产生较高功耗。但是,目前,在这些智能可穿戴上设备上打开定位功能时,尤其是在运动场景下会非常耗电,这就给用户带来了较大不便,也在一定程度影响了可穿戴设备的实用性。
发明内容
本发明实施例为了解决可穿戴设备使用过程中存在的上述问题,创造性地提供一种数据处理方法、装置、系统及计算机可读存储介质。
根据本发明第一方面,提供了一种数据处理方法,应用于第一电子设备,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述方法包括:所述第一处理单元执行定位系统的选定,并保存所选定的定位系统信息;在确定符合执行定位系统信息同步的第一触发条件时,所述第一处理单元将保存的所述定位系统信息同步到所述第二处理单元;所述第二处理单元根据获得的所述定位系统信息执行与定位相关的处理。
根据本发明第二方面,提供了一种数据处理方法,应用于第一电子设备,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述方法包括:所述第一处理单元从其连接的用于执行定位功能的定位系统获得所述第一电子设备的定位信息,所述定位信息包括所述第一电子设备在一定时间段内的位置信息和时间戳信息;在确定符合执行定位信息同步的第一触发条件时,所述第一处理单元将获得的所述定位信息同步到所述第二处理单元;所述第二处理单元根据获得的所述定位信息执行与定位相关的处理。
根据本发明第三方面,提供了一种数据处理方法,应用于第一电子设备,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述方法包括:所述第一处理单元从其连接的用于执行定位功能的定位系统获得所述第一电子设备的定位数据;在确定符合执行定位数据同步的第一触发条件时,所述第一处理单元将获得的所述定位数据同步到所述第二处理单元;所述第二处理单元根据获得的所述定位数据执行与定位相关的处理。
根据本发明第四方面,提供了一种数据处理装置,应用于第一电子设备,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运 行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述装置包括:选定模块,配置于所述第一处理单元,用于执行定位系统的选定,并保存所选定的定位系统信息;信息同步模块,用于在确定符合执行定位系统信息同步的第一触发条件时,所述第一处理单元将保存的所述定位系统信息同步到所述第二处理单元;信息处理模块,配置于所述第二处理单元,用于根据获得的所述定位系统信息执行与定位相关的处理。
根据本发明第五方面,提供了一种数据处理装置,应用于第一电子设备,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述装置包括:信息获取模块,配置于所述第一处理单元,用于从所述第一处理单元连接的用于执行定位功能的定位系统获得所述第一电子设备的定位信息,所述定位信息包括所述第一电子设备在一定时间段内的位置信息和时间戳信息;信息同步模块,用于在确定符合执行定位信息同步的第一触发条件时,所述第一处理单元将获得的所述定位信息同步到所述第二处理单元;数据处理模块,配置于所述第二处理单元,用于根据获得的所述定位信息执行与定位相关的处理。
根据本发明第六方面,提供一种数据处理装置,应用于第一电子设备,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述装置包括:定位数据获取模块,配置于所述第一处理单元,用于从所述第一处理单元连接的用于执行定位功能的定位系统获得所述第一电子设备的定位数据;数据同步模块,用于在确定符合执行定位数据同步的第一触发条件时,所述第一处理单元将获得的所述定位数据同步到所述第二处理单元;数据处理模块,配置于所述第二处理单元,用于根据获得的所述定位数据执行与定位相关的处理。
根据本发明第七方面,又提供了一种数据处理系统,包括处理器和存储器,其中,所述存储器中存储有计算机程序指令,所述计算机程序指令被所述处理器运行时用于执行上述第一方面至第三方面的数据处理方法。
根据本发明第八方面,又提供了一种计算机可读存储介质,所述存储介质包括一组计算机可执行指令,当所述指令被执行时用于执行上述第一方面至第三方面的数据处理方法。
本发明实施例数据处理方法、装置、系统及计算机可读存储介质,实现了电子设备的双操作系统的定位数据分别独立保存,由此保证双系统均可以独立使用定位数据。使得能耗较高的操作系统的定位功能启动时能够从能耗较低的操作系统同步定位信息,避免了能耗较高的定位系统启动时查找和确定卫星导航系统的过程,有效降低电子设备能耗,增加电子设备的续航,并进一步提升了用户体验。
需要理解的是,本发明的教导并不需要实现上面所述的全部有益效果,而是特定的技术方案可以实现特定的技术效果,并且本发明的其他实施方式还能够实现上面未提到的有益效果。
附图说明
通过参考附图阅读下文的详细描述,本发明示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本发明的若干实施方式,其中:
在附图中,相同或对应的标号表示相同或对应的部分。
图1示出了本发明实施例数据处理方法的应用场景示意图;
图2示出了本发明实施例数据处理方法的实现流程示意图;
图3示出了本发明实施例数据处理装置的组成结构示意图;
图4示出了本发明实施例数据处理方法的另一实现流程示意图;
图5示出了本发明实施例数据处理装置的另一组成结构示意图;
图6示出了本发明实施例数据处理方法的另一实现流程示意图;
图7示出了本发明实施例数据处理装置的另一组成结构示意图。
具体实施方式
下面将参考若干示例性实施方式来描述本发明的原理和精神。应当理解,给出这些实施方式仅仅是为使本领域技术人员能够更好地理解进而实现本发明,而并非以任何方式限制本发明的范围。相反,提供这些实施方式是为使本发明更加透彻和完整,并能够将本发明的范围完整地传达给本领域的技术人员。
下面结合附图和具体实施例对本发明的技术方案进一步详细阐述。
实施例一:
图1示出了本发明实施例数据处理方法的应用场景示意图。其中,MCU(Microcontroller Unit,微控制单元)100,在硬件层面上通过串行外设接口102与定位信息接收装置103电路连接,定位信息接收装置103可以包括GPS(Global Positioning System,全球定位系统)芯片,例如:博通的BCM 4775X。在MCU 100上运行有嵌入式操作系统,例如:RTOS(Real Time Operating System,实时操作系统),该嵌入式操作系统内包含一定位信息服务1001。该定位信息服务1001会执行本发明实施例数据处理方法。定位信息服务1001通过硬件抽象层程序1002操控定位信息接收装置103,其中包括启动、初始化、读取操作等。定位信息服务1001可接收程序调用指令,收集定位数据,并对这些定位数据进行整理,生成系统级定位信息,返回给调用程序。定位信息服务1001可单独提供系统定位信息,也可以通过全球导航卫星系统硬件抽象层定义语言接口程序101向CPU(Central Processing Unit,中央处理单元)运行的智能操作系统(例如:Android智能操作系统)及其应用程序提供定位信息。智能操作系统及其应用程序可使用智能操作系统提供的标准定位供应程序,比如全球定位系统供应程序104(Gps Location Provider)、融合定位供应程序105(Flp Location Provider),来获取所需要的定位信息。而智能操作系统提供的标准定位供应程序可调用本发明实施例提供的全球导航卫星系统硬件抽象层定义语言接口程序101来获取应用级定位信息。
图2示出了本发明实施例数据处理方法的实现流程示意图。
参考图2,本发明实施例数据处理方法,应用于第一电子设备,第一电子设备包括第一处理单元和第二处理单元,第一处理单元运行第一操作系统,第二处理单元运行第二操作系统,第一处理单元的工作能耗小于第二处理单元的工作能耗,至少包括如下操作流程:操作201,第一处理单元执行定位系统的选定,并保存所选定的定位系统信息;操作202,在确定符合执行定位系统信息同步的第一触发条件时,第一处理单元将保存的定位系统信息同步到第二处理单元;操作203,第二处理单元根据获得的定位系统信息执行与定位相关的处理。
在本发明一实施例中,第一电子设备为穿戴式电子设备,第一处理单元为微控制单元MCU,第二处理单元为中央处理单元CPU。
在本发明一实施例中,第一处理单元运行第一操作系统为RTOS(Real Time Operating System,实时操作系统),第二处理单元运行第二操作系统为智能操作系统,例如:Android系统。MCU运行RTOS的工作能耗小于CPU运行Android的工作能耗。
举例说明,第一电子设备为智能手表,包括运行RTOS的MCU和运行Android系统的CPU。
需要说明的是,如无特别说明,本文中对各个操作步骤的举例说明过程中,为了较为直观地说明本发明实施例的方案,均以第一电子设备为智能手表,第一处理单元为运行RTOS的MCU,第二处理单元为运行Android系统的CPU为例,对本发明实施例的方案进行解释。当然,本发明实施例的第一电子设备并不仅限于智能手表,第一处理单元并不仅限于MCU,第二处理单元并不仅限于CPU,第一操作系统并不仅限于RTOS,第二操作系统并不仅限于Android。
在操作201中,第一处理单元执行定位系统的选定,并保存所选定的定位系统信息。
在本发明一实施例中,第一处理单元支持与多个定位系统间的通信连接,并且第一处理单元采用以下方式执行定位系统的选定:第一处理单元获得对应多个定位系统的信号强度,从中选择信号强度最高的定位系统;将被选定位系统确定为第一处理单元用于执行定位功能的相应定位系 统,控制第一处理单元中与被选定位系统对应的定位模块为工作状态,第一处理单元中与非被选定位系统对应的定位模块为非工作状态。
举例来讲,定位系统可以包括:BDS(BeiDou Navigation Satellite System,北斗卫星导航系统)、GPS(Global Positioning System,全球定位系统)、GLONASS(格洛纳斯定位系统)、伽利略卫星导航系统。MCU获得对应多个定位系统的信号强度,从中选择信号强度最高的定位系统,例如:在某个区域BDS为多个定位系统中信号强度最高的定位系统,则MCU确定利用BDS执行定位功能的相应定位系统,并控制MCU中与BDS对应的定位模块为工作状态,同时控制MCU中与GPS、GLONASS和伽利略卫星导航系统相对应的定位模块均调整为非工作状态。
MCU从多个定位系统中选定一个定位系统,主要是为了将MCU中与其他未被选定定位系统相对应的定位模块调整为非工作状态,以节约能耗,延长智能手表的续航时间。还可以避免MCU在多个定位系统之间频繁切换带来的连接延迟,因为正常情况下,智能手表、手机、车载导航系统等系统上运行的定位模块与卫星定位系统建立连接需要较长时间,这个时间能够被人们直观感知的,例如:1分钟左右的时间。
在本发明一实施方式中,第一处理单元中运行的定位模块在工作状态下通过寻星过程,从多个定位系统中选择信号强度最高的定位系统,并保存所选定定位系统的定位系统信息。
在本发明一实施方式中,在选择强度最高的定位系统后,还将强度最高的定位系统对应的信号强度与第一阈值进行比较;在强度最高的定位系统对应的信号强度大于等于第一阈值时,将强度最高的定位系统确定为被选定位系统;在强度最高的定位系统对应的信号强度小于第一阈值时,将第一电子设备连接的具有定位功能的第二电子设备确定为被选定位系统。
在本发明一实施方式中,第二电子设备为智能终端,例如:手机、平板电脑等。
需要说明的是,如无特别说明,本文中对各个操作步骤的举例说明过程中,为了较为直观地说明本发明实施例的方案,均以第二电子设备为智能终端为例,对本发明实施例的方案进行解释。
举例来讲,第一阈值可以为根据实际需求设定的、能够保证MCU中运行的定位模块能够与定位系统进行较为快速的通信的信号强度。MCU选择BDS、GPS、GLONASS、伽利略卫星导航系统等定位系统中信号强度最高的定位系统BDS后。将BDS对应的信号强度与第一阈值进行比较,如果BDS对应的信号强度大于第一阈值,则说明MCU中运行的定位模块与BDS之间能够进行有效通信,可以保证MCU中运行的定位模块正常从定位系统获取定位数据。此时,将BDS确定为被选定位系统。
如果BDS对应的信号强度低于第一阈值,则说明MCU中的运行的定位模块与多个定位系统之间均不能进行有效通信,无法保证MCU中运行的定位模块正常从定位系统获取定位数据。此时,可以选择MCU与智能终端通信,从智能终端同步卫星数据。例如:MCU可以通过BLE(Bluetooth Low Energy,低功耗蓝牙)与智能终端进行通信。
在本发明一实施方式中,在强度最高的定位系统对应的信号强度小于第一阈值,并且第二电子设备与其正在通信连接的定位系统间的信号强度也小于第一阈值时,说明第一处理单元通过第二电子设备也无法正常获取到定位系统的定位信息。此时,第一处理单元可以重新执行定位系统的选定操作。
举例说明,MCU中运行的定位模块与多个定位系统之间的信号强度均小于第一阈值,此时,MCU尝试通过BLE与智能终端连接,从智能终端同步定位信息。但是,此时获取到智能终端与其正在通信连接的定位系统BDS之间的信号强度也小于第一阈值,则MCU可以再次尝试与多个定位系统进行连接。直至成功连接其中一个定位系统。
在本发明一实施例中,采用以下具体操作实现将第一电子设备连接的具有定位功能的第二电子设备确定为被选定位系统:获得第二电子设备与其正在通信连接的定位系统间的信号强度,并在信号强度大于等于第一阈值时,将第一电子设备连接的具有定位功能的第二电子设备确定为第一处理单元的被选定位系统。
举例来讲,MCU与BDS、GPS、GLONASS、伽利略卫星定位系统等定位系统中信号强度最高的定位系统为BDS。MCU与BDS之间的信号强度为X,X小于第一阈值。而MCU与智能终端之间进行通 信的信号强度为Y,MCU与智能终端之间可以通过BLE进行通信。Y大于第一阈值,则可以选择MCU与智能终端通信,从智能终端同步卫星数据。
在本发明一实施例中,在将被选定位系统确定为第一处理单元用于执行定位功能的相应定位系统之后,还获得第一处理单元与当前用于执行定位功能的相应定位系统的信号强度,并将所获得的信号强度与第二阈值进行比较;在获得的信号强度小于第二阈值时,重新获得第一处理单元获得对应各个定位系统的当前信号强度,并从中选择当前信号强度最高的定位系统;在当前信号强度最高的定位系统的对应的信号强度大于等于第一阈值时,将当前信号强度最高的定位系统确定为新的被选定位系统;若新的被选定位系统与当前用于执行定位功能的定位系统不为同一定位系统时,则将用于执行定位功能定位系统切换为新的被选系统;其中,第二阈值与第一阈值相同或不同。
举例来讲,MCU在前一次执行定位系统的选定操作时,确定其与多个定位系统中信号强度最高的定位系统为BDS。MCU与BDS之间的信号强度为X,X大于第一阈值。在BDS被选定为当前第一处理单元用于执行定位功能的相应定位系统之后,MCU会再次获取被选定位系统BDS与MCU之间进行通信的当前信号强度Y,以确认被选定位系统BDS与MCU之间进行通信的当前信号强度仍然能够保证MCU与BDS之间的正常通信。具体来讲,第二阈值可以设置为保证第一处理单元的定位模块与定位系统之间进行正常通信的最低信号强度,如果第一处理单元的定位模块与定位系统之间,则第一处理单元无法正常从定位系统获取定位数据。
在操作202中,在确定符合执行定位系统信息同步的第一触发条件时,第一处理单元将保存的定位系统信息同步到第二处理单元。
在本发明一实施方式中,第一触发条件可以为以下至少之一:第二处理单元启动进入工作状态;第一处理单元获得所述第二处理单元发送的定位数据同步指令;第二处理单元启动与定位相关的应用程序。
举例说明,由于基于CPU运行的智能操作系统处于工作状态时能耗较高,本发明实施例中第一电子设备中的一般应用程序基于MCU运行的RTOS系统进行操作即可。基于MCU运行的RTOS系统和基于CPU运行的智能操作系统分别独立保存其定位数据。为了保证基于CPU运行的智能操作系统能够快速启动或快速开启定位功能,在CPU从关闭状态进入工作状态或者CPU从休眠状态进入工作状态时,例如:按动电源键、点击智能手表显示装置、从RTOS系统的系统切换设置中进入智能操作系统等,MCU将操作201中保存的定位系统信息同步至CPU。
基于CPU运行的智能操作系统也可以在需要开启定位功能时,请求从MCU侧同步定位数据,例如:通过定位功能开启按键,包括虚拟按键和物理按键。还可以是在CPU中需要定位数据的应用程序启动时,触发MCU将保存的定位系统信息发送至CPU。例如:CPU中运行的导航或地图应用程序等。
在本发明一实施方式中,定位系统信息包括MCU选定的定位系统,例如:BDS、GPS、GLONASS、伽利略卫星定位系统中的一者。如此,CPU可以在进入工作状态或开启定位功能时,直接根据从MCU获取的定位系统信息,与确定的被选定的定位系统进行通信,避免反复执行寻星等操作以确定选用哪一定位系统产生较高的能耗和带来定位功能启动延时等问题。
在本发明一实施方式中,定位系统信息还可以包括星历过程中得到的参数GGA和UTC等,GGA是指定位系统定位数据,具有标准的数据规范。例如:$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>*xx<CR><LF>,其中:$GPGGA:起始引导符及语句格式说明(本句为GPS定位数据);
第<1>字段用于描述UTC时间,格式为hhmmss.sss;
第<2>字段用于描述纬度,格式为ddmm.mmmm(第一位是零也将传送);
第<3>字段用于描述纬度半球,N或S(北纬或南纬);
第<4>字段用于描述经度,格式为dddmm.mmmm(第一位零也将传送);
第<5>字段用于描述经度半球,E或W(东经或西经)
第<6>字段用于描述定位质量指示,0=定位无效,1=定位有效;
第<7>字段用于描述使用卫星数量,从00到12(第一个零也将传送)
第<8>字段用于描述水平精确度,0.5到99.9
第<9>字段用于描述天线离海平面的高度,-9999.9到9999.9米M指单位米
第<10>字段用于描述大地水准面高度,-9999.9到9999.9米M指单位米
第<11>字段用于描述差分GPS数据期限(RTCMSC-104),最后设立RTCM传送的秒数量
第<12>字段用于描述差分参考基站标号,从0000到1023(首位0也将传送)。
第<9>、<10>字段中海平面高度和大地水准面高度的单位是米。
UTC(Coordinated Universal Time,协调世界时),又称世界统一时间、世界标准时间、国际协调时间。由于英文(CUT)和法文(TUC)的缩写不同,作为妥协,简称UTC。用CNS 7648的《资料元及交换格式–资讯交换–日期及时间的表示法》,称之为世界统一时间。UTC时间采用hhmmss(时分秒)格式。
如此,CPU可以使用从MCU同步的MCU所获取的卫星到星历数据,使得基于CPU运行的智能操作系统可以实现快速定位,在有效缩短TTFF(Time to First Fix,首次定位时间)时间,实现CPU的快速启动的基础上,有效减少与定位系统中的卫星通信以获取当前定位数据的通信时间,进一步提升用户体验。例如:可以快速定位当前位置。
在本发明一实施方式中,定位系统信息还可以包括第一电子设备在一定时间段内的位置信息和时间戳信息。
在操作203中,第二处理单元根据获得的定位系统信息执行与定位相关的处理。
在本发明一实施方式中,定位系统信息包括MCU选定的定位系统,第二处理单元根据获得的定位系统信息执行定位操作。如此,CPU可以在进入工作状态或开启定位功能时,直接根据从MCU获取的定位系统信息,与确定的被选定的定位系统进行通信,获取当前位置等信息,避免反复执行寻星等操作以确定选用哪一定位系统产生较高的能耗和带来定位功能启动延时等问题。
在本发明一实施方式中,定位系统信息还可以包括星历过程中得到的参数GGA和UTC等。第二处理单元根据获得的定位系统信息实现快速定位。
在本发明一实施方式中,定位系统信息还可以包括第一电子设备在一定时间段内的位置信息和时间戳信息。第二处理单元可以根据获取的定位系统信息执行定位系统信息的处理。
举例说明,基于CPU运行的智能操作系统进入工作状态或启动定位功能后,可以直接从MCU同步得到定位系统信息中的位置信息和时间戳等数据,例如:CPU启动时刻之前的设定时间至CPU启动时刻,MCU确定的第一电子设备的位置信息和与之相对应的时间戳信息,例如:经度、纬度和与经纬度对应的时间戳信息。CPU可以根据上述定位系统信息,利用相应的应用程序进行具有时效性的定位信息处理,例如:绘制设定时间段内的运动线路图。
如此,可以保证CPU的定位系统信息的完整性和时效性,避免基于CPU运行的智能操作系统无法获取CPU休眠或关闭期间的定位信息,保证需要利用具有时间戳信息的位置信息进行定位数据分析的应用可以正常使用。
本发明实施例数据处理方法、装置、系统及计算机可读存储介质,实现了电子设备的双操作系统的定位数据分别独立保存,由此保证双系统均可以独立使用定位数据。使得能耗较高的操作系统的定位功能启动时能够从能耗较低的操作系统同步定位信息,避免了能耗较高的定位系统启动时查找和确定卫星导航系统的过程,有效降低电子设备能耗,增加电子设备的续航,并进一步提升了用户体验。
同理,基于上文数据处理方法,本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有程序,当程序被处理器执行时,使得处理器至少执行如下的操作步骤:操作201,第一处理单元执行定位系统的选定,并保存所选定的定位系统信息;操作202,在确定符合执行定位系统信息同步的第一触发条件时,第一处理单元将保存的定位系统信息同步到第二处理单元;操作203,第二处理单元根据获得的定位系统信息执行与定位相关的处理。
进一步,基于如上文数据处理方法,本发明实施例还提供了一种数据处理系统,包括处理器和存储器,其中,存储器中存储有计算机程序指令,计算机程序指令被处理器运行时用于执行上述数据处理方法。
更进一步,基于如上文数据处理方法,本发明实施例还提供一种数据处理装置,应用于第一电子设备,第一电子设备包括第一处理单元和第二处理单元,第一处理单元运行第一操作系统,第二处理单元运行第二操作系统,第一处理单元的工作能耗小于第二处理单元的工作能耗。图3示出了本发明实施例数据处理装置的组成结构示意图。参考图3,装置30包括:选定模块301,配置于第一处理单元,用于执行定位系统的选定,并保存所选定的定位系统信息;信息同步模块302,用于在确定符合执行定位系统信息同步的第一触发条件时,第一处理单元将保存的定位系统信息同步到第二处理单元;信息处理模块303,配置于第二处理单元,用于根据获得的定位系统信息执行与定位相关的处理。
根据本发明一实施方式,第一处理单元支持与多个定位系统间的通信连接;选定模块301包括:强度确定子模块,配置于第一处理单元,用于获得对应多个定位系统的信号强度,从中选择信号强度最高的定位系统;状态控制子模块,用于将被选定位系统确定为第一处理单元用于执行定位功能的相应定位系统,控制第一处理单元中与被选定位系统对应的定位模块为工作状态,第一处理单元中与非被选定位系统对应的定位模块为非工作状态。
这里需要指出的是:以上对针对数据处理装置实施例的描述,与前述图1至2所示的方法实施例的描述是类似的,具有同前述图1至2所示的方法实施例相似的有益效果,因此不做赘述。对于本发明数据处理装置实施例中未披露的技术细节,请参照本发明前述图1至2所示的方法实施例的描述而理解,为节约篇幅,因此不再赘述。
实施例二:
图1示出了本发明实施例数据处理方法的应用场景示意图。其中,MCU(Microcontroller Unit,微控制单元)100,在硬件层面上通过串行外设接口102与定位信息接收装置103电路连接,定位信息接收装置103可以包括GPS(Global Positioning System,全球定位系统)芯片,例如:博通的BCM 4775X。在MCU 100上运行有嵌入式操作系统,例如:RTOS(Real Time Operating System,实时操作系统),该嵌入式操作系统内包含一定位信息服务1001。该定位信息服务1001会执行本发明实施例数据处理方法。定位信息服务1001通过硬件抽象层程序1002操控定位信息接收装置103,其中包括启动、初始化、读取操作等。定位信息服务1001可接收程序调用指令,收集定位信息,并对这些定位信息进行整理,生成系统级定位信息,返回给调用程序。定位信息服务1001可单独提供系统定位信息,也可以通过全球导航卫星系统硬件抽象层定义语言接口程序101向CPU(Central Processing Unit,中央处理单元)运行的智能操作系统(例如:Android智能操作系统)及其应用程序提供定位信息。智能操作系统及其应用程序可使用智能操作系统提供的标准定位供应程序,比如全球定位系统供应程序104(Gps Location Provider)、融合定位供应程序105(Flp Location Provider),来获取所需要的定位信息。而智能操作系统提供的标准定位供应程序可调用本发明实施例提供的全球导航卫星系统硬件抽象层定义语言接口程序101来获取应用级定位信息。
图4示出了本发明实施例数据处理方法的实现流程示意图。
参考图4,本发明实施例数据处理方法,应用于第一电子设备,第一电子设备包括第一处理单元和第二处理单元,第一处理单元运行第一操作系统,第二处理单元运行第二操作系统,第一处理单元的工作能耗小于第二处理单元的工作能耗,该方法至少包括如下操作流程:操作401,第一处理单元从其连接的用于执行定位功能的定位系统获得第一电子设备的定位信息,定位信息包括第一电子设备在一定时间段内的位置信息和时间戳信息;操作402,在确定符合执行定位信息同步的第一触发条件时,第一处理单元将获得的定位信息同步到第二处理单元;操作403,第二处理单元根据获得的定位信息执行与定位相关的处理。
在操作401中,第一处理单元从其连接的用于执行定位功能的定位系统获得第一电子设备的 定位信息,定位信息包括第一电子设备在一定时间段内的位置信息和时间戳信息。
在本发明一实施例中,第一电子设备为穿戴式电子设备,第一处理单元为微控制单元MCU,第二处理单元为中央处理单元CPU。
在本发明一实施例中,第一处理单元运行第一操作系统为RTOS(Real Time Operating System,实时操作系统),第二处理单元运行第二操作系统为智能操作系统,例如:Android系统。MCU运行RTOS的工作能耗小于CPU运行Android的工作能耗。
举例说明,第一电子设备为智能手表,包括运行RTOS的MCU和运行Android系统的CPU。
需要说明的是,如无特别说明,本文中对各个操作步骤的举例说明过程中,为了较为直观地说明本发明实施例的方案,均以第一电子设备为智能手表,第一处理单元为运行RTOS的MCU,第二处理单元为运行Android系统的CPU为例,对本发明实施例的方案进行解释。当然,本发明实施例的第一电子设备并不仅限于智能手表,第一处理单元并不仅限于MCU,第二处理单元并不仅限于CPU,第一操作系统并不仅限于RTOS,第二操作系统并不仅限于Android。
在本发明一实施例中,第一处理单元仅支持与一个定位系统间的通信连接,例如:BDS(BeiDou Navigation Satellite System,北斗卫星导航系统)、GPS(Global Positioning System,全球定位系统)、GLONASS(格洛纳斯定位系统)、伽利略卫星导航系统中的一者。第一处理单元还可以是仅能够与具有定位功能的第二电子设备通信连接,并将第二电子设备作为定位系统。例如:具有定位功能的手机、平板电脑等智能终端。则第一处理单元可以直接从其连接的定位系统中获取定位信息,而无需判断与哪一定位系统进行通信。
在本发明一实施例中,第一处理单元支持与多个定位系统间的通信连接。例如:第一处理单元能够与BDS、GPS、GLONASS、伽利略卫星导航系统或具有定位功能的第二电子设备中的两者及以上进行通信连接。此时,需要首先确定第一处理单元所选定的定位系统,并与选定的定位系统进行通信,从该定位系统获取定位信息。
对于第一处理单元所获取的定位信息的具体形式和内容,将在操作402中进行详细描述,此处不再赘述。
在本发明一实施例中,第一处理单元通过以下方式选择用于执行定位功能的定位系统:第一处理单元获得对应多个定位系统的信号强度,从中选择信号强度最高的定位系统;将被选定位系统确定为第一处理单元用于执行定位功能的相应定位系统,控制第一处理单元中与被选定位系统对应的定位模块为工作状态,第一处理单元中与非被选定位系统对应的定位模块为非工作状态。
举例来讲,定位系统可以包括:BDS、GPS、GLONASS、伽利略卫星导航系统。MCU获得对应多个定位系统的信号强度,从中选择信号强度最高的定位系统,例如:在某个区域BDS为多个定位系统中信号强度最高的定位系统,则MCU确定利用BDS执行定位功能的相应定位系统,并控制MCU中与BDS对应的定位模块为工作状态,同时控制MCU中与GPS、GLONASS和伽利略卫星导航系统相对应的定位模块均调整为非工作状态。
MCU从多个定位系统中选定一个定位系统,主要是为了将MCU中与其他未被选定定位系统相对应的定位模块调整为非工作状态,以节约能耗,延长智能手表的续航时间。还可以避免MCU在多个定位系统之间频繁切换带来的连接延迟,因为正常情况下,智能手表、手机、车载导航系统等系统上运行的定位模块与卫星定位系统建立连接需要较长时间,这个时间能够被人们直观感知的,例如:1分钟左右的时间。
在本发明一实施方式中,第一处理单元中运行的定位模块在工作状态下通过寻星过程,从多个定位系统中选择信号强度最高的定位系统。
在本发明一实施方式中,在选择强度最高的定位系统后,还将强度最高的定位系统对应的信号强度与第一阈值进行比较;在强度最高的定位系统对应的信号强度大于等于第一阈值时,将强度最高的定位系统确定为被选定位系统;在强度最高的定位系统对应的信号强度小于第一阈值时,将第一电子设备连接的具有定位功能的第二电子设备确定为被选定位系统。
在本发明一实施方式中,第二电子设备为智能终端,例如:手机、平板电脑等。
需要说明的是,如无特别说明,本文中对各个操作步骤的举例说明过程中,为了较为直观地说明本发明实施例的方案,均以第二电子设备为智能终端为例,对本发明实施例的方案进行解释。当然,第二电子设备不局限于智能终端。
举例来讲,第一阈值可以为根据实际需求设定的、能够保证MCU中运行的定位模块能够与定位系统进行较为快速的通信的信号强度。MCU选择BDS、GPS、GLONASS、伽利略卫星导航系统等定位系统中信号强度最高的定位系统BDS后。将BDS对应的信号强度与第一阈值进行比较,如果BDS对应的信号强度大于第一阈值,则说明MCU中运行的定位模块与BDS之间能够进行有效通信,可以保证MCU中运行的定位模块正常从定位系统获取定位信息。此时,将BDS确定为被选定位系统。
如果BDS对应的信号强度低于第一阈值,则说明MCU中的运行的定位模块与多个定位系统之间均不能进行有效通信,无法保证MCU中运行的定位模块正常从定位系统获取定位信息。此时,可以选择MCU与智能终端通信,从智能终端同步卫星数据。例如:MCU可以通过BLE(Bluetooth Low Energy,低功耗蓝牙)与智能终端进行通信。
在本发明一实施方式中,在强度最高的定位系统对应的信号强度小于第一阈值,并且第二电子设备与其正在通信连接的定位系统间的信号强度也小于第一阈值时,说明第一处理单元通过第二电子设备也无法正常获取到定位系统的定位信息。此时,第一处理单元可以重新执行定位系统的选定操作。
举例说明,MCU中运行的定位模块与多个定位系统之间的信号强度均小于第一阈值,此时,MCU尝试通过BLE与智能终端连接,从智能终端同步定位信息。但是,此时获取到智能终端与其正在通信连接的定位系统BDS之间的信号强度也小于第一阈值,则MCU可以再次尝试与多个定位系统进行连接。直至成功连接其中一个定位系统。
在本发明一实施例中,采用以下具体操作实现将第一电子设备连接的具有定位功能的第二电子设备确定为被选定位系统:获得第二电子设备与其正在通信连接的定位系统间的信号强度,并在信号强度大于等于第一阈值时,将第一电子设备连接的具有定位功能的第二电子设备确定为第一处理单元的被选定位系统。
举例来讲,MCU与BDS、GPS、GLONASS、伽利略卫星定位系统等定位系统中信号强度最高的定位系统为BDS。MCU与BDS之间的信号强度为X,X小于第一阈值。而MCU与智能终端之间进行通信的信号强度为Y,MCU与智能终端之间可以通过BLE进行通信。Y大于第一阈值,则可以选择MCU与智能终端通信,从智能终端同步卫星数据。
在本发明一实施例中,在将被选定位系统确定为第一处理单元用于执行定位功能的相应定位系统之后,还获得第一处理单元与当前用于执行定位功能的相应定位系统的信号强度,并将所获得的信号强度与第二阈值进行比较;在获得的信号强度小于第二阈值时,重新获得第一处理单元获得对应各个定位系统的当前信号强度,并从中选择当前信号强度最高的定位系统;在当前信号强度最高的定位系统的对应的信号强度大于等于第一阈值时,将当前信号强度最高的定位系统确定为新的被选定位系统;若新的被选定位系统与当前用于执行定位功能的定位系统不为同一定位系统时,则将用于执行定位功能定位系统切换为新的被选系统;其中,第二阈值与第一阈值相同或不同。
举例来讲,MCU在前一次执行定位系统的选定操作时,确定其与多个定位系统中信号强度最高的定位系统为BDS。MCU与BDS之间的信号强度为X,X大于第一阈值。在BDS被选定为当前第一处理单元用于执行定位功能的相应定位系统之后,MCU会再次获取被选定位系统BDS与MCU之间进行通信的当前信号强度Y,以确认被选定位系统BDS与MCU之间进行通信的当前信号强度仍然能够保证MCU与BDS之间的正常通信。具体来讲,第二阈值可以设置为保证第一处理单元的定位模块与定位系统之间进行正常通信的最低信号强度,如果第一处理单元的定位模块与定位系统之间,则第一处理单元无法正常从定位系统获取定位信息。
在本发明一实施方式中,定位信息包括第一电子设备在一定时间段内的位置信息和时间戳信息。
在本发明一实施方式中,第一处理单元从其连接的用于执行定位功能的定位系统获得第一电子设备的定位信息,并将所获得的定位信息保存设定时间,例如:保存一年、半年、一个月、十天、一周等。如此,在第二处理单元从第一处理单元同步的定位信息时,可以选择一定时间段内的定位信息进行同步,并根据所同步的定位信息,执行与定位相关的处理。
在操作402中,在确定符合执行定位信息同步的第一触发条件时,第一处理单元将获得的定位信息同步到第二处理单元。
在本发明一实施方式中,一定时间段内的位置信息和时间戳信息可以包括第一电子设备在第二电子设备开启定位功能、从休眠状态切换至工作状态或开启电源的时刻及之前的设定时间段内的位置信息和时间戳信息。也可以是第二处理单元发送的定位信息同步指令中携带的时间段信息。
举例说明,MCU可以默认在CPU开机或从休眠状态切换至工作状态时,将CPU开机或切换至工作状态时刻之前设定时间段内的定位信息同步至CPU。也可以在CPU的某个应用开启,例如:运动健康,需要使用MCU获得的第一时刻至第二时刻之间智能手表的定位信息,以绘制运动路线图,则一定时间段是指第一时刻至第二时刻之间的时间段。其中,第一时刻早于第二时刻,第二时刻可以是MCU在CPU开启定位功能、从休眠状态切换至工作状态或开启电源的时刻,也可以是第一电子设备在CPU开启定位功能、从休眠状态切换至工作状态或开启电源之前的某一时刻。
在本发明一实施方式中,第一触发条件可以为以下至少之一:第二处理单元启动进入工作状态;第一处理单元获得所述第二处理单元发送的定位信息同步指令;第二处理单元启动与定位相关的应用程序。
举例说明,由于基于CPU运行的智能操作系统处于工作状态时能耗较高,本发明实施例中第一电子设备中的一般应用程序基于MCU运行的RTOS系统进行操作即可。基于MCU运行的RTOS系统和基于CPU运行的智能操作系统分别独立保存其定位信息。为了保证基于CPU运行的智能操作系统能够快速启动或快速开启定位功能,在CPU从关闭状态进入工作状态或者CPU从休眠状态进入工作状态时,例如:按动电源键、点击智能手表显示装置、从RTOS系统的系统切换设置中进入智能操作系统等,MCU将操作401中获取的第一电子设备的定位信息同步至CPU。
基于CPU运行的智能操作系统也可以在需要开启定位功能时,请求从MCU侧同步定位信息,例如:通过定位功能开启按键,包括虚拟按键和物理按键。还可以是在CPU中需要定位信息的应用程序启动时,触发MCU将保存的定位系统信息发送至CPU。例如:CPU中运行的导航或地图应用程序等。
在操作403中,第二处理单元根据获得的定位信息执行与定位相关的处理。
在本发明一实施方式中,第二处理单元根据获得的定位信息执行与定位相关的处理可以是对位置信息和对应的时间戳信息的显示等定位信息的直接利用,还可以是对位置信息和对应的时间戳信息的分析处理。
举例来讲,智能手表中的运动健康、地图等应用程序,根据CPU从MCU同步的位置信息和时间戳信息,可以执行运动轨迹图绘制、设定时间段内的运动公里数计算、设定时间段内的运动时长计算、设定时间段内的运动速度分析等功能。也可以根据位置信息和时间戳信息,确定某一时刻的位置信息,以供查看。
在本发明一实施方式中,在第一处理单元将获得的定位信息同步到第二处理单元后,还在确定符合中止定位信息同步的第二触发条件时,第一处理单元停止将获得的定位信息同步到第二处理单元。其中,第二触发条件为以下至少之一:第二处理单元进入非工作状态;第一处理单元获得第二处理单元发送的中止定位信息同步指令;第二处理单元运行的应用程序中不存在与定位相关的应用程序。
在本发明一实施方式中,第一处理单元停止将获得的定位信息同步到第二处理单元,是指第一处理单元获得的定位信息中的当前位置信息。
举例说明,MCU在CPU从休眠状态切换至工作状态时,将MCU获取的CPU状态切换的时刻至该时刻之前的10分钟之间的定位信息同步至CPU,定位信息包括这10分钟之内的位置信息和时 间戳信息。在CPU关闭定位功能或者关闭与定位功能有关的应用程序时,MCU已经将MCU获取的CPU状态切换的时刻至该时刻之前的10分钟之间的定位信息同步至CPU。此时,MCU中止向CPU同步定位信息,其实是停止同步智能手表的当前位置信息。
举例说明,由于基于CPU运行的智能操作系统处于工作状态时能耗较高,同时CPU中运行的定位模块的能耗也较高,但是,为了保证CPU运行的智能操作系统能够具有较好的用户体验,需要综合考虑第一电子设备的电池续航参数、当前电量、第一电子设备的用户对于定位功能的需求和使用频率、CPU中定位模块在设定时间内的耗电量等因素,设定CPU的定位模块开启和关闭的最佳时机。因此,第一处理单元将获得的定位信息同步到所述第二处理单元的第一触发条件以及第一处理单元停止将获得的定位信息同步到第二处理单元的第二触发条件均可以根据需要进行设定。
在本发明一实施方式中,无论触发第一处理单元将获得的定位信息同步到第二处理单元的第一触发条件是什么,第一处理单元均在第二处理单元进入非工作状态时,停止将获得的所述定位信息同步到所述第二处理单元。例如:通过智能手表的电源关闭按键确定CPU进入非工作状态,包括关闭状态和休眠状态。其中,电源关闭按键可以是虚拟按键或物理按键,还可以与电源开启按键为同一按键。
在本发明一实施方式中,只要满足以下一者,第一处理单元即停止将获得的所述定位信息同步到所述第二处理单元:第一处理单元均在第二处理单元进入非工作状态时;第一处理单元获得第二处理单元发送的中止定位信息同步指令;第二处理单元运行的应用程序中不存在与定位相关的应用程序。
举例说明,在MCU将定位信息同步至CPU之后,可以在设定时间内检测CPU是否运行了与定位相关的应用程序,若无,则停止将获得的所述定位信息同步到所述第二处理单元。例如:CPU中运行的导航或地图应用程序等关闭。
在本发明一实施方式中,第一处理单元可以获得第二处理单元发送的中止定位信息同步指令包括:第二处理单元检测到当前第一电子设备中后台误运行了与定位相关的应用程序,例如:运动健康等,选择关闭相应的应用程序,点击应用程序关闭按键的同时发送中止定位信息同步指令给第一处理单元。
在本发明一实施方式中,第二处理单元在其本身与选定定位系统取建立通信连接时或者确定其与选定的定位系统通信顺畅时,发送中止定位信息同步指令至第一处理单元。
举例说明,MCU将所获取的定位信息同步至CPU时,会反复进行同步,并发送检测是否同步成功的信息至CPU,直至CPU返回同步成功的信息,停止定位信息的同步,MCU和CPU分别控制其定位模块,并接收各自选定的定位系统所发送的定位信息。
需要说明是,第一处理单元停止将获得的定位信息同步到第二处理单元的操作,可以是在完成操作403之前,也可以是在未处理或部分完成操作403时执行,只要确定符合中止定位信息同步的第二触发条件,即可中止第一单元将获取的定位信息同步到第二处理单元的操作。
这样,本发明实施例数据处理方法、装置、系统及计算机可读存储介质,在确定符合执行定位信息同步的第一触发条件时,第一处理单元将获得的所述定位信息同步到所述第二处理单元,以使得第二处理单元根据获得的所述定位信息执行与定位相关的处理,定位信息包括第一电子设备在一定时间段内的位置信息和时间戳信息。能够有效避免第二处理单元重新启动或切换至工作状态并执行定位功能后,无法获取其关闭或休眠期间的定位信息的问题。实现快速获取与时间相关的定位信息,以执行与时间有关的定位功能。
同理,基于上述数据处理方法,本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有程序,当程序被处理器执行时,使得处理器至少执行如下的操作步骤:操作401,第一处理单元从其连接的用于执行定位功能的定位系统获得第一电子设备的定位信息,定位信息包括第一电子设备在一定时间段内的位置信息和时间戳信息;操作402,在确定符合执行定位信息同步的第一触发条件时,第一处理单元将获得的定位信息同步到第二处理单元;操作403,第 二处理单元根据获得的定位信息执行与定位相关的处理。
进一步,基于上述数据处理方法,本发明实施例还提供一种数据处理系统,包括处理器和存储器,其中,存储器中存储有计算机程序指令,计算机程序指令被处理器运行时用于执行上述的数据处理方法。
更进一步,基于上述数据处理方法,本发明实施例还提供一种数据处理装置,应用于第一电子设备,第一电子设备包括第一处理单元和第二处理单元,第一处理单元运行第一操作系统,第二处理单元运行第二操作系统,第一处理单元的工作能耗小于第二处理单元的工作能耗。图5示出了本发明实施例数据处理装置50的组成结构示意图,如图5所示,该装置50包括:信息获取模块501,配置于所述第一处理单元,用于从所述第一处理单元连接的用于执行定位功能的定位系统获得所述第一电子设备的定位信息,所述定位信息包括所述第一电子设备在一定时间段内的位置信息和时间戳信息;信息同步模块502,用于在确定符合执行定位信息同步的第一触发条件时,所述第一处理单元将获得的所述定位信息同步到所述第二处理单元;数据处理模块503,配置于所述第二处理单元,用于根据获得的所述定位信息执行与定位相关的处理。
根据本发明一实施方式,所述第一触发条件为以下至少之一:所述第二处理单元启动进入工作状态;所述第一处理单元获得所述第二处理单元发送的定位信息同步指令;所述第二处理单元启动第一列表中的应用程序,所述第一列表中的应用程序为运行过程中需要使用所述定位信息应用程序。
根据本发明一实施方式,所述装置50还包括:数据中止模块,用于在所述第一处理单元将获得的所述定位信息同步到所述第二处理单元后,在确定符合中止定位信息同步的第二触发条件时,所述第一处理单元停止将获得的所述定位信息同步到所述第二处理单元;其中,所述第二触发条件为以下至少之一:所述第二处理单元进入非工作状态;所述第一处理单元获得所述第二处理单元发送的中止定位信息同步指令;所述第二处理单元运行的应用程序中不存在所述第一列表中的应用程序。
这里需要指出的是:以上对针对数据处理装置、系统实施例的描述,与前述图1和图4所示的方法实施例的描述是类似的,具有同前述图1和图4所示的方法实施例相似的有益效果,因此不做赘述。对于本发明数据处理装置、系统实施例中未披露的技术细节,请参照本发明前述图1和图4所示的方法实施例的描述而理解,为节约篇幅,因此不再赘述。
实施例三:
图1示出了本发明实施例数据处理方法的应用场景示意图。其中,MCU(Microcontroller Unit,微控制单元)100,在硬件层面上通过串行外设接口102与定位信息接收装置103电路连接,定位信息接收装置103可以包括GPS(Global Positioning System,全球定位系统)芯片,例如:博通的BCM 4775X。在MCU 100上运行有嵌入式操作系统,例如:RTOS(Real Time Operating System,实时操作系统),该嵌入式操作系统内包含一定位信息服务1001。该定位信息服务1001会执行本发明实施例数据处理方法。定位信息服务1001通过硬件抽象层程序1002操控定位信息接收装置103,其中包括启动、初始化、读取操作等。定位信息服务1001可接收程序调用指令,收集定位数据,并对这些定位数据进行整理,生成系统级定位信息,返回给调用程序。定位信息服务1001可单独提供系统定位信息,也可以通过全球导航卫星系统硬件抽象层定义语言接口程序101向CPU(Central Processing Unit,中央处理单元)运行的智能操作系统(例如:Android智能操作系统)及其应用程序提供定位信息。智能操作系统及其应用程序可使用智能操作系统提供的标准定位供应程序,比如全球定位系统供应程序104(Gps Location Provider)、融合定位供应程序105(Flp Location Provider),来获取所需要的定位信息。而智能操作系统提供的标准定位供应程序可调用本发明实施例提供的全球导航卫星系统硬件抽象层定义语言接口程序101来获取应用级定位信息。
图6示出了本发明实施例数据处理方法的实现流程示意图。
参考图6,本发明实施例数据处理方法,应用于第一电子设备,第一电子设备包括第一处理 单元和第二处理单元,第一处理单元运行第一操作系统,第二处理单元运行第二操作系统,第一处理单元的工作能耗小于第二处理单元的工作能耗,该方法至少包括如下操作流程:操作601,第一处理单元从其连接的用于执行定位功能的定位系统获得第一电子设备的定位数据;操作602,在确定符合执行定位数据同步的第一触发条件时,第一处理单元将获得的定位数据同步到第二处理单元;操作603,第二处理单元根据获得的定位数据执行与定位相关的处理。
在操作601中,第一处理单元从其连接的用于执行定位功能的定位系统获得第一电子设备的定位数据。
在本发明一实施例中,第一电子设备为穿戴式电子设备,第一处理单元为微控制单元MCU,第二处理单元为中央处理单元CPU。
在本发明一实施例中,第一处理单元运行第一操作系统为RTOS(Real Time Operating System,实时操作系统),第二处理单元运行第二操作系统为智能操作系统,例如:Android系统。MCU运行RTOS的工作能耗小于CPU运行Android的工作能耗。
举例说明,第一电子设备为智能手表,包括运行RTOS的MCU和运行Android系统的CPU。
需要说明的是,如无特别说明,本文中对各个操作步骤的举例说明过程中,为了较为直观地说明本发明实施例的方案,均以第一电子设备为智能手表,第一处理单元为运行RTOS的MCU,第二处理单元为运行Android系统的CPU为例,对本发明实施例的方案进行解释。当然,本发明实施例的第一电子设备并不仅限于智能手表,第一处理单元并不仅限于MCU,第二处理单元并不仅限于CPU,第一操作系统并不仅限于RTOS,第二操作系统并不仅限于Android。
在本发明一实施例中,第一处理单元仅支持与一个定位系统间的通信连接,例如:BDS(BeiDou Navigation Satellite System,北斗卫星导航系统)、GPS(Global Positioning System,全球定位系统)、GLONASS(格洛纳斯定位系统)、伽利略卫星导航系统中的一者。第一处理单元还可以是仅能够与具有定位功能的第二电子设备通信连接,并将第二电子设备作为定位系统。例如:具有定位功能的手机、平板电脑等智能终端。则第一处理单元可以直接从其连接的定位系统中获取定位数据,而无需判断与哪一定位系统进行通信。
在本发明一实施例中,第一处理单元支持与多个定位系统间的通信连接。例如:第一处理单元能够与BDS、GPS、GLONASS、伽利略卫星导航系统或具有定位功能的第二电子设备中的两者及以上进行通信连接。此时,需要首先确定第一处理单元所选定的定位系统,并与选定的定位系统进行通信,从该定位系统获取定位数据。
在本发明一实施例中,第一处理单元通过以下方式选择用于执行定位功能的定位系统:第一处理单元获得对应多个定位系统的信号强度,从中选择信号强度最高的定位系统;将被选定位系统确定为第一处理单元用于执行定位功能的相应定位系统,控制第一处理单元中与被选定位系统对应的定位模块为工作状态,第一处理单元中与非被选定位系统对应的定位模块为非工作状态。
举例来讲,定位系统可以包括:BDS、GPS、GLONASS、伽利略卫星导航系统。MCU获得对应多个定位系统的信号强度,从中选择信号强度最高的定位系统,例如:在某个区域BDS为多个定位系统中信号强度最高的定位系统,则MCU确定利用BDS执行定位功能的相应定位系统,并控制MCU中与BDS对应的定位模块为工作状态,同时控制MCU中与GPS、GLONASS和伽利略卫星导航系统相对应的定位模块均调整为非工作状态。
MCU从多个定位系统中选定一个定位系统,主要是为了将MCU中与其他未被选定定位系统相对应的定位模块调整为非工作状态,以节约能耗,延长智能手表的续航时间。还可以避免MCU在多个定位系统之间频繁切换带来的连接延迟,因为正常情况下,智能手表、手机、车载导航系统等系统上运行的定位模块与卫星定位系统建立连接需要较长时间,这个时间能够被人们直观感知的,例如:1分钟左右的时间。
在本发明一实施方式中,第一处理单元中运行的定位模块在工作状态下通过寻星过程,从多个定位系统中选择信号强度最高的定位系统。
在本发明一实施方式中,在选择强度最高的定位系统后,还将强度最高的定位系统对应的信 号强度与第一阈值进行比较;在强度最高的定位系统对应的信号强度大于等于第一阈值时,将强度最高的定位系统确定为被选定位系统;在强度最高的定位系统对应的信号强度小于第一阈值时,将第一电子设备连接的具有定位功能的第二电子设备确定为被选定位系统。
在本发明一实施方式中,第二电子设备为智能终端,例如:手机、平板电脑等。
需要说明的是,如无特别说明,本文中对各个操作步骤的举例说明过程中,为了较为直观地说明本发明实施例的方案,均以第二电子设备为智能终端为例,对本发明实施例的方案进行解释。当然,第二电子设备不局限于智能终端。
举例来讲,第一阈值可以为根据实际需求设定的、能够保证MCU中运行的定位模块能够与定位系统进行较为快速的通信的信号强度。MCU选择BDS、GPS、GLONASS、伽利略卫星导航系统等定位系统中信号强度最高的定位系统BDS后。将BDS对应的信号强度与第一阈值进行比较,如果BDS对应的信号强度大于第一阈值,则说明MCU中运行的定位模块与BDS之间能够进行有效通信,可以保证MCU中运行的定位模块正常从定位系统获取定位数据。此时,将BDS确定为被选定位系统。
如果BDS对应的信号强度低于第一阈值,则说明MCU中的运行的定位模块与多个定位系统之间均不能进行有效通信,无法保证MCU中运行的定位模块正常从定位系统获取定位数据。此时,可以选择MCU与智能终端通信,从智能终端同步卫星数据。例如:MCU可以通过BLE(Bluetooth Low Energy,低功耗蓝牙)与智能终端进行通信。
在本发明一实施方式中,在强度最高的定位系统对应的信号强度小于第一阈值,并且第二电子设备与其正在通信连接的定位系统间的信号强度也小于第一阈值时,说明第一处理单元通过第二电子设备也无法正常获取到定位系统的定位信息。此时,第一处理单元可以重新执行定位系统的选定操作。
举例说明,MCU中运行的定位模块与多个定位系统之间的信号强度均小于第一阈值,此时,MCU尝试通过BLE与智能终端连接,从智能终端同步定位信息。但是,此时获取到智能终端与其正在通信连接的定位系统BDS之间的信号强度也小于第一阈值,则MCU可以再次尝试与多个定位系统进行连接。直至成功连接其中一个定位系统。
在本发明一实施例中,采用以下具体操作实现将第一电子设备连接的具有定位功能的第二电子设备确定为被选定位系统:获得第二电子设备与其正在通信连接的定位系统间的信号强度,并在信号强度大于等于第一阈值时,将第一电子设备连接的具有定位功能的第二电子设备确定为第一处理单元的被选定位系统。
举例来讲,MCU与BDS、GPS、GLONASS、伽利略卫星定位系统等定位系统中信号强度最高的定位系统为BDS。MCU与BDS之间的信号强度为X,X小于第一阈值。而MCU与智能终端之间进行通信的信号强度为Y,MCU与智能终端之间可以通过BLE进行通信。Y大于第一阈值,则可以选择MCU与智能终端通信,从智能终端同步卫星数据。
在本发明一实施例中,在将被选定位系统确定为第一处理单元用于执行定位功能的相应定位系统之后,还获得第一处理单元与当前用于执行定位功能的相应定位系统的信号强度,并将所获得的信号强度与第二阈值进行比较;在获得的信号强度小于第二阈值时,重新获得第一处理单元获得对应各个定位系统的当前信号强度,并从中选择当前信号强度最高的定位系统;在当前信号强度最高的定位系统的对应的信号强度大于等于第一阈值时,将当前信号强度最高的定位系统确定为新的被选定位系统;若新的被选定位系统与当前用于执行定位功能的定位系统不为同一定位系统时,则将用于执行定位功能定位系统切换为新的被选系统;其中,第二阈值与第一阈值相同或不同。
举例来讲,MCU在前一次执行定位系统的选定操作时,确定其与多个定位系统中信号强度最高的定位系统为BDS。MCU与BDS之间的信号强度为X,X大于第一阈值。在BDS被选定为当前第一处理单元用于执行定位功能的相应定位系统之后,MCU会再次获取被选定位系统BDS与MCU之间进行通信的当前信号强度Y,以确认被选定位系统BDS与MCU之间进行通信的当前信号强度仍然能够保证MCU与BDS之间的正常通信。具体来讲,第二阈值可以设置为保证第一处理单元的定 位模块与定位系统之间进行正常通信的最低信号强度,如果第一处理单元的定位模块与定位系统之间,则第一处理单元无法正常从定位系统获取定位数据。
在本发明一实施方式中,第一处理单元采用以下方式从其连接的用于执行定位功能的定位系统获得第一电子设备的定位数据:第一处理单元的定位模块执行星历的过程中得到的参数GGA和UTC等。
GGA是指定位系统定位数据,具有标准的数据规范。例如:$GPGGA,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,M,<10>,M,<11>,<12>*xx<CR><LF>,其中:$GPGGA:起始引导符及语句格式说明(本句为GPS定位数据);
第<1>字段用于描述UTC时间,格式为hhmmss.sss;
第<2>字段用于描述纬度,格式为ddmm.mmmm(第一位是零也将传送);
第<3>字段用于描述纬度半球,N或S(北纬或南纬);
第<4>字段用于描述经度,格式为dddmm.mmmm(第一位零也将传送);
第<5>字段用于描述经度半球,E或W(东经或西经)
第<6>字段用于描述定位质量指示,0=定位无效,1=定位有效;
第<7>字段用于描述使用卫星数量,从00到12(第一个零也将传送)
第<8>字段用于描述水平精确度,0.5到99.9
第<9>字段用于描述天线离海平面的高度,-9999.9到9999.9米M指单位米
第<10>字段用于描述大地水准面高度,-9999.9到9999.9米M指单位米
第<11>字段用于描述差分GPS数据期限(RTCMSC-104),最后设立RTCM传送的秒数量
第<12>字段用于描述差分参考基站标号,从0000到1023(首位0也将传送)。
第<9>、<10>字段中海平面高度和大地水准面高度的单位是米。
UTC(Coordinated Universal Time,协调世界时),又称世界统一时间、世界标准时间、国际协调时间。由于英文(CUT)和法文(TUC)的缩写不同,作为妥协,简称UTC。用CNS 7648的《资料元及交换格式–资讯交换–日期及时间的表示法》,称之为世界统一时间。UTC时间采用hhmmss(时分秒)格式。
在本发明一实施方式中,第一处理单元从其连接的具有定位功能的定位系统获取定位数据包括实时获取当前位置信息。
在操作602中,在确定符合执行定位数据同步的第一触发条件时,第一处理单元将获得的定位数据同步到第二处理单元。
在本发明一实施方式中,第一触发条件可以为以下至少之一:第二处理单元启动进入工作状态;第一处理单元获得第二处理单元发送的定位数据同步指令;第二处理单元启动与定位相关的应用程序。
举例说明,由于基于CPU运行的智能操作系统处于工作状态时能耗较高,本发明实施例中第一电子设备中的一般应用程序基于MCU运行的RTOS系统进行操作即可。基于MCU运行的RTOS系统和基于CPU运行的智能操作系统分别独立保存其定位数据。为了保证基于CPU运行的智能操作系统能够快速启动或快速开启定位功能,在CPU从关闭状态进入工作状态或者CPU从休眠状态进入工作状态时,例如:按动电源键、点击智能手表显示装置、从RTOS系统的系统切换设置中进入智能操作系统等,MCU将操作601中获取的第一电子设备的定位数据同步至CPU。
基于CPU运行的智能操作系统也可以在需要开启定位功能时,请求从MCU侧同步定位数据,例如:通过定位功能开启按键,包括虚拟按键和物理按键。还可以是在CPU中需要定位数据的应用程序启动时,触发MCU将保存的定位数据发送至CPU,例如:CPU中运行的天气、地图、运动健康等应用程序。
在本发明的一实施方式中,第一处理单元将获得的定位数据中的GGA和UTC等定位数据同步到第二处理单元。
举例说明,MCU与其选定的定位系统BDS进行通信,通过星历获取到GGA和UTC等定位数据, 在CPU从休眠状态切换至工作状态时,将定位数据同步至CPU。如此,CPU可以使用从MCU同步的MCU所获取的卫星到星历数据,使得基于CPU运行的智能操作系统可以实现快速定位,在有效缩短TTFF(Time to First Fix,首次定位时间)时间,实现CPU的快速启动的基础上,有效减少与定位系统中的卫星通信以获取当前定位数据的通信时间,进一步提升用户体验。例如:可以快速定位当前位置。
在本发明的又一实施方式中,第一处理单元将获得的定位数据中的当前位置信息同步到第二处理单元。如此,第二处理单元在快速启动的基础上可以直接根据当前位置信息执行与位置信息相关的处理。
举例说明,MCU将其从选定的定位系统BDS获取当前位置信息,在CPU的天气应用程序启动时,MCU将当前位置信息同步至CPU,CPU可以根据从MCU所同步的当前位置信息,确定与当前位置信息对应的天气信息,并进行显示。
在操作603中,第二处理单元根据获得的定位数据执行与定位相关的处理。
在本发明一实施方式中,定位数据可以包括星历过程中得到的参数GGA和UTC等。第二处理单元根据获得的定位数据实现快速定位。
举例说明,第二处理单元的天气应用打开,需要根据当前位置信息,显示当前位置的天气信息。此时,第二处理单元可以直接从第一处理单元同步当前位置信息,并根据当前位置信息,显示对应于当前位置信息的天气信息。
例如:通过按动智能手表物理电源按键的方式,启动基于CPU运行的Android系统,系统主页面显示当前时间和对应于当前位置的天气信息。此时,CPU从MCU获取定位系统的GGA和UTC等定位数据以及当前位置信息,并根据定位数据启动CPU中运行的定位模块,同时根据当前位置快速显示对应于当前位置的天气信息。
在本发明一实施方式中,在第一处理单元将获得的定位数据同步到第二处理单元后,还在确定符合中止定位数据同步的第二触发条件时,第一处理单元停止将获得的定位数据同步到第二处理单元。其中,第二触发条件为以下至少之一:第二处理单元进入非工作状态;第一处理单元获得第二处理单元发送的中止定位数据同步指令;第二处理单元运行的应用程序中不存在与定位相关的应用程序。
在本发明一实施方式中,由于基于CPU运行的智能操作系统处于工作状态时能耗较高,同时CPU中运行的定位模块的能耗也较高,但是,为了保证CPU运行的智能操作系统能够具有较好的用户体验,需要综合考虑第一电子设备的电池续航参数、当前电量、第一电子设备的用户对于定位功能的需求和使用频率、CPU中定位模块在设定时间内的耗电量等因素,设定CPU的定位模块开启和关闭的最佳时机。因此,第一处理单元将获得的定位数据同步到第二处理单元的第一触发条件以及第一处理单元停止将获得的定位数据同步到第二处理单元的第二触发条件均可以根据需要进行设定。
在本发明一实施方式中,无论第一触发条件和第二触发条件如何确定,在第一处理单元停止向第二处理单元同步定位数据后,第一处理单元均可以继续从其连接的用于执行定位功能的定位系统获得所述第一电子设备的定位数据并保存。此时,第二处理单元的定位功能关闭或利用第二处理单元本身的定位模块与其连接的具有定位功能的定位系统进行通信,获取定位数据。
在本发明一实施方式中,第一处理单元停止向第二处理单元同步定位数据可以包括停止向第二单元同步当前位置信息。在本发明一实施方式中,无论触发第一处理单元将获得的定位数据同步到第二处理单元的第一触发条件是什么,第一处理单元均在第二处理单元进入非工作状态时,停止将获得的定位数据同步到第二处理单元。例如:通过智能手表的电源关闭按键确定CPU进入非工作状态,包括关闭状态和休眠状态。其中,电源关闭按键可以是虚拟按键或物理按键,还可以与电源开启按键为同一按键。
在本发明一实施方式中,只要满足以下一者,第一处理单元即停止将获得的定位数据同步到第二处理单元:第一处理单元均在第二处理单元进入非工作状态时;第一处理单元获得第二处理 单元发送的中止定位数据同步指令;第二处理单元运行的应用程序中不存在与定位相关的应用程序。举例说明,在MCU将定位数据同步至CPU之后,可以在设定时间内检测CPU是否运行了与定位相关的应用程序,若无,则停止将获得的定位数据同步到第二处理单元。例如:CPU中运行的导航或地图应用程序等关闭。
在本发明一实施方式中,第一处理单元可以获得第二处理单元发送的中止定位数据同步指令包括:第二处理单元检测到当前第一电子设备中后台误运行了与定位相关的应用程序,例如:运动健康等,选择关闭相应的应用程序,点击应用程序关闭按键的同时发送中止定位数据同步指令给第一处理单元。
在本发明一实施方式中,第二处理单元在其本身与选定定位系统取建立通信连接时或者确定其与选定的定位系统通信顺畅时,发送中止定位数据同步指令至第一处理单元。
举例说明,MCU将所获取的定位数据同步至CPU时,会反复进行同步,并发送检测是否同步成功的信息至CPU,直至CPU返回同步成功的信息,停止定位数据的同步,MCU和CPU分别控制其定位模块,并接收各自选定的定位系统所发送的定位数据。
需要说明是,第一处理单元停止将获得的定位数据同步到第二处理单元的操作,可以是在完成操作603之前,也可以是在未处理或部分完成操作603时执行,只要确定符合中止定位数据同步的第二触发条件,即可中止第一单元将获取的定位数据同步到第二处理单元的操作。
这样,本发明实施例数据处理方法、装置、系统及计算机可读存储介质,在能耗较高的第二处理单元所运行的系统启动或者定位功能启动时,将第一处理单元的定位数据同步至第二处理单元,解决了第二处理单元启动能耗较高、启动延时较长、定位数据存在较长延时等问题,有效降低了第二处理单元的启动能耗、减小启动延时时间、为系统提供更为准确的定位数据,提升了电子设备的用户体验。
同理,基于上述数据处理方法,本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有程序,当程序被处理器执行时,使得处理器至少执行如下的操作步骤:操作601,第一处理单元从其连接的用于执行定位功能的定位系统获得第一电子设备的定位数据;操作602,在确定符合执行定位数据同步的第一触发条件时,第一处理单元将获得的定位数据同步到第二处理单元;操作603,第二处理单元根据获得的定位数据执行与定位相关的处理。
进一步,基于上述数据处理方法,本发明实施例还提供一种数据处理系统,包括处理器和存储器,其中,存储器中存储有计算机程序指令,计算机程序指令被处理器运行时用于执行上述的数据处理方法。
更进一步,基于上述数据处理方法,本发明实施例还提供一种数据处理装置,应用于第一电子设备,第一电子设备包括第一处理单元和第二处理单元,第一处理单元运行第一操作系统,第二处理单元运行第二操作系统,第一处理单元的工作能耗小于第二处理单元的工作能耗。图7示出了本发明实施例数据处理装置70的组成结构示意图,如图7所示,该装置70包括:定位数据获取模块701,配置于第一处理单元,用于从第一处理单元连接的用于执行定位功能的定位系统获得第一电子设备的定位数据;数据同步模块702,用于在确定符合执行定位数据同步的第一触发条件时,第一处理单元将获得的定位数据同步到第二处理单元;数据处理模块703,配置于第二处理单元,用于根据获得的定位数据执行与定位相关的处理。
根据本发明一实施方式,第一触发条件为以下至少之一:第二处理单元启动进入工作状态;第一处理单元获得第二处理单元发送的定位数据同步指令;第二处理单元启动与定位相关的应用程序。
根据本发明一实施方式,装置70还包括:数据中止模块,用于在第一处理单元将获得的定位数据同步到第二处理单元后,在确定符合中止定位数据同步的第二触发条件时,第一处理单元停止将获得的定位数据同步到第二处理单元;其中,第二触发条件为以下至少之一:第二处理单元进入非工作状态;第一处理单元获得第二处理单元发送的中止定位数据同步指令;第二处理单元运行的应用程序中不存在与定位相关的应用程序。
这里需要指出的是:以上对针对本发明实施例数据处理装置、系统实施例的描述,与前述图1和图6所示的方法实施例的描述是类似的,具有同前述图1和图6所示的方法实施例相似的有益效果,因此不做赘述。对于本发明数据处理装置、系统实施例中未披露的技术细节,请参照本发明前述图1和图6所示的方法实施例的描述而理解,为节约篇幅,因此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。以上所描述的设备实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,如:多个单元或组件可以结合,或可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的各组成部分相互之间的耦合、或直接耦合、或通信连接可以是通过一些接口,设备或单元的间接耦合或通信连接,可以是电性的、机械的或其它形式的。
上述作为分离部件说明的单元可以是、或也可以不是物理上分开的,作为单元显示的部件可以是、或也可以不是物理单元;既可以位于一个地方,也可以分布到多个网络单元上;可以根据实际的需要选择其中的部分或全部单元来实现本实施例方案的目的。
另外,在本发明各实施例中的各功能单元可以全部集成在一个处理单元中,也可以是各单元分别单独作为一个单元,也可以两个或两个以上单元集成在一个单元中;上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(Read Only Memory,ROM)、磁碟或者光盘等各种可以存储程序代码的介质。
或者,本发明上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机、服务器、或者网络设备等)执行本发明各个实施例方法的全部或部分。而前述的存储介质包括:移动存储设备、ROM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (26)

  1. 一种数据处理方法,应用于第一电子设备,其特征在于,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述方法包括:
    所述第一处理单元执行定位系统的选定,并保存所选定的定位系统信息;
    在确定符合执行定位系统信息同步的第一触发条件时,所述第一处理单元将保存的所述定位系统信息同步到所述第二处理单元;
    所述第二处理单元根据获得的所述定位系统信息执行与定位相关的处理。
  2. 根据权利要求1所述数据处理方法,其特征在于,所述第一处理单元支持与多个定位系统间的通信连接;
    所述第一处理单元执行定位系统的选定,包括:
    所述第一处理单元获得对应所述多个定位系统的信号强度,从中选择信号强度最高的定位系统;
    将被选定位系统确定为所述第一处理单元用于执行定位功能的相应定位系统,控制所述第一处理单元中与被选定位系统对应的定位模块为工作状态,所述第一处理单元中与非被选定位系统对应的定位模块为非工作状态。
  3. 根据权利要求2所述数据处理方法,其特征在于,在所述选择强度最高的定位系统后,所述方法还包括:
    将所述强度最高的定位系统对应的信号强度与第一阈值进行比较;
    在所述强度最高的定位系统对应的信号强度大于等于所述第一阈值时,将所述强度最高的定位系统确定为所述被选定位系统;
    在所述强度最高的定位系统对应的信号强度小于所述第一阈值时,将所述第一电子设备连接的具有定位功能的第二电子设备确定为所述被选定位系统。
  4. 根据权利要求3所述数据处理方法,其特征在于,所述将第一电子设备连接的具有定位功能的第二电子设备确定为被选定位系统,包括:
    获得所述第二电子设备与其正在通信连接的定位系统间的信号强度,并在所述信号强度大于等于所述第一阈值时,将所述第一电子设备连接的具有定位功能的第二电子设备确定为所述第一处理单元的被选定位系统。
  5. 根据权利要求2、3或4所述数据处理方法,其特征在于,在所述将被选定位系统确定为所述第一处理单元用于执行定位功能的相应定位系统之后,所述方法还包括:
    获得所述第一处理单元与当前用于执行定位功能的相应定位系统的信号强度,并将所获得的信号强度与第二阈值进行比较;
    在所述获得的信号强度小于所述第二阈值时,重新获得所述第一处理单元获得对应各个定位系统的当前信号强度,并从中选择当前信号强度最高的定位系统;
    在所述当前信号强度最高的定位系统的对应的信号强度大于等于所述第一阈值时,将当前信号强度最高的定位系统确定为新的被选定位系统;
    若所述新的被选定位系统与当前用于执行定位功能的定位系统不为同一定位系统时,则将用于执行定位功能定位系统切换为所述新的被选系统。
  6. 根据权利要求1至4任一项所述数据处理方法,其特征在于,所述第一电子设备为穿戴式电子设备,所述第一处理单元为微控制单元MCU,所述第二处理单元为中央处理单元CPU。
  7. 一种数据处理方法,应用于第一电子设备,其特征在于,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述方法包括:
    所述第一处理单元从其连接的用于执行定位功能的定位系统获得所述第一电子设备的定位信 息,所述定位信息包括所述第一电子设备在一定时间段内的位置信息和时间戳信息;
    在确定符合执行定位信息同步的第一触发条件时,所述第一处理单元将获得的所述定位信息同步到所述第二处理单元;
    所述第二处理单元根据获得的所述定位信息执行与定位相关的处理。
  8. 根据权利要求7所述数据处理方法,其特征在于,所述第一触发条件为以下至少之一:
    所述第二处理单元启动进入工作状态;
    所述第一处理单元获得所述第二处理单元发送的定位信息同步指令;
    所述第二处理单元启动第一列表中的应用程序,所述第一列表中的应用程序为运行过程中需要使用所述定位信息应用程序。
  9. 根据权利要求7所述数据处理方法,其特征在于,在所述第一处理单元将获得的所述定位信息同步到所述第二处理单元后,所述方法还包括:
    在确定符合中止定位信息同步的第二触发条件时,所述第一处理单元停止将获得的所述定位信息同步到所述第二处理单元;
    其中,所述第二触发条件为以下至少之一:
    所述第二处理单元进入非工作状态;
    所述第一处理单元获得所述第二处理单元发送的中止定位信息同步指令;
    所述第二处理单元运行的应用程序中不存在所述第一列表中的应用程序。
  10. 根据权利要求7、8或9所述数据处理方法,其特征在于,所述第一处理单元支持与多各定位系统的通信连接,且所述第一处理单元通过以下方式选择用于执行定位功能的定位系统:
    所述第一处理单元获得对应所述多个定位系统的信号强度,从中选择信号强度最高的定位系统;
    将被选定位系统确定为所述第一处理单元用于执行定位功能的相应定位系统,控制所述第一处理单元中与被选定位系统对应的定位模块为工作状态,所述第一处理单元中与非被选定位系统对应的定位模块为非工作状态。
  11. 根据权利要求7、8或9所述数据处理方法,其特征在于,在所述选择强度最高的定位系统后,所述方法还包括:
    将所述强度最高的定位系统对应的信号强度与第一阈值进行比较;
    在所述强度最高的定位系统对应的信号强度大于等于所述第一阈值时,将所述强度最高的定位系统确定为所述被选定位系统;
    在所述强度最高的定位系统对应的信号强度小于所述第一阈值时,将所述第一电子设备连接的具有定位功能的第二电子设备确定为所述被选定位系统。
  12. 一种数据处理方法,应用于第一电子设备,其特征在于,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述方法包括:
    所述第一处理单元从其连接的用于执行定位功能的定位系统获得所述第一电子设备的定位数据;
    在确定符合执行定位数据同步的第一触发条件时,所述第一处理单元将获得的所述定位数据同步到所述第二处理单元;
    所述第二处理单元根据获得的所述定位数据执行与定位相关的处理。
  13. 根据权利要求12所述数据处理方法,其特征在于,所述第一触发条件为以下至少之一:
    所述第二处理单元启动进入工作状态;
    所述第一处理单元获得所述第二处理单元发送的定位数据同步指令;
    所述第二处理单元启动与定位相关的应用程序。
  14. 根据权利要求12所述数据处理方法,其特征在于,在所述第一处理单元将获得的所述定位数据同步到所述第二处理单元后,所述方法还包括:
    在确定符合中止定位数据同步的第二触发条件时,所述第一处理单元停止将获得的所述定位数据同步到所述第二处理单元;
    其中,所述第二触发条件为以下至少之一:
    所述第二处理单元进入非工作状态;
    所述第一处理单元获得所述第二处理单元发送的中止定位数据同步指令;
    所述第二处理单元运行的应用程序中不存在与定位相关的应用程序。
  15. 根据权利要求12、13或14所述数据处理方法,其特征在于,所述第一处理单元支持与多各定位系统的通信连接,且所述第一处理单元通过以下方式选择用于执行定位功能的定位系统:
    所述第一处理单元获得对应所述多个定位系统的信号强度,从中选择信号强度最高的定位系统;
    将被选定位系统确定为所述第一处理单元用于执行定位功能的相应定位系统,控制所述第一处理单元中与被选定位系统对应的定位模块为工作状态,所述第一处理单元中与非被选定位系统对应的定位模块为非工作状态。
  16. 根据权利要求15所述数据处理方法,其特征在于,在所述选择强度最高的定位系统后,所述方法还包括:
    将所述强度最高的定位系统对应的信号强度与第一阈值进行比较;
    在所述强度最高的定位系统对应的信号强度大于等于所述第一阈值时,将所述强度最高的定位系统确定为所述被选定位系统;
    在所述强度最高的定位系统对应的信号强度小于所述第一阈值时,将所述第一电子设备连接的具有定位功能的第二电子设备确定为所述被选定位系统。
  17. 一种数据处理装置,应用于第一电子设备,其特征在于,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述装置包括:
    选定模块,配置于所述第一处理单元,用于执行定位系统的选定,并保存所选定的定位系统信息;
    信息同步模块,用于在确定符合执行定位系统信息同步的第一触发条件时,所述第一处理单元将保存的所述定位系统信息同步到所述第二处理单元;
    信息处理模块,配置于所述第二处理单元,用于根据获得的所述定位系统信息执行与定位相关的处理。
  18. 根据权利要求17所述数据处理装置,其特征在于,所述第一处理单元支持与多个定位系统间的通信连接;所述选定模块包括:
    强度确定子模块,配置于所述第一处理单元,用于获得对应所述多个定位系统的信号强度,从中选择信号强度最高的定位系统;
    状态控制子模块,用于将被选定位系统确定为所述第一处理单元用于执行定位功能的相应定位系统,控制所述第一处理单元中与被选定位系统对应的定位模块为工作状态,所述第一处理单元中与非被选定位系统对应的定位模块为非工作状态。
  19. 一种数据处理装置,应用于第一电子设备,其特征在于,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述装置包括:
    信息获取模块,配置于所述第一处理单元,用于从所述第一处理单元连接的用于执行定位功能的定位系统获得所述第一电子设备的定位信息,所述定位信息包括所述第一电子设备在一定时间段内的位置信息和时间戳信息;
    信息同步模块,用于在确定符合执行定位信息同步的第一触发条件时,所述第一处理单元将获得的所述定位信息同步到所述第二处理单元;
    数据处理模块,配置于所述第二处理单元,用于根据获得的所述定位信息执行与定位相关的 处理。
  20. 根据权利要求19所述的装置,其特征在于,所述第一触发条件为以下至少之一:
    所述第二处理单元启动进入工作状态;
    所述第一处理单元获得所述第二处理单元发送的定位信息同步指令;
    所述第二处理单元启动第一列表中的应用程序,所述第一列表中的应用程序为运行过程中需要使用所述定位信息应用程序。
  21. 根据权利要求19所述的装置,其特征在于,所述装置还包括:
    数据中止模块,用于在所述第一处理单元将获得的所述定位信息同步到所述第二处理单元后,在确定符合中止定位信息同步的第二触发条件时,所述第一处理单元停止将获得的所述定位信息同步到所述第二处理单元;
    其中,所述第二触发条件为以下至少之一:
    所述第二处理单元进入非工作状态;
    所述第一处理单元获得所述第二处理单元发送的中止定位信息同步指令;
    所述第二处理单元运行的应用程序中不存在所述第一列表中的应用程序。
  22. 一种数据处理装置,应用于第一电子设备,其特征在于,所述第一电子设备包括第一处理单元和第二处理单元,所述第一处理单元运行第一操作系统,所述第二处理单元运行第二操作系统,所述第一处理单元的工作能耗小于所述第二处理单元的工作能耗,所述装置包括:
    定位数据获取模块,配置于所述第一处理单元,用于从所述第一处理单元连接的用于执行定位功能的定位系统获得所述第一电子设备的定位数据;
    数据同步模块,用于在确定符合执行定位数据同步的第一触发条件时,所述第一处理单元将获得的所述定位数据同步到所述第二处理单元;
    数据处理模块,配置于所述第二处理单元,用于根据获得的所述定位数据执行与定位相关的处理。
  23. 根据权利要求22所述的装置,其特征在于,所述第一触发条件为以下至少之一:
    所述第二处理单元启动进入工作状态;
    所述第一处理单元获得所述第二处理单元发送的定位数据同步指令;
    所述第二处理单元启动与定位相关的应用程序。
  24. 根据权利要求22所述的装置,其特征在于,所述装置还包括:
    数据中止模块,用于在所述第一处理单元将获得的所述定位数据同步到所述第二处理单元后,在确定符合中止定位数据同步的第二触发条件时,所述第一处理单元停止将获得的所述定位数据同步到所述第二处理单元;
    其中,所述第二触发条件为以下至少之一:
    所述第二处理单元进入非工作状态;
    所述第一处理单元获得所述第二处理单元发送的中止定位数据同步指令;
    所述第二处理单元运行的应用程序中不存在与定位相关的应用程序。
  25. 一种数据处理系统,包括处理器和存储器,其中,所述存储器中存储有计算机程序指令,所述计算机程序指令被所述处理器运行时用于执行如权利要求1至16任一项所述的数据处理方法。
  26. 一种存储介质,在所述存储介质上存储了程序指令,其中,所述程序指令在运行时用于执行如权利要求1至16任一项所述的数据处理方法。
PCT/CN2021/070715 2020-06-16 2021-01-07 一种数据处理方法、装置、系统及计算机可读存储介质 WO2021253814A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21826898.5A EP4167053A1 (en) 2020-06-16 2021-01-07 Data processing method, apparatus and system, and computer-readable storage medium
US18/082,079 US20230122488A1 (en) 2020-06-16 2022-12-15 Data processing method, apparatus and system, and computer-readable storage medium

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202010550508.4A CN111831098B (zh) 2020-06-16 2020-06-16 一种信息同步的方法、装置、系统及计算机可读存储介质
CN202010550309.3A CN111781616A (zh) 2020-06-16 2020-06-16 一种数据处理方法、装置、系统及计算机可读存储介质
CN202010549076.5A CN111836187A (zh) 2020-06-16 2020-06-16 一种数据处理方法、装置、系统及计算机可读存储介质
CN202010550508.4 2020-06-16
CN202010549076.5 2020-06-16
CN202010550309.3 2020-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/082,079 Continuation US20230122488A1 (en) 2020-06-16 2022-12-15 Data processing method, apparatus and system, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2021253814A1 true WO2021253814A1 (zh) 2021-12-23

Family

ID=79269117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070715 WO2021253814A1 (zh) 2020-06-16 2021-01-07 一种数据处理方法、装置、系统及计算机可读存储介质

Country Status (2)

Country Link
EP (1) EP4167053A1 (zh)
WO (1) WO2021253814A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929426A (zh) * 2016-04-21 2016-09-07 北京元心科技有限公司 多系统中gps定位的方法及装置
CN107422355A (zh) * 2016-05-24 2017-12-01 曦恩体感科技股份有限公司 混合定位方法和电子装置
US20180327000A1 (en) * 2015-02-06 2018-11-15 Laird Technologies, Inc. Devices, systems, and methods related to tracking location of operator control units for locomotives
CN110944286A (zh) * 2019-11-28 2020-03-31 出门问问信息科技有限公司 提供定位信息的方法、装置、系统及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180327000A1 (en) * 2015-02-06 2018-11-15 Laird Technologies, Inc. Devices, systems, and methods related to tracking location of operator control units for locomotives
CN105929426A (zh) * 2016-04-21 2016-09-07 北京元心科技有限公司 多系统中gps定位的方法及装置
CN107422355A (zh) * 2016-05-24 2017-12-01 曦恩体感科技股份有限公司 混合定位方法和电子装置
CN110944286A (zh) * 2019-11-28 2020-03-31 出门问问信息科技有限公司 提供定位信息的方法、装置、系统及存储介质

Also Published As

Publication number Publication date
EP4167053A1 (en) 2023-04-19

Similar Documents

Publication Publication Date Title
US9258677B2 (en) Improving scalability and reliability of hardware geo-fencing with failover support
CN111836187A (zh) 一种数据处理方法、装置、系统及计算机可读存储介质
CN108169775B (zh) 基于定位模块的控制方法、装置、存储介质及移动终端
US20140002304A1 (en) Method and apparatus for locating terminal device
CN108111971B (zh) 定位方法、装置、存储介质及移动终端
RU2629427C1 (ru) Способ и устройство для трансляции информации
CN111781616A (zh) 一种数据处理方法、装置、系统及计算机可读存储介质
CN108008423B (zh) 基于定位模块的控制方法、装置、存储介质及移动终端
WO2017088111A1 (zh) 一种获取位置信息的方法和系统
US20190293426A1 (en) Information acquisition method, wireless communication device, electronic timepiece and recording medium
CN105589085B (zh) 一种低功耗的北斗定位通讯装置及控制方法
CN110023778B (zh) 一种定位方法及设备
CN101409738A (zh) 一种手机自动校对时间的系统及方法
EP3423903B1 (en) Communication device, communication method, communication system, electronic watch, and program
WO2021253814A1 (zh) 一种数据处理方法、装置、系统及计算机可读存储介质
CN111831098B (zh) 一种信息同步的方法、装置、系统及计算机可读存储介质
US20230122488A1 (en) Data processing method, apparatus and system, and computer-readable storage medium
WO2018053789A1 (zh) 时钟添加方法及装置
US20240168779A1 (en) Display method and electronic device
KR20180052428A (ko) 위치 정보 획득을 위한 보조 데이터를 획득하는 전자 장치 및 방법
JP4240216B2 (ja) ネットワークアシスト型gps端末および位置測位方法
CN110971751B (zh) 信息终端、列表信息设备以及具备这些的系统
CN113315694A (zh) 即时通讯方法、装置和电子设备
CN114003814A (zh) 一种基于5g通信的全域导游方法及装置
AU2015200552B2 (en) Electronic apparatus and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021826898

Country of ref document: EP

Effective date: 20230116