WO2021253809A1 - 血液采集分析、图像智能识别诊断一体化装置、系统及方法 - Google Patents
血液采集分析、图像智能识别诊断一体化装置、系统及方法 Download PDFInfo
- Publication number
- WO2021253809A1 WO2021253809A1 PCT/CN2021/000125 CN2021000125W WO2021253809A1 WO 2021253809 A1 WO2021253809 A1 WO 2021253809A1 CN 2021000125 W CN2021000125 W CN 2021000125W WO 2021253809 A1 WO2021253809 A1 WO 2021253809A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood
- collection
- analysis
- arm
- module
- Prior art date
Links
- 239000008280 blood Substances 0.000 title claims abstract description 95
- 210000004369 blood Anatomy 0.000 title claims abstract description 94
- 238000003745 diagnosis Methods 0.000 title claims abstract description 36
- 238000004458 analytical method Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 29
- 241000894006 Bacteria Species 0.000 claims abstract description 39
- 210000000601 blood cell Anatomy 0.000 claims abstract description 38
- 201000010099 disease Diseases 0.000 claims abstract description 36
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 36
- 230000002159 abnormal effect Effects 0.000 claims abstract description 27
- 238000001514 detection method Methods 0.000 claims abstract description 17
- 244000005700 microbiome Species 0.000 claims abstract description 16
- 230000010391 action planning Effects 0.000 claims abstract description 15
- 238000007405 data analysis Methods 0.000 claims abstract description 15
- 230000003993 interaction Effects 0.000 claims abstract description 15
- 230000005856 abnormality Effects 0.000 claims abstract description 14
- 238000013528 artificial neural network Methods 0.000 claims abstract description 11
- 210000004204 blood vessel Anatomy 0.000 claims description 42
- 210000004027 cell Anatomy 0.000 claims description 14
- 230000000813 microbial effect Effects 0.000 claims description 14
- 230000009471 action Effects 0.000 claims description 13
- 210000000707 wrist Anatomy 0.000 claims description 9
- 210000001145 finger joint Anatomy 0.000 claims description 8
- 210000003371 toe Anatomy 0.000 claims description 8
- 210000003651 basophil Anatomy 0.000 claims description 7
- 210000003979 eosinophil Anatomy 0.000 claims description 6
- 210000004698 lymphocyte Anatomy 0.000 claims description 6
- 238000013178 mathematical model Methods 0.000 claims description 6
- 210000001616 monocyte Anatomy 0.000 claims description 6
- 230000006872 improvement Effects 0.000 claims description 5
- 210000003462 vein Anatomy 0.000 claims description 5
- 238000010801 machine learning Methods 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 4
- 230000002792 vascular Effects 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 230000007850 degeneration Effects 0.000 claims description 3
- 230000003412 degenerative effect Effects 0.000 claims description 3
- 210000002478 hand joint Anatomy 0.000 claims description 3
- 238000010186 staining Methods 0.000 claims description 3
- 231100000331 toxic Toxicity 0.000 claims description 3
- 230000002588 toxic effect Effects 0.000 claims description 3
- 210000003934 vacuole Anatomy 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims description 2
- 238000013461 design Methods 0.000 claims description 2
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 claims description 2
- 238000010219 correlation analysis Methods 0.000 claims 1
- 239000006260 foam Substances 0.000 claims 1
- 230000006870 function Effects 0.000 claims 1
- 230000007935 neutral effect Effects 0.000 claims 1
- 238000013480 data collection Methods 0.000 abstract description 12
- 208000024891 symptom Diseases 0.000 abstract description 3
- 210000000440 neutrophil Anatomy 0.000 description 6
- 238000013473 artificial intelligence Methods 0.000 description 5
- 201000011510 cancer Diseases 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 210000000265 leukocyte Anatomy 0.000 description 5
- 208000015181 infectious disease Diseases 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 208000014951 hematologic disease Diseases 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 231100000570 acute poisoning Toxicity 0.000 description 2
- 238000010241 blood sampling Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000019838 Blood disease Diseases 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 206010014950 Eosinophilia Diseases 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 208000030852 Parasitic disease Diseases 0.000 description 1
- 206010039587 Scarlet Fever Diseases 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004159 blood analysis Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 208000018706 hematopoietic system disease Diseases 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 201000006747 infectious mononucleosis Diseases 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 208000004235 neutropenia Diseases 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 238000004171 remote diagnosis Methods 0.000 description 1
- 208000017520 skin disease Diseases 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/151—Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/15—Devices for taking samples of blood
- A61B5/157—Devices characterised by integrated means for measuring characteristics of blood
Definitions
- the invention belongs to the technical field of artificial intelligence robot health examination equipment, and relates to an auxiliary diagnosis system for blood data analysis, blood cell, bacteria, and microbial image intelligent identification.
- the invention relates to the technical field of artificial intelligence robot health examination equipment, and relates to an auxiliary diagnosis system for blood data analysis, blood cell, bacteria, and microbial image intelligent identification.
- Artificial intelligence robot blood data analysis, blood cells, bacteria, microbial image intelligent identification and auxiliary diagnosis robot platform devices include:
- the robot main system the robot main system module is used to realize the main control of the robot, and the communication between the robot arm acquisition module and the analyzer module, and the blood data analysis module, which is used for the robot arm motion planning control module, the voice module and the user interaction .
- Camera module used to collect face, finger image, joint image, finger end image, arm blood vessel image collection.
- Voice module the data module is used for interaction and voice guidance between the main control system and the user.
- Blood data analysis module the data analysis module is used to compare standard values to analyze medical data, blood detection, analysis, intelligent identification of blood cells, microbes, and bacteria detection. Discover medical abnormal data.
- Human body, hand collection position recognition, blood vessel enlargement, positioning module the module is used to recognize human face, recognize fingers, finger ends, arm joints, arm blood vessels and other blood collection locations.
- a blood image recognition module which is used to recognize blood cell color abnormalities, structural abnormalities, abnormal shapes, and signs of major diseases.
- Robotic arm action planning collection module the action planning of the robotic arm action planning collection module, the interaction between the action of the robotic arm and the user, remotely and autonomously collect, move, and place blood samples.
- the main control system of the robot can collect face images, finger images, joint images, finger end image modules, arm joint images, arm blood vessel images, arm blood vessel collection position and other data, and cells Specimen image recognition module, robotic arm action planning collection module, voice module, voice command remote control, strengthen the interaction between the robot and the user, and realize intelligent blood collection.
- Analyzing medical data is used to analyze medical data against standard values, to classify blood cells, bacteria, and microbial images, to accurately identify blood cells, bacteria, and microbial abnormalities to assist in the diagnosis of diseases. It improves the accuracy of intelligent collection and the recognition of abnormal medical data, and improves the accuracy of blood cell, bacteria, and microbial image classification, analysis, and intelligent diagnosis.
- the main robot system is used to realize the main control of the robot, blood data collection, blood cell, bacteria, microbial image classification, voice interaction, action interaction, intelligent collection, classification and analysis of abnormal data, intelligent identification auxiliary diagnosis, and remote diagnosis.
- the camera is used to recognize human faces, finger images, joint images, finger ends, arm joint images, arm blood vessel images, arm blood vessel collection positions and other data images, etc., and camera equipment is used to assist the face, finger positioning, arm position.
- the voice module includes remote collection of voice commands and voice recognition for interaction and voice guidance between the main control system and the user.
- the action module includes an action planning module and an action acquisition module, which are used for the action interaction between the main control system and the user, and the action image collection of the robotic arm.
- the action module includes an action planning module for blood collection action planning, movement, placement, and remote control of the analyzer, which is used for action interaction between the main control system and the user.
- the blood sample is automatically sent to the blood analyzer (mounted on the robotic arm and monitoring analysis table) for action planning.
- Blood from the tip of the finger, blood from the blood vessel of the arm is collected, and sent to the blood analyzer or monitoring and analysis table for a limited time action plan.
- Human face, finger joints, finger ends, and arm joints corresponding to the blood vessel recognition under the magnifying device, acquisition position positioning method, image recognition, several types of patient face recognition, human finger position recognition method includes the following steps:
- a further method for recognizing and locating the blood vessel collection position of the finger end and arm includes the following steps:
- the position of the human hand joints including the characteristics of finger joints, finger ends, arm joints, arm joints, the position of the blood vessel magnification device, and the arm blood vessel collection position.
- Place the finger for blood collection, place the arm, collect and squeeze and move the blood sample, and the method steps for placing the collection area are as follows:
- S1 Create blood sampling target (set target size, pose, and color).
- S4 Generate the blood sampling pose and collect the needle pose (initialize the grasping pose object, create the open and closed pose of the clamp).
- S5 Set the desired parameters of the collection paw, collection needle, blood sample collection area, and blood sample placement area target.
- S10 Change the posture to generate a collection action (set the grab posture; grab the unique ID number; set the allowed contact objects, set the grab list).
- a method for classifying blood abnormal data by a machine learning algorithm comprising the following steps:
- Blood detection analysis and identification intelligentization and microbes, bacteria detection analysis and identification intelligentization uses deep neural network algorithm analysis to identify blood specimens, intelligent detection and analysis of blood items, and identification of major disease signs .
- a disease-assisted diagnosis method for blood sample recognition by a deep neural network algorithm includes the following steps:
- S6 Output the results to determine the blood cells, microbes, and bacteria against disease signs to help them identify major diseases in clinical diseases.
- Figure 1 is a diagram of a blood collection module in an embodiment of the present application.
- Fig. 2 is a schematic diagram of the structure of a robot in an embodiment of the present application.
- Fig. 3 is an action plan diagram of a robot in an embodiment of the present application.
- Collection area 200- blood collection location; 300- collection piece collection tube; 400- placement area; 500- analyzer.
- the embodiment of the application involves the design of the technical field of artificial intelligence robot health examination equipment, which involves blood data analysis, blood cells, bacteria, and microbial image intelligent identification and auxiliary diagnosis systems.
- Achieve effective blood collection robotic arm action planning collection, depth camera collection of face, finger images, joint images, finger end images, arm joint images, blood vessel images corresponding to the collection position of the arm vascular amplifier, precise positioning of the blood collection location at the end of the finger, and arm blood vessels Collection location.
- Collect images and other data on the blood vessels of the arm Realize the image classification of blood cells, bacteria, and microorganisms, and assist intelligent diagnosis by recognizing disease signs for blood cells, bacteria, and microorganisms. Accurately identify abnormal data and assist in intelligent diagnosis of common problems such as diseases.
- the robot Through the main control system of the robot, it is equipped with a camera collection module to collect face images, finger images, hand joint images, arm images, arm joint images, finger end images, arm blood vessel image collection modules, etc., as well as cell specimen image recognition modules, and machines
- a camera collection module to collect face images, finger images, hand joint images, arm images, arm joint images, finger end images, arm blood vessel image collection modules, etc., as well as cell specimen image recognition modules, and machines
- Arm action planning collection module, voice module, voice command remote control strengthen the interaction between the robot and the user, and realize intelligent blood collection.
- Analyzing medical data is used to analyze medical data against standard values, to classify blood cells, bacteria, and microbial images, to accurately identify blood cells, bacteria, and microbial abnormalities to assist in the diagnosis of diseases. Improve the accuracy of intelligent collection and the accuracy of medical data abnormality recognition.
- an artificial intelligence robot medical data collection, analysis and health examination system, the specific robot data collection steps include:
- the camera 10 is used to collect facial images to recognize the human face, and the hands and arms are placed in the blood collection area 100. Identify finger joints, finger ends, finger end positioning, arm joints, position of blood vessel enlargement equipment, arm blood vessel collection position 200. Place an empty blood specimen sheet 300.
- the robotic arm controlled by the voice module 20 is equipped with a collection needle 40 of 30 to automatically collect blood. Press 200 on both sides of the collection site, and the voice 20 prompts that the collection is successful. Move the blood sample to the placement collection area 400. Move the blood sample to the blood analyzer 500.
- Implementation methods of blood testing include:
- the establishment of blood cell models includes: RBC, WBC, PLT, Hb, HCT, MCV, MCH, MCHC and other indicator models.
- Using a deep neural network algorithm extract the shape, color, size and other cell characteristics of blood cells, bacteria, and microbial specimens, and identify cell types (white blood cells, red blood cells, neutrophils, eosinophils, basophils, and lymph) Cells, monocytes), bacteria, microorganisms.
- the deep neural network algorithm recognizes the morphological changes of red and white blood cells, abnormal colors under staining reactions, and abnormal structures (changes in toxic particles such as varying sizes, vacuoles, degenerative nuclear degeneration, granular, rod-shaped, and foamy irregularities) to assist in the recognition of blood Disease signs associated with major abnormalities in cells, bacteria, and microorganisms.
- Count the cells (neutrophils, eosinophils, basophils, lymphocytes, monocytes) in the analyzer, and analyze the proportion of blood for detection. Through the proportion analysis method, assist in the identification of blood abnormalities and signs of major diseases.
- auxiliary diagnosis methods include:
- auxiliary disease judgments of neutropenia include acute infection or inflammation, tissue damage, acute hemorrhage, acute poisoning, malignant tumor, and autoimmune disease.
- the auxiliary disease judgment for eosinophilia includes allergic diseases, parasitic diseases, skin diseases, blood diseases, malignant tumors, scarlet fever and other infectious diseases.
- Decrease in basophils and lymphocytes assists the diagnosis of malignant tumors and leukemias.
- Mononucleosis assists in the diagnosis of malignant tumors, subacute infections, malignant tumors, and hematological diseases.
- the nucleus of neutrophils The nucleus of neutrophils, the nucleus shifted to the left, the nucleus shifted to the right, etc. under the microscope to identify the symptoms of auxiliary infection, acute blood loss, acute poisoning, and acute hemolysis.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
Description
Claims (7)
- 血液采集分析、图像智能识别诊断一体化装置、系统及方法,其特征在于,血液采集分析血液细胞,细菌,微生物图像智能识别诊断一体化装置包括:机器人主系统,所述机器人主系统模块用于实现机器人的主控制,及机器臂采集模块到分析仪模块,血液数据分析模块间通信,用于机器臂动作规划控制模块,语音模块和用户间交互;摄像头模块,用于采集人脸,手指图像,关节图像,手指末端图像,手臂血管图像采集;语音模块,所述数据模块用于主控制系统与用户间交互和语音引导;血液数据分析模块,所述数据分析模块用于比照标准值分析医疗数据,血液检测,分析,智能识别血液细胞,微生物,细菌检测,发现医疗异常数据;人体,手采集位置识别,血管放大,定位模块,所述模块用于识别人脸,识别人体特征位置,手指,手指末端,手臂关节,手臂血管等血液采集位置。人体特征位置识别,是指关节位置识别,包括:肩部,腕部,臂肘部,手指各关节及其位置识别,用于识别手指,趾末端,腕,肘部的手臂关节,在血管放大器下,腕静脉,肘部静脉血管的位置,用于血管定位,其他关键位置定位;血液采集模块,所述的血液采集模块包括血液采集针,血液采集片,固定及压力装置。所述的血液采集模块是指端末梢血液采集模块,血管血液采集模块,在识别手指,趾末端,手臂各关节位置的基础上,血管放大器与手臂固定装置连接,定位趾端末位置,手臂腕部,肘部静脉血管位置,应用采集针,采集静脉血液;血液图像识别模块,所述模块用于识别血液细胞,细菌,微生物颜色异常,结构异常,形状异常图像,细菌图像,微生物图像及重大疾病征兆;机器臂动作规划采集模块,所述机器臂动作规划采集模块动作规划,机器臂动作与用户间的交互,远端及自主采集,移动,放置血液样本;
- 根据权利要求1所述的血液采集分析、图像智能识别诊断一体化装置,其特征在于,利用机器人系统连接摄像头,血管放大装置智能采集,识别人脸,人体特征位置,手指图像,手臂血管图像,手关节图像,手指末端图像等采集位置,精准定位手指末端血液采集位置,手臂血管采集位置。人体特征位置是包括:肩部,腕部,臂肘部,手指各关节及其位置识别,用于识别手指,趾末端,腕,肘部的手臂关节,在血管放大器下,腕静脉,肘部静脉血管的位置,用于血管定位,其他关键位置定位。
- 根据权利要求1所述的血液采集分析、图像智能识别诊断一体化装置,其特征在于,利用机器人手臂动作规划设计方法,实现机器人手臂移动,采集针血液采集,放置血液样本,控制分析仪等有效动作向导,血液采集,指端末梢血液采集模块,识别手指,趾末端,手臂各关节位置的基础上,应用血管放大器,手臂固定装置,定位趾端末位置,手臂腕部,肘部静 脉血管位置,应用采集针,注射针头采集静脉血液。从而实现血液自主采集,远端采集等功能。
- 根据权利要求1所述的血液采集分析、图像智能识别诊断一体化装置,其特征在于,利用语音模块,语音指令,语音交互,控制机器臂,远端控制机器臂实现血液采集,检测,分析流程。
- 血液采集分析、图像智能识别诊断一体化装置、系统及方法,其特征在于,利用机器学习算法改进方法及关联分析方法,分类血液细胞,细菌,微生物图像,图像异常数据与重大疾病征兆关联,智能识别重大疾病征兆,辅助诊断,关联分析准确识别异常数据,实现血液精准检测。
- 血液采集分析、图像智能识别诊断一体化装置、系统及方法,其特征在于,基于机器学习算法的改进方法,建立血液细胞,细菌,微生物图像识别特征模型,利用机器学习改进方法智能分类中性粒细胞,嗜酸性粒细胞,嗜碱性粒细胞,淋巴细胞,单核细胞等多种细胞,分类血液细胞,细菌,微生物,精准识别血液细胞,细菌,微生物。
- 血液采集分析、图像智能识别诊断一体化装置、系统及方法,其特征在于,利用改进的神经网络方法,利用深度神经网络算法改进方法,建立血液细胞,细菌,微生物图像识别的数学模型,血液细胞,细菌,微生物的异常特征,提取图像的染色反应下颜色异常,结构异常,中毒性颗粒改变大小不等,空泡改变,退行性核变性,粒状,棒状,泡沫不规则性等特征值,输入检测项目特征值,改进深度神经网络算法方法,改进权值参数加速器得到输出值,依据输出值的范围判定血液细胞,细菌,微生物的形状异常,颜色异常等重大疾病征兆。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2021291903A AU2021291903A1 (en) | 2020-06-19 | 2021-06-18 | Integrated device, system and method for blood collection and analysis as well as intelligent image identification and diagnosis |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010564224.0 | 2020-06-19 | ||
CN202010564224.0A CN112205982A (zh) | 2020-06-19 | 2020-06-19 | 血液数据采集分析智能识别诊断机器人平台 |
CN202010780479.0 | 2020-08-05 | ||
CN202010780479.0A CN111916195A (zh) | 2020-08-05 | 2020-08-05 | 一种医疗用机器人装置,系统及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021253809A1 true WO2021253809A1 (zh) | 2021-12-23 |
Family
ID=79269110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/000125 WO2021253809A1 (zh) | 2020-06-19 | 2021-06-18 | 血液采集分析、图像智能识别诊断一体化装置、系统及方法 |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2021291903A1 (zh) |
WO (1) | WO2021253809A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116099673A (zh) * | 2023-04-13 | 2023-05-12 | 苏州双洳生物科技有限公司 | 一种基于牛血清获取的智能血液采集系统 |
CN116223711A (zh) * | 2023-03-10 | 2023-06-06 | 重庆迪安医学检验中心有限公司 | 一种无接触智能诊断分析台 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001069242A1 (fr) * | 2000-03-15 | 2001-09-20 | Jun Kikuchi | Procede et appareil d'analyse de sang |
CN106248559A (zh) * | 2016-07-14 | 2016-12-21 | 中国计量大学 | 一种基于深度学习的白细胞五分类方法 |
CN110472471A (zh) * | 2018-05-10 | 2019-11-19 | 学校法人顺天堂 | 图像解析方法、装置、存储介质和深度学习算法生成方法 |
CN111916195A (zh) * | 2020-08-05 | 2020-11-10 | 谈斯聪 | 一种医疗用机器人装置,系统及方法 |
CN112205982A (zh) * | 2020-06-19 | 2021-01-12 | 谈斯聪 | 血液数据采集分析智能识别诊断机器人平台 |
-
2021
- 2021-06-18 WO PCT/CN2021/000125 patent/WO2021253809A1/zh active Application Filing
- 2021-06-18 AU AU2021291903A patent/AU2021291903A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001069242A1 (fr) * | 2000-03-15 | 2001-09-20 | Jun Kikuchi | Procede et appareil d'analyse de sang |
CN106248559A (zh) * | 2016-07-14 | 2016-12-21 | 中国计量大学 | 一种基于深度学习的白细胞五分类方法 |
CN110472471A (zh) * | 2018-05-10 | 2019-11-19 | 学校法人顺天堂 | 图像解析方法、装置、存储介质和深度学习算法生成方法 |
CN112205982A (zh) * | 2020-06-19 | 2021-01-12 | 谈斯聪 | 血液数据采集分析智能识别诊断机器人平台 |
CN111916195A (zh) * | 2020-08-05 | 2020-11-10 | 谈斯聪 | 一种医疗用机器人装置,系统及方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116223711A (zh) * | 2023-03-10 | 2023-06-06 | 重庆迪安医学检验中心有限公司 | 一种无接触智能诊断分析台 |
CN116099673A (zh) * | 2023-04-13 | 2023-05-12 | 苏州双洳生物科技有限公司 | 一种基于牛血清获取的智能血液采集系统 |
Also Published As
Publication number | Publication date |
---|---|
AU2021291903A1 (en) | 2023-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021253809A1 (zh) | 血液采集分析、图像智能识别诊断一体化装置、系统及方法 | |
CN112205982A (zh) | 血液数据采集分析智能识别诊断机器人平台 | |
Salcudean et al. | Performance measurement in scaled teleoperation for microsurgery | |
CN110368300B (zh) | 一种智能针灸诊疗系统 | |
CN112155729A (zh) | 手术穿刺路径智能自动化规划方法及系统和医疗系统 | |
CN104473629B (zh) | 基于核函数分类算法的心电电极错误放置自动检测方法 | |
CN109222969A (zh) | 一种基于多传感器数据融合的可穿戴式人体上肢肌肉运动疲劳检测及训练系统 | |
WO2019052063A1 (zh) | 基于人工智能的医学影像分类处理系统及方法 | |
CN111973228A (zh) | B超数据采集分析诊断一体化机器人,平台 | |
CN110200601A (zh) | 一种脉象获取装置及系统 | |
CN112633342B (zh) | 一种基于深度学习的人体超声检测实时引导策略 | |
CN109359569A (zh) | 一种基于cnn的红细胞图像亚分类方法 | |
CN109222963A (zh) | 一种基于卷积神经网络的心电异常识别分类方法 | |
CN112826458B (zh) | 脉诊系统和脉诊方法 | |
CN108257124A (zh) | 一种基于图像的白细胞计数方法和系统 | |
CN108229584A (zh) | 一种基于深度学习的多模态医学影像识别方法及装置 | |
CN107041740A (zh) | 动物心率监测系统以及基于神经网络的心率状态识别方法 | |
CN107041732A (zh) | 动物体温监测系统以及基于机器学习的体温状态识别方法 | |
CN108335603A (zh) | 一种用于产前诊断穿刺训练的教学模型 | |
CN111820919A (zh) | 一种采血穿刺控制方法、装置及存储介质 | |
CN109833045A (zh) | 一种智能护理床用起身意图监测方法 | |
CN113539473A (zh) | 一种仅使用血常规检验数据诊断布氏杆菌病的方法及系统 | |
CN107837083A (zh) | 基于最小二乘支持向量机的j波自动检测方法 | |
WO2021254427A1 (zh) | 超声图像数据采集分析识别一体化机器人,平台 | |
CN109044283A (zh) | 一种基于多模态信息的食道功能性疾病诊断系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21824901 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022581728 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021824901 Country of ref document: EP Effective date: 20230119 |
|
ENP | Entry into the national phase |
Ref document number: 2021291903 Country of ref document: AU Date of ref document: 20210618 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21824901 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.09.2023) |