WO2021253784A1 - 多功能测量设备、资源配置方法、测量方法、装置及介质 - Google Patents

多功能测量设备、资源配置方法、测量方法、装置及介质 Download PDF

Info

Publication number
WO2021253784A1
WO2021253784A1 PCT/CN2020/139164 CN2020139164W WO2021253784A1 WO 2021253784 A1 WO2021253784 A1 WO 2021253784A1 CN 2020139164 W CN2020139164 W CN 2020139164W WO 2021253784 A1 WO2021253784 A1 WO 2021253784A1
Authority
WO
WIPO (PCT)
Prior art keywords
configuration information
function
measurement
software program
resources
Prior art date
Application number
PCT/CN2020/139164
Other languages
English (en)
French (fr)
Inventor
王悦
Original Assignee
普源精电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 普源精电科技股份有限公司 filed Critical 普源精电科技股份有限公司
Publication of WO2021253784A1 publication Critical patent/WO2021253784A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/12Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/445Program loading or initiating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/44Arrangements for executing specific programs
    • G06F9/445Program loading or initiating
    • G06F9/44505Configuring for program initiating, e.g. using registry, configuration files
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for program control, e.g. control units
    • G06F9/06Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
    • G06F9/46Multiprogramming arrangements
    • G06F9/50Allocation of resources, e.g. of the central processing unit [CPU]
    • G06F9/5005Allocation of resources, e.g. of the central processing unit [CPU] to service a request

Definitions

  • the embodiments of the present application relate to the technical field of measuring instruments, for example, to a multifunctional measuring device, a resource configuration method, a measuring method, a device, and a medium.
  • the embodiments of the present application provide a multifunctional measurement equipment, resource allocation method, measurement method, device and medium, which can realize multiple measurement functions at the same time, save the space occupancy rate of the test bench or the test bench, reduce the cost of the test, and avoid public resources Waste.
  • an embodiment of the present application provides a multifunctional measurement device, including: a memory, a processor, a common circuit, and multiple functional circuits;
  • the memory is set to store a software program that can realize the measurement function
  • the common circuit is connected to the multiple functional circuits respectively; the functions among the multiple functional circuits are the same or partly the same or completely different;
  • the processor is configured to run the software program, and to configure the resources of the common circuit based at least in part on the common resources required by the software program; the processor is also configured to control the operation of at least one functional circuit to implement the running software The measurement function corresponding to the program.
  • the embodiments of the present application also provide a resource configuration method, which is used to configure the resources of the measurement device, including:
  • the configuration information includes a measurement function
  • the corresponding software program is started according to the configuration information, and common resources are allocated for the operation of the software program.
  • an embodiment of the present application also provides a measurement method, including:
  • the configuration information includes a measurement function
  • an embodiment of the present application also provides a resource configuration device, including:
  • a configuration information obtaining module configured to obtain configuration information; the configuration information includes a measurement function;
  • the resource configuration module is configured to start the corresponding software program according to the configuration information, and allocate common resources for the running of the software program.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by the processing device, the resource configuration as described in the embodiments of the present application is implemented. Method or the measurement method described in the embodiment of this application.
  • Fig. 1 is a schematic structural diagram of a multifunctional measuring device in the first embodiment of the present application
  • Fig. 2 is a flowchart of a resource allocation method in the second embodiment of the present application.
  • FIG. 3 is a flowchart of a resource allocation method in the second embodiment of the present application.
  • FIG. 4 is a flowchart of a measurement method in the third embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a resource configuration device in the fourth embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a multi-function measuring device provided in Embodiment 1 of the application.
  • the multi-function measuring device includes: a memory 110, a processor 120, a common circuit 130, and a plurality of functional circuits 140.
  • the memory 110 is configured to store software programs that can implement measurement functions; the common circuit 130 is connected to multiple functional circuits 140 respectively; the functions among the multiple functional circuits 140 are the same or partly the same or completely different; the processor 120 is configured to run the software
  • the processor 120 is also configured to control the operation of at least one functional circuit 140 to implement the measurement function corresponding to the running software program.
  • the functional circuit 140 can be understood as a hardware circuit that can realize a certain measurement function, such as: oscilloscope functional circuit, signal source functional circuit, spectrum analysis functional circuit, arbitrary wave generator functional circuit, function source functional circuit, Noise source function circuit, eye diagram function circuit, voltmeter function circuit, protocol analyzer function circuit, frequency meter function circuit, time domain reflection function circuit, vector signal source function circuit, power analyzer function circuit, loop tester function Circuit etc.
  • the functions of the multiple functional circuits included in the multifunctional measuring device may be the same or partially the same or completely different, and may be configured according to actual requirements.
  • a certain multi-function measuring device may include a 2-channel oscilloscope function circuit and a 2-channel signal source function circuit.
  • the multi-function measuring device includes a 2-channel oscilloscope and a 2-channel signal source.
  • the oscilloscope The number of channels of the signal source and signal source can be selected according to actual needs.
  • a software program can be understood as a computer program written by a technician that can realize a certain function or a certain mixed function. Exemplarily, suppose that the multi-function measurement equipment contains the oscilloscope function circuit and the signal source function circuit. If the oscilloscope software program is written, the device is a complete oscilloscope; if the signal source program software is written, the device is a complete oscilloscope.
  • public resources are insufficient, public circuits can be configured based on programs. For example, configure the oscilloscope to be a high-end instrument that occupies more public resources, and the signal source is a low-end instrument that occupies less public resources; or the oscilloscope is a low-end instrument that occupies less public resources.
  • the signal source is a high-end instrument that occupies more public resources; or the two allocate resources equally.
  • the multifunctional measuring equipment further includes: an input device.
  • the input device is configured to receive configuration information of the multifunctional measuring equipment;
  • the processor 120 is configured to start a software program according to the configuration information and configure resources according to the started software program.
  • the configuration information may include the measurement function of the multifunctional measurement device selected by the user and the parameter index corresponding to the measurement function.
  • the parameter index can be the upper and lower limits of the parameters included in the measurement function.
  • the parameters included in the oscilloscope function can include bandwidth, sampling rate, storage depth, etc.
  • the parameter index refers to the upper and lower limits of these parameters.
  • the configuration information can also be embodied in the form of a configuration sheet.
  • the functions supported by the multifunctional measurement device include: oscilloscope function, signal source function, spectrum analysis function, radio frequency signal source function, arbitrary wave generator function, function source function, noise source function, eye diagram function, Voltmeter function, protocol analyzer function, frequency meter function, time domain reflection function, vector signal source function, power analyzer function and loop tester function.
  • the functions that can be implemented by the multifunctional measuring device are any combination of the multiple functions it supports. For example: each function, oscilloscope function + signal source function, oscilloscope function + signal source function + spectrum analysis function, spectrum analysis function + radio frequency signal source function, etc. can be realized separately, which will not be listed here.
  • the multifunctional measurement device includes: a memory, a processor, a common circuit, and multiple functional circuits; the memory is configured to store a software program that can realize the measurement function; the common circuit is connected to the multiple functional circuits respectively; multiple functions The functions between the circuits are the same or partly the same or completely different; the processor is set to run the software program, and at least partly configure the resources of the common circuit based on the common resources required by the software program; the processor is also set to control at least A functional circuit works to realize the measurement function corresponding to the running software program.
  • the multifunctional measurement device provided in this embodiment can implement multiple measurement functions at the same time, save the space occupancy rate of the test bench or the test bench, reduce the cost of the test, and avoid the waste of public resources.
  • Fig. 2 is a flowchart of a resource configuration method provided in the second embodiment of the application, and the method is executed by the multifunctional measuring device disclosed in the foregoing embodiment.
  • Resource configuration can be understood as the same hardware, and different functions can be realized by writing different software.
  • writing A software is A function
  • writing B software is B function
  • writing AB software is a mixed function of AB.
  • a and B compete for resources in the mixed function
  • resource allocation and configuration can be carried out by means of software.
  • a software, B software and AB software can be provided by the user, that is, software for customization.
  • the method includes step 210 to step 220.
  • Step 210 Obtain configuration information.
  • the configuration information includes the measurement function of the multi-function measurement device.
  • Measurement functions can include: oscilloscope function, signal source function, spectrum analysis function, RF signal source function, arbitrary wave generator function, function source function, noise source function, eye diagram function, voltmeter function, protocol analyzer function, frequency Meter function, time domain reflection function, vector signal source function, power analyzer function, loop tester function, etc.
  • the configuration information may also include parameter indicators corresponding to the measurement function.
  • the parameter index can be understood as the upper and lower limits of the parameters included in the measurement function.
  • the method of acquiring configuration information may be: acquiring the first configuration information when it is detected that the measurement device is started.
  • the first configuration information is initial configuration information, which may include factory configuration information of the multi-function measuring device, configuration information of the user's last use of the multi-function measuring device, or information determined by the current state of the function switch.
  • the first configuration information after obtaining the first configuration information, it further includes: starting a timer to detect whether the second configuration information input by the user is received within a set time; if the second configuration information input by the user is not received within the set time The second configuration information is to start the corresponding software program according to the first configuration information.
  • the method of obtaining configuration information may also be: receiving second configuration information input by a user, and modifying the first configuration information according to the second configuration information.
  • the method of modifying the first configuration information according to the second configuration information may be at least one of the following: switching the measurement function in the first configuration information according to the second configuration information; Modify the parameter indicators in the configuration information. That is, the second configuration information may be to switch only the measurement function, or only modify the index parameter, or switch the measurement function+modify the index parameter.
  • the measurement function in the configuration information includes at least two measurement functions
  • the user modifies the parameter index of one measurement function of the at least two measurement functions, adjust parameters other than the one measurement function.
  • the upper and lower limits of the parameter index of the measurement function enable the user to configure the parameter index according to the modified upper and lower limits of the parameter.
  • the upper and lower limits of the parameter indexes of other measurement functions are adjusted according to the remaining public resources of the multifunctional measurement device. For example, when the storage depth of the oscilloscope is set to the maximum, the available memory of the signal source is limited, and the maximum available memory of the signal source will be reduced at this time.
  • Step 220 Start the corresponding software program according to the configuration information, and allocate common resources for the running of the software program.
  • the corresponding software program in the memory is called according to the measurement function included in the configuration information, and the processor runs the called software program.
  • the method of starting the corresponding software program according to the configuration information may be: generating a configuration sheet according to the configuration information; starting the corresponding software program according to the content in the configuration sheet.
  • the method of allocating public resources for the running of the software program includes one of the following: allocating public resources according to the factory configuration of the multifunctional measuring device; allocating public resources according to the configuration information of the user's last use of the multifunctional measuring device; The input configuration information allocates public resources; the public resources are allocated according to the configuration sheet imported by the user.
  • the user can manually adjust the allocation of public resources.
  • the user can manually allocate public resources through the interactive interface.
  • automatically allocating public resources for the running of the software program may also include one of the following: allocating public resources according to the remaining amount of the current public resources; allocating public resources according to the user's usage habits; according to the current use environment of the multifunctional measuring device Allocate public resources.
  • the process of allocating public resources according to the remaining amount of current public resources may be that during the operation of the multi-function measuring device, the program software will detect the resource usage of each measurement function in the background, and when it is found that a certain measurement function is insufficient or When it is about to be insufficient, the software will automatically apply for the required amount of resources from the remaining resources as needed. That is: first determine how many resources are currently remaining, and then apply for resources according to the needs of the measurement function; if the current remaining resources are greater than the required resources, apply for the required amount; if the current remaining resources are less than the required resources, apply for all the remaining resources.
  • the process of allocating public resources according to the user's usage habits may be that the multifunctional measuring device automatically records and analyzes the user's common strategy for allocating public resources during use, and then allocates the public resources of the instrument according to the analysis result.
  • the analysis result is that the multifunctional measuring equipment is often used as a low-end instrument, or only the measurement function of low parameter index is used, the common functions can be satisfied during the distribution; it can also be used with manual distribution.
  • the process of allocating public resources according to the current use environment of the measurement device may be that the multi-function measurement device provides a selection of use scenarios.
  • the measurement device recommends the resource allocation ratio according to the scenario, and can cooperate with Dynamic application or use with manual allocation.
  • An optional method is to specify usage scenarios for users, perform performance evaluation, and then provide the corresponding resource allocation ratio.
  • Another alternative is to perform performance evaluation based on user input signals, and then provide the corresponding resource allocation ratio.
  • the software program is run to control the operation of the corresponding functional circuit, so that the multifunctional measuring device works in the functional mode corresponding to the configuration information.
  • the technical solution of this embodiment obtains configuration information, starts the corresponding software program according to the configuration information, and allocates common resources for the running of the software program. According to the configuration information, common resources are allocated for the operation of the software program to realize the configuration of resources.
  • FIG. 3 is a flowchart of a resource configuration method implemented in this application.
  • the method includes the following steps:
  • the multi-function measuring device is powered on to obtain the first configuration information; starts the timer to detect whether the second configuration information input by the user is received within the set time; if the second configuration input from the user is received within the set time Information, the configuration sheet is generated according to the second configuration information; the corresponding software program is started according to the content in the configuration sheet; if the second configuration information input by the user is not received within the set time, the corresponding software is started according to the first configuration information program. Run the software program to make the multifunctional measuring device work in the functional mode corresponding to the configuration information.
  • FIG. 4 is a flowchart of a measurement method provided in Embodiment 3 of this application. This method is applied to the multifunctional measuring device described in the above embodiment. As shown in FIG. 4, the method includes step 410 to step 440.
  • Step 410 Obtain configuration information.
  • the configuration information includes the measurement function of the multi-function measurement device and the parameter index corresponding to the measurement function.
  • Step 420 Start the corresponding software program according to the configuration information, and allocate common resources for the running of the software program.
  • Step 430 Run the software program to start the function mode corresponding to the configuration information.
  • Step 440 Control the multifunctional measuring device to perform measurement work in the functional mode.
  • the technical solution of this embodiment obtains configuration information; starts the corresponding software program according to the configuration information, and allocates common resources for the running of the software program; runs the software program to start the functional mode corresponding to the configuration information; controls the multifunctional measuring device in the functional mode Perform measurement tasks.
  • the multifunctional measuring device can realize simultaneous measurement of multiple functions.
  • FIG. 5 is a schematic structural diagram of a resource configuration device provided in Embodiment 4 of this application. As shown in FIG. 5, the device includes: a configuration information acquisition module 510 and a resource configuration module 520.
  • the configuration information obtaining module 510 is configured to obtain configuration information; the configuration information includes the measurement function of the multifunctional measuring device.
  • the resource configuration module 520 is configured to start a corresponding software program according to the configuration information, and allocate common resources for the operation of the software program.
  • the configuration information also includes parameter indicators corresponding to the measurement function.
  • the configuration information obtaining module 510 is also set to:
  • the first configuration information is acquired.
  • the first configuration information is initial configuration information, including factory configuration information of the multi-function measuring device, configuration information of the user's last use of the multi-function measuring device, or information determined by the current state of the function switch.
  • the configuration information obtaining module 510 is also set to:
  • the configuration information obtaining module 510 is further configured to: perform at least one of the following: switch the measurement function in the first configuration information according to the second configuration information; A parameter index in the configuration information is modified.
  • the configuration information acquisition module 510 is further set to:
  • the upper and lower limits of the parameter indexes of the measurement functions other than the one measurement function are adjusted, so that the user can adjust the upper and lower limits of the parameters according to the modified Configure parameter indicators.
  • the resource configuration device further includes: a timing module, and the timing module is set to:
  • the resource configuration module 520 is further configured to: if the second configuration information input by the user is not received within a set time period, start the corresponding software program according to the first configuration information, and run the software program Allocate public resources.
  • the resource configuration module 520 is also set to:
  • the method of allocating public resources for the operation of the software program includes one of the following: allocating public resources according to the factory configuration of the multifunctional measuring device; allocating public resources according to the configuration information of the user's last use of the multifunctional measuring device; The configuration information entered by the user allocates public resources; the public resources are allocated according to the configuration sheet imported by the user.
  • automatically allocating public resources for the operation of the software program includes one of the following: allocating public resources according to the remaining amount of the current public resources; allocating public resources according to the user's usage habits; allocating according to the current use environment of the multifunctional measuring device Public resource.
  • the foregoing device can execute the resource configuration methods provided in all the foregoing embodiments of the present application, and has corresponding functional modules for executing the foregoing methods.
  • the resource configuration methods provided in all the foregoing embodiments of this application.
  • the embodiment of the present application provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processing device, the resource configuration method or the measurement method in the embodiment of the present application is implemented.
  • the aforementioned computer-readable medium in the present application may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or a combination of any of the above.
  • Computer-readable storage media may include, but are not limited to: electrical connections with at least one wire, portable computer disks, hard disks, random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), Erasable Programmable Read-Only Memory ((Erasable Programmable Read-Only Memory, EPROM) or flash memory), optical fiber, portable compact disc read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage device , Magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program, and the program may be used by or in combination with an instruction execution system, apparatus, or device.
  • the computer-readable signal medium may include a data signal propagated in a baseband or as a part of a carrier wave, and a computer-readable program code is carried therein.
  • This propagated data signal can take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • the computer-readable signal medium may also be any computer-readable medium other than the computer-readable storage medium.
  • the computer-readable signal medium may send, propagate, or transmit the program for use by or in combination with the instruction execution system, apparatus, or device .
  • the program code contained on the computer-readable medium can be transmitted by any suitable medium, including but not limited to: wire, optical cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • the client and server can communicate with any currently known or future developed network protocol such as HTTP (HyperText Transfer Protocol), and can communicate with digital data in any form or medium.
  • Communication e.g., communication network
  • Examples of communication networks include Local Area Network (LAN), Wide Area Networks (WAN), the Internet (for example, the Internet), and end-to-end networks (for example, ad hoc end-to-end networks), as well as any current Know or develop a network in the future.
  • LAN Local Area Network
  • WAN Wide Area Networks
  • the Internet for example, the Internet
  • end-to-end networks for example, ad hoc end-to-end networks
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or it may exist alone without being assembled into the electronic device.
  • the above-mentioned computer-readable medium carries at least one program, and when the above-mentioned at least one program is executed by the electronic device, the electronic device is caused to execute the resource configuration method provided by the embodiment of the present application: obtain configuration information; Software program, and allocate common resources for the running of the software program. Or, when at least one of the above-mentioned programs is executed by the electronic device, the electronic device is caused to execute the measurement method provided in the embodiment of the present application: obtain configuration information; start the corresponding software program according to the configuration information, and be the source of the software program Run the allocation of public resources; run the software program to start the functional mode corresponding to the configuration information; control the multifunctional measuring device to perform measurement work in the functional mode.
  • the computer program code used to perform the operations of this application can be written in one or more programming languages or a combination thereof.
  • the above-mentioned programming languages include, but are not limited to, object-oriented programming languages-such as Java, Smalltalk, C++, and Including conventional procedural programming languages-such as "C" language or similar programming languages.
  • the program code can be executed entirely on the user's computer, partly on the user's computer, executed as an independent software package, partly on the user's computer and partly executed on a remote computer, or entirely executed on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network including LAN or WAN, or may be connected to an external computer (for example, using an Internet service provider to connect through the Internet).
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains at least one available for realizing the specified logical function.
  • Execute instructions may also occur in a different order from the order marked in the drawings. For example, two blocks shown one after the other can actually be executed substantially in parallel, or they can sometimes be executed in the reverse order, depending on the functions involved.
  • each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart can be implemented by a dedicated hardware-based system that performs the specified functions or operations Or it can be realized by a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in this application can be implemented in software or hardware. Among them, the name of the unit does not constitute a limitation on the unit itself under certain circumstances.
  • exemplary types of hardware logic components include: Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), and application specific standard products (Application Specific Integrated Circuit). Specific Standard Parts (ASSP), System on Chip (SOC), Complex Programmable Logic Device (CPLD), etc.
  • FPGA Field Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • ASSP Application Specific Integrated Circuit
  • SOC System on Chip
  • CPLD Complex Programmable Logic Device
  • a machine-readable medium may be a tangible medium, which may contain or store a program for use by the instruction execution system, apparatus, or device or in combination with the instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • the machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing.
  • machine-readable storage media would include electrical connections based on at least one wire, portable computer disks, hard disks, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM) Or flash memory), optical fiber, compact disc read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • flash memory flash memory
  • CD-ROM compact disc read-only memory
  • CD-ROM compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Abstract

一种多功能测量设备、资源配置方法、测量方法、装置及介质,该多功能测量设备包括:存储器(110)、处理器(120)、公共电路(130)及多个功能电路(140);存储器(110)设置为存储可实现测量功能的软件程序;公共电路(130)与多个功能电路(140)分别相连;多个功能电路(140)的功能相同或者部分相同或者完全不同;处理器(120)设置为运行软件程序,并至少部分地基于软件程序所需的公共资源对公共电路(130)进行资源配置;处理器(120)还设置为控制至少一个功能电路(140)工作,以实现运行的软件程序对应的测量功能。

Description

多功能测量设备、资源配置方法、测量方法、装置及介质
本申请要求在2020年6月16日提交中国专利局、申请号为202010547243.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及测量仪器技术领域,例如涉及一种多功能测量设备、资源配置方法、测量方法、装置及介质。
背景技术
随着技术的发展,仪器的种类越来越多。在信号或系统测试过程中往往会用到多种仪器的测量结果才能得到较为准确的结论,例如:使用示波器测试时域参数,使用频谱仪测试频域参数,使用信号源辅助测试系统的特性等。在实际测试过程中,每增加一种测试参数就需要增加额外的仪器来测量。要完成一次测试,可能同时需要多台不同功能的仪器。对于试验台或测试台,多台仪器会造成仪器堆叠、空间挤压的情况,对于户外使用仪器的用户,携带多种仪器会造成极大的不便,且同时购买多台仪器成本较高。
虽然目前有综合性测量仪器,但这种仪器往往是“一种主要功能+附加功能”的模式,且每种功能的参数指标固定,用户无法自行调整。另外,不同功能的仪器中会使用相同或类似的硬件电路,这会造成公共资源的浪费以及仪器成本的增加。
发明内容
本申请实施例提供一种多功能测量设备、资源配置方法、测量方法、装置及介质,可以同时实现多种测量功能,节省试验台或测试台的空间占用率,降低测试的成本以及避免公共资源的浪费。
第一方面,本申请实施例提供了一种多功能测量设备,包括:存储器、处 理器、公共电路及多个功能电路;
所述存储器设置为存储可实现测量功能的软件程序;
所述公共电路与所述多个功能电路分别相连;所述多个功能电路间的功能相同或者部分相同或者完全不同;
所述处理器设置为运行所述软件程序,并至少部分地基于软件程序所需的公共资源对公共电路进行资源配置;所述处理器还设置为控制至少一个功能电路工作,以实现运行的软件程序对应的测量功能。
第二方面,本申请实施例还提供了一种资源配置方法,所述方法用于对测量设备的资源进行配置,包括:
获取配置信息;所述配置信息包括测量功能;
根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源。
第三方面,本申请实施例还提供了一种测量方法,包括:
获取配置信息;所述配置信息包括测量功能;
根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源;
运行所述软件程序,启动所述配置信息对应的功能模式;
控制多功能测量设备在所述功能模式下执行测量工作。
第四方面,本申请实施例还提供了一种资源配置装置,包括:
配置信息获取模块,设置为获取配置信息;所述配置信息包括测量功能;
资源配置模块,设置为根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源。
第五方面,本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理装置执行时,实现如本申请实施例所述的资源配置方法或者本申请实施例所述的测量方法。
附图说明
图1是本申请实施例一中的一种多功能测量设备的结构示意图;
图2是本申请实施例二中的一种资源配置方法的流程图;
图3是本申请实施例二中的一种资源配置方法的流程图;
图4是本申请实施例三中的一种测量方法的流程图;
图5是本申请实施例四中的一种资源配置装置的结构示意图。
具体实施方式
实施例一
图1为本申请实施例一提供的一种多功能测量设备的结构示意图,如图1所示,该多功能测量设备包括:存储器110、处理器120、公共电路130及多个功能电路140。存储器110设置为存储可实现测量功能的软件程序;公共电路130与多个功能电路140分别相连;多个功能电路140间的功能相同或者部分相同或者完全不同;处理器120设置为运行所述软件程序,并至少部分地基于软件程序所需的公共资源对公共电路130进行资源配置;处理器120还设置为控制至少一个功能电路140工作,以实现运行的软件程序所对应的测量功能。
在本实施例中,功能电路140可以理解为能够实现某种测量功能的硬件电路,例如:示波器功能电路、信号源功能电路、频谱分析功能电路、任意波发生器功能电路、函数源功能电路、噪声源功能电路、眼图仪功能电路、电压表功能电路、协议分析仪功能电路、频率计功能电路、时域反射功能电路、矢量信号源功能电路、电源分析仪功能电路、环路测试仪功能电路等。本实施例中,多功能测量设备中包含的多个功能电路的功能可以相同或者部分相同或者完全不同,可以根据实际需求进行配置。例如:某个多功能测量设备可以包括2通道示波器功能电路和2通道信号源功能电路,可选地,该多功能测量设备包括2通道的示波器及2通道的信号源,本实施例中,示波器和信号源的通道数可根据实际需求进行选择,此处需说明“2通道”仅是举例说明,不做限定。软件程序可以 理解为由技术人员编写的能够实现某种功能或者某种混合功能的计算机程序。示例性的,假设多功能测量设备中包含示波器功能电路、信号源功能电路,若写入示波器软件程序,则该设备就是一台完整的示波器;若写入信号源程序软件,则该设备就是一台完整的信号源;若写入示波器和信号源的混合程序软件,则该设备就是同时实现示波器和信号源功能的设备,此时两种功能共享公共电路中的公共资源,当两种功能的公共资源不足时,公共电路可以基于程序配置资源,例如:配置示波器为占用公共资源较多的高端仪器,信号源为占用公共资源较少的低端仪器;或者示波器为占用公共资源较少的低端仪器,信号源为占用公共资源较多的高端仪器;或者两者平均分配资源。
可选的,该多功能测量设备还包括:输入装置。输入装置设置为接收多功能测量设备的配置信息;处理器120设置为根据配置信息启动软件程序并根据启动的软件程序配置资源。
其中,配置信息可以包括用户选择的多功能测量设备的测量功能和测量功能对应的参数指标。参数指标可以是测量功能包含的参数的上下限。例如:示波器功能包含的参数可以有带宽、采样率、存储深度等,参数指标指的是这些参数的上下限。配置信息还可以以配置单的形式体现。
在一实施例中,多功能测量设备支持的功能包括:示波器功能、信号源功能、频谱分析功能、射频信号源功能、任意波发生器功能、函数源功能、噪声源功能、眼图仪功能、电压表功能、协议分析仪功能、频率计功能、时域反射功能、矢量信号源功能、电源分析仪功能及环路测试仪功能。本实施例中,多功能测量设备可实现的功能为其支持的多种功能的任意组合。例如:可以单独实现各功能、示波器功能+信号源功能、示波器功能+信号源功能+频谱分析功能、频谱分析功能+射频信号源功能等,此处不再一一列举。
本实施例提供的多功能测量设备,包括:存储器、处理器、公共电路及多个功能电路;存储器设置为存储可实现测量功能的软件程序;公共电路与多个功能电路分别相连;多个功能电路间的功能相同或者部分相同或者完全不同; 处理器设置为运行所述软件程序,并至少部分地基于软件程序所需的公共资源对公共电路进行资源配置;所述处理器还设置为控制至少一个功能电路工作,以实现运行的软件程序对应的测量功能。本实施例提供的多功能测量设备可以同时实现多种测量功能,节省试验台或测试台的空间占用率,降低测试的成本以及避免公共资源的浪费。
实施例二
图2为本申请实施例二提供的一种资源配置方法的流程图,该方法由上述实施例公开的多功能测量设备执行。资源配置可以理解为相同的硬件,通过写入不同的软件而实现不同的功能。如:写入A软件就是A功能,写入B软件就是B功能,写入AB软件就是AB的混合功能,当混合功能中A和B形成资源竞争时,通过软件的方式可以进行资源分配配置。其中,A软件、B软件及AB软件可以是由用户提供的,即是用于自定义的软件。实现混合仪器时,理论上没有仪器种类数的限制,即可以写入多种不同种类的功能软件。如图2所示,该方法包括步骤210至步骤220。
步骤210,获取配置信息。
其中,配置信息包括多功能测量设备的测量功能。测量功能可以包括:示波器功能、信号源功能、频谱分析功能、射频信号源功能、任意波发生器功能、函数源功能、噪声源功能、眼图仪功能、电压表功能、协议分析仪功能、频率计功能、时域反射功能、矢量信号源功能、电源分析仪功能、环路测试仪功能等。
可选的,配置信息还可以包括测量功能对应的参数指标。参数指标可以理解为测量功能包含的参数的上下限。
本实施例中,获取配置信息的方式可以是:检测到测量设备启动时,获取第一配置信息。
其中,第一配置信息为初始配置信息,可以包括多功能测量设备出厂的配置信息、用户上次使用多功能测量设备的配置信息或者由功能切换开关当前所 处的状态确定的信息。
可选的,在获取第一配置信息之后,还包括:启动定时器,以检测在设定时长内是否接收到用户输入的第二配置信息;若在设定时长内未接收到用户输入的第二配置信息,根据第一配置信息启动对应的软件程序。
本实施例中,获取配置信息的方式还可以是:接收用户输入的第二配置信息,根据第二配置信息对第一配置信息进行修改。
可选的,根据第二配置信息对第一配置信息进行修改的方式可以是以下至少之一:根据第二配置信息对第一配置信息中的测量功能进行切换;根据第二配置信息对第一配置信息中的参数指标进行修改。即第二配置信息可以是只切换测量功能,或者只修改指标参数,或者切换测量功能+修改指标参数。
可选的,当配置信息中的测量功能包括至少两个测量功能时,若检测到用户修改所述至少两个测量功能中的一个测量功能的参数指标,调整除所述一个测量功能之外的测量功能的参数指标的参数上下限,使得用户根据修改后的参数上下限配置参数指标。示例性的,根据多功能测量设备剩余的公共资源来调整其他测量功能的参数指标的参数上下限。例如,当将示波器的存储深度设置最大时,信号源的可用内存受到限制,此时会将信号源可用内存的最大值降低。
步骤220,根据配置信息启动对应的软件程序,并为软件程序的运行分配公共资源。
示例性的,根据配置信息包含的测量功能调用存储器中对应的软件程序,处理器运行被调用的软件程序。
本实施例中,根据配置信息启动对应的软件程序的方式可以是:根据配置信息生成配置单;根据配置单中的内容启动对应的软件程序。
本实施例中,为软件程序的运行分配公共资源的方式包括以下之一:根据多功能测量设备的出厂配置分配公共资源;根据用户上次使用多功能测量设备的配置信息分配公共资源;根据用户输入的配置信息分配公共资源;根据用户导入的配置单分配公共资源。示例性的,在按照上述任意一种方式分配公共资 源后,用户可以手动调节公共资源的分配。
其中,用户可以通过交互界面手动分配公共资源。
本实施例中,为软件程序的运行自动分配公共资源还可以包括以下之一:根据当前公共资源的剩余量分配公共资源;根据用户的使用习惯分配公共资源;根据多功能测量设备当前的使用环境分配公共资源。
示例性的,根据当前公共资源的剩余量分配公共资源的过程可以是,多功能测量设备在运行过程中,程序软件会后台检测每种测量功能的资源使用量,当发现某测量功能资源不够或即将不够时,软件会自动根据需要从剩余的资源中申请满足需要的资源量。即:首先确定当前剩余多少资源,然后根据测量功能的需求申请资源;如果目前所剩资源大于所需资源,则申请所需量;如果目前所剩资源小于所需资源,则申请所有剩余资源。
示例性的,根据用户的使用习惯分配公共资源的过程可以是,多功能测量设备在使用过程中会自动记录和分析用户分配公共资源的常用策略,然后根据分析结果分配仪器的公共资源。例如,当分析结果是多功能测量设备常被当作低端仪器使用,或只使用低参数指标的测量功能时,则分配时满足常用功能即可;也可配合手动分配使用。
示例性的,根据测量设备当前的使用环境分配公共资源的过程可以是,多功能测量设备提供使用场景的选择,当用户选择了某场景后,测量设备会根据该场景推荐资源分配比例,可配合动态申请使用,或配合手动分配使用。一可选方式为用户指定使用场景,做性能评估,然后给出相应的资源分配比例。另一可选方式为根据用户输入信号,做性能评估,然后给出相应的资源分配比例。
示例性的,分配完公共资源后,运行软件程序,以控制对应的功能电路工作,使得多功能测量设备工作于配置信息对应的功能模式下。
本实施例的技术方案,获取配置信息,根据配置信息启动对应的软件程序,并为软件程序的运行分配公共资源。根据配置信息为软件程序的运行分配公共资源,实现资源的配置。
可选的,图3为本申请实施中的一种资源配置方法的流程图,作为对上述实施例的解释,该方法包括如下步骤:
多功能测量设备上电启动,获取第一配置信息;启动定时器,以检测在设定时长内是否接收到用户输入的第二配置信息;若在设定时长内接收到用户输入的第二配置信息,则根据第二配置信息生成配置单;根据配置单中的内容启动对应的软件程序;若在设定时长内未接收到用户输入的第二配置信息,根据第一配置信息启动对应的软件程序。运行软件程序,使得多功能测量设备工作于配置信息对应的功能模式下。
实施例三
图4为本申请实施例三提供的一种测量方法的流程图。该方法应用于上述实施例所述的多功能测量设备。如图4所示,该方法包括步骤410至步骤440。
步骤410,获取配置信息。
其中,配置信息包括多功能测量设备的测量功能和测量功能对应的参数指标。
步骤420,根据配置信息启动对应的软件程序,并为软件程序的运行分配公共资源。
步骤430,运行软件程序,启动配置信息对应的功能模式。
步骤440,控制多功能测量设备在功能模式下执行测量工作。
本实施例的技术方案,获取配置信息;根据配置信息启动对应的软件程序,并为软件程序的运行分配公共资源;运行软件程序,启动配置信息对应的功能模式;控制多功能测量设备在功能模式下执行测量工作。通过对软件程序的重配置,使得多功能测量设备实现对多种功能的同时测量。
实施例四
图5为本申请实施例四提供的一种资源配置装置的结构示意图,如图5所示,该装置包括:配置信息获取模块510,资源配置模块520。
配置信息获取模块510,设置为获取配置信息;所述配置信息包括多功能测 量设备的测量功能。
资源配置模块520,设置为根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源。
可选的,配置信息还包括测量功能对应的参数指标。
可选的,配置信息获取模块510,还设置为:
检测到测量设备启动时,获取第一配置信息。
可选的,所述第一配置信息为初始配置信息,包括多功能测量设备出厂的配置信息、用户上次使用多功能测量设备的配置信息或者由功能切换开关当前所处的状态确定的信息。
可选的,配置信息获取模块510,还设置为:
接收用户输入的第二配置信息;
根据第二配置信息对第一配置信息的修改。
可选的,配置信息获取模块510,还设置为:执行以下至少之一:根据所述第二配置信息对第一配置信息中的测量功能进行切换;根据所述第二配置信息对所述第一配置信息中的参数指标进行修改。
可选的,当配置信息中的测量功能包括至少两个测量功能时,配置信息获取模块510,还设置为:
检测到用户修改所述至少两个测量功能中的一个测量功能的参数指标时,调整除所述一个测量功能之外的测量功能的参数指标的参数上下限,使得用户根据修改后的参数上下限配置参数指标。
可选的,该资源配置装置还包括:定时模块,定时模块设置为:
检测在设定时长内是否接收到用户输入的第二配置信息。
可选的,资源配置模块520,还设置为:若在设定时长内未接收到用户输入的第二配置信息,则根据第一配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源。
可选的,资源配置模块520,还设置为:
根据所述配置信息生成配置单;
根据所述配置单中的内容启动对应的软件程序。
可选的,为所述软件程序的运行分配公共资源的方式包括以下之一:根据多功能测量设备的出厂配置分配公共资源;根据用户上次使用多功能测量设备的配置信息分配公共资源;根据用户输入的配置信息分配公共资源;根据用户导入的配置单分配公共资源。
可选的,为所述软件程序的运行自动分配公共资源包括以下之一:根据当前公共资源的剩余量分配公共资源;根据用户的使用习惯分配公共资源;根据多功能测量设备当前的使用环境分配公共资源。
上述装置可执行本申请前述所有实施例所提供的资源配置方法,具备执行上述方法相应的功能模块。未在本实施例中详尽描述的技术细节,可参见本申请前述所有实施例所提供的资源配置方法。
实施例五
本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理装置执行时实现如本申请实施例中的资源配置方法或者测量方法。本申请上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有至少一个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器((Erasable Programmable Read-Only Memory,EPROM)或闪存)、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。 而在本申请中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(Local Area Network,LAN),广域网(Wide Area Networks,WAN),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有至少一个程序,当上述至少一个程序被该电子设备执行时,使得该电子设备执行本申请实施例提供的资源配置方法:获取配置信息;根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源。或者,当上述至少一个程序被该电子设备执行时,使得该电子设备执行本申请实施例提供的测量方法:获取配置信息;根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源;运行所述软件程序,启动所述配置信息对应的功能模式;控制多功能测量设备在所述功能模式下执行测量工作。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言— 诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括LAN或WAN—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本申请各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含至少一个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本申请实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由至少一个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(Field Programmable Gate Array,FPGA)、专用集成电路((Application Specific Integrated Circuit,ASIC)、专用标准产品(Application Specific Standard Parts,ASSP)、片上系统(System on Chip,SOC)、复杂可编程逻辑设备(Complex Programmable Logic Device,CPLD)等等。
在本申请的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于至少一个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。

Claims (18)

  1. 一种多功能测量设备,包括:存储器、处理器、公共电路及多个功能电路;
    所述存储器设置为存储可实现测量功能的软件程序;
    所述公共电路与所述多个功能电路分别相连;所述多个功能电路的功能相同或者部分相同或者完全不同;
    所述处理器设置为运行所述软件程序,并至少部分地基于软件程序所需的公共资源对公共电路进行资源配置;所述处理器还设置为控制至少一个功能电路工作,以实现运行的软件程序对应的测量功能。
  2. 根据权利要求1所述的设备,还包括:输入装置;
    所述输入装置设置为接收所述多功能测量设备的配置信息;所述配置信息包括所述多功能测量设备的测量功能;
    所述处理器设置为根据所述配置信息启动软件程序并根据启动的软件程序配置资源。
  3. 根据权利要求2所述的设备,其中,所述配置信息还包括测量功能对应的参数指标。
  4. 根据权利要求1所述的设备,其中,所述多功能测量设备支持的测量功能至少包括如下功能中的一项:示波器功能、信号源功能、频谱分析功能、射频信号源功能、任意波发生器功能、函数源功能、噪声源功能、眼图仪功能、电压表功能、协议分析仪功能、频率计功能、时域反射功能、矢量信号源功能、电源分析仪功能及环路测试仪功能。
  5. 一种资源配置方法,所述方法用于对多功能测量设备的资源进行配置,所述方法包括:
    获取配置信息;所述配置信息包括多功能测量设备的测量功能;
    根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源。
  6. 根据权利要求5所述的方法,其中,所述配置信息还包括测量功能对应 的参数指标。
  7. 根据权利要求6所述的方法,其中,获取配置信息,包括:
    响应于检测到多功能测量设备启动,获取第一配置信息。
  8. 根据权利要求7所述的方法,其中,所述第一配置信息为初始配置信息,包括多功能测量设备出厂的配置信息、用户上次使用多功能测量设备的配置信息或者由功能切换开关当前所处的状态确定的信息。
  9. 根据权利要求7所述的方法,其中,获取配置信息,还包括:
    接收用户输入的第二配置信息;
    根据所述第二配置信息对所述第一配置信息进行修改。
  10. 根据权利要求9所述的方法,其中,根据所述第二配置信息对所述第一配置信息进行修改,包括以下至少之一:
    根据所述第二配置信息对第一配置信息中的测量功能进行切换;
    根据所述第二配置信息对所述第一配置信息中的参数指标进行修改。
  11. 根据权利要求9所述的方法,其中,响应于配置信息中的测量功能包括至少两个测量功能,根据第二配置信息对所述第一配置信息进行修改,包括:
    响应于检测到用户修改所述至少两个测量功能中的一个测量功能的参数指标,调整除所述一个测量功能之外的测量功能的参数指标的参数上下限。
  12. 根据权利要求7所述的方法,在获取第一配置信息之后,还包括:
    启动定时器,以检测在设定时间内是否接收到用户输入的第二配置信息;
    响应于在设定时长内未接收到用户输入的第二配置信息,根据所述配置信息启动对应的软件程序,包括:
    根据所述第一配置信息启动对应的软件程序。
  13. 根据权利要求5所述的方法,其中,根据所述配置信息启动对应的软件程序,包括:
    根据所述配置信息生成配置单;
    根据所述配置单中的内容启动对应的软件程序。
  14. 根据权利要求5所述的方法,其中,为所述软件程序的运行分配公共资源的方式包括以下之一:
    根据多功能测量设备的出厂配置分配公共资源;
    根据用户上次使用多功能测量设备的配置信息分配公共资源;
    根据用户输入的配置信息分配公共资源;
    根据用户导入的配置单分配公共资源。
  15. 根据权利要求5所述的方法,其中,为所述软件程序的运行自动分配公共资源包括以下之一:
    根据当前公共资源的剩余量分配公共资源;
    根据用户的使用习惯分配公共资源;
    根据多功能测量设备当前的使用环境分配公共资源。
  16. 一种测量方法,包括:
    获取配置信息;所述配置信息包括多功能测量设备的测量功能;
    根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源;
    运行所述软件程序,启动所述配置信息对应的功能模式;
    控制多功能测量设备在所述功能模式下执行测量工作。
  17. 一种资源配置装置,包括:
    配置信息获取模块,设置为获取配置信息;所述配置信息包括多功能测量设备的测量功能;
    资源配置模块,设置为根据所述配置信息启动对应的软件程序,并为所述软件程序的运行分配公共资源。
  18. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理装置执行时,实现如权利要求5-15中任一所述的资源配置方法或者权利要求16所述的测量方法。
PCT/CN2020/139164 2020-06-16 2020-12-24 多功能测量设备、资源配置方法、测量方法、装置及介质 WO2021253784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010547243.2 2020-06-16
CN202010547243.2A CN113804937A (zh) 2020-06-16 2020-06-16 多功能测量设备、资源配置方法、测量方法、装置及介质

Publications (1)

Publication Number Publication Date
WO2021253784A1 true WO2021253784A1 (zh) 2021-12-23

Family

ID=78892523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139164 WO2021253784A1 (zh) 2020-06-16 2020-12-24 多功能测量设备、资源配置方法、测量方法、装置及介质

Country Status (2)

Country Link
CN (1) CN113804937A (zh)
WO (1) WO2021253784A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201477138U (zh) * 2009-07-15 2010-05-19 武汉中元华电科技股份有限公司 一种数字万用表
CN101839930A (zh) * 2009-03-19 2010-09-22 北京普源精电科技有限公司 一种具有配置文件管理功能的测量装置、系统及配置文件复制方法
CN208026785U (zh) * 2018-01-29 2018-10-30 昆山龙腾光电有限公司 一种万用表
CN109270317A (zh) * 2018-11-08 2019-01-25 国网江苏省电力有限公司南通供电分公司 一种多功能电力测量仪表
WO2019169325A1 (en) * 2018-03-01 2019-09-06 Ecm Industries, Llc Pocket multimeter
CN209841947U (zh) * 2019-03-25 2019-12-24 武汉大学 一种量程自动切换的智能万用表

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3764995A (en) * 1971-12-21 1973-10-09 Prd Electronics Inc Programmable test systems
US7610366B2 (en) * 2001-11-06 2009-10-27 Canon Kabushiki Kaisha Dynamic network device reconfiguration
CN101915877A (zh) * 2010-07-02 2010-12-15 北京航空航天大学 一种基于总线技术的通用电磁敏感度测试装置及测试方法
CN102387507B (zh) * 2010-09-01 2016-06-29 中兴通讯股份有限公司 一种多模共传输时传输资源的管理方法和装置
CN102004671B (zh) * 2010-11-15 2013-03-13 北京航空航天大学 一种云计算环境下数据中心基于统计模型的资源管理方法
CN102497409B (zh) * 2011-12-08 2015-09-23 曙光信息产业(北京)有限公司 一种云计算系统资源管理的方法
CN103744714A (zh) * 2011-12-31 2014-04-23 华茂云天科技(北京)有限公司 基于云计算的虚拟机管理平台
CN104427624B (zh) * 2013-08-20 2018-03-23 中国移动通信集团北京有限公司 一种公共网络资源分配方法及系统
CN104426711A (zh) * 2013-08-27 2015-03-18 鸿富锦精密工业(深圳)有限公司 测试控制系统及方法
CN103941119B (zh) * 2014-03-27 2016-09-07 北京汇德信科技有限公司 一种多功能可编程信号发生参数测试系统
CN104198868A (zh) * 2014-09-23 2014-12-10 厦门雅迅网络股份有限公司 一种可灵活扩展和动态配置的智能工装
CN105953829B (zh) * 2016-04-25 2019-02-12 中国人民解放军军械工程学院 一种基于资源共享的自动测试系统及其运行机制
CN106528290A (zh) * 2016-09-17 2017-03-22 上海摩软通讯技术有限公司 移动终端的资源调度方法及移动终端
CN110580845A (zh) * 2019-10-21 2019-12-17 西安与或电子科技有限公司 一种嵌入于综合教学实验平台的虚拟仪器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839930A (zh) * 2009-03-19 2010-09-22 北京普源精电科技有限公司 一种具有配置文件管理功能的测量装置、系统及配置文件复制方法
CN201477138U (zh) * 2009-07-15 2010-05-19 武汉中元华电科技股份有限公司 一种数字万用表
CN208026785U (zh) * 2018-01-29 2018-10-30 昆山龙腾光电有限公司 一种万用表
WO2019169325A1 (en) * 2018-03-01 2019-09-06 Ecm Industries, Llc Pocket multimeter
CN109270317A (zh) * 2018-11-08 2019-01-25 国网江苏省电力有限公司南通供电分公司 一种多功能电力测量仪表
CN209841947U (zh) * 2019-03-25 2019-12-24 武汉大学 一种量程自动切换的智能万用表

Also Published As

Publication number Publication date
CN113804937A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
CN105764024B (zh) 一种无线设备吞吐量的测试方法和装置
CN111625473A (zh) 接口测试用例生成方法、装置、存储介质和电子设备
KR20180082600A (ko) 자동 테스트 장비용 프런트 엔드 모듈
CN110912983B (zh) 一种面向5g和物联网设备的云端一体化测控平台
CN112328419A (zh) 远程过程调用接口的测试用例生成方法、装置、存储介质及电子设备
WO2023273561A1 (zh) 一种测试方法、装置、电子设备及存储介质
CN112148559A (zh) 移动app功耗测试方法、装置、系统及采集端、测试端
CN111966556A (zh) 性能压测方法、装置及服务器和计算机可读存储介质
CN110221261B (zh) 一种雷达波形产生模块测试分析方法及装置
CN106815150B (zh) 服务端接口测试系统及方法
CN108418726A (zh) 用户无线设备的吞吐量测试方法、装置、设备及存储介质
CN112311585A (zh) 选择管理节点的方法和装置、设备及其存储介质
WO2021253784A1 (zh) 多功能测量设备、资源配置方法、测量方法、装置及介质
CN109239576A (zh) 一种高速光通信芯片测试系统及方法
US11442102B2 (en) Test and measurement system for parallel waveform analysis
CN109144864B (zh) 用于测试窗口的方法及装置
CN110689285A (zh) 测试方法、装置、电子设备及计算机可读存储介质
CN107306209A (zh) 一种信息获取方法和装置
CN110749814A (zh) 一种芯片ic样本自动化测试系统及方法
CN112788640B (zh) 通信设备测试方法、装置、存储介质及终端
CN114466395A (zh) 基站性能的测试方法和装置、存储介质及电子装置
WO2021253811A1 (zh) 一种测试功能模块、多功能测试系统及方法
US10996268B2 (en) Session management for interactive debugging
US20230283516A1 (en) System and method for efficient data movement in an orchestrated distributed measurement application
Zayas et al. An End-to-End Automation Framework for Mobile Network Testbeds.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940960

Country of ref document: EP

Kind code of ref document: A1