WO2021253298A1 - 直连通信方法、装置及存储介质 - Google Patents

直连通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2021253298A1
WO2021253298A1 PCT/CN2020/096651 CN2020096651W WO2021253298A1 WO 2021253298 A1 WO2021253298 A1 WO 2021253298A1 CN 2020096651 W CN2020096651 W CN 2020096651W WO 2021253298 A1 WO2021253298 A1 WO 2021253298A1
Authority
WO
WIPO (PCT)
Prior art keywords
direct communication
terminal
direct
communication strategy
strategy
Prior art date
Application number
PCT/CN2020/096651
Other languages
English (en)
French (fr)
Inventor
赵群
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to US18/011,472 priority Critical patent/US20230284245A1/en
Priority to PCT/CN2020/096651 priority patent/WO2021253298A1/zh
Priority to CN202080001321.7A priority patent/CN111869245B/zh
Publication of WO2021253298A1 publication Critical patent/WO2021253298A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0252Traffic management, e.g. flow control or congestion control per individual bearer or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0284Traffic management, e.g. flow control or congestion control detecting congestion or overload during communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0289Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0825Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to a direct communication method, device and storage medium.
  • Sidelink technology is a near field communication technology in which terminals directly connect information through a wireless interface between each other.
  • the terminal monitors in the listening window before the direct communication transmission, and selects the communication resource whose monitoring result is idle for the direct communication transmission.
  • this solution requires the terminal to continuously monitor the channel, which requires a large amount of terminal power consumption.
  • the present disclosure provides a direct connection communication method, device and storage medium.
  • the technical solution is as follows:
  • a direct communication method is provided, the method is executed by a first terminal, and the method includes:
  • a direct communication strategy is selected, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • a method for congestion control in direct communication is provided, the method is executed by a first terminal, and the method includes:
  • Determining a direct communication strategy the direct communication strategy being associated with monitoring and/or selection of direct communication resources
  • the direct connection data transmission parameter value limit is determined.
  • a direct connection communication method is provided, the method is executed by a network device, and the method includes:
  • the channel congestion status is sent to the first terminal for determining a direct communication strategy, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • a direct communication device is provided, the device is used in a first terminal, and the device includes:
  • Channel status acquisition module used to acquire channel congestion status
  • the strategy selection module is configured to select a direct communication strategy according to the channel congestion condition, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • a congestion control device in direct communication is provided, the device is used in a first terminal, and the device includes:
  • a strategy determination module configured to determine a direct communication strategy, the direct communication strategy being associated with monitoring and/or selection of direct communication resources
  • the value limit determination module is configured to determine the value limit of the direct data transmission parameter according to the direct connection communication strategy.
  • a direct communication device is provided, the device is used in a network device, and the device includes:
  • Channel status acquisition module used to acquire channel congestion status
  • the channel condition sending module is configured to send the channel congestion condition to the first terminal for determining a direct communication strategy, the direct communication strategy being associated with monitoring and/or selection of direct communication resources.
  • a direct communication device is provided, the device is used in a first terminal, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • a direct communication strategy is selected, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • a direct communication device is provided, the device is used in a first terminal, and the device includes:
  • a memory for storing executable instructions of the processor
  • the processor is configured to:
  • Determining a direct communication strategy the direct communication strategy being associated with monitoring and/or selection of direct communication resources
  • the direct connection data transmission parameter value limit is determined.
  • a direct communication device is provided, the device is used in a network device, and the device includes:
  • a processor a memory for storing executable instructions of the processor
  • the processor is configured as:
  • the channel congestion status is sent to the first terminal for determining a direct communication strategy, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • a computer-readable storage medium is provided, and executable instructions are stored in the computer-readable storage medium, and a processor in a communication device invokes the executable instructions to implement the foregoing method.
  • a computer program product in another aspect, includes computer instructions stored in a computer-readable storage medium.
  • the processor of the communication device can read the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device implements the foregoing method.
  • the terminal Based on the channel congestion, the terminal selects a direct communication strategy from two direct communication strategies with different amounts of monitoring resources, so as to subsequently select direct communication resources based on the selected strategy, that is to say, the above scheme can pass the channel
  • the congestion state indicates that the terminal uses the direct connection communication mode with different monitoring resources. Since the less the monitoring resources, the lower the corresponding monitoring power consumption. Therefore, the above solution can avoid channel collisions as much as possible, and reduce the terminal Power consumption during direct communication transmission.
  • Fig. 1 is a schematic diagram of an implementation environment provided according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a direct communication method according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a method for congestion control in direct communication according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a direct communication method according to an exemplary embodiment
  • Fig. 5 is a flow chart showing a method for direct communication according to an exemplary embodiment
  • Fig. 6 is a block diagram showing a direct communication device according to an exemplary embodiment
  • Fig. 7 is a block diagram showing a congestion control device in direct communication according to an exemplary embodiment
  • Fig. 8 is a block diagram showing a direct communication device according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram showing a terminal according to an exemplary embodiment
  • Fig. 10 is a schematic diagram showing the structure of a network device according to an exemplary embodiment.
  • the continuous emergence of a new generation of new Internet applications puts forward higher requirements for wireless communication technology, driving the continuous evolution of wireless communication technology to meet the needs of applications.
  • the Internet of Vehicles communication is one of the applications needed to support the development of the current cellular wireless communication network.
  • Vehicle network communication includes vehicle to vehicle (Vehicle to Vehicle, V2V) business, vehicle to roadside equipment (Vehicle to Infrastructure, V2I) business, and vehicle to person (Vehicle to Pedestrian, V2P).
  • V2V vehicle to Vehicle
  • V2I vehicle to Infrastructure
  • V2P vehicle to person
  • V2P vehicle to Pedestrian
  • V2V vehicle equipment
  • V2I vehicle equipment and handheld devices
  • the Internet of Vehicles can effectively improve traffic safety, improve traffic efficiency, and enrich people's travel experience.
  • Using the existing cellular communication technology to support IoV communications can effectively utilize existing base station deployments, reduce equipment overhead, and is also more conducive to providing quality of service (QoS) guaranteed services to meet the needs of IoV services.
  • QoS quality of service
  • the cellular network supports the V2x communication of the Internet of Vehicles, that is, C-V2x (Cellular Based V2x).
  • C-V2x the communication between vehicle-mounted equipment and other equipment can be transferred through the base station and core network, that is, the communication link between the terminal equipment and the base station in the original cellular network is used for communication (uplink/downlink communication); also It can communicate directly through the direct link between the devices (sidelink communication).
  • sidelink communication Compared with Uu interface communication, sidelink communication has the characteristics of short delay and low overhead, and is very suitable for direct communication between vehicle-mounted equipment and other peripheral equipment that is close to the geographical position.
  • V2x sidelink communication in LTE can only support some basic security V2x applications, such as the exchange of Cooperative Awareness Messages (CAM) or Decentralized Environmental Notification Messages (Decentralized Environmental Notification Message, DENM) and other basic security information (Basic Safety Message, BSM), voice broadcast communication, etc.
  • CAM Cooperative Awareness Messages
  • DENM Decentralized Environmental Notification Message
  • BSM Basic Safety Message
  • 5G also known as New Radio (NR) technology to support new V2x communication services and scenarios has been planned as an important part of Rel16 by the 3GPP.
  • 5G 5th Generation Mobile Communication
  • NR New Radio
  • the 3GPP SA1 Service Requirement
  • the 3GPP SA1 Service Requirement
  • NR V2x sidelink needs to provide higher communication rates, shorter communication delays, and more reliable communication quality.
  • the current 5G V2x technology mainly considers communication between in-vehicle terminals, and little consideration is given to the needs of terminal forms such as handheld terminals, such as power saving.
  • Both LTE V2x and 5G V2x rely on terminal monitoring to reduce interference between neighboring terminals, that is, terminals that avoid mutual interference select the same time and frequency resources for direct transmission.
  • the terminal needs to continuously monitor the resource reservation information of other user equipment in the monitoring window before resource selection, and perform corresponding measurement operations, and remove those time-frequency expected interferences from the resource selection window according to the resource reservation information and measurement values. Resource, and select the final time-frequency resource used for direct transmission from the remaining time-frequency resources.
  • FIG. 1 is a schematic diagram showing an implementation environment involved in a direct communication method according to some exemplary embodiments. As shown in FIG. 1, the implementation environment may include several terminals 110 and base stations 120.
  • the terminal 110 is a wireless communication device that supports multiple wireless access technologies for sidelink transmission.
  • the terminal 110 may support cellular mobile communication technology, for example, may support the fifth-generation mobile communication technology.
  • the terminal 110 may also support a next-generation mobile communication technology of 5G technology.
  • the terminal 110 may be a vehicle-mounted communication device, for example, it may be a trip computer with a wireless communication function, or a wireless communication device connected to the trip computer.
  • the terminal 110 may also be a roadside device, for example, it may be a street lamp, signal lamp or other roadside device with a wireless communication function.
  • the terminal 110 may also be a user terminal device, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal, for example, it may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device .
  • a user terminal device such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal, for example, it may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device .
  • station Station, STA
  • subscriber unit Subscriber Unit
  • Subscriber Station mobile station
  • Mobile mobile station
  • Remote station Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment (UE).
  • the terminal 110 may be a mobile terminal such as a smart phone, a tablet computer, or an e-book reader, or may be a smart wearable device such as smart glasses, a smart watch, or a smart bracelet.
  • the base station 120 may be a network side device in a wireless communication system.
  • the wireless communication system can also be a 5G system, also known as a new air interface NR system.
  • the wireless communication system may also be a next-generation or multi-generation system of the 5G system.
  • the base station 120 may be a base station (gNB) adopting a centralized and distributed architecture in the 5G system.
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (Central Unit, CU) and at least two distributed units (Distributed Unit, DU).
  • the centralized unit is provided with a packet data convergence protocol (Packet Data Convergence Protocol, PDCP) layer, a radio link layer control protocol (Radio Link Control, RLC) layer, and a media access control (Media Access Control, MAC) layer protocol stack; distribution A physical (Physical, PHY) layer protocol stack is provided in the unit, and the embodiment of the present disclosure does not limit the specific implementation manner of the base station 120.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC media access control
  • a wireless connection can be established between the base station 120 and the terminal 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fifth-generation mobile communication network technology (5G) standard, for example, the wireless air interface is a new air interface; or, the wireless air interface can also be a wireless air interface based on 5G-based next-generation mobile communication network technology standards .
  • 5G fifth-generation mobile communication network technology
  • the foregoing wireless communication system may further include a network management device 130.
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an Evolved Packet Core (EPC) network. MME).
  • the network management device may also be other core network devices, such as Serving GateWay (SGW), Public Data Network GateWay (PGW), and Policy and Charging Rules functional unit (Policy and Charging Rules). Function, PCRF) or Home Subscriber Server (HSS), etc.
  • SGW Serving GateWay
  • PGW Public Data Network GateWay
  • Policy and Charging Rules Policy and Charging Rules
  • Function PCRF
  • HSS Home Subscriber Server
  • Fig. 2 is a flow chart showing a direct communication method according to an exemplary embodiment.
  • the direct communication method may be executed by a first terminal.
  • the first terminal may be a device in the implementation environment shown in Fig. 1 Terminal 110.
  • the method may include the following steps.
  • step 201 the channel congestion status is acquired.
  • the foregoing channel congestion status is used to indicate a channel busy ratio (Channel Busy Ratio, CBR) measurement value.
  • the channel congestion condition may refer to the congestion condition of the directly connected communication channel associated with the first terminal.
  • a direct communication strategy is selected according to the channel congestion condition, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • the direct communication strategy is a strategy for selecting resources for direct communication; the direct communication strategy includes a first direct communication strategy and/or a second direct communication strategy; The resources monitored under the always-connected communication strategy are less than the resources monitored under the second direct-connected communication strategy.
  • the terminal can select the first direct communication strategy as the direct communication strategy, and select direct communication resources with or without monitoring on a small amount of resources, so as to save the power consumption of the terminal.
  • the terminal When the CBR measurement value is high, it means that in the vicinity of the terminal, the proportion of direct communication channels is occupied, and most of the channels are occupied. At this time, the terminal needs to perform complete channel monitoring to determine where other nearby terminals are located. Reserve the location of time-frequency resources and avoid possible interference. Otherwise, it is possible to select time-frequency resources with strong interference and have a greater impact on system performance. In this case, the terminal can only select the second direct communication strategy as the direct communication strategy, and select the target direct communication resource when monitoring on most or all resources to ensure that a suitable direct connection can be selected. Communication resources to avoid resource collisions.
  • the selection of a direct communication strategy according to the channel congestion status includes:
  • a direct communication strategy is selected.
  • the first continuous communication strategy in response to the channel congestion condition not reaching the congestion threshold, is selected; or,
  • the second direct communication strategy is selected.
  • the resources monitored under the first direct communication strategy are less than the resources monitored under the second direct communication strategy.
  • the channel congestion condition is obtained by performing a channel busy ratio CBR measurement on at least one designated channel.
  • the channel congestion condition is measured by network equipment
  • the acquisition of channel congestion status includes:
  • the channel congestion status includes an indication of the direct communication of the first terminal.
  • receiving the channel congestion status sent by the network device includes:
  • the receiving the channel congestion status sent by the network device includes:
  • the method further includes:
  • the method further includes:
  • the corresponding congestion threshold is selected according to the priority of the direct data to be sent by the first terminal.
  • the method further includes:
  • the method further includes:
  • CBR measurement is performed.
  • the first direct communication strategy includes:
  • Monitor part of the resources in the direct communication resource pool and select the target direct communication resource from the part of resources according to the monitoring result;
  • the target direct communication resource is randomly selected from the direct communication resource pool.
  • the terminal selects a direct communication strategy from two direct communication strategies with different amounts of monitoring resources according to the channel congestion status, so that the subsequent direct communication strategy is selected based on the selected strategy.
  • Connected communication resources that is, the above solution can instruct the terminal to use a direct connection communication mode with a different amount of monitoring resources through the channel congestion status. Since the fewer monitoring resources, the lower the corresponding monitoring power consumption. Therefore, the above solution It is possible to reduce the power consumption of the terminal during direct communication transmission while avoiding channel collisions as much as possible.
  • Fig. 3 is a flow chart showing a congestion control method in direct communication according to an exemplary embodiment.
  • the congestion control method in direct communication may be executed by a first terminal.
  • the first terminal may be 1 shows the terminal 110 in the implementation environment.
  • the method may include the following steps.
  • a direct communication strategy is determined, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • the direct communication strategy is a strategy for selecting resources for direct communication;
  • the direct communication strategy includes a first strategy and/or a second strategy; in the first strategy The resources monitored under the second policy are less than the resources monitored under the second strategy;
  • step 302 according to the direct connection communication strategy, the value limit of the direct connection data transmission parameter is determined.
  • the direct communication strategy includes a first direct communication strategy and/or a second direct communication strategy; the monitored resources under the first direct communication strategy are less than those in the second direct communication strategy. Resources monitored under the communication strategy.
  • the communication resource for direct transmission is selected according to the direct communication strategy
  • the communication resources include at least one of time resources, frequency resources, and port resources.
  • the determination of the direct connection data transmission parameter value limit according to the direct connection communication strategy includes:
  • the transmission parameter mapping relationship includes a corresponding relationship between the channel congestion condition and the value limit of the direct data transmission parameter
  • the method further includes:
  • the value limitation of the direct data transmission parameter includes at least one of the following:
  • the upper limit of the channel usage ratio CR is the upper limit of the channel usage ratio CR.
  • the terminal selects a direct communication strategy from two direct communication strategies with different amounts of monitoring resources based on the channel congestion status, so that the subsequent direct communication strategy is selected based on the selected strategy.
  • Connected communication resources that is, the above solution can instruct the terminal to use a direct connection communication mode with a different amount of monitoring resources through the channel congestion status. Since the fewer monitoring resources, the lower the corresponding monitoring power consumption. Therefore, the above solution It is possible to reduce the power consumption of the terminal during direct communication transmission while avoiding channel collisions as much as possible.
  • the channel congestion condition may be measured and generated by the first terminal itself through CBR measurement, or may be generated by the measurement of a network device other than the first terminal.
  • the program steps performed by the network device are as follows.
  • Fig. 4 is a flow chart showing a direct communication method according to an exemplary embodiment.
  • the direct communication method may be executed by a network device.
  • the network device may be the terminal 110 in the implementation environment shown in Fig. 1 Or base station 120.
  • the method may include the following steps.
  • step 401 the channel congestion status is acquired.
  • the above-mentioned performing channel congestion measurement refers to performing CBR measurement, obtaining a CBR measurement value, and generating a channel congestion state according to the CBR measurement value.
  • the channel congestion condition may refer to the congestion condition of the direct channel associated with the first terminal.
  • the aforementioned channel congestion status may also be sent to the network device after the terminal performs channel congestion status measurement.
  • the network device is a base station
  • a second terminal other than the first terminal may perform channel congestion measurement and report the channel congestion to the base station.
  • step 402 the channel congestion status is sent to the first terminal for determining a direct communication strategy, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • the channel congestion status includes an indication of a direct communication strategy for the first terminal; the direct communication strategy includes a first direct communication strategy and/or a second direct communication strategy; The resources monitored under the first direct communication strategy are less than the resources monitored under the second direct communication strategy.
  • the channel congestion condition is obtained by performing CBR measurement on at least one designated channel.
  • the network device is a base station
  • the channel congestion status is sent to the first terminal for determining a direct communication strategy
  • the direct communication strategy is related to monitoring and/or direct communication resources. Or choose to associate, including:
  • the channel congestion status is sent to the first terminal through first signaling, where the first signaling includes at least one of radio resource control RRC signaling and downlink control information DCI.
  • the network device is the second terminal, and the channel congestion status is sent to the first terminal for determining the direct communication strategy, and the direct communication strategy is related to monitoring of direct communication resources. And/or choose to associate, including:
  • the channel congestion status is sent to the first terminal through a second signaling.
  • the second signaling includes at least one of physical layer direct connection control information, medium access control MAC layer direct connection control information, and RRC layer direct connection control information.
  • the network device is a base station, and further includes:
  • the network device is a base station, and further includes:
  • the corresponding relationship between the priority and the congestion threshold is sent to the first terminal through downlink signaling; the priority is the priority of the direct data to be sent by the first terminal.
  • the network device is a base station, and further includes:
  • the measurement configuration parameter is sent to the first terminal through downlink signaling, and the measurement configuration parameter is used to indicate the timing of the CBR measurement of the first terminal.
  • the network device is a base station, and further includes:
  • the transmission parameter mapping relationship corresponding to the direct communication strategy is sent to the first terminal through downlink signaling.
  • the terminal selects a direct communication strategy from two direct communication strategies with different amounts of monitoring resources based on the channel congestion status, so that the subsequent direct communication strategy is selected based on the selected strategy.
  • Connected communication resources that is, the above solution can instruct the terminal to use a direct connection communication mode with a different amount of monitoring resources through the channel congestion status. Since the fewer monitoring resources, the lower the corresponding monitoring power consumption. Therefore, the above solution It is possible to reduce the power consumption of the terminal during direct communication transmission while avoiding channel collisions as much as possible.
  • Fig. 5 is a flow chart showing a direct communication method according to an exemplary embodiment.
  • the direct communication method may be executed interactively by a first terminal and a network device.
  • the terminal may be in the implementation environment shown in Fig. 1
  • the terminal 110 of the network device may be the terminal 110 or the base station 120 of the terminal in the implementation environment shown in FIG. 1.
  • the method may include the following steps.
  • step 501 the network device obtains the channel congestion status.
  • the network device performs channel congestion measurement to obtain channel congestion.
  • the network device performs CBR measurement to obtain the CBR measurement value.
  • the network device is a base station or a second terminal.
  • the base station when the network device is a base station, the base station is a base station corresponding to a serving cell of the first terminal, or the base station is a base station closest to the first terminal.
  • the second terminal is a terminal within a specified range around the first terminal.
  • the second terminal is a user terminal; or, the second terminal is a non-user terminal, for example, the second terminal is a roadside device in a V2X system.
  • the channel congestion condition including the CBR measurement value, or the channel congestion condition being generated based on the CBR measurement value
  • the second terminal when the second terminal is within a specified range around the first terminal (for example, the first terminal and the When the distance between the second terminal is less than a certain preset threshold), the wireless environment around the first terminal and the second terminal are the same or similar.
  • the CBR measurement value measured at the second terminal is used as the measurement value of the CBR at the first terminal.
  • the CBR measurement value, or the CBR measurement value measured at the second terminal is used as an approximate value of the CBR measurement value at the first terminal.
  • the network device receives the channel congestion status uploaded by the second terminal.
  • the channel congestion condition is obtained by performing a channel busy ratio CBR measurement on at least one designated channel.
  • the CBR measurement value is based on the measurement value of the specific channel in the designated direct communication resource pool, such as the direct data shared channel (Pysical Sidelink Share Channel, PSSCH), and the direct connection control channel (Pysical Sidelink Control). Channel, PSCCH) or Direct Feedback Channel (Physical Sidelink Feedback Channel, PSFCH); or, the CBR measurement value is a measurement value based on multiple specified channels, for example, for the PSSCH and the PSFCH in a resource pool PSCCH is the measured value obtained by measuring together.
  • the direct data shared channel Physical Sidelink Share Channel, PSSCH
  • PSCCH Direct connection control channel
  • PSFCH Direct Feedback Channel
  • the CBR measurement value is a measurement value based on multiple specified channels, for example, for the PSSCH and the PSFCH in a resource pool PSCCH is the measured value obtained by measuring together.
  • the network device generates a channel congestion condition based on the CBR measurement value, and the channel congestion condition is used to indicate a direct communication strategy corresponding to the CBR measurement value.
  • the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • the direct communication strategy is a strategy for selecting resources for direct communication; the direct communication strategy includes a first direct communication strategy and/or a second direct communication strategy; The resources monitored under the first direct communication strategy are less than the resources monitored under the second direct communication strategy.
  • the first direct communication strategy is also called power saving mode
  • the second direct communication strategy is also called non-power saving mode; in the power saving mode, the first terminal performs direct communication transmission The energy consumption is lower than that of direct communication transmission in non-power-saving mode.
  • the channel congestion status includes at least one of a CBR measurement value and an indication of a direct communication strategy for the first terminal.
  • the above-mentioned indication of the direct communication strategy for the first terminal is used to indicate the direct communication strategy corresponding to the CBR measurement value.
  • the network device directly adds the CBR measurement value to the channel congestion condition.
  • the network device determines the direct communication strategy according to the CBR measurement value, and adds an indication of the determined direct communication strategy to the channel congestion condition.
  • the network device selects the direct connection according to the relationship between the channel congestion status and the congestion threshold.
  • the connected communication strategy determines the direct communication strategy according to the relationship between the CBR measurement value and the measurement threshold.
  • the above-mentioned selection of a direct communication strategy according to the relationship between the channel congestion status and the congestion threshold includes:
  • the direct communication strategy is the second direct communication strategy.
  • the congestion threshold for determining the first direct communication strategy is the same as or different from the congestion threshold for determining the second direct communication strategy.
  • the foregoing congestion threshold includes a first congestion threshold and a second congestion threshold, where the first congestion threshold is less than or equal to the second congestion threshold.
  • the direct communication strategy is determined to be the first continuous communication strategy; when the channel congestion condition reaches the second congestion threshold, the direct communication strategy is determined to be the second congestion threshold. Direct communication strategy.
  • the first congestion threshold is the first measurement threshold
  • the second congestion threshold is the second measurement threshold.
  • the network device thinks that most of the direct communication resources are currently not occupied.
  • the first terminal monitors or does not monitor on a small amount of resources, that is, there is a high probability of selection Perform direct communication transmission to an idle direct communication resource. Therefore, the network device determines the direct communication strategy as the first direct communication strategy.
  • the network device when the CBR measurement value is not less than the second measurement threshold, for example, when the CBR measurement value is not less than 0.6, the network device considers that most of the direct communication resources are currently not occupied. At this time, the first terminal passes on a small amount of resources. If monitoring or not monitoring is performed, it is likely that idle direct communication resources cannot be selected. Therefore, the network device determines that the direct communication strategy is the second direct communication strategy.
  • the first terminal is currently in a state where energy-saving optimization can be used (state 1), then only when the CBR measurement value exceeds the preset threshold 1, can the first terminal enter a state where energy-saving optimization cannot be used (state 2); on the contrary, if the first terminal A terminal is currently in a state where energy-saving optimization cannot be used (state 2), and only when the CBR measurement value is less than the preset threshold 2, the first terminal starts to use energy-saving optimization (entering state 1).
  • the preset threshold value 1 is greater than the preset threshold value 2.
  • the above solution is introduced by taking an example that the first measurement threshold is 0.4 and the second measurement threshold is 0.6.
  • the first measurement threshold and the second measurement threshold take values other than 0.4 and 0.6, as long as the first measurement threshold is less than or equal to the second measurement threshold.
  • the foregoing first measurement threshold and the second measurement threshold are both 0.4, or both are 0.5, and so on.
  • the first measurement threshold value and the second measurement threshold value are the same, that is, the system contains a measurement threshold value, which is regarded as the first measurement threshold value Used as the second measurement threshold.
  • the network device also performs the following steps:
  • the congestion threshold configured by the receiving base station through downlink signaling.
  • the congestion threshold (such as the first congestion threshold and the second congestion threshold) is a threshold specified by a communication protocol; for example, the congestion threshold is set in the network device before leaving the factory, or, The congestion threshold is updated when the system is upgraded.
  • the aforementioned congestion threshold is statically, semi-statically or dynamically configured by the base station to the network device.
  • the congestion threshold is a threshold corresponding to the priority of the direct data to be sent by the first terminal.
  • the channel congestion status is obtained by measuring the CBR.
  • the first congestion threshold is the first measurement threshold
  • the second congestion threshold is the second measurement threshold.
  • the CBR measurement The measurement threshold corresponding to the value can be different.
  • the higher the priority of the direct data to be sent by the first terminal the higher the CBR measurement threshold is set accordingly. This means that when the channel is relatively congested, the terminal that needs energy saving will only use the energy-saving optimization solution that may cause more transmission collisions and interference when transmitting higher priority data.
  • the network device is pre-configured with congestion thresholds corresponding to different priorities through a base station or a communication protocol.
  • the location reporting service has a high service priority, while the power reporting service has a low service priority; for example, the congestion threshold is a single threshold, and the network device is pre-configured
  • the congestion threshold corresponding to the location reporting service is 0.5, and the congestion threshold corresponding to the power reporting service is 0.3; that is, if the current service of the first terminal is the location reporting service, then when the CBR measurement value is less than 0.5, the first terminal That is, the first continuous communication strategy can be used (that is, the energy-saving optimization scheme is used); and if the current service of the first terminal is a power report service, then when the CBR measurement value is less than 0.3, the first terminal can use the first continuous communication strategy. Communication strategy.
  • UEs with high-priority services can cause collisions, and UEs with low-priority services should try not to cause collisions.
  • the embodiment of this application controls UEs with low-priority services to not perform collisions.
  • the state of energy-saving optimization (that is, the second direct communication strategy), that is, to monitor the channel conditions as much as possible, to avoid conflicts as much as possible, and high-priority UEs do not need to maintain the second strategy and can enter the state of energy-saving optimization ( That is, the first continuous communication strategy), continue to occupy resources with a small amount of monitoring or no monitoring, so as to ensure the priority of high-priority services (that is, to ensure timely transmission of high-priority services).
  • step 502 the network device sends the channel congestion status to the first terminal; correspondingly, the first terminal receives the channel congestion status.
  • the base station when the network device is a base station, the base station sends the channel congestion status to the first terminal through the first signaling, and accordingly, the first terminal receives the channel congestion status sent by the base station through the first signaling.
  • the first signaling includes at least one of radio resource control RRC signaling and downlink control information DCI.
  • the second terminal when the network device is the second terminal, the second terminal sends the channel congestion status to the first terminal through the second signaling, and correspondingly, the first terminal receives the base station through the second signaling.
  • the second signaling includes at least one of physical layer direct connection control information, medium access control MAC layer direct connection control information, and RRC layer direct connection control information.
  • the CBR measurement is stopped.
  • the second terminal performs the CBR measurement, the obtained channel congestion status is provided to the first terminal.
  • the second terminal is a terminal that uses the second direct communication strategy, or the second terminal is a terminal that does not require energy saving (such as a fixedly installed roadside device with a stable power supply system).
  • the above steps 501 to 502 are optional steps.
  • the above-mentioned channel congestion condition is measured and generated by the first terminal on its own channel condition, such as CBR measurement.
  • the process in which the first terminal measures the CBR measurement value and generates the channel congestion condition is similar to the process in which the network device measures the CBR measurement value and generates the channel congestion condition, and will not be repeated here.
  • the first terminal obtains a preset congestion threshold; or, receives downlink signaling sent by the base station, and obtains the congestion threshold according to the downlink signaling.
  • the first terminal selects the corresponding congestion threshold according to the priority of the direct data to be sent by the first terminal.
  • the first terminal obtains the preset correspondence between the priority and the congestion threshold; or, receives downlink signaling sent by the base station, and obtains the priority and the congestion threshold according to the downlink signaling.
  • the corresponding relationship the first terminal obtains the preset correspondence between the priority and the congestion threshold; or, receives downlink signaling sent by the base station, and obtains the priority and the congestion threshold according to the downlink signaling. The corresponding relationship.
  • the congestion threshold in the first terminal is preset in the first terminal; or, when the congestion threshold in the first terminal is configured by the receiving base station through downlink signaling, correspondingly, the base station uses downlink signaling in advance. Configure the congestion threshold to the first terminal.
  • the first terminal is configured with congestion thresholds corresponding to different priorities in advance through a base station or a communication protocol.
  • the first terminal judges whether to use the energy saving solution according to a default configuration, where the default configuration may be predefined by the protocol or preconfigured , Or configured through the base station downlink signaling.
  • a measurement configuration parameter is acquired, and the measurement configuration parameter is used to indicate the timing of CBR measurement; and CBR is performed according to the timing of the CBR measurement Measurement; For example, when the time for CBR measurement arrives, exit the first continuous communication strategy to perform CBR measurement.
  • the measurement configuration parameter is sent to the first terminal through downlink signaling, and the measurement configuration parameter is used to indicate the timing of the CBR measurement of the first terminal.
  • the first terminal receives the measurement configuration parameter sent by the base station.
  • a timer or measurement period is configured for the first terminal.
  • the timing is long, exit from the energy-saving state to perform CBR measurement, and determine whether to re-enter the energy-saving state according to the CBR measurement result, where the above-mentioned CBR threshold, measurement period, or timer length for determining whether to re-enter the energy-saving state is pre-configured , Or configured through the base station downlink signaling.
  • step 503 the first terminal selects a direct communication strategy according to the channel congestion status.
  • the first terminal when the channel congestion condition directly includes the indication of the direct communication selection strategy, the first terminal directly obtains the direct communication strategy according to the indication in the channel congestion condition.
  • the first terminal selects a direct communication strategy according to the relationship between the channel congestion status and the congestion threshold.
  • the first terminal determines the direct communication strategy according to the CBR measurement value.
  • the first terminal determines that the direct communication strategy is the first direct communication strategy
  • the first terminal determines that the direct communication strategy is the second direct communication strategy.
  • the first terminal obtains the preset congestion threshold
  • the first terminal receives the downlink signaling sent by the base station, and obtains the congestion threshold according to the downlink signaling.
  • the congestion threshold is sent to the first terminal through downlink signaling.
  • the first terminal selects the corresponding congestion threshold according to the priority of the direct data to be sent by the first terminal.
  • the first terminal obtains the preset correspondence between the priority and the congestion threshold; or,
  • the first terminal receives the downlink signaling sent by the base station, and obtains the correspondence between the priority and the congestion threshold according to the downlink signaling.
  • the network device is a base station
  • the corresponding relationship between the priority and the congestion threshold is sent to the first terminal through downlink signaling.
  • step 504 the first terminal selects a communication resource for direct transmission according to the direct communication strategy.
  • the communication resource includes at least one of time resource, frequency resource and port resource.
  • the first direct communication strategy includes:
  • Monitor part of the resources in the directly connected communication resource pool and select the target directly connected communication resource from the part of resources according to the monitoring result;
  • the second direct communication strategy includes:
  • Monitor all resources in the directly connected communication resource pool, and select the target directly connected communication resource from the directly connected communication resource pool according to the monitoring result.
  • the first terminal selects the target direct communication resource according to the channel congestion condition in the following manner:
  • the resource selection mode is acquired; according to the resource selection mode, the target direct communication resource is selected from the direct communication resource pool.
  • the first terminal determines When using the first direct communication strategy for direct communication transmission, first obtain the resource selection method.
  • the step of obtaining the resource selection method may include:
  • the first terminal obtains the resource selection mode corresponding to the CBR measurement value
  • the first terminal obtains the resource selection mode included in the channel congestion condition.
  • the above-mentioned CBR measurement value is related to the resource selection mode under the first continuous communication strategy, that is, when the channel congestion condition includes the CBR measurement value, the first terminal uses the CBR measurement value Query the correspondence between the CBR measurement value and the resource selection mode.
  • the first terminal has preset measurement value intervals corresponding to various resource selection modes, and after the first terminal obtains the channel congestion status including the CBR measurement value, Determine the measurement value interval in which the CBR measurement value is located, and then determine the resource selection method corresponding to the measurement value interval.
  • the aforementioned channel congestion condition directly carries the aforementioned resource selection method, for example, when the channel congestion condition is the information sent by the network device, the network device generates the channel congestion condition according to a preset The measurement value interval corresponding to various resource selection methods is determined, the resource selection method corresponding to the CBR measurement value is determined, and the determined resource selection method is added to the channel congestion condition.
  • step 505 the first terminal determines the value limit of the direct data transmission parameter according to the direct communication strategy.
  • the above-mentioned direct data transmission parameter value limit is indicated by a congestion control configuration, which includes different CBR measurement values and the terminal’s direct data transmission parameter value limit The configuration of the mapping relationship between.
  • the value limitation of the direct data transmission parameter includes at least one of the following:
  • the upper limit of the channel usage ratio CR is the upper limit of the channel usage ratio CR.
  • the efficiency and number of the terminal's use of the direct connection time and frequency resources can be controlled, so as to reduce the frequency resource occupation when the terminal is directly connected, and then reduce congestion.
  • the terminal can be restricted to only use a higher modulation and coding scheme MCS (the same load size using a higher MCS will occupy less time-frequency resources, thereby reducing the number of terminals.
  • the probability of collision between direct transmissions between terminals reduce the number of terminal retransmissions (fewer retransmissions will reduce the probability of direct transmission collisions between terminals), use a lower maximum transmission power (to reduce interference between terminals), or Directly limit the upper limit of the proportion of direct connection time-frequency resources that can be occupied by the direct transmission of data with a given priority of the terminal.
  • the foregoing determination of the limit on the value of the direct data transmission parameter according to the channel congestion condition includes:
  • the transmission parameter mapping relationship includes the corresponding relationship between the channel congestion condition and the direct connection data transmission parameter value limit
  • the foregoing transmission parameter mapping relationship includes transmission parameter sub-tables corresponding to various resource selection methods under the first direct communication strategy. Accordingly, when the first terminal determines the direct communication strategy When it is the first continuous communication strategy, the corresponding transmission parameter sub-table is also selected according to the corresponding resource selection method, and the direct data transmission parameters are queried in the selected transmission parameter sub-table based on the channel congestion status (such as CBR measurement value) Value limit.
  • the channel congestion status such as CBR measurement value
  • the first terminal also receives downlink signaling sent by the base station, and obtains the transmission parameter mapping relationship according to the downlink signaling.
  • the network device when the network device is a base station, the network device sends the transmission parameter mapping relationship corresponding to the direct communication strategy to the first terminal through downlink signaling.
  • the transmission parameter mapping relationship corresponding to each direct communication strategy is preset in the first terminal.
  • the base station can independently configure congestion control when the terminal uses the direct communication strategy through downlink signaling. It is also possible to independently pre-configure congestion control when the terminal uses different direct communication strategies. For example, for resource selection based on energy-saving optimization (such as resource selection based on partial monitoring or random selection based on non-monitoring), the mapping between a set of CBR measurement values and the value range of the terminal's direct data transmission parameter is configured, which is not performed Energy-saving optimized resource selection configures the mapping between another set of CBR measurement values and the terminal's direct data transmission parameter range, and the terminal selects an appropriate set of mappings according to the resource selection method used for its own direct transmission.
  • energy-saving optimization such as resource selection based on partial monitoring or random selection based on non-monitoring
  • step 506 on the target direct communication resource, direct communication data transmission is performed according to the value restriction of the direct data transmission parameter.
  • the first terminal may combine the target direct communication resource and the direct data transmission parameter value limit to perform direct communication data transmission.
  • the terminal selects a direct communication strategy from two direct communication strategies with different amounts of monitoring resources based on the channel congestion status, so that the subsequent direct communication strategy is selected based on the selected strategy.
  • Connected communication resources that is, the above solution can instruct the terminal to use a direct communication strategy with a different amount of monitoring resources through the channel congestion. Since the fewer monitoring resources, the lower the corresponding monitoring power consumption. Therefore, the above solution It is possible to reduce the power consumption of the terminal during direct communication transmission while avoiding channel collisions as much as possible.
  • Fig. 6 is a block diagram showing a direct communication device according to an exemplary embodiment. As shown in Fig. 6, the direct communication device can execute the steps performed by the first terminal in the embodiment shown in Fig. 2 or Fig. 5 .
  • the direct communication device may include:
  • the channel condition acquiring module 601 is used to acquire the channel congestion status
  • the strategy selection module 602 is configured to select a direct communication strategy according to the channel congestion condition, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • the direct communication strategy is a strategy for selecting resources for direct communication; the direct communication strategy includes a first direct communication strategy and/or a second direct communication strategy; The resources monitored under the first direct communication strategy are less than the resources monitored under the second direct communication strategy.
  • the strategy selection module is configured to select a direct communication strategy according to the relationship between the channel congestion status and the congestion threshold.
  • the strategy selection module is used to:
  • the first continuous communication strategy is selected; or,
  • the resources monitored under the first direct communication strategy are less than the resources monitored under the second direct communication strategy.
  • the channel congestion condition is obtained by performing a channel busy ratio CBR measurement on at least one designated channel.
  • the channel congestion condition is measured by a network device
  • the channel condition acquisition module is configured to receive the channel congestion condition sent by the network device.
  • the channel congestion status includes an indication of the direct communication strategy of the first terminal.
  • the network device is a base station
  • the channel condition acquisition module is configured to:
  • the network device is a second terminal
  • the channel condition acquisition module is configured to:
  • the device further includes: a first threshold acquisition module, or a second threshold acquisition module;
  • the first threshold acquisition module is configured to acquire the preset congestion threshold
  • the second threshold obtaining module is configured to receive downlink signaling sent by the base station, and obtain the congestion threshold according to the downlink signaling.
  • the device further includes:
  • the threshold selection module is configured to select the corresponding congestion threshold according to the priority of the directly connected data to be sent by the first terminal.
  • the device further includes: a first correspondence acquiring module, or a second correspondence acquiring module;
  • the first correspondence acquiring module is configured to acquire the preset correspondence between the priority and the congestion threshold
  • the second correspondence obtaining module is configured to receive downlink signaling sent by the base station, and obtain the correspondence between the priority and the congestion threshold according to the downlink signaling.
  • the device further includes:
  • a configuration parameter acquisition module configured to acquire measurement configuration parameters, where the measurement configuration parameters are used to indicate the timing of CBR measurement;
  • the measurement module is used to perform CBR measurement according to the timing of CBR measurement.
  • the first direct communication strategy includes:
  • Monitor part of the resources in the directly connected communication resource pool and select the target directly connected communication resource from the part of resources according to the monitoring result;
  • the target direct communication resource is randomly selected from the direct communication resource pool.
  • Fig. 7 is a block diagram showing a congestion control device in direct communication according to an exemplary embodiment. As shown in Fig. 7, the congestion control device in direct communication can execute the embodiment shown in Fig. 3 or Fig. 5 In the steps performed by the first terminal.
  • the congestion control device in the direct communication may include:
  • the strategy determination module 701 is configured to determine a direct communication strategy, the direct communication strategy being associated with monitoring and/or selection of direct communication resources;
  • the value limit determination module 702 is configured to determine the value limit of the direct data transmission parameter according to the direct communication strategy.
  • the direct communication strategy includes a first direct communication strategy and/or a second direct communication strategy; the monitored resources under the first direct communication strategy are less than those in the Resources monitored under the second direct communication strategy.
  • the device further includes:
  • a communication resource determining module configured to select communication resources for direct transmission according to the direct communication strategy
  • the communication resources include at least one of time resources, frequency resources, and port resources.
  • the value limit determination module is configured to:
  • the transmission parameter mapping relationship includes a corresponding relationship between the channel congestion condition and the direct connection data transmission parameter value limit
  • the device further includes:
  • the mapping relationship obtaining module is configured to receive downlink signaling sent by the base station, and obtain the transmission parameter mapping relationship according to the downlink signaling.
  • the limitation on the value of the direct data transmission parameter includes at least one of the following:
  • the upper limit of the channel usage ratio CR is the upper limit of the channel usage ratio CR.
  • Fig. 8 is a block diagram showing a direct communication device according to an exemplary embodiment. As shown in Fig. 8, the direct communication device can execute the steps performed by the network device in the embodiment shown in Fig. 4 or Fig. 5.
  • the direct communication device may include:
  • the channel condition acquiring module 801 is used to acquire the channel congestion status
  • the channel condition sending module 802 is configured to send the channel congestion condition to the first terminal for determining a direct communication strategy, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • the channel congestion condition is obtained by performing CBR measurement on at least one designated channel.
  • the channel congestion status includes an indication of the direct communication strategy for the first terminal; the direct communication strategy includes a first direct communication strategy and/or a second direct communication strategy. Connected communication strategy; the resources monitored under the first direct communication strategy are less than the resources monitored under the second direct communication strategy.
  • the network device is a base station
  • the channel condition sending module is configured to:
  • the channel congestion status is sent to the first terminal through first signaling, where the first signaling includes at least one of radio resource control RRC signaling and downlink control information DCI.
  • the network device is a second terminal
  • the channel condition sending module is configured to:
  • the second signaling includes physical layer direct connection control information, medium access control MAC layer direct connection control information, and RRC layer direct connection control information At least one of.
  • the network equipment is a base station
  • the apparatus further includes:
  • the threshold sending module is configured to send the congestion threshold to the first terminal through downlink signaling.
  • the network equipment is a base station
  • the apparatus further includes:
  • the correspondence sending module is configured to send the correspondence between the priority and the congestion threshold to the first terminal through downlink signaling; the priority is the priority of the direct data to be sent by the first terminal.
  • the network equipment is a base station
  • the apparatus further includes:
  • the configuration parameter sending module is configured to send measurement configuration parameters to the first terminal through downlink signaling, where the measurement configuration parameters are used to indicate the timing of CBR measurement by the first terminal.
  • the network equipment is a base station
  • the apparatus further includes:
  • the mapping relationship sending module is configured to send the transmission parameter mapping relationship corresponding to the direct communication strategy to the first terminal through downlink signaling.
  • An exemplary embodiment of the present disclosure also provides a direct communication system, the system including: at least one first terminal and a network device.
  • the terminal includes at least one of the direct communication device provided in the embodiment shown in FIG. 6 and the congestion control device in the direct communication provided in the embodiment shown in FIG. 7;
  • the base station includes the direct communication device provided in the embodiment shown in FIG. 8 above.
  • the device provided in the above embodiment realizes its functions, only the division of the above-mentioned functional modules is used as an example for illustration. In actual applications, the above-mentioned functions can be allocated by different functional modules according to actual needs. That is, the content structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • An exemplary embodiment of the present disclosure provides a direct communication device that can implement all or part of the steps performed by the first terminal in the embodiment shown in FIG. 2 or FIG. 5 of the present disclosure.
  • the direct communication device includes: processing Processor, a memory used to store executable instructions of the processor;
  • the processor is configured as:
  • a direct communication strategy is selected, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • An exemplary embodiment of the present disclosure provides a direct communication device, which can implement all or part of the steps performed by the first terminal in the embodiment shown in FIG. 3 or FIG. 5 of the present disclosure.
  • the direct communication device includes: processing Processor, a memory used to store executable instructions of the processor;
  • the processor is configured as:
  • Determining a direct communication strategy the direct communication strategy being associated with monitoring and/or selection of direct communication resources
  • the direct connection data transmission parameter value limit is determined.
  • An exemplary embodiment of the present disclosure provides a direct communication device that can implement all or part of the steps performed by a network device in the embodiment shown in FIG. 4 or FIG. 5 of the present disclosure.
  • the direct communication device includes: a processor , A memory used to store executable instructions of the processor;
  • the processor is configured as:
  • the channel congestion status is sent to the first terminal for determining a direct communication strategy, and the direct communication strategy is associated with monitoring and/or selection of direct communication resources.
  • the user equipment includes hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 9 is a schematic structural diagram of a terminal according to an exemplary embodiment.
  • the terminal may be implemented as the first terminal in the embodiment shown in FIG. 2, FIG. 3, or FIG. 5.
  • the terminal 900 includes a communication unit 904 and a processor 902.
  • the processor 902 may also be a controller, which is represented as "controller/processor 902" in FIG. 9.
  • the communication unit 904 is used to support the terminal to communicate with other network entities (for example, other terminals or network devices, etc.).
  • the terminal 900 may further include a memory 903, and the memory 903 is configured to store program codes and data of the terminal 900.
  • FIG. 9 only shows a simplified design of the terminal 900.
  • the terminal 900 may include any number of processors, controllers, memories, communication units, etc., and all terminals that can implement the embodiments of the present disclosure are within the protection scope of the embodiments of the present disclosure.
  • Fig. 10 is a schematic diagram showing the structure of a network device according to an exemplary embodiment.
  • the network device may be implemented as the network device in the embodiment shown in FIG. 4 or FIG. 5 above.
  • the network device 1000 includes a communication unit 1004 and a processor 1002.
  • the processor 1002 may also be a controller, which is represented as "controller/processor 1002" in FIG. 10.
  • the communication unit 1004 is used to support communication between the network device and other network entities (for example, other terminals or base stations).
  • the network device 1000 may further include a memory 1003, and the memory 1003 is configured to store program codes and data of the network device 1000.
  • FIG. 10 only shows a simplified design of the network device 1000.
  • the network device 1000 may include any number of processors, controllers, memories, communication units, etc., and all network devices that can implement the embodiments of the present disclosure fall within the protection scope of the embodiments of the present disclosure.
  • the functions described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, or any combination thereof.
  • these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.
  • the embodiments of the present disclosure also provide a computer storage medium for storing executable instructions used by the above-mentioned terminal or base station.
  • the processor in the communication device invokes the executable instructions to implement the operations shown in any of the above-mentioned embodiments. In the method, all or part of the steps executed by the first terminal or the network device.
  • the embodiments of the present disclosure also provide a computer program product, which includes computer instructions, and the computer instructions are stored in a computer-readable storage medium.
  • the processor of the communication device can read the computer instruction from the computer-readable storage medium, and the processor executes the computer instruction, so that the computer device implements the foregoing method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开揭示了一种直连通信方法,属于无线通信技术领域。所述方法包括:第一终端获取信道拥塞状况;根据所述信道拥塞状况,根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。上述方案可以通过信道拥塞状况来指示终端使用监听资源量不同的直连通信模式,由于监听的资源越少,相应的监听功耗也越低,因此,上述方案能够在尽可能的避免信道碰撞的情况下,降低终端在直连通信传输时的功耗。

Description

直连通信方法、装置及存储介质 技术领域
本公开涉及无线通信技术领域,特别涉及一种直连通信方法、装置及存储介质。
背景技术
直连通信(Sidelink)技术是一种终端通过彼此之间的无线接口进行信息直连的近场通信技术。
在相关技术中,为了避免相互之间的干扰,终端在直连通信传输之前的监听窗口中进行监听,并选择监听结果为空闲的通信资源进行直连通信传输。然而,该方案需要终端持续的进行信道监听,需要占用大量的终端功耗。
发明内容
本公开提供一种直连通信方法、装置及存储介质。所述技术方案如下:
一方面,提供了一种直连通信方法,所述方法由第一终端执行,所述方法包括:
获取信道拥塞状况;
根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
另一方面,提供了一种直连通信中的拥塞控制方法,所述方法由第一终端执行,所述方法包括:
确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联;
根据所述直连通信策略,确定直连数据传输参数取值限制。
另一方面,提供了一种直连通信方法,所述方法由网络设备执行,所述方法包括:
获取信道拥塞状况;
将所述信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
另一方面,提供了一种直连通信装置,所述装置用于第一终端中,所述装置包括:
信道状况获取模块,用于获取信道拥塞状况;
策略选择模块,用于根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
另一方面,提供了一种直连通信中的拥塞控制装置,所述装置用于第一终端中,所述装置包括:
策略确定模块,用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联;
取值限制确定模块,用于根据所述直连通信策略,确定直连数据传输参数取值限制。
另一方面,提供了一种直连通信装置,所述装置用于网络设备中,所述装置包括:
信道状况获取模块,用于获取信道拥塞状况;
信道状况发送模块,用于将所述信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
另一方面,提供了一种直连通信装置,所述装置用于第一终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
获取信道拥塞状况;
根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
另一方面,提供了一种直连通信装置,所述装置用于第一终端中,所述装置包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器被配置为:
确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联;
根据所述直连通信策略,确定直连数据传输参数取值限制。
另一方面,提供了一种直连通信装置,所述装置用于网络设备中,所述装置包括:
处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
获取信道拥塞状况;
将所述信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行指令,通信设备中的处理器调用所述可执行指令以实现上述方法。
另一方面,提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。通信设备的处理器可以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备实现上述方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
终端通过信道拥塞状况,从两种不同监听资源量的直连通信策略中选择一种直连通信策略,以便后续基于选择的策略,选择直连通信的资源,也就是说,上述方案可以通过信道拥塞状况来指示终端使用监听资源量不同的直连通信模式,由于监听的资源越少,相应的监听功耗也越低,因此,上述方案能够在尽 可能的避免信道碰撞的情况下,降低终端在直连通信传输时的功耗。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并于说明书一起用于解释本公开的原理。
图1是根据一示例性实施例提供的实施环境的示意图;
图2是根据一示例性实施例示出的一种直连通信方法流程图;
图3是根据一示例性实施例示出的一种直连通信中的拥塞控制方法流程图;
图4是根据一示例性实施例示出的一种直连通信方法流程图;
图5是根据一示例性实施例示出的一种直连通信方法流程图;
图6是根据一示例性实施例示出的一种直连通信装置的框图;
图7是根据一示例性实施例示出的一种直连通信中的拥塞控制装置的框图;
图8是根据一示例性实施例示出的一种直连通信装置的框图;
图9是根据一示例性实施例示出的一种终端的结构示意图;
图10是根据一示例性实施例示出的一种网络设备的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
应当理解的是,在本文中提及的“若干个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
新一代的新型互联网应用的不断涌现对于无线通信技术提出了更高的要 求,驱使无线通信技术的不断演进以满足应用的需求。车联网通信是目前蜂窝无线通信网络的发展所需支持的应用之一。
车联网通信(Vehicle to Everything,V2X)包括车对车(Vehicle to Vehicle,V2V)业务、车对路边设备(Vehicle to Infrastructure,V2I)业务和车对人(Vehicle to Pedestrian,V2P)。通过支持车载设备间(V2V),车载设备和路边设备间(V2I),车载设备和手持设备间(V2P)的通信,车联网可以有效提升交通安全,改善交通效率以及丰富人们的出行体验。利用已有的蜂窝通信技术支持车联网通信可以有效利用现有基站部署,减少设备开销,也更有利于提供具有服务质量(Quality of Service,QoS)保证的服务,满足车联网业务的需求。因此,在长期演进(Long Term Evolution,LTE)Rel-14/15中提供了蜂窝网络对于车联网V2x通信的支持,即C-V2x(Cellular Based V2x)。在C-V2x中车载设备和其他设备之间的通信可以通过基站以及核心网进行中转,即利用原有蜂窝网络中终端设备和基站之间的通信链路进行通信(上行/下行通信);也可以直接通过设备之间的直连链路进行通信(sidelink通信)。与Uu接口通信相比,sidelink通信具有时延短,开销小等特点,非常适合用于车载设备和地理位置接近的其他周边设备直接的通信。
LTE中的V2x sidelink通信只能支持一些基础的安全方面的V2x应用,如交换协作感知消息(Cooperative Awareness Messages,CAM)或分散式环境通知消息(Decentralized Environmental Notification Message,DENM)等基础安全信息(Basic Safety Message,BSM),进行语音广播通信等。近来随着自动驾驶等技术的发展,为了支持新的V2x业务,对于V2x技术的性能又提出了新的要求。利用第五代移动通信(The 5th Generation Mobile Communication,5G),也称新空口(New Radio,NR)技术支持新的V2x通信服务和场景已经被3GPP计划为Rel16的一项重要内容。3GPP SA1(Service Requirement)工作组已经设立了一些新的V2x通信需要满足的业务需求,包括车队管理(Vehicles Platooning),感知扩展(Extended Sensors),先进驾驶(Advanced Driving),和远程驾驶(Remote Driving)。总体来说,NR V2x sidelink需要提供更高的通信速率,更短的通信延时,更可靠的通信质量。但是,当前的5G V2x技术主要考虑车载终端之间的通信,对于手持终端等终端形态的需求例如节电考虑不多。
不管是LTE V2x还是5G V2x都依赖于终端的监听来降低临近终端之间的干扰,即避免互相干扰的终端选择相同的时间频率资源进行直连传输。终端需要 在资源选择之前的监听窗口中持续监听其他用户设备的资源预留信息,并进行相应的测量操作,根据资源预留信息和测量值从资源选择窗口中去除那些预计干扰较大的时频资源,并在剩余的时频资源中选择最终的直连传输使用的时频资源。
然而,持续的监听会造成大量的能耗,无法满足在功耗要求较高的终端上的部署要求。同时,在节能的基础上,还需要考虑保障直连通信的足够的监听。而本申请后续实施例所示的方案,提供一种能够减少功耗的直连数据传输方案。
图1是根据部分示例性实施例示出的一种直连通信方法所涉及的实施环境的示意图,如图1所示,该实施环境可以包括:若干个终端110和基站120。
终端110是支持多种无线接入技术进行sidelink传输的无线通信设备。比如,终端110可以支持蜂窝移动通信技术,比如,可以支持第五代移动通信技术。或者,终端110也可以支持5G技术的更下一代移动通信技术。
例如,终端110可以是车载通信设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。
或者,终端110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备。
或者,终端110也可以是用户终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。例如,站(Station,STA)、订户单元(Subscriber Unit)、订户站(Subscriber Station),移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、接入点、远程终端(Remote Terminal)、接入终端(Access Terminal)、用户装置(User Terminal)、用户代理(User Agent)、用户设备(User Device)、或用户终端(User Equipment,UE)。具体比如,终端110可以是智能手机、平板电脑、电子书阅读器等移动终端,或者,可以是智能眼镜、智能手表或者智能手环等智能可穿戴设备。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统也可以是5G系统,又称新空口NR系统。或者,该无线通信系统也可以是5G系统的再下一代或多代系统。
其中,基站120可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至 少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和终端110之间可以通过无线空口建立无线连接。该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
可选的,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
图2是根据一示例性实施例示出的一种直连通信方法的流程图,该直连通信方法可以由第一终端执行,比如,该第一终端可以是图1所示的实施环境中的终端110。如图2所示,该方法可以包括以下步骤。
在步骤201中,获取信道拥塞状况。
在一种可能的实现方式中,上述信道拥塞状况用于指示信道繁忙比(Channel Busy Ratio,CBR)测量值。信道拥塞状况可以指与第一终端相关联的直连通信信道的拥塞状况。
在步骤202中,根据该信道拥塞状况,选择直连通信策略,该直连通信策略与对直连通信资源的监听和/或选择相关联。
在一种可能的实现方式中,直连通信策略是用于选择直连通信的资源的策略;该直连通信策略包括第一直连通信策略和/或第二直连通信策略;在该第一直连通信策略下监听的资源少于在该第二直连通信策略下监听的资源。
其中,以信道拥塞状况指示信道繁忙比为例,当CBR测量值较低时,说明在终端附近范围内,直连通信的信道被占用的比例较低,大部分信道未被占用,此时,临近终端之间的干扰或者选择相同时频资源进行直连传输的概率较低。即使终端为了节能只在少量资源上监听甚至不进行监听也有较大概率选中适合进行直连通信传输的资源并且不造成系统性能的过分恶化。在这种情况下,终端可以选择第一直连通信策略作为直连通信策略,以在少量资源上进行监听或者不监听的情况选择直连通信资源,以节约终端功耗。
而当CBR测量值较高时,说明在终端附近范围内,直连通信的信道被占用的比例较高,大部分信道被占用,此时,终端需要进行完整的信道监听以确定其他临近终端所预留的时频资源位置,并避开可能的干扰,否则有可能选中干扰较强的时频资源,并且对系统性能造成较大的影响。在这种情况下,终端只能选择第二直连通信策略作为直连通信策略,以在大部分或者全部资源上进行监听的情况选择目标直连通信资源,以保证能够选择出适合的直连通信资源,避免发生资源碰撞。
在一种可能的实现方式中,该根据该信道拥塞状况,选择直连通信策略,包括:
根据该信道拥塞状况与拥塞阈值之间的关系,选择直连通信策略。
在一种可能的实现方式中,响应于该信道拥塞状况未达到拥塞阈值,选择第一直连通信策略;或者,
响应于该信道拥塞状况达到拥塞阈值,选择第二直连通信策略;
其中,在该第一直连通信策略下监听的资源少于在该第二直连通信策略下监听的资源。
在一种可能的实现方式中,该信道拥塞状况是对至少一个指定信道进行信道繁忙比CBR测量得到的。
在一种可能的实现方式中,该信道拥塞状况是由网络设备测量得到的;
该获取信道拥塞状况,包括:
接收该网络设备发送的该信道拥塞状况。
在一种可能的实现方式中,该信道拥塞状况包括对于该第一终端的该直连通信的指示。
在一种可能的实现方式中,该网络设备是基站时,该接收该网络设备发送的该信道拥塞状况,包括:
接收该基站通过第一信令发送的该信道拥塞状况,该第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
在一种可能的实现方式中,该网络设备是第二终端时,该接收该网络设备发送的该信道拥塞状况,包括:
接收该第二终端通过第二信令发送的该信道拥塞状况,该第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
在一种可能的实现方式中,该方法还包括:
获取预先设置的该拥塞阈值;
或者,
接收基站发送的下行信令,根据该下行信令获取该拥塞阈值。
在一种可能的实现方式中,该方法还包括:
根据该第一终端待发送直连数据的优先级选择对应的该拥塞阈值。
在一种可能的实现方式中,该方法还包括:
获取预先设置的该优先级与该拥塞阈值的对应关系;
或者,
接收基站发送的下行信令,根据该下行信令获取该优先级与该拥塞阈值的对应关系。
在一种可能的实现方式中,该方法还包括:
获取测量配置参数,该测量配置参数用于指示CBR测量的时机;
根据CBR测量的时机,进行CBR测量。
在一种可能的实现方式中,该第一直连通信策略,包括:
对直连通信资源池中的部分资源进行监听,并根据监听结果从该部分资源中选择目标直连通信资源;
或者,
从直连通信资源池中随机选择目标直连通信资源。
综上所述,本申请实施例所示的方案,终端通过信道拥塞状况,从两种不同监听资源量的直连通信策略中选择一种直连通信策略,以便后续基于选择的策略,选择直连通信的资源,也就是说,上述方案可以通过信道拥塞状况来指示终端使用监听资源量不同的直连通信模式,由于监听的资源越少,相应的监听功耗也越低,因此,上述方案能够在尽可能的避免信道碰撞的情况下,降低 终端在直连通信传输时的功耗。
图3是根据一示例性实施例示出的一种直连通信中的拥塞控制方法的流程图,该直连通信中的拥塞控制方法可以由第一终端执行,比如,该第一终端可以是图1所示的实施环境中的终端110。如图3所示,该方法可以包括以下步骤。
在步骤301中,确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
在一种可能的实现方式中,所述直连通信策略是用于选择直连通信的资源的策略;所述直连通信策略包括第一策略和/或第二策略;在所述第一策略下监听的资源少于在所述第二策略下监听的资源;
在步骤302中,根据该直连通信策略,确定直连数据传输参数取值限制。
在一种可能的实现方式中,该直连通信策略包括第一直连通信策略和/或第二直连通信策略;在该第一直连通信策略下监听的资源少于在该第二直连通信策略下监听的资源。
在一种可能的实现方式中,根据该直连通信策略,选择直连传输的通信资源;
该通信资源包括时间资源、频率资源和端口资源中的至少一项。
在一种可能的实现方式中,该根据该直连通信策略,确定直连数据传输参数取值限制,包括:
根据该直连通信策略确定传输参数映射关系,该传输参数映射关系包括该信道拥塞状况与该直连数据传输参数取值限制之间的对应关系;
查询该传输参数映射关系,获取与该信道拥塞状况相对应的该直连数据传输参数取值限制。
在一种可能的实现方式中,该方法还包括:
接收基站发送的下行信令,根据该下行信令获取该传输参数映射关系。
在一种可能的实现方式中,该直连数据传输参数取值限制,包括以下至少一项:
允许的最大发送功率;
可使用的调制编码方式;
一次传输占用的最大时间和/或频率资源数量;
一个数据块重新传输的最大次数;
信道使用比例CR的上限。
综上所述,本申请实施例所示的方案,终端通过信道拥塞状况,从两种不同监听资源量的直连通信策略中选择一种直连通信策略,以便后续基于选择的策略,选择直连通信的资源,也就是说,上述方案可以通过信道拥塞状况来指示终端使用监听资源量不同的直连通信模式,由于监听的资源越少,相应的监听功耗也越低,因此,上述方案能够在尽可能的避免信道碰撞的情况下,降低终端在直连通信传输时的功耗。
其中,上述图2所示的方案在中,信道拥塞状况可以由第一终端自己进行CBR测量并生成,也可以由第一终端之外的网络设备测量生成。其中,当信道拥塞状况由网络设备生成时,网络设备执行的方案步骤如下所示。
图4是根据一示例性实施例示出的一种直连通信方法的流程图,该直连通信方法可以由网络设备执行,比如,该网络设备可以是图1所示的实施环境中的终端110或者基站120。如图4所示,该方法可以包括以下步骤。
在步骤401中,获取信道拥塞状况。
在一种可能的实现方式中,上述执行信道拥塞状况测量,是指执行CBR测量,获得CBR测量值,并根据该CBR测量值生成信道拥塞状况。信道拥塞状况可以指与第一终端相关联的直连信道的拥塞状况。
在另一种可能的实现方式中,上述信道拥塞状况也可以由终端执行信道拥塞状况测量后,发送给网络设备。比如,当网络设备是基站时,可以由第一终端之外的第二终端执行信道拥塞状况测量后,将信道拥塞状况上报给基站。
在步骤402中,将该信道拥塞状况发送给第一终端以用于确定直连通信策略,该直连通信策略与对直连通信资源的监听和/或选择相关联。
在一种可能的实现方式中,该信道拥塞状况包括对于该第一终端的直连通信策略的指示;该直连通信策略包括第一直连通信策略和/或第二直连通信策略;在该第一直连通信策略下监听的资源少于在该第二直连通信策略下监听的资源。
在一种可能的实现方式中,该信道拥塞状况是对至少一个指定信道进行CBR测量得到的。
在一种可能的实现方式中,该网络设备是基站,该将该信道拥塞状况发送给第一终端以用于确定直连通信策略,该直连通信策略与对直连通信资源的监 听和/或选择相关联,包括:
通过第一信令向该第一终端发送该信道拥塞状况,该第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
在一种可能的实现方式中,该网络设备是第二终端,该将该信道拥塞状况发送给第一终端以用于确定直连通信策略,该直连通信策略与对直连通信资源的监听和/或选择相关联,包括:
通过第二信令向该第一终端发送该信道拥塞状况,该第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
在一种可能的实现方式中,该网络设备是基站,还包括:
通过下行信令向该第一终端发送拥塞阈值。
在一种可能的实现方式中,该网络设备是基站,还包括:
通过下行信令向该第一终端发送优先级与拥塞阈值的对应关系;该优先级是该第一终端待发送直连数据的优先级。
在一种可能的实现方式中,该网络设备是基站,还包括:
通过下行信令向该第一终端发送测量配置参数,该测量配置参数用于指示该第一终端CBR测量的时机。
在一种可能的实现方式中,该网络设备是基站,还包括:
通过下行信令向所述第一终端发送该直连通信策略对应的传输参数映射关系。
综上所述,本申请实施例所示的方案,终端通过信道拥塞状况,从两种不同监听资源量的直连通信策略中选择一种直连通信策略,以便后续基于选择的策略,选择直连通信的资源,也就是说,上述方案可以通过信道拥塞状况来指示终端使用监听资源量不同的直连通信模式,由于监听的资源越少,相应的监听功耗也越低,因此,上述方案能够在尽可能的避免信道碰撞的情况下,降低终端在直连通信传输时的功耗。
图5是根据一示例性实施例示出的一种直连通信方法的流程图,该直连通信方法可以由第一终端和网络设备交互执行,比如,该终端可以是图1所示实施环境中的终端110,网络设备可以是图1所示实施环境终端的终端110或者或者基站120。如图5所示,该方法可以包括以下步骤。
在步骤501中,网络设备获取信道拥塞状况。
在一种可能的实现方式中,网络设备执行信道拥塞状况测量,获得信道拥塞状况。
在一种可能的实现方式中,网络设备执行CBR测量,获得CBR测量值。
其中,该网络设备是基站或者第二终端。
在一种可能的实现方式中,该网络设备是基站时,该基站是第一终端的服务小区对应的基站,或者,该基站是距离第一终端最近的基站。
在一种可能的实现方式中,当网络设备是第二终端时,第二终端是处于第一终端周围指定范围内的终端。
其中,第二终端是用户终端;或者,第二终端是非用户终端,例如,第二终端是V2X系统中的路边设备。
以信道拥塞状况包括CBR测量值,或者,信道拥塞状况是基于CBR测量值生成的为例,在本申请实施例中,当第二终端处于第一终端周围指定范围内(例如,第一终端和第二终端之间的距离小于某一预设阈值)时,第一终端和第二终端周围的无线环境相同或相近,此时,第二终端处测量得到的CBR测量值作为第一终端处的CBR测量值,或者,第二终端处测量得到的CBR测量值作为第一终端处的CBR测量值的近似值。
在另一种可能的实现方式中,网络设备接收第二终端上传的信道拥塞状况。
在一种可能的实现方式中,该信道拥塞状况是对至少一个指定信道进行信道繁忙比CBR测量得到的。
在本申请实施例中,CBR测量值是基于指定的直连通信资源池中的特定信道的测量值,如直连数据共享信道(Pysical Sidelink Share Channel,PSSCH),直连控制信道(Pysical Sidelink Control Channel,PSCCH)或者直连反馈信道(Physical Sidelink Feedback Channel,PSFCH)中的任意一种;或者,CBR测量值是对基于多个指定的信道的测量值,例如,对一个资源池中的PSSCH和PSCCH一起进行测量得到的测量值。
在一种可能的实现方式中,网络设备根据CBR测量值生成信道拥塞状况,该信道拥塞状况用于指示与CBR测量值相对应的直连通信策略策略。
其中,该直连通信策略与对直连通信资源的监听和/或选择相关联。
在一种可能的实现方式中,该直连通信策略是用于选择直连通信的资源的策略;该直连通信策略包括第一直连通信策略和/或第二直连通信策略;在该第 一直连通信策略下监听的资源少于在该第二直连通信策略下监听的资源。
在一种可能的实现方式中,第一直连通信策略也称为省电模式,第二直连通信策略也称为非省电模式;在省电模式下,第一终端进行直连通信传输时的能耗,相比于在非省电模式下进行直连通信传输时的能耗更低。
在一种可能的实现方式中,该信道拥塞状况,包括:CBR测量值,以及对于第一终端的直连通信策略的指示中的至少一项。其中,上述对于第一终端的直连通信策略的指示,用于指示该CBR测量值相对应的直连通信策略。
在本申请实施例的一个示例性方案中,网络设备将CBR测量值直接添加至信道拥塞状况。
在本申请实施例的一个示例性方案中,网络设备根据CBR测量值确定直连通信策略,并将确定的直连通信策略的指示添加至信道拥塞状况。
在一种可能的实现方式中,当该信道拥塞状况中包含直连通信策略的指示时,在生成信道拥塞状况的过程中,网络设备根据根据信道拥塞状况与拥塞阈值之间的关系,选择直连通信策略,比如,根据该CBR测量值与测量阈值之间的关系,确定该直连通信策略。
在一种可能的实现方式中,上述根据信道拥塞状况与拥塞阈值之间的关系,选择直连通信策略,包括:
当该信道拥塞状况未达到拥塞阈值时,确定该直连通信策略为该第一直连通信策略;
当该信道拥塞状况达到拥塞阈值时,确定该直连通信策略为该第二直连通信策略。
其中,上述确定第一直连通信策略的拥塞阈值,与确定第二直连通信策略的拥塞阈值相同或者不同。
在一种可能的实现方式中,上述拥塞阈值包括第一拥塞阈值和第二拥塞阈值,其中,该第一拥塞阈值小于或者等于该第二拥塞阈值。当该信道拥塞状况未达到第一拥塞阈值时,确定该直连通信策略为该第一直连通信策略;当该信道拥塞状况达到第二拥塞阈值时,确定该直连通信策略为该第二直连通信策略。
以信道拥塞状况是通过对CBR的测量获得的,第一拥塞阈值是第一测量阈值,第二拥塞阈值是第二测量阈值为例,在本申请实施例中,当CBR测量值小于第一测量阈值时,比如,CBR测量值小于0.4时,网络设备认为直连通信资源当前大部分未被占用,此时,第一终端通过在少量资源上进行监听或者不监 听,即有很大的几率选择到空闲的直连通信资源进行直连通信传输,因此,网络设备确定直连通信策略为第一直连通信策略。
相应的,当CBR测量值不小于第二测量阈值时,比如,CBR测量值不小于0.6时,网络设备认为直连通信资源当前大部分未被占用,此时,第一终端通过在少量资源上进行监听或者不监听,则很可能选择不到空闲的直连通信资源,因此,网络设备确定直连通信策略为第二直连通信策略。
在本申请实施例中,为了防止乒乓效应,当第一终端由可以使用节能优化方案的状态(状态1,对应上述第一直连通信策略)进入不能使用节能优化方案的状态(状态2,对应上述第二直连通信策略)时,使用和第一终端由状态2进入状态1时不同的测量阈值。例如第一终端当前处于可以使用节能优化的状态(状态1),那么只有当CBR测量值超过预设阈值1时,第一终端才进入不能使用节能优化的状态(状态2);反之,如果第一终端当前处于不可以使用节能优化的状态(状态2),只有当CBR测量值小于预设阈值2时,第一终端才开始使用节能优化(进入状态1)。其中,预设阈值1大于预设阈值2。
其中,上述方案以第一测量阈值是0.4,第二测量阈值是0.6为例进行介绍。在其它实现方式在中,第一测量阈值和第二测量阈值取0.4和0.6以外的数值,只要第一测量阈值小于或者等于该第二测量阈值即可。例如,上述第一测量阈值和第二测量阈值取值均为0.4,或者,均为0.5等等。
其中,当第一测量阈值和第二测量阈值相同时,第一测量阈值和第二测量阈值是同一个测量阈值,也就是说,系统中包含一个测量阈值,该测量阈值即作为第一测量阈值使用,也作为第二测量阈值使用。
在一种可能的实现方式中,网络设备还执行以下步骤:
获取预先设置的该拥塞阈值;
或者,
接收基站通过下行信令配置的该拥塞阈值。
在一种示例性的方案中,上述拥塞阈值(比如上述第一拥塞阈值和第二拥塞阈值)是由通信协议规定的阈值;例如,该拥塞阈值是出厂前设置在网络设备中的,或者,该拥塞阈值是在系统升级时更新的。
在另一种示例性的方案中,当网络设备是第二终端时,上述拥塞阈值是由基站通过静态、半静态或者动态配置给网络设备的。
在一种可能的实现方式中,该拥塞阈值是与该第一终端待发送直连数据的 优先级相对应的阈值。
信道拥塞状况是通过对CBR的测量获得的,第一拥塞阈值是第一测量阈值,第二拥塞阈值是第二测量阈值为例,在本申请实施例在中,针对不同的优先级,CBR测量值对应的测量阈值可以不一样。通常来说,第一终端待发送直连数据的优先级越高,CBR的测量阈值也相应设定的更高。这意味这当信道比较拥挤的时候,需要节能的终端只有当传输较高优先级数据时,才使用可能造成更多传输碰撞和干扰的节能优化方案。
在一种可能的实现方式中,网络设备中预先通过基站或者通信协议配置有不同优先级对应的拥塞阈值。例如,以位置上报业务和电量上报业务为例,其中,位置上报业务的业务优先级为高,而电量上报业务的业务优先级为低;以拥塞阈值是单个阈值为例,网络设备中预先配置有位置上报业务对应的拥塞阈值为0.5,而电量上报业务对应的拥塞阈值为0.3;也就是说,如果第一终端当前的业务是位置上报业务,那么当CBR测量值小于0.5时,第一终端即可以使用第一直连通信策略(即使用节能优化方案);而如果第一终端当前的业务是为电量上报业务,那么当CBR测量值小于0.3时,第一终端才可以使用第一直连通信策略。
例如,针对一个群组的UE,高优先级业务的UE可以造成碰撞,低优先级业务的UE尽量不要造成碰撞,而本申请实施例基于上述方案,把低优先级业务的UE控制在不进行节能优化的状态(即第二直连通信策略),也就是要多监听信道情况,以尽可能的避免冲突,而高优先级的UE则不需要保持第二策略,可以进入节能优化的状态(即第一直连通信策略),继续在少量监听或者不监听的情况下占用资源,这样保证高优先级的业务优先性(即保证高优先级业务的及时传输)。
在步骤502中,网络设备将信道拥塞状况发送给第一终端;相应的,第一终端接收该信道拥塞状况。
在一种可能的实现方式中,当该网络设备是基站时,基站通过第一信令向第一终端发送该信道拥塞状况,相应的,第一终端接收该基站通过第一信令发送的该信道拥塞状况,该第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
在另一种可能的实现方式中,当该网络设备是第二终端时,第二终端通过第二信令向第一终端发送信道拥塞状况,相应的,第一终端接收该基站通过第 二信令发送的该信道拥塞状况,该第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
在本申请实施例中,当第一终端处于第一直连通信策略下时,基于节能的考虑,停止进行CBR测量,此时,第一终端自己无法获得信道拥塞状况,需要借助于基站或者第二终端进行CBR测量后,将得到的信道拥塞状况提供给第一终端。其中,第二终端是使用第二直连通信策略的终端,或者,第二终端是不需要节能的终端(比如固定安装的,具有稳定供电系统的路边设备)。
其中,上述步骤501至步骤502为可选步骤。在另一种可能的实现方式中,上述信道拥塞状况由第一终端自行进行信道状况测量,比如CBR测量并生成。
其中,第一终端测量得到CBR测量值并生成信道拥塞状况的过程与上述网络设备测量得到CBR测量值并生成信道拥塞状况的过程类似,此处不再赘述。
在一种可能的实现方式中,第一终端获取预先设置的拥塞阈值;或者,接收基站发送的下行信令,根据下行信令获取该拥塞阈值。
在一种可能的实现方式中,第一终端根据该第一终端待发送直连数据的优先级选择对应的该拥塞阈值。
在一种可能的实现方式中,第一终端获取预先设置的该优先级与该拥塞阈值的对应关系;或者,接收基站发送的下行信令,根据该下行信令获取该优先级与该拥塞阈值的对应关系。
也就是说,上述第一终端中的拥塞阈值是预先设置在第一终端中的;或者,第一终端中的拥塞阈值时接收基站通过下行信令配置的,相应的,基站预先通过下行信令向第一终端配置该拥塞阈值。在可能的实现方案中,第一终端在中预先通过基站或者通信协议配置有不同优先级对应的拥塞阈值。
在一种可能的实现方式中,第一终端由于节能的需要无法进行CBR测量时,第一终端按照一个默认配置判断是否使用节能方案,其中,该默认配置可以是协议预定义的,预配置的,或者通过基站下行信令配置的。
在一示例性的方案中,当该第一终端处于该第一直连通信策略时,获取测量配置参数,该测量配置参数用于指示CBR测量的时机;并根据该CBR测量的时机,进行CBR测量;比如,当CBR测量的时机到达时,退出该第一直连通信策略进行CBR测量。
在一示例性的方案中,当网络设备是基站时,通过下行信令向第一终端发送测量配置参数,测量配置参数用于指示第一终端CBR测量的时机。相应的, 第一终端接收基站发送的该测量配置参数。
例如,当第一终端处于节能状态(即上述第一直连通信策略)时,为第一终端配置一个计时器或者测量周期,第一终端每隔给定时间长度,或者,当计时器到达给定时长时,从节能状态中退出进行CBR测量,并根据该CBR测量结果判断是否重新进入节能状态,其中,上述判断是否重新进入节能状态的CBR阈值、测量周期、或者计时器长度,是预配置的,或者是通过基站下行信令配置的。
在步骤503中,第一终端根据信道拥塞状况,选择直连通信策略。
在一种可能的实现方式中,当信道拥塞状况中直接包含了直连通信选择策略的指示时,第一终端根据信道拥塞状况中的指示,直接获取直连通信策略。
在另一种可能的实现方式中,第一终端根据信道拥塞状况与拥塞阈值之间的关系,选择直连通信策略。
比如,当信道拥塞状况中未直接包直连通信策略的指示,而是包含了上述CBR测量值时,第一终端根据该CBR测量值确定上述直连通信策略。
在一种可能的实现方式中,当该信道拥塞状况未达到拥塞阈值时,第一终端确定该直连通信策略为该第一直连通信策略;
当该信道拥塞状况达到拥塞阈值时,第一终端确定该直连通信策略为该第二直连通信策略。
在一种可能的实现方式中,第一终端获取预先设置的该拥塞阈值;
或者,第一终端接收基站发送的下行信令,根据该下行信令获取该拥塞阈值。在一种可能的实现方式中,当网络设备是基站时,通过下行信令向第一终端发送拥塞阈值。
在一种可能的实现方式中,第一终端根据该第一终端待发送直连数据的优先级选择对应的该拥塞阈值。
在一种可能的实现方式中,第一终端获取预先设置的该优先级与该拥塞阈值的对应关系;或者,
第一终端接收基站发送的下行信令,根据该下行信令获取该优先级与该拥塞阈值的对应关系。在一种可能的实现方式中,当网络设备是基站时,通过下行信令向第一终端发送优先级与拥塞阈值的对应关系。
在步骤504中,第一终端根据直连通信策略,选择直连传输的通信资源。
其中,该通信资源包括时间资源、频率资源和端口资源中的至少一项。
在一种可能的实现方式中,第一直连通信策略,包括:
对直连通信资源池中的部分资源进行监听,并根据监听结果从所述部分资源中选择目标直连通信资源;
或者,从直连通信资源池中随机选择目标直连通信资源。
在一种可能的实现方式中,第二直连通信策略包括:
对直连通信资源池中的全部资源进行监听,并根据监听结果从直连通信资源池中选择目标直连通信资源。
在一种可能的实现方式中,第一终端通过以下方式,根据该信道拥塞状况选择目标直连通信资源:
当该直连通信策略是第一直连通信策略时,获取资源选择方式;根据该资源选择方式,从直连通信资源池中选择该目标直连通信资源。
在本申请实施例的一种可能的实现方式中,对于更为省电的第一策略,对应有两种或者两种以上的资源选择方式来选择直连通信资源,相应的,第一终端确定使用第一直连通信策略进行直连通信传输时,首先获取资源选择方式。
在一种可能的实现方式中,上述直连通信策略是第一直连通信策略时,获取资源选择方式的步骤可以包括:
当该直连通信策略是第一直连通信策略,且该信道拥塞状况中包含该CBR测量值时,第一终端获取与该CBR测量值对应的该资源选择方式;
或者,
第一终端获取该信道拥塞状况中包含的该资源选择方式。
其中,在一示例性的方案中,上述CBR测量值与第一直连通信策略下的资源选择方式有关,也就是说,当信道拥塞状况中包含CBR测量值时,第一终端根据CBR测量值,查询该CBR测量值与资源选择方式的对应关系,例如,第一终端中预先设置有各种资源选择方式分别对应的测量值区间,第一终端获取到包含CBR测量值的信道拥塞状况后,确定该CBR测量值所在的测量值区间,然后再确定的测量值区间对应的资源选择方式。
在另一示例性的方案中,上述信道拥塞状况中直接携带上述资源选择方式,例如,当信道拥塞状况时由网络设备发送的信息时,该网络设备在生成信道拥塞状况时,根据预设的各种资源选择方式分别对应的测量值区间,确定CBR测量值对应的资源选择方式,并将确定的资源选择方式添加至信道拥塞状况中。
在步骤505中,第一终端根据直连通信策略,确定直连数据传输参数取值 限制。
在本申请实施例的一种可能实现方式中,上述直连数据传输参数取值限制由拥塞控制配置来指示,该拥塞控制配置包括不同的CBR测量值和终端的直连数据传输参数取值限制之间映射关系的配置。
在一种可能的实现方式中,该直连数据传输参数取值限制,包括以下至少一项:
允许的最大发送功率;
可使用的调制编码方式;
一次传输占用的最大时间和/或频率资源数量;
一个数据块重新传输的最大次数;
信道使用比例CR的上限。
其中,通过限制用户直连数据传输参数取值限制,可以控制终端使用直连时间频率资源的效率和数目,从而达到降低终端直连时的频资源占用,继而减少拥塞的目的。例如:当CBR测量值表明当前信道较为拥挤的时候,可以限制终端只能使用较高的调制和编码方案MCS(相同的载荷大小使用较高MCS会占用更少的时频资源,从而减少终端之间直连传输碰撞的概率),减少终端的重传次数(较少的重传会减少终端之间直连传输碰撞的概率),使用较低的最大发送功率(以减少终端间干扰),或者直接限制终端给定优先级数据直连传输所能占用的直连时频资源比例上限。
在一种可能的实现方式中,上述根据该信道拥塞状况确定直连数据传输参数取值限制,包括:
根据直连通信策略确定传输参数映射关系,传输参数映射关系包括信道拥塞状况与直连数据传输参数取值限制之间的对应关系;
查询传输参数映射关系,获取与信道拥塞状况相对应的直连数据传输参数取值限制。
在一种可能的实现方式中,上述传输参数映射关系中,包含第一直连通信策略下的各种资源选择方式分别对应的传输参数子表,相应的,当第一终端确定直连通信策略为第一直连通信策略时,还根据对应的资源选择方式,选择对应的传输参数子表,并通过信道拥塞状况(比如CBR测量值)在选择的传输参数子表中查询直连数据传输参数取值限制。
在一种可能的实现方式中,第一终端还接收基站发送的下行信令,根据下 行信令获取所述传输参数映射关系。相应的,当网络设备是基站时,网络设备通过下行信令向第一终端发送直连通信策略对应的传输参数映射关系。
或者,在另一种可能的实现方式中,该各个直连通信策略对应的传输参数映射关系是预先设置在第一终端中的。
在本申请实施例中,基站可以通过下行信令对终端使用直连通信策略时的拥塞控制进行独立配置。也可以对终端使用不同直连通信策略时的拥塞控制进行独立的预配置。例如,为基于节能优化(如基于部分监听的资源选择或基于无监听的随机选择)的资源选择配置一组CBR测量值和终端的直连数据传输参数取值范围之间的映射,为不进行节能优化的资源选择配置另一组CBR测量值和终端的直连数据传输参数取值范围之间的映射,终端根据自身直连传输使用的资源选择方法选择合适的一组映射。
在步骤506中,在该目标直连通信资源上,按照该直连数据传输参数取值限制进行直连通信数据传输。
第一终端在确定出目标直连通信资源,并确定出直连数据传输参数取值限制后,即可以结合目标直连通信资源和直连数据传输参数取值限制进行直连通信数据的传输。
综上所述,本申请实施例所示的方案,终端通过信道拥塞状况,从两种不同监听资源量的直连通信策略中选择一种直连通信策略,以便后续基于选择的策略,选择直连通信的资源,也就是说,上述方案可以通过信道拥塞状况来指示终端使用监听资源量不同的直连通信策略,由于监听的资源越少,相应的监听功耗也越低,因此,上述方案能够在尽可能的避免信道碰撞的情况下,降低终端在直连通信传输时的功耗。
下述为本公开装置实施例,可以用于执行本公开方法实施例。对于本公开装置实施例中未披露的细节,请参照本公开方法实施例。
图6是根据一示例性实施例示出的一种直连通信装置的框图,如图6所示,该直连通信装置可以执行图2或图5所示实施例中由第一终端执行的步骤。该直连通信装置可以包括:
信道状况获取模块601,用于获取信道拥塞状况;
策略选择模块602,用于根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
在一种可能的实现方式中,直连通信策略是用于选择直连通信的资源的策略;所述直连通信策略包括第一直连通信策略和/或第二直连通信策略;在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
在一种可能的实现方式中,所述策略选择模块,用于根据所述信道拥塞状况与拥塞阈值之间的关系,选择直连通信策略。
在一种可能的实现方式中,所述策略选择模块,用于,
响应于所述信道拥塞状况未达到拥塞阈值,选择第一直连通信策略;或者,
响应于所述信道拥塞状况达到拥塞阈值,选择第二直连通信策略;
在一种可能的实现方式中,在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
在一种可能的实现方式中,所述信道拥塞状况是对至少一个指定信道进行信道繁忙比CBR测量得到的。
在一种可能的实现方式中,所述信道拥塞状况是由网络设备测量得到的;
所述信道状况获取模块,用于接收所述网络设备发送的所述信道拥塞状况。
在一种可能的实现方式中,所述信道拥塞状况包括对于所述第一终端的所述直连通信策略的指示。
在一种可能的实现方式中,所述网络设备是基站,所述信道状况获取模块,用于,
接收所述基站通过第一信令发送的所述信道拥塞状况,所述第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
在一种可能的实现方式中,所述网络设备是第二终端,所述信道状况获取模块,用于,
接收所述第二终端通过第二信令发送的所述信道拥塞状况,所述第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
在一种可能的实现方式中,所述装置还包括:第一阈值获取模块,或者,第二阈值获取模块;
所述第一阈值获取模块,用于获取预先设置的所述拥塞阈值;
所述第二阈值获取模块,用于接收基站发送的下行信令,根据所述下行信令获取所述拥塞阈值。
在一种可能的实现方式中,所述装置还包括:
阈值选择模块,用于根据所述第一终端待发送直连数据的优先级选择对应的所述拥塞阈值。
在一种可能的实现方式中,所述装置还包括:第一对应关系获取模块,或者,第二对应关系获取模块;
所述第一对应关系获取模块,用于获取预先设置的所述优先级与所述拥塞阈值的对应关系;
所述第二对应关系获取模块,用于接收基站发送的下行信令,根据所述下行信令获取所述优先级与所述拥塞阈值的对应关系。
在一种可能的实现方式中,所述装置还包括:
配置参数获取模块,用于获取测量配置参数,所述测量配置参数用于指示CBR测量的时机;
测量模块,用于根据CBR测量的时机,进行CBR测量。
在一种可能的实现方式中,所述第一直连通信策略,包括:
对直连通信资源池中的部分资源进行监听,并根据监听结果从所述部分资源中选择目标直连通信资源;
或者,
从直连通信资源池中随机选择目标直连通信资源。
图7是根据一示例性实施例示出的一种直连通信中的拥塞控制装置的框图,如图7所示,该直连通信中的拥塞控制装置可以执行图3或图5所示实施例中由第一终端执行的步骤。该直连通信中的拥塞控制装置可以包括:
策略确定模块701,用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联;
取值限制确定模块702,用于根据所述直连通信策略,确定直连数据传输参数取值限制。
在一种可能的实现方式中,所述直连通信策略包括第一直连通信策略和/或第二直连通信策略;在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
在一种可能的实现方式中,所述装置还包括:
通信资源确定模块,用于根据所述直连通信策略,选择直连传输的通信资源;
所述通信资源包括时间资源、频率资源和端口资源中的至少一项。
在一种可能的实现方式中,所述取值限制确定模块,用于,
根据所述直连通信策略确定传输参数映射关系,所述传输参数映射关系包括所述信道拥塞状况与所述直连数据传输参数取值限制之间的对应关系;
查询所述传输参数映射关系,获取与所述信道拥塞状况相对应的所述直连数据传输参数取值限制。
在一种可能的实现方式中,所述装置还包括:
映射关系获取模块,用于接收基站发送的下行信令,根据所述下行信令获取所述传输参数映射关系。
在一种可能的实现方式中,所述直连数据传输参数取值限制,包括以下至少一项:
允许的最大发送功率;
可使用的调制编码方式;
一次传输占用的最大时间和/或频率资源数量;
一个数据块重新传输的最大次数;
信道使用比例CR的上限。
图8是根据一示例性实施例示出的一种直连通信装置的框图,如图8所示,该直连通信装置可以执行图4或图5所示实施例中由网络设备执行的步骤。该直连通信装置可以包括:
信道状况获取模块801,用于获取信道拥塞状况;
信道状况发送模块802,用于将所述信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。在一种可能的实现方式中,所述信道拥塞状况是对至少一个指定信道进行CBR测量得到的。
在一种可能的实现方式中,所述信道拥塞状况包括对于所述第一终端的所述直连通信策略的指示;所述直连通信策略包括第一直连通信策略和/或第二直连通信策略;在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
在一种可能的实现方式中,所述网络设备是基站,所述信道状况发送模块,用于,
通过第一信令向所述第一终端发送所述信道拥塞状况,所述第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
在一种可能的实现方式中,所述网络设备是第二终端,所述信道状况发送模块,用于,
通过第二信令向所述第一终端发送所述信道拥塞状况,所述第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
在一种可能的实现方式中,所述网络设备是基站,所述装置还包括:
阈值发送模块,用于通过下行信令向所述第一终端发送拥塞阈值。
在一种可能的实现方式中,所述网络设备是基站,所述装置还包括:
对应关系发送模块,用于通过下行信令向所述第一终端发送优先级与拥塞阈值的对应关系;所述优先级是所述第一终端待发送直连数据的优先级。
在一种可能的实现方式中,所述网络设备是基站,所述装置还包括:
配置参数发送模块,用于通过下行信令向所述第一终端发送测量配置参数,所述测量配置参数用于指示所述第一终端CBR测量的时机。
在一种可能的实现方式中,所述网络设备是基站,所述装置还包括:
映射关系发送模块,用于通过下行信令向所述第一终端发送所述直连通信策略对应的传输参数映射关系。
本公开一示例性实施例还提供了一种直连通信系统,所述系统包括:至少一个第一终端和网络设备。
所述终端包含如上述图6所示实施例提供的直连通信装置,以及图7所示实施例提供的直连通信中的拥塞控制装置中的至少一种;
所述基站包含如上述图8所示实施例提供的直连通信装置。
需要说明的一点是,上述实施例提供的装置在实现其功能时,仅以上述各个功能模块的划分进行举例说明,实际应用中,可以根据实际需要而将上述功能分配由不同的功能模块完成,即将设备的内容结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开一示例性实施例提供了一种直连通信装置,能够实现本公开上述图2或图5所示实施例中由第一终端执行的全部或者部分步骤,该直连通信装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
获取信道拥塞状况;
根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
本公开一示例性实施例提供了一种直连通信装置,能够实现本公开上述图3或图5所示实施例中由第一终端执行的全部或者部分步骤,该直连通信装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联;
根据所述直连通信策略,确定直连数据传输参数取值限制。
本公开一示例性实施例提供了一种直连通信装置,能够实现本公开上述图4或图5所示实施例中由网络设备执行的全部或者部分步骤,该直连通信装置包括:处理器、用于存储处理器可执行指令的存储器;
其中,处理器被配置为:
获取信道拥塞状况;
将所述信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
上述主要以终端和网络设备为例,对本公开实施例提供的方案进行了介绍。可以理解的是,用户设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开中所公开的实施例描述的各示例的模块及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同 的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图9是根据一示例性实施例示出的一种终端的结构示意图。该终端可以实现为上述图2、图3或图5所示实施例中的第一终端。
终端900包括通信单元904和处理器902。其中,处理器902也可以为控制器,图9中表示为“控制器/处理器902”。通信单元904用于支持终端与其它网络实体(例如其它终端或者网络设备等)进行通信。
进一步的,终端900还可以包括存储器903,存储器903用于存储终端900的程序代码和数据。
可以理解的是,图9仅仅示出了终端900的简化设计。在实际应用中,终端900可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的终端都在本公开实施例的保护范围之内。
图10是根据一示例性实施例示出的一种网络设备的结构示意图。该网络设备可以实现为上述图4或图5所示实施例中的网络设备。
网络设备1000包括通信单元1004和处理器1002。其中,处理器1002也可以为控制器,图10中表示为“控制器/处理器1002”。通信单元1004用于支持网络设备与其它网络实体(例如其它终端或者基站等)进行通信。
进一步的,网络设备1000还可以包括存储器1003,存储器1003用于存储网络设备1000的程序代码和数据。
可以理解的是,图10仅仅示出了网络设备1000的简化设计。在实际应用中,网络设备1000可以包含任意数量的处理器,控制器,存储器,通信单元等,而所有可以实现本公开实施例的网络设备都在本公开实施例的保护范围之内。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本公开实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
本公开实施例还提供了一种计算机存储介质,用于储存为上述终端或者基 站所用的可执行指令,通信设备中的处理器调用所述可执行指令,可以实现上述任一实施例所示的方法中,由第一终端或者网络设备执行的全部或者部分步骤。
本公开实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。通信设备的处理器可以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备实现上述方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (58)

  1. 一种直连通信方法,其特征在于,所述方法由第一终端执行,所述方法包括:
    获取信道拥塞状况;
    根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述信道拥塞状况,选择直连通信策略,包括:
    根据所述信道拥塞状况与拥塞阈值之间的关系,选择直连通信策略。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述信道拥塞状况与拥塞阈值之间的关系,选择直连通信策略,包括:
    响应于所述信道拥塞状况未达到拥塞阈值,选择第一直连通信策略;或者,
    响应于所述信道拥塞状况达到拥塞阈值,选择第二直连通信策略;
    其中,在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
  4. 根据权利要求1所述的方法,其特征在于,所述信道拥塞状况是对至少一个指定信道进行信道繁忙比CBR测量得到的。
  5. 根据利要求1所述的方法,其特征在于,所述信道拥塞状况是由网络设备测量得到的;
    所述获取信道拥塞状况,包括:
    接收所述网络设备发送的所述信道拥塞状况。
  6. 根据权利要求5所述的方法,其特征在于,
    所述信道拥塞状况包括对于所述第一终端的所述直连通信策略的指示。
  7. 根据权利要求5和6任一所述的方法,其特征在于,所述网络设备是基 站,所述接收所述网络设备发送的所述信道拥塞状况,包括:
    接收所述基站通过第一信令发送的所述信道拥塞状况,所述第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
  8. 根据权利要求5和6中任一所述的方法,其特征在于,所述网络设备是第二终端,所述接收所述网络设备发送的所述信道拥塞状况,包括:
    接收所述第二终端通过第二信令发送的所述信道拥塞状况,所述第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
  9. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    获取预先设置的所述拥塞阈值;
    或者,
    接收基站发送的下行信令,根据所述下行信令获取所述拥塞阈值。
  10. 根据权利要求2和3任一所述的方法,其特征在于,所述方法还包括:
    根据所述第一终端待发送直连数据的优先级选择对应的所述拥塞阈值。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    获取预先设置的所述优先级与所述拥塞阈值的对应关系;
    或者,
    接收基站发送的下行信令,根据所述下行信令获取所述优先级与所述拥塞阈值的对应关系。
  12. 根据权利要求4所述的方法,其特征在于,所述方法还包括:
    获取测量配置参数,所述测量配置参数用于指示CBR测量的时机;
    根据CBR测量的时机,进行CBR测量。
  13. 根据权利要求1所述的方法,其特征在于,所述第一直连通信策略,包括:
    对直连通信资源池中的第一部分资源进行监听,并根据监听结果从第二部分资源中选择目标直连通信资源;
    或者,
    从直连通信资源池中随机选择目标直连通信资源。
  14. 一种直连通信中的拥塞控制方法,其特征在于,所述方法由第一终端执行,所述方法包括:
    确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联;
    根据所述直连通信策略,确定直连数据传输参数取值限制。
  15. 根据权利要求14所述的方法,其特征在于,
    所述直连通信策略包括第一直连通信策略和/或第二直连通信策略;在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述直连通信策略,选择直连传输的通信资源;
    所述通信资源包括时间资源、频率资源和端口资源中的至少一项。
  17. 根据权利要求14所述的方法,其特征在于,所述根据所述直连通信策略,确定直连数据传输参数取值限制,包括:
    根据所述直连通信策略确定传输参数映射关系,所述传输参数映射关系包括所述信道拥塞状况与所述直连数据传输参数取值限制之间的对应关系;
    查询所述传输参数映射关系,获取与所述信道拥塞状况相对应的所述直连数据传输参数取值限制。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    接收基站发送的下行信令,根据所述下行信令获取所述传输参数映射关系。
  19. 根据权利要求14所述的方法,其特征在于,所述直连数据传输参数取 值限制,包括以下至少一项:
    允许的最大发送功率;
    可使用的调制编码方式;
    一次传输占用的最大时间和/或频率资源数量;
    一个数据块重新传输的最大次数;
    信道使用比例CR的上限。
  20. 一种直连通信方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    获取信道拥塞状况;
    将信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
  21. 根据权利要求20所述的方法,其特征在于,
    所述信道拥塞状况包括对于所述第一终端的直连通信策略的指示;所述直连通信策略包括第一直连通信策略和/或第二直连通信策略;在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
  22. 根据权利要求20所述的方法,其特征在于,所述网络设备是基站,所述将信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联,包括:
    通过第一信令向所述第一终端发送所述信道拥塞状况,所述第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
  23. 根据权利要求20所述的方法,其特征在于,所述网络设备是第二终端,所述将信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联,包括:
    通过第二信令向所述第一终端发送所述信道拥塞状况,所述第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
  24. 根据权利要求20所述的方法,其特征在于,所述网络设备是基站,还包括:
    通过下行信令向所述第一终端发送拥塞阈值。
  25. 根据权利要求20所述的方法,其特征在于,所述网络设备是基站,还包括:
    通过下行信令向所述第一终端发送优先级与拥塞阈值的对应关系;所述优先级是所述第一终端待发送直连数据的优先级。
  26. 根据权利要求20所述的方法,其特征在于,所述网络设备是基站,还包括:
    通过下行信令向所述第一终端发送测量配置参数,所述测量配置参数用于指示所述第一终端CBR测量的时机。
  27. 根据权利要求20所述的方法,其特征在于,所述网络设备是基站,还包括:
    通过下行信令向所述第一终端发送所述直连通信策略对应的传输参数映射关系。
  28. 一种直连通信装置,其特征在于,所述装置用于第一终端中,所述装置包括:
    信道状况获取模块,用于获取信道拥塞状况;
    策略选择模块,用于根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
  29. 根据权利要求28所述的装置,其特征在于,
    所述策略选择模块,用于根据所述信道拥塞状况与拥塞阈值之间的关系,选择直连通信策略。
  30. 根据权利要求29所述的装置,其特征在于,所述策略选择模块,用于,
    响应于所述信道拥塞状况未达到拥塞阈值,选择第一直连通信策略;或者,
    响应于所述信道拥塞状况达到拥塞阈值,选择第二直连通信策略;
    其中,在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
  31. 根据权利要求28所述的装置,其特征在于,所述信道拥塞状况是对至少一个指定信道进行信道繁忙比CBR测量得到的。
  32. 根据利要求28所述的装置,其特征在于,所述信道拥塞状况是由网络设备测量得到的;
    所述信道状况获取模块,用于接收所述网络设备发送的所述信道拥塞状况。
  33. 根据权利要求32所述的装置,其特征在于,
    所述信道拥塞状况包括对于所述第一终端的所述直连通信策略的指示。
  34. 根据权利要求32和33任一所述的装置,其特征在于,所述网络设备是基站,所述信道状况获取模块,用于,
    接收所述基站通过第一信令发送的所述信道拥塞状况,所述第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
  35. 根据权利要求32和33任一所述的装置,其特征在于,所述网络设备是第二终端,所述信道状况获取模块,用于,
    接收所述第二终端通过第二信令发送的所述信道拥塞状况,所述第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
  36. 根据权利要求30所述的装置,其特征在于,所述装置还包括:第一阈值获取模块,或者,第二阈值获取模块;
    所述第一阈值获取模块,用于获取预先设置的所述拥塞阈值;
    所述第二阈值获取模块,用于接收基站发送的下行信令,根据所述下行信令获取所述拥塞阈值。
  37. 根据权利要求29和30任一所述的装置,其特征在于,所述装置还包括:
    阈值选择模块,用于根据所述第一终端待发送直连数据的优先级选择对应的所述拥塞阈值。
  38. 根据权利要求37所述的装置,其特征在于,所述装置还包括:第一对应关系获取模块,或者,第二对应关系获取模块;
    所述第一对应关系获取模块,用于获取预先设置的所述优先级与所述拥塞阈值的对应关系;
    所述第二对应关系获取模块,用于接收基站发送的下行信令,根据所述下行信令获取所述优先级与所述拥塞阈值的对应关系。
  39. 根据权利要求31所述的装置,其特征在于,所述装置还包括:
    配置参数获取模块,用于获取测量配置参数,所述测量配置参数用于指示CBR测量的时机;
    测量模块,用于根据CBR测量的时机,进行CBR测量。
  40. 根据权利要求28所述的装置,其特征在于,所述第一直连通信策略,包括:
    对直连通信资源池中的部分资源进行监听,并根据监听结果从所述部分资源中选择目标直连通信资源;
    或者,
    从直连通信资源池中随机选择目标直连通信资源。
  41. 一种直连通信中的拥塞控制装置,其特征在于,所述装置用于第一终端中,所述装置包括:
    策略确定模块,用于确定直连通信策略,所述直连通信策略与对直连通信 资源的监听和/或选择相关联;
    取值限制确定模块,用于根据所述直连通信策略,确定直连数据传输参数取值限制。
  42. 根据权利要求41所述的装置,其特征在于,
    所述直连通信策略包括第一直连通信策略和/或第二直连通信策略;在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
  43. 根据权利要求41所述的装置,其特征在于,还包括:
    通信资源确定模块,用于根据所述直连通信策略,选择直连传输的通信资源;
    所述通信资源包括时间资源、频率资源和端口资源中的至少一项。
  44. 根据权利要求41所述的装置,其特征在于,所述取值限制确定模块,用于,
    根据所述直连通信策略确定传输参数映射关系,所述传输参数映射关系包括所述信道拥塞状况与所述直连数据传输参数取值限制之间的对应关系;
    查询所述传输参数映射关系,获取与所述信道拥塞状况相对应的所述直连数据传输参数取值限制。
  45. 根据权利要求44所述的装置,其特征在于,所述装置还包括:
    映射关系获取模块,用于接收基站发送的下行信令,根据所述下行信令获取所述传输参数映射关系。
  46. 根据权利要求41所述的装置,其特征在于,所述直连数据传输参数取值限制,包括以下至少一项:
    允许的最大发送功率;
    可使用的调制编码方式;
    一次传输占用的最大时间和/或频率资源数量;
    一个数据块重新传输的最大次数;
    信道使用比例CR的上限。
  47. 一种直连通信装置,其特征在于,所述装置由网络设备执行,所述装置包括:
    信道状况获取模块,用于获取信道拥塞状况;
    信道状况发送模块,用于将所述信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
  48. 根据权利要求47所述的装置,其特征在于,
    所述信道拥塞状况包括对于所述第一终端的所述直连通信策略的指示;所述直连通信策略包括第一直连通信策略和/或第二直连通信策略;在所述第一直连通信策略下监听的资源少于在所述第二直连通信策略下监听的资源。
  49. 根据权利要求47所述的装置,其特征在于,所述网络设备是基站,所述信道状况发送模块,用于,
    通过第一信令向所述第一终端发送所述信道拥塞状况,所述第一信令包括无线资源控制RRC信令以及下行控制信息DCI中的至少一项。
  50. 根据权利要求47所述的装置,其特征在于,所述网络设备是第二终端,所述信道状况发送模块,用于,
    通过第二信令向所述第一终端发送所述信道拥塞状况,所述第二信令包括物理层直连控制信息、媒体接入控制MAC层直连控制信息、以及RRC层直连控制信息中的至少一项。
  51. 根据权利要求47所述的装置,其特征在于,所述网络设备是基站,所述装置还包括:
    阈值发送模块,通过下行信令向所述第一终端发送拥塞阈值。
  52. 根据权利要求47所述的装置,其特征在于,所述网络设备是基站,所述装置还包括:
    对应关系发送模块,用于通过下行信令向所述第一终端发送优先级与拥塞阈值的对应关系;所述优先级是所述第一终端待发送直连数据的优先级。
  53. 根据权利要求47所述的装置,其特征在于,所述网络设备是基站,所述装置还包括:
    配置参数发送模块,用于通过下行信令向所述第一终端发送测量配置参数,所述测量配置参数用于指示所述第一终端CBR测量的时机。
  54. 根据权利要求47所述的装置,其特征在于,所述网络设备是基站,所述装置还包括:
    映射关系发送模块,用于通过下行信令向所述第一终端发送所述直连策略对应的传输参数映射关系。
  55. 一种直连通信装置,其特征在于,所述装置用于第一终端中,所述装置包括:
    处理器、用于存储处理器可执行指令的存储器;
    其中,处理器被配置为:
    获取信道拥塞状况;
    根据所述信道拥塞状况,选择直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
  56. 一种直连通信中的拥塞控制装置,其特征在于,所述装置用于第一终端中,所述装置包括:
    处理器、用于存储处理器可执行指令的存储器;
    其中,处理器被配置为:
    确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联;
    根据所述直连通信策略,确定直连数据传输参数取值限制。
  57. 一种直连通信装置,其特征在于,所述装置用于网络设备中,所述装 置包括:
    处理器、用于存储处理器可执行指令的存储器;
    其中,处理器被配置为:
    获取信道拥塞状况;
    将所述信道拥塞状况发送给第一终端以用于确定直连通信策略,所述直连通信策略与对直连通信资源的监听和/或选择相关联。
  58. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有指令,所述指令由处理器执行,以实现如权利要求1至27任一所述的方法。
PCT/CN2020/096651 2020-06-17 2020-06-17 直连通信方法、装置及存储介质 WO2021253298A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/011,472 US20230284245A1 (en) 2020-06-17 2020-06-17 Sidelink method and apparatus, and storage medium
PCT/CN2020/096651 WO2021253298A1 (zh) 2020-06-17 2020-06-17 直连通信方法、装置及存储介质
CN202080001321.7A CN111869245B (zh) 2020-06-17 2020-06-17 直连通信方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096651 WO2021253298A1 (zh) 2020-06-17 2020-06-17 直连通信方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021253298A1 true WO2021253298A1 (zh) 2021-12-23

Family

ID=72968436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096651 WO2021253298A1 (zh) 2020-06-17 2020-06-17 直连通信方法、装置及存储介质

Country Status (3)

Country Link
US (1) US20230284245A1 (zh)
CN (1) CN111869245B (zh)
WO (1) WO2021253298A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220046594A1 (en) * 2020-08-07 2022-02-10 Electronics And Telecommunications Research Institute Method and apparatus for coordinating and allocating sidelink resource
EP4252476A4 (en) * 2021-01-19 2024-04-24 Guangdong Oppo Mobile Telecommunications Corp Ltd USER DEVICE AND RESOURCE MONITORING PROCEDURES IN SIDELINK COMMUNICATIONS
CN115119182A (zh) * 2021-03-17 2022-09-27 维沃移动通信有限公司 定时器控制方法、装置及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190200366A1 (en) * 2017-12-22 2019-06-27 Qualcomm Incorporated Sidelink signal measurement and resource selection in vehicle-to-everything communications
US20190208441A1 (en) * 2016-11-03 2019-07-04 Panasonic Intellectual Property Corporation Of America Wireless communication method, apparatus and system
CN110958692A (zh) * 2018-09-26 2020-04-03 维沃移动通信有限公司 副链路传输资源的选择方法、配置方法及设备
CN110999444A (zh) * 2017-07-25 2020-04-10 Lg电子株式会社 用于选择载波的方法和支持该方法的设备
CN111149405A (zh) * 2017-09-27 2020-05-12 瑞典爱立信有限公司 实现副链路多载波发送的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9326185B2 (en) * 2013-03-11 2016-04-26 Seven Networks, Llc Mobile network congestion recognition for optimization of mobile traffic
US11317319B2 (en) * 2016-09-29 2022-04-26 Samsung Electronics Co., Ltd Method and device for controlling congestion
US10820348B2 (en) * 2016-09-30 2020-10-27 Apple Inc. Intra- and inter-rat co-existence and congestion control for LTE PC5-based vehicle-to-vehicle (V2V) communication
CN109891967B (zh) * 2016-10-26 2023-12-15 Lg电子株式会社 感测用于无线通信系统中的终端间的直接通信的资源的方法及其装置
SG11201903074XA (en) * 2016-11-01 2019-05-30 Lg Electronics Inc Method for configuring resources, for direct d2d communication, on basis of congestion control in wireless communication system and device therefor
EP3577967B1 (en) * 2017-02-06 2022-03-30 Apple Inc. Partial sensing and congestion control for long term evolution (lte) vehicular communication
CN108541017B (zh) * 2017-03-02 2023-04-28 中兴通讯股份有限公司 一种无线资源配置的方法及装置
WO2019157726A1 (zh) * 2018-02-14 2019-08-22 Oppo广东移动通信有限公司 资源上报的方法、终端设备和网络设备
CN110267226B (zh) * 2018-03-12 2021-07-20 华为技术有限公司 信息发送的方法和装置
CN111163437B (zh) * 2018-11-08 2022-07-01 大唐移动通信设备有限公司 一种通信监听方法及通信设备
US20220264583A1 (en) * 2019-05-20 2022-08-18 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for measuring sidelink

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190208441A1 (en) * 2016-11-03 2019-07-04 Panasonic Intellectual Property Corporation Of America Wireless communication method, apparatus and system
CN110999444A (zh) * 2017-07-25 2020-04-10 Lg电子株式会社 用于选择载波的方法和支持该方法的设备
CN111149405A (zh) * 2017-09-27 2020-05-12 瑞典爱立信有限公司 实现副链路多载波发送的方法
US20190200366A1 (en) * 2017-12-22 2019-06-27 Qualcomm Incorporated Sidelink signal measurement and resource selection in vehicle-to-everything communications
CN110958692A (zh) * 2018-09-26 2020-04-03 维沃移动通信有限公司 副链路传输资源的选择方法、配置方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC: "NR sidelink mode-1 resource allocation", 3GPP DRAFT; R1-1906554 NR SIDELINK MODE-1 RESOURCE ALLOCATION, vol. RAN WG1, 4 May 2019 (2019-05-04), Reno, USA, pages 1 - 7, XP051708590 *

Also Published As

Publication number Publication date
US20230284245A1 (en) 2023-09-07
CN111869245A (zh) 2020-10-30
CN111869245B (zh) 2023-11-21

Similar Documents

Publication Publication Date Title
KR102211930B1 (ko) 데이터 통신 방법 및 장치
WO2021243580A1 (zh) 下行定位参考信号传输方法、装置及存储介质
US9648559B2 (en) Systems and methods for differentiated fast initial link setup
WO2021253298A1 (zh) 直连通信方法、装置及存储介质
US10251084B2 (en) Method for multi-rat scheduling and apparatus therefor in system in which heterogeneous wireless communication technologies are utilized
JP5986305B2 (ja) パケット送信時刻を指示するためのシステムおよび方法
WO2020107235A1 (zh) 终端唤醒控制方法、装置及存储介质
WO2020191588A1 (zh) 信道检测方法、装置及存储介质
US11812255B2 (en) Congestion aware DRX_ON adaptation in sidelink unicast
WO2021143406A1 (zh) 一种消息发送方法、消息接收方法、装置和设备
KR20140006992A (ko) 무선랜 시스템에서의 계층화 채널 접근 방법 및 장치
WO2021003713A1 (zh) 基于免授权上行调度的数据传输方法、装置及存储介质
WO2019062746A1 (zh) 通信方法、装置和系统
Tuysuz Towards providing optimal energy‐efficiency and throughput for IEEE 802.11 WLANs
US11974317B2 (en) Data transmission method and apparatus, computer device, and system
WO2022077227A1 (zh) 直连通信方法、装置及存储介质
WO2020223977A1 (zh) 接入控制方法、装置及可读存储介质
US9839031B2 (en) Multimode user equipment accessing wireless sensor network
US20240015845A1 (en) Resource selection for power-saving users in nr sidelink
US11197245B2 (en) System and method for providing communication rules based on a status associated with a battery of a device
WO2024082813A1 (zh) Harq进程的分配方法、装置、基站及存储介质
US20230074305A1 (en) Resource determining method, apparatus, and system
EP3685616B1 (en) Modulation and coding scheme (mcs) correction when sharing radio resources between mtc and non-mtc
WO2022135537A1 (en) Method for small data transmission in rrc_inactive state and related devices
WO2020143412A1 (en) Method and apparatus for data transmission and computer readable medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941341

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941341

Country of ref document: EP

Kind code of ref document: A1