WO2021253236A1 - 超声聚焦控制方法、装置、电子设备及存储介质 - Google Patents

超声聚焦控制方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2021253236A1
WO2021253236A1 PCT/CN2020/096393 CN2020096393W WO2021253236A1 WO 2021253236 A1 WO2021253236 A1 WO 2021253236A1 CN 2020096393 W CN2020096393 W CN 2020096393W WO 2021253236 A1 WO2021253236 A1 WO 2021253236A1
Authority
WO
WIPO (PCT)
Prior art keywords
target point
images
ultrasonic
image
change information
Prior art date
Application number
PCT/CN2020/096393
Other languages
English (en)
French (fr)
Inventor
郑海荣
周慧
牛丽丽
孟龙
夏向向
庞娜
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2020/096393 priority Critical patent/WO2021253236A1/zh
Publication of WO2021253236A1 publication Critical patent/WO2021253236A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy

Definitions

  • This application belongs to the field of medical technology, and in particular relates to an ultrasound focus control method and device.
  • Ultrasound as a mechanical wave, is generated by the vibration of an object (sound source) and causes it to propagate through the compression and expansion of the medium.
  • the interaction between medical ultrasound and human tissues mainly uses the basic physical characteristics of the interaction between sound waves and matter, and has three basic acoustic effects such as wave effect, mechanical effect and thermal effect (refer to Figure 1). These effects are important in biomedicine. Application or significant potential.
  • ultrasound has an important feature. Its attenuation in human tissues such as water and muscles is very small, and it can reach deeper human tissues.
  • medical ultrasound technology has developed into two basic functions of ultrasound imaging diagnosis and high-intensity focused ultrasound thermal ablation based on wave effect and thermal effect.
  • HIFU High intensity focused ultrasound
  • the thermal effect of ultrasound can be used for the thermal ablation of tumors and the treatment of brain nerve nucleus damage, and related medical equipment has been widely used in clinical medicine.
  • Objects and biological tissues in the ultrasonic sound field receive the momentum of the sound wave (mechanical wave) and produce the action of force, which is defined as Acoustic Radiation Force (ARF) in acoustics.
  • ARF Acoustic Radiation Force
  • the ultrasonic radiation force is mainly determined by the pressure gradient of the sound field around the stressed object.
  • new research and understanding of ultrasonic mechanical effects especially ultrasonic radiation force.
  • the latest research shows that ultrasonic mechanical effects also have significant effects, unique advantages and great application potential in neuroregulation, neuroscience and brain science.
  • One of the objectives of the embodiments of the present application is to provide an ultrasound focus control method and device, which aims to solve the problem that the position of the target point changes due to the influence of breathing adjustment or heartbeat, which causes the ultrasound focus spot to fail to coincide with the target point in real time, thereby Issues that affect the stimulus effect.
  • the embodiments of the present application provide an ultrasound focus control method and device, which accurately locate a target target through image-guided ultrasound stimulation, correct the position change of the target target caused by respiration, movement, etc., and adjust the ultrasound focus in real time. Spots, to achieve precise ultrasound stimulation and treatment, in order to solve the problem of the related technology that affects the effect of ultrasound stimulation due to the deviation of the ultrasound focal spot and the target point.
  • an ultrasound focus control method including:
  • each frame of image includes the image of the target point
  • the ultrasound focus position is adjusted so that the adjusted ultrasound focus position coincides with the target point.
  • the adjusting the ultrasound focus position according to the position change information so that the adjusted ultrasound focus position coincides with the target point includes:
  • the position of the ultrasonic focal spot is adjusted by controlling the electric signal applied to the ultrasonic transducer array element, so that the ultrasonic focal spot after the position adjustment coincides with the target point.
  • the method further includes:
  • the ultrasonic focusing parameters are used to generate an ultrasonic focal spot, and the ultrasonic focusing parameters include size information and/or depth information of the ultrasonic focal spot to be generated.
  • the continuous multiple frames of images of the target point include N frames of images, and N is an integer greater than 1;
  • the acquiring position change information of the image of the target point in the consecutive multiple frames of images includes:
  • N-1 difference images obtain the position change information of the image of the target point in the continuous multiple frames of images.
  • the adjusting the ultrasound focus position according to the position change information includes:
  • the ultrasound focus position is adjusted according to the position change information.
  • the continuous multiple frames of images are images obtained by any of the following imaging methods: ultrasonic imaging, magnetic resonance imaging, infrared imaging, optical imaging, and electrical impedance imaging.
  • an ultrasound focus control device including: an image acquisition and analysis module and an electronic phased array module;
  • the image acquisition and analysis module is used for acquiring continuous multiple frames of images of a target point, each frame of image includes an image of the target point; and acquiring the image of the target point in the continuous multiple frame images Position change information of, where the position change information includes a first movement direction and a first movement distance;
  • the electronic phased array module is used to adjust the ultrasonic focus position according to the position change information, so that the adjusted ultrasonic focus position coincides with the target point.
  • the electronic phased array module is specifically configured to adjust the focus of the ultrasonic focal spot by controlling the electrical signal applied to the ultrasonic transducer array element according to the position change information. Position so that the adjusted ultrasonic focal spot coincides with the target point.
  • the electronic phased array module is also used to obtain the shape change information of the target image in the continuous multiple frames of images; and according to the shape Change information to determine the ultrasound focus parameter;
  • the ultrasonic focusing parameters are used to generate an ultrasonic focal spot, and the ultrasonic focusing parameters include size information and/or depth information of the ultrasonic focal spot to be generated.
  • the ultrasonic focus control method can acquire the position and shape change of the target point in real time.
  • the new target point position information can be transmitted to the electronic phased array system, and the ultrasonic focal spot can be adjusted in real time to make the focal spot precise Focus on the target at the "new location”.
  • the continuous multiple frames of images of the target point include N frames of images, and N is an integer greater than 1;
  • the image acquisition and analysis module is also used to subtract the first frame image from the i-th frame image to obtain N-1 differential images, where i is from 2 to N; and obtain according to the N-1 differential images The position change information of the image of the target point in the continuous multiple frames of images.
  • the electronic phased array module is specifically configured to, when the movement distance of the target point is greater than or equal to a preset threshold, according to the position change information, Adjust the ultrasound focus position.
  • the continuous multiple frames of images include images obtained by any of the following imaging methods: ultrasonic imaging, magnetic resonance imaging, infrared imaging, optical imaging, and electrical impedance imaging.
  • the embodiments of the present application provide an electronic device that includes a processor, a memory, and a computer program that is stored on the memory and can run on the processor.
  • the computer program is executed by the processor, the above-mentioned first On the one hand, the steps of the ultrasound focus control method.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the ultrasound focus control method in the above-mentioned first aspect are implemented .
  • the embodiments of the present application provide a computer program product, which when the computer program product runs on a terminal device, causes the terminal device to execute the ultrasound focus control method described in any one of the above-mentioned first aspects.
  • the technical solutions provided in the embodiments of the present application can be applied to a scene where the target point (or target area) changes in position and/or shape during the ultrasound stimulation process, and the target point is located and tracked.
  • the position change information of the target point can be obtained in real time, and the ultrasonic focus position can be adjusted in real time according to the position change information of the target target point, so that the adjusted ultrasonic focus position coincides with the target target point.
  • the electronic device can use ultrasound to face the focus position to generate an ultrasound focal spot for ultrasound stimulation. Therefore, the embodiments of the present application can correct the errors caused by the movement of the target point in real time and realize dynamic adjustment, thereby ensuring that the target point to be stimulated can receive real-time and accurate ultrasound stimulation, thereby realizing adaptive ultrasound stimulation.
  • Figure 1 is a schematic diagram of the three basic physical effects of ultrasound and possible biomedical applications.
  • FIG. 2 is a schematic flowchart of an ultrasound focus control method provided by an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an ultrasound focus control method provided by another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of an ultrasound focus control method provided by another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of an ultrasound focus control method provided by still another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of an ultrasound focus control device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the term “if” can be construed as “when” or “once” or “in response to determination” or “in response to detecting “.
  • the phrase “if determined” or “if detected [described condition or event]” can be interpreted as meaning “once determined” or “in response to determination” or “once detected [described condition or event]” depending on the context ]” or “in response to detection of [condition or event described]”.
  • the execution subject of the ultrasound focus control method provided by the embodiments of the present application may be an electronic device, or may be a functional module and/or functional entity in the electronic device that can implement the ultrasound focus control method.
  • the specifics can be determined according to actual usage requirements.
  • the embodiments of this application are not limited.
  • an electronic device is taken as an example, and the ultrasound focus control method provided in the embodiments of the present application will be exemplarily described with reference to the accompanying drawings.
  • Fig. 2 shows a schematic flowchart of an ultrasound focus control method provided by an embodiment of the present application. As shown in Figure 2, the method may include the following S101-S103.
  • the electronic device can collect continuous multiple frames of images in real time to detect the position change or shape change of the target point in real time, so as to adjust the ultrasonic focus position in real time as the position change or shape change of the target point. Make the adjusted ultrasound focus position coincide with the target point.
  • the above-mentioned target point may correspond to a position to be stimulated by ultrasound on a biological organ.
  • the target point can be a point (target point) or an area (target area) with a certain size.
  • the details can be determined according to actual usage requirements, and the embodiment of the present application does not limit it.
  • the foregoing continuous multiple frames of images may be images obtained by any of the following imaging methods: ultrasonic imaging, magnetic resonance imaging, infrared imaging, optical imaging, and electrical impedance imaging.
  • the consecutive multiple frames of images may be ultrasound images.
  • the above-mentioned target image is an exemplary enumeration, and it can be understood that, in specific implementation, the above-mentioned target image may also be an image obtained by any other possible imaging methods, which can be specifically determined according to actual use requirements.
  • the implementation of this application The examples are not limited.
  • the target image is an ultrasound image as an example for exemplary description.
  • an ultrasonic image generating device may be used to generate an ultrasonic image.
  • the ultrasonic image generating device includes an ultrasonic probe and a display.
  • the ultrasonic probe can transmit ultrasonic waves to the subject, receive the reflected sound, and then output ultrasonic detection signals to the display.
  • the display After receiving the ultrasonic detection signal, the display can display the ultrasonic image according to the ultrasonic detection signal.
  • the position change information includes the first movement direction and the first movement distance.
  • the superposition of the adjusted ultrasound focus position and the target point may be partially coincident or completely coincident, which can be specifically determined according to actual usage requirements, which is not limited in the embodiment of the present application.
  • the electronic device can obtain the degree of coincidence between the adjusted ultrasonic focus position and the target target point, and the electronic device determines that the degree of coincidence between the adjusted ultrasonic focus position and the target target point is greater than In the case of a threshold (such as 80%), the electronic device can determine that the adjusted ultrasound focus position coincides with the target point.
  • a threshold such as 80%
  • the electronic device may control the ultrasonic focal spot to move the first movement distance in a direction opposite to the first movement direction according to the position change information, so that the adjusted ultrasonic focus position coincides with the target point.
  • the foregoing S103 may specifically include the following S103A.
  • the position of the ultrasonic focal spot can be adjusted by controlling the electrical signal applied to the ultrasonic transducer array element, so that the ultrasonic focal spot after the adjustment of the position coincides with the target point.
  • the ultrasonic focal spot can also be called the sound field focal spot.
  • the electronic phased array control circuit can be used to control the electrical signal applied to the ultrasonic transducer array element to adjust the position of the ultrasonic focal spot.
  • the electronic phased array control circuit can be a circuit that controls the phase of each element of the ultrasonic array transducer by adjusting the delay to obtain controllable emission and reception of focused sound beams.
  • the electronic device can adjust the ultrasonic focal spot to move the first movement distance in the direction opposite to the first movement direction by controlling the electric signal applied to the ultrasonic transducer array element according to the position change information, so that the position is adjusted
  • the rear ultrasound focal spot coincides with the target point.
  • the above-mentioned electronic device may include an electronic phased array control circuit and an ultrasonic transducer (ie, an ultrasonic array generator).
  • the electronic equipment can adopt ultrasonic phased array technology, through the electronic phased array control circuit to excite the ultrasonic array generator to work, and generate ultrasonic sound fields with different focal spots.
  • the ultrasonic phased array technology controls the phase of each element of the ultrasonic array transducer by adjusting the delay to obtain controllable emission and reception of focused sound beams.
  • the ultrasonic sound field can reach the target point (human organ), and the target target point can be ultrasonically stimulated and adjusted. treat. This can ensure that the target point to be stimulated receives real-time and accurate ultrasound stimulation, and realizes adaptive ultrasound stimulation.
  • the electronic device adjusts the ultrasonic focus position according to the position change information of the target target point, so that the adjusted ultrasonic focus position coincides with the target target point. Further, the electronic device can use ultrasound to face the focus position to generate an ultrasound focal spot for ultrasound stimulation and treatment.
  • the ultrasound focus control method provided in this application further includes the following S104 and S105.
  • S105 Determine an ultrasound focus parameter according to the shape change information, where the ultrasound focus parameter is used to generate an ultrasound focal spot, and the ultrasound focus parameter includes size information and/or depth information of the ultrasound focal spot to be generated.
  • the size information of the ultrasonic focal spot described above is used to indicate the size or size of the ultrasonic focal spot.
  • its size information may be the diameter of the ultrasonic focal spot.
  • the above-mentioned depth information of the ultrasonic focal spot is used to indicate the distance from the ultrasonic transducer to the ultrasonic focal spot.
  • the above-mentioned shape change information of the target image can be used to indicate that the target image becomes larger or smaller, and it can also be used to indicate that the edge of the target image changes, or it can be used to indicate the target image.
  • Other possible change information of the point image can be specifically determined according to actual usage requirements, which is not limited in the embodiment of the present application.
  • the electronic device can determine the ultrasound focus parameter according to the shape change information of the target image, and then can adjust the size and/or depth of the ultrasound focus spot according to the determined focus parameter.
  • the electronic device may adjust the ultrasonic focus parameters, for example, increase the size of the ultrasonic focal spot and/or decrease the depth of the ultrasonic focal spot.
  • the electronic device may adjust the ultrasonic focus parameters, for example, reduce the size of the ultrasonic focal spot and/or adjust the depth of the ultrasonic focal spot big.
  • the image-guided ultrasonic focusing control method proposed by the present invention can acquire the position and shape change of the target point in real time.
  • the new target point position information can be transmitted to the electronic phased array system for real-time adjustment
  • Ultrasound focal spot makes the focal spot precisely focus on the target point at the "new position”.
  • the embodiment of the present invention may not limit the execution sequence of S103 and S104-S105. That is, in the embodiment of the present invention, S103 may be executed first, and then S104-S105; S104-S105 may be executed first, and then S103 may be executed; S103 and S104-S105 may also be executed simultaneously. It can be understood that the foregoing FIG. 4 is an example of performing S103 and then S104-S105 as an example.
  • the electronic device adjusts the ultrasonic focus position according to the position change information of the target target image, so that the adjusted ultrasonic focus position coincides with the target target point.
  • the electronic device can determine the ultrasonic focusing parameters (size information, depth information, etc. of the ultrasonic focal spot to be generated) according to the shape change information of the target image.
  • the electronic device can use the ultrasound to face the focus position, generate an ultrasound focal spot corresponding to the size information and/or depth information of the focus parameter, and perform ultrasound stimulation and treatment.
  • the electronic device can control the ultrasonic focal spot of the ultrasonic stimulation device to reach the position of the target target after movement, so as to realize the coincidence of the ultrasonic focal spot and the target target.
  • the position change information of the target image can be acquired in real time, and then the ultrasonic focus parameter is determined according to the shape change information of the target target image, and the ultrasonic focal spot is generated according to the ultrasonic focusing parameter, so that the ultrasonic focal spot Align with the target point more accurately, realize the way of image-guided ultrasound stimulation, help accurately locate the target point and perform ultrasound stimulation and treatment.
  • the electronic device can adjust the ultrasonic focus position in real time according to the change of the target point, and adjust the size information and depth information of the ultrasonic focal spot in real time, so that the ultrasonic focal spot and the target target point can be overlapped and aligned more accurately. Accurate, achieve better ultrasound stimulation effect.
  • the method provided in the embodiment of the present application can be applied to a scene where the target point (or target area) to be stimulated undergoes a position change and/or a shape change during the ultrasound stimulation process, and the target point is located and tracked.
  • the position change information of the target point can be obtained in real time, and the ultrasonic focus position can be adjusted in real time according to the position change information of the target target point, so that the adjusted ultrasonic focus position coincides with the target target point.
  • the electronic device can use ultrasound to face the focus position to generate an ultrasound focal spot for ultrasound stimulation and treatment. Therefore, the embodiments of the present application can correct the errors caused by the movement of the target point in real time and realize dynamic adjustment, thereby ensuring that the target point to be stimulated can be stimulated with real-time and accurate ultrasound, thereby realizing adaptive ultrasound stimulation and treatment.
  • this application proposes an ultrasound focus control method in this scenario. Specifically, during the ultrasound stimulation process, not only the ultrasound stimulation location needs to be image-guided, but also the ultrasound focus needs to be adjusted in real time according to changes in human organs. Location, focal spot size, focal spot depth, etc.
  • the technical solutions provided by the embodiments of the present application it is possible to realize real-time correction of errors caused by the movement of the target point during the ultrasound stimulation process. Through dynamic adjustment, it is ensured that the target point to be stimulated can be stimulated with real-time and accurate ultrasound, and adaptive ultrasound stimulation is achieved. treat.
  • the aforementioned ultrasonic focal spot to be generated may be a focal spot excited by the element of the ultrasonic array transducer based on the electronic phased array control.
  • the electronic device can adjust the position, size and depth of the ultrasonic focal spot in real time by controlling the electrical signal applied to the ultrasonic transducer array element according to the position change information and shape change information of the target image.
  • the position change of the target point can be determined according to the position change of the added mark, so that the position change and movement track of the target point can be detected in real time. That is, this can quickly identify the moving target in the current image and meet the real-time requirements of positioning.
  • the position change information may include the following steps 102A and 102B.
  • Step 102A Subtract the first frame image from the i-th frame image to obtain N-1 differential images, where i is 2 to N.
  • Step 102B Obtain position change information of the image of the target point in the continuous multiple frames of images according to the N-1 differential images.
  • the foregoing continuous multi-frame images may include a first frame image, a second frame image, and a third frame image that are consecutive frames.
  • the second frame image is the next frame image of the first frame image
  • the third frame image is the next frame image of the second frame image.
  • the electronic device can obtain the position information of the target point before movement by subtracting the first frame image from the second frame image; and obtain the position information of the target point after movement by subtracting the first frame image from the third frame image. Then, the electronic device can obtain the position change information of the target point according to the difference between the position information after the exercise and the position information before the exercise.
  • the first frame is used as the background frame
  • the initial position of the target point is obtained by subtracting the first frame from the second frame
  • the position of the target point after the movement is obtained by subtracting the first frame from the third frame.
  • the above-mentioned adjusting the ultrasound focus position according to the position change information specifically includes the following S103B.
  • the preset threshold value may be an empirical value, which may be specifically determined according to actual use requirements, which is not limited in the embodiment of the present application.
  • the movement distance of the target point is greater than or equal to the preset threshold, it means that the target point has a large deviation from the focus position, and the focus parameters need to be adjusted, that is, the size information of the ultrasonic focal spot to be generated is adjusted And/depth information, the ultrasonic focal spot is generated according to the adjusted focus parameter, so that the ultrasonic focal spot coincides with the target target, so as to ensure that the target to be stimulated can receive real-time and accurate ultrasonic stimulation and treatment.
  • the electronic device may continue to perform the above step 101.
  • the adjustment is further based on the position change information of the target point Ultrasound focus position, which can ensure the accuracy of real-time adjustment.
  • FIG. 6 shows a structural block diagram of the ultrasound focus control device provided in an embodiment of the present application. For ease of description, only the parts related to the embodiment of the present application are shown.
  • the ultrasound focus control device 200 includes an image acquisition and analysis module 201 and an electronic phased array module 202;
  • the image acquisition and analysis module 201 is used for acquiring continuous multiple frames of images of the target point, each frame of image includes the image of the target point; and acquiring the position change information of the image of the target point in the continuous multiple frames of images,
  • the position change information includes the first movement direction and the first movement distance;
  • the electronic phased array module 202 is used to adjust the ultrasound focus position according to the position change information acquired by the image acquisition and analysis module 201 so that the adjusted ultrasound focus position coincides with the target point.
  • the electronic phased array module is specifically configured to adjust the position of the ultrasonic focal spot by controlling the electrical signal applied to the ultrasonic transducer array element according to the position change information, Make the ultrasonic focal spot after the position adjustment coincide with the target point.
  • the foregoing continuous multiple frames of images may be images obtained by any of the following imaging methods: ultrasonic imaging, magnetic resonance imaging, infrared imaging, optical imaging, and electrical impedance imaging.
  • the consecutive multiple frames of images may be ultrasound images.
  • the electronic phased array module 202 is also used to obtain the shape change information of the target image in the continuous multiple frames of images; and according to the shape change information , To determine the ultrasound focus parameters.
  • the aforementioned focusing parameters are used to generate an ultrasonic focal spot, and the ultrasonic focusing parameters include size information and/or depth information of the ultrasonic focal spot to be generated.
  • the image-guided ultrasonic focusing control device proposed in the present invention can acquire the position and shape change of the target point in real time.
  • the new target point position information can be transmitted to the electronic phased array system for real-time adjustment
  • Ultrasound focal spot makes the focal spot precisely focus on the target point at the "new position”.
  • the continuous multiple frames of images of the target point include N frames of images, and N is an integer greater than 1;
  • the image acquisition and analysis module 201 is also used to subtract the first frame image from the i-th frame image to obtain N-1 differential images, where i is from 2 to N; and obtain the target target based on the N-1 differential images The position change information of the image of the point in the continuous multi-frame image.
  • the electronic phased array module 202 is specifically configured to adjust the ultrasound focus position according to position change information when the movement distance of the target point is greater than or equal to a preset threshold.
  • the electronic phased array module can excite the ultrasonic transducer to work through the electronic phased array to generate ultrasonic sound fields with different focal spots, and can adjust the excitation method of the electronic phased array in real time according to the image evaluation results.
  • the position information, depth information and size information of the focal spot are adjusted in real time, so that the ultrasonic focal spot and the target point can always coincide. In this way, the ultrasound sound field (that is, the ultrasound focal spot) is helped to reach the target point through image guidance, and the target point is ultrasonically stimulated and treated.
  • the electronic phased array is redesigned and adjusted Focus parameters.
  • real-time and cyclic image acquisition and analysis of the target target point can be performed until the target target point and the ultrasound focal spot can overlap.
  • the ultrasound focus control device provided by the embodiments of the present application can be applied to a scene where the target point (or target area) to be stimulated undergoes a position change and/or a shape change during the ultrasound stimulation process.
  • the position change information of the target point can be obtained in real time, and the ultrasonic focus position can be adjusted in real time according to the position change information of the target target point, so that the adjusted ultrasonic focus position coincides with the target target point.
  • the electronic device can use ultrasound to face the focus position to generate an ultrasound focal spot for ultrasound stimulation. Therefore, the embodiments of the present application can correct the errors caused by the movement of the target point in real time and realize dynamic adjustment, thereby ensuring that the target point to be stimulated can receive real-time and accurate ultrasound stimulation, thereby realizing adaptive ultrasound stimulation.
  • an embodiment of the present application also provides an electronic device.
  • the electronic device includes: at least one processor 300, a memory 301, and a computer stored in the memory 301 and capable of running on the at least one processor 300 A program 302.
  • the processor 300 implements the steps in any of the foregoing method embodiments when the processor 300 executes the computer program 302.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps in each of the foregoing method embodiments can be realized.
  • the embodiments of the present application provide a computer program product.
  • the computer program product runs on an electronic device, the electronic device can realize the steps in the foregoing method embodiments when the electronic device is executed.
  • the aforementioned integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium. Based on this understanding, the implementation of all or part of the processes in the above-mentioned embodiment methods in this application can be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium. When executed by the processor, the steps of the foregoing method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may at least include: any entity or device capable of carrying the computer program code to the photographing device/terminal device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), electric carrier signal, telecommunications signal and software distribution medium.
  • ROM read-only memory
  • RAM random access memory
  • electric carrier signal telecommunications signal and software distribution medium.
  • U disk mobile hard disk, floppy disk or CD-ROM, etc.
  • computer-readable media cannot be electrical carrier signals and telecommunication signals.
  • the disclosed device/electronic device and method may be implemented in other ways.
  • the device/electronic device embodiments described above are merely illustrative.
  • the division of the above-mentioned modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units or Components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

本申请提供一种超声聚焦控制方法及装置,该方法包括:采集目标靶点的连续多帧图像,每一帧图像包括目标靶点的图像;并获取目标靶点的图像在连续多帧图像中的位置变化信息,该位置变化信息包括第一运动方向和第一运动距离;根据该位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。

Description

超声聚焦控制方法、装置、电子设备及存储介质 技术领域
本申请属于医疗技术领域,尤其涉及一种超声聚焦控制方法及装置。
背景技术
超声作为一种机械波,是由物体(声源)振动产生,并通过压缩和膨胀媒质导致其传播。医学超声波与人体组织相互作用,主要应用了声波与物质相互作用的基本物理特性,具有波动效应、力学效应和热效应等三大基本声学效应(参考图1),这些效应在生物医学中有着重要的应用或重大潜力。超声除了具有波的一般属性,还有一个重要特点,其在水、肌肉等人体组织内的衰减很小,可以抵达较深的人体组织。医学超声技术经过近七十多年的发展,超声基于波动效应和热效应,已经发展成为具有超声波成像诊断和高强度聚焦超声热消融治疗的两大基本功能。高强度聚焦超声(High intensity focused ultrasound,HIFU)的热效应可用于肿瘤的热消融和脑神经核团毁损治疗,相关的医疗设备已经在医学临床广泛使用。超声波声场中的物体和生物组织接受到声波(机械波)动量而产生受到力的作用,在声学中被定义为声辐射力(Acoustic Radiation Force,ARF)。超声辐射力主要决定于受力物体周围的声场压力梯度。近年来对于超声力学效应特别是超声辐射力的新研究和理解最新的研究显示超声力学效应在神经调控和神经科学及脑科学方面也具有显著的作用、独特优势和重大应用潜力。
目前,物理性的神经调控技术是一类应用于神经科学研究与神经疾病干预重要手段。利用电、磁、光等基本原理与神经科学相结合产生了深部脑电刺激、经颅磁刺激、光基因调控等神经刺激与调控技术。其中,医学超声作为一种无创诊疗技术,能够在人体内形成聚焦,作用于特定区域组织,具备调控脑深部核团、外周器官和外周神经的功能。
然而,由于呼吸调整或者心脏跳动的影响,人体组织的位置也会发生变化,导致焦斑无法和靶点实时重合,影响超声刺激的效果。
技术问题
本申请实施例的目的之一在于:提供一种超声聚焦控制方法及装置,旨在解决由于呼吸调整或者心脏跳动的影响使得靶点位置发生变化,导致超声焦斑无法与靶点实时重合,从而影响刺激效果的问题。
技术解决方案
鉴于上述问题,本申请实施例提供一种超声聚焦控制方法及装置,通过图像引导超声刺激的方式精准定位目标靶点,并纠正由于呼吸,运动等引起的目标靶点位置变化,实时调整超声焦斑,实现超声精准刺激和治疗,以解决相关技术中由于超声焦斑和目标靶点偏离而影响超声刺激效果的问题。
为了解决上述技术问题,本申请采用的技术方案是:
第一方面,本申请实施例提供了一种超声聚焦控制方法,包括:
采集目标靶点的连续多帧图像,每一帧图像包括所述目标靶点的图像;
获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息,所述位置变化信息包括第一运动方向和第一运动距离;
根据所述位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与所述目标靶点重合。
在第一方面的一种可能的实现方式中,所述根据所述位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与所述目标靶点重合,包括:
根据所述位置变化信息,通过控制施加于超声换能器阵元的电信号,调整超声焦斑的位置,使得位置调整后的超声焦斑与所述目标靶点重合。
在第一方面的一种可能的实现方式中,所述方法还包括:
获取所述目标靶点的图像在所述连续多帧图像中的形状变化信息;
根据所述形状变化信息,确定所述超声聚焦参数;
其中,所述超声聚焦参数用于产生超声焦斑,所述超声聚焦参数包括待产生的超声焦斑的尺寸信息和/或深度信息。
在第一方面的一种可能的实现方式中,所述目标靶点的连续多帧图像包括N帧图像,N为大于1的整数;
所述获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息,包括:
采用第i帧图像减去第1帧图像,得到N-1个差分图像,其中i取2至N;
根据所述N-1个差分图像,获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息。
在第一方面的一种可能的实现方式中,所述根据所述位置变化信息,调整超声聚焦位置,包括:
在所述目标靶点的运动距离大于或等于预设阈值的情况下,根据所述位置变化信息,调整所述超声聚焦位置。
在第一方面的一种可能的实现方式中,所述连续多帧图像为通过以下任一种成像方式得到的图像:超声波成像、磁共振成像、红外线成像、光学成像、电阻抗成像。
第二方面,本申请实施例提供了一种超声聚焦控制装置,包括:图像采集和分析模块以及电子相控阵模块;
所述图像采集和分析模块,用于采集目标靶点的连续多帧图像,每一帧图像包括所述目标靶点的图像;并获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息,所述位置变化信息包括第一运动方向和第一运动距离;
所述电子相控阵模块,用于根据所述位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与所述目标靶点重合。
在第二方面的一种可能的实现方式中,所述电子相控阵模块,具体用于根据所述位置变化信息,通过控制施加于超声换能器阵元的电信号,调整超声焦斑的位置,使得位置调整后的超声焦斑与所述目标靶点重合。
在第二方面的一种可能的实现方式中,所述电子相控阵模块,还用于获取所述目标靶点的图像在所述连续多帧图像中的形状变化信息;并根据所述形状变化信息,确定所述超声聚焦参数;
其中,所述超声聚焦参数用于产生超声焦斑,所述超声聚焦参数包括待产生的超声焦斑的尺寸信息和/或深度信息。
该超声聚焦控制方法可以实时获取靶点的位置和形状改变,当靶点发生偏移时,可以将新的靶点位置信息传送到电子相控阵系统,实时调整超声焦斑,使得焦斑精准聚焦于“新位置”处的靶点。
在第二方面的一种可能的实现方式中,所述目标靶点的连续多帧图像包括N帧图像,N为大于1的整数;
所述图像采集和分析模块,还用于采用第i帧图像减去第1帧图像,得到N-1个差分图像,其中i取2至N;并根据所述N-1个差分图像,获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息。
在第二方面的一种可能的实现方式中,所述电子相控阵模块,具体用于在所述目标靶点的运动距离大于或等于预设阈值的情况下,根据所述位置变化信息,调整超声聚焦位置。
在第二方面的一种可能的实现方式中,所述连续多帧图像包括通过以下任一种成像方式得到的图像:超声波成像、磁共振成像、红外线成像、光学成像、电阻抗成像。
第三方面,本申请实施例提供了一种电子设备,该电子设备包括处理器、存储器及存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述第一方面中的超声聚焦控制方法的步骤。
第四方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储计算机程序,该计算机程序被处理器执行时实现上述第一方面中的超声聚焦控制方法的步骤。
第五方面,本申请实施例提供了一种计算机程序产品,当计算机程序产品在终端设备上运行时,使得终端设备执行上述第一方面中任一项所述的超声聚焦控制方法。
可以理解的是,上述第二方面至第五方面的有益效果可以参见上述第一方面中的相关描述,在此不再赘述。
有益效果
本申请实施例与相关技术相比存在的有益效果是:
本申请实施例提供的技术方案,可以应用于在超声刺激过程中靶点(或靶区)发生位置变化和/或形状变化等情况下定位并跟踪靶点的场景。可以实时获取目标靶点的位置变化信息,进而根据目标靶点的位置变化信息,实时调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。进一步的,电子设备可以使用超声波朝向聚焦位置,产生超声焦斑,进行超声刺激。因此,本申请实施例能够实时修正目标靶点运动所引起的误差,实现动态调整,从而确保待刺激靶点得到实时且精准的超声刺激,从而实现自适应超声刺激。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是超声波的三大基本物理效应和可能的生物医学应用的示意图。
图2是本申请一实施例提供的超声聚焦控制方法的流程示意图;
图3是本申请另一实施例提供的超声聚焦控制方法的流程示意图;
图4是本申请又一实施例提供的超声聚焦控制方法的流程示意图;
图5是本申请再一实施例提供的超声聚焦控制方法的流程示意图;
图6是本申请实施例提供的超声聚焦控制装置的结构示意图;
图7是本申请实施例提供的电子设备的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
本申请实施例提供的超声聚焦控制方法的执行主体可以为电子设备,也可以为该电子设备中能够实现该超声聚焦控制方法的功能模块和/或功能实体,具体的可以根据实际使用需求确定,本申请实施例不作限定。下面以电子设备为例,结合附图对本申请实施例提供的超声聚焦控制方法进行示例性的说明。
图2示出了本申请实施例提供的一种超声聚焦控制方法的示意性流程图。如图2所示,该方法可以包括下述的S101-S103。
S101、采集目标靶点的连续多帧图像,每一帧图像包括目标靶点的图像。
本申请实施例中,电子设备可以实时采集连续多帧的图像,以实时检测目标靶点的位置变化或形状变化,以便于随着目标靶点的位置变化或形状变化,实时调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。
需要说明的是,上述目标靶点可以对应于生物体器官上的待超声刺激的位置。例如,目标靶点可以为一个点(靶点),也可以为具有一定尺寸的区域(靶区)。具体可以根据实际使用需求确定,本申请实施例不作限定。
可选的,本申请实施例中,上述连续多帧图像可以为通过以下任一种成像方式得到的图像:超声波成像、磁共振成像、红外线成像、光学成像、电阻抗成像。例如,连续多帧图像可以为超声波图像。
需要说明的是,上述目标图像为示例性的列举,可以理解,在具体实现时,上述目标图像还可以为通过其他任意可能的成像方式得到的图像,具体可以根据实际使用需求确定,本申请实施例不作限定。为了便于说明和理解,本申请实施例中以目标图像为超声波图像为例进行示例性的说明。
示例性的,可以采用超声波图像生成装置生成超声波图像。例如,超声波图像生成装置包括超声波探头和显示器。该超声波探头可以将超声波发射到被检体,并接收反射的声音,然后向显示器输出超声波检测信号。显示器可以在接收到超声波检测信号之后,根据超声波检测信号显示超声波图像。
S102、获取目标靶点的图像在连续多帧图像中的位置变化信息。
其中,该位置变化信息包括第一运动方向和第一运动距离。
S103、根据位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。
需要说明的是,上述调整后的超声聚焦位置与目标靶点重合可以为部分重合,也可以为完全重合,具体可以根据实际使用需求确定,本申请实施例不作限定。
示例性的,对于部分重合的情况,电子设备可以获取调整后的超声聚焦位置与目标靶点之间的重合度,在电子设备判定调整后的超声聚焦位置与目标靶点之间的重合度大于阈值(如80%)的情况下,电子设备可以确定调整后的超声聚焦位置与目标靶点重合。
本申请实施例中,电子设备可以根据位置变化信息,控制超声焦斑沿与第一运动方向相反的方向移动第一运动距离,使得调整后的超声聚焦位置与目标靶点重合。
可选的,本申请实施例中,结合图2,如图3所示,上述的S103具体可以包括下述的S103A。
S103A、可以根据位置变化信息,通过控制施加于超声换能器阵元的电信号,调整超声焦斑的位置,使得位置调整后的超声焦斑与目标靶点重合。
其中,超声焦斑还可以称为声场焦斑。
本申请实施例中,可以通过电子相控阵控制电路,控制施加于超声换能器阵元的电信号,调整超声焦斑的位置。该电子相控阵控制电路可以为通过调整延迟来对超声阵列换能器的各个阵元进行相位控制,获得可控的发射和接收聚焦声束的电路。
本申请实施例中,电子设备可以根据位置变化信息,通过控制施加于超声换能器阵元的电信号,调整超声焦斑沿与第一运动方向相反的方向移动第一运动距离,使得位置调整后的超声焦斑与目标靶点重合。
作为示例而非限定,上述电子设备(可称为超声阵列换能器)可以包括电子相控阵控制电路和超声换能器(即超声面阵发生器)。电子设备可以采用超声相控阵技术,通过电子相控阵控制电路激励超声面阵发生器工作,产生不同焦斑的超声声场。其中,超声相控阵技术通过调整延迟来对超声阵列换能器的各个阵元进行相位控制,获得可控的发射和接收聚焦声束。
具体的,根据本申请实施例,可以实现在超声刺激过程中实时修正靶点运动所引起的误差,通过动态调整,使得超声声场达到目标靶点(人体器官),对目标靶点进行超声刺激和治疗。这样可以确保待刺激靶点得到实时且精准的超声刺激,实现自适应超声刺激。
本申请实施例中,电子设备根据目标靶点的位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。进一步的,电子设备可以使用超声波朝向聚焦位置,产生超声焦斑,进行超声刺激和治疗。
在一种可能的实现方式中,结合图2,如图4所示,本申请提供的超声聚焦控制方法还包括下述的S104和S105。
S104、获取目标靶点的图像在连续多帧图像中的形状变化信息。
S105、根据形状变化信息,确定超声聚焦参数,该超声聚焦参数用于产生超声焦斑,该超声聚焦参数包括待产生的超声焦斑的尺寸信息和/或深度信息。
本申请实施例中,上述超声焦斑的尺寸信息用于指示超声焦斑的尺寸或大小。示例性的,若超声焦斑为圆形,则其尺寸信息可以为超声焦斑的直径。
本申请实施例中,上述超声焦斑的深度信息用于指示超声换能器到超声焦斑的距离。
本申请实施例中,上述目标靶点图像的形状变化信息可以用于指示目标靶点图像变大或者变小,还可以用于指示目标靶点图像的边缘发生变化,或者可以用于指示目标靶点图像的其他可能变化信息,具体可以根据实际使用需求确定,本申请实施例不作限定。
本申请实施例中,电子设备可以根据目标靶点图像的形状变化信息,确定超声聚焦参数,进而可以根据确定的聚焦参数,调整超声焦斑的尺寸和/或深度。
示例性的,若目标靶点图像的形状变化信息指示目标靶点图像变大,则电子设备可以调整超声聚焦参数,例如将超声焦斑的尺寸调大和/或将超声焦斑的深度调小。
又示例性的,若目标靶点图像的形状变化信息指示目标靶点图像变小,则电子设备可以调整超声聚焦参数,例如将超声焦斑的尺寸调小和/或将超声焦斑的深度调大。
本发明提出的通过图像引导的超声聚焦控制方法,可以实时获取靶点的位置和形状改变,当靶点发生偏移时,可以将新的靶点位置信息传送到电子相控阵系统,实时调整超声焦斑,使得焦斑精准聚焦于“新位置”处的靶点。
需要说明的是,本发明实施例可以不限定S103和S104-S105的执行顺序。即本发明实施例可以先执行S103,后执行S104-S105;也可以先执行S104-S105,后执行S103;还可以同时执行S103和S104-S105。可以理解,上述图4是以先执行S103后执行S104-S105为例示意的。
本申请实施例中,电子设备根据目标靶点图像的位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。并且,电子设备可以根据目标靶点图像的形状变化信息,确定超声聚焦参数(待产生的超声焦斑的尺寸信息、深度信息等)。进一步的,电子设备可以使用超声波朝向聚焦位置,产生聚焦参数对应尺寸信息和/深度信息的超声焦斑,进行超声刺激和治疗。
示例性的,在根据目标靶点图像的形状变化信息,获取聚焦参数之后,电子设备可以控制超声刺激设备的超声焦斑达到目标靶点运动后的位置,从而实现超声焦斑和目标靶点重合。
本申请实施例中,可以实时获取目标靶点图像的位置变化信息,进而根据目标靶点图像的形状变化信息,确定超声聚焦参数,并按照该超声聚焦参数产生超声焦斑,如此使得超声焦斑与目标靶点更准确地对准,实现图像引导超声刺激的方式,帮助精准定位目标靶点并进行超声刺激和治疗。
本申请实施例中,电子设备可以根据目标靶点的变化,实时调整超声聚焦位置,并实时调整超声焦斑的尺寸信息和深度信息,使得超声焦斑与目标靶点重合更准确地重合和对准,实现更好的超声刺激效果。
本申请实施例提供的方法,可以应用于在超声刺激过程中待刺激靶点(或靶区)发生位置变化和/或形状变化等情况下定位并跟踪靶点的场景。可以实时获取目标靶点的位置变化信息,进而根据目标靶点的位置变化信息,实时调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。进一步的,电子设备可以使用超声波朝向聚焦位置,产生超声焦斑,进行超声刺激和治疗。因此,本申请实施例能够实时修正目标靶点运动所引起的误差,实现动态调整,从而确保待刺激靶点得到实时且精准的超声刺激,从而实现自适应超声刺激和治疗。
超声波作为一种机械波可以无创到达人体组织,根据超声波机械效应和热效应的生物特点,超声波可应用于临床疾病的治疗。人体器官的大小和深度存在个体差异,并且在呼吸调整过程中,人体器官的位置也会发生变化。鉴于此,本申请提出了该场景下超声聚焦控制方法,具体的,在超声刺激过程中,不仅需要通过图像引导的方式进行超声刺激定位,而且也需要根据人体器官的变化,实时调整超声波的聚焦位置、焦斑大小、焦斑深度等。通过本申请实施例提供的技术方案,可以实现在超声刺激过程中实时修正靶点运动所引起的误差,通过动态调整,确保待刺激靶点得到实时且精准的超声刺激,实现自适应超声刺激和治疗。
可选的,本申请实施例中,上述待产生的超声焦斑可以为基于电子相控阵控制超声阵列换能器的阵元所激发的焦斑。电子设备可以根据目标靶点图像的位置变化信息和形状变化信息,通过控制施加于超声换能器阵元的电信号,实时调整该超声焦斑的位置、尺寸和深度。
本申请实施例中,可以通过在目标靶点的图像处添加标记,可以根据所添加标记的位置变化来确定目标靶点的位置变化,从而可以实时检测目标靶点的位置变化和运动轨迹。即,这样能较快地识别当前图像中的运动目标靶点,满足定位的实时性要求。
在一种可能的实现方式中,假设目标靶点的连续多帧图像包括N帧图像,N为大于1的整数,那么上述获取目标靶点的图像在连续多帧图像中的位置变化信息(即上述的步骤102)可以包括下述步骤102A和步骤102B。
步骤102A、采用第i帧图像减去第1帧图像,得到N-1个差分图像,其中i取2至N。
步骤102B、根据N-1个差分图像,获取目标靶点的图像在连续多帧图像中的位置变化信息。
示例性的,上述连续多帧图像可以包括帧连续的第一帧图像、第二帧图像和第三帧图像。其中,第二帧图像为第一帧图像的后一帧图像,第三帧图像为第二帧图像的后一帧图像。电子设备可以通过将第二帧图像减去第一帧图像,获取目标靶点的运动前位置信息;并通过将第三帧图像减去第一帧图像,获取目标靶点的运动后位置信息。然后,电子设备可以根据运动后位置信息和运动前位置信息之间的差值,获取目标靶点的位置变化信息。
其中,第一帧作为背景帧,用第二帧减第一帧获得目标靶点的初始位置,用第三帧减第一帧获得目标靶点运动后的位置。通过判断目标靶点运动后的位置与初始位置的差别,确定目标靶点的运动方向和位置,保证了对目标靶点检测的实时性和准确性。
需要说明的是,可以通过将前后两帧图像对应像素点的灰度值相减,从而可以确定图像中的运动目标及运动轨迹。
在一种可能的实现方式中,结合图2,如图5所示,上述根据位置变化信息,调整超声聚焦位置具体包括下述的S103B。
S103B、在目标靶点的运动距离大于或等于预设阈值的情况下,根据位置变化信息,调整超声聚焦位置。
其中,预设阈值可以为经验值,具体可以根据实际使用需求确定,本申请实施例不作限定。
可以理解,若目标靶点的运动距离大于或等于预设阈值,则表示目标靶点相对于聚焦位置存在较大偏移,需要对聚焦参数进行调整,即调整待产生的超声焦斑的尺寸信息和/深度信息,按照调整后的聚焦参数产生超声焦斑,如此使得超声焦斑与目标靶点重合,从而确保待刺激靶点得到实时且精准的超声刺激和治疗。
需要说明的是,在目标靶点的运动距离小于预设阈值的情况下,电子设备可以继续执行上述的步骤101。
本申请实施例中,首先判定目标靶点相对于聚焦位置是否产生偏移,然后在确定目标靶点相对于聚焦位置是否产生偏移的情况下,再进一步根据目标靶点的位置变化信息,调整超声聚焦位置,从而可以保证实时调整的准确性。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
对应于上文实施例所述的超声聚焦控制方法,图6示出了本申请实施例提供的超声聚焦控制装置的结构框图,为了便于说明,仅示出了与本申请实施例相关的部分。
参照图6,该超声聚焦控制装置200包括图像采集和分析模块201以及电子相控阵模块202;
图像采集和分析模块201,用于采集目标靶点的连续多帧图像,每一帧图像包括该目标靶点的图像;并获取该目标靶点的图像在连续多帧图像中的位置变化信息,该位置变化信息包括第一运动方向和第一运动距离;
电子相控阵模块202,用于根据图像采集和分析模块201获取的该位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。
在第二方面的一种可能的实现方式中,电子相控阵模块,具体用于根据所述位置变化信息,通过控制施加于超声换能器阵元的电信号,调整超声焦斑的位置,使得位置调整后的超声焦斑与目标靶点重合。
可选的,本申请实施例中,上述连续多帧图像可以为通过以下任一种成像方式得到的图像:超声波成像、磁共振成像、红外线成像、光学成像、电阻抗成像。例如,连续多帧图像可以为超声波图像。
在第二方面的一种可能的实现方式中,电子相控阵模块202,还用于获取所述目标靶点的图像在所述连续多帧图像中的形状变化信息;并根据该形状变化信息,确定超声聚焦参数。其中,上述聚焦参数用于产生超声焦斑,该超声聚焦参数包括待产生的超声焦斑的尺寸信息和/或深度信息。
本发明提出的通过图像引导的超声聚焦控制装置,可以实时获取靶点的位置和形状改变,当靶点发生偏移时,可以将新的靶点位置信息传送到电子相控阵系统,实时调整超声焦斑,使得焦斑精准聚焦于“新位置”处的靶点。
在第二方面的一种可能的实现方式中,上述目标靶点的连续多帧图像包括N帧图像,N为大于1的整数;
图像采集和分析模块201,还用于采用第i帧图像减去第1帧图像,得到N-1个差分图像,其中i取2至N;并根据该N-1个差分图像,获取目标靶点的图像在该连续多帧图像中的位置变化信息。
在第二方面的一种可能的实现方式中,电子相控阵模块202,具体用于在目标靶点的运动距离大于或等于预设阈值的情况下,根据位置变化信息,调整超声聚焦位置。
本申请实施例中,电子相控阵模块可以通过电子相控阵,激励超声换能器工作,产生不同焦斑的超声声场,并且可根据图像评估结果,实时调控电子相控阵的激发方式,实时调整焦斑的位置信息、深度信息和尺寸信息,使得超声焦斑与目标靶点始终能重合。如此,通过图像引导的方式帮助超声声场(即超声焦斑)达到目标靶点,对目标靶点进行超声刺激和治疗。
示例性的,通过实时采集患者影像,并提取患者影像学变化,评估分析是否需要调整超声聚焦位置以及调整焦斑的尺寸信息或深度信息,如需要改变计划,则重新设计电子相控阵,调整聚焦参数。其中,可以实时且循环对目标靶点进行图像采集和分析,直至目标靶点和超声焦斑能重合。
本申请实施例提供的超声聚焦控制装置,可以应用于在超声刺激过程中待刺激靶点(或靶区)发生位置变化和/或形状变化等情况下定位并跟踪靶点的场景。可以实时获取目标靶点的位置变化信息,进而根据目标靶点的位置变化信息,实时调整超声聚焦位置,使得调整后的超声聚焦位置与目标靶点重合。进一步的,电子设备可以使用超声波朝向聚焦位置,产生超声焦斑,进行超声刺激。因此,本申请实施例能够实时修正目标靶点运动所引起的误差,实现动态调整,从而确保待刺激靶点得到实时且精准的超声刺激,从而实现自适应超声刺激。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
如图7所示,本申请实施例还提供了一种电子设备,该电子设备包括:至少一个处理器300、存储器301以及存储在存储器301中并可在该至少一个处理器300上运行的计算机程序302,该处理器300执行计算机程序302时实现上述任意各个方法实施例中的步骤。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,该计算机程序被处理器执行时实现可实现上述各个方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在电子设备上运行时,使得电子设备执行时实现可实现上述各个方法实施例中的步骤。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,该计算机程序包括计算机程序代码,该计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。该计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如,上述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (14)

  1. 一种超声聚焦控制方法,其特征在于,包括:
    采集目标靶点的连续多帧图像,每一帧图像包括所述目标靶点的图像;
    获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息,所述位置变化信息包括第一运动方向和第一运动距离;
    根据所述位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与所述目标靶点重合。
  2. 如权利要求1所述的方法,其特征在于,所述根据所述位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与所述目标靶点重合,包括:
    根据所述位置变化信息,通过控制施加于超声换能器阵元的电信号,调整超声焦斑的位置,使得位置调整后的超声焦斑与所述目标靶点重合。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    获取所述目标靶点的图像在所述连续多帧图像中的形状变化信息;
    根据所述形状变化信息,确定所述超声聚焦参数;
    其中,所述超声聚焦参数用于产生超声焦斑,所述超声聚焦参数包括待产生的超声焦斑的尺寸信息和/或深度信息。
  4. 如权利要求1或2所述的方法,其特征在于,所述目标靶点的连续多帧图像包括N帧图像,N为大于1的整数;
    所述获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息,包括:
    采用第i帧图像减去第1帧图像,得到N-1个差分图像,其中i取2至N;
    根据所述N-1个差分图像,获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息。
  5. 如权利要求1或2所述的方法,其特征在于,所述根据所述位置变化信息,调整超声聚焦位置,包括:
    在所述目标靶点的运动距离大于或等于预设阈值的情况下,根据所述位置变化信息,调整所述超声聚焦位置。
  6. 如权利要求1或2所述的方法,其特征在于,所述连续多帧图像为通过以下任一种成像方式得到的图像:超声波成像、磁共振成像、光学成像、电阻抗成像。
  7. 一种超声聚焦控制装置,其特征在于,包括:图像采集和分析模块以及电子相控阵模块;
    所述图像采集和分析模块,用于采集目标靶点的连续多帧图像,每一帧图像包括所述目标靶点的图像;并获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息,所述位置变化信息包括第一运动方向和第一运动距离;
    所述电子相控阵模块,用于根据所述图像采集和分析模块获取的所述位置变化信息,调整超声聚焦位置,使得调整后的超声聚焦位置与所述目标靶点重合。
  8. 如权利要求7所述的装置,其特征在于,所述电子相控阵模块,具体用于根据所述位置变化信息,通过控制施加于超声换能器阵元的电信号,调整所述超声焦斑的位置,使得所述超声焦斑与所述目标靶点重合。
  9. 如权利要求7或8所述的装置,其特征在于,所述电子相控阵模块,还用于获取所述目标靶点的图像在所述连续多帧图像中的形状变化信息;并根据所述形状变化信息,确定所述超声聚焦参数;
    其中,所述超声聚焦参数用于产生超声焦斑,所述超声聚焦参数包括待产生的超声焦斑的尺寸信息和/或深度信息。
  10. 如权利要求7或8所述的装置,其特征在于,所述目标靶点的连续多帧图像包括N帧图像,N为大于1的整数;
    所述图像采集和分析模块,还用于采用第i帧图像减去第1帧图像,得到N-1个差分图像,其中i取2至N;并根据所述N-1个差分图像,获取所述目标靶点的图像在所述连续多帧图像中的位置变化信息。
  11. 如权利要求7或8所述的装置,其特征在于,所述电子相控阵模块,具体用于在所述目标靶点的运动距离大于或等于预设阈值的情况下,根据所述位置变化信息,调整所述超声聚焦位置。
  12. 如权利要求7或8所述的装置,其特征在于,所述连续多帧图像为通过以下任一种成像方式得到的图像:超声波成像、磁共振成像、光学成像、电阻抗成像。
  13. 一种电子设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至6任一项所述的方法。
  14. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述的方法。
PCT/CN2020/096393 2020-06-16 2020-06-16 超声聚焦控制方法、装置、电子设备及存储介质 WO2021253236A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096393 WO2021253236A1 (zh) 2020-06-16 2020-06-16 超声聚焦控制方法、装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096393 WO2021253236A1 (zh) 2020-06-16 2020-06-16 超声聚焦控制方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021253236A1 true WO2021253236A1 (zh) 2021-12-23

Family

ID=79269053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096393 WO2021253236A1 (zh) 2020-06-16 2020-06-16 超声聚焦控制方法、装置、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2021253236A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234020A (zh) * 2007-01-30 2008-08-06 西门子(中国)有限公司 磁共振引导的治疗仪器的位置校正方法和装置
CN101669842A (zh) * 2008-09-10 2010-03-17 黄晓维 体外高能聚焦超声波治疗监控方法
CN104548390A (zh) * 2014-12-26 2015-04-29 中国科学院深圳先进技术研究院 一种超声深部脑刺激方法及系统
CN104622504A (zh) * 2015-02-12 2015-05-20 黄晶 一种相控阵高强度聚焦超声检测、治疗系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101234020A (zh) * 2007-01-30 2008-08-06 西门子(中国)有限公司 磁共振引导的治疗仪器的位置校正方法和装置
CN101669842A (zh) * 2008-09-10 2010-03-17 黄晓维 体外高能聚焦超声波治疗监控方法
CN104548390A (zh) * 2014-12-26 2015-04-29 中国科学院深圳先进技术研究院 一种超声深部脑刺激方法及系统
CN104622504A (zh) * 2015-02-12 2015-05-20 黄晶 一种相控阵高强度聚焦超声检测、治疗系统

Similar Documents

Publication Publication Date Title
CN105999569B (zh) 一种多阵元换能器的阵元选择装置、方法和超声刺激系统
Yu et al. Design of a volumetric imaging sequence using a vantage-256 ultrasound research platform multiplexed with a 1024-element fully sampled matrix array
CN109200484B (zh) 用于增强目标组织的放射治疗的系统
CN101919728B (zh) 温热治疗装置
EP3897391B1 (en) Echo-based focusing correction
US20220288424A1 (en) Aberration corrections for dynamically changing media during ultrasound therapy
CN110811690B (zh) 一种血脑屏障通透性调控装置、方法及存储介质
CN113710163A (zh) 用于调节超声手术中的微泡的系统和方法
WO2021123906A1 (en) Adaptive single-bubble-based autofocusing and power adjustment in ultrasound procedures
Pasquinelli et al. Transducer modeling for accurate acoustic simulations of transcranial focused ultrasound stimulation
Seo et al. Ultrasound image based visual servoing for moving target ablation by high intensity focused ultrasound
Lu et al. Two-step aberration correction: application to transcranial histotripsy
CN111863227A (zh) 超声聚焦控制方法、装置、电子设备及存储介质
CN108351394B (zh) 用于避免对同时使用的rf系统的源自mri的干扰的系统和方法
KR20190008255A (ko) 전기요법 치료
US10765892B1 (en) Systems and methods for optimizing transcranial ultrasound focusing
Thies et al. Real-time visualization of a focused ultrasound beam using ultrasonic backscatter
WO2021253236A1 (zh) 超声聚焦控制方法、装置、电子设备及存储介质
CN108245314A (zh) 用于进行听觉恢复治疗的超声波的生成装置
US20230398381A1 (en) Multiparametric optimization for ultrasound procedures
EP3930582B1 (en) Acoustic sensing apparatus and method
KR102583593B1 (ko) 집속초음파 치료에 있어서 초음파 트랜스듀서의 위치를 결정하는 방법 및 이를 활용한 초음파 치료 시스템
KR20140094955A (ko) 온도 영상 생성 방법 및 장치, 이를 포함한 초음파 시스템
WO2024007812A1 (zh) 超声剂量参数确定方法、电子设备及计算机存储介质
US20240156440A1 (en) Method of reconstructing transcranial images using dual-mode ultrasonics phased array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940789

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/08/2023)