WO2021253176A1 - 涡旋波相位偏移的确定方法、装置和存储介质 - Google Patents

涡旋波相位偏移的确定方法、装置和存储介质 Download PDF

Info

Publication number
WO2021253176A1
WO2021253176A1 PCT/CN2020/096165 CN2020096165W WO2021253176A1 WO 2021253176 A1 WO2021253176 A1 WO 2021253176A1 CN 2020096165 W CN2020096165 W CN 2020096165W WO 2021253176 A1 WO2021253176 A1 WO 2021253176A1
Authority
WO
WIPO (PCT)
Prior art keywords
vortex wave
wave phase
phase shift
phase offset
vortex
Prior art date
Application number
PCT/CN2020/096165
Other languages
English (en)
French (fr)
Inventor
周珏嘉
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/096165 priority Critical patent/WO2021253176A1/zh
Priority to US18/010,152 priority patent/US20230269122A1/en
Priority to CN202080001309.6A priority patent/CN114080787B/zh
Priority to EP20941366.5A priority patent/EP4167536A4/en
Publication of WO2021253176A1 publication Critical patent/WO2021253176A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, device and storage medium for determining the phase shift of vortex waves.
  • vortex waves with different phase shifts can be superimposed and transmitted in the same frequency band, thereby realizing one more dimension of transmission, thereby expanding the transmission capacity.
  • the embodiments of the present disclosure provide a method, a device, and a storage medium for determining the phase offset of a vortex wave, which can reduce the interference of the access network equipment operating at the same frequency when using the vortex wave to communicate.
  • the technical solution is as follows:
  • a method for determining the phase shift of a vortex wave including:
  • the determining the target vortex wave phase offset according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the determining a candidate vortex wave phase offset set according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the difference set between the pre-configured available vortex wave phase offset set and the first vortex wave phase offset set is determined as the candidate vortex wave phase offset set.
  • the determining a candidate vortex wave phase offset set according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the vortex wave phase shift whose interval with the vortex wave phase shift in the first vortex wave phase shift set is less than the phase shift interval threshold is added, To the first vortex wave phase offset set to obtain a second vortex wave phase offset set;
  • the determining the candidate vortex wave phase offset set according to the second vortex wave phase offset set includes:
  • the weights corresponding to the vortex wave phase shifts belonging to the first vortex wave phase shift set in the second vortex wave phase shift set are determined according to the number of times the corresponding vortex wave phase shift is used, In the second vortex wave phase shift set, the weight corresponding to the vortex wave phase shift that does not belong to the first vortex wave phase shift set is 0, or equal to the first vortex wave phase shift. Shift the weight corresponding to the phase shift of adjacent vortex waves in the set.
  • the candidate vortex is determined according to the second vortex wave phase shift set and the weight corresponding to each vortex wave phase shift in the second vortex wave phase shift set Wave phase offset collection, including:
  • At least part of the vortex wave phase shifts whose weights are less than the weight threshold are selected and added to the difference set to obtain the candidate set of vortex wave phase shifts.
  • the determining a candidate vortex wave phase offset set according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the difference set is updated to obtain the candidate vortex wave phase shift set, and the weight is used for Indicates the number of uses of the corresponding vortex wave phase shift.
  • the difference set is updated according to the weight corresponding to each vortex wave phase shift in the first vortex wave phase shift set to obtain the candidate vortex wave phase shift set ,include:
  • the vortex wave phase shift in the first vortex wave set is added to the difference set until the number of vortex wave phase shifts in the difference set reaches the target value, Obtain the candidate vortex wave phase offset set.
  • the determining the target vortex wave phase offset from the candidate vortex wave phase offset set includes:
  • a phase shift with a phase shift interval greater than a phase shift interval threshold is selected as the target vortex wave phase shift.
  • the determining the target vortex wave phase offset according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the phase shift of the target vortex wave is determined.
  • the determining the weight of each vortex wave phase shift in the available vortex wave phase shift set according to the first vortex wave phase shift set includes:
  • the difference between the weight corresponding to each vortex wave phase shift in the first vortex wave phase shift set and the set value is used as the weight corresponding to the similar vortex wave phase shift.
  • the offset is a vortex whose phase offset interval between the vortex wave phase offset in the available vortex wave phase offset set and the vortex wave phase offset in the first vortex wave phase offset set is less than the phase offset interval threshold.
  • the determining the weight of each vortex wave phase shift in the available vortex wave phase shift set according to the first vortex wave phase shift set includes:
  • the determining the phase shift of the vortex wave used by the adjacent access network equipment includes at least one of the following methods:
  • the phase offset configuration information used by the adjacent access network device to determine the vortex wave phase offset used by the access network device according to the phase offset configuration information; the phase offset The configuration information is used to indicate the phase shift of the vortex wave used by the access network equipment; or,
  • the vortex wave phase offset of the adjacent access network equipment is measured through the air interface to determine the vortex wave phase offset used by the adjacent access network equipment.
  • the measuring the vortex wave phase offset of the adjacent access network device through the air interface includes:
  • blind detection is performed on the pilot signal of the adjacent access network device.
  • the number of vortex wave phase shifts in the available vortex wave phase shift set is N times the maximum number of vortex wave phase shifts that can be distinguished by the access network device at the target frequency, where N is A positive integer greater than 1.
  • an apparatus for determining the phase shift of a vortex wave including:
  • the first determining module is configured to determine the vortex wave phase offset used by adjacent access network devices to obtain a first vortex wave phase offset set
  • the second determining module is configured to determine the target vortex wave phase offset according to the first vortex wave phase offset set and the pre-configured available vortex wave phase offset set.
  • the second determining module includes:
  • the first determining sub-module is configured to determine a candidate vortex wave phase offset set according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set;
  • the second determining sub-module is configured to determine the target vortex wave phase offset from the candidate vortex wave phase offset set.
  • the first determining sub-module is configured to determine a difference set between a pre-configured set of available vortex wave phase shifts and the first set of vortex wave phase shifts as the candidate vortex Swirl wave phase shift set.
  • the first determining submodule includes:
  • the vortex wave phase offset of is added to the first vortex wave phase offset set to obtain a second vortex wave phase offset set;
  • the candidate set determining sub-module is configured to determine the candidate vortex wave phase offset set according to the second vortex wave phase offset set.
  • the candidate set determining submodule is configured to determine the difference set between the available vortex wave phase offset set and the second vortex wave phase offset set as the candidate vortex The set of chiral phase shifts; or,
  • the weights corresponding to the vortex wave phase shifts belonging to the first vortex wave phase shift set in the second vortex wave phase shift set are determined according to the number of times the corresponding vortex wave phase shift is used, In the second vortex wave phase shift set, the weight corresponding to the vortex wave phase shift that does not belong to the first vortex wave phase shift set is 0, or equal to the first vortex wave phase shift. Shift the weight corresponding to the phase shift of adjacent vortex waves in the set.
  • the candidate set determining sub-module is configured to implement each vortex wave in the second vortex wave phase shift set and the second vortex wave phase shift set in the following manner
  • the weights corresponding to the phase shifts determine the set of candidate vortex wave phase shifts:
  • At least part of the vortex wave phase shifts whose weights are less than the weight threshold are selected and added to the difference set to obtain the candidate set of vortex wave phase shifts.
  • the first determining submodule is configured to determine a difference set between the available vortex wave phase offset set and the first vortex wave phase offset set;
  • the difference set is updated to obtain the candidate vortex wave phase shift set, and the weight is used for Indicates the number of uses of the corresponding vortex wave phase shift.
  • the first determining submodule is configured to add the phase offset of the vortex waves in the first vortex wave set to the difference set in the order of weight from small to large, until the The number of vortex wave phase shifts in the difference concentration reaches the target value, and the candidate vortex wave phase shift set is obtained.
  • the second determining sub-module is configured to filter out a phase offset whose phase offset interval is greater than a phase offset interval threshold value from the candidate vortex wave phase offset set as the target vortex wave Swirl wave phase shift.
  • the second determining module is configured to determine the weight of each vortex wave phase offset in the available vortex wave phase offset set in the following manner:
  • the difference between the weight corresponding to each vortex wave phase shift in the first vortex wave phase shift set and the set value is used as the weight corresponding to the similar vortex wave phase shift.
  • the offset is a vortex whose phase offset interval between the vortex wave phase offset in the available vortex wave phase offset set and the vortex wave phase offset in the first vortex wave phase offset set is less than the phase offset interval threshold.
  • the second determining module is configured to determine the weight of each vortex wave phase offset in the available vortex wave phase offset set in the following manner:
  • the first determining module is configured to determine the phase shift of the vortex wave used by the adjacent access network device by using at least one of the following methods:
  • the phase offset configuration information used by the adjacent access network device to determine the vortex wave phase offset used by the access network device according to the phase offset configuration information; the phase offset The configuration information is used to indicate the phase shift of the vortex wave used by the access network equipment; or,
  • the vortex wave phase offset of the adjacent access network equipment is measured through the air interface to determine the vortex wave phase offset used by the adjacent access network equipment.
  • the first determining module is configured to perform a calculation on the pilot signal of the adjacent access network device according to at least one vortex wave phase offset in the available vortex wave phase offset set. Blind detection.
  • the number of vortex wave phase shifts in the available vortex wave phase shift set is N times the maximum number of vortex wave phase shifts that can be distinguished by the access network device at the target frequency, where N is A positive integer greater than 1.
  • an apparatus for determining the phase shift of a vortex wave comprising: a processor; a memory for storing executable instructions of the processor; wherein the processor is configured To load and execute the executable instructions to implement the method for determining the phase shift of the vortex wave described in the first aspect.
  • a computer-readable storage medium When instructions in the computer-readable storage medium are executed by a processor, the vortex wave phase shift described in the first aspect can be executed. How to determine the shift.
  • the first vortex wave phase offset set is obtained, and the first vortex wave phase offset set is used as a reference, from the available vortex wave phase
  • the target vortex wave phase offset is determined in the offset set. Since the vortex wave phase offset used by the adjacent access network equipment is considered, the same vortex wave phase offset used by the adjacent access network equipment can be reduced. Shift the possibility of transmission, thereby reducing the interference caused by phase shift when using vortex waves for transmission.
  • Fig. 1 is a block diagram showing a communication system according to an exemplary embodiment
  • Fig. 2 is a flow chart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment
  • Fig. 3 is a flow chart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment
  • Fig. 4 is a flow chart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment
  • Fig. 5 is a flowchart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment
  • Fig. 6 is a flow chart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment
  • Fig. 7 is a flow chart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment
  • Fig. 8 is a schematic structural diagram of a device for determining the phase shift of a vortex wave according to an exemplary embodiment
  • Fig. 9 is a block diagram showing a device for determining the phase shift of a vortex wave according to an exemplary embodiment.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as second information, and similarly, the second information may also be referred to as first information.
  • the words "if” and “if” as used herein can be interpreted as “when” or “when” or “in response to certainty”.
  • Fig. 1 is a block diagram showing a communication system according to an exemplary embodiment.
  • the mobile communication system may include: an access network device 10 and a terminal 20.
  • the access network device 10 is deployed in a wireless access network to provide the terminal 20 with a wireless access function.
  • the access network equipment may be a base station (Base Station, BS).
  • the access network device 10 may wirelessly communicate with the terminal 20 via one or more antennas.
  • the access network device 10 can provide communication coverage for its geographic area.
  • the base stations may include different types such as macro base stations, micro base stations, relay stations, and access points.
  • the base station may be referred to by those skilled in the art as a base station transceiver, a wireless base station, an access point, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). ), NodeB, evolved NodeB (eNB or eNodeB), or some other appropriate terms.
  • the base station is called gNB.
  • the above-mentioned devices that provide wireless communication functions for the terminal 20 are collectively referred to as access network devices.
  • the terminals 20 may be scattered throughout the mobile communication system, and each terminal 20 may be stationary or mobile.
  • the terminal 20 can also be referred to by those skilled in the art as a mobile station, a user station, a mobile unit, a user unit, a wireless unit, a remote unit, a mobile device, a user equipment, a wireless device, a wireless communication device, a remote device, a mobile user station, and a wireless communication device.
  • the terminal 20 may be a cellular phone, a personal digital assistant (PDA), a wireless modem, a wireless communication device, a handheld device, a tablet computer, a laptop computer, a cordless phone, or a wireless local loop (Wireless Local Loop, WLL) Stand and wait.
  • the terminal 20 can communicate with the access network device 10 in the mobile communication system.
  • the access network device 10 and the terminal 20 can communicate with each other through air interface technology, for example, through cellular technology.
  • the communication link between the access network device 10 and the terminal 20 may include: downlink (DL) transmission from the access network device 10 to the terminal 20, and/or, from the terminal 20 to the access network device 10 uplink (up link, UP) transmission.
  • Downlink transmission may also be referred to as forward link transmission, and uplink transmission may also be referred to as reverse link transmission.
  • the downlink transmission may include the transmission of a discovery signal, which may include a reference signal and/or a synchronization signal.
  • the mobile communication system shown in Figure 1 above can be a Long Term Evolution (LTE) system, or a next-generation evolution system based on the LTE system, such as the LTE-A (LTE-Advanced) system or the fifth generation (5th generation) system.
  • LTE Long Term Evolution
  • 5G systems also called NR systems
  • 5G systems can also be next-generation evolution systems based on 5G systems, such as Beyond 5th Generation (B5G) systems, 6th Generation (6G) systems, and so on.
  • B5G 5th Generation
  • 6G 6th Generation
  • the access network device has a phased array antenna, and the phased array antenna can be used to generate a vortex wave, so that the access network device can use the vortex wave for transmission.
  • the phase shift of the vortex wave can be adjusted.
  • one or more phase-shifted vortex waves can be used for transmission.
  • the phase offset that can be recognized by the access network device is limited to a certain amount. For example, under the same frequency, the phase offset that can be identified by the access network device does not exceed n, for example, n is equal to 8.
  • each access network device may be configured with an available vortex wave phase offset set, and the available vortex wave phase offset set includes m vortex wave phase offsets, that is, each access There are m phase-shifted vortex wave configuration options for the networked equipment.
  • m is determined according to the maximum number of vortex wave phase shifts that can be identified by the access network device at the target frequency.
  • m can be N times n, where N is a positive integer greater than 1.
  • N is a positive integer greater than 1 and less than 1024, and N is equal to the X power of 2, and X is a positive integer.
  • N is equal to 2.
  • n is equal to 8
  • m is equal to 16.
  • the values of m and n can be determined through simulation experiments or laboratory experiments.
  • the access network equipment selects the phase offset used by the transmitted vortex wave from the available vortex wave phase offset set, it needs to ensure that it has the most different phase value configuration with the surrounding access network equipment to reduce utilization
  • the phase shift of the vortex waves is similar, which means that the phase shift interval between the phase shifts of the two vortex waves is smaller than the set value.
  • Fig. 2 is a flow chart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment. This method can be executed by the aforementioned access network equipment. Referring to Figure 2, the method includes the following steps:
  • step 201 determine the vortex wave phase offset used by adjacent access network devices to obtain a first vortex wave phase offset set
  • step 202 the target vortex wave phase offset is determined according to the first vortex wave phase offset set and the pre-configured available vortex wave phase offset set.
  • the determining the target vortex wave phase offset according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the determining a candidate vortex wave phase offset set according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the difference set between the pre-configured available vortex wave phase offset set and the first vortex wave phase offset set is determined as the candidate vortex wave phase offset set.
  • the determining a candidate vortex wave phase offset set according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the vortex wave phase shift whose interval with the vortex wave phase shift in the first vortex wave phase shift set is less than the phase shift interval threshold is added, To the first vortex wave phase offset set to obtain a second vortex wave phase offset set;
  • the determining the candidate vortex wave phase offset set according to the second vortex wave phase offset set includes:
  • the weights corresponding to the vortex wave phase shifts belonging to the first vortex wave phase shift set in the second vortex wave phase shift set are determined according to the number of times the corresponding vortex wave phase shift is used, In the second vortex wave phase shift set, the weight corresponding to the vortex wave phase shift that does not belong to the first vortex wave phase shift set is 0, or equal to the first vortex wave phase shift. Shift the weight corresponding to the phase shift of adjacent vortex waves in the set.
  • the candidate vortex is determined according to the second vortex wave phase shift set and the weight corresponding to each vortex wave phase shift in the second vortex wave phase shift set Wave phase offset collection, including:
  • At least part of the vortex wave phase shifts whose weights are less than the weight threshold are selected and added to the difference set to obtain the candidate set of vortex wave phase shifts.
  • the determining a candidate vortex wave phase offset set according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the difference set is updated to obtain the candidate vortex wave phase shift set, and the weight is used for Indicates the number of uses of the corresponding vortex wave phase shift.
  • the difference set is updated according to the weight corresponding to each vortex wave phase shift in the first vortex wave phase shift set to obtain the candidate vortex wave phase shift set ,include:
  • the vortex wave phase shift in the first vortex wave set is added to the difference set until the number of vortex wave phase shifts in the difference set reaches the target value, Obtain the candidate vortex wave phase offset set.
  • the determining the target vortex wave phase offset from the candidate vortex wave phase offset set includes:
  • a phase shift with a phase shift interval greater than a phase shift interval threshold is selected as the target vortex wave phase shift.
  • the determining the target vortex wave phase offset according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set includes:
  • the phase shift of the target vortex wave is determined.
  • the determining the weight of each vortex wave phase shift in the available vortex wave phase shift set according to the first vortex wave phase shift set includes:
  • the difference between the weight corresponding to each vortex wave phase shift in the first vortex wave phase shift set and the set value is used as the weight corresponding to the similar vortex wave phase shift.
  • the offset is a vortex whose phase offset interval between the vortex wave phase offset in the available vortex wave phase offset set and the vortex wave phase offset in the first vortex wave phase offset set is less than the phase offset interval threshold.
  • the determining the weight of each vortex wave phase shift in the available vortex wave phase shift set according to the first vortex wave phase shift set includes:
  • the determining the phase shift of the vortex wave used by the adjacent access network equipment includes at least one of the following methods:
  • Measuring the vortex wave phase offset of the adjacent access network equipment to determine the vortex wave phase offset used by the adjacent access network equipment includes the following methods; or,
  • the vortex wave phase offset of the adjacent access network equipment is measured through the air interface.
  • the measuring the vortex wave phase offset of the adjacent access network device through the air interface includes:
  • blind detection is performed on the pilot signal of the adjacent access network device.
  • the number of vortex wave phase shifts in the available vortex wave phase shift set is N times the maximum number of vortex wave phase shifts that can be distinguished by the access network device at the target frequency, where N is A positive integer greater than 1.
  • Fig. 3 is a flowchart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment. This method can be executed by the access network device. Referring to Figure 3, the method includes the following steps:
  • step 301 the vortex wave phase offset used by the adjacent access network equipment is determined, and the first vortex wave phase offset set is obtained.
  • that the access network device uses a certain vortex wave phase offset means that the access network device is configured to be able to use the phase offset vortex wave for signal transmission.
  • this step 301 includes: receiving the vortex wave phase offset configuration information used by the adjacent access network device, so as to determine the access network device according to the phase offset configuration information The vortex wave used is phase shifted.
  • the vortex wave phase offset configuration information used by the adjacent access network device may be received from the adjacent access network device, may also be received from the core network, and may also be determined according to the agreement of the relevant communication protocol.
  • the method for determining the phase offset of the vortex waves used by adjacent access network devices is only an example, and the embodiment of the present disclosure does not limit this.
  • this step 301 includes: receiving the vortex wave phase offset configuration information used by the adjacent access network device through the communication interface with the adjacent access network device
  • the phase offset configuration information is used to indicate the phase offset of the vortex wave used by the access network device.
  • the communication interface may be an X2 interface.
  • this step 301 includes: measuring the vortex wave phase offset of the adjacent access network device to determine the vortex wave phase offset used by the adjacent access network device.
  • this step 301 includes: measuring the vortex wave phase offset of the adjacent access network device through the air interface.
  • the measuring the vortex wave phase offset of the adjacent access network device through the air interface includes:
  • blind detection is performed on the pilot signal of the adjacent access network device.
  • the pilot signal of the adjacent access network device can be blindly detected one by one according to part or all of the available vortex wave phase offset in the available vortex wave phase offset set. .
  • the vortex wave corresponding to the phase shift is received. If the pilot signal is detected on the received vortex wave, it indicates the phase The shifted vortex waves have been used by adjacent access network equipment.
  • step 302 the difference set between the pre-configured available vortex wave phase offset set and the first vortex wave phase offset set is determined as the candidate vortex wave phase offset set.
  • pre-configuration refers to that the available vortex wave phase offset set is configured in the access network device by the upper network element, such as the core network device, before the method is executed.
  • Pre-configuration may also mean that it is determined through the provisions of the relevant communication protocol.
  • step 302 it is possible to determine the candidate vortex wave phase offset set according to the first vortex wave phase offset set and the pre-configured available vortex wave phase offset set.
  • step 303 the target vortex wave phase shift is determined from the set of candidate vortex wave phase shifts.
  • this step 303 may include: from the set of candidate vortex wave phase shifts, selecting a phase shift whose phase shift interval is greater than a phase shift interval threshold as the target vortex wave phase shift . In this way, it is possible to avoid intra-cell interference caused by access network equipment using vortex waves with similar phase shifts for transmission.
  • the candidate phase offset set ⁇ 2 ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 12, ⁇ 13, ⁇ 15, ⁇ 16 ⁇ , ⁇ 12 and ⁇ 13 can only choose one of the two because of the small phase offset interval.
  • ⁇ 15 and ⁇ 16 can only choose one of two, for example, the final configuration value can be ⁇ 2, ⁇ 6, ⁇ 8, ⁇ 10, ⁇ 13, ⁇ 16 ⁇ .
  • this step 303 includes: selecting the target vortex wave phase offset in a random manner from the set of candidate vortex wave phase offsets.
  • the target vortex wave phase shifted vortex wave can be used for data transmission.
  • the number of target vortex wave phase shifts is positively correlated with the data transmission volume of the access network device, that is, the greater the data transmission volume of the access network device, the target that needs to be determined The greater the number of phase shifts of the vortex wave.
  • the target vortex wave phase offset can be determined according to the first vortex wave phase offset set and the pre-configured available vortex wave phase offset set.
  • the method in this embodiment will be illustrated below with an example. Assuming that the number of vortex wave phase shifts that can be distinguished by the access network device at the operating frequency is 8, and N is equal to 2, correspondingly, the number of vortex wave phase shifts in the available vortex wave phase shift set is 16 . Assuming that the available vortex wave phase offset set E0 is ⁇ 1, ⁇ 2,... ⁇ 16 ⁇ , the determined first vortex wave phase offset set E1 is ⁇ 1, ⁇ 3, ⁇ 4, ⁇ 6, ⁇ 7, ⁇ 9, ⁇ 10 , ⁇ 13, ⁇ 14, ⁇ 16 ⁇ . Since the candidate vortex wave phase offset set E2 is the difference set of E0 and E1, E2 is ⁇ 2, ⁇ 5, ⁇ 8, ⁇ 11, ⁇ 12, ⁇ 15 ⁇ .
  • the candidate vortex wave phase offset set is the difference set between the available vortex wave phase offset set and the first vortex wave phase offset set
  • the first vortex wave phase offset set The intersection with the candidate vortex wave phase offset set is empty.
  • the target vortex wave phase offset determined from the candidate vortex wave phase offset set does not belong to the first vortex wave phase
  • the offset set, that is, the target vortex wave phase offset is different from the vortex wave phase offset used by the adjacent access network equipment. Therefore, the use of the target vortex wave phase shift to send a signal can avoid interference caused by the use of the same phase shift vortex wave with adjacent access network equipment operating at the same frequency.
  • Fig. 4 is a flowchart showing a method for determining the phase shift of a vortex wave according to an exemplary embodiment. This method can be executed by the access network device. Referring to Figure 4, the method includes the following steps:
  • step 401 the vortex wave phase offset used by the adjacent access network equipment is determined, and the first vortex wave phase offset set is obtained.
  • step 401 For related content of this step 401, refer to the aforementioned step 301, and detailed description is omitted here.
  • step 402 in the available vortex wave phase shift set, the vortex wave whose phase shift interval from the vortex wave in the first vortex wave phase shift set is smaller than the phase shift interval threshold The phase offset is added to the first vortex wave phase offset set to obtain a second vortex wave phase offset set.
  • phase shift interval threshold value is a set value, which can be set according to the minimum phase shift interval between two vortex waves with different phase shifts that may cause interference, which is not limited in the present disclosure.
  • the vortex wave phase shift adjacent to the vortex wave phase shift in the first vortex wave phase shift set in the available vortex wave phase shift set can be added, In the first vortex wave phase shift, the second vortex wave phase shift set is obtained.
  • step 403 the candidate vortex wave phase offset set is determined according to the second vortex wave phase offset set.
  • this step 403 includes: determining the difference set between the available vortex wave phase offset set and the second vortex wave phase offset set as the candidate vortex wave phase offset set.
  • step 404 the target vortex wave phase shift is determined from the set of candidate vortex wave phase shifts.
  • step 404 For related content of this step 404, refer to the aforementioned step 303, and detailed description is omitted here.
  • the method in this embodiment is illustrated below with an example. Assuming that the number of vortex wave phase shifts that can be distinguished by the access network equipment at the operating frequency is 8, and N is equal to 2, correspondingly, the number of vortex wave phase shifts in the available vortex wave phase shift set is 16 . Assuming that the available vortex wave phase offset set E0 is ⁇ 1, ⁇ 2,... ⁇ 16 ⁇ , the determined first vortex wave phase offset set E1 is ⁇ 1, ⁇ 7, ⁇ 11, ⁇ 14 ⁇ .
  • the phase offset close to the phase offset in E1 is added to E1 to obtain the second vortex wave phase offset set E1', E1 'is ⁇ 1, ⁇ 2, ⁇ 6, ⁇ 7 , ⁇ 8, ⁇ 10, ⁇ 11, ⁇ 12, ⁇ 13, ⁇ 14, ⁇ 15, ⁇ 16 ⁇ .
  • the underlined phase shift is a phase shift close to the phase shift in E1. Therefore, the candidate vortex wave phase offset set E2 is the difference set of E0 and E1', therefore, E2 is ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 9 ⁇ .
  • the candidate vortex wave phase offset set is the difference set of the available vortex wave phase offset set and the second vortex wave phase offset set
  • the second vortex wave phase offset set The vortex wave phase shift used by the adjacent access network equipment and the vortex wave phase shift close to the used vortex wave phase shift.
  • the target vortex wave phase offset determined in the offset set is neither the same nor similar to the vortex wave phase offset used by the adjacent access network equipment. Therefore, the use of the target vortex wave phase shift to send signals can avoid the interference caused by the use of the same phase shift and similar phase shift vortex waves with adjacent access network equipment operating at the same frequency. To a certain extent, possible interference is avoided.
  • Fig. 5 is a flowchart showing a method for determining a phase shift of a vortex wave according to an exemplary embodiment. This method can be executed by the access network device. Referring to Figure 5, the method includes the following steps:
  • step 501 the vortex wave phase offsets used by adjacent access network devices are determined, and the first vortex wave phase offset set is obtained.
  • that the access network device uses a certain vortex wave phase offset means that the access network device is configured to be able to use the phase offset vortex wave for signal transmission.
  • the access network device in addition to determining the vortex wave phase shift used by adjacent access network devices, it is also necessary to determine the number of times each vortex wave phase shift is used, that is, the vortex wave phase shift is used. The number of access network devices.
  • this step 501 includes: receiving the vortex wave phase offset configuration information used by the adjacent access network device through the communication interface with the adjacent access network device,
  • the phase offset configuration information is used to indicate the vortex wave phase offset used by the access network device.
  • the vortex wave phase shift used by the adjacent access network equipment can be determined, and the number of uses of each used vortex wave phase shift can be counted.
  • this step 501 includes: measuring the vortex wave phase offset of the adjacent access network device through the air interface.
  • the measuring the vortex wave phase offset of the adjacent access network device through the air interface includes:
  • the vortex wave phase offsets in the available vortex wave phase offset set are used one by one to perform blind detection on the pilot signals of the adjacent access network devices.
  • the vortex wave corresponding to the phase shift is received. If the pilot signal is detected on the received vortex wave, it indicates the phase
  • the shifted vortex waves have been used by adjacent access network equipment.
  • the number of uses of the vortex wave phase shift can be determined according to the power level of the received signal during blind detection.
  • the number of uses corresponding to the power level of the received signal is determined, and the number of uses is used as the number of uses of the currently detected vortex wave phase shift.
  • the power level is positively correlated with the number of uses, that is, the higher the power level, the greater the number of uses, and vice versa, the lower the power level, the smaller the number of uses.
  • step 502 in the available vortex wave phase shift set, the vortex wave whose phase shift interval from the vortex wave in the first vortex wave phase shift set is smaller than the phase shift interval threshold The phase offset is added to the first vortex wave phase offset set to obtain a second vortex wave phase offset set.
  • step 502 For related content of this step 502, refer to the aforementioned step 402, and detailed description is omitted here.
  • step 503 the candidate vortex wave is determined according to the second vortex wave phase shift set and the weight corresponding to each vortex wave phase shift in the second vortex wave phase shift set Phase offset collection.
  • the weight corresponding to the vortex wave phase shift in the second vortex wave phase shift set belonging to the first vortex wave phase shift set is based on the use of the vortex wave phase shift by the adjacent access network equipment. The number of times is determined, and the more times it is used, the greater the weight. For example, the number of times the vortex wave phase shift is used can be used as the weight corresponding to the vortex wave phase shift.
  • the vortex wave phase shift added to the first vortex wave phase shift set (that is, the second vortex wave phase shift set does not belong to the first vortex wave
  • the weight corresponding to the phase shift of the vortex wave in the phase shift set is set to the similar phase shift in the first vortex wave phase shift set (for example, the same as the vortex wave added to the first vortex wave phase set.
  • the phase shift is the weight corresponding to the phase shift adjacent to the phase shift); or, the weight corresponding to the vortex wave phase shift added to the first vortex wave phase shift set is set to 0.
  • the candidate vortex wave phase offset set is determined according to the second vortex wave phase offset set.
  • This step 503 may include: determining the difference set between the available vortex wave phase offset set and the second vortex wave phase offset set; from the second vortex wave phase offset set, selecting a weight less than At least part of the vortex wave phase offset of the weight threshold is added to the difference set to obtain the candidate vortex wave phase offset set.
  • this step 503 can be executed when the target phase shift amount is less than the target value, and the target value corresponds to the business requirement, that is, the target value corresponds to the amount of data to be transmitted.
  • the target value corresponds to the amount of data to be transmitted.
  • step 504 the target vortex wave phase shift is determined from the set of candidate vortex wave phase shifts.
  • step 504 For the relevant content of this step 504, refer to the aforementioned step 303, and detailed description is omitted here.
  • the method in this embodiment is illustrated below with an example. Assuming that the number of vortex wave phase shifts that can be distinguished by the access network equipment at the operating frequency is 8, and N is equal to 2, correspondingly, the number of vortex wave phase shifts in the available vortex wave phase shift set is 16 . Assuming that the available vortex wave phase offset set E0 is ⁇ 1, ⁇ 2,... ⁇ 16 ⁇ , the determined first vortex wave phase offset set E1 is ⁇ 1, ⁇ 7, ⁇ 11, ⁇ 14 ⁇ .
  • the phase offset close to the phase offset in E1 is added to E1 to obtain the second vortex wave phase offset set E1', E1 'is ⁇ 1, ⁇ 2, ⁇ 6, ⁇ 7 , ⁇ 8, ⁇ 10, ⁇ 11, ⁇ 12, ⁇ 13, ⁇ 14, ⁇ 15, ⁇ 16 ⁇ .
  • the underlined phase shift is a phase shift close to the phase shift in E1.
  • the weight set F1 corresponding to E1 is ⁇ 4, 2, 2, 1 ⁇ , that is, ⁇ 1 is configured 4 times, ⁇ 7 and ⁇ 11 are configured 2 times, and ⁇ 14 is configured once.
  • the weight set F1' corresponding to E1' is ⁇ 4, 0, 0, 2, 0, 0, 2, 0, 1, 0, 0 ⁇ .
  • the difference set E2 of E0 and E1' is ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 9 ⁇ . If the number of phase shifts in E2 meets the business requirements, set the candidate vortex wave phase shifts with E2. If the number of phase shifts in E2 is not met or required, at least part of the phase shifts with a lower weight value (for example, 0) is added to the difference set E2 to obtain a set of candidate vortex wave phase shifts E2'.
  • a lower weight value for example, 0
  • the candidate vortex wave phase offset set is the difference set of the available vortex wave phase offset set and the second vortex wave phase offset set
  • the second vortex wave phase offset set The vortex wave phase shift used by the adjacent access network equipment and the vortex wave phase shift close to the used vortex wave phase shift.
  • the target vortex wave phase offset determined in the offset set is neither the same nor similar to the vortex wave phase offset used by the adjacent access network equipment. Therefore, the use of the target vortex wave phase shift to send signals can avoid the interference caused by the use of the same phase shift and similar phase shift vortex waves with adjacent access network equipment operating at the same frequency. To a certain extent, possible interference is avoided.
  • phase shifts with smaller weight values can be added to the set of candidate vortex wave phase shifts to increase system capacity and flexibly meet service requirements.
  • Fig. 6 is a flowchart showing a method for determining a phase shift of a vortex wave according to an exemplary embodiment. This method can be executed by the access network device. Referring to Figure 6, the method includes the following steps:
  • step 601 determine the vortex wave phase offset used by adjacent access network devices to obtain a first vortex wave phase offset set.
  • step 601 For related content of this step 601, refer to the aforementioned step 501, and detailed description is omitted here.
  • step 602 the difference set between the pre-configured available vortex wave phase offset set and the first vortex wave phase offset set is determined.
  • step 603 the difference set is updated according to the weight corresponding to each vortex wave phase shift in the first vortex wave phase shift set to obtain the candidate vortex wave phase shift set,
  • the weight is used to indicate the number of times the corresponding vortex wave phase shift is used.
  • this step may include: adding the phase shift of the vortex wave in the first vortex wave set to the difference set in the order of weight from small to large, until the vortex wave in the difference set The number of phase shifts reaches the target value, and the candidate vortex wave phase shift set is obtained.
  • step 503 For related content of the target value, refer to step 503, and detailed description is omitted here.
  • step 604 the target vortex wave phase shift is determined from the set of candidate vortex wave phase shifts.
  • the method in this embodiment is illustrated below with an example. Assuming that the number of vortex wave phase shifts that can be distinguished by the access network device at the operating frequency is 8, and N is equal to 2, correspondingly, the number of vortex wave phase shifts in the available vortex wave phase shift set is 16 . Assuming that the available vortex wave phase offset set E0 is ⁇ 1, ⁇ 2,... ⁇ 16 ⁇ , the determined first vortex wave phase offset set E1 is ⁇ 1, ⁇ 3, ⁇ 4, ⁇ 6, ⁇ 7, ⁇ 9, ⁇ 10 , ⁇ 13, ⁇ 14, ⁇ 16 ⁇ .
  • the weight set F1 corresponding to E1 is ⁇ 4,3,3,4,2,2,1,1,1,1 ⁇ , that is, ⁇ 1 and ⁇ 6 are configured 4 times, ⁇ 3 and ⁇ 4 are configured 3 times, and ⁇ 7 and ⁇ 9 is configured twice, and ⁇ 10, ⁇ 13, ⁇ 14, and ⁇ 16 are configured once.
  • the difference set E2 of E0 and E1 is ⁇ 2, ⁇ 5, ⁇ 8, ⁇ 11, ⁇ 12, ⁇ 15 ⁇ . If the number of phase shifts in E2 meets the business requirements, E2 is used as the candidate vortex wave phase shift set. If the number of phase shifts in E2 is not met or required, at least part of the phase shifts with a lower weight value (for example, 1) is added to the difference set E2 to obtain a set of candidate vortex wave phase shifts E2', E2' are ⁇ 2, ⁇ 5, ⁇ 8, ⁇ 10, ⁇ 11, ⁇ 12, ⁇ 13, ⁇ 14, ⁇ 15, ⁇ 16 ⁇ .
  • the candidate vortex wave phase offset set is the difference set between the available vortex wave phase offset set and the first vortex wave phase offset set
  • the first vortex wave phase offset set The intersection with the candidate vortex wave phase offset set is empty.
  • the target vortex wave phase offset determined from the candidate vortex wave phase offset set does not belong to the first vortex wave phase
  • the offset set, that is, the target vortex wave phase offset is different from the vortex wave phase offset used by the adjacent access network equipment. Therefore, the use of the target vortex wave phase shift to send a signal can avoid the interference caused by using the same phase shift vortex wave with the adjacent access network equipment operating at the same frequency.
  • phase shifts with smaller weight values can be added to the set of candidate vortex wave phase shifts to increase system capacity and flexibly meet service requirements.
  • phase offset with a smaller weight value is used less times, the possibility of interference is relatively small.
  • Fig. 7 is a flowchart showing a method for determining a phase shift of a vortex wave according to an exemplary embodiment. This method can be executed by the access network device. Referring to Figure 7, the method includes the following steps:
  • step 701 the vortex wave phase offset used by the adjacent access network equipment is determined, and the first vortex wave phase offset set is obtained.
  • step 701 For related content of this step 701, refer to the aforementioned step 501, and detailed description is omitted here.
  • step 702 the weight of each vortex wave phase shift in the pre-configured available vortex wave phase shift set is determined according to the first vortex wave phase shift set.
  • the weight is used to indicate the usage of the corresponding vortex wave phase shift.
  • the weight is determined according to at least one of the following information: the number of uses of the vortex wave phase shift, and the phase interval between the vortex wave phase shift that has been used.
  • the size of the weight is positively correlated with the number of uses of the vortex wave phase shift, that is, the greater the number of uses of the vortex wave phase shift, the greater the weight corresponding to the vortex wave phase shift; at the same time, the The size is negatively correlated with the phase interval between the used vortex wave phase shift, that is, the smaller the phase interval with the used vortex wave phase shift, the greater the weight corresponding to the vortex wave phase shift. big.
  • this step 702 may include:
  • the difference between the weight corresponding to each vortex wave phase shift in the first vortex wave phase shift set and the set value is used as the weight corresponding to the similar vortex wave phase shift.
  • the offset is a vortex whose phase offset interval between the vortex wave phase offset in the available vortex wave phase offset set and the vortex wave phase offset in the first vortex wave phase offset set is less than the phase offset interval threshold.
  • the set value may be equal to 0 or 1.
  • step 702 may include:
  • step 703 the phase shift of the target vortex wave is determined according to the weight.
  • this step 703 may include: determining the target vortex wave phase shift in the order of the weight from small to large, until the determined target vortex wave phase shift quantity reaches the target value.
  • determining the target vortex wave phase shift in the order of the weight from small to large until the determined target vortex wave phase shift quantity reaches the target value.
  • the method in this embodiment is illustrated below with an example. Assuming that the number of vortex wave phase shifts that can be distinguished by the access network equipment at the operating frequency is 8, and N is equal to 2, correspondingly, the number of vortex wave phase shifts in the available vortex wave phase shift set is 16 . Assuming that the available vortex wave phase offset set E0 is ⁇ 1, ⁇ 2,... ⁇ 16 ⁇ , the determined first vortex wave phase offset set E1 is ⁇ 1, ⁇ 3, ⁇ 4, ⁇ 6, ⁇ 7, ⁇ 9, ⁇ 10 , ⁇ 13, ⁇ 14, ⁇ 16 ⁇ .
  • ⁇ 1 and ⁇ 6 are configured 4 times
  • ⁇ 3 and ⁇ 4 are configured 3 times
  • ⁇ 7 and ⁇ 9 are configured 2 times
  • ⁇ 10, ⁇ 13, ⁇ 14, and ⁇ 16 are configured once.
  • the weight of each vortex wave phase shift in the available vortex wave phase shift set is determined according to the vortex wave phase shift that has been used by adjacent access network equipment, so that the weight can indicate The use of the vortex wave phase shift, and then the target vortex wave phase shift can be determined according to the use of the vortex wave phase shift, so that the target vortex wave phase shift can avoid the used vortex as much as possible Wave phase shift, thereby reducing the interference caused by phase shift when using vortex wave for transmission.
  • the number of required target phase shifts can be determined according to business requirements, and the required number of vortex wave phase shifts can be selected according to the weight of the vortex wave phase shifts to increase system capacity and flexibly meet business requirements.
  • Fig. 8 is a schematic structural diagram showing a device for determining the phase shift of a vortex wave according to an exemplary embodiment.
  • the device has the function of realizing the access network equipment in the foregoing method embodiment, and the function can be realized by hardware, or by hardware executing corresponding software.
  • the device includes: a first determining module 801 and a second determining module 802.
  • the first determining module 801 is configured to determine the vortex wave phase offset used by adjacent access network equipment to obtain a first vortex wave phase offset set;
  • the second determining module 802 is configured to determine the phase offset of the vortex wave according to the first
  • the vortex wave phase offset set and the pre-configured available vortex wave phase offset set are used to determine the target vortex wave phase offset.
  • the second determining module 802 includes:
  • the first determining sub-module 821 is configured to determine a candidate vortex wave phase offset set according to the first vortex wave phase offset set and a pre-configured available vortex wave phase offset set;
  • the second determining sub-module 822 is configured to determine the target vortex wave phase offset from the candidate vortex wave phase offset set.
  • the first determining submodule 821 is configured to determine a difference set between a pre-configured set of available vortex wave phase shifts and the first set of vortex wave phase shifts as the candidate The vortex wave phase shift collection.
  • the first determining submodule 821 includes:
  • Add sub-module 8211 configured to set the available vortex wave phase shift set, and the vortex wave phase shift interval of the first vortex wave phase shift set is smaller than the phase shift interval
  • the threshold value of the vortex wave phase shift is added to the first vortex wave phase shift set to obtain a second vortex wave phase shift set;
  • the candidate set determining sub-module 8212 is configured to determine the candidate vortex wave phase offset set according to the second vortex wave phase offset set.
  • the candidate set determining sub-module 8212 is configured to determine the difference set between the available vortex wave phase offset set and the second vortex wave phase offset set as the candidate Vortex wave phase shift collection; or,
  • the weights corresponding to the vortex wave phase shifts belonging to the first vortex wave phase shift set in the second vortex wave phase shift set are determined according to the number of times the corresponding vortex wave phase shift is used, In the second vortex wave phase shift set, the weight corresponding to the vortex wave phase shift that does not belong to the first vortex wave phase shift set is 0, or equal to the first vortex wave phase shift. Shift the weight corresponding to the phase shift of adjacent vortex waves in the set.
  • the candidate set determining sub-module 8212 is configured to implement according to the second vortex wave phase shift set and each vortex in the second vortex wave phase shift set in the following manner
  • the weight corresponding to the wave phase offset determine the candidate vortex wave phase offset set: determine the difference between the available vortex wave phase offset set and the second vortex wave phase offset set; In the second vortex wave phase shift set, at least part of the vortex wave phase shifts whose weight is less than the weight threshold are selected and added to the difference set to obtain the candidate vortex wave phase shift set.
  • the first determining submodule 821 is configured to determine the difference set between the available vortex wave phase offset set and the first vortex wave phase offset set;
  • the difference set is updated to obtain the candidate vortex wave phase shift set, and the weight is used for Indicates the number of uses of the corresponding vortex wave phase shift.
  • the first determining submodule 821 is configured to add the phase offset of the vortex wave in the first vortex wave set to the difference set in the order of weight from small to large, until the difference is reached.
  • the number of vortex wave phase shifts in the difference set reaches the target value, and the candidate vortex wave phase shift set is obtained.
  • the second determining sub-module 822 is configured to filter out a phase offset whose phase offset interval is greater than a phase offset interval threshold value from the candidate vortex wave phase offset set as the target The vortex wave is phase shifted.
  • the second determining module 802 is configured to determine the weight of each vortex wave phase offset in the available vortex wave phase offset set according to the first vortex wave phase offset set ; According to the weight, determine the target vortex wave phase shift.
  • the second determining module 802 is configured to determine the weight of each vortex wave phase offset in the available vortex wave phase offset set in the following manner:
  • the difference between the weight corresponding to each vortex wave phase shift in the first vortex wave phase shift set and the set value is used as the weight corresponding to the similar vortex wave phase shift.
  • the offset is a vortex whose phase offset interval between the vortex wave phase offset in the available vortex wave phase offset set and the vortex wave phase offset in the first vortex wave phase offset set is less than the phase offset interval threshold.
  • the second determining module 802 is configured to determine the weight of each vortex wave phase offset in the available vortex wave phase offset set in the following manner:
  • the first determining module 801 is configured to determine the vortex wave phase offset used by the adjacent access network device by using at least one of the following methods:
  • the phase offset configuration information used by the adjacent access network device to determine the vortex wave phase offset used by the access network device according to the phase offset configuration information; the phase offset The configuration information is used to indicate the phase shift of the vortex wave used by the access network equipment; or,
  • the vortex wave phase offset of the adjacent access network equipment is measured through the air interface to determine the vortex wave phase offset used by the adjacent access network equipment.
  • the first determining module 801 is configured to perform a measurement on the pilot signal of the adjacent access network device according to at least one vortex wave phase shift in the available vortex wave phase shift set. Perform blind detection.
  • the number of vortex wave phase shifts in the available vortex wave phase shift set is N times the maximum number of vortex wave phase shifts that can be distinguished by the access network device at the target frequency, where N is A positive integer greater than 1.
  • Fig. 9 is a block diagram showing a device 900 for determining the phase shift of a vortex wave according to an exemplary embodiment.
  • the device 900 may be the aforementioned access network device.
  • the device 900 for determining the phase shift of the vortex wave may include one or more of the following components: a processing component 902, a memory 904, a power component 906, an input/output (I/O) interface 912, and a communication component 916 .
  • the processing component 902 generally controls the overall operations of the vortex wave phase shift determination device 900, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 902 may include one or more processors 920 to execute instructions to complete all or part of the steps of the foregoing method.
  • the processing component 902 may include one or more modules to facilitate the interaction between the processing component 902 and other components.
  • the processing component 902 may include a multimedia module to facilitate the interaction between the multimedia component 908 and the processing component 902.
  • the memory 904 is configured to store various types of data to support the operation of the device 900 for determining the phase shift of the vortex wave.
  • the memory 904 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable and Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic Disk or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable and Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic Disk Magnetic Disk or Optical Disk.
  • the power component 906 provides power to various components of the device 900 for determining the phase shift of the vortex wave.
  • the power component 906 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the vortex wave phase shift determination device 900.
  • the I/O interface 912 provides an interface between the processing component 902 and a peripheral interface module.
  • the above-mentioned peripheral interface module may be a keyboard, a click wheel, a button, and the like. These buttons may include but are not limited to: home button, volume button, start button, and lock button.
  • the communication component 916 is configured to facilitate wireless communication between the access network device and other devices.
  • the communication component 916 may provide a wireless network based on a communication standard, such as 2G, 3G, 4G, or 5G, or a combination thereof, so as to connect with the terminal device.
  • the device 900 for determining the phase offset of the vortex wave can be implemented by one or more application specific integrated circuits (ASIC), digital signal processor (DSP), digital signal processing device (DSPD), programmable logic A device (PLD), a field programmable gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components are implemented to implement the above-mentioned method for determining the phase shift of the vortex wave.
  • ASIC application specific integrated circuits
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable logic A device
  • FPGA field programmable gate array
  • controller a microcontroller, a microprocessor, or other electronic components are implemented to implement the above-mentioned method for determining the phase shift of the vortex wave.
  • a non-transitory computer-readable storage medium including instructions, such as the memory 904 including instructions, which can be executed by the processor 920 of the apparatus 900 for determining the phase shift of the vortex wave.
  • Method for determining the phase shift of vortex waves may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • An exemplary embodiment of the present disclosure also provides a communication system, which includes an access network device and a terminal.
  • the access network equipment is the device for determining the phase offset of the vortex wave provided in the embodiment shown in FIG. 9.

Abstract

本公开是关于一种涡旋波相位偏移的确定方法、装置和存储介质,属于通信技术领域。所述方法包括:确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合;根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移。该方法能够减小利用涡旋波进行传输时的干扰。

Description

涡旋波相位偏移的确定方法、装置和存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种涡旋波相位偏移的确定方法、装置和存储介质。
背景技术
随着5G标准和产品的成熟,对于5G后续演进的各项技术逐渐进入大家的视野,已经成为各个国家和世界主流厂商关注的研究方向。和每一代通信系统的演进一样,5G后续演进的各项技术相比5G也将有数十倍的传输速率提升,为了达到传输速率等指标的巨大提升,一些技术方案被列入考虑范畴,例如轨道角动量(Orbital Angular Momentum,OAM)方案,又称为涡旋波。
基于涡旋波的特性,可以在同一个频段中,叠加传输不同相位偏移的涡旋波,从而实现多一个维度的传输,进而扩大传输容量。在利用不同相位偏移的涡旋波进行传输的过程中,需要考虑到涡旋波之间的干扰问题。
发明内容
本公开实施例提供了一种涡旋波相位偏移的确定方法、装置和存储介质,能够降低工作在相同频率下的接入网设备在利用涡旋波进行通信时的干扰。所述技术方案如下:
根据本公开实施例的第一方面,提供一种涡旋波相位偏移的确定方法,所述方法包括:
确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合;
根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移。
在一种可能的实施方式中,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移,包括:
根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集 合,确定备选涡旋波相位偏移集合;
从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波相位偏移。
可选地,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合,包括:
将预先配置的可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合。
可选地,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合,包括:
将所述可用涡旋波相位偏移集合中,与所述第一涡旋波相位偏移集合中的涡旋波相位偏移的间隔小于相位偏移间隔阈值的涡旋波相位偏移,添加到所述第一涡旋波相位偏移集合中,得到第二涡旋波相位偏移集合;
根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合。
可选地,所述根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合,包括:
将所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合;或者,
根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,其中,所述第二涡旋波相位偏移集合中属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重根据对应的涡旋波相位偏移的使用次数确定,所述第二涡旋波相位偏移集合中不属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重为0,或者,等于所述第一涡旋波相位偏移集合中相邻涡旋波相位偏移对应的权重。
可选地,所述根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,包括:
确定所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集;
从所述第二涡旋波相位偏移集合中,选择权重小于权重阈值的至少部分涡旋波相位偏移添加到所述差集中,得到所述备选涡旋波相位偏移集合。
可选地,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波 相位偏移集合,确定备选涡旋波相位偏移集合,包括:
确定所述可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集;
根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,所述权重用于指示对应的涡旋波相位偏移的使用次数。
可选地,所述根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,包括:
按照权重从小到大的顺序,将所述第一涡旋波集合中的涡旋波相位偏移添加到所述差集中,直至所述差集中的涡旋波相位偏移的数量达到目标值,得到所述备选涡旋波相位偏移集合。
可选地,所述从所述备选涡旋波相位偏移集合中,确定目标涡旋波相位偏移,包括:
从所述备选涡旋波相位偏移集合中,筛选出相位偏移间隔大于相位偏移间隔阈值的相位偏移作为所述目标涡旋波相位偏移。
在另一种可能的实施方式中,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移,包括:
根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重;
根据所述权重,确定目标涡旋波相位偏移。
可选地,所述根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重,包括:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重与设定值的差值,作为相近涡旋波相位偏移对应的权重,所述相近涡旋波相位偏移为所述可用涡旋波相位偏移集合中与所述第一涡旋波相位偏移集合中的涡旋波相位偏移之间的相位偏移间隔小于相位偏移间隔阈值的涡旋波相位偏移;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移和所述相近涡旋波相位偏移之外的涡旋波相位偏移。
可选地,所述根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重,包括:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移之外的涡旋波相位偏移。
可选地,所述确定相邻接入网设备使用的涡旋波相位偏移,包括以下方式中的至少一种:
接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,以根据所述相位偏移配置信息确定所述接入网设备使用的涡旋波相位偏移;所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
通过与所述相邻接入网设备之间的通信接口,接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移;或者,
通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移。
可选地,所述通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量,包括:
根据所述可用涡旋波相位偏移集合中的至少一个涡旋波相位偏移,对所述相邻接入网设备的导频信号进行盲检测。
可选地,所述可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为接入网设备在目标频率下能够区分的最多涡旋波相位偏移数量的N倍,N为大于1的正整数。
根据本公开实施例的第二方面,提供一种涡旋波相位偏移的确定装置,所述装置包括:
第一确定模块,被配置为确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合;
第二确定模块,被配置为根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移。
可选地,所述第二确定模块,包括:
第一确定子模块,被配置为根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合;
第二确定子模块,被配置为从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波相位偏移。
可选地,所述第一确定子模块,被配置为将预先配置的可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合。
可选地,第一确定子模块,包括:
添加子模块,被配置为将所述可用涡旋波相位偏移集合中,与所述第一涡旋波相位偏移集合中的涡旋波相位偏移的间隔小于所述相位偏移间隔阈值的涡旋波相位偏移,添加到所述第一涡旋波相位偏移集合中,得到第二涡旋波相位偏移集合;
备选集合确定子模块,被配置为根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合。
可选地,所述备选集合确定子模块,被配置为将所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合;或者,
根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,其中,所述第二涡旋波相位偏移集合中属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重根据对应的涡旋波相位偏移的使用次数确定,所述第二涡旋波相位偏移集合中不属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重为0,或者,等于所述第一涡旋波相位偏移集合中相邻涡旋波相位偏移对应的权重。
可选地,所述备选集合确定子模块,被配置为按照以下方式实现根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合:
确定所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差 集;
从所述第二涡旋波相位偏移集合中,选择权重小于权重阈值的至少部分涡旋波相位偏移添加到所述差集中,得到所述备选涡旋波相位偏移集合。
可选地,所述第一确定子模块,被配置为确定所述可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集;
根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,所述权重用于指示对应的涡旋波相位偏移的使用次数。
可选地,所述第一确定子模块,被配置为按照权重从小到大的顺序,将所述第一涡旋波集合中的涡旋波相位偏移添加到所述差集中,直至所述差集中的涡旋波相位偏移的数量达到目标值,得到所述备选涡旋波相位偏移集合。
可选地,所述第二确定子模块,被配置为从所述备选涡旋波相位偏移集合中,筛选出相位偏移间隔大于相位偏移间隔阈值的相位偏移作为所述目标涡旋波相位偏移。
可选地,所述第二确定模块被配置为按照以下方式确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重与设定值的差值,作为相近涡旋波相位偏移对应的权重,所述相近涡旋波相位偏移为所述可用涡旋波相位偏移集合中与所述第一涡旋波相位偏移集合中的涡旋波相位偏移之间的相位偏移间隔小于相位偏移间隔阈值的涡旋波相位偏移;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移和所述相近涡旋波相位偏移之外的涡旋波相位偏移。
可选地,所述第二确定模块被配置为按照以下方式确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位 偏移之外的涡旋波相位偏移。
可选地,所述第一确定模块,被配置为采用以下方式中的至少一种确定相邻接入网设备使用的涡旋波相位偏移:
接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,以根据所述相位偏移配置信息确定所述接入网设备使用的涡旋波相位偏移;所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
通过与所述相邻接入网设备之间的通信接口,接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移;或者,
通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移。
可选地,所述第一确定模块,被配置为根据所述可用涡旋波相位偏移集合中的至少一个涡旋波相位偏移,对所述相邻接入网设备的导频信号进行盲检测。
可选地,所述可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为接入网设备在目标频率下能够区分的最多涡旋波相位偏移数量的N倍,N为大于1的正整数。
根据本公开实施例的第三方面,提供一种涡旋波相位偏移的确定装置,所述装置包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为加载并执行所述可执行指令以实现前述第一方面所述的涡旋波相位偏移的确定方法。
根据本公开实施例的第四方面,提供一种计算机可读存储介质,当所述计算机可读存储介质中的指令由处理器执行时,能够执行如第一方面所述的涡旋波相位偏移的确定方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
通过确定已经被相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合,并且以第一涡旋波相位偏移集合为参考,从可用涡旋波相位偏移集合中确定出目标涡旋波相位偏移,由于考虑了相邻接入网设备使用的涡旋波相位偏移,所以可以降低与相邻接入网设备使用相同的涡旋波相位偏移进行 传输的可能,从而降低采用涡旋波进行传输时由于相位偏移引起的干扰。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种通信系统的框图;
图2是根据一示例性实施例示出的一种涡旋波相位偏移的确定方法的流程图;
图3是根据一示例性实施例示出的一种涡旋波相位偏移的确定方法的流程图;
图4是根据一示例性实施例示出的一种涡旋波相位偏移的确定方法的流程图;
图5是根据一示例性实施例示出的一种涡旋波相位偏移的确定方法的流程图;
图6是根据一示例性实施例示出的一种涡旋波相位偏移的确定方法的流程图;
图7是根据一示例性实施例示出的一种涡旋波相位偏移的确定方法的流程图;
图8是根据一示例性实施例示出的一种涡旋波相位偏移的确定装置的结构示意图;
图9是根据一示例性实施例示出的一种涡旋波相位偏移的确定装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在 限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
应当理解,尽管在本公开实施例为了便于理解而编号的方式对步骤进行了说明,但是这些编号并不代表步骤的执行顺序,也并不代表采用顺序编号的步骤必须在一起执行。应当理解,采用顺序编号的多个步骤中的一个或几个步骤可以单独执行以解决相应的技术问题并达到预定的技术方案。即使是在附图中被示例性的列在一起的多个步骤,并不代表这些步骤必须被一起执行;附图只是为了便于理解而示例性的将这些步骤列在了一起。
图1是根据一示例性实施例示出的一种通信系统的框图。请参考图1,该移动通信系统可以包括:接入网设备10和终端20。
接入网设备10部署在无线接入网中用以为终端20提供无线接入功能。接入网设备可以是基站(Base Station,BS)。接入网设备10可以经由一个或多个天线与终端20进行无线通信。接入网设备10可以为其所在地理区域提供通信覆盖。所述基站可以包括宏基站,微基站,中继站,接入点等不同类型。在一些实施例中,基站可以被本领域技术人员称为基站收发机、无线基站、接入点、无线收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、节点B(NodeB)、演进的节点B(evolved NodeB,eNB或eNodeB)或者其它一些适当的术语。示例性地,在5G系统中,基站被称为gNB。为方便描述,本申请实施例中,上述为终端20提供无线通信功能的装置统称为接入网设备。
终端20可以散布于整个移动通信系统中,并且每个终端20可以是静止的或者移动的。终端20还可以被本领域技术人员称为移动站、用户站、移动单元、用户单元、无线单元、远程单元、移动设备、用户设备、无线设备、无线通信 设备、远程设备、移动用户站、接入终端、移动终端、无线终端、远程终端、手持设备、用户代理、移动客户端、客户端或者一些其它适当的术语。终端20可以是蜂窝电话、个人数字助理(Personal Digital Assistant,PDA)、无线调制解调器、无线通信设备、手持设备、平板电脑、膝上型计算机、无绳电话、无线本地环路(Wireless Local Loop,WLL)站等。终端20能够与移动通信系统中的接入网设备10进行通信。
接入网设备10与终端20之间可通过空口技术互相通信,例如通过蜂窝技术互相通信。接入网设备10与终端20之间的通信链路可以包括:从接入网设备10到终端20的下行链路(down link,DL)传输,和/或,从终端20到接入网设备10的上行链路(up link,UP)传输。下行链路传输还可以被称为前向链路传输,上行链路传输还可以被称为反向链路传输。在一些例子中,下行链路传输可以包括发现信号的传输,该发现信号可以包括参考信号和/或同步信号。
上述图1所示的移动通信系统可以是长期演进(Long Term Evolution,LTE)系统,也可以是基于LTE系统的下一代演进系统,如LTE-A(LTE-Advanced)系统或第五代(5th Generation,5G)系统(又称NR系统),还可以是基于5G系统的下一代演进系统,如超第五代(Beyond5th Generation,B5G)系统、第六代(6th Generation,6G)系统等等。本申请实施例中,术语“系统”和“网络”经常被可互换地使用,但本领域技术人员可理解其含义。
本公开实施例描述的通信系统以及业务场景是为了更加清楚地说明本公开实施例的技术方案,并不构成对本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
在本公开实施例中,接入网设备具有相控阵列天线,能够利用该相控阵列天线产生涡旋波,使得接入网设备能够利用涡旋波进行传输。通过调节相控阵列天线的参数,可以调整涡旋波的相位偏移。对于一个接入网设备而言,可以采用一个或多个相位偏移的涡旋波来进行传输。
由于解调的辨识度是有一定限制的,因此,接入网设备能够辨识出的相位偏移有一定的数量限制。例如,同一个频率下,接入网设备能够辨识出的相位偏移不超过n个,比如n等于8。
在本公开实施例中,每个接入网设备可以配置有可用涡旋波相位偏移集合,可用涡旋波相位偏移集合包括m个涡旋波相位偏移,也即是,每个接入网设备 有m个相位偏移的涡旋波配置选择。这里,m是根据目标频率下接入网设备能够辨识出的最多涡旋波相位偏移数量确定的。例如,m可以是n的N倍,其中,N为大于1的正整数。可选地,N为大于1,小于1024的正整数,并且,N等于2的X次方,X为正整数。示例性地,N等于2。例如,当n等于8时,m等于16。
在本公开实施例中,m和n的取值可以通过仿真实验或者实验室实验确定。
接入网设备在从可用涡旋波相位偏移集合中选择传输的涡旋波所使用的相位偏移时,需要确保与周围的接入网设备有最多不同的相位值配置,以减小利用涡旋波传输时由于涡旋波相位偏移相同或者相近带来的干扰。这里,涡旋波相位偏移相近,是指两个涡旋波相位偏移之间的相位偏移间隔小于设定值。
图2是根据一示例性实施例示出的一种涡旋波相位偏移的确定方法的流程图。该方法可以由前述接入网设备执行。参见图2,该方法包括以下步骤:
在步骤201中,确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合;
在步骤202中,根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移。
在一种可能的实施方式中,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移,包括:
根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合;
从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波相位偏移。
可选地,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合,包括:
将预先配置的可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合。
可选地,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合,包括:
将所述可用涡旋波相位偏移集合中,与所述第一涡旋波相位偏移集合中的涡旋波相位偏移的间隔小于相位偏移间隔阈值的涡旋波相位偏移,添加到所述第一涡旋波相位偏移集合中,得到第二涡旋波相位偏移集合;
根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合。
可选地,所述根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合,包括:
将所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合;或者,
根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,其中,所述第二涡旋波相位偏移集合中属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重根据对应的涡旋波相位偏移的使用次数确定,所述第二涡旋波相位偏移集合中不属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重为0,或者,等于所述第一涡旋波相位偏移集合中相邻涡旋波相位偏移对应的权重。
可选地,所述根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,包括:
确定所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集;
从所述第二涡旋波相位偏移集合中,选择权重小于权重阈值的至少部分涡旋波相位偏移添加到所述差集中,得到所述备选涡旋波相位偏移集合。
可选地,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合,包括:
确定所述可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集;
根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,所述权重用于指示对应的涡旋波相位偏移的使用次数。
可选地,所述根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,包括:
按照权重从小到大的顺序,将所述第一涡旋波集合中的涡旋波相位偏移添加到所述差集中,直至所述差集中的涡旋波相位偏移的数量达到目标值,得到所述备选涡旋波相位偏移集合。
可选地,所述从所述备选涡旋波相位偏移集合中,确定目标涡旋波相位偏移,包括:
从所述备选涡旋波相位偏移集合中,筛选出相位偏移间隔大于相位偏移间隔阈值的相位偏移作为所述目标涡旋波相位偏移。
在另一种可能的实施方式中,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移,包括:
根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重;
根据所述权重,确定目标涡旋波相位偏移。
可选地,所述根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重,包括:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重与设定值的差值,作为相近涡旋波相位偏移对应的权重,所述相近涡旋波相位偏移为所述可用涡旋波相位偏移集合中与所述第一涡旋波相位偏移集合中的涡旋波相位偏移之间的相位偏移间隔小于相位偏移间隔阈值的涡旋波相位偏移;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移和所述相近涡旋波相位偏移之外的涡旋波相位偏移。
可选地,所述根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重,包括:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移之外的涡旋波相位偏移。
可选地,所述确定相邻接入网设备使用的涡旋波相位偏移,包括以下方式中的至少一种:
接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,以根据所述相位偏移配置信息确定所述接入网设备使用的涡旋波相位偏移;或者,
通过与所述相邻接入网设备之间的通信接口,接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移,包括以下方式;或者,
通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量。
可选地,所述通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量,包括:
根据所述可用涡旋波相位偏移集合中的至少一个涡旋波相位偏移,对所述相邻接入网设备的导频信号进行盲检测。
可选地,所述可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为接入网设备在目标频率下能够区分的最多涡旋波相位偏移数量的N倍,N为大于1的正整数。
值得说明的是,前述步骤201-202与上述可选步骤可以任意组合。
图3是据一示例性实施例示出的涡旋波相位偏移的确定方法的流程图。该方法可以由接入网设备执行。参见图3,该方法包括以下步骤:
在步骤301中,确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合。
在本公开实施例中,接入网设备使用某个涡旋波相位偏移是指接入网设备被配置为能够使用该相位偏移的涡旋波进行信号传输。
在一种可能的实施方式中,该步骤301包括:接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,以根据所述相位偏移配置信息确定所述接入网设备使用的涡旋波相位偏移。其中,该相邻接入网设备使用的涡旋波相位偏移配置信息可以从所述相邻接入网设备处接收,也可以从核心网接收,还可以根据相关通信协议的约定而确定。在本公开实施例中对于相邻接入网设备使用的涡旋波相位偏移的确定方式都只是举例说明,本公开实施例并不对此做出限定。
在另一种可能的实施方式中,该步骤301包括:通过与所述相邻接入网设备之间的通信接口,接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移。示例性地, 该通信接口可以为X2接口。
在又一种可能的实施方式中,该步骤301包括:对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移。
在再一种可能的实施方式中,该步骤301包括:通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量。
示例性地,所述通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量,包括:
根据所述可用涡旋波相位偏移集合中的至少一个涡旋波相位偏移,对所述相邻接入网设备的导频信号进行盲检测。
在本公开实施例中,可以根据所述可用涡旋波相位偏移集合中的部分或全部可用涡旋波相位偏移,逐一对对所述相邻接入网设备的导频信号进行盲检测。例如,按照相位偏移从小到大的顺序,通过调整相控阵列天线的参数,接收对应相位偏移的涡旋波,若在接收到的涡旋波上检测到导频信号,则表示该相位偏移的涡旋波已被相邻接入网设备使用。在本公开实施例中,可以从所述可用涡旋波相位偏移集合中确定部分可用涡旋波相位偏移集合,并对这一部分所述相邻接入网设备的导频信号进行盲检测。而确定出部分可用涡旋波相位偏移集合的方式可以为很多种,例如根据网络状况和/或负载状况确定部分可用涡旋波相位偏移集合,或根据协议确定部分可用涡旋波相位偏移集合,或根据核心网设备或其他设备的配置确定部分可用涡旋波相位偏移集合。
在步骤302中,将预先配置的可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合。
在本公开实施例中,预先配置是指,可用涡旋波相位偏移集合是在该方法执行之前,由上层网元,例如核心网设备配置在接入网设备中。预先配置还可以是指,通过相关通信协议规定来确定。
通过该步骤302,即可实现根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合。
在步骤303中,从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波相位偏移。
可选地,该步骤303可以包括:从所述备选涡旋波相位偏移集合中,筛选出相位偏移间隔大于相位偏移间隔阈值的相位偏移作为所述目标涡旋波相位偏移。这样,可以避免接入网设备由于使用相位偏移相近的涡旋波进行传输而带 来的小区内的干扰。
例如,对于备选相位偏移集合{α2,α6,α8,α10,α12,α13,α15,α16},其中α12和α13由于相位偏移间隔较小,只能二选一,同样地,α15和α16也只能二选一,例如最终配置值可以是{α2,α6,α8,α10,α13,α16}。
可替代地,该步骤303包括:从备选涡旋波相位偏移集合中,以随机的方式选择目标涡旋波相位偏移。
确定出目标涡旋波相位偏移之后,即可使用该目标涡旋波相位偏移的涡旋波进行数据传输。
在一种可能的实施方式中,目标涡旋波相位偏移的数量与接入网设备的数据传输量正相关,也即是,接入网设备的数据传输量越大,所需要确定的目标涡旋波相位偏移的数量越大。
通过该步骤303,即可实现根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移。
下面对该实施例中的方法进行举例说明。假设接入网设备在工作频率下能够区分的涡旋波相位偏移数量为8,N等于2,相应地,可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为16个。假设该可用涡旋波相位偏移集合E0为{α1,α2,……α16},确定出的第一涡旋波相位偏移集合E1为{α1,α3,α4,α6,α7,α9,α10,α13,α14,α16}。由于备选涡旋波相位偏移集合E2为E0和E1的差集,因此,E2为{α2,α5,α8,α11,α12,α15}。
在本公开实施例中,由于备选涡旋波相位偏移集合为可用涡旋波相位偏移集合与第一涡旋波相位偏移集合的差集,所以第一涡旋波相位偏移集合与备选涡旋波相位偏移集合的交集为空,在这种情况下,从备选涡旋波相位偏移集合中确定出的目标涡旋波相位偏移不属于第一涡旋波相位偏移集合,即目标涡旋波相位偏移与相邻接入网设备使用的涡旋波相位偏移不同。因此,利用该目标涡旋波相位偏移发送信号,可以避免与工作在相同频率下的相邻接入网设备使用相同相位偏移的涡旋波而带来的干扰。
图4是据一示例性实施例示出的涡旋波相位偏移的确定方法的流程图。该方法可以由接入网设备执行。参见图4,该方法包括以下步骤:
在步骤401中,确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡 旋波相位偏移集合。
该步骤401的相关内容可以参见前述步骤301,在此省略详细描述。
在步骤402中,将所述可用涡旋波相位偏移集合中,与所述第一涡旋波相位偏移集合中的涡旋波相位偏移的间隔小于相位偏移间隔阈值的涡旋波相位偏移,添加到所述第一涡旋波相位偏移集合中,得到第二涡旋波相位偏移集合。
这里,相位偏移间隔阈值为设定值,可以根据可能产生干扰的两个不同相位偏移的涡旋波之间的最小相位偏移间隔设置,本公开对此不做限制。
在一种可能的实施方式中,可以将可用涡旋波相位偏移集合中,与第一涡旋波相位偏移集合中的涡旋波相位偏移相邻的涡旋波相位偏移,添加到第一涡旋波相位偏移中,得到第二涡旋波相位偏移集合。
在步骤403中,根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合。
示例性地,该步骤403包括:将所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合。
通过该步骤402和403,即可实现根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合。
在步骤404中,从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波相位偏移。
该步骤404的相关内容可以参见前述步骤303,在此省略详细描述。
下面对该实施例中的方法进行举例说明。假设接入网设备在工作频率下能够区分的涡旋波相位偏移数量为8,N等于2,相应地,可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为16个。假设该可用涡旋波相位偏移集合E0为{α1,α2,……α16},确定出的第一涡旋波相位偏移集合E1为{α1,α7,α11,α14}。由于使用与E1中相位偏移接近的相位偏移也可能带来干扰,所以将与E1中相位偏移接近的相位偏移添加到E1中,得到第二涡旋波相位偏移集合E1’,E1’为{α1, α2α6,α7, α8α10,α11, α12α13,α14, α15α16}。其中,带下划线的相位偏移是与E1中相位偏移接近的相位偏移。因此,备选涡旋波相位偏移集合E2为E0和E1’的差集,因此,E2为{α3,α4,α5,α9}。
在本公开实施例中,由于备选涡旋波相位偏移集合为可用涡旋波相位偏移集合与第二涡旋波相位偏移集合的差集,而第二涡旋波相位偏移集合中相邻接 入网设备已经使用的涡旋波相位偏移和与已经使用的涡旋波相位偏移相接近的涡旋波相位偏移,在这种情况下,从备选涡旋波相位偏移集合中确定出的目标涡旋波相位偏移目标涡旋波相位偏移与相邻接入网设备使用的涡旋波相位偏移既不相同也不相近。因此,利用该目标涡旋波相位偏移发送信号,可以避免与工作在相同频率下的相邻接入网设备使用相同相位偏移和相近相位偏移的涡旋波而带来的干扰,最大程度上规避了可能的干扰。
图5是据一示例性实施例示出的涡旋波相位偏移的确定方法的流程图。该方法可以由接入网设备执行。参见图5,该方法包括以下步骤:
在步骤501中,确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合。
在本公开实施例中,接入网设备使用某个涡旋波相位偏移是指接入网设备被配置为能够使用该相位偏移的涡旋波进行信号传输。在本实施例中,除了确定相邻接入网设备使用的涡旋波相位偏移之外,还需要确定各个涡旋波相位偏移的使用次数,也即是使用涡旋波相位偏移的接入网设备的数量。
在一种可能的实施方式中,该步骤501包括:通过与所述相邻接入网设备之间的通信接口,接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移。
根据该涡旋波相位偏移配置信息即可确定出相邻接入网设备使用的涡旋波相位偏移,并且统计出各个被使用的涡旋波相位偏移的使用次数。
在另一种可能的实施方式中,该步骤501包括:通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量。
示例性地,所述通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量,包括:
逐个使用所述可用涡旋波相位偏移集合中的涡旋波相位偏移,对所述相邻接入网设备的导频信号进行盲检测。
例如,按照相位偏移从小到大的顺序,通过调整相控阵列天线的参数,接收对应相位偏移的涡旋波,若在接收到的涡旋波上检测到导频信号,则表示该相位偏移的涡旋波已被相邻接入网设备使用。
在这种实施方式中,针对每个涡旋波相位偏移,可以根据盲检测时接收信号的功率等级,确定涡旋波相位偏移的使用次数。
例如,根据预先配置功率等级与使用次数的对应关系,确定接收信号的功率等级对应的使用次数,并将该使用次数作为当前检测的涡旋波相位偏移的使用次数。在该对应关系中,功率等级与使用次数正相关,也即是,功率等级越高,使用次数越大,反之,功率等级越低,使用次数越小。
在步骤502中,将所述可用涡旋波相位偏移集合中,与所述第一涡旋波相位偏移集合中的涡旋波相位偏移的间隔小于相位偏移间隔阈值的涡旋波相位偏移,添加到所述第一涡旋波相位偏移集合中,得到第二涡旋波相位偏移集合。
该步骤502的相关内容可以参见前述步骤402,在此省略详细描述。
在步骤503中,根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合。
示例性地,第二涡旋波相位偏移集合中属于第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重根据相邻接入网设备使用该涡旋波相位偏移的次数确定,被使用的次数越多,权重越大。例如,可以将涡旋波相位偏移被使用的次数作为该涡旋波相位偏移对应的权重。
在一种可能的实施方式中,将添加到第一涡旋波相位偏移集合中的涡旋波相位偏移(也即是第二涡旋波相位偏移集合中不属于第一涡旋波相位偏移集合的涡旋波相位偏移)对应的权重设置为,第一涡旋波相位偏移集合中的相近相位偏移(例如与添加到第一涡旋波相位集合中的涡旋波相位偏移相邻的相位偏移)对应的权重;或者,将添加到第一涡旋波相位偏移集合中的涡旋波相位偏移对应的权重设置为0。
也即是,根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合。
该步骤503可以包括:确定所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集;从所述第二涡旋波相位偏移集合中,选择权重小于权重阈值的至少部分涡旋波相位偏移添加到所述差集中,得到所述备选涡旋波相位偏移集合。
需要说明的是,该步骤503可以在目标相位偏移的数量小于目标值时执行,该目标值与业务需求对应,即目标值与需要传输的数据量对应,需要传输的数据量越大,目标值越大;反之,需要传输的数据量越小,目标值越小。
在步骤504中,从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波 相位偏移。
该步骤504的相关内容可以参见前述步骤303,在此省略详细描述。
下面对该实施例中的方法进行举例说明。假设接入网设备在工作频率下能够区分的涡旋波相位偏移数量为8,N等于2,相应地,可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为16个。假设该可用涡旋波相位偏移集合E0为{α1,α2,……α16},确定出的第一涡旋波相位偏移集合E1为{α1,α7,α11,α14}。由于使用与E1中相位偏移接近的相位偏移也可能带来干扰,所以将与E1中相位偏移接近的相位偏移添加到E1中,得到第二涡旋波相位偏移集合E1’,E1’为{α1, α2α6,α7, α8α10,α11, α12α13,α14, α15α16}。其中,带下划线的相位偏移是与E1中相位偏移接近的相位偏移。
E1对应的权重集合F1为{4,2,2,1},即α1被配置了4次,α7和α11被配置了2次,α14被配置了1次。E1’对应的权重集合F1’为{4,0,0,2,0,0,2,0,0,1,0,0}。
E0和E1’的差集E2为{α3,α4,α5,α9}。若E2中的相位偏移的数量满足业务需求,则以E2位备选涡旋波相位偏移集合。若E2中的相位偏移的数量不满足也无需求,则将权重值较低(例如为0)的相位偏移的至少部分加入该差集E2中,得到备选涡旋波相位偏移集合E2’。
在本公开实施例中,由于备选涡旋波相位偏移集合为可用涡旋波相位偏移集合与第二涡旋波相位偏移集合的差集,而第二涡旋波相位偏移集合中相邻接入网设备已经使用的涡旋波相位偏移和与已经使用的涡旋波相位偏移相接近的涡旋波相位偏移,在这种情况下,从备选涡旋波相位偏移集合中确定出的目标涡旋波相位偏移目标涡旋波相位偏移与相邻接入网设备使用的涡旋波相位偏移既不相同也不相近。因此,利用该目标涡旋波相位偏移发送信号,可以避免与工作在相同频率下的相邻接入网设备使用相同相位偏移和相近相位偏移的涡旋波而带来的干扰,最大程度上规避了可能的干扰。
此外,在相位偏移的数量不满足业务需求时,还可以将权重值较小的相位偏移添加到备选涡旋波相位偏移集合中,以提升系统容量,灵活满足业务需求。
图6是据一示例性实施例示出的涡旋波相位偏移的确定方法的流程图。该方法可以由接入网设备执行。参见图6,该方法包括以下步骤:
在步骤601中,确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡 旋波相位偏移集合。
该步骤601的相关内容可以参见前述步骤501,在此省略详细描述。
在步骤602中,确定预先配置的可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集。
在步骤603中,根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,所述权重用于指示对应的涡旋波相位偏移的使用次数。
可选地,该步骤可以包括:按照权重从小到大的顺序,将所述第一涡旋波集合中的涡旋波相位偏移添加到所述差集中,直至所述差集中的涡旋波相位偏移的数量达到目标值,得到所述备选涡旋波相位偏移集合。
目标值的相关内容可以参见步骤503,在此省略详细描述。
在步骤604中,从所述备选涡旋波相位偏移集合中,确定目标涡旋波相位偏移。
下面对该实施例中的方法进行举例说明。假设接入网设备在工作频率下能够区分的涡旋波相位偏移数量为8,N等于2,相应地,可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为16个。假设该可用涡旋波相位偏移集合E0为{α1,α2,……α16},确定出的第一涡旋波相位偏移集合E1为{α1,α3,α4,α6,α7,α9,α10,α13,α14,α16}。E1对应的权重集合F1为{4,3,3,4,2,2,1,1,1,1},即α1和α6被配置了4次,α3和α4被配置了3次,α7和α9被配置了2次,α10,α13,α14,α16被配置了1次。
E0与E1的差集E2为{α2,α5,α8,α11,α12,α15}。若E2中的相位偏移的数量满足业务需求,则以E2为备选涡旋波相位偏移集合。若E2中的相位偏移的数量不满足也无需求,则将权重值较低(例如为1)的相位偏移的至少部分加入该差集E2中,得到备选涡旋波相位偏移集合E2’,E2’为{α2,α5,α8,α10,α11,α12,α13,α14,α15,α16}。
在本公开实施例中,由于备选涡旋波相位偏移集合为可用涡旋波相位偏移集合与第一涡旋波相位偏移集合的差集,所以第一涡旋波相位偏移集合与备选涡旋波相位偏移集合的交集为空,在这种情况下,从备选涡旋波相位偏移集合中确定出的目标涡旋波相位偏移不属于第一涡旋波相位偏移集合,即目标涡旋波相位偏移与相邻接入网设备使用的涡旋波相位偏移不同。因此,利用该目标涡旋波相位偏移发送信号,可以避免与工作在相同频率下的相邻接入网设备使 用相同相位偏移的涡旋波而带来的干扰。
此外,在相位偏移的数量不满足业务需求时,还可以将权重值较小的相位偏移添加到备选涡旋波相位偏移集合中,以提升系统容量,灵活满足业务需求。并且,由于权重值较小的相位偏移被使用的次数较少,所以干扰的可能性相对较小。
图7是据一示例性实施例示出的涡旋波相位偏移的确定方法的流程图。该方法可以由接入网设备执行。参见图7,该方法包括以下步骤:
在步骤701中,确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合。
该步骤701的相关内容可以参见前述步骤501,在此省略详细描述。
在步骤702中,根据所述第一涡旋波相位偏移集合,确定预先配置的可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重。
其中,所述权重用于指示对应的涡旋波相位偏移的使用情况。
在一种可能的实施方式中,权重根据以下信息中的至少一种确定:涡旋波相位偏移的使用次数、与已使用的涡旋波相位偏移之间的相位间隔。
示例性地,权重的大小跟涡旋波相位偏移的使用次数正相关,即涡旋波相位偏移的使用次数越大,该涡旋波相位偏移对应的权重越大;同时,权重的大小和与已使用的涡旋波相位偏移之间的相位间隔负相关,即与已使用的涡旋波相位偏移之间的相位间隔越小,该涡旋波相位偏移对应的权重越大。
例如,该步骤702可以包括:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重与设定值的差值,作为相近涡旋波相位偏移对应的权重,所述相近涡旋波相位偏移为所述可用涡旋波相位偏移集合中与所述第一涡旋波相位偏移集合中的涡旋波相位偏移之间的相位偏移间隔小于相位偏移间隔阈值的涡旋波相位偏移;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移和所述相近涡旋波相位偏移之外的涡旋波相位偏移。
在一种可能的实施方式中,该设定值可以等于0或者1。
又例如,该步骤702可以包括:
根据第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将剩余涡旋波相位偏移对应的权重置为0,其中,剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移之外的涡旋波相位偏移。
在步骤703中,根据所述权重,确定目标涡旋波相位偏移。
可选地,该步骤703可以包括:按照权重从小到大的顺序,确定目标涡旋波相位偏移,直至确定出的目标涡旋波相位偏移的数量达到目标值。目标值的相关内容可以参见步骤503,在此省略详细描述。
下面对该实施例中的方法进行举例说明。假设接入网设备在工作频率下能够区分的涡旋波相位偏移数量为8,N等于2,相应地,可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为16个。假设该可用涡旋波相位偏移集合E0为{α1,α2,……α16},确定出的第一涡旋波相位偏移集合E1为{α1,α3,α4,α6,α7,α9,α10,α13,α14,α16}。其中,α1和 α6被配置了4次,α3和α4被配置了3次,α7和α9被配置了2次,α10,α13,α14,α16被配置了1次。根据E1为E0中的相位偏移设置权重,得到权重集合F0,F0为{4,0,3,3,0,4,2,0,2,1,0,0,1,1,0,1}。按照权重值从小到大的顺序,确定目标涡旋波相位偏移。
在本公开实施例中,根据相邻接入网设备已经使用的涡旋波相位偏移,确定可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重,使得该权重能够指示涡旋波相位偏移的使用情况,进而可以根据涡旋波相位偏移的使用情况确定目标涡旋波相位偏移,从而目标涡旋波相位偏移能够尽可能避开已被使用的涡旋波相位偏移,从而降低采用涡旋波进行传输时由于相位偏移引起的干扰。
此外,可以根据业务需求确定需要的目标相位偏移的数量,并且根据涡旋波相位偏移的权重选择需要数量的涡旋波相位偏移,以提升系统容量,灵活满足业务需求。
图8是根据一示例性实施例示出的一种涡旋波相位偏移的确定装置的结构示意图。该装置具有实现上述方法实施例中接入网设备的功能,该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。如图8所示,该装置包括: 第一确定模块801和第二确定模块802。第一确定模块801,被配置为确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合;第二确定模块802,被配置为根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移。
可选地,所述第二确定模块802,包括:
第一确定子模块821,被配置为根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合;
第二确定子模块822,被配置为从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波相位偏移。
可选地,所述第一确定子模块821,被配置为将预先配置的可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合。
可选地,第一确定子模块821,包括:
添加子模块8211,被配置为将所述可用涡旋波相位偏移集合中,与所述第一涡旋波相位偏移集合中的涡旋波相位偏移的间隔小于所述相位偏移间隔阈值的涡旋波相位偏移,添加到所述第一涡旋波相位偏移集合中,得到第二涡旋波相位偏移集合;
备选集合确定子模块8212,被配置为根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合。
可选地,所述备选集合确定子模块8212,被配置为将所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合;或者,
根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,其中,所述第二涡旋波相位偏移集合中属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重根据对应的涡旋波相位偏移的使用次数确定,所述第二涡旋波相位偏移集合中不属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重为0,或者,等于所述第一涡旋波相位偏移集合中相邻涡旋波相位偏移对应的权重。
可选地,所述备选集合确定子模块8212,被配置为按照以下方式实现根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相 位偏移对应的权重,确定所述备选涡旋波相位偏移集合:确定所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集;从所述第二涡旋波相位偏移集合中,选择权重小于权重阈值的至少部分涡旋波相位偏移添加到所述差集中,得到所述备选涡旋波相位偏移集合。
可选地,所述第一确定子模块821,被配置为确定所述可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集;
根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,所述权重用于指示对应的涡旋波相位偏移的使用次数。
可选地,所述第一确定子模块821,被配置为按照权重从小到大的顺序,将所述第一涡旋波集合中的涡旋波相位偏移添加到所述差集中,直至所述差集中的涡旋波相位偏移的数量达到目标值,得到所述备选涡旋波相位偏移集合。
可选地,所述第二确定子模块822,被配置为从所述备选涡旋波相位偏移集合中,筛选出相位偏移间隔大于相位偏移间隔阈值的相位偏移作为所述目标涡旋波相位偏移。
可选地,所述第二确定模块802,被配置为根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重;根据所述权重,确定目标涡旋波相位偏移。
可选地,所述第二确定模块802,被配置为按照以下方式确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重与设定值的差值,作为相近涡旋波相位偏移对应的权重,所述相近涡旋波相位偏移为所述可用涡旋波相位偏移集合中与所述第一涡旋波相位偏移集合中的涡旋波相位偏移之间的相位偏移间隔小于相位偏移间隔阈值的涡旋波相位偏移;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移和所述相近涡旋波相位偏移之外的涡旋波相位偏移。
可选地,所述第二确定模块802,被配置为按照以下方式确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重:
根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移之外的涡旋波相位偏移。
可选地,所述第一确定模块801,被配置为采用以下方式中的至少一种确定相邻接入网设备使用的涡旋波相位偏移:
接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,以根据所述相位偏移配置信息确定所述接入网设备使用的涡旋波相位偏移;所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
通过与所述相邻接入网设备之间的通信接口,接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移;或者,
通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移。
可选地,所述第一确定模块801,被配置为根据所述可用涡旋波相位偏移集合中的至少一个涡旋波相位偏移,对所述相邻接入网设备的导频信号进行盲检测。
可选地,所述可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为接入网设备在目标频率下能够区分的最多涡旋波相位偏移数量的N倍,N为大于1的正整数。
图9是根据一示例性实施例示出的一种涡旋波相位偏移的确定装置900的框图,该装置900可以为前述接入网设备。参照图9,涡旋波相位偏移的确定装置900可以包括以下一个或多个组件:处理组件902,存储器904,电力组件906,输入/输出(I/O)的接口912,以及通信组件916。
处理组件902通常控制涡旋波相位偏移的确定装置900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件902可以包括一个或多个处理器920来执行指令,以完成上述的方法的全部或部 分步骤。此外,处理组件902可以包括一个或多个模块,便于处理组件902和其他组件之间的交互。例如,处理组件902可以包括多媒体模块,以方便多媒体组件908和处理组件902之间的交互。
存储器904被配置为存储各种类型的数据以支持在涡旋波相位偏移的确定装置900的操作。存储器904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件906为涡旋波相位偏移的确定装置900的各种组件提供电力。电力组件906可以包括电源管理系统,一个或多个电源,及其他与为涡旋波相位偏移的确定装置900生成、管理和分配电力相关联的组件。
I/O接口912为处理组件902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
通信组件916被配置为便于接入网设备和其他设备之间无线方式的通信。在本公开实施例中,所述通信组件916可以提供基于通信标准的无线网络,如2G、3G、4G或5G,或它们的组合,从而与终端设备连接。
在示例性实施例中,涡旋波相位偏移的确定装置900可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述涡旋波相位偏移的确定方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器904,上述指令可由涡旋波相位偏移的确定装置900的处理器920执行上述涡旋波相位偏移的确定方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本公开一示例性实施例还提供了一种通信系统,所述通信系统包括接入网设备和终端。所述接入网设备为如图9所示实施例提供的涡旋波相位偏移的确定装置。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公 开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (32)

  1. 一种涡旋波相位偏移的确定方法,其特征在于,所述方法包括:
    确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合;
    根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移,包括:
    根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合;
    从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波相位偏移。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合,包括:
    将预先配置的可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合,包括:
    将所述可用涡旋波相位偏移集合中,与所述第一涡旋波相位偏移集合中的涡旋波相位偏移的间隔小于相位偏移间隔阈值的涡旋波相位偏移,添加到所述第一涡旋波相位偏移集合中,得到第二涡旋波相位偏移集合;
    根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合,包括:
    将所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合;或者,
    根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,其中,所述 第二涡旋波相位偏移集合中属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重根据对应的涡旋波相位偏移的使用次数确定,所述第二涡旋波相位偏移集合中不属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重为0,或者,等于所述第一涡旋波相位偏移集合中相邻涡旋波相位偏移对应的权重。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,包括:
    确定所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集;
    从所述第二涡旋波相位偏移集合中,选择权重小于权重阈值的至少部分涡旋波相位偏移添加到所述差集中,得到所述备选涡旋波相位偏移集合。
  7. 根据权利要求2所述的方法,其特征在于,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合,包括:
    确定所述可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集;
    根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,所述权重用于指示对应的涡旋波相位偏移的使用次数。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,包括:
    按照权重从小到大的顺序,将所述第一涡旋波集合中的涡旋波相位偏移添加到所述差集中,直至所述差集中的涡旋波相位偏移的数量达到目标值,得到所述备选涡旋波相位偏移集合。
  9. 根据权利要求2至8任一项所述的方法,其特征在于,所述从所述备选涡旋波相位偏移集合中,确定目标涡旋波相位偏移,包括:
    从所述备选涡旋波相位偏移集合中,筛选出相位偏移间隔大于相位偏移间隔阈值的相位偏移作为所述目标涡旋波相位偏移。
  10. 根据权利要求1所述的方法,其特征在于,所述根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移,包括:
    根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重;
    根据所述权重,确定目标涡旋波相位偏移。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重,包括:
    根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
    将所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重与设定值的差值,作为相近涡旋波相位偏移对应的权重,所述相近涡旋波相位偏移为所述可用涡旋波相位偏移集合中与所述第一涡旋波相位偏移集合中的涡旋波相位偏移之间的相位偏移间隔小于相位偏移间隔阈值的涡旋波相位偏移;
    将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移和所述相近涡旋波相位偏移之外的涡旋波相位偏移。
  12. 根据权利要求10所述的方法,其特征在于,所述根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重,包括:
    根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
    将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移之外的涡旋波相位偏移。
  13. 根据权利要求1至12任一项所述的方法,其特征在于,所述确定相邻接入网设备使用的涡旋波相位偏移,包括以下方式中的至少一种:
    接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,以根据所述相位偏移配置信息确定所述接入网设备使用的涡旋波相位偏移;所述相位偏移配 置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
    通过与所述相邻接入网设备之间的通信接口,接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
    对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移;或者,
    通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移。
  14. 根据权利要求13所述的方法,其特征在于,所述通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量,包括:
    根据所述可用涡旋波相位偏移集合中的至少一个涡旋波相位偏移,对所述相邻接入网设备的导频信号进行盲检测。
  15. 根据权利要求1至14任一项所述的方法,其特征在于,所述可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为接入网设备在目标频率下能够区分的最多涡旋波相位偏移数量的N倍,N为大于1的正整数。
  16. 一种涡旋波相位偏移的确定装置,其特征在于,所述装置包括:
    第一确定模块,被配置为确定相邻接入网设备使用的涡旋波相位偏移,得到第一涡旋波相位偏移集合;
    第二确定模块,被配置为根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定目标涡旋波相位偏移。
  17. 根据权利要求16所述的装置,其特征在于,所述第二确定模块,包括:
    第一确定子模块,被配置为根据所述第一涡旋波相位偏移集合和预先配置的可用涡旋波相位偏移集合,确定备选涡旋波相位偏移集合;
    第二确定子模块,被配置为从所述备选涡旋波相位偏移集合中,确定所述目标涡旋波相位偏移。
  18. 根据权利要求16所述的装置,其特征在于,所述第一确定子模块,被配置为将预先配置的可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合。
  19. 根据权利要求18所述的装置,其特征在于,第一确定子模块,包括:
    添加子模块,被配置为将所述可用涡旋波相位偏移集合中,与所述第一涡旋波相位偏移集合中的涡旋波相位偏移的间隔小于所述相位偏移间隔阈值的涡旋波相位偏移,添加到所述第一涡旋波相位偏移集合中,得到第二涡旋波相位偏移集合;
    备选集合确定子模块,被配置为根据所述第二涡旋波相位偏移集合,确定所述备选涡旋波相位偏移集合。
  20. 根据权利要求19所述的装置,其特征在于,所述备选集合确定子模块,被配置为将所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集,确定为所述备选涡旋波相位偏移集合;或者,
    根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合,其中,所述第二涡旋波相位偏移集合中属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重根据对应的涡旋波相位偏移的使用次数确定,所述第二涡旋波相位偏移集合中不属于所述第一涡旋波相位偏移集合的涡旋波相位偏移对应的权重为0,或者,等于所述第一涡旋波相位偏移集合中相邻涡旋波相位偏移对应的权重。
  21. 根据权利要求20所述的装置,其特征在于,所述备选集合确定子模块,被配置为按照以下方式实现根据所述第二涡旋波相位偏移集合和所述第二涡旋波相位偏移集合中每个涡旋波相位偏移对应的权重,确定所述备选涡旋波相位偏移集合:
    确定所述可用涡旋波相位偏移集合与所述第二涡旋波相位偏移集合的差集;
    从所述第二涡旋波相位偏移集合中,选择权重小于权重阈值的至少部分涡旋波相位偏移添加到所述差集中,得到所述备选涡旋波相位偏移集合。
  22. 根据权利要求17所述的装置,其特征在于,所述第一确定子模块,被配置为确定所述可用涡旋波相位偏移集合与所述第一涡旋波相位偏移集合的差集;
    根据所述第一涡旋波相位偏移集合中的每个涡旋波相位偏移对应的权重,更新所述差集,得到所述备选涡旋波相位偏移集合,所述权重用于指示对应的涡旋波相位偏移的使用次数。
  23. 根据权利要求22所述的装置,其特征在于,所述第一确定子模块,被配置为按照权重从小到大的顺序,将所述第一涡旋波集合中的涡旋波相位偏移添加到所述差集中,直至所述差集中的涡旋波相位偏移的数量达到目标值,得到所述备选涡旋波相位偏移集合。
  24. 根据权利要求17至23任一项所述的装置,其特征在于,所述第二确定子模块,被配置为从所述备选涡旋波相位偏移集合中,筛选出相位偏移间隔大于相位偏移间隔阈值的相位偏移作为所述目标涡旋波相位偏移。
  25. 根据权利要求16所述的装置,其特征在于,所述第二确定模块,被配置为根据所述第一涡旋波相位偏移集合,确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重;根据所述权重,确定目标涡旋波相位偏移。
  26. 根据权利要求25所述的装置,其特征在于,所述第二确定模块被配置为按照以下方式确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重:
    根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
    将所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重与设定值的差值,作为相近涡旋波相位偏移对应的权重,所述相近涡旋波相位偏移为所述可用涡旋波相位偏移集合中与所述第一涡旋波相位偏移集合中的涡旋波相位偏移之间的相位偏移间隔小于相位偏移间隔阈值的涡旋波相位偏移;
    将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移和所述相近涡旋波相位偏移之外的涡旋波相位偏移。
  27. 根据权利要求25所述的装置,其特征在于,所述第二确定模块被配置为按照以下方式确定所述可用涡旋波相位偏移集合中的各个涡旋波相位偏移的权重:
    根据所述第一涡旋波相位偏移集合中各个涡旋波相位偏移的使用次数,确定所述第一涡旋波相位偏移集合中各个涡旋波相位偏移对应的权重;
    将剩余涡旋波相位偏移对应的权重置为0,所述剩余涡旋波相位偏移为所述可用涡旋波相位偏移集合中除了所述第一涡旋波相位偏移集合中的涡旋波相位偏移之外的涡旋波相位偏移。
  28. 根据权利要求16至27任一项所述的装置,其特征在于,所述第一确定模块,被配置为采用以下方式中的至少一种确定相邻接入网设备使用的涡旋波相位偏移:
    接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,以根据所述相位偏移配置信息确定所述接入网设备使用的涡旋波相位偏移;所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
    通过与所述相邻接入网设备之间的通信接口,接收所述相邻接入网设备使用的涡旋波相位偏移配置信息,所述相位偏移配置信息用于指示接入网设备使用的涡旋波相位偏移;或者,
    对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移;或者,
    通过空中接口对所述相邻接入网设备的涡旋波相位偏移进行测量以确定相邻接入网设备使用的涡旋波相位偏移。
  29. 根据权利要求28所述的装置,其特征在于,所述第一确定模块,被配置为根据所述可用涡旋波相位偏移集合中的至少一个涡旋波相位偏移,对所述相邻接入网设备的导频信号进行盲检测。
  30. 根据权利要求16至29任一项所述的装置,其特征在于,所述可用涡旋波相位偏移集合中的涡旋波相位偏移的数量为接入网设备在目标频率下能够区分的最多涡旋波相位偏移数量的N倍,N为大于1的正整数。
  31. 一种涡旋波相位偏移的确定装置,其特征在于,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为加载并执行所述可执行指令以实现权利要求1至15任一项所述的涡旋波相位偏移的确定方法。
  32. 一种计算机可读存储介质,其特征在于,当所述计算机可读存储介质中的指令由处理器执行时,能够执行权利要求1至15任一项所述的涡旋波相位偏移的确定方法。
PCT/CN2020/096165 2020-06-15 2020-06-15 涡旋波相位偏移的确定方法、装置和存储介质 WO2021253176A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/096165 WO2021253176A1 (zh) 2020-06-15 2020-06-15 涡旋波相位偏移的确定方法、装置和存储介质
US18/010,152 US20230269122A1 (en) 2020-06-15 2020-06-15 Method and device for determining vortex wave phase deviation, and storage medium
CN202080001309.6A CN114080787B (zh) 2020-06-15 2020-06-15 涡旋波相位偏移的确定方法、装置和存储介质
EP20941366.5A EP4167536A4 (en) 2020-06-15 2020-06-15 METHOD AND APPARATUS FOR DETERMINING PHASE SHIFT OF VORTEX WAVE, AND RECORDING MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/096165 WO2021253176A1 (zh) 2020-06-15 2020-06-15 涡旋波相位偏移的确定方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2021253176A1 true WO2021253176A1 (zh) 2021-12-23

Family

ID=79269003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096165 WO2021253176A1 (zh) 2020-06-15 2020-06-15 涡旋波相位偏移的确定方法、装置和存储介质

Country Status (4)

Country Link
US (1) US20230269122A1 (zh)
EP (1) EP4167536A4 (zh)
CN (1) CN114080787B (zh)
WO (1) WO2021253176A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204668465U (zh) * 2015-05-15 2015-09-23 云南大学 基于平面微带环形结构产生射频oam波束的天线及复用器件
US20160360605A1 (en) * 2015-06-04 2016-12-08 National Institute Of Standards And Technology Controller for and controlling neutron orbital angular momentum
CN108539417A (zh) * 2018-04-26 2018-09-14 西安电子科技大学 一种圆极化轨道角动量反射阵天线
CN109728448A (zh) * 2018-12-06 2019-05-07 中国科学院上海微系统与信息技术研究所 用于轨道角动量远距离通信的圆环阵列结构及其激励方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410130A (en) * 2004-01-19 2005-07-20 Roke Manor Research Planar phased array radio antenna for orbital angular momentum (OAM) vortex modes
GB2497761A (en) * 2011-12-20 2013-06-26 Univ Antwerpen Generation of charged particle vortex waves
CN106059675B (zh) * 2016-05-24 2018-08-24 西安电子科技大学 圆阵列旋转分形嵌套高阶涡旋电磁波生成分离方法与装置
JP6586048B2 (ja) * 2016-06-15 2019-10-02 日本電信電話株式会社 アンテナ調整方法及び通信システム
CN108598682A (zh) * 2018-05-23 2018-09-28 西安电子科技大学 一种可产生多模态涡旋电磁波的阵列天线
CN111245491B (zh) * 2019-12-26 2021-06-29 北京邮电大学 基于圆形天线阵列的涡旋波束模式切换系统和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204668465U (zh) * 2015-05-15 2015-09-23 云南大学 基于平面微带环形结构产生射频oam波束的天线及复用器件
US20160360605A1 (en) * 2015-06-04 2016-12-08 National Institute Of Standards And Technology Controller for and controlling neutron orbital angular momentum
CN108539417A (zh) * 2018-04-26 2018-09-14 西安电子科技大学 一种圆极化轨道角动量反射阵天线
CN109728448A (zh) * 2018-12-06 2019-05-07 中国科学院上海微系统与信息技术研究所 用于轨道角动量远距离通信的圆环阵列结构及其激励方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "5G E2E Technology to Support Verticals URLLC Requirements by NGMN Alliance", NGMN THE ENGINE OF WIRELESS INNOVATION, 31 October 2019 (2019-10-31), XP055881205, Retrieved from the Internet <URL:https://ngmn.org/wp-content/uploads/200210-NGMN_Verticals_URLLC_Requirements_v16.pdf> *
See also references of EP4167536A4 *

Also Published As

Publication number Publication date
CN114080787A (zh) 2022-02-22
EP4167536A4 (en) 2024-03-20
EP4167536A1 (en) 2023-04-19
CN114080787B (zh) 2023-10-03
US20230269122A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
CN107979588B (zh) 用于设置通信协议的电子设备和方法
US9049666B2 (en) Method and apparatus for providing machine-to-machine communication in a wireless network
US20180049080A1 (en) Network controlled sharing of measurement gaps for intra and inter frequency measurements for wireless networks
CN104335661A (zh) 用于认知lte系统中的带外感应的方法、设备和计算机程序产品
EP2747492A2 (en) Method and apparatus for cell activation
JP6437094B2 (ja) 発見信号伝送方法、セル発見方法及び装置
US9801148B2 (en) Apparatus and method for acquiring D2D synchronization information
WO2015037048A1 (ja) 無線通信システム、基地局装置、及び無線通信システムにおける無線通信方法
US20180324700A1 (en) Activation system information transmission method, apparatus, and device
CN106162687A (zh) 用于无线通信的用户设备侧和基站侧的装置和方法
WO2019157708A1 (zh) 通信方法、设备及系统
WO2018166214A1 (zh) 一种降低多无线技术共存干扰的方法、装置和设备
US20220225242A1 (en) Power adjustment method and apparatus
WO2022183878A1 (zh) 频段调度方法、通信节点及计算机可读存储介质
CN110383701A (zh) 无线接收机、方法和计算机程序
WO2022141184A1 (zh) 一种上行参考信号资源的配置方法及相关装置
WO2021253176A1 (zh) 涡旋波相位偏移的确定方法、装置和存储介质
JP6183377B2 (ja) 基地局装置、通信方法および端末装置
WO2021046798A1 (zh) Ue能力信息的传输方法、装置和存储介质
CN105828438B (zh) 一种参考信号的配置方法、装置、基站和用户设备
CN111886921B (zh) 用于频率测量的装置、方法、计算机可读介质
CN114071646B (zh) 接入控制方法、装置、终端及网络设备
CN105307210A (zh) 一种小区间的协作方法和装置
TWI748240B (zh) 行動通訊中具有干擾避免之小區重選之方法及其裝置
CN117356142A (zh) 网络接入方法、参数配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020941366

Country of ref document: EP

Effective date: 20230116