WO2021251796A1 - 심장 상태 감지 센서 장치 및 이를 이용한 복합 생활 지원 솔루션 제공 시스템 - Google Patents

심장 상태 감지 센서 장치 및 이를 이용한 복합 생활 지원 솔루션 제공 시스템 Download PDF

Info

Publication number
WO2021251796A1
WO2021251796A1 PCT/KR2021/007339 KR2021007339W WO2021251796A1 WO 2021251796 A1 WO2021251796 A1 WO 2021251796A1 KR 2021007339 W KR2021007339 W KR 2021007339W WO 2021251796 A1 WO2021251796 A1 WO 2021251796A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
model
information
artificial intelligence
server
Prior art date
Application number
PCT/KR2021/007339
Other languages
English (en)
French (fr)
Inventor
김동주
김영탁
김현지
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200108603A external-priority patent/KR102321661B1/ko
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to US18/008,266 priority Critical patent/US20230282352A1/en
Publication of WO2021251796A1 publication Critical patent/WO2021251796A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work or social welfare, e.g. community support activities or counselling services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/02Alarms for ensuring the safety of persons
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms

Definitions

  • the present invention supports a complex life by monitoring a heart condition by analyzing a biosignal measured using a heart condition detection sensor device, or monitoring and analyzing a biosignal measured using a biosignal measuring device based on artificial intelligence It is about a technical idea that provides a solution, learning and analyzing biosignals measured using a heart condition detection sensor device using an artificial intelligence algorithm to determine a heart abnormality type model, and to evaluate the determined heart abnormality type model It relates to a technology that supports more accurate decisions about cardiovascular disease based on
  • Cardiocerebrovascular disease accounts for 24.3% of all deaths and has a direct correlation with the aging of the population.
  • the in-hospital mortality rate of intensive care unit patients is 18%, which is about twice that of developed countries, and one-third of all deaths in the country in 2018 are deaths in elderly care hospitals and nursing homes.
  • Intensive care units that have obtained grade 2 or higher in the adequacy assessment account for only about one-third of the total, and the quality of medical services needs to be improved. It accounts for about half of all medical expenses.
  • the low number of intensive care units contributes to the deficit of tertiary hospitals/general hospitals, and among medical institutions, nursing hospitals contribute the most to job creation, but inpatient income per 100 beds is the lowest.
  • Representative technologies for solving the above-mentioned problems include monitoring technologies using electrocardiogram (ECG), photoplethysmogram (PPG), physical activity measurement system (Actigraph), and 3D depth camera in terms of patient monitoring technology. .
  • ECG electrocardiogram
  • PPG photoplethysmogram
  • Actigraph physical activity measurement system
  • 3D depth camera 3D depth camera
  • deep-learning model related artifact removal and deep-learning model related signal encoding and decoding (Signal encoding and decoding), deep-learning model-related arrhythmia detection and classification, and deep-learning model-related risk assessment of chronic diseases contains
  • HRV Heart rate variability
  • BRS Baroreflex sensitivity
  • pulse morphology analysis In addition, in terms of edge computing technology, Centralized monitoring of hospital, Embedded artificial intelligence model , real-time stream data analysis may be included.
  • the present invention is a classification model for major cardiovascular diseases such as myocardial infarction and coronary artery disease based on a heart condition detection sensor device attached to a patient to detect the patient's heart condition and a server using an artificial intelligence algorithm for biosignals related to the heart condition.
  • the purpose of this study is to prevent a physician's misdiagnosis and false alarm based on the determined major cardiovascular disease classification model.
  • the present invention provides a heart condition monitoring system based on the Internet of Things and artificial intelligence for managing elderly patients through real-time monitoring of a patient's multi-modal bio-signals measured from a heart condition detection sensor device that is attached to a patient and detects the patient's heart condition. intended to provide
  • the present invention provides a heart condition detection sensor device that detects a patient's heart condition so as to perform heart condition analysis for real-time arrhythmia detection, biosignal quality management for improving signal analysis reliability, and major cardiovascular disease evaluation for early disease management. intended to provide
  • tachycardia, bradycardia, atrial fibrillation, left-angle block, right-angle block, atrial block by analyzing bio-signals measured from a heart condition detection sensor device attached to a patient based on a pre-stored artificial intelligence algorithm It aims to detect major types of cardiac abnormalities such as premature contraction, ventricular premature contraction, and cardiac arrest.
  • the present invention uses a pre-stored artificial intelligence algorithm and open data set to calculate cardiac function abnormality classification accuracy, emergency situation classification accuracy, and artifact signal detection accuracy.
  • An object of the present invention is to improve the measurement accuracy of the biosignal by learning and evaluating the measurement accuracy of the measured biosignal.
  • An object of the present invention is to contribute to diagnosis assistance and reduction of medical costs through continuous monitoring of arrhythmias.
  • An object of the present invention is to reduce the number of false alarms that may be generated in a hospital room by accurately measuring and analyzing a patient's current condition, thereby improving the work efficiency of medical staff and the patient's prognosis.
  • An object of the present invention is to provide a function of evaluating the risk of chronic diseases through analysis of pulse waves and ECG waveforms using artificial intelligence learning technology.
  • An object of the present invention is to provide a complex life support solution including a telemedicine service in preparation for the post-corona era.
  • the present invention transmits emergency situation information and basic biosignal information to medical staff and emergency centers of nursing hospitals and emergency centers when an emergency such as cardiac arrest or a fall is detected, and an external related institution receives the analysis data in real time to detect the emergency situation of the person being supported It aims to provide a complex life support solution to prepare for.
  • the server includes a monitoring information collection unit that collects monitoring information including a biosignal including an ECG signal measured from a user, and a signal extraction unit that extracts an ECG signal included in the collected monitoring information. , based on a pre-stored artificial intelligence machine learning algorithm, extracts morphological information through conversion of the extracted electrocardiogram signal into a time-standardized image, as characteristic information, and uses the extracted characteristic information to model a plurality of heart abnormalities determines, calculates classification accuracy for the plurality of heart abnormality type models determined, and determines the user's cardiovascular disease using the determined cardiac abnormality type model and published cardiovascular disease data based on the calculated accuracy. It may include an artificial intelligence processing unit to determine and a control unit to control to provide the determined cardiovascular disease to the user terminal device.
  • the artificial intelligence processing unit generates a normalized signal based on a time domain of the extracted electrocardiogram signal, converts the generated normalized signal into the time normalized image, and the artificial intelligence stored in the converted image in advance.
  • a compressed signal is generated by applying a weight based on an intelligent machine learning algorithm, a restored signal is generated from the compressed signal using the applied weight, and the difference between the generated normalized signal and the generated restored signal is in a preset threshold range.
  • the morphological information of the electrocardiogram signal may be extracted as the feature information by machine learning the weight to correspond to it.
  • the artificial intelligence processing unit machine-learns the characteristic information and converts the plurality of heart abnormality type models into a tachycardia model, bradycardia model, atrial fibrillation model, left-angle block model, right-angle block model, atrial premature contraction model, ventricular premature contraction model, cardiac arrest model and at least one model of a normal heart state model.
  • the artificial intelligence processing unit includes at least one of an open data set and the tachycardia model, the bradycardia model, the atrial fibrillation model, the left-angle block model, the right-angle block model, the atrial premature contraction model, and the ventricular premature contraction model;
  • TP True Positive
  • FN False Negative
  • FP False Negative
  • TN True Negative
  • the artificial intelligence processing unit uses an open data set, the cardiac arrest model, and the normal heart state model to divide the cardiac arrest section into the cardiac arrest section (True Positive) (TP), which divides the cardiac arrest section into a normal section (False Negative FN) ), classifying the FP (false positive) case that divides the normal section into the cardiac arrest section and the TN (True Negative) case that classifies the normal section into the normal section, the TP (True Positive) case, The TN (True Negative) case and the TP (True Positive) case for the combination of the FN (False Negative) case, the FP (False Positive) case, and the TN (True Negative) case. It is possible to calculate the emergency classification accuracy based on the ratio of the combination of the numerical values of .
  • the artificial intelligence processing unit divides the artifact signal into the artifact signal in a True Positive (TP) case, in a FN (False Negative) case in which the artifact signal is classified as a normal signal, and in a FP (False Positive) case that classifies the normal signal into the artifact signal.
  • TP True Positive
  • FN False Negative
  • FP False Positive
  • the normal signal is classified as a TN (True Negative) case for classifying the normal signal
  • the TP (True Positive) case the FN (False Negative) case
  • the FP (False Positive) case Artifact removal accuracy may be calculated based on the ratio of the combination of the numerical value of the TP (True Positive) case to the combination of the numerical value of the TN (True Negative) case and the numerical value of the TN (True Negative) case.
  • the controller calculates the measured number of ECG signals and the measured number of motion signals, and compares the calculated number of ECG signals and the calculated number of motion signals with a threshold value. Thus, it is possible to check the data reception state of the ECG signal and the motion signal.
  • the user terminal device may provide an analysis result related to the determined cardiovascular disease through a display.
  • the heart condition detection sensor device includes a biosignal monitoring unit that measures a biosignal including an electrocardiogram signal from a user and outputs monitoring information including the measured biosignal through an artificial intelligence encoder; and extracting the electrocardiogram signal included in the output monitoring information, and extracting the morphological information through conversion of the extracted electrocardiogram signal into a time standardized image based on a pre-stored artificial intelligence machine learning algorithm as feature information, A plurality of cardiac abnormality type models are determined using the extracted characteristic information, classification accuracy of the plurality of determined cardiac abnormality type models is calculated, and the determined cardiac abnormality type model and published models are based on the calculated accuracy. It may include an artificial intelligence processing unit that determines the cardiovascular disease of the user by using the cardiovascular disease data.
  • the artificial intelligence processing unit may simulate data traffic generated when the ECG signal is measured, and determine the operating state of the heart condition detection sensor based on the simulation.
  • the artificial intelligence processing unit machine-learns the characteristic information and converts the plurality of heart abnormality type models into a tachycardia model, bradycardia model, atrial fibrillation model, left-angle block model, right-angle block model, atrial premature contraction model, ventricular premature contraction model, cardiac arrest model and at least one model of a normal heart state model.
  • the biosignal monitoring unit may further measure at least one of a motion signal and a body temperature signal from the user, and output monitoring information further including the motion signal and the body temperature signal through an artificial intelligence encoder.
  • the artificial intelligence processing unit may detect an emergency including cardiac arrest and a fall of the user based on the measured electrocardiogram signal and the measured motion signal.
  • the heart condition monitoring method includes measuring an electrocardiogram signal from a user in the heart state detection sensor device, and converting the measured electrocardiogram signal into a time-standardized image in the server. extracting characteristic information from morphological information; determining, in the server, a plurality of heart abnormality type models by machine learning the extracted characteristic information; in the server, classification of the determined plurality of cardiac abnormality type models
  • the method may include calculating, in the server, the cardiovascular disease of the user based on the calculated accuracy and using the determined type of heart disease model and published cardiovascular disease data.
  • a system for providing a complex life support solution includes a gateway for transmitting monitoring information including a biosignal including at least one of an electrocardiogram signal, a motion signal, a body temperature signal, and a pulse wave signal of a subject to be supported to a server, and the Extracting the ECG signal of the biosignal from the transmitted monitoring information, and extracting the morphological information through conversion of the extracted ECG signal into a time-standardized image based on a pre-stored artificial intelligence machine learning algorithm as feature information, A plurality of cardiac abnormality type models are determined using the extracted characteristic information, classification accuracy of the plurality of determined cardiac abnormality type models is calculated, and the determined cardiac abnormality type model and published models are based on the calculated accuracy.
  • a server that determines whether the support target has a cardiovascular disease and an emergency state using the cardiovascular disease data, and feeds back information on the determined cardiovascular disease and the emergency state and information on fluctuations in the biosignal to a user terminal device may include
  • the user terminal device includes at least one of a medical staff terminal device, a guardian terminal device, and an emergency center terminal device, and the user terminal device includes information about the determined cardiovascular disease and the emergency state and information on fluctuations in the biosignals.
  • Information including at least one is output, and the prescription information may be updated in the guardian terminal device and the emergency center terminal device based on prescription information generated according to the information output to the medical staff terminal device.
  • the user terminal device includes a nursing management service, a disease data management service, a disease data visualization, a disease data statistical service and At least one of an emergency push notification service may be provided.
  • a method of operating a system for providing a complex life support solution includes: measuring, in a biosignal measuring device, a biosignal including at least one of an electrocardiogram signal, a motion signal, a body temperature signal, and a pulse wave signal from a subject to be supported , transmitting, in the biosignal measuring device, monitoring information including the measured biosignal to a server through a gateway, in the server, extracting an electrocardiogram signal of the biosignal from the transmitted monitoring information, and pre-stored Extracting morphological information through conversion of the extracted electrocardiogram signal into a time-standardized image based on an artificial intelligence machine learning algorithm into feature information, in the server, a plurality of hearts using the extracted feature information Determining an abnormality type model, calculating, in the server, classification accuracy for the plurality of determined cardiac abnormality type models, in the server, based on the calculated accuracy, the determined cardiac abnormality type model and published cardiovascular system determining whether the support target has cardiovascular disease and an emergency state using relational disease data
  • the present invention is a classification model for major cardiovascular diseases such as myocardial infarction and coronary artery disease based on a heart condition detection sensor device attached to a patient to detect the patient's heart condition and a server using an artificial intelligence algorithm for biosignals related to the heart condition.
  • a heart condition detection sensor device attached to a patient to detect the patient's heart condition and a server using an artificial intelligence algorithm for biosignals related to the heart condition.
  • biosignals related to the heart condition can be determined, and based on the determined major cardiovascular disease classification model, a doctor's misdiagnosis and occurrence of false alarms can be prevented.
  • the present invention provides a heart condition monitoring system based on the Internet of Things and artificial intelligence for managing elderly patients through real-time monitoring of a patient's multi-modal bio-signals measured from a heart condition detection sensor device that is attached to a patient and detects the patient's heart condition. can provide
  • the present invention provides a heart condition detection sensor device that detects a patient's heart condition so as to perform heart condition analysis for real-time arrhythmia detection, biosignal quality management for improving signal analysis reliability, and major cardiovascular disease evaluation for early disease management. can provide
  • tachycardia by analyzing bio-signals measured from a heart condition detection sensor device attached to a patient based on a pre-stored artificial intelligence algorithm It can detect major types of cardiac abnormalities such as premature contraction, ventricular premature contraction, and cardiac arrest.
  • the present invention uses a pre-stored artificial intelligence algorithm and open data set to calculate cardiac function abnormality classification accuracy, emergency situation classification accuracy, and artifact signal detection accuracy. By learning and evaluating the measurement accuracy of the measured bio-signal, the measurement accuracy of the bio-signal can be improved.
  • the present invention can contribute to diagnosis assistance and reduction of medical costs through continuous monitoring of arrhythmias.
  • the present invention can reduce the number of false alarms that may be generated in a ward by accurately measuring and analyzing the patient's current condition, thereby improving the work efficiency of the medical staff and the patient's prognosis.
  • the present invention can provide a function of evaluating the risk of chronic diseases through analysis of pulse waves and ECG waveforms using artificial intelligence learning technology.
  • the present invention can provide a complex life support solution including a remote medical service in preparation for the post-corona era.
  • the present invention transmits emergency situation information and basic biosignal information to medical staff and emergency centers of nursing hospitals and emergency centers when an emergency such as cardiac arrest or a fall is detected, and an external related institution receives the analysis data in real time to detect the emergency situation of the person being supported
  • an external related institution receives the analysis data in real time to detect the emergency situation of the person being supported
  • FIG. 1 is a view for explaining a heart condition monitoring system according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining the components of a heart condition detection sensor device according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a deep learning model related to an artificial intelligence encoder of a heart condition detection sensor device according to an embodiment of the present invention.
  • FIGS. 4A and 4B are diagrams for explaining a heart condition detection sensor device according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining additional components of the heart condition detection sensor device according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining a flow of major events of biosignal measurement and data transmission according to an embodiment of the present invention.
  • FIG. 7 is a view for explaining the components of a server according to an embodiment of the present invention.
  • FIGS. 8 and 9 are diagrams for explaining a heart condition monitoring method according to an embodiment of the present invention.
  • FIGS. 10 and 11 are diagrams for explaining a system for providing a complex life support solution according to an embodiment of the present invention.
  • FIG. 12 is a view for explaining the components of a biosignal measuring apparatus according to an embodiment of the present invention.
  • FIG. 13 is a view for explaining an operating method of a system for providing a complex life support solution according to an embodiment of the present invention.
  • an (eg, first) component is referred to as being “connected (functionally or communicatively)” or “connected” to another (eg, second) component, that component is It may be directly connected to the component or may be connected through another component (eg, a third component).
  • the expression “a device configured to” may mean that the device is “capable of” with other devices or parts.
  • a processor configured (or configured to perform) A, B, and C refers to a dedicated processor (eg, an embedded processor) for performing the corresponding operations, or by executing one or more software programs stored in a memory device.
  • a dedicated processor eg, an embedded processor
  • a general-purpose processor eg, a CPU or an application processor
  • FIG. 1 is a view for explaining a heart condition monitoring system according to an embodiment of the present invention.
  • the heart condition monitoring system 100 may include a heart condition detection sensor 110 , a gateway 120 , a server 130 , and a user terminal device 140 .
  • the heart condition detection sensor 110 measures a biosignal including at least one of an electrocardiogram signal, a motion signal, and a body temperature signal from a user, and compresses the measured biosignal with an artificial intelligence encoder. and encrypted and transmitted to the gateway 120 using low-power Bluetooth.
  • the artificial intelligence encoder can divide and normalize the bio-signal into signals having the same length through sliding window technology.
  • the length of the window may be 2 seconds, and the update period may be 1 second.
  • the sliding window can analyze a signal with a relatively short measurement time, and through a normalization process, various signal amplitudes and offsets can be set so that the deep learning model does not affect it.
  • the configuration of the artificial intelligence encoder will be supplemented with reference to FIG. 3 .
  • the gateway 120 transmits the transmitted signal to the server 130 .
  • the gateway 120 interworks with the heart condition sensor device 110 and the server 120, supports environment settings such as hospital, ward, and bed number of the server 130, and data collection and storage for each patient, and low battery It supports event (battery low event) transmission and process monitoring and automatic fail over (fail over).
  • the gateway 120 supports automatic node search, registration, and connection of the heart condition sensor device 110 , and supports a low-power Bluetooth communication interface and a battery level check of the heart condition sensor 110 .
  • the server 130 extracts the bio-signals measured by the heart condition detection sensor device 110 with an artificial intelligence decoder, and machine-learning and analyzing the ECG signals of the extracted bio-signals using a pre-stored artificial intelligence algorithm. Performs heart condition detection performance optimization using the public biosignal data set measured in Model learning and performance evaluation can be performed on the measured biosignals.
  • the server 130 utilizes feature information extracted from the time domain of the ECG signal to reflect various patterns of the ECG signal in the risk evaluation model based on the artificial intelligence algorithm.
  • the server 130 corresponds to major cardiovascular diseases using machine learning models such as Convolutional Neural Network (CNN) and Deep Belief Network (DBN), or various machine learning techniques such as Gradient Boost and XGBooST.
  • CNN Convolutional Neural Network
  • DBN Deep Belief Network
  • Gradient Boost Gradient Boost
  • XGBooST various machine learning techniques
  • a sub-classification model can be determined to classify myocardial infarction, coronary artery disease, and the like.
  • the server 130 calculates the accuracy of the classification model by comparing the results using machine learning techniques such as support vector machine (SVM) and random forest (RF) based on the public biosignal dataset, and the effectiveness of the classification model can also be evaluated.
  • SVM support vector machine
  • RF random forest
  • the server 130 determines the cardiovascular disease related to the user's heart condition learned and analyzed using an artificial intelligence algorithm, and provides the determined cardiovascular disease and analysis result to the user terminal 140 to provide the cardiovascular system of the medical staff. It may assist in diagnosing a disease or assist in recognizing a change in the prognosis of a patient.
  • the present invention is based on a heart condition detection sensor device attached to a patient to detect the patient's heart condition and a server using an artificial intelligence algorithm for biosignals related to the heart condition, major cardiovascular diseases such as myocardial infarction and coronary artery disease.
  • a classification model may be determined, and based on the determined classification model of major cardiovascular disease, it is possible to prevent a doctor's misdiagnosis and false alarm.
  • the present invention provides heart condition monitoring based on IoT and artificial intelligence for elderly patient management through real-time monitoring of a patient's multi-modal bio-signals measured from a heart condition detection sensor device attached to a patient to detect the patient's heart condition. system can be provided.
  • FIG. 2 is a view for explaining the components of a heart condition detection sensor device according to an embodiment of the present invention.
  • the heart condition sensor device 200 includes a biosignal monitoring unit 210 and an artificial intelligence processing unit 220 .
  • the heart condition sensor device 200 is attached to the upper part of the heart of the user or near the heart to measure data related to the heart condition from the user, or is worn in the form of a band on the user's wrist in the form of a wearable device. Measure data related to heart condition.
  • the bio-signal monitoring unit 210 may measure bio-signals including an electrocardiogram signal, a movement signal, and body temperature from a user, and output monitoring information including the measured bio-signal through an artificial intelligence encoder.
  • the bio-signal monitoring unit 210 transmits at least one of heart state information according to a change in the user's heart state, movement state information according to a change in the user's movement, and body temperature information through an artificial intelligence encoder. Encrypted and compressed output is possible.
  • the artificial intelligence processing unit 220 may extract an electrocardiogram signal included in the output monitoring information.
  • the artificial intelligence processing unit 220 may extract morphological information as feature information by converting the extracted ECG signal into a time-standardized image based on a pre-stored artificial intelligence machine learning algorithm.
  • the artificial intelligence processing unit 220 determines a plurality of cardiac abnormality type models by using the extracted characteristic information, calculates classification accuracy for the determined plurality of cardiac abnormality type models, and determines cardiac abnormality based on the calculated accuracy.
  • the user's cardiovascular disease can be determined using the type model and published cardiovascular disease data.
  • the artificial intelligence processing unit 220 may automatically calculate the classification accuracy by comparing the open data set and the heart abnormality type model based on the artificial intelligence learning technology.
  • the artificial intelligence processing unit 220 may simulate data traffic generated when measuring an electrocardiogram signal and determine the operating state of the heart condition detection sensor based on the simulation.
  • the artificial intelligence processing unit 220 may periodically check the battery state, determine the low battery state, and provide alarm information.
  • the artificial intelligence processing unit 220 may include a convolutional product neural network layer and a bidirectional long short-term memory (BLSTM) layer.
  • BLSTM bidirectional long short-term memory
  • the artificial intelligence processing unit 220 may provide monitoring information to the server to detect an emergency including cardiac arrest and a fall of the user based on at least one of an electrocardiogram signal and a motion signal.
  • the present invention provides a heart condition detection sensor that detects a patient's heart condition so that a heart condition analysis for real-time arrhythmia detection, biosignal quality management for improving signal analysis reliability, and major cardiovascular disease evaluation for early disease management can be performed. device can be provided.
  • the present invention is attached to a patient and analyzes a biosignal measured from a heart condition detection sensor device that detects the patient's heart condition based on a pre-stored artificial intelligence algorithm, so that tachycardia, bradycardia, atrial fibrillation, and left bundle Major cardiac abnormalities such as branch block (LBBB), right bundle branch block (RBBB), premature atrial contraction (PAC), premature ventricular contraction (PVC), cardiac arrest, and normal heart condition can be detected.
  • LBBB branch block
  • RBBB right bundle branch block
  • PAC premature atrial contraction
  • PVC premature ventricular contraction
  • the heart condition detection sensor device 200 may provide monitoring information information for distinguishing left-angle block, right-angle block, atrial premature contraction, and ventricular premature contraction related to arrhythmias to the server side.
  • the heart condition detection sensor device 200 learns monitoring information by itself, and classifies left-angle block, right-angle block, atrial premature contraction and ventricular premature contraction related to arrhythmia, and provides the divided information. can provide
  • FIG. 3 is a diagram illustrating a deep learning model related to an artificial intelligence encoder of a heart condition detection sensor device according to an embodiment of the present invention.
  • the artificial intelligence encoder 300 is composed of an encoding block 310 and a deep learning neural network 320 , and the encoding block 310 is a deep learning neural network layer, a pooling layer, and a reshape. ) can be composed of layers.
  • the artificial intelligence encoder 300 may compress a signal for morphological information through conversion of an electrocardiogram signal into a time-standardized image, and output the compressed signal as monitoring information.
  • the artificial intelligence encoder 300 may be composed of a convolutional product neural network layer and a bidirectional long-term short-term memory layer.
  • the artificial intelligence encoder 300 may provide about 64 times compressed signal information to the artificial intelligence processing unit of the heart condition detection sensor device or the artificial intelligence processing unit of the server.
  • morphological information through transformation into a temporal normalized image may be generated based on a signal divided and normalized into a signal having the same length through a sliding window technique.
  • FIGS. 4A and 4B are diagrams for explaining a heart condition detection sensor device according to an embodiment of the present invention.
  • FIG. 4A illustrates a case in which the heart condition detection sensor device 400 according to an embodiment of the present invention includes three leads, and each lead is connected to and worn by a user.
  • the heart condition sensor device 400 is configured by connecting three leads.
  • the first lead is located in the heart condition sensor device 400
  • the second lead 410 is located in two parts of the user's body.
  • the third lead 412 are made of an adhesive material and are attached to the user's skin.
  • the heart condition detection sensor device 400 may be a main body of the heart condition detection sensor device, a first lead corresponding to one measurement point is positioned, and a second lead 410 and a third lead 412 are connected to each other. Biosignals can be measured by synthesizing the measured information.
  • the heart condition sensor device 400 includes a power supply unit, a sensor, and a first lead, and the sensor may measure an electrocardiogram (ECG), a physical activity measurement (Actigraph), and a body temperature.
  • ECG electrocardiogram
  • Actigraph physical activity measurement
  • the second lead 410 and the third lead 412 may be connected to the heart condition detection sensor device 400 through a covering wire.
  • the heart condition detection sensor device 400 may monitor a heart condition by an electrocardiogram (ECG) measured as a biosignal, and may compress and encode an electrocardiogram signal according to the heart condition through an artificial intelligence encoder and output it.
  • ECG electrocardiogram
  • the heart condition sensor device 400 may monitor a body reaction by measuring a physical activity measured as a biosignal, and may compress and encode a motion signal according to the body reaction through an artificial intelligence encoder and output it.
  • the heart condition detection sensor device 400 may compress and encrypt a body temperature signal measured as a biosignal through an artificial intelligence encoder and output it.
  • FIG. 4B illustrates a case in which the heart condition detection sensor device 420 according to an embodiment of the present invention is composed of one lead and is worn by the user.
  • the heart condition detection sensor device 420 may have a wristband type wearable device shape.
  • the heart condition sensor device 420 includes a power supply unit, a sensor, and a lead, and the sensor may measure an electrocardiogram (ECG), a physical activity measurement (Actigraph), and a body temperature.
  • ECG electrocardiogram
  • Actigraph physical activity measurement
  • the heart condition detection sensor device 420 may monitor a heart condition by an electrocardiogram (ECG) measured as a biosignal, and compress and encrypt an electrocardiogram signal according to the heart condition through an artificial intelligence encoder and output it.
  • ECG electrocardiogram
  • the heart condition detection sensor device 420 may monitor a body reaction by measuring physical activity measured as a biosignal, and may compress and encode a motion signal according to the body reaction through an artificial intelligence encoder and output it.
  • the heart condition detection sensor device 420 may compress and encrypt a body temperature signal measured as a biosignal through an artificial intelligence encoder and output it.
  • the heart condition detection sensor device 400 and the heart condition sensor device 420 convert the measured ECG signal into a heart condition analysis technology for real-time arrhythmia detection, and biosignal quality for enhancing signal analysis reliability. It can be provided as data that can be applied to management AI technology and major cardiovascular disease evaluation AI technology for early disease management.
  • the heart condition detection sensor device 400 performs relatively more accurate cardiac function monitoring than the heart condition detection sensor device 420 , and the heart condition detection sensor device 420 is more user-friendly than the heart condition detection sensor device 400 .
  • Cardiac function monitoring can be performed while enjoying a convenient daily life.
  • FIG. 5 is a view for explaining additional components of the heart condition detection sensor device according to an embodiment of the present invention.
  • the heart state detection sensor device 500 includes a micro USB port 510 , a lithium polymer battery 520 , a power/action switch 530 , an ECG sensor 540 , and an acceleration/angular velocity sensor 550 . and low-power Bluetooth/Wi-Fi 560 , and controls the above-described device components through the microcontroller 570 .
  • the heart condition sensor device 500 may charge the lithium polymer battery 520 using the micro USB port 510 .
  • the power/action switch 530 may operate the heart condition detection sensor device 500 .
  • the ECG sensor 540 measures the user's ECG signal
  • the acceleration/angular velocity sensor 550 measures the user's movement signal.
  • the heart condition sensor device 500 controls the low-power Bluetooth/Wi-Fi 560 to interwork with a gateway located in a hospital room or home, and an ECG sensor 540 and an acceleration/angular velocity sensor 550 ) may transmit at least one of an electrocardiogram signal and a motion signal measured through the gateway to the server.
  • FIG. 6 is a view for explaining a flow of major events of biosignal measurement and data transmission according to an embodiment of the present invention.
  • the biosignal monitoring unit may measure High Resolution/Speed ECG through the ECG sensor 610 .
  • a resolution of 14 bits or more and 100Hz sampled ECG may be A/D converted.
  • the microcontroller 630 is responsible for signal processing along with overall control of each component, and the low-power Bluetooth/Wi-Fi module 640 provides a short-range wireless communication function or connects to a network to enable wired and wireless data communication. .
  • the low-power Bluetooth/Wi-Fi module 640 it is possible to transmit raw data of the ECG and 6-Axis MEMS sensors using the low-power Bluetooth/Wi-Fi module 640 .
  • reference numeral 650 performs the function of a battery status measurement module for measuring the state of the battery for the device
  • reference numeral 660 denotes a 3-axis accelerometer
  • reference numeral 670 denotes a 3-axis gyroscope ( 3-Axis Gyroscope MEMS Motiontracking).
  • the 3-Axis Accelerometer and 3-Axis Gyroscope MEMS Motiontracking can measure the minimum ⁇ 16g range, 16bit 100Hz angular velocity, and the maximum ⁇ 2000dps range, 16bit 100Hz angular velocity.
  • FIG. 7 is a view for explaining the components of a server according to an embodiment of the present invention.
  • the server 700 includes a monitoring information collection unit 710 , a signal extraction unit 720 , an artificial intelligence processing unit 730 , and a control unit 740 .
  • the server 700 may provide the user's status information in conjunction with the heart condition detection sensor device.
  • the monitoring information collecting unit 710 may collect monitoring information including a biosignal including an electrocardiogram signal measured from a user.
  • the monitoring information collection unit 710 may collect monitoring information transmitted by the heart condition detection sensor device through a gateway.
  • the biosignal may be interpreted as a signal measured through an electrode attached to the user's heart by the heart condition detection sensor device.
  • the signal extraction unit 720 may extract an electrocardiogram signal for analyzing the user's heart condition by using an artificial intelligence algorithm from the transmitted monitoring information.
  • the signal extractor 720 may decode the collected monitoring information and extract a biosignal corresponding to the ECG signal from the monitoring information.
  • the signal extractor 720 may convert the bio-signal encrypted and compressed by the heart condition detection sensor device using an artificial intelligence encoder into a bio-signal using an artificial intelligence decoder.
  • the artificial intelligence processing unit 730 extracts morphological information as feature information by converting the ECG signal extracted based on a pre-stored artificial intelligence machine learning algorithm into a time-standardized image, and extracts Determines a plurality of cardiac abnormality type models using the acquired characteristic information, calculates classification accuracy for a plurality of determined cardiac abnormality type models, and analyzes the determined cardiac abnormality type model and published cardiovascular disease data based on the calculated accuracy. It can be used to determine the user's cardiovascular disease.
  • the artificial intelligence processing unit 730 generates a normalized signal based on the time domain of the electrocardiogram signal, converts the generated normalized signal into a time normalized image, and an artificial intelligence machine pre-stored in the converted image.
  • a compressed signal is generated by applying a learning algorithm-based weight, a reconstructed signal is generated from the compressed signal using the applied weight, and the weight is machined so that the difference between the generated normalized signal and the generated reconstructed signal falls within a preset threshold range.
  • learning it is possible to extract feature information corresponding to the morphological features of the ECG signal.
  • the artificial intelligence processing unit 730 may include a convolutional product neural network layer and a bidirectional long short-term memory (BLSTM) layer.
  • BLSTM bidirectional long short-term memory
  • the artificial intelligence processing unit 730 machine-learns the characteristic information to convert a plurality of cardiac abnormality types models into a tachycardia model, bradycardia model, atrial fibrillation model, left-brain block model, right-angle block model, atrial premature contraction model, ventricular premature contraction model, It may be determined as at least one of a cardiac arrest model and a normal heart state model.
  • the artificial intelligence processing unit 730 may calculate classification accuracy for the determined plurality of heart abnormality type models.
  • the artificial intelligence processing unit 730 may calculate classification accuracy for a plurality of heart abnormality type models based on Equation 1 below.
  • TP may represent a case in which an abnormal state is accurately classified into an abnormal state
  • TN may represent a case in which a normal state is divided into a normal state
  • FP may represent a case in which a normal state is classified as an abnormal state
  • FN may indicate a case in which a normal state is divided into an abnormal state.
  • the artificial intelligence processing unit 730 includes at least one of an open data set and a tachycardia model, a bradycardia model, an atrial fibrillation model, a left-angle block model, a right-angle block model, an atrial premature contraction model, and a ventricular premature contraction model.
  • TP True Positive
  • FN False Negative
  • FP False Positive
  • TN True Negative
  • the artificial intelligence processing unit 730 is a TP for the combination of the numerical value in the case of TP (True Positive), the numerical value in the FN (False Negative) case, the numerical value in the FP (False Positive) case, and the numerical value in the TN (True Negative) case.
  • the artificial intelligence processing unit 730 may automatically calculate the classification accuracy by comparing the open data set and the heart abnormality type model based on the artificial intelligence learning technology.
  • the artificial intelligence processing unit 730 uses an open data set, a cardiac arrest model, and a normal heart state model to divide a cardiac arrest section into a cardiac arrest section (True Positive) (TP), which divides the cardiac arrest section into a normal section (False Negative FN). ), it can be classified into a false positive (FP) case in which a normal section is divided into a cardiac arrest section and a true negative (TN) case in which a normal section is divided into a normal section.
  • TP True Positive
  • FN Fals Negative FN
  • the artificial intelligence processing unit 730 is a TP for the combination of the numerical value in the case of TP (True Positive), the numerical value in the FN (False Negative) case, the numerical value in the FP (False Positive) case, and the numerical value in the TN (True Negative) case.
  • the emergency classification accuracy can be calculated based on the ratio of the combination of the numerical value in the (True Positive) case and the numerical value in the TN (True Negative) case.
  • the artificial intelligence processing unit 730 divides an artifact signal into the artifact signal in a True Positive (TP) case, in a FN (False Negative) case in which an artifact signal is classified as a normal signal, and in a FP (False) case in which a normal signal is classified as an artifact signal.
  • TP True Positive
  • FN False Negative
  • FP False
  • TN True Negative
  • TP True Positive
  • FN False Negative
  • FP False Positive
  • TN Artifact removal accuracy can be calculated based on the ratio of the combination of the numerical value in the TP (True Positive) case and the numerical value in the TN (True Negative) case to the combination of the values in the (True Negative) case.
  • the artificial intelligence processing unit 730 manages the signal quality of the biosignal transmitted from the heart condition detection sensor device, including signal quality management artificial intelligence, arrhythmia detection artificial intelligence, and cardiovascular disease evaluation artificial intelligence. and can evaluate and detect arrhythmias and cardiovascular diseases.
  • control unit 740 may control to provide the cardiovascular disease determined by the artificial intelligence processing unit 730 to the user terminal device.
  • the controlled device may correspond to a communication device.
  • the user terminal device may receive analysis information related to cardiovascular disease, and provide cardiovascular disease determination information and analysis results included in the received analysis information through a display.
  • the controller 740 calculates the number of measured ECG signals or the number of measured motion signals, and the number of calculated ECG signals or By comparing the calculated number of motion signals with a threshold value, the data reception state of the ECG signal or the motion signal may be checked.
  • the controller 740 may request additional data or additional measurement from the heart state detection sensor device.
  • the present invention can contribute to diagnosis assistance and reduction of medical costs through continuous monitoring of arrhythmias.
  • the present invention can reduce the number of false alarms that can be generated in a hospital room by accurately measuring and analyzing the patient's current condition, thereby improving the work efficiency of medical staff and the patient's prognosis.
  • the present invention can provide a function of evaluating the risk of chronic diseases through analysis of pulse waves and ECG waveforms using artificial intelligence learning technology.
  • FIGS. 8 and 9 are diagrams for explaining a heart condition monitoring method according to an embodiment of the present invention.
  • FIG. 8 is a diagram showing a heart condition monitoring method according to an embodiment of the present invention learning and analyzing biosignals measured using a heart condition detection sensor device using a pre-stored artificial intelligence algorithm, and then assisting the user in determining cardiovascular disease. An embodiment will be described.
  • an electrocardiogram signal is measured in step 801 .
  • the heart condition monitoring method measures an electrocardiogram signal using a heart condition detection sensor device attached to the user.
  • step 802 the heart condition monitoring method according to an embodiment of the present invention extracts characteristic information of the electrocardiogram signal.
  • the heart condition monitoring method extracts characteristic information by machine learning the time domain of the ECG signal.
  • the heart condition monitoring method converts a normalized signal generated based on the time domain of an electrocardiogram signal into a time standardized image, and compresses the converted image by applying a weight based on an artificial intelligence machine learning algorithm stored in advance.
  • a signal is generated, a reconstructed signal is generated from the compressed signal using the applied weight, and the weights are machine-learned so that the difference between the generated normalized signal and the generated reconstructed signal falls within a preset threshold range to determine the morphological characteristics of the ECG signal.
  • Corresponding characteristic information can be extracted.
  • the heart condition monitoring method determines a heart abnormality type model by machine learning the characteristic information.
  • the heart condition monitoring method machine-learns the feature information extracted in step 802 to obtain a plurality of cardiac abnormality type models, such as a tachycardia model, bradycardia model, atrial fibrillation model, left-angle block model, right-angle block model, atrial premature contraction model, It may be determined as at least one of a ventricular premature contraction model, a cardiac arrest model, and a normal heart state model.
  • a tachycardia model such as a tachycardia model, bradycardia model, atrial fibrillation model, left-angle block model, right-angle block model, atrial premature contraction model
  • It may be determined as at least one of a ventricular premature contraction model, a cardiac arrest model, and a normal heart state model.
  • step 804 the heart condition monitoring method according to an embodiment of the present invention calculates classification accuracy for a plurality of heart abnormality type models.
  • the heart condition monitoring method may quantify the classification accuracy of the plurality of heart abnormality type models according to the determination result of the plurality of cardiac abnormality type models.
  • the step in which the cardiac condition monitoring method calculates the classification accuracy for a plurality of cardiac abnormality type models will be described with reference to FIG. 9 .
  • step 805 the cardiac condition monitoring method according to an embodiment of the present invention determines the cardiovascular disease using the accuracy, the type of cardiac abnormality model, and the published cardiovascular disease data.
  • the heart condition monitoring method compares and analyzes the heart abnormality type model determined in step 803 and the cardiovascular disease data published as public data based on the accuracy calculated in step 804, and wears a heart condition detection sensor. It is possible to determine the cardiovascular disease of the user.
  • the heart condition monitoring method may further measure a motion signal and a body temperature signal from the user through step 801 .
  • the heart condition monitoring method outputs monitoring information further including a motion signal through an artificial intelligence encoder, and based on the measured ECG signal and the measured motion signal, it is possible to detect an emergency including cardiac arrest and a fall of the user. have.
  • FIG. 9 is a diagram of a plurality of heart abnormality type models determined by learning and analyzing a biosignal measured using a heart condition detection sensor device using a pre-stored artificial intelligence algorithm in the heart condition monitoring method according to an embodiment of the present invention. An example in which the evaluation is performed will be described.
  • the heart condition is divided into a plurality of cases by using the heart abnormality type model in step 901 .
  • the heart condition monitoring method is TP (True Positive), which classifies cardiac abnormalities as cardiac abnormalities, and FN (False Negative) cases, which classifies cardiac abnormalities as normal for each of the multiple types of cardiac abnormality models, and normalizes cardiac abnormalities as cardiac abnormalities.
  • TP True Positive
  • FN False Negative
  • the number of 4 types of cases corresponding to the case of TN (True Negative) classifying normal to normal is divided.
  • step 902 the heart condition monitoring method according to an embodiment of the present invention calculates classification accuracy using the numerical values of the plurality of cases classified in step 901.
  • the heart condition monitoring method is a TP (True Positive) case of the combination of TP (True Positive) values, FN (False Negative) values, FP (False Positive) values, and TN (True Negative) values. ), calculate the classification accuracy based on the ratio of the combination of the numerical value of the TN (True Negative) case.
  • the method for monitoring a heart condition may determine at least one of a cardiac function abnormality, an emergency situation, and an artifact removal rate using the classification accuracy calculated in step 902 .
  • the classification accuracy of heart abnormalities related to tachycardia, bradycardia, atrial fibrillation, left-brain block, right-angle block, atrial premature contraction, and ventricular premature contraction is the threshold value. If higher, the type of cardiac abnormality is determined as at least one of tachycardia, bradycardia, atrial fibrillation, left-angle block, right-angle block, atrial premature contraction, and ventricular premature contraction, an emergency situation related to cardiac arrest is determined, and artifact is removed based on the artifact removal probability. The removal rate can be determined.
  • tachycardia, bradycardia, atrial fibrillation, left-angle block, right-angle block by analyzing bio-signals measured from a heart condition detection sensor device that is attached to a patient and senses the patient's heart condition based on a pre-stored artificial intelligence algorithm.
  • a heart condition detection sensor device that is attached to a patient and senses the patient's heart condition based on a pre-stored artificial intelligence algorithm.
  • the present invention is a heart condition detection sensor that is attached to the patient and detects the patient's heart condition by calculating the heart function abnormality classification accuracy, emergency situation classification accuracy, and artifact signal detection accuracy using a pre-stored artificial intelligence algorithm and open data set. By learning and evaluating the measurement accuracy of the bio-signal measured from the device, it is possible to improve the measurement accuracy of the bio-signal.
  • FIGS. 10 and 11 are diagrams illustrating a system for providing a complex life support solution according to an embodiment of the present invention.
  • FIG. 10 illustrates components of a system for providing a complex life support solution according to an embodiment of the present invention.
  • the complex life support solution providing system 1000 combines the living indoor monitoring system 1010 and the heart condition monitoring system 1020 to combine the living indoor monitoring system 1010 with a biosignal measuring device and heart
  • the complex life support platform 1030 may be provided by combiningly utilizing the measurement data of the biosignal measuring device utilized in the condition monitoring system 1020 .
  • the complex life support platform 1030 determines a heart abnormality type model according to analysis and learning based on artificial intelligence, and based on the evaluation of the determined cardiac abnormality type model, for cardiovascular disease Supporting more accurate decisions can help deliver personalized health care and support decision-making related to heart disease.
  • the complex life support platform 1030 analyzes and learns the measurement data of the biosignal measuring device based on artificial intelligence toward the user terminal device 1040 used by related institutions, emergency centers, guardians, and medical staff, so that the types of heart abnormalities
  • the complex life support platform 1030 analyzes and learns the measurement data of the biosignal measuring device based on artificial intelligence toward the user terminal device 1040 used by related institutions, emergency centers, guardians, and medical staff, so that the types of heart abnormalities
  • the complex life support platform 1030 analyzes and learns the measurement data of the biosignal measuring device based on artificial intelligence toward the user terminal device 1040 used by related institutions, emergency centers, guardians, and medical staff, so that the types of heart abnormalities
  • the living indoor monitoring system 1010 acquires a 3D image for analysis of the daily life pattern of the support target through a 3D camera to detect a fall accident of the support target, and a smart band worn by the support target can be used to provide biosignal monitoring and real-time cardiac abnormality evaluation functions.
  • the heart condition monitoring system 1020 transmits the transmitted data to the server in real time while monitoring the ECG, pulse wave, motion and body temperature of the subject by using the heart condition detection sensor, and transmits the transmitted data to the user terminal device.
  • the heart condition monitoring system 1020 transmits the transmitted data to the server in real time while monitoring the ECG, pulse wave, motion and body temperature of the subject by using the heart condition detection sensor, and transmits the transmitted data to the user terminal device.
  • the complex life support solution providing system 1000 may include a biosignal measuring device, a gateway, a server, and a user terminal device.
  • the biosignal measuring apparatus may measure a biosignal including at least one of an electrocardiogram signal, a motion signal, and a pulse wave signal from a support target, and transmit monitoring information including the measured biosignal.
  • the gateway may transmit monitoring information to the server.
  • the server may extract an electrocardiogram signal of the biosignal from monitoring information transmitted from the biosignal measuring device, and extract morphological information through conversion of the extracted electrocardiogram signal into a time-standardized image as feature information.
  • the server determines a plurality of cardiac abnormality type models by using the extracted characteristic information, calculates classification accuracy for the plurality of determined cardiac abnormality type models, and based on the calculated accuracy, the determined cardiac abnormality type model and the published It is possible to determine whether the support target has a cardiovascular disease or an emergency state using the cardiovascular disease data, and feed back information on the determined cardiovascular disease and the emergency state and information on fluctuations in biosignals to the user terminal device.
  • the user terminal device may include at least one of a medical staff terminal device, a guardian terminal device, and an emergency center terminal device.
  • the user terminal device outputs information including at least one of information on the determined cardiovascular disease and emergency status and biosignal variation information, and based on the prescription information generated according to the information output to the medical staff terminal device Prescribing information may also be updated in the guardian terminal device and the emergency center terminal device.
  • the support target may correspond to at least one of the elderly living alone, the disabled, the critically ill, and the young patient.
  • the complex life support solution providing system 1000 may provide a complex life support solution in a facility for at least one of ward monitoring for the elderly living alone, a nursing hospital, and a silver town.
  • the complex life support solution providing system 1000 may prevent the health management of the elderly living alone, emergency detection, and sudden and lonely death, and increase the efficiency of hospital patient management based on monitoring of nursing hospitals and general wards.
  • the complex life support solution providing system 1000 can prevent sudden and lonely death for the elderly living alone, and provide heart health management for the elderly living alone, prevention of chronic diseases for the elderly living alone, and rapid patient transport and treatment in emergency situations.
  • FIG. 11 illustrates components of a heart condition monitoring system in a system for providing a complex life support solution according to an embodiment of the present invention.
  • the heart condition monitoring system 1100 may include a biosignal measuring device 1110 , a gateway 1120 , a server 1130 , and a user terminal device 1140 .
  • the bio-signal measuring device 1120 measures bio-signals including an electrocardiogram signal, a motion signal, and a body temperature signal from a subject to be supported, and compresses and encrypts the measured bio-signal with an artificial intelligence encoder to reduce power consumption. It is transmitted to the gateway 1120 using Bluetooth.
  • the artificial intelligence encoder can divide and normalize the bio-signal into signals having the same length through sliding window technology.
  • the length of the window may be 2 seconds, and the update period may be 1 second.
  • the sliding window can analyze a signal with a relatively short measurement time, and through a normalization process, various signal amplitudes and offsets can be set so that the deep learning model does not affect it.
  • various signal amplitudes and offsets can be set so that the deep learning model does not affect it.
  • the configuration of the artificial intelligence encoder will be described supplementally with reference to FIG.
  • the gateway 1120 transmits the transmitted signal to the server 1130 .
  • the gateway 1120 interworks with the heart condition sensor device 1120 and the server 1120, supports environment settings such as hospital, ward, bed number of the server 1130, and data collection and storage for each patient, and the battery is low It supports event (battery low event) transmission and process monitoring and automatic fail over (fail over).
  • the gateway 1120 supports automatic node search, registration, and connection of the heart condition detection sensor device 1120 , and supports a low-power Bluetooth communication interface and a battery level check of the heart condition detection sensor 1120 .
  • the server 1130 extracts the bio-signals measured by the heart condition detection sensor device 1120 with an artificial intelligence decoder, and machine learning and analyzing the ECG signals of the extracted bio-signals using a pre-stored artificial intelligence algorithm, so that various environments
  • the heart condition detection sensor device 1120 performs optimization of heart condition detection performance using the public biosignal data set measured in Model learning and performance evaluation can be performed on the measured biosignals.
  • the server 1130 uses morphological information through conversion of the ECG signal into a time-standardized image as feature information in order to reflect various patterns of the ECG signal in the risk assessment model based on the artificial intelligence algorithm.
  • the server 1130 corresponds to major cardiovascular diseases using machine learning models such as Convolutional Neural Network (CNN) and Deep Belief Network (DBN), or various machine learning techniques such as Gradient Boost and XGBooST.
  • CNN Convolutional Neural Network
  • DBN Deep Belief Network
  • Gradient Boost Gradient Boost
  • XGBooST various machine learning techniques
  • a sub-classification model can be determined to classify myocardial infarction, coronary artery disease, and the like.
  • the server 1130 calculates the accuracy of the classification model by comparing the results using machine learning techniques such as support vector machine (SVM) and random forest (RF) based on the public biosignal dataset, and the effectiveness of the classification model can also be evaluated.
  • SVM support vector machine
  • RF random forest
  • the server 1130 determines the cardiovascular disease related to the heart condition of the subject to be learned and analyzed by using an artificial intelligence algorithm, and provides the determined cardiovascular disease and analysis result to the user terminal device 1140 to provide medical staff It may assist in diagnosing cardiovascular disease or assist in recognizing changes in the patient's prognosis.
  • the present invention is a classification model of major cardiovascular diseases such as myocardial infarction and coronary artery disease based on a biosignal measuring device attached to a patient to detect the patient's condition and a server using an artificial intelligence algorithm for biosignals related to the heart condition.
  • a biosignal measuring device attached to a patient to detect the patient's condition and a server using an artificial intelligence algorithm for biosignals related to the heart condition.
  • a doctor's misdiagnosis and occurrence of false alarms can be prevented.
  • the present invention can provide a complex life support solution including a remote medical service in preparation for the post-corona era.
  • FIG. 12 is a view for explaining the components of a biosignal measuring apparatus according to an embodiment of the present invention.
  • FIG. 12 illustrates components of a biosignal measuring device included in a system for providing a complex life support solution according to an embodiment of the present invention.
  • the biosignal measuring apparatus 1200 includes a biosignal monitoring unit 1210 and a control unit 1220 .
  • the biosignal measuring apparatus 1200 is attached to the upper part of or near the heart of the support person to measure data related to the heart condition from the support person, or is worn in the form of a band on the user's wrist in the form of a wearable device. to measure data related to the condition of the heart.
  • the biosignal measuring device 1200 includes a 3D depth camera for taking 3D depth images for analysis of daily life patterns, a smart band wearable on at least one of the ear, neck or wrist of the support subject, and a heart condition detection sensor device can do.
  • the bio-signal monitoring unit 1210 measures a bio-signal including at least one of a 3D depth image, an electrocardiogram signal, a pulse wave signal, a body temperature signal, and a movement signal from a subject to be supported, and monitoring information including the measured bio-signal can be output through an artificial intelligence encoder.
  • the bio-signal monitoring unit 1210 encodes and compresses the heart state information according to the change in the support subject's heart state and the movement state information according to the change in the movement of the support subject through an artificial intelligence encoder, and outputs it can do.
  • the biosignal monitoring unit 1210 monitors a body reaction and body temperature by Actigraph measured from at least one of an ear, neck, or wrist as a biosignal, and Motion signals and body temperature signals can be encoded and output through an artificial intelligence encoder.
  • the biosignal monitoring unit 1210 monitors a neural response by PPG (photoplethysmography) measured from at least one of an ear, neck, or wrist as a biosignal, and uses an artificial intelligence encoder to generate autonomic neural information according to the neural response. It can be encrypted and printed.
  • PPG photoplethysmography
  • the controller 1230 may transmit the monitoring information to the server through a gateway located nearby using short-range wireless communication.
  • the controller 1230 extracts the ECG signal included in the monitoring information by the server, and converts the extracted ECG signal to a time-standardized image based on a pre-stored artificial intelligence machine learning algorithm. Morphological information is extracted as characteristic information, a plurality of cardiac abnormality type models are determined using the extracted characteristic information, classification accuracy for the determined plurality of cardiac abnormality type models is calculated, and a heart determined based on the calculated accuracy Monitoring information may be provided to the server to determine the cardiovascular disease of the support target using the abnormal type model and the published cardiovascular disease data.
  • the controller 1230 simulates data traffic generated when measuring at least one of a 3D depth image, an electrocardiogram signal, a motion signal, a body temperature signal, and a pulse wave signal, and based on the simulation, the operating state of the biosignal measuring device can determine
  • the controller 1230 may periodically check the battery state, determine the low battery state, and provide alarm information.
  • control unit 1230 provides monitoring information to the server to detect an emergency including cardiac arrest and a fall of a subject to be supported based on a 3D depth image, an electrocardiogram signal, a motion signal, a body temperature signal, and a pulse wave signal. can do.
  • the biosignal measuring apparatus 1200 may further include an artificial intelligence processing unit 1220 .
  • the artificial intelligence processing unit 1220 extracts an electrocardiogram signal included in the monitoring information output from the biosignal monitoring unit 1210, and based on a pre-stored artificial intelligence machine learning algorithm, the time standardized of the extracted electrocardiogram signal Extracts morphological information through transformation into an image as feature information, determines a plurality of cardiac abnormality type models using the extracted characteristic information, calculates classification accuracy for the determined multiple cardiac abnormality type models, and calculates the calculated
  • the user's cardiovascular disease can be determined using the heart abnormality type model determined based on the accuracy and the published cardiovascular disease data.
  • the artificial intelligence processing unit 1220 may automatically calculate the classification accuracy by comparing the open data set and the heart abnormality type model based on the artificial intelligence learning technology.
  • the artificial intelligence processing unit 1220 may include a convolutional product neural network layer and a bidirectional long short-term memory (BLSTM) layer.
  • BLSTM bidirectional long short-term memory
  • the artificial intelligence processing unit 1220 has the same information processing function as the artificial intelligence processing unit of the server to be described with reference to FIG. 8 , so that learning and analysis based on the artificial intelligence machine learning algorithm are possible.
  • the biosignal measuring apparatus 1200 may provide monitoring information information for distinguishing left-angle blockage, right-angle blockage, atrial premature contraction and ventricular premature contraction related to arrhythmias to the server side.
  • biosignal measuring device 1200 provides separate information by machine-learning monitoring information on its own to classify left-angle block, right-angle block, atrial premature contraction, and ventricular premature contraction related to arrhythmias. can do.
  • the present invention transmits emergency situation information and basic bio-signal information to the medical staff and emergency center of the nursing hospital when an emergency such as cardiac arrest or a fall is detected, and an external related institution receives the analysis data in real time, so that the patient's emergency We can provide a complex life support solution that prepares for the situation.
  • the present invention can reduce the number of false alarms that can be generated in a hospital room by accurately measuring and analyzing the patient's current condition, thereby improving the work efficiency of medical staff and the patient's prognosis.
  • FIG. 13 is a view for explaining an operating method of a system for providing a complex life support solution according to an embodiment of the present invention.
  • FIG. 13 is a view showing the cardiovascular disease of the support target after the system for providing a complex life support solution according to an embodiment of the present invention learns and analyzes the bio-signals measured using the bio-signal measuring device using a pre-stored artificial intelligence algorithm.
  • An embodiment of providing a complex life support solution by feeding back at least one of information on whether there is an emergency and information on changes in biosignals to a user terminal device will be described.
  • step 1301 a biosignal of a support target is measured.
  • the operation method of the complex life support solution providing system uses a bio-signal measuring device attached to the upper side of the support subject's heart and a bio-signal measuring device worn on at least one of the support subject's ear, neck, or wrist to obtain an electrocardiogram signal, movement A biosignal including a signal, a body temperature signal, and a pulse wave signal is measured.
  • step 1302 the monitoring information including the biosignal measured in step 1301 is transmitted to the server.
  • the operation method of the complex life support solution providing system generates monitoring information by encrypting and compressing bio-signals including an electrocardiogram signal, a motion signal, a body temperature signal, and a pulse wave signal using an artificial intelligence encoder, and the generated monitoring information is sent to the server through an adjacent gateway.
  • step 1303 the operation method of the complex life support solution providing system determines a heart abnormality type model based on an artificial intelligence machine learning algorithm, and calculates a degree of classification based on the cardiac abnormality type model.
  • the operation method of the complex life support solution providing system is based on an artificial intelligence machine learning algorithm pre-stored in the converted image by converting a normalized signal generated based on the time domain of the electrocardiogram signal into a time standardized image.
  • a compressed signal is generated by applying a weight, a reconstructed signal is generated from the compressed signal using the applied weight, and the weight is machine learned so that the difference between the generated normalized signal and the generated reconstructed signal falls within a preset threshold range to obtain an ECG signal It is possible to extract feature information corresponding to the morphological features of
  • the operation method of the complex life support solution providing system is a tachycardia model, bradycardia model, atrial fibrillation model, left leg block model, right leg block model, atrial premature contraction model, It can be determined with a ventricular premature contraction model, a normal heart condition model, and a cardiac arrest model.
  • the operation method of the complex life support solution providing system calculates classification accuracy for a plurality of cardiac abnormality type models.
  • the operating method of the complex life support solution providing system may quantify the classification accuracy of the plurality of cardiac abnormality type models according to the determination result of the plurality of cardiac abnormality type models.
  • the operation method of the complex life support solution providing system is TP (True Positive), which classifies cardiac abnormalities as cardiac abnormalities, and FN (False Negative) cases, which classifies cardiac abnormalities as normal, for each of a plurality of cardiac abnormality type models.
  • TP True Positive
  • FN False Negative
  • FP False Positive
  • TN True Negative
  • the operation method of the complex life support solution providing system depends on the combination of the numerical values in the case of TP (True Positive), FN (False Negative), FP (False Positive), and TN (True Negative).
  • the classification accuracy is calculated based on the ratio of the combination of the values in the TP (True Positive) case and the TN (True Negative) case.
  • the operation method of the complex life support solution providing system is the calculated classification accuracy, and the classification accuracy of cardiac abnormalities related to tachycardia, bradycardia, atrial fibrillation, left-brain block, right-angle block, atrial premature contraction, and ventricular premature contraction is the threshold value. If higher, the type of cardiac abnormality is determined as at least one of tachycardia, bradycardia, atrial fibrillation, left-angle block, right-angle block, atrial premature contraction, and ventricular premature contraction, an emergency situation related to cardiac arrest is determined, and artifact is removed based on the artifact removal probability. The removal rate can be determined.
  • step 1304 the operating method of the system for providing a complex life support solution according to an embodiment of the present invention determines a cardiovascular disease using accuracy, a heart abnormality type model, and published cardiovascular disease data.
  • the operation method of the complex life support solution providing system compares and analyzes the cardiac abnormality type model determined in step 1303 based on the accuracy calculated in step 1303 and the cardiovascular disease data published as public data to measure biosignals Cardiovascular disease of the support subject wearing the device may be determined.
  • the operating method of the system for providing a complex life support solution may feed back biosignal variation information, cardiovascular disease, and emergency status to the user terminal device.
  • step 1306 the method of operating the system for providing a complex life support solution according to an embodiment of the present invention may display feedback information and provide alarm feedback according to the feedback information.
  • the operating method of the system for providing a complex life support solution outputs information including at least one of information on the determined cardiovascular disease and the emergency state and information on fluctuations in the biosignals, Based on the prescription information generated according to the information output to the medical staff terminal device, the prescription information may also be updated in the guardian terminal device and the emergency center terminal device.
  • the operation method of the system for providing a complex life support solution is based on the determined information on the cardiovascular disease and emergency status and the change information of the bio-signal, the patient's nursing management service, disease data management At least one of a service, a disease data visualization, a disease data statistical service, and an emergency push notification service may be provided.
  • the present invention can detect the heart condition of a patient so that a heart condition analysis for real-time arrhythmia detection, biosignal quality control for improving signal analysis reliability, and major cardiovascular disease evaluation for early disease management can be performed.
  • the present invention provides tachycardia, bradycardia, atrial fibrillation, left-angle block, right-angle block, It can detect major types of cardiac abnormalities such as atrial premature contraction, ventricular premature contraction, and cardiac arrest.
  • the present invention is a biosignal measuring device that is attached to a patient and detects the patient's heart condition by calculating cardiac function abnormality classification accuracy, emergency situation classification accuracy, and artifact signal detection accuracy using a pre-stored artificial intelligence algorithm and open data set. By learning and evaluating the measurement accuracy of the bio-signal measured from the , it is possible to improve the measurement accuracy of the bio-signal.
  • the device described above may be implemented as a hardware component, a software component, and/or a combination of the hardware component and the software component.
  • devices and components described in the embodiments may include, for example, a processor, a controller, an arithmetic logic unit (ALU), a digital signal processor, a microcomputer, a field programmable array (FPA), It may be implemented using one or more general purpose or special purpose computers, such as a programmable logic unit (PLU), microprocessor, or any other device capable of executing and responding to instructions.
  • the processing device may execute an operating system (OS) and one or more software applications running on the operating system.
  • a processing device may also access, store, manipulate, process, and generate data in response to execution of the software.
  • the processing device includes a plurality of processing elements and/or a plurality of types of processing elements. It can be seen that can include For example, the processing device may include a plurality of processors or one processor and one controller. Other processing configurations are also possible, such as parallel processors.
  • Software may comprise a computer program, code, instructions, or a combination of one or more thereof, which configures a processing device to operate as desired or is independently or collectively processed You can command the device.
  • the software and/or data may be any kind of machine, component, physical device, virtual equipment, computer storage medium or apparatus, to be interpreted by or to provide instructions or data to the processing device. , or may be permanently or temporarily embody in a transmitted signal wave.
  • the software may be distributed over networked computer systems and stored or executed in a distributed manner. Software and data may be stored in one or more computer-readable recording media.
  • the method according to the embodiment may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
  • the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the medium may be specially designed and configured for the embodiment, or may be known and available to those skilled in the art of computer software.
  • Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks.
  • - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • the hardware devices described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Child & Adolescent Psychology (AREA)
  • Theoretical Computer Science (AREA)
  • Emergency Management (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

본 발명은 심장 상태 감지 센서 장치를 이용하여 측정된 생체신호를 분석하여 심장 상태를 모니터링하는 기술적 사상에 관한 것으로, 본 발명의 일실시예에 따른 심장상태 모니터링 방법은 사용자로부터 심전도 신호를 측정하고, 상기 측정의 된 심전도 신호의 시간 도메인(time domain)을 기계학습하여 특징 정보를 추출하며, 상기 추출된 특징 정보를 기계학습하여 복수의 심장이상 종류 모델을 결정하고, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하며, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 사용자의 심혈관계 질환을 결정함에 따라 의료 진단을 보조하는 기술에 관한 것이다.

Description

심장 상태 감지 센서 장치 및 이를 이용한 복합 생활 지원 솔루션 제공 시스템
본 발명은 심장 상태 감지 센서 장치를 이용하여 측정된 생체신호를 분석하여 심장 상태를 모니터링하거나, 또는 생체신호 측정 장치를 이용하여 측정된 생체신호를 인공지능에 기반하여 모니터링 및 분석함에 따라 복합 생활 지원 솔루션을 제공하는 기술적 사상에 관한 것으로, 심장 상태 감지 센서 장치를 이용하여 측정된 생체신호를 인공지능 알고리즘을 이용하여 학습 및 분석하여 심장이상 종류 모델을 결정하고, 결정된 심장이상 종류 모델에 대한 평가에 기반하여 심혈관계 질환에 대한 보다 정확한 결정을 지원하는 기술에 관한 것이다.
인구통계 변화를 참고하면, 2025년 65세 이상 고령인구는 1050만 8000명으로 전체 인구 5621만 명의 20%를 차지할 예정이고, 중환자실 환자 기하급수적으로 증가하여 요양병원 및 시설의 수용 지속적 증가 추세에 있다.
심뇌혈관질환은 전체 사망원인의 24.3%를 차지하며, 인구고령화와 직접적인 상관관계를 가지고 있다.
병원에서 공개하는 정보에 따르면, 중환자실 환자의 병원 내 사망률은 18%로 선진국의 약 2배이고, 2018년 국가 전체 사망자의 3분의 1은 노인요양병원 및 요양시설에서 사망하고 있다.
적정성평가 2등급 이상을 획득한 중환자실은 전체 중 약 1/3만을 차지하고, 의료 서비스 수준의 질적 향상이 요구되며, 노인입원의 의료비 비중은 2016년 기준으로 약47.6%로 약 14%의 노인인구가 전체 의료비의 절반 정도를 사용하고 있다.
중환자실의 낮은 수가는 상급종합병원/종합병원의 적자에 기여하고, 의료기관 중 요양병원은 일자리 창출에 가장 크게 기여하나 100병상당 입원 수입은 최하 수준에 해당된다.
상술한 문제들의 해결하기 위한 대표적인 기술들은 환자 모니터링(Patient monitoring) 기술 측면에서 ECG(Electrocardiogram), PPG(Photoplethysmogram, 신체 활동 측정 시스템(Actigraph), 3D 뎁스 카메라(Depth camera)를 이용한 모니터링 기술이 존재한다.
한편, 인공 지능 기반 생체신호 처리(AI-based physiological signal processing) 기술 측면에서 딥러닝 모델(Deep-learning model) 관련 아티팩트 제거(Artifact removal), 딥러닝 모델(Deep-learning model) 관련 신호 인코딩 및 디코딩(Signal encoding and decoding), 딥러닝 모델(Deep-learning model) 관련 부정맥 감지 및 분류(Arrhythmia detection and classification) 및 딥러닝 모델(Deep-learning model) 관련 만성 질환의 위험 평가(Risk assessment of chronic diseases)를 포함하고 있다.
또한, 신호 분석(General signal analysis) 기술 측면에서 HRV(Heart rate variability), BRS(Baroreflex sensitivity), Pulse morphology analysis를 포함하고, 엣지 컴퓨팅(Edge computing) 기술 측면에서 Centralized monitoring of hospital, Embedded artificial intelligence model, Real-time stream data analysis을 포함할 수 있다.
그러나, 현재 병실의 환자 모니터링을 위한 기술은 저품질의 생체신호 데이터에 따라 중환자실 환자 모니터링 중 오경보(false alarm)가 매우 빈번히 발생되고, 이에 따른 의료진의 업무효율 및 환자의 예후가 악화되고 있다.
또한, 의료 데이터는 2020년까지 73일마다 2배씩 증가하고 있으나, 대용량의 저품질 데이터를 처리하기 위해서는 노동집약적 및 후향적 분석이 요구되는 실정이다.
또한, 폭증하는 데이터에 비해 그것을 분석할 인력은 턱없이 부족하여 수익 문제 등으로 인하여 의료 인력의 증원이 어려움을 겪고 있다.
본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치와 심장상태와 관련된 생체신호를 인공지능 알고리즘을 이용하는 서버에 기반하여 심근경색, 관상동맥질환과 같은 주요 심혈관계 질환 구분 모델을 결정하고, 결정된 주요 심혈관계 질환 구분 모델에 기반하여 의사의 오진 및 오 경보 발생을 방지하는 것을 목적으로 한다.
본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 환자의 멀티모달 생체신호의 실시간 모니터링을 통해 고령환자 관리를 위한 사물인터넷과 인공지능에 기반한 심장상태 모니터링 시스템을 제공하는 것을 목적으로 한다.
본 발명은 실시간 부정맥 탐지를 위한 심장상태 분석, 신호 분석 신뢰도 제고를 위한 생체신호 품질 관리, 조기 질환 관리를 위한 주요 심혈관질환 평가를 수행할 수 있도록 환자의 심장상태를 감지하는 심장상태 감지 센서 장치를 제공하는 것을 목적으로 한다.
본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 생체신호를 기 저장된 인공지능 알고리즘에 기반하여 분석함에 따라 빈맥, 서맥, 심방세동, 좌각차단, 우각차단, 심방조기수축, 심실조기 수축, 심정지 등과 같은 주요 심장 이상 종류를 탐지하는 것을 목적으로 한다.
본 발명은 기 저장된 인공지능 알고리즘과 오픈 데이터 셋을 이용하여 심장기능 이상 구분 정확도, 위급 상황 구분 정확도 및 아티팩트 신호 검출 정확도 계산함에따라 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 생체신호의 측정 정확도를 학습 및 평가하여 생체신호의 측정 정확도를 개선하는 것을 목적으로 한다.
본 발명은 부정맥의 지속적 감시를 통해 진단보조 및 의료비용 절감에 기여하는 것을 목적으로 한다.
본 발명은 환자의 현재 상태를 정확히 측정 및 분석함에 따라 병실에서 발생될 수 있는 오 경보의 횟수를 감소시키고, 이에 따라 의료진의 업무 효율과 환자의 예후를 향상시키는 것을 목적으로 한다.
본 발명은 인공지능 학습 기술을 이용하여 맥파 및 심전도 파형의 분석을 통한 만성질환의 위험도 평가 기능을 제공하는 것을 목적으로 한다.
본 발명은 포스트 코로나 시대에 대비한 원격진료 서비스를 포함하는 복합 생활 지원 솔루션을 제공하는 것을 목적으로 한다.
본 발명은 심정지, 낙상 등의 위급상황 발생 탐지 시, 요양 병원 의료진 및 응급센터로 위급상황 정보 및 기초 생체신호 정보를 전송하여 외부의 유관기관이 분석 데이터를 실시간으로 수신하여 지원 대상자의 위급 상황을 대비하는 복합 생활 지원 솔루션을 제공하는 것을 목적으로 한다.
본 발명의 일실시예에 따르면 서버는 사용자로부터 측정된 심전도 신호를 포함하는 생체신호가 포함된 모니터링 정보를 수집하는 모니터링 정보 수집부, 상기 수집된 모니터링 정보에 포함된 심전도 신호를 추출하는 신호 추출부, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 상기 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 사용자의 심혈관계 질환을 결정하는 인공지능 처리부 및 상기 결정된 심혈관계 질환을 사용자 단말 장치로 제공하도록 제어하는 제어부를 포함할 수 있다.
상기 인공지능 처리부는 상기 추출된 심전도 신호의 시간 도메인(time domain)에 기반하여정규화 신호를 생성하며, 상기 생성된 정규화 신호를 상기 시간 표준화된 이미지로 변환하고, 상기 변환된 이미지에 상기 기 저장된 인공지능 기계학습 알고리즘 기반 가중치를 적용하여 압축 신호를 생성하며, 상기 적용된 가중치를 이용하여 상기 압축 신호로부터 복원 신호를 생성하고, 상기 생성된 정규화 신호와 상기 생성된 복원 신호의 차이가 사전 설정된 임계 범위에 해당되도록 상기 가중치를 기계학습하여 상기 심전도 신호의 형태학적 정보를 상기 특징 정보로 추출할 수 있다.
상기 인공지능 처리부는 상기 특징 정보를 기계학습하여 상기 복수의 심장이상 종류 모델을 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델, 심실조기수축 모델, 심정지 모델 및 정상 심장상태 모델 중 적어도 하나의 모델로 결정할 수 있다.
상기 인공지능 처리부는 오픈 데이터 셋과 상기 빈맥 모델, 상기 서맥 모델, 상기 심방세동 모델, 상기 좌각차단 모델, 상기 우각차단 모델, 상기 심방조기수축 모델 및 상기 심실조기수축 모델 중 적어도 하나의 모델과 상기 정상 심장상태 모델을 이용하여 심장이상을 상기 심장이상으로 구분하는 TP(True Positive) 경우, 상기 심장이상을 정상으로 구분하는 FN(False Negative) 경우, 상기 정상을 상기 심장이상으로 구분하는 FP(False Positive) 경우 및 상기 정상을 상기 정상으로 구분하는 TN(True Negative) 경우로 분류하고, 상기 TP(True Positive) 경우의 수치, 상기 FN(False Negative) 경우의 수치, 상기 FP(False Positive) 경우의 수치 및 상기 TN(True Negative) 경우의 수치의 결합에 대한 상기 TP(True Positive) 경우의 수치와 상기 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 상기 빈맥 모델, 상기 서맥 모델, 상기 심방세동 모델, 상기 좌각차단 모델, 상기 우각차단 모델, 상기 심방조기수축 모델 및 상기 심실조기수축 모델 중 적어도 하나에 대한 구분 정확도를 계산할 수 있다.
상기 인공지능 처리부는 오픈 데이터 셋과 상기 심정지 모델과 상기 정상 심장상태 모델을 이용하여 심정지 구간을 상기 심정지 구간으로 구분하는 TP(True Positive) 경우, 상기 심정지 구간을 정상 구간으로 구분하는 FN(False Negative) 경우, 상기 정상 구간을 상기 심정지 구간으로 구분하는 FP(False Positive) 경우 및 상기 정상 구간을 상기 정상 구간으로 구분하는 TN(True Negative) 경우로 분류하고, 상기 TP(True Positive) 경우의 수치, 상기 FN(False Negative) 경우의 수치, 상기 FP(False Positive) 경우의 수치 및 상기 TN(True Negative) 경우의 수치의 결합에 대한 상기 TP(True Positive) 경우의 수치와 상기 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 위급 상황 구분 정확도를 계산할 수 있다.
상기 인공지능 처리부는 아티팩트 신호를 상기 아티팩트 신호로 구분하는 TP(True Positive) 경우, 상기 아티팩트 신호를 정상 신호 구분하는 FN(False Negative) 경우 및 상기 정상 신호를 상기 아티팩트 신호로 구분하는 FP(False Positive) 경우, 상기 정상 신호를 상기 정상 신호로 구분하는 TN(True Negative) 경우로 분류하고, 상기 TP(True Positive) 경우의 수치, 상기 FN(False Negative) 경우의 수치, 상기 FP(False Positive) 경우의 수치 및 상기 TN(True Negative) 경우의 수치의 결합에 대한 상기 TP(True Positive) 경우의 수치와 상기 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 아티팩트 제거 정확도를 계산할 수 있다.
상기 제어부는 상기 심전도 신호가 측정된 후, 상기 측정된 심전도 신호의 개수와 상기 측정된 움직임 신호의 개수를 계산하고, 상기 계산된 심전도 신호의 개수와 상기 계산된 움직임 신호의 개수를 임계 값과 비교하여 상기 심전도 신호와 상기 움직임 신호의 데이터 수신 상태를 확인할 수 있다.
상기 사용자 단말 장치는 상기 결정된 심혈관계 질환과 관련된 분석 결과를 디스플레이를 통해 제공할 수 있다.
본 발명의 일실시예에 따르면 심장상태 감지 센서 장치는 사용자로부터 심전도 신호를 포함하는 생체신호를 측정하고, 상기 측정된 생체신호가 포함된 모니터링 정보를 인공지능 인코더를 통해 출력하는 생체신호 모니터링부, 및 상기 출력된 모니터링 정보에 포함된 심전도 신호를 추출하고, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 상기 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 사용자의 심혈관계 질환을 결정하는 인공지능 처리부를 포함할 수 있다.
상기 인공지능 처리부는 상기 심전도 신호를 측정할 시 발생되는 데이터 트래픽을 시뮬레이션하고, 상기 시뮬레이션에 기반하여 상기 심장상태 감지 센서의 동작 상태를 결정할 수 있다.
상기 인공지능 처리부는 상기 특징 정보를 기계학습하여 상기 복수의 심장이상 종류 모델을 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델, 심실조기수축 모델, 심정지 모델 및 정상 심장상태 모델 중 적어도 하나의 모델로 결정할 수 있다.
상기 생체신호 모니터링부는, 상기 사용자로부터 움직임 신호 및 체온 신호 중 적어도 하나의 신호를 더 측정하고, 상기 움직임 신호 및 상기 체온 신호가 더 포함된 모니터링 정보를 인공지능 인코더를 통해 출력할 수 있다.
상기 인공지능 처리부는 상기 측정된 심전도 신호 및 상기 측정된 움직임 신호를 기반으로 상기 사용자의 심정지 및 낙상을 포함하는 위급상황을 탐지할 수 있다.
본 발명의 일실시예에 따르면 심장 상태 모니터링 방법은 상기 심장상태 감지 센서 장치에서, 사용자로부터 심전도 신호를 측정하는 단계, 상기 서버에서, 상기 측정의 된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보를 추출하는 단계, 상기 서버에서, 상기 추출된 특징 정보를 기계학습하여 복수의 심장이상 종류 모델을 결정하는 단계, 상기 서버에서, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하는 단계 및 상기 서버에서, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 사용자의 심혈관계 질환을 결정하는 단계를 포함할 수 있다.
본 발명의 일실시예에 따르면 복합 생활 지원 솔루션 제공 시스템은 지원 대상자의 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호 중 적어도 하나를 포함하는 생체신호를 포함하는 모니터링 정보를 서버로 전송하는 게이트웨이 및 상기 전송된 모니터링 정보로부터 상기 생체신호의 심전도 신호를 추출하고, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 상기 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 지원 대상자의 심혈관계 질환 및 위급 상태 여부를 결정하고, 상기 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보를 사용자 단말 장치로 피드백하는 서버를 포함할 수 있다.
상기 사용자 단말 장치는 의료진 단말 장치, 보호자 단말 장치 및 응급센터 단말 장치 중 적어도 하나를 포함하고, 상기 사용자 단말 장치는 상기 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보 중 적어도 하나를 포함하는 정보를 출력하며, 상기 의료진 단말 장치에 출력되는 정보에 따라 생성되는 처방정보에 기초하여 상기 보호자 단말 장치 및 상기 응급센터 단말 장치에도 상기 처방정보가 업데이트될 수 있다.
상기 사용자 단말 장치는 상기 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보에 기반하여 상기 지원 대상자의 간호 관리 서비스, 질환 데이터 관리 서비스, 질환 데이터 시각화, 질환 데이터 통계 서비스 및 응급 푸쉬 알림 서비스 중 적어도 하나를 제공할 수 있다.
본 발명의 일실시예에 따르면 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 생체신호 측정 장치에서, 지원 대상자로부터 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호 중 적어도 하나를 포함하는 생체신호를 측정하는 단계, 상기 생체신호 측정 장치에서, 상기 측정된 생체신호가 포함된 모니터링 정보를 게이트웨이를 통해 서버로 전송하는 단계, 상기 서버에서, 상기 전송된 모니터링 정보로부터 상기 생체신호의 심전도 신호를 추출하고, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 을 특징 정보로 추출하는 단계, 상기 서버에서, 상기 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하는 단계, 상기 서버에서, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하는 단계, 상기 서버에서, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 지원 대상자의 심혈관계 질환 및 위급 상태 여부를 결정하는 단계 및 상기 서버에서, 상기 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보를 사용자 단말 장치로 피드백하는 단계를 포함할 수 있다.
본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치와 심장상태와 관련된 생체신호를 인공지능 알고리즘을 이용하는 서버에 기반하여 심근경색, 관상동맥질환과 같은 주요 심혈관계 질환 구분 모델을 결정하고, 결정된 주요 심혈관계 질환 구분 모델에 기반하여 의사의 오진 및 오 경보 발생을 방지할 수 있다.
본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 환자의 멀티모달 생체신호의 실시간 모니터링을 통해 고령환자 관리를 위한 사물인터넷과 인공지능에 기반한 심장상태 모니터링 시스템을 제공할 수 있다.
본 발명은 실시간 부정맥 탐지를 위한 심장상태 분석, 신호 분석 신뢰도 제고를 위한 생체신호 품질 관리, 조기 질환 관리를 위한 주요 심혈관질환 평가를 수행할 수 있도록 환자의 심장상태를 감지하는 심장상태 감지 센서 장치를 제공할 수 있다.
본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 생체신호를 기 저장된 인공지능 알고리즘에 기반하여 분석함에 따라 빈맥, 서맥, 심방세동, 좌각차단, 우각차단, 심방조기수축, 심실조기 수축, 심정지 등과 같은 주요 심장 이상 종류를 탐지할 수 있다.
본 발명은 기 저장된 인공지능 알고리즘과 오픈 데이터 셋을 이용하여 심장기능 이상 구분 정확도, 위급 상황 구분 정확도 및 아티팩트 신호 검출 정확도 계산함에따라 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 생체신호의 측정 정확도를 학습 및 평가하여 생체신호의 측정 정확도를 개선할 수 있다.
본 발명은 부정맥의 지속적 감시를 통해 진단보조 및 의료비용 절감에 기여할 수 있다.
본 발명은 환자의 현재 상태를 정확히 측정 및 분석함에 따라 병실에서 발생될 수 있는 오 경보의 횟수를 감소시키고, 이에 따라 의료진의 업무 효율과 환자의 예후를 향상시킬 수 있다.
본 발명은 인공지능 학습 기술을 이용하여 맥파 및 심전도 파형의 분석을 통한 만성질환의 위험도 평가 기능을 제공할 수 있다.
본 발명은 포스트 코로나 시대에 대비한 원격진료 서비스를 포함하는 복합 생활 지원 솔루션을 제공할 수 있다.
본 발명은 심정지, 낙상 등의 위급상황 발생 탐지 시, 요양 병원 의료진 및 응급센터로 위급상황 정보 및 기초 생체신호 정보를 전송하여 외부의 유관기관이 분석 데이터를 실시간으로 수신하여 지원 대상자의 위급 상황을 대비하는 복합 생활 지원 솔루션을 제공할 수 있다.
도 1은 본 발명의 일실시예에 따른 심장 상태 모니터링 시스템을 설명하는 도면이다.
도 2는 본 발명의 일실시예에 따른 심장상태 감지 센서 장치의 구성 요소를 설명하는 도면이다.
도 3은 본 발명의 일실시예에 따른 심장상태 감지 센서 장치의 인공지능 인코더와 관련된 심층학습 모델을 설명하는 도면이다.
도 4a 및 도 4b는 본 발명의 일실시예에 따른 심장상태 감지 센서 장치를 설명하는 도면이다.
도 5는 본 발명의 일실시예에 따른 심장상태 감지 센서 장치의 추가 구성 요소를 설명하는 도면이다.
도 6은 본 발명의 일실시예에 따른 생체신호 측정 및 데이터 전송 주요 이벤트 흐름을 설명하는 도면이다.
도 7은 본 발명의 일실시예에 따른 서버의 구성 요소를 설명하는 도면이다.
도 8 및 도 9는 본 발명의 일실시예에 따른 심장 상태 모니터링 방법을 설명하는 도면이다.
도 10 및 도 11는 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템을 설명하는 도면이다.
도 12는 본 발명의 일실시예에 따른 생체신호 측정 장치의 구성 요소를 설명하는 도면이다.
도 13은 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법을 설명하는 도면이다.
이하, 본 문서의 다양한 실시 예들이 첨부된 도면을 참조하여 기재된다.
실시 예 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시 예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다.
하기에서 다양한 실시 예들을 설명에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.
그리고 후술되는 용어들은 다양한 실시 예들에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용될 수 있다.
단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다.
본 문서에서, "A 또는 B" 또는 "A 및/또는 B 중 적어도 하나" 등의 표현은 함께 나열된 항목들의 모든 가능한 조합을 포함할 수 있다.
"제1," "제2," "첫째," 또는 "둘째," 등의 표현들은 해당 구성요소들을, 순서 또는 중요도에 상관없이 수식할 수 있고, 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 뿐 해당 구성요소들을 한정하지 않는다.
어떤(예: 제1) 구성요소가 다른(예: 제2) 구성요소에 "(기능적으로 또는 통신적으로) 연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되거나, 다른 구성요소(예: 제3 구성요소)를 통하여 연결될 수 있다.
본 명세서에서, "~하도록 구성된(또는 설정된)(configured to)"은 상황에 따라, 예를 들면, 하드웨어적 또는 소프트웨어적으로 "~에 적합한," "~하는 능력을 가지는," "~하도록 변경된," "~하도록 만들어진," "~를 할 수 있는," 또는 "~하도록 설계된"과 상호 호환적으로(interchangeably) 사용될 수 있다.
어떤 상황에서는, "~하도록 구성된 장치"라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 "~할 수 있는" 것을 의미할 수 있다.
예를 들면, 문구 "A, B, 및 C를 수행하도록 구성된(또는 설정된) 프로세서"는 해당 동작을 수행하기 위한 전용 프로세서(예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(예: CPU 또는 application processor)를 의미할 수 있다.
또한, '또는' 이라는 용어는 배타적 논리합 'exclusive or' 이기보다는 포함적인 논리합 'inclusive or' 를 의미한다.
즉, 달리 언급되지 않는 한 또는 문맥으로부터 명확하지 않는 한, 'x가 a 또는 b를 이용한다' 라는 표현은 포함적인 자연 순열들(natural inclusive permutations) 중 어느 하나를 의미한다.
이하 사용되는 '..부', '..기' 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어, 또는, 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.
도 1은 본 발명의 일실시예에 따른 심장 상태 모니터링 시스템을 설명하는 도면이다.
도 1을 참고하면, 심장 상태 모니터링 시스템(100)은 심장상태 감지 센서(110), 게이트웨이(120), 서버(130) 및 사용자 단말 장치(140)로 구성될 수 있다.
본 발명의 일실시예에 따르면 심장상태 감지 센서(110)는 사용자로부터 심전도 신호, 움직임 신호 및 체온 신호 중 적어도 하나의 신호를 포함하는 생체신호를 측정하고, 측정된 생체신호를 인공지능 인코더로 압축 및 암호화하여 저전력 블루투스를 이용하여 게이트웨이(120)로 전송한다.
예를 들어, 인공지능 인코더는 측정된 생체신호를 심층학습 모델에 적용하기 위한 전처리 과정으로서, 생체신호를 슬라이딩 윈도우 기술을 통해 동일한 길이를 가지는 신호로 분할 및 정규화할 수 있다.
예를 들어, 윈도우의 길이는 2초이고, 업데이트 기간은 1초일 수 있다.
여기서, 슬라이딩 윈도우는 비교적 측정 시간이 짧은 신호에 대해서도 분석할 수 있으며, 정규화 과정을 통해 다양한 신호 진폭 및 오프셋이 심층학습 모델이 영향을 미치지 않도록 설정될 수 있다. 또한, 인공지능 인코더의 구성은 도 3을 이용하여 보충 설명하도록 한다.
게이트웨이(120)는 전달된 신호를 서버(130)로 전달한다.
게이트웨이(120)는 심장상태 감지 센서 장치(110) 및 서버(120)와 연동하고, 서버(130)의 병원, 병실, 침상 번호와 같은 환경 설정 및 환자 별 데이터 수집 및 저장을 지원하고, 배터리 로우 이벤트(battery low event) 전송 및 프로세스 모니터링 및 자동 페일 오버(fail over)를 지원한다.
또한, 게이트웨이(120)는 심장상태 감지 센서 장치(110)의 노드 자동 검색, 등록 및 연결을 지원하며, 저전력 블루투스 통신 인터페이스와 심장상태 감지 센서(110)의 배터리 잔량 체크를 지원한다.
서버(130)는 심장상태 감지 센서 장치(110)에서 측정된 생체신호를 인공지능 디코더로 추출하고, 추출된 생체신호의 심전도 신호를 기 저장된 인공지능 알고리즘을 이용하여 기계 학습 및 분석함에 따라 다양한 환경에서 측정된 공개 생체신호 데이터 셋을 활용한 심장상태의 탐지 성능 최적화를 수행하거나, 멀티모달 생체신호를 대상으로 개발된 생체신호 아티팩트 제거 인공지능의 구조를 활용하여 심장상태 감지 센서 장치(110)로부터 측정된 생체신호를 대상으로 모델 학습 및 성능 평가를 수행할 수 있다.
또한, 서버(130)는 인공지능 알고리즘에 기반하여 심전도 신호의 다양한 패턴을 위험도 평가 모델에 반영하기 위해서 심전도 신호의 시간 도메인으로부터 추출되는 특징 정보를 활용한다.
예를 들어, 서버(130)는 CNN(Convolutional Neural Network) 및 DBN(Deep Belief Network) 등의 기계학습 모델을 이용하거나, Gradient Boost 및 XGBooST와 같은 다양한 기계학습 기법을 이용하여 주요 심혈관계 질환에 해당하는 심근경색, 관상동맥 질환 등을 구분하기 위하 구분 모델을 결정할 수 있다.
또한, 서버(130)는 공개 생체신호 데이터셋을 기반으로 SVM(support vector machine), RF(random forest)와 같은 기계학습 기법을 이용하여 결과비교를 통해 구분 모델의 정확도를 계산하여 구분 모델의 효용성도 평가할 수 있다.
또한, 서버(130)는 인공지능 알고리즘을 이용하여 학습 및 분석된 사용자의 심장 상태와 관련된 심혈관계 질환을 결정하고, 결정된 심혈관계 질환과 분석 결과를 사용자 단말(140)로 제공하여 의료진의 심혈관계 질환 진단을 보조하거나, 환자의 예후 변화를 쉽게 인지하도록 보조할 수 있다.
따라서, 본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치와 심장상태와 관련된 생체신호를 인공지능 알고리즘을 이용하는 서버에 기반하여 심근경색, 관상동맥질환과 같은 주요 심혈관계 질환 구분 모델을 결정하고, 결정된 주요 심혈관계 질환 구분 모델에 기반하여 의사의 오진 및 오 경보 발생을 방지할 수 있다.
또한, 본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 환자의 멀티모달 생체신호의 실시간 모니터링을 통해 고령환자 관리를 위한 사물인터넷과 인공지능에 기반한 심장상태 모니터링 시스템을 제공할 수 있다.
도 2는 본 발명의 일실시예에 따른 심장상태 감지 센서 장치의 구성 요소를 설명하는 도면이다.
도 2를 참고하면, 심장상태 감지 센서 장치(200)는 생체신호 모니터링부(210) 및 인공지능 처리부(220)를 포함한다.
본 발명의 일실시예에 따르면 심장상태 감지 센서 장치(200)는 사용자의 심장 상부 또는 심장 근처에 부착되어 사용자로부터 심장 상태와 관련된 데이터를 측정하거나 웨어러블 디바이스 형태로 사용자의 손목에 밴드 형태로 착용되어 심장 상태와 관련된 데이터를 측정한다.
일례로, 생체신호 모니터링부(210)는 사용자로부터 심전도 신호, 움직임 신호 및 체온을 포함하는 생체신호를 측정하고, 측정된 생체신호가 포함된 모니터링 정보를 인공지능 인코더를 통해 출력할 수 있다.
본 발명의 일실시예에 따르면 생체신호 모니터링부(210)는 사용자의 심장 상태 변화에 따른 심장상태 정보와 사용자의 움직임 변화에 따른 움직임 상태 정보 및 체온 정보 중 적어도 하나의 정보를 인공지능 인코더를 통해 암호화 및 압축화하여 출력할 수 있다.
일례로, 인공지능 처리부(220)는 출력된 모니터링 정보에 포함된 심전도 신호를 추출할 수 있다.
또한, 인공지능 처리부(220)는 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출할 수 있다. 또한, 인공지능 처리부(220)는 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 계산된 정확도에 기반하여 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 사용자의 심혈관계 질환을 결정할 수 있다.
예를 들어, 인공지능 처리부(220)는 인공지능 학습 기술에 기반하여 오픈 데이터 셋과 심장이상 종류 모델을 비교하여 구분 정확도를 자동적으로 계산할 수 있다.
본 발명의 일실시예에 따르면 인공지능 처리부(220)는 심전도 신호를 측정할 시 발생되는 데이터 트래픽을 시뮬레이션하고, 시뮬레이션에 기반하여 심장상태 감지 센서의 동작 상태를 결정할 수 있다.
일례로, 인공지능 처리부(220)는 배터리 상태를 주기적으로 확인하여 로우 배터리 상태를 결정하고, 알람 정보를 제공할 수 있다.
예를 들어, 인공지능 처리부(220)는 합성 곱 신경망 층과 장기 단기 기억층(bidirectional long short-term memory, BLSTM)을 포함할 수 있다.
본 발명의 일실시예에 따르면 인공지능 처리부(220)는 심전도 신호 및 움직임 신호 중에서 적어도 하나를 기반으로 사용자의 심정지 및 낙상을 포함하는 위급상황을 탐지하도록 모니터링 정보를 서버에 제공할 수 있다.
따라서, 본 발명은 실시간 부정맥 탐지를 위한 심장상태 분석, 신호 분석 신뢰도 제고를 위한 생체신호 품질 관리, 조기 질환 관리를 위한 주요 심혈관질환 평가를 수행할 수 있도록 환자의 심장상태를 감지하는 심장상태 감지 센서 장치를 제공할 수 있다.
또한, 본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 생체신호를 기 저장된 인공지능 알고리즘에 기반하여 분석함에 따라 빈맥, 서맥, 심방세동, 좌각차단(left bundle branch block, LBBB), 우각차단(right bundle branch block, RBBB), 심방조기수축(premature atrial contraction, PAC), 심실조기 수축(premature ventricular contraction, PVC), 심정지, 정상 심장상태 등과 같은 주요 심장 이상 종류를 탐지할 수 있다.
즉, 본 발명의 일실시예에 따른 심장상태 감지 센서 장치(200)는 부정맥과 관련된 좌각차단, 우각차단, 심방조기수축 및 심실조기 수축을 구분하기 위한 모니터링 정보 정보를 서버 측으로 제공할 수 있다.
또한, 본 발명의 일실시예에 따른 심장상태 감지 센서 장치(200)는 자체적으로 모니터링 정보를 기계학습하여 부정맥과 관련된 좌각차단, 우각차단, 심방조기수축 및 심실조기 수축을 구분하여 구분된 정보를 제공할 수 있다.
도 3은 본 발명의 일실시예에 따른 심장상태 감지 센서 장치의 인공지능 인코더와 관련된 심층학습 모델을 설명하는 도면이다.
도 3을 참고하면, 인공지능 인코더(300)는 인코딩 블록(310) 및 심층학습 신경망(320)으로 구성되고, 인코딩 블록(310)은 심층학습 신경망층, 풀링(pooling)층 및 재성형(reshape)층으로 구성될 수 있다.
본 발명의 일실시예에 따른 인공지능 인코더(300)는 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보에 대한 신호를 압축하고, 압축된 신호를 모니터링 정보로 출력할 수 있다.
예를 들어, 인공지능 인코더(300)는 합성 곱 신경망 층과 양방향 장기 단기 기억층으로 구성될 수 있다.
일례로, 인공지능 인코더(300)는 약 64배 압축된 신호 정보를 심장상태 감지 센서 장치의 인공지능 처리부 또는 서버의 인공지능 처리부로 제공할 수 있다.
예를 들어, 시간 표준화된 이미지로의 변환을 통한 형태학적 정보는 슬라이딩 윈도우 기술을 통해 동일한 길이를 가지는 신호로 분할 및 정규화된 신호에 기반하여 생성될 수 있다.
도 4a 및 도 4b는 본 발명의 일실시예에 따른 심장상태 감지 센서 장치를 설명하는 도면이다.
도 4a는 본 발명의 일실시예에 따른 심장상태 감지 센서 장치(400)가 3개의 리드(lead)를 포함하고, 각 리드가 연결되어 사용자에게 착용되는 경우를 예시한다.
도 4a를 참고하면, 심장상태 감지 센서 장치(400)는 3 개의 리드가 연결되어 구성되는데 심장상태 감지 센서 장치(400)에 제1 리드가 위치하고, 사용자의 신체 두 부분에 제2 리드(410)와 제3 리드(412)가 접착 재질로 이루어져서 사용자의 피부 상에 부착된다.
예를 들어, 심장상태 감지 센서 장치(400)는 심장상태 감지 센서 장치의 본체일 수 있으며 하나의 측정 지점에 해당하는 제1 리드가 위치하고, 제2 리드(410) 및 제3 리드(412)를 통해 측정된 정보를 종합하여 생체신호를 측정할 수 있다.
본 발명의 일실시예에 따르면 심장상태 감지 센서 장치(400)는 전원부, 센서 및 제1 리드로 이루어지고, 센서는 심전도(ECG), 신체활동측정(Actigraph) 및 체온을 측정할 수 있다.
일례로, 제2 리드(410)와 제3 리드(412)는 피복선을 통해 심장상태 감지 센서 장치(400)와 연결될 수 있다.
일례로, 심장상태 감지 센서 장치(400)는 생체신호로서 측정되는 ECG(electrocardiogram)에 의한 심장상태를 모니터링하고, 심장상태에 따른 심전도 신호를 인공지능 인코더를 통해 압축 및 암호화하여 출력할 수 있다.
예를 들어, 심장상태 감지 센서 장치(400)는 생체신호로서 측정되는 신체활동측정에 의한 신체반응을 모니터링하고, 신체반응에 따른 움직임 신호를 인공지능 인코더를 통해 압축 및 암호화하여 출력할 수 있다.
일례로, 심장상태 감지 센서 장치(400)는 생체신호로서 측정되는 체온 신호를 인공지능 인코더를 통해 압축 및 암호화하여 출력할 수 있다.
도 4b는 본 발명의 일실시예에 따른 심장상태 감지 센서 장치(420)가 1개의 리드(lead)로 구성되어 사용자에게 착용되는 경우를 예시한다.
도 4b를 참고하면, 심장상태 감지 센서 장치(420)는 손목 밴드 형태의 웨어러블 디바이스 형태를 가질 수 있다.
본 발명의 일실시예에 따르면 심장상태 감지 센서 장치(420)는 전원부, 센서 및 리드로 이루어지고, 센서는 심전도(ECG), 신체활동측정(Actigraph) 및 체온을 측정할 수 있다.
일례로, 심장상태 감지 센서 장치(420)는 생체신호로서 측정되는 ECG(electrocardiogram)에 의한 심장상태를 모니터링하고, 심장상태에 따른 심전도 신호를 인공지능 인코더를 통해 압축 및 암호화하여 출력할 수 있다.
예를 들어, 심장상태 감지 센서 장치(420)는 생체신호로서 측정되는 신체활동측정에 의한 신체반응을 모니터링하고, 신체반응에 따른 움직임 신호를 인공지능 인코더를 통해 압축 및 암호화하여 출력할 수 있다.
일례로, 심장상태 감지 센서 장치(420)는 생체신호로서 측정되는 체온 신호를 인공지능 인코더를 통해 압축 및 암호화하여 출력할 수 있다.
본 발명의 일실시예에 따르면 심장상태 감지 센서 장치(400) 및 심장상태 감지 센서 장치(420)는 측정된 심전도 신호를 실시간 부정맥 탐지를 위한 심장상태 분석 기술, 신호 분석 신뢰도 제고를 위한 생체신호 품질 관리 인공지능 기술 및 조기 질환 관리를 위한 주요 심혈관질환 평가 인공지능 기술에 적용할 수 있는 데이터로 제공할 수 있다.
일례로, 심장상태 감지 센서 장치(400)는 상대적으로 심장상태 감지 센서 장치(420)보다 정확한 심장기능 모니터링을 수행하고, 심장상태 감지 센서 장치(420)는 심장상태 감지 센서 장치(400)보다 사용자가 편리한 일상을 영유하면서 심장기능 모니터링을 수행할 수 있다.
도 5는 본 발명의 일실시예에 따른 심장상태 감지 센서 장치의 추가 구성 요소를 설명하는 도면이다.
도 5를 참고하면, 심장상태 감지 센서 장치(500)는 마이크로 USB 포트(510), 리튬 폴리머 배터리(520), 전원/동작 스위치(530), ECG 센서(540), 가속도/각속도 센서(550) 및 저전력 블루투스/와이파이(560)을 포함하고, 마이크로 컨트롤러(570)를 통해 상술한 장치 구성 요소들을 제어한다.
본 발명의 일실시예에 따르면 심장상태 감지 센서 장치(500)는 마이크로 USB 포트(510)를 이용하여 리튬 폴리머 배터리(520)를 충전할 수 있다.
예를 들어, 전원/동작 스위치(530)는 사용자의 푸쉬 입력을 수신할 경우, 심장상태 감지 센서 장치(500)를 가동할 수 있다.
예를 들어, ECG 센서(540)는 사용자의 심전도 신호를 측정하고, 가속도/각속도 센서(550)는 사용자의 움직임 신호를 측정한다.
본 발명의 일실시예에 따르면 심장상태 감지 센서 장치(500)는 저전력 블루투스/와이파이(560)를 제어하여 병실 또는 가정 내 위치하는 게이트웨이와 연동되고, ECG 센서(540) 및 가속도/각속도 센서(550)를 통해 측정된 심전도 신호와 움직임 신호 중에서 적어도 하나의 신호를 게이트웨이를 통해 서버로 전송할 수 있다.
도 6은 본 발명의 일실시예에 따른 생체신호 측정 및 데이터 전송 주요 이벤트 흐름을 설명하는 도면이다.
도 6을 참고하면, 생체신호 모니터링부는 ECG 센서(610)를 통해 High Resolution/Speed ECG를 측정할 수 있다. 또한, AD 변환기(620)를 통해 14bit 이상의 해상도와, 100Hz 샘플링된 ECG를 A/D 변환할 수 있다.
또한, 마이크로 컨트롤러(630)는 각 구성요소들의 전반적인 제어와 함께 신호처리를 담당하고, 저전력 블루투스/와이파이 모듈(640)은 근거리 무선통신 기능을 제공하거나, 네트워크에 접속하여 유무선 데이터 통신이 가능하게 한다. 특히, 본 발명에서는 저전력 블루투스/와이파이 모듈(640)을 이용하여 ECG, 6-Axis MEMS 센서의 로데이터 전송이 가능하다.
한편, 도면부호 650은 기기에 대한 배터리의 상태를 측정하기 위한 배터리 상태 측정 모듈의 기능을 수행하고, 도면부호 660은 3축 가속도계(3-Axis Accelerometer)로, 도면부호 670은 3축 자이로스코프(3-Axis Gyroscope MEMS Motiontracking)으로 해석될 수 있다.
축 가속도계(3-Axis Accelerometer)와 3축 자이로스코프(3-Axis Gyroscope MEMS Motiontracking)는 최소 ±16g range, 16bit 100Hz 각속도를 측정할 수 있고, 최대 ±2000dps range, 16bit 100Hz 각속도를 측정할 수 있다.
도 7은 본 발명의 일실시예에 따른 서버의 구성 요소를 설명하는 도면이다.
도 7을 참고하면, 서버(700)는 모니터링 정보 수집부(710), 신호 추출부(720), 인공지능 처리부(730) 및 제어부(740)를 포함한다.
본 발명의 일실시예에 따르면 서버(700)는 심장상태 감지 센서 장치와 연동하여 사용자의 상태 정보를 제공할 수 있다.
일례로, 모니터링 정보 수집부(710)는 사용자로부터 측정된 심전도 신호를 포함하는 생체신호가 포함된 모니터링 정보를 수집할 수 있다.
예를 들어, 모니터링 정보 수집부(710)는 심장상태 감지 센서 장치가 게이트웨이를 통해서 전달하는 모니터링 정보를 수집할 수 있다.
예를 들어, 생체신호는 심장상태 감지 센서장치가 사용자의 심장 상에 부착되어 전극을 통해 측정된 신호로 해석될 수 있다.
본 발명의 일실시예에 따르면 신호 추출부(720)는 전달된 모니터링 정보로부터 인공지능 알고리즘을 이용하여 사용자의 심장 상태 분석을 하기 위한 심전도 신호를 추출할 수 있다.
예를 들어, 신호 추출부(720)는 수집된 모니터링 정보를 디코딩하여 모니터링 정보로부터 심전도 신호에 상응하는 생체신호를 추출할 수 있다.
또한, 신호 추출부(720)는 심장상태 감지 센서 장치가 인공지능 인코더를 이용하여 암호화 및 압축화한 생체신호를 인공지능 디코더를 이용하여 생체신호로 변환할 수 있다.
본 발명의 일실시예에 따르면 인공지능 처리부(730)는 기 저장된 인공지능 기계학습 알고리즘에 기반하여 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 계산된 정확도에 기반하여 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 사용자의 심혈관계 질환을 결정할 수 있다.
구체적으로, 인공지능 처리부(730)는 심전도 신호의 시간 도메인(time domain)에 기반하여 정규화 신호를 생성하며, 생성된 정규화 신호를 시간 표준화된 이미지로 변환하고, 변환된 이미지에 기 저장된 인공지능 기계학습 알고리즘 기반 가중치를 적용하여 압축 신호를 생성하며, 적용된 가중치를 이용하여 압축 신호로부터 복원 신호를 생성하고, 생성된 정규화 신호와 상기 생성된 복원 신호의 차이가 사전 설정된 임계 범위에 해당되도록 가중치를 기계학습하여 심전도 신호의 형태학적 특징에 해당되는 특징 정보를 추출할 수 있다.
예를 들어, 인공지능 처리부(730)는 합성 곱 신경망 층과 장기 단기 기억층(bidirectional long short-term memory, BLSTM)을 포함할 수 있다.
또한, 인공지능 처리부(730)는 특징 정보를 기계학습하여 복수의 심장이상 종류 모델을 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델, 심실조기수축 모델, 심정지 모델 및 정상 심장상태 모델 중 적어도 하나의 모델로 결정할 수 있다.
예를 들어, 인공지능 처리부(730)는 결정된 복수의 심장이상 종류 모델에 대하여 구분 정확도를 계산할 수 있다.
구체적으로, 인공지능 처리부(730)는 하기 수학식 1에 기반하여 복수의 심장이상 종류 모델에 대하여 구분 정확도를 계산할 수 있다.
[수학식 1]
정확도 =(TP + TN)/(TP + TN + FP + FN)
수학식 1에서 TP는 이상 상태를 이상 상태로 정확히 구분하는 경우를 나타낼 수 있고, TN은 정상 상태를 정상 상태로 구분하는 경우를 나타낼 수 있으며, FP는 정상 상태를 이상 상태로 구분하는 경우를 나타낼 수 있고, FN은 정상 상태를 이상 상태로 구분하는 경우를 나타낼 수 있다.
본 발명의 일실시예에 따르면 인공지능 처리부(730)는 오픈 데이터 셋과 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델 및 심실조기수축 모델 중 적어도 하나의 모델과 정상 심장상태 모델을 이용하여 심장이상을 심장이상으로 구분하는 TP(True Positive) 경우, 심장이상을 정상으로 구분하는 FN(False Negative) 경우, 정상을 심장이상으로 구분하는 FP(False Positive) 경우 및 정상을 정상으로 구분하는 TN(True Negative) 경우로 분류한다.
다음으로, 인공지능 처리부(730)는 TP(True Positive) 경우의 수치, FN(False Negative) 경우의 수치, FP(False Positive) 경우의 수치 및 TN(True Negative) 경우의 수치의 결합에 대한 TP(True Positive) 경우의 수치와 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델 및 심실조기수축 모델 중 적어도 하나에 대한 구분 정확도를 계산할 수 있다.
예를 들어, 인공지능 처리부(730)는 인공지능 학습 기술에 기반하여 오픈 데이터 셋과 심장이상 종류 모델을 비교하여 구분 정확도를 자동적으로 계산할 수 있다.
또한, 인공지능 처리부(730)는 오픈 데이터 셋과 심정지 모델과 정상 심장상태 모델을 이용하여 심정지 구간을 심정지 구간으로 구분하는 TP(True Positive) 경우, 심정지 구간을 정상 구간으로 구분하는 FN(False Negative) 경우, 정상 구간을 심정지 구간으로 구분하는 FP(False Positive) 경우 및 정상 구간을 정상 구간으로 구분하는 TN(True Negative) 경우로 분류할 수 있다.
다음으로, 인공지능 처리부(730)는 TP(True Positive) 경우의 수치, FN(False Negative) 경우의 수치, FP(False Positive) 경우의 수치 및 TN(True Negative) 경우의 수치의 결합에 대한 TP(True Positive) 경우의 수치와 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 위급 상황 구분 정확도를 계산할 수 있다.
또한, 인공지능 처리부(730)는 아티팩트 신호를 상기 아티팩트 신호로 구분하는 TP(True Positive) 경우, 아티팩트 신호를 정상 신호 구분하는 FN(False Negative) 경우 및 정상 신호를 아티팩트 신호로 구분하는 FP(False Positive) 경우, 정상 신호를 정상 신호로 구분하는 TN(True Negative) 경우로 분류하고, TP(True Positive) 경우의 수치, FN(False Negative) 경우의 수치, FP(False Positive) 경우의 수치 및 TN(True Negative) 경우의 수치의 결합에 대한 TP(True Positive) 경우의 수치와 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 아티팩트 제거 정확도를 계산할 수 있다.
본 발명의 일실시예에 따르면 인공지능 처리부(730)는 신호 품질 관리 인공지능, 부정맥 탐지 인공지능, 심혈관질환 평가 인공지능을 포함하여, 심장상태 감지 센서 장치로부터 전달되는 생체신호의 신호 품질을 관리하고, 부정맥과 심혈관질환을 평가 및 탐지할 수 있다.
본 발명의 일실시예에 따르면 제어부(740)는 인공지능 처리부(730)에 의해 결정된 심혈관계 질환을 사용자 단말 장치로 제공하도록 제어할 수 있다. 여기서, 제어되는 장치는 통신 장치에 해당될 수 있다.
일례로, 사용자 단말 장치는 심혈관계 질환과 관련된 분석 정보를 수신하고, 수신된 분석 정보에 포함된 심혈관계 질환 결정 정보와 분석결과를 디스플레이를 통해 제공할 수 있다.
본 발명의 일실시예에 따르면 제어부(740)는 심전도 신호 및 움직임 신호 중 적어도 하나가 측정된 후, 측정된 심전도 신호의 개수 또는 측정된 움직임 신호의 개수를 계산하고, 계산된 심전도 신호의 개수 또는 계산된 움직임 신호의 개수를 임계 값과 비교하여 심전도 신호 또는 움직임 신호의 데이터 수신 상태를 확인할 수 있다.
또한, 제어부(740)는 심전도 신호 또는 움직임 신호의 수신 상태가 불량할 경우, 심장상태 감지 센서 장치로 추가 데이터를 의뢰하거나 추가 측정을 요청할 수 있다.
따라서, 본 발명은 부정맥의 지속적 감시를 통해 진단보조 및 의료비용 절감에 기여할 수 있다.
또한, 본 발명은 환자의 현재 상태를 정확히 측정 및 분석함에 따라 병실에서 발생될 수 있는 오 경보의 횟수를 감소시키고, 이에 따라 의료진의 업무 효율과 환자의 예후를 향상시킬 수 있다.
또한, 본 발명은 인공지능 학습 기술을 이용하여 맥파 및 심전도 파형의 분석을 통한 만성질환의 위험도 평가 기능을 제공할 수 있다.
도 8 및 도 9는 본 발명의 일실시예에 따른 심장 상태 모니터링 방법을 설명하는 도면이다.
도 8은 본 발명의 일실시예에 따른 심장 상태 모니터링 방법이 심장상태 감지 센서 장치를 이용하여 측정된 생체신호를 기 저장된 인공지능 알고리즘을 이용하여 학습 및 분석한 후 사용자의 심혈관계 질환 결정을 보조하는 실시예를 설명한다.
도 8을 참고하면, 본 발명의 일실시예에 따른 심장 상태 모니터링 방법은 단계(801)에서 심전도 신호를 측정한다.
즉, 심장 상태 모니터링 방법은 사용자에 부착된 심장상태 감지 센서 장치를 이용하여 심전도 신호를 측정한다.
단계(802)에서 본 발명의 일실시예에 따른 심장 상태 모니터링 방법은 심전도 신호의 특징 정보를 추출한다.
즉, 심장 상태 모니터링 방법은 심전도 신호의 시간 도메인(time domain) 을 기계학습하여 특징 정보를 추출한다.
구체적으로, 심장 상태 모니터링 방법은 심전도 신호의 시간 도메인(time domain)에 기반하여 생성된 정규화 신호를 시간 표준화된 이미지로 변환하고, 변환된 이미지에 기 저장된 인공지능 기계학습 알고리즘 기반 가중치를 적용하여 압축 신호를 생성하며, 적용된 가중치를 이용하여 압축 신호로부터 복원 신호를 생성하고, 생성된 정규화 신호와 생성된 복원 신호의 차이가 사전 설정된 임계 범위에 해당되도록 가중치를 기계학습하여 심전도 신호의 형태학적 특징에 해당되는 특징 정보를 추출할 수 있다.
단계(803)에서 본 발명의 일실시예에 따른 심장 상태 모니터링 방법은 특징 정보를 기계학습하여 심장이상 종류 모델을 결정한다.
즉, 심장 상태 모니터링 방법은 단계(802)에서 추출된 특징 정보를 기계학습하여 복수의 심장이상 종류 모델을 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델, 심실조기수축 모델, 심정지 모델 및 정상 심장상태 모델 중 적어도 하나의 모델로 결정할 수 있다.
단계(804)에서 본 발명의 일실시예에 따른 심장 상태 모니터링 방법은 복수의 심장 이상 종류 모델에 대한 구분 정확도를 계산한다.
즉, 심장 상태 모니터링 방법은 복수의 심장 이상 종류 모델의 판단 결과에 따라 복수의 심장 이상 종류 모델에 대한 구분 정확도를 수치화할 수 있다.
심장 상태 모니터링 방법이 복수의 심장 이상 종류 모델에 대한 구분 정확도를 계산하는 단계는 도 9를 이용하여 보충 설명한다.
단계(805)에서 본 발명의 일실시예에 따른 심장 상태 모니터링 방법은 정확도, 심장이상 종류 모델 및 공개된 심혈관계 질환 데이터를 이용하여 심혈관계 질환을 결정한다.
즉, 심장 상태 모니터링 방법은 단계(804)에서 계산된 정확도에 기반하여 단계(803)에서 결정된 심장이상 종류 모델과 공개 데이터로 공개된 심혈관계 질환 데이터를 비교 분석하여 심장상태 감지 센서를 착용하고 있는 사용자의 심혈관계 질환을 결정할 수 있다.
일실시예에 따른 심장 상태 모니터링 방법은 단계(801)을 통해 사용자로부터 움직임 신호 및 체온 신호를 더 측정할 수 있다.
이에, 심장 상태 모니터링 방법은 움직임 신호가 더 포함된 모니터링 정보를 인공지능 인코더를 통해 출력하고, 측정된 심전도 신호 및 측정된 움직임 신호를 기반으로 사용자의 심정지 및 낙상을 포함하는 위급상황을 탐지할 수도 있다.
도 9는 본 발명의 일실시예에 따른 심장 상태 모니터링 방법이 심장상태 감지 센서 장치를 이용하여 측정된 생체신호를 기 저장된 인공지능 알고리즘을 이용하여 학습 및 분석하여 결정한 복수의 심장 이상 종류 모델에 대한 평가를 수행하는 실시예를 설명한다.
도 9를 참고하면, 본 발명의 일실시예에 따른 심장 상태 모니터링 방법은 단계(901)에서 심장이상 종류 모델을 이용하여 심장 상태를 복수의 경우로 구분한다.
즉, 심장 상태 모니터링 방법은 복수의 심장이상 종류 모델 각각에 대하여 심장이상을 심장이상으로 구분하는 TP(True Positive) 경우, 심장이상을 정상으로 구분하는 FN(False Negative) 경우, 정상을 심장이상으로 구분하는 FP(False Positive) 경우, 정상을 정상으로 구분하는 TN(True Negative) 경우에 해당하는 4 종류의 경우의 수로 구분한다.
단계(902)에서 본 발명의 일실시예에 따른 심장 상태 모니터링 방법은 단계(901)에서 구분된 복수의 경우의 수치를 이용하여 구분 정확도를 계산한다.
즉, 심장 상태 모니터링 방법은 TP(True Positive) 경우의 수치, FN(False Negative) 경우의 수치, FP(False Positive) 경우의 수치 및 TN(True Negative) 경우의 수치의 결합에 대한 TP(True Positive) 경우의 수치와 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 구분 정확도를 계산한다.
단계(903)에서 본 발명의 일실시예에 따른 심장 상태 모니터링 방법은 단계(902)에서 계산된 구분 정확도를 이용하여 심장기능 이상, 위급 상황 및 아티팩트 제거율 중 적어도 하나를 결정할 수 있다.
즉, 심장 상태 모니터링 방법은 단계(902)에서 계산된 구분 정확도의 수치로 빈맥, 서맥, 심방세동, 좌각차단, 우각차단, 심방조기수축, 심실 조기수축과 관련된 심장 이상 종류의 구분 정확도가 임계값보다 높을 경우 심장 이상 종류를 빈맥, 서맥, 심방세동, 좌각차단, 우각차단, 심방조기수축 및 심실 조기수축 중 적어도 하나로 결정하고, 심정지와 관련하여 위급 상황을 결정하며, 아티팩트 제거 확률에 기반하여 아티팩트 제거율을 결정할 수 있다.
따라서, 본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 생체신호를 기 저장된 인공지능 알고리즘에 기반하여 분석함에 따라 빈맥, 서맥, 심방세동, 좌각차단, 우각차단, 심방조기수축, 심실조기 수축, 심정지 등과 같은 주요 심장 이상 종류를 탐지할 수 있다.
또한, 본 발명은 기 저장된 인공지능 알고리즘과 오픈 데이터 셋을 이용하여 심장기능 이상 구분 정확도, 위급 상황 구분 정확도 및 아티팩트 신호 검출 정확도 계산함에따라 환자에 부착되어 환자의 심장상태를 감지하는 심장상태 감지 센서 장치로부터 측정되는 생체신호의 측정 정확도를 학습 및 평가하여 생체신호의 측정 정확도를 개선할 수 있다.
도 10 및 도 11은 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템을 설명하는 도면이다.
도 10은 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 구성요소를 예시한다.
도 10을 참고하면, 복합 생활 지원 솔루션 제공 시스템(1000)은 생활 실내 모니터링 시스템(1010)과 심장 상태 모니터링 시스템(1020)을 결합하여 생활 실내 모니터링 시스템(1010)에 활용되는 생체신호 측정 장치와 심장 상태 모니터링 시스템(1020)에서 활용되는 생체신호 측정 장치의 측정 데이터를 결합적으로 활용하여 복합생활지원 플랫폼(1030)을 제공할 수 있다.
본 발명의 일실시예에 따르면 복합생활지원 플랫폼(1030)은 인공지능에 기반하여 분석 및 학습함에 따라 심장이상 종류 모델을 결정하고, 결정된 심장이상 종류 모델에 대한 평가에 기반하여 심혈관계 질환에 대한 보다 정확한 결정을 지원함에 따라 맞춤형 의료 서비스 제공 및 심장질환과 관련된 의사 결정을 지원할 수 있다.
따라서, 복합생활지원 플랫폼(1030)은 유관기관, 응급센터, 보호자, 의료진이 사용하는 사용자 단말 장치(1040)측으로 생체신호 측정 장치의 측정 데이터를 인공지능에 기반하여 분석 및 학습함에 따라 심장이상 종류 모델을 결정하고, 결정된 심장이상 종류 모델에 대한 평가에 기반하여 심혈관계 질환에 대한 보다 정확한 결정을 지원함에 따라 맞춤형 의료 서비스 제공 및 심장질환과 관련된 의사 결정을 지원할 수 있다.
본 발명의 일실시예에 따르면 생활 실내 모니터링 시스템(1010)은 3D 카메라를 통해 지원 대상자의 일상생활 패턴 분석을 위한 3D 이미지를 획득하여 지원 대상자의 낙상 사고를 탐지하고, 지원 대상자가 착용한 스마트 밴드를 이용하여 생체신호 모니터링 및 실시간 심장이상 평가 기능을 제공할 수 있다.
본 발명의 일실시예에 따르면 심장 상태 모니터링 시스템(1020)은 심장 상태 감지 센서를 이용하여 지원 대상자의 심전도, 맥파, 움직임 및 체온을 감시하면서 실시간으로 서버에 전달하고, 전달된 데이터를 사용자 단말 장치에 제공할 수 있다.
본 발명의 일실시예에 따르면 복합 생활 지원 솔루션 제공 시스템(1000)은 생체신호 측정 장치, 게이트웨이, 서버, 사용자 단말 장치로 구성될 수 있다.
일례로, 생체신호 측정 장치는 지원 대상자로부터 심전도 신호, 움직임 신호 및 맥파 신호 중 적어도 하나를 포함하는 생체신호를 측정하고, 측정된 생체신호가 포함된 모니터링 정보를 전송할 수 있다.
또한, 게이트웨이는 모니터링 정보를 서버로 전송할 수 있다.
또한, 서버는 생체신호 측정 장치로부터 전송된 모니터링 정보로부터 상기 생체신호의 심전도 신호를 추출하고, 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출할 수 있다.
또한, 서버는 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 계산된 정확도에 기반하여 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 지원 대상자의 심혈관계 질환 및 위급 상태 여부를 결정하고, 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 생체신호의 변동 정보를 사용자 단말 장치로 피드백할 수 있다.
본 발명의 일실시예에 따르면 사용자 단말 장치는 의료진 단말 장치, 보호자 단말 장치 및 응급센터 단말 장치 중 적어도 하나를 포함할 수 있다.
또한, 사용자 단말 장치는 결정된 심혈관계 질환 및 위급 상태 여부에 대한 정보와 생체신호의 변동 정보 중 적어도 하나를 포함하는 정보를 출력하고, 의료진 단말 장치에 출력되는 정보에 따라 생성되는 처방정보에 기초하여 보호자 단말 장치 및 응급센터 단말 장치에서도 처방정보가 업데이트될 수 있다.
예를 들어, 지원 대상자는 독거노인, 장애인, 중환자 및 어린 환자 중 적어도 하나에 해당할 수 있다.
따라서, 복합 생활 지원 솔루션 제공 시스템(1000)은 독거노인 건강관리를 위한 병동 모니터링, 요양병원 및 실버타운 중 적어도 하나에 대한 시설에서 복합 생활 지원 솔루션을 제공할 수 있다.
또한, 복합 생활 지원 솔루션 제공 시스템(1000)은 독거노인의 건강관리, 긴급상황 탐지 및 돌연사 및 고독사를 방지하고, 요양병원 및 일반 병동 모니터링에 기반하여 병원 환자 관리의 효율성을 높일 수 있다.
따라서, 복합 생활 지원 솔루션 제공 시스템(1000)은 독거노인 돌연사 및 고독사를 예방하고, 독거노인 심장건강 관리, 독거노인 만성질환 예방, 긴급 상황 시 신속한 환자 이송 및 치료를 제공할 수 있다.
이하, 도 11를 이용하여 심장 상태 모니터링 시스템(1020)의 구성 요소를 추가 설명한다.
도 11는 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템에서 심장 상태 모니터링 시스템의 구성 요소를 설명한다.
도 11를 참고하면, 심장 상태 모니터링 시스템(1100)은 생체신호 측정 장치(1110), 게이트웨이(1120), 서버(1130) 및 사용자 단말 장치(1140)로 구성될 수 있다.
본 발명의 일실시예에 따르면 생체신호 측정 장치(1120)는 지원 대상자로부터 심전도 신호, 움직임 신호 및 체온 신호를 포함하는 생체신호를 측정하고, 측정된 생체신호를 인공지능 인코더로 압축 및 암호화하여 저전력 블루투스를 이용하여 게이트웨이(1120)로 전송한다.
예를 들어, 인공지능 인코더는 측정된 생체신호를 심층학습 모델에 적용하기 위한 전처리 과정으로서, 생체신호를 슬라이딩 윈도우 기술을 통해 동일한 길이를 가지는 신호로 분할 및 정규화할 수 있다.
예를 들어, 윈도우의 길이는 2초이고, 업데이트 기간은 1초일 수 있다.
여기서, 슬라이딩 윈도우는 비교적 측정 시간이 짧은 신호에 대해서도 분석할 수 있으며, 정규화 과정을 통해 다양한 신호 진폭 및 오프셋이 심층학습 모델이 영향을 미치지 않도록 설정될 수 있다. 또한, 인공지능 인코더의 구성은 도 4를 이용하여 보충 설명하도록 한다.
게이트웨이(1120)는 전달된 신호를 서버(1130)로 전달한다.
게이트웨이(1120)는 심장상태 감지 센서 장치(1120) 및 서버(1120)와 연동하고, 서버(1130)의 병원, 병실, 침상 번호와 같은 환경 설정 및 환자 별 데이터 수집 및 저장을 지원하고, 배터리 로우 이벤트(battery low event) 전송 및 프로세스 모니터링 및 자동 페일 오버(fail over)를 지원한다.
또한, 게이트웨이(1120)는 심장상태 감지 센서 장치(1120)의 노드 자동 검색, 등록 및 연결을 지원하며, 저전력 블루투스 통신 인터페이스와 심장상태 감지 센서(1120)의 배터리 잔량 체크를 지원한다.
서버(1130)는 심장상태 감지 센서 장치(1120)에서 측정된 생체신호를 인공지능 디코더로 추출하고, 추출된 생체신호의 심전도 신호를 기 저장된 인공지능 알고리즘을 이용하여 기계 학습 및 분석함에 따라 다양한 환경에서 측정된 공개 생체신호 데이터 셋을 활용한 심장상태의 탐지 성능 최적화를 수행하거나, 멀티모달 생체신호를 대상으로 개발된 생체신호 아티팩트 제거 인공지능의 구조를 활용하여 심장상태 감지 센서 장치(1120)로부터 측정된 생체신호를 대상으로 모델 학습 및 성능 평가를 수행할 수 있다.
또한, 서버(1130)는 인공지능 알고리즘에 기반하여 심전도 신호의 다양한 패턴을 위험도 평가 모델에 반영하기 위해서 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 활용한다.
예를 들어, 서버(1130)는 CNN(Convolutional Neural Network) 및 DBN(Deep Belief Network) 등의 기계학습 모델을 이용하거나, Gradient Boost 및 XGBooST와 같은 다양한 기계학습 기법을 이용하여 주요 심혈관계 질환에 해당하는 심근경색, 관상동맥 질환 등을 구분하기 위하 구분 모델을 결정할 수 있다.
또한, 서버(1130)는 공개 생체신호 데이터셋을 기반으로 SVM(support vector machine), RF(random forest)와 같은 기계학습 기법을 이용하여 결과비교를 통해 구분 모델의 정확도를 계산하여 구분 모델의 효용성도 평가할 수 있다.
또한, 서버(1130)는 인공지능 알고리즘을 이용하여 학습 및 분석된 지원 대상자의 심장 상태와 관련된 심혈관계 질환을 결정하고, 결정된 심혈관계 질환과 분석 결과를 사용자 단말 장치(1140)로 제공하여 의료진의 심혈관계 질환 진단을 보조하거나, 환자의 예후 변화를 쉽게 인지하도록 보조할 수 있다.
따라서, 본 발명은 환자에 부착되어 환자의 상태를 감지하는 생체신호 측정 장치와 심장상태와 관련된 생체신호를 인공지능 알고리즘을 이용하는 서버에 기반하여 심근경색, 관상동맥질환과 같은 주요 심혈관계 질환 구분 모델을 결정하고, 결정된 주요 심혈관계 질환 구분 모델에 기반하여 의사의 오진 및 오 경보 발생을 방지할 수 있다.
또한, 본 발명은 포스트 코로나 시대에 대비한 원격진료 서비스를 포함하는 복합 생활 지원 솔루션을 제공할 수 있다.
도 12는 본 발명의 일실시예에 따른 생체신호 측정 장치의 구성 요소를 설명하는 도면이다.
도 12은 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템에 포함되는 생체신호 측정 장치의 구성 요소를 예시한다.
도 12를 참고하면, 생체신호 측정 장치(1200)는 생체신호 모니터링부(1210) 및 제어부(1220)를 포함한다.
본 발명의 일실시예에 따르면 생체신호 측정 장치(1200)는 지원 대상자의 심장 상부 또는 심장 근처에 부착되어 지원 대상자로부터 심장 상태와 관련된 데이터를 측정하거나 웨어러블 디바이스 형태로 사용자의 손목에 밴드 형태로 착용되어 심장 상태와 관련된 데이터를 측정한다.
또한, 생체신호 측정 장치(1200)는 일상생활 패턴 분석을 위한 3D 깊이 이미지 촬영을 위한 3D 깊이 카메라, 지원 대상자의 귀, 목 또는 손목 중에서 적어도 하나에 착용 가능한 스마트 밴드 및 심장상태 감지 센서 장치를 포함할 수 있다.
일례로, 생체신호 모니터링부(1210)는 지원 대상자로부터 3D 깊이 이미지, 심전도 신호, 맥파 신호, 체온 신호 및 움직임 신호 중 적어도 하나를 포함하는 생체신호를 측정하고, 측정된 생체신호가 포함된 모니터링 정보를 인공지능 인코더를 통해 출력할 수 있다.
본 발명의 일실시예에 따르면 생체신호 모니터링부(1210)는 지원 대상자의 심장 상태 변화에 따른 심장상태 정보와 지원 대상자의 움직임 변화에 따른 움직임 상태 정보를 인공지능 인코더를 통해 암호화 및 압축화하여 출력할 수 있다.
본 발명의 일실시예에 따르면 생체신호 모니터링부(1210)는 생체신호로서 귀, 목 또는 손목 중에서 적어도 하나로부터 측정되는 신체활동측정(Actigraph)에 의한 신체반응 및 체온을 모니터링하고, 신체반응에 따른 움직임 신호 및 체온 신호를 인공지능 인코더를 통해 암호화하여 출력할 수 있다.
일례로, 생체신호 모니터링부(1210)는, 생체신호로서 귀, 목 또는 손목 중에서 적어도 하나로부터 측정되는 PPG(photoplethysmography)에 의한 신경반응을 모니터링하고, 신경반응에 따른 자율신경정보를 인공지능 인코더를 통해 암호화하여 출력할 수 있다.
일례로, 제어부(1230)는 모니터링 정보를 근거리 무선통신을 이용하여 근처에 위치하는 게이트웨이를 통해 서버로 전송할 수 있다.
본 발명의 일실시예에 따르면 제어부(1230)는 서버가 모니터링 정보에 포함된 심전도 신호를 추출하고, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 계산된 정확도에 기반하여 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 지원 대상자의 심혈관계 질환을 결정할 수 있도록 모니터링 정보를 서버에 제공할 수 있다.
일례로, 제어부(1230)는 3D 깊이 이미지, 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호 중 적어도 하나를 측정할 시 발생되는 데이터 트래픽을 시뮬레이션하고, 시뮬레이션에 기반하여 상기 생체신호 측정 장치의 동작 상태를 결정 할 수 있다.
일례로, 제어부(1230)는 배터리 상태를 주기적으로 확인하여 로우 배터리 상태를 결정하고, 알람 정보를 제공할 수 있다.
본 발명의 일실시예에 따르면 제어부(1230)는 3D 깊이 이미지, 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호를 기반으로 지원 대상자의 심정지 및 낙상을 포함하는 위급상황 탐지하도록 모니터링 정보를 서버에 제공할 수 있다.
본 발명의 일실시예에 따르면 생체신호 측정 장치(1200)는 인공지능 처리부(1220)를 추가로 포함할 수 있다.
일례로, 인공지능 처리부(1220)는 생체신호 모니터링부(1210)로부터 출력된 모니터링 정보에 포함된 심전도 신호를 추출하고, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 계산된 정확도에 기반하여 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 사용자의 심혈관계 질환을 결정할 수 있다.
예를 들어, 인공지능 처리부(1220)는 인공지능 학습 기술에 기반하여 오픈 데이터 셋과 심장이상 종류 모델을 비교하여 구분 정확도를 자동적으로 계산할 수 있다.
예를 들어, 인공지능 처리부(1220)는 합성 곱 신경망 층과 장기 단기 기억층(bidirectional long short-term memory, BLSTM)을 포함할 수 있다.
본 발명의 일실시예에 따르면 인공지능 처리부(1220)는 도 8에서 설명될 서버의 인공지능 처리부와 동일한 정보 처리 기능을 보유하여 인공지능 기계학습 알고리즘에 기반한 학습 및 분석이 가능하다.
즉, 본 발명의 일실시예에 따른 생체신호 측정 장치(1200)는 부정맥과 관련된 좌각차단, 우각차단, 심방조기수축 및 심실조기 수축을 구분하기 위한 모니터링 정보 정보를 서버 측으로 제공할 수 있다.
또한, 본 발명의 일실시예에 따른 생체신호 측정 장치(1200)는 자체적으로 모니터링 정보를 기계학습하여 부정맥과 관련된 좌각차단, 우각차단, 심방조기수축 및 심실조기 수축을 구분하여 구분된 정보를 제공할 수 있다.
따라서, 본 발명은 심정지, 낙상 등의 위급상황 발생 탐지 시, 요양 병원 의료진 및 응급센터로 위급상황 정보 및 기초 생체신호 정보를 전송하여 외부의 유관기관이 분석 데이터를 실시간으로 수신하여 지원 대상자의 위급 상황을 대비하는 복합 생활 지원 솔루션을 제공할 수 있다.
또한, 본 발명은 환자의 현재 상태를 정확히 측정 및 분석함에 따라 병실에서 발생될 수 있는 오 경보의 횟수를 감소시키고, 이에 따라 의료진의 업무 효율과 환자의 예후를 향상시킬 수 있다.
도 13는 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법을 설명하는 도면이다.
도 13는 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템이 생체신호 측정 장치를 이용하여 측정된 생체신호를 기 저장된 인공지능 알고리즘을 이용하여 학습 및 분석한 후 지원 대상자의 심혈관계 질환 및 위급 상태 여부에 대한 정보와 생체신호의 변동 정보 중 적어도 하나의 정보를 사용자 단말 장치로 피드백하여 복합 생활 지원 솔루션을 제공하는 실시예를 설명한다.
도 13를 참고하면, 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 단계(1301)에서 지원 대상자의 생체신호를 측정한다.
즉, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 지원 대상자의 심장 상측에 부착된 생체신호 측정 장치, 지원 대상자의 귀, 목 또는 손목 중에서 적어도 하나에 착용된 생체신호 측정 장치를 이용하여 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호를 포함하는 생체신호를 측정한다.
단계(1302)에서 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 단계(1301)에서 측정된 생체신호를 포함하는 모니터링 정보를 서버로 전송한다.
즉, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호를 포함하는 생체신호를 인공지능 인코더를 이용하여 암호화 및 압축화하여 모니터링 정보를 생성하고, 생성된 모니터링 정보를 인접한 게이트웨이를 통해 서버로 전송한다.
단계(1303)에서 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 인공지능 기계학습 알고리즘에 기반하여 심장이상 종류 모델을 결정하고, 심장이상 종류 모델에 기반한 구분도를 계산한다.
구체적으로, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 심전도 신호의 시간 도메인(time domain)에 기반하여 생성된 정규화 신호를 시간 표준화된 이미지로 변환하고, 변환된 이미지에 기 저장된 인공지능 기계학습 알고리즘 기반 가중치를 적용하여 압축 신호를 생성하며, 적용된 가중치를 이용하여 압축 신호로부터 복원 신호를 생성하고, 생성된 정규화 신호와 생성된 복원 신호의 차이가 사전 설정된 임계 범위에 해당되도록 가중치를 기계학습하여 심전도 신호의 형태학적 특징에 해당되는 특징 정보를 추출할 수 있다.
또한, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 추출된 특징 정보를 기계학습하여 복수의 심장이상 종류 모델을 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델, 심실조기수축 모델, 정상 심장상태 모델 및 심정지 모델로 결정할 수 있다.
또한, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 복수의 심장 이상 종류 모델에 대한 구분 정확도를 계산한다.
즉, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 복수의 심장 이상 종류 모델의 판단 결과에 따라 복수의 심장 이상 종류 모델에 대한 구분 정확도를 수치화할 수 있다.
구체적으로, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 복수의 심장이상 종류 모델 각각에 대하여 심장이상을 심장이상으로 구분하는 TP(True Positive) 경우, 심장이상을 정상으로 구분하는 FN(False Negative) 경우, 정상을 심장이상으로 구분하는 FP(False Positive) 경우, 정상을 정상으로 구분하는 TN(True Negative) 경우에 해당하는 4 종류의 경우의 수로 구분한다.
또한, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 TP(True Positive) 경우의 수치, FN(False Negative) 경우의 수치, FP(False Positive) 경우의 수치 및 TN(True Negative) 경우의 수치의 결합에 대한 TP(True Positive) 경우의 수치와 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 구분 정확도를 계산한다.
또한, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 계산된 구분 정확도의 수치로 빈맥, 서맥, 심방세동, 좌각차단, 우각차단, 심방조기수축, 심실 조기수축과 관련된 심장 이상 종류의 구분 정확도가 임계값보다 높을 경우 심장 이상 종류를 빈맥, 서맥, 심방세동, 좌각차단, 우각차단, 심방조기수축 및 심실 조기수축 중 적어도 하나로 결정하고, 심정지와 관련하여 위급 상황을 결정하며, 아티팩트 제거 확률에 기반하여 아티팩트 제거율을 결정할 수 있다.
단계(1304)에서 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 정확도, 심장이상 종류 모델 및 공개된 심혈관계 질환 데이터를 이용하여 심혈관계 질환을 결정한다.
즉, 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 단계(1303)에서 계산된 정확도에 기반하여 단계(1303)에서 결정된 심장이상 종류 모델과 공개 데이터로 공개된 심혈관계 질환 데이터를 비교 분석하여 생체신호 측정 장치를 착용하고 있는 지원 대상자의 심혈관계 질환을 결정할 수 있다.
단계(1305)에서 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 생체 신호 변동 정보와 심혈관계 질환 및 위급 상태 여부를 사용자 단말 장치로 피드백할 수 있다.
단계(1306)에서 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 피드백 정보를 표시하고, 피드백 정보에 따라 알람 피드백을 제공할 수 있다.
즉, 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보 중 적어도 하나를 포함하는 정보를 출력하고, 의료진 단말 장치에 출력되는 정보에 따라 생성되는 처방정보에 기초하여 보호자 단말 장치 및 응급센터 단말 장치에도 처방정보가 업데이트할 수 있다.
또한, 본 발명의 일실시예에 따른 복합 생활 지원 솔루션 제공 시스템의 동작 방법은 결정된 심혈관계 질환 및 위급 상태 여부에 대한 정보와 생체신호의 변동 정보에 기반하여 지원 대상자의 간호 관리 서비스, 질환 데이터 관리 서비스, 질환 데이터 시각화, 질환 데이터 통계 서비스 및 응급 푸쉬 알림 서비스 중 적어도 하나를 제공할 수 있다.
따라서, 본 발명은 실시간 부정맥 탐지를 위한 심장상태 분석, 신호 분석 신뢰도 제고를 위한 생체신호 품질 관리, 조기 질환 관리를 위한 주요 심혈관질환 평가를 수행할 수 있도록 환자의 심장상태를 감지할 수 있다.
또한, 본 발명은 환자에 부착되어 환자의 심장상태를 감지하는 생체신호 측정 장치로부터 측정되는 생체신호를 기 저장된 인공지능 알고리즘에 기반하여 분석함에 따라 빈맥, 서맥, 심방세동, 좌각차단, 우각차단, 심방조기수축, 심실조기 수축, 심정지 등과 같은 주요 심장 이상 종류를 탐지할 수 있다.
또한, 본 발명은 기 저장된 인공지능 알고리즘과 오픈 데이터 셋을 이용하여 심장기능 이상 구분 정확도, 위급 상황 구분 정확도 및 아티팩트 신호 검출 정확도 계산함에따라 환자에 부착되어 환자의 심장상태를 감지하는 생체신호 측정 장치로부터 측정되는 생체신호의 측정 정확도를 학습 및 평가하여 생체신호의 측정 정확도를 개선할 수 있다.
이상에서 설명된 장치는 하드웨어 구성요소, 소프트웨어 구성요소, 및/또는 하드웨어 구성요소 및 소프트웨어 구성요소의 조합으로 구현될 수 있다. 예를 들어, 실시예들에서 설명된 장치 및 구성요소는, 예를 들어, 프로세서, 콘트롤러, ALU(arithmetic logic unit), 디지털 신호 프로세서(digital signal processor), 마이크로컴퓨터, FPA(field programmable array), PLU(programmable logic unit), 마이크로프로세서, 또는 명령(instruction)을 실행하고 응답할 수 있는 다른 어떠한 장치와 같이, 하나 이상의 범용 컴퓨터 또는 특수 목적 컴퓨터를 이용하여 구현될 수 있다. 처리 장치는 운영 체제(OS) 및 상기 운영 체제 상에서 수행되는 하나 이상의 소프트웨어 애플리케이션을 수행할 수 있다. 또한, 처리 장치는 소프트웨어의 실행에 응답하여, 데이터를 접근, 저장, 조작, 처리 및 생성할 수도 있다. 이해의 편의를 위하여, 처리 장치는 하나가 사용되는 것으로 설명된 경우도 있지만, 해당 기술분야에서 통상의 지식을 가진 자는, 처리 장치가 복수 개의 처리 요소(processing element) 및/또는 복수 유형의 처리 요소를 포함할 수 있음을 알 수 있다. 예를 들어, 처리 장치는 복수 개의 프로세서 또는 하나의 프로세서 및 하나의 콘트롤러를 포함할 수 있다. 또한, 병렬 프로세서(parallel processor)와 같은, 다른 처리 구성(processing configuration)도 가능하다.
소프트웨어는 컴퓨터 프로그램(computer program), 코드(code), 명령(instruction), 또는 이들 중 하나 이상의 조합을 포함할 수 있으며, 원하는 대로 동작하도록 처리 장치를 구성하거나 독립적으로 또는 결합적으로(collectively) 처리 장치를 명령할 수 있다. 소프트웨어 및/또는 데이터는, 처리 장치에 의하여 해석되거나 처리 장치에 명령 또는 데이터를 제공하기 위하여, 어떤 유형의 기계, 구성요소(component), 물리적 장치, 가상 장치(virtual equipment), 컴퓨터 저장 매체 또는 장치, 또는 전송되는 신호 파(signal wave)에 영구적으로, 또는 일시적으로 구체화(embody)될 수 있다. 소프트웨어는 네트워크로 연결된 컴퓨터 시스템 상에 분산되어서, 분산된 방법으로 저장되거나 실행될 수도 있다. 소프트웨어 및 데이터는 하나 이상의 컴퓨터 판독 가능 기록 매체에 저장될 수 있다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (20)

  1. 심장상태 감지 센서 장치와 연동하여 사용자의 상태 정보를 제공하는 서버에 있어서,
    사용자로부터 측정된 심전도 신호를 포함하는 생체신호가 포함된 모니터링 정보를 수집하는 모니터링 정보 수집부;
    상기 수집된 모니터링 정보에 포함된 심전도 신호를 추출하는 신호 추출부;
    기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 상기 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 사용자의 심혈관계 질환을 결정하는 인공지능 처리부; 및
    상기 결정된 심혈관계 질환을 사용자 단말 장치로 제공하도록 제어하는 제어부를 포함하는 것을 특징으로 하는
    서버.
  2. 제1항에 있어서,
    상기 인공지능 처리부는 상기 추출된 심전도 신호의 시간 도메인(time domain)에 기반하여정규화 신호를 생성하며, 상기 생성된 정규화 신호를 상기 시간 표준화된 이미지로 변환하고, 상기 변환된 이미지에 상기 기 저장된 인공지능 기계학습 알고리즘 기반 가중치를 적용하여 압축 신호를 생성하며, 상기 적용된 가중치를 이용하여 상기 압축 신호로부터 복원 신호를 생성하고, 상기 생성된 정규화 신호와 상기 생성된 복원 신호의 차이가 사전 설정된 임계 범위에 해당되도록 상기 가중치를 기계학습하여 상기 심전도 신호의 형태학적 정보를 상기 특징 정보로 추출하는 것을 특징으로 하는
    서버.
  3. 제1항에 있어서,
    상기 인공지능 처리부는 상기 특징 정보를 기계학습하여 상기 복수의 심장이상 종류 모델을 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델, 심실조기수축 모델, 심정지 모델 및 정상 심장상태 모델 중 적어도 하나의 모델로 결정하는 것을 특징으로 하는
    서버.
  4. 제3항에 있어서,
    상기 인공지능 처리부는 오픈 데이터 셋과 상기 빈맥 모델, 상기 서맥 모델, 상기 심방세동 모델, 상기 좌각차단 모델, 상기 우각차단 모델, 상기 심방조기수축 모델 및 상기 심실조기수축 모델 중 적어도 하나의 모델과 상기 정상 심장상태 모델을 이용하여 심장이상을 상기 심장이상으로 구분하는 TP(True Positive) 경우, 상기 심장이상을 정상으로 구분하는 FN(False Negative) 경우, 상기 정상을 상기 심장이상으로 구분하는 FP(False Positive) 경우 및 상기 정상을 상기 정상으로 구분하는 TN(True Negative) 경우로 분류하고, 상기 TP(True Positive) 경우의 수치, 상기 FN(False Negative) 경우의 수치, 상기 FP(False Positive) 경우의 수치 및 상기 TN(True Negative) 경우의 수치의 결합에 대한 상기 TP(True Positive) 경우의 수치와 상기 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 상기 빈맥 모델, 상기 서맥 모델, 상기 심방세동 모델, 상기 좌각차단 모델, 상기 우각차단 모델, 상기 심방조기수축 모델 및 상기 심실조기수축 모델 중 적어도 하나에 대한 구분 정확도를 계산하는 것을 특징으로 하는
    서버.
  5. 제3항에 있어서,
    상기 인공지능 처리부는 오픈 데이터 셋과 상기 심정지 모델과 상기 정상 심장상태 모델을 이용하여 심정지 구간을 상기 심정지 구간으로 구분하는 TP(True Positive) 경우, 상기 심정지 구간을 정상 구간으로 구분하는 FN(False Negative) 경우, 상기 정상 구간을 상기 심정지 구간으로 구분하는 FP(False Positive) 경우 및 상기 정상 구간을 상기 정상 구간으로 구분하는 TN(True Negative) 경우로 분류하고, 상기 TP(True Positive) 경우의 수치, 상기 FN(False Negative) 경우의 수치, 상기 FP(False Positive) 경우의 수치 및 상기 TN(True Negative) 경우의 수치의 결합에 대한 상기 TP(True Positive) 경우의 수치와 상기 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 위급 상황 구분 정확도를 계산하는 것을 특징으로 하는
    서버.
  6. 제3항에 있어서,
    상기 인공지능 처리부는 아티팩트 신호를 상기 아티팩트 신호로 구분하는 TP(True Positive) 경우, 상기 아티팩트 신호를 정상 신호 구분하는 FN(False Negative) 경우 및 상기 정상 신호를 상기 아티팩트 신호로 구분하는 FP(False Positive) 경우, 상기 정상 신호를 상기 정상 신호로 구분하는 TN(True Negative) 경우로 분류하고, 상기 TP(True Positive) 경우의 수치, 상기 FN(False Negative) 경우의 수치, 상기 FP(False Positive) 경우의 수치 및 상기 TN(True Negative) 경우의 수치의 결합에 대한 상기 TP(True Positive) 경우의 수치와 상기 TN(True Negative) 경우의 수치의 결합의 비율에 기반하여 아티팩트 제거 정확도를 계산하는 것을 특징으로 하는
    서버.
  7. 제6항에 있어서,
    상기 제어부는 상기 심전도 신호가 측정된 후, 상기 측정된 심전도 신호의 개수를 계산하고, 상기 계산된 심전도 신호의 개수를 임계 값과 비교하여 상기 심전도 신호의 데이터 수신 상태를 확인하는 것을 특징으로 하는
    서버.
  8. 제6항에 있어서,
    상기 사용자 단말 장치는 상기 결정된 심혈관계 질환과 관련된 분석 결과를 디스플레이를 통해 제공하는 것을 특징으로 하는
    서버.
  9. 심장상태 감지 센서 장치에 있어서,
    사용자로부터 심전도 신호를 포함하는 생체신호를 측정하고, 상기 측정된 생체신호가 포함된 모니터링 정보를 인공지능 인코더를 통해 출력하는 생체신호 모니터링부 및
    상기 출력된 모니터링 정보에 포함된 심전도 신호를 추출하고, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 상기 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 사용자의 심혈관계 질환을 결정하는 인공지능 처리부를 포함하는
    심장상태 감지 센서 장치.
  10. 제9항에 있어서,
    상기 인공지능 처리부는 상기 심전도 신호를 측정할 시 발생되는 데이터 트래픽을 시뮬레이션하고, 상기 시뮬레이션에 기반하여 상기 심장상태 감지 센서의 동작 상태를 결정하는 것을 특징으로 하는
    심장상태 감지 센서 장치.
  11. 제9항에 있어서,
    상기 인공지능 처리부는 상기 특징 정보를 기계학습하여 상기 복수의 심장이상 종류 모델을 빈맥 모델, 서맥 모델, 심방세동 모델, 좌각차단 모델, 우각차단 모델, 심방조기수축 모델, 심실조기수축 모델, 심정지 모델 및 정상 심장상태 모델 중 적어도 하나의 모델로 결정하는 것을 특징으로 하는
    심장상태 감지 센서 장치.
  12. 제9항에 있어서,
    상기 생체신호 모니터링부는,
    상기 사용자로부터 움직임 신호 및 체온 신호 중 적어도 하나의 신호를 더 측정하고,
    상기 움직임 신호 및 상기 체온 신호가 더 포함된 모니터링 정보를 인공지능 인코더를 통해 출력하는 것을 특징으로 하는
    심장상태 감지 센서 장치.
  13. 제12항에 있어서,
    상기 인공지능 처리부는 상기 측정된 심전도 신호 및 상기 측정된 움직임 신호를 기반으로 상기 사용자의 심정지 및 낙상을 포함하는 위급상황을 탐지하는 것을 특징으로 하는
    심장상태 감지 센서 장치.
  14. 심장상태 감지 센서 장치와 연동하여 사용자의 상태 정보를 제공하는 서버를 이용하는 심장 상태 모니터링 방법에 있어서,
    상기 심장상태 감지 센서 장치에서, 사용자로부터 심전도 신호를 측정하는 단계;
    상기 서버에서, 상기 측정의 된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보를 추출하는 단계;
    상기 서버에서, 상기 추출된 특징 정보를 기계학습하여 복수의 심장이상 종류 모델을 결정하는 단계;
    상기 서버에서, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하는 단계; 및
    상기 서버에서, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 사용자의 심혈관계 질환을 결정하는 단계를 포함하는
    심장 상태 모니터링 방법.
  15. 복합 생활 지원 솔루션 제공 시스템에 있어서,
    지원 대상자의 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호 중 적어도 하나를 포함하는 생체신호를 포함하는 모니터링 정보를 서버로 전송하는 게이트웨이; 및
    상기 전송된 모니터링 정보로부터 상기 생체신호의 심전도 신호를 추출하고, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 특징 정보로 추출하고, 상기 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하며, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하고, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 지원 대상자의 심혈관계 질환 및 위급 상태 여부를 결정하고, 상기 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보를 사용자 단말 장치로 피드백하는 서버를 포함하는
    복합 생활 지원 솔루션 제공 시스템.
  16. 제15항에 있어서,
    상기 사용자 단말 장치는 의료진 단말 장치, 보호자 단말 장치 및 응급센터 단말 장치 중 적어도 하나를 포함하고,
    상기 사용자 단말 장치는 상기 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보 중 적어도 하나를 포함하는 정보를 출력하며,
    상기 의료진 단말 장치에 출력되는 정보에 따라 생성되는 처방정보에 기초하여 상기 보호자 단말 장치 및 상기 응급센터 단말 장치에도 상기 처방정보가 업데이트되는
    복합 생활 지원 솔루션 제공 시스템.
  17. 제16항에 있어서,
    상기 사용자 단말 장치는 상기 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보에 기반하여 상기 지원 대상자의 간호 관리 서비스, 질환 데이터 관리 서비스, 질환 데이터 시각화, 질환 데이터 통계 서비스 및 응급 푸쉬 알림 서비스 중 적어도 하나를 제공하는
    복합 생활 지원 솔루션 제공 시스템.
  18. 제15항에 있어서,
    상기 지원 대상자로부터 3D 깊이 이미지, 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호 중 적어도 하나를 포함하는 생체신호를 측정하고, 상기 측정된 생체신호가 포함된 모니터링 정보를 인공지능 인코더를 통해 출력하는 생체신호 모니터링부 및
    상기 출력된 모니터링 정보를 근거리 무선통신을 이용하여 상기 게이트웨이를 통해 상기 서버로 전송하도록 제어하는 제어부를 포함하는 생체신호 측정 장치를 더 포함하는
    복합 생활 지원 솔루션 제공 시스템.
  19. 제18항에 있어서,
    상기 생체신호 모니터링부는, 상기 생체신호로서 귀, 목 또는 손목 중에서 적어도 하나로부터 측정되는 PPG(photoplethysmography)에 의한 신경반응을 모니터링하고, 상기 신경반응에 따른 자율신경정보를 인공지능 인코더를 통해 암호화하여 출력하는 것을 특징으로 하는
    복합 생활 지원 솔루션 제공 시스템.
  20. 생체신호 측정 장치와 연동하는 서버의 인공지능 알고리즘을 이용하는 복합 생활 지원 솔루션 제공 시스템의 동작 방법에 있어서,
    생체신호 측정 장치에서, 지원 대상자로부터 심전도 신호, 움직임 신호, 체온 신호 및 맥파 신호 중 적어도 하나를 포함하는 생체신호를 측정하는 단계;
    상기 생체신호 측정 장치에서, 상기 측정된 생체신호가 포함된 모니터링 정보를 게이트웨이를 통해 서버로 전송하는 단계;
    상기 서버에서, 상기 전송된 모니터링 정보로부터 상기 생체신호의 심전도 신호를 추출하고, 기 저장된 인공지능 기계학습 알고리즘에 기반하여 상기 추출된 심전도 신호의 시간 표준화된 이미지로의 변환을 통한 형태학적 정보를 을 특징 정보로 추출하는 단계;
    상기 서버에서, 상기 추출된 특징 정보를 이용하여 복수의 심장이상 종류 모델을 결정하는 단계;
    상기 서버에서, 상기 결정된 복수의 심장이상 종류 모델에 대한 구분 정확도를 계산하는 단계;
    상기 서버에서, 상기 계산된 정확도에 기반하여 상기 결정된 심장이상 종류 모델과 공개된 심혈관계 질환 데이터를 이용하여 상기 지원 대상자의 심혈관계 질환 및 위급 상태 여부를 결정하는 단계; 및
    상기 서버에서, 상기 결정된 심혈관계 질환 및 상기 위급 상태 여부에 대한 정보와 상기 생체신호의 변동 정보를 사용자 단말 장치로 피드백하는 단계를 포함하는
    복합 생활 지원 솔루션 제공 시스템의 동작 방법.
PCT/KR2021/007339 2020-06-12 2021-06-11 심장 상태 감지 센서 장치 및 이를 이용한 복합 생활 지원 솔루션 제공 시스템 WO2021251796A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/008,266 US20230282352A1 (en) 2020-06-12 2021-06-11 Heart condition detection sensor device and system for providing complex life support solution using same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR10-2020-0071654 2020-06-12
KR20200071654 2020-06-12
KR1020200108603A KR102321661B1 (ko) 2020-06-12 2020-08-27 심장 상태 감지 센서 장치 및 이를 이용한 심장 상태 모니터링 방법
KR1020200108604A KR102346824B1 (ko) 2020-06-12 2020-08-27 인공지능 기반 생체신호 모니터링 및 분석을 통한 복합 생활 지원 솔루션 제공 시스템 및 그 동작 방법
KR10-2020-0108603 2020-08-27
KR10-2020-0108604 2020-08-27

Publications (1)

Publication Number Publication Date
WO2021251796A1 true WO2021251796A1 (ko) 2021-12-16

Family

ID=78845807

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007339 WO2021251796A1 (ko) 2020-06-12 2021-06-11 심장 상태 감지 센서 장치 및 이를 이용한 복합 생활 지원 솔루션 제공 시스템

Country Status (2)

Country Link
US (1) US20230282352A1 (ko)
WO (1) WO2021251796A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060117546A (ko) * 2005-05-11 2006-11-17 인하대학교 산학협력단 신경망을 이용한 심전도 기반의 심장질환 진단장치 및방법
KR20140063100A (ko) * 2012-11-16 2014-05-27 삼성전자주식회사 원격 심질환 관리 장치 및 방법
KR101534131B1 (ko) * 2014-12-12 2015-07-24 순천향대학교 산학협력단 심전도를 이용한 짧은 rr 시계열로 chf 및 af의 자동 감지 방법
KR20170064960A (ko) * 2015-12-02 2017-06-12 김현호 파동신호를 활용한 질병 진단 장치 및 그 방법
KR20180063440A (ko) * 2016-12-02 2018-06-12 재단법인 아산사회복지재단 생체신호 측정을 위한 웨어러블 디바이스, 웨어러블 디바이스를 이용한 이상징후 발생예측방법 및 프로그램

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9585589B2 (en) * 2009-12-31 2017-03-07 Cerner Innovation, Inc. Computerized systems and methods for stability-theoretic prediction and prevention of sudden cardiac death
CA2930740A1 (en) * 2013-11-22 2015-05-28 Mc10, Inc. Conformal sensor systems for sensing and analysis of cardiac activity
US11763449B2 (en) * 2020-07-24 2023-09-19 Zoll Medical Corporation Systems and methods for generating and applying matrix images to monitor cardiac disease
US20220384014A1 (en) * 2021-05-25 2022-12-01 Medtronic, Inc. Cardiac episode classification
WO2023196651A1 (en) * 2022-04-07 2023-10-12 Alivecor, Inc. Detection of cardiac conditions from reduced lead set ecg

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060117546A (ko) * 2005-05-11 2006-11-17 인하대학교 산학협력단 신경망을 이용한 심전도 기반의 심장질환 진단장치 및방법
KR20140063100A (ko) * 2012-11-16 2014-05-27 삼성전자주식회사 원격 심질환 관리 장치 및 방법
KR101534131B1 (ko) * 2014-12-12 2015-07-24 순천향대학교 산학협력단 심전도를 이용한 짧은 rr 시계열로 chf 및 af의 자동 감지 방법
KR20170064960A (ko) * 2015-12-02 2017-06-12 김현호 파동신호를 활용한 질병 진단 장치 및 그 방법
KR20180063440A (ko) * 2016-12-02 2018-06-12 재단법인 아산사회복지재단 생체신호 측정을 위한 웨어러블 디바이스, 웨어러블 디바이스를 이용한 이상징후 발생예측방법 및 프로그램

Also Published As

Publication number Publication date
US20230282352A1 (en) 2023-09-07

Similar Documents

Publication Publication Date Title
WO2016028056A1 (en) Wearable biometric information measurement device
WO2017146524A1 (en) Aparatus and method for assessing heart failure
WO2017192010A1 (en) Apparatus and method for extracting cardiovascular characteristic
WO2017146519A1 (en) Sensor-based detection of changes in health and ventilation threshold
EP3288447A1 (en) Apparatus and method for extracting cardiovascular characteristic
WO2011090274A2 (ko) 손목 착용형 맥박 측정 장치 및 그 제어 방법
WO2018093136A1 (ko) 피험자의 영상 모니터링 장치 및 그 방법과, 영상 모니터링 시스템
WO2022031038A1 (ko) 사용자의 수면 환경에서 측정된 데이터에 기반하여 수면 상태를 예측하기 위한 컴퓨팅 장치
WO2015008936A1 (ko) 습관을 이용한 진단 장치 및 진단 관리 장치와 그를 이용한 진단 방법
WO2018135692A1 (ko) 동작 인식 및 제어를 위한 웨어러블 장치 및 이를 이용한 동작 인식 제어 방법
WO2017099340A1 (ko) 전자 장치, 그의 신호 처리 방법, 생체 신호 측정 시스템 및 비일시적 컴퓨터 판독가능 기록매체
WO2018147477A1 (ko) 스마트폰 어플리케이션을 통한 근로자 건강관리 방법
WO2022231132A1 (ko) 인공지능형 스마트 리모컨 장치 및 이를 이용한 자가 검사 방법
WO2022173103A1 (ko) 웨어러블 다중 생체 신호 측정장치 및 이를 이용한 인공지능 기반의 원격 모니터링 시스템
WO2022124647A1 (ko) 수면 무호흡을 검출하기 위한 방법 및 이를 지원하는 전자 장치
KR20210154675A (ko) 인공지능 기반 생체신호 모니터링 및 분석을 통한 복합 생활 지원 솔루션 제공 시스템 및 그 동작 방법
WO2021251587A1 (en) Adaptive respiratory condition assessment
WO2023075253A1 (ko) 수면 모니터링을 위한 전자 장치 및 그의 동작 방법
WO2018147560A1 (ko) 생체신호 기반의 안전관리 작업복을 이용한 근로자 건강관리 시스템 및 모니터링 방법
WO2021101073A1 (ko) 생체 데이터를 획득하는 장치 및 그 방법
WO2021100994A1 (ko) 비접촉식 생체 지수 측정 방법
WO2022220649A1 (ko) 심전도 이미지에 기반한 환자 평가 시스템 및 방법
WO2021251796A1 (ko) 심장 상태 감지 센서 장치 및 이를 이용한 복합 생활 지원 솔루션 제공 시스템
WO2018093163A1 (ko) 신생아 무호흡 측정장치 및 그 동작 방법과, 신생아 무호흡 측정 시스템
WO2013141667A1 (ko) 일상 건강 정보 제공 시스템 및 일상 건강 정보 제공 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21820889

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21820889

Country of ref document: EP

Kind code of ref document: A1