WO2021251466A1 - Efficient method for producing induced pluripotent stem cells - Google Patents

Efficient method for producing induced pluripotent stem cells Download PDF

Info

Publication number
WO2021251466A1
WO2021251466A1 PCT/JP2021/022154 JP2021022154W WO2021251466A1 WO 2021251466 A1 WO2021251466 A1 WO 2021251466A1 JP 2021022154 W JP2021022154 W JP 2021022154W WO 2021251466 A1 WO2021251466 A1 WO 2021251466A1
Authority
WO
WIPO (PCT)
Prior art keywords
tead3
cells
nucleic acid
gene
inhibitor
Prior art date
Application number
PCT/JP2021/022154
Other languages
French (fr)
Japanese (ja)
Inventor
善紀 吉田
カカセ アントニオ ルセナ
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2022530622A priority Critical patent/JPWO2021251466A1/ja
Publication of WO2021251466A1 publication Critical patent/WO2021251466A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to the efficiency of establishment of induced pluripotent stem (iPS) cells by inhibiting the function of transcription enhancer-related domain family member-3 (hereinafter, also referred to as "TEAD3") in the nuclear reprogramming step of somatic cells. And an agent for improving the efficiency of establishment of iPS cells, which comprises a function inhibitor of TEAD3.
  • the present invention also relates to a method for producing iPS cells by introducing a nuclear reprogramming substance and a function inhibitor of TEAD3 into somatic cells.
  • Somatic cell reprogramming driven by nuclear reprogramming factors such as the Yamanaka factor (Oct3 / 4, Sox2, Klf4 (and c-Myc)) reprograms cells and dedifferentiates them to iPS cells.
  • Yamanaka factor Oct3 / 4, Sox2, Klf4 (and c-Myc)
  • the somatic cell reprogramming process can be broadly divided into initiation, stabilization and maturation stages, coupled with the execution of multiple biological programs involving major changes in the transcriptional network.
  • p53 acts as an important barrier to initialization.
  • some point out that downregulation of the p53 pathway causes genomic instability and safety issues, as p53 acts as a defense against uncontrolled cell proliferation in response to DNA damage.
  • Transient p53 suppression with non-integrated plasmids provides a safer way to improve iPS cell establishment efficiency (see, eg, Non-Patent Document 2).
  • Patent Document 2 The present inventors have previously reported that the efficiency of iPS cell establishment can be improved by inhibiting the function of p38 in the nuclear reprogramming step of somatic cells. However, the mechanism is not yet well understood.
  • An object of the present invention is to identify a novel key factor that serves as a somatic cell reprogramming barrier, invalidate the reprogramming barrier by controlling the factor, and improve the efficiency of iPS cell establishment.
  • the present inventors systematically investigated the role of p38 MAPK inhibitors in order to achieve the above-mentioned objectives, and p38 inhibition dramatically improved the efficiency of human iPS cell establishment at both the initiation stage and the stabilization stage of reprogramming. It was found that it could be improved.
  • double inhibition of both the p38 and p53 pathways during the initialization process further increased the efficiency of iPS colony formation compared to inhibition of each pathway alone.
  • TEAD3 was found as a gene capable of exerting the same effect of improving iPS cell establishment efficiency as in the case of double-inhibition by suppressing the expression. The invention was completed.
  • the present invention is as follows.
  • a method for improving the establishment efficiency of induced pluripotent stem (iPS) cells which comprises inhibiting the function of transcription enhancer-related domain family member-3 (TEAD3) in the nuclear reprogramming process of somatic cells.
  • Method. [2] The following (a) to (c): (A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene; (B) Antisense nucleic acid for the transcript of the TEAD3 gene; and (c) Inhibits the function of TEAD3 by introducing one of the ribozyme nucleic acids for the transcript of the TEAD3 gene into somatic cells, according to [1]. the method of.
  • the inhibitor is the following (a) to (c): (A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene; The agent according to [6], which is either (b) an antisense nucleic acid for a transcript of the TEAD3 gene; or (c) a ribozyme nucleic acid for a transcript of the TEAD3 gene. [8] The agent according to [6], wherein the inhibitor is a dominant negative mutant of TEAD3 or a nucleic acid encoding the same. [9] The agent according to [6], wherein the inhibitor is an inhibitor of a transcriptional conjugate factor of TEAD3.
  • the inhibitor is the lower (a) or (b): (A) Decoy nucleic acid for TEAD3; (B) rrrcwwgyyynnnnnnnnnnnnnnrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, and n stands independently for a, g, t or c; SEQ ID NO: 3)
  • the agent according to [6] which is an oligonucleic acid containing a nucleotide sequence represented by.
  • a method for producing iPS cells which comprises contacting somatic cells with a nuclear reprogramming substance and a function inhibitor of TEAD3.
  • the inhibitor is the following (a) to (c): (A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene; The method according to [11], wherein (b) an antisense nucleic acid for a transcript of the TEAD3 gene; and (c) a ribozyme nucleic acid for a transcript of the TEAD3 gene. [13] The method according to [11], wherein the inhibitor is a dominant negative mutant of TEAD3 or a nucleic acid encoding the same. [14] The method according to [11], wherein the inhibitor is an inhibitor of a transcriptional conjugate factor of TEAD3.
  • the inhibitor is the lower (a) or (b): (A) Decoy nucleic acid for TEAD3; (B) rrrcwwgyyynnnnnnnnnnnnnnrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, and n stands independently for a, g, t or c; SEQ ID NO: 3)
  • the method according to [11] which is an oligonucleic acid containing a nucleotide sequence represented by.
  • the efficiency of establishing iPS cells from somatic cells can be significantly improved.
  • the protocols for four p38 inhibitor treatments are schematically shown. On the time axis, the day when the four factors are introduced into HDF is set as Day 0, and the period during which each treatment is applied is shown (A: Days 2 to 4, B: Days 6 to 20, C: Days 20 to 32, D: Days 6 to 32). ).
  • B. The iPS cell colonization assay was used to investigate the effect of p38 inhibitors on the efficiency of HDF reprogramming.
  • Primary HDF ectopically expressed with 4 factors (4F; Oct3 / 4, Sox2, Klf4 and c-Myc) was treated with 10 ⁇ M SB202190, SB203580 or SB239063 in period A or period D protocols.
  • Reprogramming efficiency on Day16, Day24, and Day32 was counted as the number of ES cell-like (iPS cell) colonies and compared to HDF (DMSO) reprogrammed only on 4F without treatment with a p38 inhibitor.
  • the graph on the left shows the result of the inhibitor treatment in the period A, and the graph on the right shows the result of the inhibitor treatment in the period D.
  • the results of SB239063, SB203580, SB202190, and DMSO processing are shown in order from the top for each number of days. * P ⁇ 0.05, ** p ⁇ 0.01 C. 4F + SB202190 shows a phase-difference image of human ES cell-like colonies derived from HDF. D.
  • the initialization efficiency on Day24 (bottom) and Day32 (top) was measured as the number of ES cell-like (iPS cell) colonies, and the number of iPS cell colonies induced from HDF by 3F + SB202190 (upper bar in each Days). ) was compared to the number of iPS cell colonies induced by 3F and vehicle (DMSO) (bottom bar at each Days). * P ⁇ 0.05G.
  • the iPS cell colonization assay was used to investigate the effect of the p38 inhibitor (SB202190) on the efficiency of HDF reprogramming by the introduction of reprogramming factors via the episomal vector (pCXLE).
  • the reprogramming efficiency on Day24 (bottom) and Day32 (top) was measured as the number of ES cell-like (iPS cell) colonies, and the number of iPS cell colonies induced from HDF by the reprogramming factor + SB202190 (top on each Day). Bar) was compared to the number of iPS cell colonies induced by reprogramming factors and vehicle (DMSO) (lower bar on each day).
  • * P ⁇ 0.05, *** p ⁇ 0.001 It is a figure which shows pluripotency and genomic stability in human iPS cells established using a small molecule p38 inhibitor.
  • SB1-SB3 Human iPS cell clones induced by SB202190 treatment
  • DM Human iPS cell clones induced only by 4F
  • ES Human ES cells
  • HD HDF.
  • B Karyotype analysis of human iPSC clones induced by SB202190 treatment.
  • C In vitro differentiation assay of human iPSC clones induced by SB202190 treatment. From left to right, differentiation into embryoid body (EB), ectoderm lineage ( ⁇ -III-tubulin positive), mesoderm lineage ( ⁇ -SMA positive) and endoderm lineage (AFP positive) is shown.
  • EB embryoid body
  • ⁇ -III-tubulin positive ectoderm lineage
  • ⁇ -SMA positive mesoderm lineage
  • AFP positive endoderm lineage
  • PCA Principal component analysis
  • the relative expression level of TEAD3 in (shp53 + p382KO) is shown.
  • +100 on the X-axis indicates the expression level of DMSO, and -100 on the X-axis indicates no expression.
  • -75 on the X-axis shows 0.125 times the expression level of DMSO.
  • the dashed arrow indicates that the number of iPS cell colonies increases in that direction.
  • 4F only (4F), 4F and non-specific shRNA (Scr), 4F and 2 types of TEAD3 shRNA (4F-shTEAD3 # 1 and 4F-shTEAD3 # 2) were introduced into 2 types of HDF (HDF1616, HDF1079). The expression of the TEAD3 protein in the case is shown.
  • TEAD3 protein was markedly suppressed by the two TEAD3 shRNAs.
  • C. 4F only (4F), 4F and non-specific shRNA (Scr), 4F and 2 types of TEAD3 shRNA (4F-shTEAD3 # 1 and 4F-shTEAD3 # 2) were introduced into 2 types of HDF (HDF1616, HDF1079).
  • the expression of TEAD3 mRNA in the case is shown.
  • the expression of TEAD3 mRNA was markedly suppressed by the two TEAD3 shRNAs. ** p ⁇ 0.01, *** p ⁇ 0.001D.
  • TEAD3 expression in the early phase (day 2 and day 4), intermediate phase (day 8), late phase (day 18) and iPSC during the MEF initialization process are shown.
  • G Changes in TEAD3 expression in SSEA1-positive and SSEA1-negative cells during the MEF reprogramming process are shown.
  • H The transcription initiation site (TSS) sequence of the TEAD3 gene, which is predicted to bind to KLF4, and its relative binding score are shown.
  • TSS transcription initiation site
  • mice iPS cells The cell number of mouse iPS cells (20D17; initial cell density: 1 ⁇ 10 5 cells / well) 96 hours after treatment with SB202190 is shown ( ** : p ⁇ 0.01; comparison with DMSO).
  • B. It is shown that mouse iPS cells obtained by treatment with SB202190 give rise to a brown coat-colored chimeric mouse.
  • C. It is shown that germline transmission occurred in mice derived from mouse iPS cells obtained by treatment with SB202190. It is shown that p38 inhibition promotes the proliferation of HDF and HDF in the early phase of reprogramming, but does not affect the proliferation of human iPS cells.
  • HDF was seeded in 6-well plates at a density of 1 ⁇ 10 5 cells / well, each of which was added with 3 p38 inhibitors and cultured for 96 hours. Total cell counts were counted on days 2, 4, 6 and 8 after treatment. The results of three independent experiments are shown in mean and standard deviation ( * : p ⁇ 0.05; comparison with DMSO).
  • Human iPS cells (201B7) were seeded on SNL feeder cells at a density of 2 ⁇ 10 5 cells / well, and each of the three p38 inhibitors was added and cultured for 96 hours. The total number of cells was counted on the 4th day after the treatment. The results of three independent experiments are shown in mean and standard deviation. TEAD3 in publicly available datasets: GSE36664 with MEF transcriptome data, GSE45276 with human lung fibroblast (HLF) transcriptome data, and HDF transcriptome data. The correlation between expression and p53 expression is shown (R: Pearson's correlation coefficient).
  • TEAD3 expression The correlation between TEAD3 expression and p38 ⁇ , ERK4, p44-ERK1, CDK4 and CDK6 expression in the publicly available HDF single-cell RNA-Seq dataset is shown (R: Pearson's correlation coefficient). It is a figure which shows the evaluation of the causal role of TEAD3 in tumor reprogramming and cell cycle kinetics in HeLa cells.
  • a daughter cell line plenti / Ubc-Slc7a1 expressing the ecotropic receptor Slc7a1 was prepared to enable retrovirus infection, and shTEAD3 was introduced by the retrovirus. Since clones with downregulated TEAD3 expression promoted cell proliferation and produced more tumor-like masses of larger size, TEAD3 increased the cellular properties that give rise to cancer in cervical cancer.
  • a representative bright-field image of estimated iPS cell colonies (squares) 12 days after introduction of 4F (scr) or 4F + shTEAD3 into HDF1616 is shown.
  • B. A representative bright-field image of the estimated iPS cell colonies (squares) 12 days after the introduction of 4F + shTEAD3 into HDF1079 is shown.
  • C. 4F (Scr), 4F + shTEAD3, or 4F + shTEAD3 + shp53 introduced and shows the growth curve of HDF1616 in the process of initialization ( * : p ⁇ 0.05; comparison with Scr (HDF1616 introduced with 4F + non-specific shRNA)) ).
  • the growth curve of iPS cells established by introducing 4F (Scr), 4F + shTEAD3, or 4F + shTEAD3 + shp53 into HDF1616 is shown).
  • F. The growth curve of iPS cells established by introducing 4F (Scr), 4F + shTEAD3, or 4F + shTEAD3 + shp53 into HDF1079 is shown.
  • the present invention provides a method for improving the efficiency of establishment of iPS cells (hereinafter, also referred to as “the method for improving the present invention”) by inhibiting the function of TEAD3 in the nuclear reprogramming step of somatic cells.
  • the means for inhibiting the function of TEAD3 is not particularly limited, but a method for introducing a function-inhibiting substance for TEAD3 into somatic cells is preferable. Therefore, the present invention also provides an agent for improving the efficiency of establishment of iPS cells (hereinafter, also referred to as “the agent of the present invention”) containing a function inhibitor of TEAD3.
  • the present invention is a method for producing iPS cells by introducing a nuclear reprogramming substance and a function inhibitor of TEAD3 into somatic cells (hereinafter, also referred to as "the production method of the present invention", and “the improvement method of the present invention”. And “the method of the present invention” are collectively referred to as “the method of the present invention”).
  • Somatic cell source The somatic cells that can be used as a starting material for iPS cell production in the present invention are germ cells derived from mammals (for example, humans, mice, monkeys, cows, pigs, rats, dogs, etc.). Any cell other than the above may be used, for example, keratinizing epithelial cells (eg, keratinized epidermal cells), mucosal epithelial cells (eg, tongue superficial epithelial cells), exocrine gland epithelial cells (eg, mammary cells), and the like.
  • mammals for example, humans, mice, monkeys, cows, pigs, rats, dogs, etc.
  • Any cell other than the above may be used, for example, keratinizing epithelial cells (eg, keratinized epidermal cells), mucosal epithelial cells (eg, tongue superficial epithelial cells), exocrine gland epithelial cells (eg, mammary cells), and the like.
  • Hormone-secreting cells eg, adrenal medulla cells
  • metabolic and storage cells eg, hepatocytes
  • luminal epithelial cells that make up the interface eg, type I alveolar cells
  • luminal epithelium of the inner canal Cells eg, vascular endothelial cells
  • ciliated cells with carrying capacity eg, airway epithelial cells
  • extracellular matrix secretory cells eg, fibroblasts
  • contractile cells eg, smooth muscle cells
  • Blood and immune system cells eg, peripheral blood mononuclear cells, umbilical cord blood, T lymphocytes
  • sensory cells eg, rod cells
  • autonomic nervous system neurons eg, cholinergic neurons
  • sensory organs and peripherals Supporting cells of neurons eg, associated cells
  • nerve cells and glia cells of the central nervous system eg, stellate glia cells
  • pigment cells eg, retinal pigment epithelial cells
  • their precursor cells
  • undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
  • the individual mammal that is the source for collecting somatic cells is not particularly limited, but when the obtained iPS cells are used for human regenerative medicine, the patient or HLA type is considered from the viewpoint that rejection does not occur. It is particularly preferred to collect somatic cells from others who are the same or substantially the same.
  • the HLA type is "substantially the same" when the transplanted cells are transplanted into a patient by inducing differentiation from the somatic cell-derived iPS cells by using an immunosuppressive agent or the like. It means that the HLA types match to the extent that they can be engrafted.
  • the main HLA for example, the three loci of HLA-A, HLA-B and HLA-DR
  • the main HLA for example, the three loci of HLA-A, HLA-B and HLA-DR
  • the main HLA for example, the three loci of HLA-A, HLA-B and HLA-DR
  • the patient or the drug sensitivity is also used. It is desirable to collect somatic cells from others with the same gene polymorphism that correlates with side effects.
  • Somatic cells isolated from mammals can be pre-cultured in a medium known per se, which is suitable for the culture, depending on the type of cells, prior to being subjected to the nuclear reprogramming step.
  • media include minimum essential medium (MEM) containing about 5 to 20% fetal bovine serum, Dulbecco's modified Eagle's medium (DMEM), RPMI1640 medium, 199 medium, F12 medium and the like.
  • MEM minimum essential medium
  • DMEM Dulbecco's modified Eagle's medium
  • RPMI1640 medium fetal bovine serum
  • a nuclear reprogramming substance and a function-inhibiting substance of p38 and, if necessary, another substance for improving the efficiency of establishment of iPS cells described later
  • an introduction reagent such as cationic liposome
  • TEAD3 function inhibitor TEAD3 which is the target molecule in the present invention, is one of the members of the transcription enhancer-related domain (TEAD) family, and the transcriptional activation of the target gene by this transcription factor is the Hippo signaling pathway. It occurs by binding to the coactivator YAP or TAZ, whose nuclear transduction is controlled by.
  • TEAD3 is a protein containing an amino acid sequence that is the same as or substantially the same as the amino acid sequence represented by SEQ ID NO: 2.
  • proteins and peptides are described with an N-terminal (amino-terminal) at the left end and a C-terminal (carboxyl-terminal) at the right end according to the convention of peptide notation.
  • Amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 2 means (A) Orthologs of human TEAD3 consisting of the amino acid sequence represented by SEQ ID NO: 2 in other warm-blooded animals (eg, guinea pigs, rats, mice, chickens, rabbits, dogs, pigs, sheep, cows, monkeys, etc.) Amino acid sequence; or (b) means an amino acid sequence in a human TEAD3 consisting of the amino acid sequence represented by SEQ ID NO: 2 or a natural allergen variant or gene polymorphism of the ortholog of (a) above.
  • TEAD3 is a human TEAD3 or a natural allelic variant or gene polymorphism thereof consisting of the amino acid sequence represented by SEQ ID NO: 2.
  • Examples of the gene polymorphism include, but are not limited to, SNPs registered in dbSNP as rs35080860 in which Thr (ACG) at position 254 is replaced with Met (ATG).
  • the "TEAD3 function inhibitor” may be any substance as long as it can inhibit (1) the function of the TEAD3 protein or (2) the expression of the TEAD3 gene. That is, the result is obtained by acting not only on substances that directly act on the TEAD3 protein to inhibit its function and substances that directly act on the TEAD3 gene and inhibit its expression, but also on factors involved in transcriptional activation by TEAD3.
  • a substance that inhibits the function of the TEAD3 protein or the expression of the TEAD3 gene is also included in the "TEAD3 function inhibitor" in the present specification.
  • the "substance that inhibits the expression of the TEAD3 gene” is a substance that acts at any stage such as the transcriptional level of the TEAD3 gene, the level of posttranscriptional regulation, the level of translation into a protein, the level of post-translational modification, and the like. May be good. Therefore, as substances that inhibit the expression of TEAD3, for example, substances that inhibit transcription of the TEAD3 gene (eg, antigene), substances that inhibit the processing of early transcripts to mRNA, and substances that inhibit the transport of mRNA to the cytoplasm.
  • substances that inhibit the expression of TEAD3 gene for example, substances that inhibit transcription of the TEAD3 gene (eg, antigene), substances that inhibit the processing of early transcripts to mRNA, and substances that inhibit the transport of mRNA to the cytoplasm.
  • Translation of substances includes substances that inhibit mRNA-to-protein translation (eg, antisense nucleic acids, miRNAs) or degrade mRNAs (eg, siRNAs, gapmer-type antisense nucleic acids, ribozymes, miRNAs) includes substances that inhibit post-modification. Any substance that acts at any stage can be used, but a substance that complementarily binds to mRNA and inhibits translation into a protein or degrades mRNA is preferable.
  • a nucleic acid containing a nucleotide sequence complementary to the nucleotide sequence of the mRNA or a part thereof can be mentioned.
  • a nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene is complementary to the extent that it can bind to the target sequence of the mRNA and inhibit its translation (or cleave the target sequence) under physiological conditions.
  • nucleotide sequence having, specifically, for example, 90% or more with respect to a region that overlaps with a nucleotide sequence that is completely complementary to the nucleotide sequence of the mRNA (that is, a nucleotide sequence of the complementary strand of the mRNA). It is a nucleotide sequence having a homology of 95% or more, more preferably 97% or more, and particularly preferably 98% or more.
  • the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene is a nucleotide sequence that hybridizes with the nucleotide sequence represented by SEQ ID NO: 1 under stringent conditions.
  • the “stringent condition” is, for example, the condition described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, for example, 6 ⁇ SSC (sodium chloride / sodium citrate). ) / Hybridization at 45 ° C, followed by 0.2 ⁇ SSC / 0.1% SDS / one or more washings at 50-65 ° C. Hybridization conditions can be appropriately selected.
  • mRNA of the TEAD3 gene are human TEAD3 (RefSeq Accession No. NM_003214.4) containing the nucleotide sequence represented by SEQ ID NO: 1, its ortholog in other warm-blooded animals, and their natural alleles.
  • Examples include mRNAs such as mutants or gene polymorphisms.
  • a part of the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene means that it can specifically bind to the mRNA of the TEAD3 gene and inhibits the translation of the protein from the mRNA (or inhibits the mRNA).
  • its length and position are not particularly limited, but from the viewpoint of sequence specificity, the portion complementary to the target sequence is at least 10 bases or more, preferably 15 bases or more, more preferably 19. It contains more than a base.
  • any of the following (a) to (c) is preferably exemplified as a nucleic acid containing a part of the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene.
  • Nucleic acid having RNAi activity against mRNA of TEAD3 gene or its precursor (b) Antisense nucleic acid against mRNA of TEAD3 gene (c) Ribozyme nucleic acid for mRNA of TEAD3 gene
  • TEAD3 gene (a) Nucleic acid having RNAi activity against the mRNA of the TEAD3 gene or a precursor thereof
  • TEAD3 gene is defined as being included in a nucleic acid containing a nucleotide sequence complementary to or a part of the nucleotide sequence of mRNA.
  • the siRNA can be designed based on the cDNA sequence information of the target gene, for example, according to the rules proposed by Elbashir et al. (Genes Dev., 15, 188-200 (2001)).
  • Examples of the target sequence of siRNA include, but are not limited to, AA + (N) 19 , AA + (N) 21 or NA + (N) 21 (N is an arbitrary base).
  • the position of the target sequence is also not particularly limited.
  • BLAST http://www.ncbi.nlm.nih.gov/BLAST/
  • BLAST is checked to see if there is homology in the consecutive sequences of 16-17 bases in the non-target mRNA.
  • RNA may be designed as siRNA.
  • siRNA short hairpin RNA
  • linker sequence for example, about 5-25 bases
  • sense strand and antisense strand are selected. It can be designed by concatenating via a linker sequence.
  • SiRNA and / or shRNA sequences can be searched using search software provided free of charge on various websites.
  • Such sites include, for example, siDESIGN Center (https://horizondiscovery.com/en/products/tools/siDESIGN-Center) provided by Horizon Discovery Ltd. and siRNA TargetFinder (https: //) provided by GenScript. www.genscript.com/tools/sirna-target-finder), etc., but not limited to these.
  • siRNAs and shRNAs of the present invention are represented by nucleotide numbers 219 to 247 (AGCAACCAGCACAATAGCGTCCAACAGCT: SEQ ID NO: 4) or 1207 to 1235 (AGCATGACCATCAGCGTCTCCACCAAGGT: SEQ ID NO: 5) in the nucleotide sequence represented by SEQ ID NO: 1.
  • SEQ ID NO: 1 Includes a nucleotide sequence complementary to a sequence consisting of at least 15 contiguous nucleotides in the region shown.
  • microRNAs that target the mRNA of the TEAD3 gene are also defined as being included in nucleic acids containing a nucleotide sequence complementary to or a portion thereof of the nucleotide sequence of the mRNA of the TEAD3 gene.
  • miRNAs are involved in post-transcriptional regulation of gene expression by complementarily binding to target mRNAs and suppressing mRNA translation, or by degrading mRNAs.
  • the primary transcript primary-microRNA (pri-miRNA)
  • pri-miRNA primary-microRNA
  • pre-miRNA approximately 70-base-long precursor-microRNA (pre-miRNA), which has a hairpin structure characteristic of Drosha, is transcribed. )
  • pre-miRNA approximately 70-base-long precursor-microRNA
  • RISC RISC-mediated processing
  • MiRNA can be searched using target prediction software provided free of charge on various websites.
  • target prediction software provided free of charge on various websites.
  • Such sites include, for example, TargetScan (http://www.targetscan.org/vert_72/) published by the Whitehead Institute in the United States, and Alexander Fleming Biomedical Science Research Center in Greece.
  • TarBase http://carolina.imis.athena-innovation.gr
  • a database on miRNAs that have been experimentally proven to act on target mRNAs published by the Pasteur Institute of the University of Chezalley, etc.
  • You can also search for miRNAs that target TEAD3 mRNA using /diana_tools/web/index.php?r tarbasev8/index).
  • those having a high score in the target prediction software include, for example, hsa-miR-106b-5p, hsa-miR-20a-5p and the like.
  • Sequence information of these miRNAs and / or pre-miRNAs can be obtained, for example, using miRBase (http://www.mirbase.org/search.shtml) published by the University of Manchester, England.
  • the nucleotide molecules that make up siRNA and / or shRNA, or miRNA and / or pre-miRNA may be natural RNA or DNA, but are stable (chemical and / or paired) and specific activity (affinity with RNA).
  • Various chemical modifications can be included to improve sex).
  • the phosphate residue (phosphate) of each nucleotide constituting the antisense nucleic acid is chemically modified with, for example, phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. It can be replaced with a phosphoric acid residue.
  • PS phosphorothioate
  • methylphosphonate methylphosphonate
  • phosphorodithionate etc. It can be replaced with a phosphoric acid residue.
  • the base moiety pyrimidine, purine
  • C2'-endo (S type) and C3'-endo (N type) are dominant in the formation of the sugar part of RNA, and in single-strand RNA, they exist as an equilibrium between the two, but they are double-stranded. Is fixed to N type when it is formed. Therefore, BNA (LNA) (Imanishi), which is an RNA derivative in which the conformation of the sugar moiety is fixed to N type by cross-linking 2'oxygen and 4'carbon in order to impart strong binding ability to the target RNA.
  • LNA LNA
  • ENA ENA
  • the sense strand and antisense strand of the target sequence on mRNA are synthesized by a DNA / RNA automatic synthesizer, respectively, and denatured in an appropriate annealing buffer at about 90 to about 95 ° C. for about 1 minute. It can be prepared by annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. It can also be prepared by synthesizing shRNA as a precursor of siRNA and cleaving it with a dicer. miRNA and pre-miRNA can be synthesized by a DNA / RNA automatic synthesizer based on their sequence information.
  • nucleic acids designed to be capable of producing siRNAs or miRNAs against the mRNA of the TEAD3 gene in vivo are also nucleic acids comprising a nucleotide sequence complementary to or part of the nucleotide sequence of the mRNA of the TEAD3 gene. Defined as contained in. Examples of such nucleic acids include expression vectors constructed to express the above-mentioned shRNA or siRNA or miRNA or pre-miRNA. As shown in the Examples below, TEAD3 expression is at the beginning of the initialization process (eg, within 3 days after the introduction of the nuclear reprogramming material) and at the stabilization stage (eg, 2 after the introduction of the nuclear reprogramming material).
  • TEAD3 Since it increases in both (up to 3 weeks), it is considered desirable that the functional inhibition of TEAD3 is sustained for a long period of time through the nuclear initialization step.
  • the use of an expression vector is preferable in that a nucleic acid that inhibits the expression of TEAD3 can be continuously supplied to somatic cells for a long period of time.
  • shRNA is an oligo containing a nucleotide sequence in which the sense strand and antisense strand of the target sequence on mRNA are linked by inserting a spacer sequence of a length (for example, about 5 to 25 bases) capable of forming an appropriate loop structure. It can be prepared by designing RNA and synthesizing it with an automatic DNA / RNA synthesizer.
  • Vectors expressing shRNA include tandem type and stem loop (hairpin) type. The former is a tandem link between the expression cassette of the sense strand of siRNA and the expression cassette of the antisense strand, and each strand is expressed and annealed in the cell to form double-stranded siRNA (dsRNA). Is.
  • the latter is a vector in which an shRNA expression cassette is inserted, in which the shRNA is expressed intracellularly and processed by a dicer to form dsRNA.
  • a polII-based promoter for example, a pre-CMV early stage promoter
  • a polIII-based promoter in order to allow accurate transcription of short RNA.
  • the polIII promoter include mouse and human U6-snRNA promoters, human H1-RNase PRNA promoters, and human valine-tRNA promoters.
  • a sequence in which four or more Ts are continuous is used as the transcription termination signal.
  • Expression cassettes for miRNA and pre-miRNA can also be prepared in the same manner as shRNA.
  • the siRNA or shRNA or miRNA or pre-miRNA expression cassette constructed in this way is then inserted into a plasmid vector or viral vector.
  • a viral vector such as a retrovirus, a lentivirus, an adenovirus, an adeno-associated virus, a herpes virus, a Sendai virus, an animal cell expression plasmid, or the like is used. Since TEAD3 is deeply involved in gene expression regulation via the Hippo signaling pathway, which is also involved in homeostasis maintenance, the reprogramming barrier is released and somatic cells are rapidly dedifferentiated into iPS cells. It may be preferable to restore function.
  • a non-integrated transient expression vector for example, an adenovirus vector or a plasmid is more preferable.
  • an episomal vector capable of autonomous replication outside the chromosome in that nucleic acids that inhibit TEAD3 expression can be continuously expressed through the nuclear reprogramming step and can be rapidly eliminated from the cells after the establishment of iPS cells.
  • Specific means using an episomal vector are disclosed in Yu et al., Science, 324, 797-801 (2009).
  • the episomal vector examples include a vector containing a sequence required for autonomous replication derived from EBV, SV40, etc. as a vector element.
  • the vector elements required for autonomous replication are a replication origin and a gene encoding a protein that binds to the replication origin and controls replication.
  • the replication origin oriP the replication origin oriP.
  • the EBNA-1 gene and in the case of SV40, the replication origin ori and the SV40 large Tantigen gene can be mentioned.
  • the "antisense nucleic acid against mRNA of TEAD3 gene" in the present invention is a nucleic acid containing or a part of a nucleotide sequence complementary to the nucleotide sequence of the mRNA and is a target. It has a function of suppressing protein synthesis by forming and binding to a specific and stable double chain with mRNA.
  • Antisense nucleic acids include polydeoxyribonucleotides containing 2-deoxy-D-ribose, polyribonucleotides containing D-ribose, and other types of polynucleotides that are N-glycosides of purine or pyrimidine bases.
  • polymers with a non-nucleotide skeleton eg, commercially available protein nucleic acids and synthetic sequence-specific nucleic acid polymers
  • polymers containing special bindings provided that the polymer is a base as found in DNA or RNA.
  • RNA RNA hybrids
  • unmodified polynucleotides or unmodified oligonucleotides, known modifications.
  • Additions such as those with a label known in the art, those with a cap, those that are methylated, those in which one or more natural nucleotides are replaced with an analog, those with intramolecular nucleotide modifications.
  • those with uncharged bonds eg, methylphosphonate, phosphotriester, phosphoramidate, carbamate, etc.
  • charged bonds or sulfur-containing bonds eg, phosphorothioate, phosphorodithioate, etc.
  • Those having side chain groups such as proteins (eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-lysine, etc.) and sugars (eg, monosaccharides, etc.), intercurrent.
  • proteins eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-lysine, etc.
  • sugars eg, monosaccharides, etc.
  • Those with compounds eg, acridin, solarene, etc.
  • those containing chelate compounds eg, metals, radioactive metals, boron, oxidizing metals, etc.
  • those containing alkylating agents modified. It may have a binding (for example, ⁇ -anomer type nucleic acid).
  • nucleoside may include not only those containing purine and pyrimidine bases but also those having other modified heterocyclic bases. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles. Modified nucleosides and modified nucleotides may also have modified sugar moieties, for example, one or more hydroxyl groups substituted with halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may have been converted.
  • the antisense nucleic acid may be DNA, RNA, or a DNA / RNA chimera.
  • the antisense nucleic acid is DNA
  • the RNA DNA hybrid formed by the target RNA and the antisense DNA can be recognized by the endogenous RNase H and cause selective degradation of the target RNA. Therefore, in the case of antisense DNA directed to degradation by RNase H, the target sequence may be not only the sequence in mRNA but also the sequence of the intron region in the initial translation product of the TEAD3 gene.
  • the intron sequence can be determined by comparing the genomic sequence with the cDNA nucleotide sequence of the TEAD3 gene using a homology search program such as BLAST or FASTA.
  • the target region of the antisense nucleic acid of the present invention is not particularly limited in length as long as the antisense nucleic acid hybridizes to inhibit translation into a protein, and the mRNA encoding the protein is not particularly limited. It may be a full sequence or a partial sequence of the above, and a short one may be about 10 bases, and a long one may be the whole sequence of mRNA or an early transcript. Considering the ease of synthesis, antigenicity, intracellular transferability, and the like, oligonucleotides consisting of about 10 to about 40 bases, particularly about 15 to about 30 bases are preferable, but the oligonucleotide is not limited thereto.
  • 3'end parindrome regions or 3'end hairpin loops can be selected as preferred target regions for antisense nucleic acids, but are not limited thereto.
  • the target region of the antisense nucleic acid of the present invention similarly to the above siRNA, in the nucleotide sequence represented by SEQ ID NO: 1, within the region represented by nucleotide numbers 219 to 247 or 1207 to 1235. A sequence consisting of at least 15 consecutive nucleotides can be mentioned.
  • TEAD3 mRNA can be degraded by the action of RNase H in the target region, so that the same effect as siRNA can be obtained.
  • TEAD4 a paralog of TEAD3, is known to have a splicing variant that lacks the DNA-binding domain on the N-terminal side, and it is thought that skipping of exon 3 changes the position of the start codon (NatCommun 7: 11840).
  • the DNA-binding regions of the TEAD family are highly conserved, and it is speculated that TEAD3 also has splicing variants that lack the DNA-binding domain.
  • TEAD3 isoforms starting with Met indicated by amino acid number 112 can be produced.
  • the isoform binds to the coactivator YAP / TAZ, but cannot bind to the promoter of the target gene, thus functioning as a dominant negative variant of TEAD3.
  • the antisense nucleic acid of the present invention not only hybridizes with the mRNA and early transcript of the TEAD3 gene to inhibit translation into a protein, but also binds to these genes, which are double-stranded DNA, to form a triple strand (triple strand). It may be one that can form a triplet) and inhibit transcription into RNA (antigene).
  • nucleotide molecules constituting the antisense nucleic acid may also be modified in the same manner as in the case of siRNA and the like described above in order to improve stability, specific activity and the like.
  • the antisense oligonucleotide of the present invention determines the target sequence of mRNA or early transcript based on the cDNA sequence or genomic DNA sequence of the TEAD3 gene, and is a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman). Etc.) and can be prepared by synthesizing a sequence complementary to this.
  • all of the antisense nucleic acids containing the above-mentioned various modifications can be chemically synthesized by a method known per se.
  • the antisense nucleic acid can be incorporated into an expression vector and introduced into somatic cells in the same manner as in the case of siRNA or the like described above.
  • Ribozyme nucleic acid for the mRNA of the TEAD3 gene As another example of a nucleic acid containing a nucleotide sequence complementary to or a part of the nucleotide sequence of the mRNA of the TEAD3 gene, the mRNA is specifically cleaved inside the coding region. Examples include the ribozyme nucleic acid obtained.
  • the term "ribozyme” is used in a narrow sense as an RNA having an enzymatic activity for cleaving nucleic acid, but is used herein as a concept including DNA as long as it has a sequence-specific nucleic acid cleaving activity.
  • the most versatile ribozyme nucleic acid includes self-splicing RNA found in infectious RNAs such as viroids and virusoids, and hammerhead type and hairpin type are known.
  • the hammer head type exerts enzymatic activity at about 40 bases, and several bases at both ends adjacent to the part having the hammer head structure (about 10 bases in total) are arranged in a sequence complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA.
  • This type of ribozyme nucleic acid has the additional advantage of not attacking genomic DNA because it uses only RNA as a substrate.
  • the target sequence is made single-stranded by using a hybrid ribozyme linked with an RNA motif derived from a viral nucleic acid that can specifically bind to RNA helicase.
  • a hybrid ribozyme linked with an RNA motif derived from a viral nucleic acid that can specifically bind to RNA helicase can [Proc. Natl. Acad. Sci. USA, 98 (10): 5572-5577 (2001)].
  • the ribozyme when used in the form of an expression vector containing the DNA encoding it, it should be a hybrid ribozyme in which tRNA-modified sequences are further linked in order to promote the transfer of the transcript to the cytoplasm. You can also [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
  • Nucleic acids containing a nucleotide sequence complementary to or a part of the nucleotide sequence of the mRNA of the TEAD3 gene may be provided in a special form such as liposomes or microspheres, or may be provided in a form in which other elements are added. Can be possible.
  • polycationic substances such as polylysine, which act to neutralize the charge of the phosphate basal skeleton, and lipids that enhance interaction with cell membranes and increase nucleic acid uptake (eg,). , Phosphoripide, cholesterol, etc.) and other hydrophobic ones.
  • Preferred lipids for addition include cholesterol and its derivatives (eg, cholesteryl chloroformate, cholic acid, etc.).
  • nucleic acids can be attached via bases, sugars, intramolecular nucleoside bonds.
  • Other groups include cap groups specifically located at the 3'or 5'ends of nucleic acids to prevent degradation by nucleases such as exonucleases and RNases. Examples of such groups for caps include, but are not limited to, hydroxyl-protecting groups known in the art, such as glycols such as polyethylene glycol and tetraethylene glycol.
  • the nucleic acid containing a part of the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene is in the form of RNA, it can be introduced into the body cell by a method such as lipofection or microinjection.
  • the form of an expression vector containing DNA encoding the RNA it can be introduced into cells by a method known per se, depending on the type of vector.
  • the vector is recovered and the cells are infected with the vector by an appropriate method according to each viral vector.
  • specific means of using a retroviral vector as a vector are disclosed in WO2007 / 69666, Cell, 126, 663-676 (2006) and Cell, 131, 861-872 (2007), and the lentiviral vector is used as a vector.
  • the use is disclosed in Science, 318, 1917-1920 (2007).
  • the case of using an adenovirus vector is described in Science, 322, 945-949 (2008).
  • the vector is transferred to cells by using a lipofection method, a liposome method, an electroporation method, a calcium phosphate co-precipitation method, a DEAE dextran method, a microinjection method, a gene gun method, or the like. Can be introduced.
  • a substance that inhibits the expression of the oligonucleic acid TEAD3 gene comprising the consensus binding sequence of p53 is a substance that inhibits the transcriptional activator of the TEAD3 gene from binding to the promoter region of the TEAD3 gene.
  • the consensus binding sequence of p53, rrrcwwgyyynnnnnnnnnnnnnnrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, n stands independently or does not exist, a, Can be mentioned as an oligonucleic acid comprising g, t or c; SEQ ID NO: 3).
  • the oligonucleic acid is double-stranded DNA.
  • oligonucleic acids containing the consensus binding sequence of p53 are directed to the TEAD3 promoter region of p53. It can inhibit binding and suppress its transcription.
  • the length of the oligonucleic acid is, for example, 20 to 50 nucleotides, preferably 25 to 40 nucleotides.
  • the oligonucleic acid synthesizes a sense strand and an antisense strand using a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman, etc.) based on the sequence information of SEQ ID NO: 3, and synthesizes them. It can be manufactured by annealing.
  • the oligonucleic acid can be introduced into somatic cells by a method such as lipofection or microinjection.
  • the "substance that suppresses the function of TEAD3” is any substance as long as it suppresses the function of TEAD3 once functionally produced (for example, the transcriptional activation function of a gene cluster that maintains its uniqueness as a somatic cell).
  • examples thereof include substances that bind to TEAD3 and suppress the function, substances that inhibit the binding activity between TEAD3 and a target gene, and substances that inhibit the interaction between TEAD3 and a transcriptional coupling factor.
  • Dominant negative mutant of TEAD3 TEAD3 is a protein consisting of the amino acid sequence represented by SEQ ID NO: 2 in humans, but the region of about 30 to about 100 amino acids from the N-terminal side is highly advanced in the TEAD family. It is a DNA-binding domain conserved in the YAP / TAZ-binding domain and the transcription activation domain after about 200 positions. Therefore, the TEAD3 fragment lacking the DNA-binding domain binds to the transcription coactivator YAP / TAZ competitively with the endogenous full-length TEAD3 and activates transcription of the target gene cluster by the interaction between TEAD3 and YAP / TAZ. It can be suppressed.
  • the TEAD3 fragment lacking the YAP / TAZ binding domain and the transcription activation domain binds to the promoter region of the target gene competitively with the endogenous full-length TEAD3, and is a group of target genes due to the interaction between TEAD3 and YAP / TAZ. Transcription activation can be suppressed.
  • Dominant negative variants of TEAD3 can be obtained by designing an appropriate primer set from a cell / tissue-derived mRNA, cDNA or cDNA library expressing TEAD3 in warm-blooded animals such as humans by the (RT-) PCR method.
  • Clone a nucleic acid encoding a TEAD3 fragment lacking the DNA-binding domain of interest or the YAP / TAZ-binding domain (transcription activation domain) insert it into an appropriate expression vector, introduce the vector into a host cell, and the cell. It can be obtained by recovering the recombinant protein from the culture obtained by culturing.
  • Contact of the dominant negative mutant to somatic cells can be performed using a method for introducing a protein into cells known per se.
  • Such methods include, for example, a method using a protein transfer reagent, a method using a protein transfer domain (PTD) fusion protein, a microinjection method, and the like.
  • Protein transfer reagents include BioPOTER Protein Delivery Reagent (Gene Therapy Systmes) based on cationic lipids, Pro-Ject TM Protein Transfection Reagent (PIERCE) and ProVectin (IMGENEX), and Profect-1 (Targeting Systems) based on lipids.
  • Penetrain Peptide Q biogene
  • Chariot Kit Active Motif based on membrane-permeable peptides
  • the introduction can be performed according to the protocol attached to these reagents, but the general procedure is as follows.
  • the dominant negative variant of p38 is diluted with a suitable solvent (for example, buffer solution of PBS, HEPES, etc.), an introduction reagent is added, and the mixture is incubated at room temperature for about 5-15 minutes to form a complex, which is serum-free. Add to the cells replaced with medium and incubate at 37 ° C. for 1 to several hours. Then, the medium is removed and replaced with a serum-containing medium.
  • a suitable solvent for example, buffer solution of PBS, HEPES, etc.
  • PTDs using cell transit domains of proteins such as Drosophila-derived AntP, HIV-derived TAT, and HSV-derived VP22 have been developed.
  • a fusion protein expression vector incorporating the cDNA of the dominant negative mutant of p38 and the PTD sequence is prepared and recombinantly expressed, and the fusion protein is recovered and used for introduction.
  • the introduction can be carried out in the same manner as described above except that the protein introduction reagent is not added. It is suitable for introducing deletion mutants with relatively small molecular weight such as p38DD.
  • Microinjection is a method in which a protein solution is put into a glass needle with a tip diameter of about 1 ⁇ m and punctured and introduced into cells, and the protein can be reliably introduced into cells.
  • the dominant negative variant of TEAD3 is used in the form of a nucleic acid encoding it rather than as the protein itself. Is rather preferable. Therefore, in another preferred embodiment of the invention, the TEAD3 function inhibitor is a nucleic acid encoding a dominant negative variant of TEAD3.
  • the nucleic acid may be DNA, RNA, or a DNA / RNA chimera, but is preferably DNA. Further, the nucleic acid may be double-stranded or single-stranded.
  • the cDNA encoding the dominant negative variant of TEAD3 can be cloned by the method described above for the production of the variant protein.
  • the isolated cDNA is inserted into a suitable viral or non-viral expression vector and similarly, as is the nucleic acid containing a part of the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene described above. It can be introduced into somatic cells by the gene transfer method.
  • TEAD3 couples with the coactivator YAP / TAZ to activate transcription of target genes.
  • YAP / TAZ binds to 14-3-3, is localized in the cytoplasm, and is inactivated, but is dephosphorylated. It dissociates with 14-3-3 and translocates into the nucleus, and promotes transcription of the target gene cluster in conjugation with TEAD3. Therefore, by inhibiting YAP / TAZ, which is a transcriptional conjugate factor of TEAD3, the function of TEAD3 can be inhibited as a result.
  • antisense nucleic acid against YAP or TAZ, ribozyme nucleic acid, etc. are introduced into somatic cells to suppress their expression. Examples include a method of promoting the phosphorylation of YAP / TAZ and the formation of a complex with 14-3-3, and suppressing its activation and nuclear translocation.
  • SiRNAs and shRNAs for YAP or TAZ are based on the sequence information of YAP mRNA (eg, NM_001130145 for human YAP1-2 ⁇ isoform) or TAZ mRNA (eg, NM_000116 for human TAZ isoform-1).
  • SIRNA for TEAD3, etc. can be appropriately designed by the same method as described.
  • MiRNAs for YAP or TAZ can be searched using the same database described for miRNAs for TEAD3.
  • examples of miRNAs for YAP1 include, but are not limited to, hsa-miR-204-5p, hsa-miR-506-3p, and the like.
  • examples of miRNAs for TAZ include, but are not limited to, hsa-miR-382-3p and hsa-miR-26b-5p. Sequence information for these miRNAs and / or pre-miRNAs can be obtained using, for example, miRBase (above).
  • the antisense nucleic acid and ribozyme nucleic acid for YAP and TAZ can be designed and used in the same manner as the antisense nucleic acid and ribozyme nucleic acid for TEAD3.
  • 14-3-3 proteins can be used as inhibitors of YAP or TAZ. By enriching the intracellular 14-3-3 protein, it is possible to promote the formation of a complex with YAP / TAZ and suppress the translocation of YAP / TAZ into the nucleus.
  • an activating substance of the Hippo signaling pathway can also be used as an inhibitor of YAP or TAZ. Activation of the Hippo signaling pathway can promote YAP / TAZ phosphorylation and suppress nuclear translocation. Examples of the activator of the Hippo signaling pathway include Lats1 / 2 (and its conjugate factor Mob1A / 1B) and its upstream MST1 / 2 (and its conjugate factor WW45).
  • dominant negative variants of YAP or TAZ can be used.
  • the TEAD-binding domains of YAP and TAZ are 50 to 100 amino acids and 13 to 57 amino acids from the N-terminal, respectively, and the transcription activation domains are positions 276 to 472 and 208 to 381, respectively, and thus include the TEAD binding domain.
  • a YAP or TAZ fragment lacking a transcriptional activation domain when translocated into the nucleus, it binds to TEAD3 competitively with endogenous YAP / TAZ and activates transcription of the target gene by the interaction between TEAD3 and YAP / TAZ. Can be suppressed.
  • a nuclear localization signal sequence known per se may be added.
  • Information on the amino acid sequence and mRNA sequence of these YAP / TAZ inhibitors is known, and sequence information can be obtained from various databases, including the above-mentioned dominant negative variant of TEAD3 and the nucleic acid encoding it.
  • the desired protein or nucleic acid encoding it can be obtained.
  • the obtained protein or nucleic acid can be introduced into somatic cells by the same method as the dominant negative mutant of TEAD3 or the nucleic acid encoding the same.
  • the decoy nucleic acid YAP / TAZ for TEAD3 is coupled not only with TEAD3 but also with other transcription factors. Therefore, in order to selectively suppress the transcriptional activation of the target gene in TEAD3, it is more preferable to use a substance that inhibits the binding of TEAD3 to the target gene promoter region. Examples of such a substance include not only the dominant negative mutant of TEAD3 lacking the YAP / TAZ binding domain (transcription activation domain) described above, but also a decoy nucleic acid containing a consensus binding sequence of TED3. ACATTCCA is mentioned as a consensus binding sequence of TEAD3.
  • the decoy nucleic acid is double-stranded DNA.
  • the length of the decoy nucleic acid is, for example, 8 to 30 nucleotides, preferably 8 to 20 nucleotides.
  • the decoy nucleic acid for TEAD3 can be prepared in the same manner as the oligonucleic acid containing the consensus binding sequence of p53 and introduced into somatic cells.
  • the above TEAD3 function-inhibiting substance needs to be introduced into somatic cells in a manner sufficient to inhibit the function of TEAD3 in the nuclear initialization step of somatic cells.
  • the nuclear reprogramming of somatic cells can be carried out by introducing a nuclear reprogramming substance into somatic cells.
  • nuclear reprogramming substance is a proteinaceous factor or a substance (group) that can induce iPS cells from the somatic cells by introducing them into the somatic cells. It may be composed of any substance such as a nucleic acid encoding it (including a form incorporated in a vector) or a low molecular weight compound.
  • the nuclear reprogramming substance is a proteinaceous factor or a nucleic acid encoding the same, the following combinations are preferably exemplified (in the following, only the name of the proteinaceous factor is described).
  • c-Myc can be replaced with T58A (active mutant), N-Myc, L-Myc.) (3) Oct3 / 4, Klf4, c-Myc, Sox2, Fbx15, Nanog, Eras, ECAT15-2, TclI, ⁇ -catenin (active mutant S33Y) (4) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, SV40 Large T antigen (hereinafter, SV40LT) (5) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, HPV16 E6 (6) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, HPV16 E7 (7) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, HPV6 E6, HPV16 E7 (8) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, Bmil (See WO 2007/069666 (however, in the combination of
  • the combination of the three factors Oct3 / 4, Sox2 and Klf4 (that is, (9) above) is preferable.
  • the three factors Oct3 / 4, Sox2 and Klf4 as well as c-Myc 4 factors including the above can be exemplified.
  • 5 factors that is, (25) above
  • L-Myc and Lin28 obtained by adding L-Myc and Lin28 to 3 factors of Oct3 / 4, Sox2 and Klf4, and Glis1 (that is, (26) above).
  • 6 factors including SV40 Large T can be exemplified.
  • nucleotide sequences of mouse and human cDNAs of each of the above nuclear reprogramming substances and the amino acid sequence information of the protein encoded by the cDNA refer to NCBI accession numbers described in WO 2007/069666, and L-Myc, Lin28. , Lin28b, Esrrb, Esrrg and Glis1 mouse and human cDNA sequences and amino acid sequence information can be obtained by referring to the NCBI accession numbers below, respectively.
  • One of ordinary skill in the art can prepare a desired nuclear reprogramming substance by a conventional method based on the cDNA sequence or amino acid sequence information.
  • the obtained cDNA is inserted into an appropriate expression vector and introduced into a host cell, and the recombinant proteinaceous factor is obtained from the culture obtained by culturing the cells. Can be prepared by recovering.
  • the obtained cDNA can be used as a viral vector, episomal vector or plasmid in the same manner as in the case of the nucleic acid encoding the dominant negative variant of TEAD3. It is inserted into a vector to construct an expression vector and subjected to a nuclear initialization step.
  • each nucleic acid may be supported on a separate vector, or a plurality of nucleic acids may be linked in tandem to form a polycistronic vector. It can also be.
  • polycistronic vector for example, 2A sequence of foot-and-mouth disease virus (PLoS ONE 3, e2532, 2008, Stem Cells 25, 1707, 2007), IRES sequence (US Patent No. A 2A sequence is preferably used, such as 4,937,190).
  • (D) IPS cell establishment efficiency improving substance In addition to the above-mentioned TEAD3 function-inhibiting substance, it can be expected that the establishment efficiency of iPS cells will be further enhanced by contacting somatic cells with other known establishment efficiency improving substances.
  • HDAC histone deacetylase
  • VPA valproic acid
  • tricostatin Nucleic acid expression such as A, sodium butyrate, small molecule inhibitors such as MC 1293, M344, siRNA and shRNA against HDAC (eg, HDAC1 siRNA Smartpool TM (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene), etc.) Inhibitors, etc.] DNA methyltransferase inhibitors (eg, 5'-azacytidine) (Nat.
  • HDAC histone deacetylase
  • G9a histone methyltransferase inhibitors eg, BIX-01294 (Cell) Small molecule inhibitors such as Stem Cell, 2: 525-528 (2008)
  • nucleic acid expression inhibitors such as siRNA and shRNA against G9a (eg, G9a siRNA (human) (Santa Cruz Biotechnology), etc.], L.
  • -channel nucleic acid agonist eg Bayk8644
  • UTF1 Cell Stem Cell, 3, 475-479 (2008)
  • Wnt Signaling activator eg soluble Wnt3a
  • 2i / LIF 2i is an inhibitor of mitogen-activated protein kinase signaling and glycogen synthase kinase-3, PloS Biology, 6 (10), 2237-2247 (2008)
  • ES cell-specific miRNA eg, miR-302-367 cluster (Mol. Cell. Biol.
  • nucleic acid expression inhibitor described above may be in the form of an expression vector containing DNA encoding siRNA or shRNA.
  • iPS cell establishment efficiency improving substance in that it is not essential for nuclear reprogramming of somatic cells but is an auxiliary factor. It can also be included in the category.
  • auxiliary factors other than the factors essential for nuclear reprogramming as nuclear reprogramming substances or as substances for improving the establishment efficiency of iPS cells? It may be convenient.
  • hypoxic condition means that the oxygen concentration in the atmosphere when culturing cells is significantly lower than that in the atmosphere. Specifically, there are conditions of oxygen concentration lower than the oxygen concentration in the atmosphere of 5-10% CO 2 / 95-90% generally used in normal cell culture, for example, oxygen in the atmosphere. The condition that the concentration is 18% or less is applicable.
  • the oxygen concentration in the atmosphere is 15% or less (eg, 14% or less, 13% or less, 12% or less, 11% or less, etc.), 10% or less (eg, 9% or less, 8% or less, 7% or less). , 6% or less, etc.), or 5% or less (eg, 4% or less, 3% or less, 2% or less, etc.).
  • the oxygen concentration in the atmosphere is preferably 0.1% or more (eg, 0.2% or more, 0.3% or more, 0.4% or more, etc.), 0.5% or more (eg, 0.6% or more, 0.7% or more, 0.8% or more, 0.95). 1% or more (eg, 1.1% or more, 1.2% or more, 1.3% or more, 1.4% or more, etc.).
  • WO 2010/013845 For more detailed culture conditions relating to hypoxic culture, see, for example, WO 2010/013845.
  • the cells After contacting the nuclear reprogramming substance and the TEAD3 function inhibitor, the cells can be cultured under conditions suitable for culturing ES cells, for example.
  • LIF Leukemia Inhibitory Factor
  • bFGF basic fibroblast growth factor
  • SCF stem cell factor
  • cells are usually cultured as feeder cells in the coexistence of mouse embryo-derived fibroblasts (MEF) that have been treated with radiation or antibiotics to stop cell division.
  • MEF mouse embryo-derived fibroblasts
  • STO cells are usually often used, but SNL cells (McMahon, A. P.
  • Co-culture with feeder cells may be initiated prior to contact with the nuclear reprogramming agent and TEAD3 function inhibitor, at the time of the contact, or after the contact (eg, 1-10 days). You may.
  • Selection of candidate colonies for iPS cells includes a method using drug resistance and reporter activity as indicators and a method by visual morphological observation.
  • the former may include, for example, a drug resistance gene and / or at the locus of a gene specifically highly expressed in a pluripotent cell (eg, Fbx15, Nanog, Oct3 / 4, preferably Nanog or Oct3 / 4).
  • a pluripotent cell eg, Fbx15, Nanog, Oct3 / 4, preferably Nanog or Oct3 / 4.
  • Such recombinant cells include, for example, MEF (Takahashi & Yamanaka, Cell, 126, 663) derived from a mouse in which the ⁇ geo (encoding a fusion protein of ⁇ -galactosidase and neomycin phosphotransferase) gene is knocked in at the Fbx15 locus. -676 (2006)) or MEF (Okita et al., Nature, 448, 313-317 (2007)) derived from transgenic mice in which the green fluorescent protein (GFP) gene and the puromycin resistance gene have been integrated into the Nanog locus. And so on.
  • MEF green fluorescent protein
  • the iPS cells established in this way can be used for various purposes.
  • the differentiation induction method reported for ES cells is used to induce differentiation of iPS cells into various cells (for example, cardiomyocytes, blood cells, nerve cells, vascular endothelial cells, insulin secretory cells, etc.). be able to. Therefore, if iPS cells are induced using somatic cells collected from the patient or another person with the same or substantially the same HLA type, the desired cells (that is, the organ in which the patient is affected) can be induced.
  • Stem cell therapy by autologous transplantation is possible, in which cells and cells that exert a therapeutic effect on diseases are differentiated and transplanted to the patient.
  • iPS cells differentiated from iPS cells are considered to more reflect the actual state of the functional cells in vivo than the corresponding existing cell lines, and thus are drug candidates. It can also be suitably used for in vitro screening of the medicinal effect and toxicity of a compound.
  • Method 1 Cell culture Primary culture of mouse embryo fibroblasts (MEFs) was performed according to a previously established method (Okita et al., 2007). MEFs were cultured in Dulbecco's modified Eagle's medium (DMEM, Nacalai Tesque) supplemented with 10% fetal bovine serum (FBS, Invitorogen) under 37 ° C. and 5% CO 2 conditions. DMEM was supplied with 0.5% penicillin and streptomycin (Invitorogen). Human skin fibroblasts (HDF) were cultured under similar conditions.
  • DMEM Dulbecco's modified Eagle's medium
  • FBS fetal bovine serum
  • HDF Human skin fibroblasts
  • MEF and HDF-derived iPS cells are supplemented with leukemia inhibitory factor (LIF), 15% FBS, 2 mM L-glutamine (Invitorogen), 0.1 mM non-essential amino acid (Invitorogen), 0.1 mM 2-mercaptoethanol (Invitorogen) and 0.5. Incubated in DMEM containing% penicillin and streptomycin.
  • LIF leukemia inhibitory factor
  • FBS FBS
  • Invitorogen 2 mM L-glutamine
  • Invitorogen 0.1 mM non-essential amino acid
  • 2-mercaptoethanol Invitorogen
  • Method 2 Preparation of mouse iPS cells iPS cells were established by a method in which some modifications were made to the previous description (Okita et al., 2007; Takahashi and Yamanaka, 2006). 1 ⁇ 10 5 MEFs of cells per well were seeded and cultured overnight. After 24 hours, four factors (Oct3 / 4, Sox2, Klf4 and c-Myc; sometimes abbreviated as “4F” herein) infect the retrovirus inserted in the Nanog-GFP cassette. Introduced 4F into the MEFs. After 24 hours, the cells were passaged once and seeded on a feeder layer of mitomycin C-treated SNL cells in 2.5 ⁇ 10 3 cells per dish. The next day, the medium was replaced with mouse iPS cell medium and then cultured for 30 days.
  • the feeder layer of SNL cells treated with mitomycin C to subculture the cells to 2.5 ⁇ 10 5 (4 factors) or 5 ⁇ 10 5 (3 factors). Sown on top. The next day, the medium was replaced with primate ES medium (ReproCELL, Japan) supplemented with 4 ng / mL human basic fibroblast growth factor (bFGF), and then cultured for 30 days.
  • primate ES medium ReproCELL, Japan
  • bFGF human basic fibroblast growth factor
  • Electroporation was performed 3 times (3 pulses) at 1650 V, 10 ms. Four days after transduction, the cells were trypsinized and reseeded at a cell density of 2 ⁇ 10 5 cells on a 100 mm dish covered with a feeder layer of mitomycin C treated SNL cells. The next day, the medium was replaced with bFGF-supplemented primate ES cell medium and then cultured for 30 days.
  • Alkaline phosphatase staining and immunocytochemistry Alkaline phosphatase (AP) staining was performed according to the protocol of the Alkaline Phosphatase Detection Kit (Sigma).
  • the cells were treated and fixed in PBS containing 4% paraformaldehyde at room temperature for 20 minutes. After washing with PBS, the cells are treated with blocking solution (PBS containing 5% normal goat serum (Millipore), 1% bovine serum albumin (BSA, Nacalai Tesque) and 0.2% Triton X-100) at room temperature for 45 minutes. did.
  • the primary antibody and dilution are as follows.
  • Anti-OCT4 antibody (1:50, Santa Cruz, sc-5279), anti-SOX2 antibody (1: 100, Abcam, ab75485) and anti-TRA1-60 antibody (1:50, Millipore, MAB4360).
  • Alexa Fluor 488-labeled anti-mouse IgG (1: 500, Invitrogen, A-11001) was used as the secondary antibody.
  • Hoechst 33342 (1 ⁇ g / mL, Invitrogen) was used for nuclear staining.
  • the primary antibodies used are as follows. Anti-Tuj1 antibody (1: 100, Chemicon: MAB1637), anti- ⁇ -smooth muscle actin antibody ( ⁇ -SMA, 1: 500, DAKO: M085101) and anti- ⁇ -fetoprotein antibody (1: 100, R & D: MAB1368). Alexa 488-labeled anti-mouse IgG (1: 500, Invitrogen: A-11001) was used as the secondary antibody.
  • Method 7 Microarray pretreatment and differential gene expression analysis Microarray slides were scanned using a monochromatic Agilet DNA microarray scanner and analyzed using the default parameters. Raw data was loaded into RStudio (R visual script) and gene expression data for reading, exploration and pretreatment was analyzed using the Bioconductor package Limma. Limma's workflow was used for differential gene expression analysis (DEG). The hierarchical cluster phylogenetic tree (Hierachical derived) was created using hclust in the stat package and agnes in the cluster package. Distance was calculated using the Manhattan city-block distance method, and k-means was calculated using the kmeans function.
  • the distance and correlation matrix was visualized using get_dist and fviz_dist included in the factoroextra package.
  • the cluster scatter plot was calculated using the fviz_cluster function.
  • Expression data for DEGs were clustered using an R script to create Heatmaps.
  • Statistical analysis of gene ontology and gene cluster was performed using DOSE and clusterProfiler package.
  • the microarray data acquired in the present application can be used as accession number GSE56167 in Gene Expression Omnibus.
  • Method 9 Teratoma-forming iPS cells were collected using a CTK solution and seeded on a 60 mm dish. After culturing to confluence, cells were harvested and injected into the testis of non-obese diabetic / severe combined immunodeficiency (NOD-SCID) mice (CREA, Japan). Three months after injection, the resulting tumor was incised and fixed with 4% paraformaldehyde in PBS. Sliced sections from paraffin-embedded tissue were stained with hematoxylin and eosin.
  • NOD-SCID non-obese diabetic / severe combined immunodeficiency mice
  • iPSCs were prepared from MEFs according to the promoting effect of p38 inhibition on the reprogramming of mouse embryo fibroblasts (MEF) [Method 2].
  • 7 compounds known to promote the initialization efficiency of DMSO (vehicle, negative control), p38 selective inhibitor (SB202190, Calbiochem, 10 ⁇ M), or MEF 24 hours after the introduction of 4F by retrovirus. was added to the medium and replaced with a medium containing no of them after 98 hours.
  • the seven compounds and their treatment concentrations are as follows; Vitamin C (Sigma, 10 ⁇ g / mL), Valproic acid (Sigma, 1.9 mM), CHIR99021 (Calbiochem, 3 ⁇ M), PD0325901 (Calbiochem, 0.5 ⁇ M), Interleukin-6 (R & D, 0.2 ng / mL), AS601245 (Calbiochem, 5 ⁇ M), Rapamycin (Sigma, 1 ⁇ M).
  • Vitamin C Sigma, 10 ⁇ g / mL
  • Valproic acid Sigma, 1.9 mM
  • CHIR99021 Calbiochem, 3 ⁇ M
  • PD0325901 Calbiochem, 0.5 ⁇ M
  • Interleukin-6 R & D, 0.2 ng / mL
  • AS601245 Calbiochem, 5 ⁇ M
  • Rapamycin Rapamycin
  • the number of GFP-positive colonies was measured 21 days (Day 21) and 28 days (Day 28) after the introduction of 4F, and the initialization efficiency was calculated by comparing with the number of GFP-positive colonies of the 4F introduction negative control. At that time, correction was performed based on the number of GFP-positive colonies obtained by infecting the retrovirus (4F + DsRed) into which the 4F and DsRed genes were inserted (correction based on virus infection efficiency). The results are shown in FIG. 1A. The same correction was made in the subsequent analysis of initialization efficiency, but the explanation is omitted. As shown in FIG.
  • MEFs treated with a p38 selective inhibitor yielded nearly twice as many GFP-positive colonies as DMSO-treated MEFs on both Day 21 and Day 28.
  • the number of GFP-positive colonies is almost the same as the number of GFP-positive colonies obtained by treatment with the most effective antioxidant (VC, vitamin C) and GSK3 ⁇ inhibitor (CH, CHIR99021) among the seven known compounds. It was equivalent.
  • DMSO or SB202190 was added to the medium during the four periods shown in FIG. 1B (A: Days 1 to 4, B: Days 1 to 8, C: Days 8 to 16, D: Days 1 to 16) to form Day 21.
  • the number of GFP-positive colonies was counted on Day 28.
  • FIG. 1C As shown in FIG. 1C, in the experimental group treated with SB202190 in the initial phase (period A), the number of GFP-positive colonies on Day 21 and Day 28 was significantly increased as compared with the control (DMSO treatment during the same period). As shown in FIG.
  • the efficiency calculation method was in accordance with the MEF initialization efficiency calculation method described in 1) above.
  • the results of the experimental group treated with the inhibitor during the period A or D are shown in FIG. 2B.
  • the number of GFP-positive colonies on Day 24 and Day 32 was significantly and significantly higher than that in the control (DMSO treated) experimental group when any of the above three types of inhibitors was used.
  • Fig. 2B left bar graph
  • the number of GFP-positive colonies tended to be significantly higher than that of the control, regardless of the type of the inhibitor (FIG. 2B, right bar graph).
  • SB202190 or SB203580 was added over the entire phase (period D)
  • the number of GFP-positive colonies on Day32 increased more than twice as much as when added only in the initial phase. ..
  • Human iPSCs obtained by treatment with SB202190 maintained ESC-like morphology even after 30 subcultures from Day32 (Fig. 2C) and expressed alkaline phosphatase, which is an ESC-specific marker (Fig. 2C).
  • 2D [Method 5]
  • Fig. 2E [Method 5]
  • SB1 to SB3 Differentiation ability of human iPSC obtained by inhibiting p38
  • the differentiation ability of human iPSC obtained by inhibiting p38 in the initialization step was analyzed.
  • Three clones (SB1 to SB3) were established from HDF-derived iPSCs obtained by treatment with SB202190, and the expression levels of SOX2, OCT4, and NANOG, which are indicators of pluripotency, were analyzed for the clones (Fig. 3A). As shown in FIG. 3A, SB1 to SB3 are comparable to human iPSCs (DM, B7) and ES cells (ES) obtained by reprogramming without inhibiting p38, or to the same extent as HDF (HD).
  • teratoma species were formed from all the analyzed clones and differentiated into three germ layers containing neuroepithelium, cartilage, and various glandular structures. It was confirmed (Fig. 3D). Therefore, it was shown that the human iPSC obtained by inhibiting p38 in the initialization step has the ability to differentiate into three germ layers both in vitro and in vivo.
  • human iPSC obtained by inhibiting p38 in the initialization step is comparable to human iPS cells and ES cells obtained without p38 inhibition, has normal karyotype, and differentiates into three germ layers. It was confirmed that it had the ability.
  • PCA principal component analysis
  • 340 genes 31 were classified as having transcription factor or DNA binding activity (Fig. 5D).
  • tyrosine kinase activity / membrane receptor type kinase activity / membrane receptor type tyrosine kinase activity tyrosine kinase activity / membrane receptor type kinase activity / membrane receptor type tyrosine kinase activity, collagen binding / collagen receptor activity, oligoglycosyltransferase activity, etc. were hit as the main GO terms. (Fig. 5E).
  • TEAD3 as a gene that functions as a strong barrier for somatic cell reprogramming from among the 31 genes. rice field.
  • the relationship between the effect of p53 and / or p38 inhibition on the initialization of HDF by 4F and the expression of endogenous TEAD3 was investigated.
  • the expression of TEAD3 was significantly reduced when p53 or p38 was inhibited alone as compared with the case of 4F introduction alone (vehicle (DMSO) treatment), but when p53 and p38 were double-inhibited, TEAD3 was observed. Expression was further significantly reduced (FIG. 6A).
  • GSE36664 dataset containing MEF transcriptome data (see J Biol Chem 2012 Oct 19; 287 (43): 35825-37.), GSE45276 dataset containing human lung fibroblast transcriptome data (MolCell 2011 Apr) 8; 42 (1): 36-49.)
  • TEAD3 and p53 expression using the HDF transcriptome dataset showed a positive correlation in all cells (Fig. 9). ), It is suggested that p53 positively regulates the expression of TEAD3, which is an initialization barrier.
  • the HDF introduced with shRNA for 4F and TEAD3 had a faster initialization rate than the HDF introduced with only 4F (4F + non-specific shRNA) (Figs. 13A and B). This could be partially explained by the faster cell proliferation in the early phase of reprogramming (FIGS. 13C and E). However, once pluripotency was acquired, the human iPSC obtained by introducing only 4F and the human iPSC obtained by further introducing shRNA for TEAD3 proliferated at a similar rate (FIGS. 13D and F). It was suggested that iPSC clones induced by TEAD3 inhibition by restoration of cell cycle checkpoints are safe.
  • TEAD3 expression was downregulated for pluripotency acquisition only in SSEA1-positive MEF reprogramming intermediates (Fig. 6G). This indicates that only cells that have successfully committed to reprogramming require downregulation of TEAD3 to overcome the cellular mechanism that attempts to block reprogramming.
  • the present inventors searched for a regulatory mechanism of TEAD3 expression.
  • TEAD3 mRNA sequence the sequence of the promoter region 5'upstream from the genomic DNA information was obtained, and the known transcription initiation site (TSS) sequence was used as a query to perform Blast on the promoter sequence.
  • TSS transcription initiation site
  • TEAD3 functions as a strong barrier that inhibits the reprogramming of human cells, and that the reprogramming efficiency of the cells is promoted by inhibiting the expression or activity thereof.
  • the iPS cell establishment efficiency can be significantly improved as much as the double inhibition of the p38 pathway and the p53 pathway. Since the method according to the present invention is effective for initialization by various methods, it is extremely useful in terms of both safety and cost for application of human iPS cells to regenerative medicine.

Abstract

The present invention provides: a method that is for improving establishing efficiency of iPS cells and that includes, in a nuclear reprogramming step for somatic cells, inhibiting the function of transcription enhancer factor domain family member-3 (TEAD3); and a method that is for producing iPS cells and that includes bringing somatic cells into contact with nuclear reprogramming substances and a substance for inhibiting the function of TEAD3.

Description

効率的な人工多能性幹細胞の作製方法Efficient method for producing induced pluripotent stem cells
 本発明は、体細胞の核初期化工程において、転写エンハンサー関連ドメインファミリーメンバー-3(以下、「TEAD3」ともいう)の機能を阻害することによる、人工多能性幹(iPS)細胞の樹立効率の改善方法、並びにTEAD3の機能阻害物質を含んでなるiPS細胞の樹立効率改善剤に関する。本発明はまた、体細胞に核初期化物質及びTEAD3の機能阻害物質を導入することによる、iPS細胞の製造方法に関する。 The present invention relates to the efficiency of establishment of induced pluripotent stem (iPS) cells by inhibiting the function of transcription enhancer-related domain family member-3 (hereinafter, also referred to as "TEAD3") in the nuclear reprogramming step of somatic cells. And an agent for improving the efficiency of establishment of iPS cells, which comprises a function inhibitor of TEAD3. The present invention also relates to a method for producing iPS cells by introducing a nuclear reprogramming substance and a function inhibitor of TEAD3 into somatic cells.
 山中因子(Oct3/4、Sox2、Klf4(及びc-Myc))等の核初期化因子により駆動される体細胞初期化は、細胞を初期化し、それらをiPS細胞にまで脱分化させるために、体細胞としての固有性を守る強力な転写因子群を克服しなければならない。iPS細胞樹立効率を改善するために、初期化バリアの役割を担う鍵因子を同定することに焦点を当てた研究が数多くなされてきた。それにもかかわらず、初期化は依然として効率の低いプロセスである。 Somatic cell reprogramming driven by nuclear reprogramming factors such as the Yamanaka factor (Oct3 / 4, Sox2, Klf4 (and c-Myc)) reprograms cells and dedifferentiates them to iPS cells. We must overcome a group of powerful transcription factors that protect their uniqueness as somatic cells. Numerous studies have focused on identifying key factors that play a role in reprogramming barriers to improve iPS cell establishment efficiency. Nevertheless, initialization is still an inefficient process.
 体細胞初期化プロセスは、大きく開始、安定化及び成熟化段階に分けることができ、転写ネットワークの大きな変化を含む複数の生物学的プログラムの実行と共役している。p53は初期化の重要な障壁として働くことが広く知られている。実際、マウスやヒトの線維芽細胞で、p53の下方制御によりiPSコロニー数が顕著に増大することが分かっている(例えば、特許文献1、非特許文献1を参照)。しかし、p53はDNA損傷に応答する無制御な細胞増殖に対する防御機構として働くので、p53経路の下方制御はゲノムの不安定性を生じ、安全性に問題があると指摘する向きもある。非組込み型プラスミドを用いた一過的なp53抑制は、iPS細胞樹立効率を改善するより安全な方法を提供する(例えば、非特許文献2を参照)。 The somatic cell reprogramming process can be broadly divided into initiation, stabilization and maturation stages, coupled with the execution of multiple biological programs involving major changes in the transcriptional network. It is widely known that p53 acts as an important barrier to initialization. In fact, it has been found that in mouse and human fibroblasts, downregulation of p53 significantly increases the number of iPS colonies (see, for example, Patent Document 1 and Non-Patent Document 1). However, some point out that downregulation of the p53 pathway causes genomic instability and safety issues, as p53 acts as a defense against uncontrolled cell proliferation in response to DNA damage. Transient p53 suppression with non-integrated plasmids provides a safer way to improve iPS cell establishment efficiency (see, eg, Non-Patent Document 2).
 本発明者らは以前、体細胞の核初期化工程において、p38の機能を阻害することによりiPS細胞の樹立効率を改善し得ることを報告した(特許文献2)。しかしながら、そのメカニズムは未だよく理解されていない。 The present inventors have previously reported that the efficiency of iPS cell establishment can be improved by inhibiting the function of p38 in the nuclear reprogramming step of somatic cells (Patent Document 2). However, the mechanism is not yet well understood.
国際公開第2009/157593号公報International Publication No. 2009/157593 国際公開第2012/036299号公報International Publication No. 2012/036299
 本発明の目的は、体細胞の初期化バリアとなる新規な鍵因子を同定し、当該因子を制御することにより初期化バリアを無効化して、iPS細胞の樹立効率を改善することである。 An object of the present invention is to identify a novel key factor that serves as a somatic cell reprogramming barrier, invalidate the reprogramming barrier by controlling the factor, and improve the efficiency of iPS cell establishment.
 本発明者らは、上記の目的を達成すべく、p38 MAPK阻害薬の役割を体系的に調べ、p38阻害は、ヒトiPS細胞樹立効率を、初期化の開始段階と安定化段階の両方で劇的に改善し得ることを見出した。
 本発明者らはまた、初期化過程でp38経路とp53経路の両方を二重阻害した場合、各経路を単独で阻害した場合よりも、iPSコロニーの形成効率がさらに増大することを見出した。そして二重阻害した場合に発現が顕著に下方制御される遺伝子群の中から、当該発現抑制により前記二重阻害した場合と同等のiPS細胞樹立効率改善効果を奏し得る遺伝子としてTEAD3を見出し、本発明を完成させるに至った。
The present inventors systematically investigated the role of p38 MAPK inhibitors in order to achieve the above-mentioned objectives, and p38 inhibition dramatically improved the efficiency of human iPS cell establishment at both the initiation stage and the stabilization stage of reprogramming. It was found that it could be improved.
We also found that double inhibition of both the p38 and p53 pathways during the initialization process further increased the efficiency of iPS colony formation compared to inhibition of each pathway alone. Then, from among the genes whose expression is significantly down-regulated when double-inhibited, TEAD3 was found as a gene capable of exerting the same effect of improving iPS cell establishment efficiency as in the case of double-inhibition by suppressing the expression. The invention was completed.
 即ち、本発明は以下の通りのものである。
[1]人工多能性幹(iPS)細胞の樹立効率の改善方法であって、体細胞の核初期化工程において転写エンハンサー関連ドメインファミリー メンバー-3(TEAD3)の機能を阻害することを含む、方法。
[2]以下の(a)~(c):
(a)TEAD3遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体;
(b)TEAD3遺伝子の転写産物に対するアンチセンス核酸;及び
(c)TEAD3遺伝子の転写産物に対するリボザイム核酸
のいずれかの核酸を体細胞に導入することによりTEAD3の機能を阻害する、[1]に記載の方法。
[3]TEAD3のドミナントネガティブ変異体又はそれをコードする核酸を体細胞に導入することによりTEAD3の機能を阻害する、[1]に記載の方法。
[4]体細胞においてTEAD3の転写共役因子を阻害することによりTEAD3の機能を阻害する、[1]に記載の方法。
[5]以下の(a)又は(b):
(a)TEAD3に対するデコイ核酸;
(b)rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy(rはa又はg、wはa又はt、yはc又はtを表し、nはそれぞれ独立して、存在しないか、a、g、t又はcを表す;配列番号3)で表されるヌクレオチド配列を含むオリゴ核酸
を体細胞に導入することによりTEAD3の機能を阻害する、[1]に記載の方法。
[6]TEAD3の機能阻害物質を含有してなる、iPS細胞の樹立効率改善剤。
[7]前記阻害物質が、以下の(a)~(c):
(a)TEAD3遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体;
(b)TEAD3遺伝子の転写産物に対するアンチセンス核酸;及び
(c)TEAD3遺伝子の転写産物に対するリボザイム核酸
のいずれかの核酸である、[6]に記載の剤。
[8]前記阻害物質が、TEAD3のドミナントネガティブ変異体又はそれをコードする核酸である、[6]に記載の剤。
[9]前記阻害物質が、TEAD3の転写共役因子の阻害物質である、[6]に記載の剤。
[10]前記阻害物質が、下の(a)又は(b):
(a)TEAD3に対するデコイ核酸;
(b)rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy(rはa又はg、wはa又はt、yはc又はtを表し、nはそれぞれ独立して、存在しないか、a、g、t又はcを表す;配列番号3)で表されるヌクレオチド配列を含むオリゴ核酸
である、[6]に記載の剤。
[11]体細胞に核初期化物質及びTEAD3の機能阻害物質を接触させることを含む、iPS細胞の製造方法。
[12]前記阻害物質が、以下の(a)~(c):
(a)TEAD3遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体;
(b)TEAD3遺伝子の転写産物に対するアンチセンス核酸;及び
(c)TEAD3遺伝子の転写産物に対するリボザイム核酸
のいずれかの核酸である、[11]に記載の方法。
[13]前記阻害物質が、TEAD3のドミナントネガティブ変異体又はそれをコードする核酸である、[11]に記載の方法。
[14]前記阻害物質が、TEAD3の転写共役因子の阻害物質である、[11]に記載の方法。
[15]前記阻害物質が、下の(a)又は(b):
(a)TEAD3に対するデコイ核酸;
(b)rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy(rはa又はg、wはa又はt、yはc又はtを表し、nはそれぞれ独立して、存在しないか、a、g、t又はcを表す;配列番号3)で表されるヌクレオチド配列を含むオリゴ核酸
である、[11]に記載の方法。
[16]核初期化物質がOct3/4、Klf4及びSox2、又はそれらをコードする核酸である、[11]~[15]のいずれかに記載の方法。
[17]核初期化物質がOct3/4、Klf4、Sox2、及びc-Myc、L-MycもしくはN-Mycであるか、あるいはそれらをコードする核酸である、[11]~[15]のいずれかに記載の方法。
That is, the present invention is as follows.
[1] A method for improving the establishment efficiency of induced pluripotent stem (iPS) cells, which comprises inhibiting the function of transcription enhancer-related domain family member-3 (TEAD3) in the nuclear reprogramming process of somatic cells. Method.
[2] The following (a) to (c):
(A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene;
(B) Antisense nucleic acid for the transcript of the TEAD3 gene; and (c) Inhibits the function of TEAD3 by introducing one of the ribozyme nucleic acids for the transcript of the TEAD3 gene into somatic cells, according to [1]. the method of.
[3] The method according to [1], wherein the function of TEAD3 is inhibited by introducing a dominant negative mutant of TEAD3 or a nucleic acid encoding the same into a somatic cell.
[4] The method according to [1], wherein the function of TEAD3 is inhibited by inhibiting the transcriptional conjugate factor of TEAD3 in somatic cells.
[5] The following (a) or (b):
(A) Decoy nucleic acid for TEAD3;
(B) rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, and n stands independently for a, g, t or c; SEQ ID NO: 3) The method according to [1], wherein the function of TEAD3 is inhibited by introducing an oligonucleic acid containing a nucleotide sequence represented by (1) into a somatic cell.
[6] An iPS cell establishment efficiency improving agent containing a TEAD3 function inhibitor.
[7] The inhibitor is the following (a) to (c):
(A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene;
The agent according to [6], which is either (b) an antisense nucleic acid for a transcript of the TEAD3 gene; or (c) a ribozyme nucleic acid for a transcript of the TEAD3 gene.
[8] The agent according to [6], wherein the inhibitor is a dominant negative mutant of TEAD3 or a nucleic acid encoding the same.
[9] The agent according to [6], wherein the inhibitor is an inhibitor of a transcriptional conjugate factor of TEAD3.
[10] The inhibitor is the lower (a) or (b):
(A) Decoy nucleic acid for TEAD3;
(B) rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, and n stands independently for a, g, t or c; SEQ ID NO: 3) The agent according to [6], which is an oligonucleic acid containing a nucleotide sequence represented by.
[11] A method for producing iPS cells, which comprises contacting somatic cells with a nuclear reprogramming substance and a function inhibitor of TEAD3.
[12] The inhibitor is the following (a) to (c):
(A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene;
The method according to [11], wherein (b) an antisense nucleic acid for a transcript of the TEAD3 gene; and (c) a ribozyme nucleic acid for a transcript of the TEAD3 gene.
[13] The method according to [11], wherein the inhibitor is a dominant negative mutant of TEAD3 or a nucleic acid encoding the same.
[14] The method according to [11], wherein the inhibitor is an inhibitor of a transcriptional conjugate factor of TEAD3.
[15] The inhibitor is the lower (a) or (b):
(A) Decoy nucleic acid for TEAD3;
(B) rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, and n stands independently for a, g, t or c; SEQ ID NO: 3) The method according to [11], which is an oligonucleic acid containing a nucleotide sequence represented by.
[16] The method according to any one of [11] to [15], wherein the nuclear reprogramming substance is Oct3 / 4, Klf4 and Sox2, or nucleic acids encoding them.
[17] Any of [11] to [15], wherein the nuclear reprogramming substance is Oct3 / 4, Klf4, Sox2, and c-Myc, L-Myc or N-Myc, or a nucleic acid encoding them. The method described in Crab.
 本発明によれば、体細胞からのiPS細胞の樹立効率を顕著に改善することができる。 According to the present invention, the efficiency of establishing iPS cells from somatic cells can be significantly improved.
マウスiPS細胞樹立に及ぼす低分子p38阻害薬の効果を示す図である。A.インビトロでMEF初期化効率を変化させると証明された濃度での、7つの化合物(VC-10μg/mL;VA-1.9mM;CH-3μM;PD-0.5μM;IL-0.2ng/mL;AS-5μM;RA-1μM)に対するp38阻害薬(SB202190;10μM)の効果を調べるべく、iPS細胞コロニー形成アッセイを行った。多能性のレポーターである最終的なエフェクターとしてのNanog-GFPカセットとともにベクター中に挿入された4因子(4F;Oct3/4、Sox2、Klf4とc-Myc)を異所的に発現させた初代MEFについて、初期化の誘導を個別にアッセイした。各化合物の単剤処理による初期化効率を評価するために、21日後(Day21)(左のバー)と28日後(Day28)(右のバー)にGFP陽性(GFP+)コロニー数を計測し、4F導入陰性コントロ-ル(DM)のGFP陽性コロニー数と比較した。B.4通り(A~D)のSB202190処理のプロトコールを模式的に示す。時間軸は、MEFに4因子が導入された日をDay0とし、各処理が施された期間を示す(A:Day1~4、B:Day1~8、C:Day8~16、D:Day1~16)。C.Day21とDay28に各処理による初期化効率を調べ、4Fとp38阻害薬(SB202190)により誘導されたiPS細胞コロニーの数(下のバー)を、ベヒクル(DMSO)で処理し4Fのみにより誘導されたiPS細胞コロニーの数(上のバー)と比較した。D.期間AにSB202190処理した実験群について、Day21とDay 28との間のGFP+コロニー数の差を示すフォールプロット。E.期間AにSB202190処理した実験群と、期間DにSB202190処理した実験群との間の、Day21及びDay28におけるGFP+コロニー数の差を示すフォールプロット。It is a figure which shows the effect of a small molecule p38 inhibitor on the establishment of mouse iPS cells. A. Seven compounds (VC-10 μg / mL; VA-1.9 mM; CH-3 μM; PD-0.5 μM; IL-0.2 ng / mL; AS- An iPS cell colonization assay was performed to investigate the effect of the p38 inhibitor (SB202190; 10 μM) on 5 μM; RA-1 μM). The primary ectopic expression of the four factors (4F; Oct3 / 4, Sox2, Klf4 and c-Myc) inserted into the vector with the Nanog-GFP cassette as the ultimate effector, a pluripotent reporter. The induction of reprogramming was individually assayed for MEF. In order to evaluate the initialization efficiency of each compound by single agent treatment, the number of GFP-positive (GFP + ) colonies was measured after 21 days (Day21) (left bar) and 28 days (Day28) (right bar). It was compared with the number of GFP-positive colonies in the 4F-introduced negative control (DM). B. The four (A to D) SB202190 processing protocols are schematically shown. On the time axis, the day when the four factors are introduced into MEF is set as Day 0, and the period during which each treatment is applied is shown (A: Day1 to 4, B: Day1 to 8, C: Day8 to 16, D: Day1 to 16). ). C. The reprogramming efficiency of each treatment was investigated on Day 21 and Day 28, and the number of iPS cell colonies induced by 4F and p38 inhibitor (SB202190) (lower bar) was treated with vehicle (DMSO) and induced only by 4F. Compared to the number of iPS cell colonies (bar above). D. Fall plot showing the difference in GFP + colony count between Day 21 and Day 28 for the SB202190 treated experimental group during period A. E. A fall plot showing the difference in the number of GFP + colonies on Day 21 and Day 28 between the SB202190 treated experimental group during period A and the SB202190 treated experimental group during period D. ヒトiPS細胞樹立に及ぼす低分子p38阻害薬の効果を示す図である。A.4通り(期間A~D)のp38阻害薬処理のプロトコールを模式的に示す。時間軸は、HDFに4因子が導入された日をDay0とし、各処理が施された期間を示す(A:Days2~4、B:Days6~20、C:Days20~32、D:Days6~32)。B.iPS細胞コロニー形成アッセイにより、HDFの初期化効率に及ぼすp38阻害薬の効果を調べた。4因子(4F;Oct3/4、Sox2、Klf4及びc-Myc)を異所的に発現させた初代HDFを、10μMのSB202190、SB203580又はSB239063により期間A又は期間Dのプロトコールで処理した。Day16、Day24、及びDay32に初期化効率を、ES細胞様(iPS細胞)のコロニー数としてカウントし、p38阻害薬で処理せず4Fのみで初期化されたHDF(DMSO)と比較した。期間Aに阻害剤処理した結果を左のグラフに、期間Dに阻害剤処理した結果を右のグラフにそれぞれ示す。各日数において、上から順にSB239063、SB203580、SB202190、DMSO処理の結果を示す。p<0.05、**p<0.01C.4F+SB202190によりHDFから誘導されたヒトES細胞様コロニーの位相差画像を示す。D.4Fのみ(DMSO)又は4F+SB202190(SB202190)によりHDFから誘導されたiPS細胞におけるアルカリホスファターゼ染色アッセイ。E.4F+SB202190によりHDFから誘導されたiPS細胞コロニーにおける多能性マーカー(OCT4、SOX2及びTRA-1-60)の代表的な免疫組織化学染色画像(右パネル)。左パネルはDAPIによる核染色を示す。スケールバー:100μmF.iPS細胞コロニー形成アッセイにより、3因子(3F;Oct3/4、Sox2及びKlf4)導入によるHDFの初期化効率に及ぼすp38阻害薬(SB202190)の効果を調べた。Day24(下)及びDay32(上)における初期化効率を、ES細胞様の(iPS細胞)コロニー数として計測し、3F+SB202190によりHDFから誘導されたiPS細胞コロニーの数(各Daysにおける上のバー)を、3Fとベヒクル(DMSO)により誘導されたiPS細胞コロニーの数(各Daysにおける下のバー)と比較した。p<0.05G.iPS細胞コロニー形成アッセイにより、エピソーマルベクター(pCXLE)を介した初期化因子導入によるHDFの初期化効率に及ぼすp38阻害薬(SB202190)の効果を調べた。Day24(下)及びDay32(上)における初期化効率を、ES細胞様の(iPS細胞)コロニー数として計測し、初期化因子+SB202190によりHDFから誘導されたiPS細胞コロニーの数(各Daysにおける上のバー)を、初期化因子とベヒクル(DMSO)により誘導されたiPS細胞コロニーの数(各Dayにおける下のバー)と比較した。p<0.05、***p<0.001It is a figure which shows the effect of a small molecule p38 inhibitor on the establishment of human iPS cells. A. The protocols for four p38 inhibitor treatments (periods A to D) are schematically shown. On the time axis, the day when the four factors are introduced into HDF is set as Day 0, and the period during which each treatment is applied is shown (A: Days 2 to 4, B: Days 6 to 20, C: Days 20 to 32, D: Days 6 to 32). ). B. The iPS cell colonization assay was used to investigate the effect of p38 inhibitors on the efficiency of HDF reprogramming. Primary HDF ectopically expressed with 4 factors (4F; Oct3 / 4, Sox2, Klf4 and c-Myc) was treated with 10 μM SB202190, SB203580 or SB239063 in period A or period D protocols. Reprogramming efficiency on Day16, Day24, and Day32 was counted as the number of ES cell-like (iPS cell) colonies and compared to HDF (DMSO) reprogrammed only on 4F without treatment with a p38 inhibitor. The graph on the left shows the result of the inhibitor treatment in the period A, and the graph on the right shows the result of the inhibitor treatment in the period D. The results of SB239063, SB203580, SB202190, and DMSO processing are shown in order from the top for each number of days. * P <0.05, ** p <0.01 C. 4F + SB202190 shows a phase-difference image of human ES cell-like colonies derived from HDF. D. Alkaline phosphatase staining assay in iPS cells derived from HDF by 4F only (DMSO) or 4F + SB202190 (SB202190). E. Representative immunohistochemical staining images of pluripotent markers (OCT4, SOX2 and TRA-1-60) in iPS cell colonies derived from HDF by 4F + SB202190 (right panel). The left panel shows nuclear staining with DAPI. Scale bar: 100 μm F. The iPS cell colonization assay was used to investigate the effect of the p38 inhibitor (SB202190) on the efficiency of HDF reprogramming by introducing three factors (3F; Oct3 / 4, Sox2 and Klf4). The initialization efficiency on Day24 (bottom) and Day32 (top) was measured as the number of ES cell-like (iPS cell) colonies, and the number of iPS cell colonies induced from HDF by 3F + SB202190 (upper bar in each Days). ) Was compared to the number of iPS cell colonies induced by 3F and vehicle (DMSO) (bottom bar at each Days). * P <0.05G. The iPS cell colonization assay was used to investigate the effect of the p38 inhibitor (SB202190) on the efficiency of HDF reprogramming by the introduction of reprogramming factors via the episomal vector (pCXLE). The reprogramming efficiency on Day24 (bottom) and Day32 (top) was measured as the number of ES cell-like (iPS cell) colonies, and the number of iPS cell colonies induced from HDF by the reprogramming factor + SB202190 (top on each Day). Bar) was compared to the number of iPS cell colonies induced by reprogramming factors and vehicle (DMSO) (lower bar on each day). * P <0.05, *** p <0.001 低分子p38阻害薬を用いて樹立したヒトiPS細胞における多能性及びゲノム安定性を示す図である。A.体細胞初期化の指標である多能性遺伝子(OCT4、SOX2、NANOG)発現のqRT-PCR解析。ES細胞での発現レベルを1とした相対値で示す。SB1~SB3:SB202190処理により誘導されたヒトiPS細胞クローン;DM, B7:4Fのみにより誘導されたヒトiPS細胞クローン;ES:ヒトES細胞;HD:HDF。B.SB202190処理により誘導されたヒトiPSCクローンの核型解析。C.SB202190処理により誘導されたヒトiPSCクローンのインビトロ分化能アッセイ。左から順に、胚様体(EB)、外胚葉系列(β-III-チューブリン陽性)、中胚葉系列(α-SMA陽性)及び内胚葉系列(AFP陽性)への分化を示す。核はHoechst 33342で染色した。スケールバー:100μmD.SB202190処理により誘導されたヒトiPSCクローンのテラトーマ形成アッセイ。左図は三胚葉(外胚葉、中胚葉、及び内胚葉)系列の模式図である。染色写真は左から順に、外胚葉系列、中胚葉系列、及び内胚葉系列への分化を示す。E.左図:4人の異なるドナー由来のHDF(HDF1616、HDF1079、HDF1078及びTig109)から、4F導入とp38阻害薬(SB202190)処理とにより誘導されたiPS細胞コロニーの数(各HDFについて上のバー)と、4F導入とベヒクル(DMSO)処理により誘導されたiPS細胞コロニーの数(各HDFについて下のバー)とを、iPS細胞コロニー形成アッセイにより比較した。右図:4人のドナーからの結果に基づくiPS細胞コロニー形成効率の統計学的解析(t検定による;p<0.05)。It is a figure which shows pluripotency and genomic stability in human iPS cells established using a small molecule p38 inhibitor. A. QRT-PCR analysis of pluripotent genes (OCT4, SOX2, NANOG) expression, which is an indicator of somatic cell reprogramming. It is shown as a relative value with the expression level in ES cells as 1. SB1-SB3: Human iPS cell clones induced by SB202190 treatment; DM, B7: Human iPS cell clones induced only by 4F; ES: Human ES cells; HD: HDF. B. Karyotype analysis of human iPSC clones induced by SB202190 treatment. C. In vitro differentiation assay of human iPSC clones induced by SB202190 treatment. From left to right, differentiation into embryoid body (EB), ectoderm lineage (β-III-tubulin positive), mesoderm lineage (α-SMA positive) and endoderm lineage (AFP positive) is shown. Nuclei were stained with Hoechst 33342. Scale bar: 100 μm D. Teratoma formation assay of human iPSC clones induced by SB202190 treatment. The figure on the left is a schematic diagram of the trigerm (ectoderm, mesoderm, and endoderm) series. The stained photographs show the differentiation into the ectoderm lineage, the mesoderm lineage, and the endoderm lineage in order from the left. E. Left: Number of iPS cell colonies induced by 4F introduction and p38 inhibitor (SB202190) treatment from HDFs from 4 different donors (HDF1616, HDF1079, HDF1078 and Tig109) (upper bar for each HDF) And the number of iPS cell colonies induced by 4F introduction and vehicle (DMSO) treatment (bottom bar for each HDF) were compared by iPS cell colonization assay. Right figure: Statistical analysis of iPS cell colonization efficiency based on results from 4 donors (by t-test; * p <0.05). p38及び/又はp53阻害により樹立したヒトiPS細胞におけるトランスクリプトーム解析の結果を示す図である。A.4Fのみで初期化したHDF(DMSO)と、4Fとともにp53 shRNAを導入して初期化したクロ-ン(shp53)におけるp53 mRNAレベルの比較。前者の発現レベルを1とした相対値で示す。***p<0.001B.HDFから、4F導入とp53阻害(shp53)及び/又はp38阻害(SB202190)とにより誘導されたiPS細胞コロニーの数と、4F導入とベヒクル処理(DMSO)とにより誘導されたiPS細胞コロニーの数とを、iPS細胞コロニー形成アッセイにより比較した。**p<0.01、***p<0.001C.4つの群で発現した58,000を上回る遺伝子についての、iPSCコロニー数増加(△)と相関する主要成分解析(PCA)。D.上図:サンプルの凝集型階層的クラスタリング。サンプル間の距離はマンハッタン距離を適用してagnes関数を用いて樹形図を作成した。下図:mRNAデータのコンセンサスクラスタリングにより得られた、トランスクリプトームの差を示すサンプル相関マトリクス。E.k-平均アルゴリズムを用いたクラスタリング結果のスキャタープロット。F.発現量変動遺伝子(DEG)解析のヒートマップ。クラスターAとCの間の1147 DEG(左)及びクラスターAとBの間の2185 DEG(右)を示す。It is a figure which shows the result of the transcriptome analysis in the human iPS cell established by p38 and / or p53 inhibition. A. Comparison of p53 mRNA levels in HDF (DMSO) initialized with 4F only and clone (shp53) initialized with p53 shRNA introduced with 4F. The former expression level is shown as a relative value of 1. *** p <0.001B. The number of iPS cell colonies induced by 4F introduction and p53 inhibition (shp53) and / or p38 inhibition (SB202190) from HDF, and the number of iPS cell colonies induced by 4F introduction and vehicle treatment (DMSO). Was compared by the iPS cell colonization assay. ** p <0.01, *** p <0.001 C. Principal component analysis (PCA) that correlates with increased iPSC colony numbers (△) for over 58,000 genes expressed in the four groups. D. Above: Aggregate hierarchical clustering of samples. For the distance between the samples, the Manhattan distance was applied and a tree diagram was created using the agnes function. Below: Sample correlation matrix showing transcriptome differences obtained by consensus clustering of mRNA data. E. Scatter plot of clustering results using k-means algorithm. F. Heat map for expression variation gene (DEG) analysis. 1147 DEG (left) between clusters A and C and 2185 DEG (right) between clusters A and B are shown. p38経路及びp53経路の両方を阻害した場合に特異的に発現量が低下する遺伝子群の探索結果を示す図である。A.4F導入とともに、p53を単独で阻害した場合(shp53)と、p53とp38とを二重阻害した場合(shp53+SB202190)とで、HDFと比べてiPS細胞で発現量が低下した遺伝子(DEG)を抽出・比較した。二重阻害した場合にのみ発現量が低下したDEGが651個見つかった(上)。そのうち発現量が2倍以上低下したDEGは149個であった(下)。B.4F導入とともに、p38を単独で阻害した場合(SB202190)と、p53とp38とを二重で阻害した場合(shp53+SB202190)とで、HDFと比べてiPS細胞で発現量が低下した遺伝子(DEG)を抽出・比較した。二重阻害した場合にのみ発現量が低下したDEGが1056個見つかった(上)。そのうち発現量が2倍以上低下したDEGは145個であった(下)。C.p53単独阻害に比べてp53/p38二重阻害でのみ発現量が低下した651遺伝子と、p38単独阻害に比べてp53/p38二重阻害でのみ発現量が低下した1056遺伝子との間の重複を調べた。340遺伝子の重複を認めた。D.Cで抽出された340遺伝子中31遺伝子が、転写因子又はDNA結合活性があるものと分類された。E.p53/p38二重阻害で共通して発現量が低下したDEGの生物的プロセスに関する顕著なGOタームの解析。It is a figure which shows the search result of the gene group which the expression level decreases specifically when both the p38 pathway and the p53 pathway are inhibited. A. A gene (DEG) whose expression level was reduced in iPS cells compared to HDF when p53 was inhibited alone (shp53) and when p53 and p38 were double-inhibited (shp53 + SB202190) with the introduction of 4F. Was extracted and compared. We found 651 DEGs whose expression levels were reduced only when double-inhibited (top). Of these, 149 were able to be expressed more than twice as much (bottom). B. A gene (DEG) whose expression level was reduced in iPS cells compared to HDF when p38 was inhibited alone (SB202190) and when p53 and p38 were double inhibited (shp53 + SB202190) with the introduction of 4F. ) Was extracted and compared. 1056 DSNs with reduced expression were found only when double-inhibited (top). Of these, 145 were able to have their expression levels more than doubled (bottom). C. Overlapping between the 651 gene, whose expression was reduced only by p53 / p38 double inhibition compared to p53 single inhibition, and the 1056 gene, whose expression was reduced only by p53 / p38 double inhibition compared to p38 single inhibition. Examined. Duplication of 340 genes was observed. D. Thirty-one of the 340 genes extracted in C were classified as having transcription factor or DNA binding activity. E. Analysis of prominent GO terms for the biological process of DEG, which was commonly reduced in expression with p53 / p38 double inhibition. ヒトiPS細胞樹立に及ぼすTEAD3阻害の効果及びKlf4によるTEAD3遺伝子の転写制御を示す図である。A.HDFに4Fを導入した場合(DMSO)、あるいは、4F導入とともに、p38を単独で阻害した場合(p382KO)、p53を単独で阻害した場合(shp53)及びp53とp38とを二重で阻害した場合(shp53+p382KO)における、TEAD3の相対的な発現レベルを示す。X軸の+100はDMSOの発現量を示し、X軸の-100は発現なしを示す。例えばX軸の-75はDMSOの0.125倍の発現量を示す。破線矢印はその方向にiPS細胞コロニー数が増加することを示す。B.2種のHDF(HDF1616、HDF1079)に、4Fのみ(4F)、4Fと非特異的shRNA(Scr)、4Fと2種のTEAD3 shRNA(4F-shTEAD3#1及び4F-shTEAD3#2)を導入した場合の、TEAD3タンパク質の発現を示す。いずれのHDFでも、2種のTEAD3 shRNAによりTEAD3タンパク質の発現は顕著に抑制された。C.2種のHDF(HDF1616、HDF1079)に、4Fのみ(4F)、4Fと非特異的shRNA(Scr)、4Fと2種のTEAD3 shRNA(4F-shTEAD3#1及び4F-shTEAD3#2)を導入した場合の、TEAD3 mRNAの発現を示す。いずれのHDFでも、2種のTEAD3 shRNAによりTEAD3 mRNAの発現は顕著に抑制された。**p<0.01、***p<0.001D.2種のHDF(HDF1616、HDF1079)に、4Fのみ(4F)、4Fと非特異的shRNA(Scr)、4Fと2種のTEAD3 shRNA(4F-shTEAD3#1及び4F-shTEAD3#2)を導入した場合の、得られたiPS細胞コロニーの数を示す。p<0.05、**p<0.01E.HDFに、4Fのみ(4F)、4Fと非特異的shRNA(Scr)、4Fと2種のTEAD3 shRNA(4F-sh#1及び4F-sh#2)を導入した場合の、得られたiPS細胞コロニーのアルカリホスファターゼ染色像(左:ディッシュ全体;右:拡大写真)を示す。F.MEFの初期化プロセスの間の、初期フェーズ(day 2及びday 4)、中間フェーズ(day 8)、後期フェーズ(day 18)及びiPSCにおけるTEAD3発現の変化を示す。G.MEFの初期化プロセスの間の、SSEA1陽性及びSSEA1陰性細胞におけるTEAD3発現の変化を示す。H.KLF4が結合することが予測されるTEAD3遺伝子の転写開始サイト(TSS)配列、並びにその相対的結合スコアを示す。I.KLF4が結合することが既知の標的遺伝子群の結合シスエレメント配列の解析によるKLF4の結合コンセンサス配列の予測を示す。It is a figure which shows the effect of TEAD3 inhibition on the establishment of human iPS cells, and the transcriptional regulation of TEAD3 gene by Klf4. A. When 4F is introduced into HDF (DMSO), or when p38 is inhibited alone (p382KO) with the introduction of 4F, when p53 is inhibited alone (shp53), and when p53 and p38 are double inhibited. The relative expression level of TEAD3 in (shp53 + p382KO) is shown. +100 on the X-axis indicates the expression level of DMSO, and -100 on the X-axis indicates no expression. For example, -75 on the X-axis shows 0.125 times the expression level of DMSO. The dashed arrow indicates that the number of iPS cell colonies increases in that direction. B. 4F only (4F), 4F and non-specific shRNA (Scr), 4F and 2 types of TEAD3 shRNA (4F- shTEAD3 # 1 and 4F-shTEAD3 # 2) were introduced into 2 types of HDF (HDF1616, HDF1079). The expression of the TEAD3 protein in the case is shown. In both HDFs, the expression of TEAD3 protein was markedly suppressed by the two TEAD3 shRNAs. C. 4F only (4F), 4F and non-specific shRNA (Scr), 4F and 2 types of TEAD3 shRNA (4F- shTEAD3 # 1 and 4F-shTEAD3 # 2) were introduced into 2 types of HDF (HDF1616, HDF1079). The expression of TEAD3 mRNA in the case is shown. In both HDFs, the expression of TEAD3 mRNA was markedly suppressed by the two TEAD3 shRNAs. ** p <0.01, *** p <0.001D. 4F only (4F), 4F and non-specific shRNA (Scr), 4F and 2 types of TEAD3 shRNA (4F- shTEAD3 # 1 and 4F-shTEAD3 # 2) were introduced into 2 types of HDF (HDF1616, HDF1079). The number of iPS cell colonies obtained in the case is shown. * P <0.05, ** p <0.01 E. Obtained iPS cells when 4F only (4F), 4F and non-specific shRNA (Scr), 4F and 2 types of TEAD3 shRNA (4F- sh # 1 and 4F-sh # 2) were introduced into HDF. An alkaline phosphatase-stained image of the colony (left: entire dish; right: enlarged photograph) is shown. F. Changes in TEAD3 expression in the early phase (day 2 and day 4), intermediate phase (day 8), late phase (day 18) and iPSC during the MEF initialization process are shown. G. Changes in TEAD3 expression in SSEA1-positive and SSEA1-negative cells during the MEF reprogramming process are shown. H. The transcription initiation site (TSS) sequence of the TEAD3 gene, which is predicted to bind to KLF4, and its relative binding score are shown. I. The prediction of the binding consensus sequence of KLF4 by the analysis of the binding cis-element sequence of the target gene cluster known to bind to KLF4 is shown. A.マウスiPS細胞(20D17;初期細胞密度:1×105細胞/ウェル)の、SB202190処理から96時間後の細胞数を示す(**:p<0.01;DMSOとの比較)。B.SB202190処理により得られたマウスiPS細胞は、茶色のコートカラーのキメラマウスを生じることを示す。C.SB202190処理により得られたマウスiPS細胞由来のマウスにおいてジャームライントランスミッションが起こったことを示す。A. The cell number of mouse iPS cells (20D17; initial cell density: 1 × 10 5 cells / well) 96 hours after treatment with SB202190 is shown ( ** : p <0.01; comparison with DMSO). B. It is shown that mouse iPS cells obtained by treatment with SB202190 give rise to a brown coat-colored chimeric mouse. C. It is shown that germline transmission occurred in mice derived from mouse iPS cells obtained by treatment with SB202190. p38阻害はHDFや初期化の初期フェーズのHDFの増殖を促進するが、ヒトiPS細胞の増殖には影響しないことを示す。A.HDFを1×105細胞/ウェルの密度で6-ウェルプレートに播種し、3種のp38阻害剤をそれぞれ添加して96時間培養した。処理後2、4、6及び8日目に総細胞数をカウントした。独立した3回の実験の結果を平均値及び標準偏差で示す(*:p<0.05;DMSOとの比較)。B.4Fを導入したHDFを、3種のp38阻害剤をそれぞれ添加して96時間培養した。処理後2、4、6及び8日目に総細胞数をカウントした。独立した3回の実験の結果を平均値及び標準偏差で示す(*:p<0.05;DMSOとの比較)。C.ヒトiPS細胞(201B7)を2×105細胞/ウェルの密度でSNLフィーダー細胞上に播種し、3種のp38阻害剤をそれぞれ添加して96時間培養した。処理後4日目に総細胞数をカウントした。独立した3回の実験の結果を平均値及び標準偏差で示す。It is shown that p38 inhibition promotes the proliferation of HDF and HDF in the early phase of reprogramming, but does not affect the proliferation of human iPS cells. A. HDF was seeded in 6-well plates at a density of 1 × 10 5 cells / well, each of which was added with 3 p38 inhibitors and cultured for 96 hours. Total cell counts were counted on days 2, 4, 6 and 8 after treatment. The results of three independent experiments are shown in mean and standard deviation ( * : p <0.05; comparison with DMSO). B. HDF introduced with 4F was cultured for 96 hours with the addition of each of the three p38 inhibitors. Total cell counts were counted on days 2, 4, 6 and 8 after treatment. The results of three independent experiments are shown in mean and standard deviation ( * : p <0.05; comparison with DMSO). C. Human iPS cells (201B7) were seeded on SNL feeder cells at a density of 2 × 10 5 cells / well, and each of the three p38 inhibitors was added and cultured for 96 hours. The total number of cells was counted on the 4th day after the treatment. The results of three independent experiments are shown in mean and standard deviation. 公共に利用可能なデータセット(MEFのトランスクリプトームデータを含むGSE36664、ヒト肺線維芽細胞(HLF)のトランスクリプトームデータを含むGSE45276、並びにHDFのトランスクリプトームデータを含むデータセット)における、TEAD3発現とp53発現との相関を示す(R:ピアソンの相関係数)。TEAD3 in publicly available datasets: GSE36664 with MEF transcriptome data, GSE45276 with human lung fibroblast (HLF) transcriptome data, and HDF transcriptome data. The correlation between expression and p53 expression is shown (R: Pearson's correlation coefficient). 公共に利用可能なHDFのシングルセルRNA-Seqのデータセットにおける、TEAD3発現とp38δ、ERK4、p44-ERK1、CDK4及びCDK6発現との各相関を示す(R:ピアソンの相関係数)。The correlation between TEAD3 expression and p38δ, ERK4, p44-ERK1, CDK4 and CDK6 expression in the publicly available HDF single-cell RNA-Seq dataset is shown (R: Pearson's correlation coefficient). HeLa細胞における腫瘍の初期化及び細胞周期カイネティクスにおけるTEAD3の因果的役割の評価を示す図である。まず、レトロウイルス感染を可能にすべくエコトロピック受容体Slc7a1を発現する娘細胞株(plenti/Ubc-Slc7a1)作製し、shTEAD3をレトロウイルスにより導入した。TEAD3発現が下方制御されたクローンは、細胞増殖が促進され、より大きなサイズの腫瘍様塊をより多く産生したことから、TEAD3は、がんを生じる細胞特性を増強させることで子宮頸がんの進展に因果的役割を果たしていることが示唆された(*:p<0.05, **:p<0.01;Scr(非特異的shRNAを導入したHeLa細胞)との比較)。It is a figure which shows the evaluation of the causal role of TEAD3 in tumor reprogramming and cell cycle kinetics in HeLa cells. First, a daughter cell line (plenti / Ubc-Slc7a1) expressing the ecotropic receptor Slc7a1 was prepared to enable retrovirus infection, and shTEAD3 was introduced by the retrovirus. Since clones with downregulated TEAD3 expression promoted cell proliferation and produced more tumor-like masses of larger size, TEAD3 increased the cellular properties that give rise to cancer in cervical cancer. It was suggested to play a causal role in proliferation (* : p <0.05, ** : p <0.01; comparison with Scr (HeLa cells introduced with non-specific shRNA)). ヒト子宮頸がんデータセットGSE6791(Cancer Res 2007 May 15;67(10):4605-19.参照)におけるTEAD3発現解析を示す。左:正常(N)及びがん(T)組織サンプルにおける補正後のTEAD3 mRNAレベルを箱ひげ図で示す。右:箱ひげ図に示されたGSE691データ中の患者をTEAD3発現レベルの増加に応じて個別に分類した。The TEAD3 expression analysis in the human cervical cancer data set GSE6791 (see Cancer Res 2007 May 15; 67 (10): 4605-19.) Is shown. Left: Corrected TEAD3 mRNA levels in normal (N) and cancer (T) tissue samples are shown in a boxplot. Right: Patients in the GSE691 data shown in the boxplot were individually classified according to increased TEAD3 expression levels. A.HDF1616に4F(scr)又は4F+shTEAD3を導入後12日目の推定iPS細胞コロニー(四角)の代表的な明視野像を示す。B.HDF1079に4F+shTEAD3を導入後12日目の推定iPS細胞コロニー(四角)の代表的な明視野像を示す。C.4F(Scr)、4F+shTEAD3、又は4F+shTEAD3+shp53を導入され初期化途上のHDF1616の増殖曲線を示す(*:p<0.05;Scr(4F+非特異的shRNAを導入したHDF1616)との比較)。D.HDF1616に4F(Scr)、4F+shTEAD3、又は4F+shTEAD3+shp53を導入して樹立したiPS細胞の増殖曲線を示す)。E.4F(Scr)、4F+shTEAD3、又は4F+shTEAD3+shp53を導入され初期化途上のHDF1079の増殖曲線を示す(**:p<0.01;Scr(4F+非特異的shRNAを導入したHDF1079)との比較)。F.HDF1079に4F(Scr)、4F+shTEAD3、又は4F+shTEAD3+shp53を導入して樹立したiPS細胞の増殖曲線を示す。A. A representative bright-field image of estimated iPS cell colonies (squares) 12 days after introduction of 4F (scr) or 4F + shTEAD3 into HDF1616 is shown. B. A representative bright-field image of the estimated iPS cell colonies (squares) 12 days after the introduction of 4F + shTEAD3 into HDF1079 is shown. C. 4F (Scr), 4F + shTEAD3, or 4F + shTEAD3 + shp53 introduced and shows the growth curve of HDF1616 in the process of initialization ( * : p <0.05; comparison with Scr (HDF1616 introduced with 4F + non-specific shRNA)) ). D. The growth curve of iPS cells established by introducing 4F (Scr), 4F + shTEAD3, or 4F + shTEAD3 + shp53 into HDF1616 is shown). E. 4F (Scr), 4F + shTEAD3, or 4F + shTEAD3 + shp53 introduced and shows the growth curve of HDF1079 in the process of initialization ( ** : p <0.01; HDF1079 introduced with 4F + non-specific shRNA). Comparison). F. The growth curve of iPS cells established by introducing 4F (Scr), 4F + shTEAD3, or 4F + shTEAD3 + shp53 into HDF1079 is shown.
 本発明は、体細胞の核初期化工程においてTEAD3の機能を阻害することによる、iPS細胞の樹立効率の改善方法(以下、「本発明の改善方法」ともいう)を提供する。TEAD3の機能を阻害する手段は特に制限されないが、好ましくは、体細胞にTEAD3の機能阻害物質を導入する方法が挙げられる。従って、本発明はまた、TEAD3の機能阻害物質を含んでなるiPS細胞の樹立効率改善剤(以下、「本発明の剤」ともいう)を提供する。さらに本発明は、体細胞に核初期化物質及びTEAD3の機能阻害物質を導入することによる、iPS細胞の製造方法(以下、「本発明の製法」ともいう。また、「本発明の改善方法」と「本発明の製法」とを包括して、「本発明の方法」という場合がある)を提供する。 The present invention provides a method for improving the efficiency of establishment of iPS cells (hereinafter, also referred to as "the method for improving the present invention") by inhibiting the function of TEAD3 in the nuclear reprogramming step of somatic cells. The means for inhibiting the function of TEAD3 is not particularly limited, but a method for introducing a function-inhibiting substance for TEAD3 into somatic cells is preferable. Therefore, the present invention also provides an agent for improving the efficiency of establishment of iPS cells (hereinafter, also referred to as “the agent of the present invention”) containing a function inhibitor of TEAD3. Further, the present invention is a method for producing iPS cells by introducing a nuclear reprogramming substance and a function inhibitor of TEAD3 into somatic cells (hereinafter, also referred to as "the production method of the present invention", and "the improvement method of the present invention". And "the method of the present invention" are collectively referred to as "the method of the present invention").
(A) 体細胞ソース
 本発明においてiPS細胞作製のための出発材料として用いることのできる体細胞は、哺乳動物(例えば、ヒト、マウス、サル、ウシ、ブタ、ラット、イヌ等)由来の生殖細胞以外のいかなる細胞であってもよく、例えば、角質化する上皮細胞(例、角質化表皮細胞)、粘膜上皮細胞(例、舌表層の上皮細胞)、外分泌腺上皮細胞(例、乳腺細胞)、ホルモン分泌細胞(例、副腎髄質細胞)、代謝・貯蔵用の細胞(例、肝細胞)、境界面を構成する内腔上皮細胞(例、I型肺胞細胞)、内鎖管の内腔上皮細胞(例、血管内皮細胞)、運搬能をもつ繊毛のある細胞(例、気道上皮細胞)、細胞外マトリックス分泌用細胞(例、線維芽細胞)、収縮性細胞(例、平滑筋細胞)、血液と免疫系の細胞(例、末梢血単核球、臍帯血、Tリンパ球)、感覚に関する細胞(例、桿細胞)、自律神経系ニューロン(例、コリン作動性ニューロン)、感覚器と末梢ニューロンの支持細胞(例、随伴細胞)、中枢神経系の神経細胞とグリア細胞(例、星状グリア細胞)、色素細胞(例、網膜色素上皮細胞)、およびそれらの前駆細胞(組織前駆細胞)等が挙げられる。細胞の分化の程度や細胞を採取する動物の齢などに特に制限はなく、未分化な前駆細胞(体性幹細胞も含む)であっても、最終分化した成熟細胞であっても、同様に本発明における体細胞の起源として使用することができる。ここで未分化な前駆細胞としては、たとえば神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)が挙げられる。
(A) Somatic cell source The somatic cells that can be used as a starting material for iPS cell production in the present invention are germ cells derived from mammals (for example, humans, mice, monkeys, cows, pigs, rats, dogs, etc.). Any cell other than the above may be used, for example, keratinizing epithelial cells (eg, keratinized epidermal cells), mucosal epithelial cells (eg, tongue superficial epithelial cells), exocrine gland epithelial cells (eg, mammary cells), and the like. Hormone-secreting cells (eg, adrenal medulla cells), metabolic and storage cells (eg, hepatocytes), luminal epithelial cells that make up the interface (eg, type I alveolar cells), luminal epithelium of the inner canal Cells (eg, vascular endothelial cells), ciliated cells with carrying capacity (eg, airway epithelial cells), extracellular matrix secretory cells (eg, fibroblasts), contractile cells (eg, smooth muscle cells), Blood and immune system cells (eg, peripheral blood mononuclear cells, umbilical cord blood, T lymphocytes), sensory cells (eg, rod cells), autonomic nervous system neurons (eg, cholinergic neurons), sensory organs and peripherals Supporting cells of neurons (eg, associated cells), nerve cells and glia cells of the central nervous system (eg, stellate glia cells), pigment cells (eg, retinal pigment epithelial cells), and their precursor cells (tissue precursor cells) And so on. There are no particular restrictions on the degree of cell differentiation or the age of the animal from which the cells are collected. It can be used as the origin of somatic cells in the invention. Here, examples of undifferentiated progenitor cells include tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, and dental pulp stem cells.
 体細胞を採取するソースとなる哺乳動物個体は特に制限されないが、得られるiPS細胞がヒトの再生医療用途に使用される場合には、拒絶反応が起こらないという観点から、患者本人またはHLAの型が同一もしくは実質的に同一である他人から体細胞を採取することが特に好ましい。ここでHLAの型が「実質的に同一」とは、免疫抑制剤などの使用により、該体細胞由来のiPS細胞から分化誘導することにより得られた細胞を患者に移植した場合に移植細胞が生着可能な程度にHLAの型が一致していることをいう。たとえば主たるHLA(例えばHLA-A、HLA-BおよびHLA-DRの3遺伝子座)が同一である場合などが挙げられる(以下同じ)。また、ヒトに投与(移植)しない場合、例えば、患者の薬剤感受性や副作用の有無を評価するためのスクリーニング用の細胞のソースとしてiPS細胞を使用する場合には、同様に患者本人または薬剤感受性や副作用と相関する遺伝子多型が同一である他人から体細胞を採取することが望ましい。 The individual mammal that is the source for collecting somatic cells is not particularly limited, but when the obtained iPS cells are used for human regenerative medicine, the patient or HLA type is considered from the viewpoint that rejection does not occur. It is particularly preferred to collect somatic cells from others who are the same or substantially the same. Here, the HLA type is "substantially the same" when the transplanted cells are transplanted into a patient by inducing differentiation from the somatic cell-derived iPS cells by using an immunosuppressive agent or the like. It means that the HLA types match to the extent that they can be engrafted. For example, the case where the main HLA (for example, the three loci of HLA-A, HLA-B and HLA-DR) is the same (the same applies hereinafter) can be mentioned. In addition, when not administered (transplanted) to humans, for example, when iPS cells are used as a source of cells for screening for evaluating the drug sensitivity and the presence or absence of side effects of a patient, the patient or the drug sensitivity is also used. It is desirable to collect somatic cells from others with the same gene polymorphism that correlates with side effects.
 哺乳動物から分離した体細胞は、核初期化工程に供するに先立って、細胞の種類に応じてその培養に適した自体公知の培地で前培養することができる。そのような培地としては、例えば、約5~20%の胎仔ウシ血清を含む最小必須培地(MEM)、ダルベッコ改変イーグル培地(DMEM)、RPMI1640培地、199培地、F12培地などが挙げられるが、それらに限定されない。核初期化物質及びp38の機能阻害物質(さらに必要に応じて、後述する他のiPS細胞の樹立効率改善物質)との接触に際し、例えば、カチオニックリポソームなど導入試薬を用いる場合には、導入効率の低下を防ぐため、無血清培地に交換しておくことが好ましい場合がある。 Somatic cells isolated from mammals can be pre-cultured in a medium known per se, which is suitable for the culture, depending on the type of cells, prior to being subjected to the nuclear reprogramming step. Examples of such media include minimum essential medium (MEM) containing about 5 to 20% fetal bovine serum, Dulbecco's modified Eagle's medium (DMEM), RPMI1640 medium, 199 medium, F12 medium and the like. Not limited to. When contacting with a nuclear reprogramming substance and a function-inhibiting substance of p38 (and, if necessary, another substance for improving the efficiency of establishment of iPS cells described later), for example, when an introduction reagent such as cationic liposome is used, the introduction efficiency. It may be preferable to replace it with a serum-free medium in order to prevent a decrease in the amount of the substance.
(B) TEAD3の機能阻害物質
 本発明において標的分子となるTEAD3は、転写エンハンサー関連ドメイン(TEAD)ファミリーのメンバーの1つであり、この転写因子による標的遺伝子の転写活性化は、Hippoシグナル伝達経路によって核内移行が制御されるコアクチベータYAP又はTAZと結合することにより起こる。
(B) TEAD3 function inhibitor TEAD3, which is the target molecule in the present invention, is one of the members of the transcription enhancer-related domain (TEAD) family, and the transcriptional activation of the target gene by this transcription factor is the Hippo signaling pathway. It occurs by binding to the coactivator YAP or TAZ, whose nuclear transduction is controlled by.
 本明細書において、「TEAD3」とは、配列番号2で表されるアミノ酸配列と同一もしくは実質的に同一のアミノ酸配列を含むタンパク質である。本明細書において、タンパク質及びペプチドは、ペプチド表記の慣例に従って左端がN末端(アミノ末端)、右端がC末端(カルボキシル末端)で記載される。
 「配列番号2で表されるアミノ酸配列と実質的に同一のアミノ酸配列」とは、
(a)配列番号2で表されるアミノ酸配列からなるヒトTEAD3の、他の温血動物(例えば、モルモット、ラット、マウス、ニワトリ、ウサギ、イヌ、ブタ、ヒツジ、ウシ、サルなど)におけるオルソログのアミノ酸配列;又は
(b)配列番号2で表されるアミノ酸配列からなるヒトTEAD3もしくは上記(a)のオルソログの天然のアレル変異体もしくは遺伝子多型におけるアミノ酸配列
を意味する。
 好ましくは、TEAD3は配列番号2で表されるアミノ酸配列からなるヒトTEAD3もしくはその天然のアレル変異体もしくは遺伝子多型である。該遺伝子多型としては、例えば、dbSNPにrs35080860として登録されている、254位のThr(ACG)がMet(ATG)に置換するSNPが挙げられるが、それに限定されない。
As used herein, "TEAD3" is a protein containing an amino acid sequence that is the same as or substantially the same as the amino acid sequence represented by SEQ ID NO: 2. In the present specification, proteins and peptides are described with an N-terminal (amino-terminal) at the left end and a C-terminal (carboxyl-terminal) at the right end according to the convention of peptide notation.
"Amino acid sequence substantially the same as the amino acid sequence represented by SEQ ID NO: 2" means
(A) Orthologs of human TEAD3 consisting of the amino acid sequence represented by SEQ ID NO: 2 in other warm-blooded animals (eg, guinea pigs, rats, mice, chickens, rabbits, dogs, pigs, sheep, cows, monkeys, etc.) Amino acid sequence; or (b) means an amino acid sequence in a human TEAD3 consisting of the amino acid sequence represented by SEQ ID NO: 2 or a natural allergen variant or gene polymorphism of the ortholog of (a) above.
Preferably, TEAD3 is a human TEAD3 or a natural allelic variant or gene polymorphism thereof consisting of the amino acid sequence represented by SEQ ID NO: 2. Examples of the gene polymorphism include, but are not limited to, SNPs registered in dbSNP as rs35080860 in which Thr (ACG) at position 254 is replaced with Met (ATG).
 本明細書において「TEAD3の機能阻害物質」とは、(1)TEAD3タンパク質の機能もしくは(2)TEAD3遺伝子の発現を阻害し得る限り、いかなる物質であってもよい。すなわち、TEAD3タンパク質に直接作用してその機能を阻害する物質や、TEAD3遺伝子に直接作用してその発現を阻害する物質のみならず、TEAD3による転写活性化に関与する因子に作用することにより、結果的にTEAD3タンパク質の機能やTEAD3遺伝子の発現を阻害する物質も、本明細書における「TEAD3の機能阻害物質」に含まれる。 As used herein, the "TEAD3 function inhibitor" may be any substance as long as it can inhibit (1) the function of the TEAD3 protein or (2) the expression of the TEAD3 gene. That is, the result is obtained by acting not only on substances that directly act on the TEAD3 protein to inhibit its function and substances that directly act on the TEAD3 gene and inhibit its expression, but also on factors involved in transcriptional activation by TEAD3. A substance that inhibits the function of the TEAD3 protein or the expression of the TEAD3 gene is also included in the "TEAD3 function inhibitor" in the present specification.
 本発明において「TEAD3遺伝子の発現を阻害する物質」とは、TEAD3遺伝子の転写レベル、転写後調節のレベル、タンパク質への翻訳レベル、翻訳後修飾のレベル等のいかなる段階で作用するものであってもよい。従って、TEAD3の発現を阻害する物質としては、例えば、TEAD3遺伝子の転写を阻害する物質(例、アンチジーン)、初期転写産物からmRNAへのプロセッシングを阻害する物質、mRNAの細胞質への輸送を阻害する物質、mRNAからタンパク質への翻訳を阻害するか(例、アンチセンス核酸、miRNA)あるいはmRNAを分解する(例、siRNA、ギャップマー型アンチセンス核酸、リボザイム、miRNA)物質、初期翻訳産物の翻訳後修飾を阻害する物質などが含まれる。いずれの段階で作用するものであっても用いることができるが、mRNAに相補的に結合してタンパク質への翻訳を阻害するかあるいはmRNAを分解する物質が好ましい。 In the present invention, the "substance that inhibits the expression of the TEAD3 gene" is a substance that acts at any stage such as the transcriptional level of the TEAD3 gene, the level of posttranscriptional regulation, the level of translation into a protein, the level of post-translational modification, and the like. May be good. Therefore, as substances that inhibit the expression of TEAD3, for example, substances that inhibit transcription of the TEAD3 gene (eg, antigene), substances that inhibit the processing of early transcripts to mRNA, and substances that inhibit the transport of mRNA to the cytoplasm. Translation of substances, substances that inhibit mRNA-to-protein translation (eg, antisense nucleic acids, miRNAs) or degrade mRNAs (eg, siRNAs, gapmer-type antisense nucleic acids, ribozymes, miRNAs) Includes substances that inhibit post-modification. Any substance that acts at any stage can be used, but a substance that complementarily binds to mRNA and inhibits translation into a protein or degrades mRNA is preferable.
 TEAD3遺伝子のmRNAからタンパク質への翻訳を特異的に阻害する(あるいはmRNAを分解する)物質として、好ましくは、該mRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸が挙げられる。
 TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列とは、生理的条件下において、該mRNAの標的配列に結合してその翻訳を阻害し得る(あるいは該標的配列を切断する)程度の相補性を有するヌクレオチド配列を意味し、具体的には、例えば、該mRNAのヌクレオチド配列と完全相補的なヌクレオチド配列(すなわち、mRNAの相補鎖のヌクレオチド配列)と、オーバーラップする領域に関して、90%以上、好ましくは95%以上、より好ましくは97%以上、特に好ましくは98%以上の相同性を有するヌクレオチド配列である。本発明における「ヌクレオチド配列の相同性」は、相同性計算アルゴリズムNCBI BLAST(National Center for Biotechnology Information Basic Local Alignment Search Tool)を用い、以下の条件(期待値=10;ギャップを許す;フィルタリング=ON;マッチスコア=1;ミスマッチスコア=-3)にて計算することができる。
As a substance that specifically inhibits (or degrades) the translation of the TEAD3 gene from mRNA to protein, preferably, a nucleic acid containing a nucleotide sequence complementary to the nucleotide sequence of the mRNA or a part thereof can be mentioned.
A nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene is complementary to the extent that it can bind to the target sequence of the mRNA and inhibit its translation (or cleave the target sequence) under physiological conditions. Means a nucleotide sequence having, specifically, for example, 90% or more with respect to a region that overlaps with a nucleotide sequence that is completely complementary to the nucleotide sequence of the mRNA (that is, a nucleotide sequence of the complementary strand of the mRNA). It is a nucleotide sequence having a homology of 95% or more, more preferably 97% or more, and particularly preferably 98% or more. The "homology of nucleotide sequence" in the present invention uses the homology calculation algorithm NCBI BLAST (National Center for Biotechnology Information Basic Local Alignment Search Tool) and the following conditions (expected value = 10; gap is allowed; filtering = ON; It can be calculated by match score = 1; mismatch score = -3).
 より具体的には、TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列とは、配列番号1で表されるヌクレオチド配列とストリンジェントな条件下でハイブリダイズするヌクレオチド配列である。ここで「ストリンジェントな条件」とは、例えば、Current Protocols in Molecular Biology, John Wiley & Sons,6.3.1-6.3.6, 1999に記載される条件、例えば、6×SSC(sodium chloride/sodium citrate)/45℃でのハイブリダイゼーション、次いで0.2×SSC/0.1% SDS/50~65℃での一回以上の洗浄等が挙げられるが、当業者であれば、これと同等のストリンジェンシーを与えるハイブリダイゼーションの条件を適宜選択することができる。 More specifically, the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene is a nucleotide sequence that hybridizes with the nucleotide sequence represented by SEQ ID NO: 1 under stringent conditions. Here, the “stringent condition” is, for example, the condition described in Current Protocols in Molecular Biology, John Wiley & Sons, 6.3.1-6.3.6, 1999, for example, 6 × SSC (sodium chloride / sodium citrate). ) / Hybridization at 45 ° C, followed by 0.2 × SSC / 0.1% SDS / one or more washings at 50-65 ° C. Hybridization conditions can be appropriately selected.
 TEAD3遺伝子のmRNAの好ましい例としては、配列番号1で表されるヌクレオチド配列を含むヒトTEAD3(RefSeq Accession No. NM_003214.4)、あるいは他の温血動物におけるそのオルソログ、さらにはそれらの天然のアレル変異体もしくは遺伝子多型などのmRNAがあげられる。 Preferred examples of the mRNA of the TEAD3 gene are human TEAD3 (RefSeq Accession No. NM_003214.4) containing the nucleotide sequence represented by SEQ ID NO: 1, its ortholog in other warm-blooded animals, and their natural alleles. Examples include mRNAs such as mutants or gene polymorphisms.
 「TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列の一部」とは、TEAD3遺伝子のmRNAに特異的に結合することができ、且つ該mRNAからのタンパク質の翻訳を阻害(あるいは該mRNAを分解)し得るものであれば、その長さや位置に特に制限はないが、配列特異性の面から、標的配列に相補的な部分を少なくとも10塩基以上、好ましくは15塩基以上、より好ましくは19塩基以上含むものである。 "A part of the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene" means that it can specifically bind to the mRNA of the TEAD3 gene and inhibits the translation of the protein from the mRNA (or inhibits the mRNA). As long as it can be decomposed), its length and position are not particularly limited, but from the viewpoint of sequence specificity, the portion complementary to the target sequence is at least 10 bases or more, preferably 15 bases or more, more preferably 19. It contains more than a base.
 具体的には、TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列の一部を含む核酸として、以下の(a)~(c)のいずれかのものが好ましく例示される。
(a) TEAD3遺伝子のmRNAに対してRNAi活性を有する核酸もしくはその前駆体
(b) TEAD3遺伝子のmRNAに対するアンチセンス核酸
(c) TEAD3遺伝子のmRNAに対するリボザイム核酸
Specifically, any of the following (a) to (c) is preferably exemplified as a nucleic acid containing a part of the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene.
(a) Nucleic acid having RNAi activity against mRNA of TEAD3 gene or its precursor
(b) Antisense nucleic acid against mRNA of TEAD3 gene
(c) Ribozyme nucleic acid for mRNA of TEAD3 gene
(a) TEAD3遺伝子のmRNAに対してRNAi活性を有する核酸もしくはその前駆体
 本明細書においては、TEAD3遺伝子のmRNAに相補的なオリゴRNAとその相補鎖とからなる二本鎖RNA、いわゆるsiRNAは、TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸に包含されるものとして定義される。
(a) Nucleic acid having RNAi activity against the mRNA of the TEAD3 gene or a precursor thereof In the present specification, a double-stranded RNA consisting of an oligo RNA complementary to the mRNA of the TEAD3 gene and its complementary strand, so-called siRNA, is used. , TEAD3 gene is defined as being included in a nucleic acid containing a nucleotide sequence complementary to or a part of the nucleotide sequence of mRNA.
 siRNAは、標的遺伝子のcDNA配列情報に基づいて、例えば、Elbashirら(Genes Dev., 15, 188-200 (2001))の提唱する規則に従って設計することができる。siRNAの標的配列としては、例えばAA+(N)19、AA+(N)21もしくはNA+(N)21(Nは任意の塩基)等が挙げられるが、それらに限定されない。標的配列の位置も特に制限されるわけではない。選択された標的配列の候補群について、標的以外のmRNAにおいて16-17塩基の連続した配列に相同性がないかどうかを、BLAST(http://www.ncbi.nlm.nih.gov/BLAST/)等のホモロジー検索ソフトを用いて調べ、選択した標的配列の特異性を確認する。例えば、AA+(N)19、AA+(N)21もしくはNA+(N)21(Nは任意の塩基)を標的配列とする場合、特異性の確認された標的配列について、AA(もしくはNA)以降の19-21塩基にTTもしくはUUの3’末端オーバーハングを有するセンス鎖と、該19-21塩基に相補的な配列及びTTもしくはUUの3’末端オーバーハングを有するアンチセンス鎖とからなる2本鎖RNAをsiRNAとして設計してもよい。また、siRNAの前駆体であるショートヘアピンRNA(shRNA)は、ループ構造を形成しうる任意のリンカー配列(例えば、5-25塩基程度)を適宜選択し、上記センス鎖とアンチセンス鎖とを該リンカー配列を介して連結することにより設計することができる。 The siRNA can be designed based on the cDNA sequence information of the target gene, for example, according to the rules proposed by Elbashir et al. (Genes Dev., 15, 188-200 (2001)). Examples of the target sequence of siRNA include, but are not limited to, AA + (N) 19 , AA + (N) 21 or NA + (N) 21 (N is an arbitrary base). The position of the target sequence is also not particularly limited. For the selected target sequence candidate group, BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) is checked to see if there is homology in the consecutive sequences of 16-17 bases in the non-target mRNA. ), Etc., and confirm the specificity of the selected target sequence. For example, when the target sequence is AA + (N) 19 , AA + (N) 21 or NA + (N) 21 (N is an arbitrary base), the target sequence whose specificity has been confirmed is AA (or NA) or later. Two strands consisting of a sense strand with a 3'end overhang of TT or UU on the 19-21 base and an antisense strand with a sequence complementary to the 19-21 base and a 3'end overhang of TT or UU. Strand RNA may be designed as siRNA. For short hairpin RNA (shRNA), which is a precursor of siRNA, an arbitrary linker sequence (for example, about 5-25 bases) capable of forming a loop structure is appropriately selected, and the above sense strand and antisense strand are selected. It can be designed by concatenating via a linker sequence.
 siRNA及び/又はshRNAの配列は、種々のwebサイト上に無料で提供される検索ソフトを用いて検索が可能である。このようなサイトとしては、例えば、Horizon Discovery Ltd.が提供するsiDESIGN Center(https://horizondiscovery.com/en/products/tools/siDESIGN-Center)、GenScriptが提供するsiRNA Target Finder(https://www.genscript.com/tools/sirna-target-finder)等が挙げられるが、これらに限定されない。 SiRNA and / or shRNA sequences can be searched using search software provided free of charge on various websites. Such sites include, for example, siDESIGN Center (https://horizondiscovery.com/en/products/tools/siDESIGN-Center) provided by Horizon Discovery Ltd. and siRNA TargetFinder (https: //) provided by GenScript. www.genscript.com/tools/sirna-target-finder), etc., but not limited to these.
 好ましい一実施態様において、本発明のsiRNA及びshRNAは、配列番号1で表されるヌクレオチド配列中、ヌクレオチド番号219~247(AGCAACCAGCACAATAGCGTCCAACAGCT:配列番号4)、あるいは1207~1235(AGCATGACCATCAGCGTCTCCACCAAGGT:配列番号5)で示される領域内の、連続する少なくとも15個のヌクレオチドからなる配列と相補的なヌクレオチド配列を含む。 In a preferred embodiment, the siRNAs and shRNAs of the present invention are represented by nucleotide numbers 219 to 247 (AGCAACCAGCACAATAGCGTCCAACAGCT: SEQ ID NO: 4) or 1207 to 1235 (AGCATGACCATCAGCGTCTCCACCAAGGT: SEQ ID NO: 5) in the nucleotide sequence represented by SEQ ID NO: 1. Includes a nucleotide sequence complementary to a sequence consisting of at least 15 contiguous nucleotides in the region shown.
 本明細書においては、TEAD3遺伝子のmRNAを標的とするマイクロRNA(miRNA)もまた、TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸に包含されるものとして定義される。miRNAは、標的となるmRNAに相補的に結合してmRNAの翻訳を抑制するか、あるいはmRNAを分解することにより、遺伝子発現の転写後制御に関与している。 As used herein, microRNAs (miRNAs) that target the mRNA of the TEAD3 gene are also defined as being included in nucleic acids containing a nucleotide sequence complementary to or a portion thereof of the nucleotide sequence of the mRNA of the TEAD3 gene. To. miRNAs are involved in post-transcriptional regulation of gene expression by complementarily binding to target mRNAs and suppressing mRNA translation, or by degrading mRNAs.
 miRNAはまず、それをコードする遺伝子から一次転写産物であるprimary-microRNA (pri-miRNA)が転写され、次いで、Droshaにより特徴的なヘアピン構造を有する約70塩基長のprecursor-microRNA (pre-miRNA)にプロセッシングされた後、核から細胞質に輸送され、さらに、Dicer介在によるプロセシングにより成熟型miRNAとなり、RISCに取り込まれて標的mRNAに作用する。従って、miRNAの前駆体として、pre-miRNAやpri-miRNA、好ましくはpre-miRNAを用いることもできる。 For miRNA, the primary transcript, primary-microRNA (pri-miRNA), is first transcribed from the gene that encodes it, and then the approximately 70-base-long precursor-microRNA (pre-miRNA), which has a hairpin structure characteristic of Drosha, is transcribed. ), Then transported from the nucleus to the cytoplasm, and further processed by Dicer-mediated processing to become mature miRNA, which is taken up by RISC and acts on the target mRNA. Therefore, pre-miRNA, pri-miRNA, preferably pre-miRNA can also be used as a precursor of miRNA.
 miRNAは、種々のwebサイト上に無料で提供される標的予測ソフトを用いて検索が可能である。このようなサイトとしては、例えば、米国ホワイトヘッド研究所が公開しているTargetScan(http://www.targetscan.org/vert_72/)、ギリシアのアレクサンダー・フレミング生体医科学研究センターが公開しているDIANA-micro-T-CDS(http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index)等が挙げられるが、これらに限定されない。あるいは、チェザレー大学・パスツール研究所等が公開している、標的mRNAに作用することが実験的に証明されているmiRNAに関するデータベースであるTarBase(http://carolina.imis.athena-innovation.gr/diana_tools/web/index.php?r=tarbasev8/index)を用いて、TEAD3 mRNAを標的とするmiRNAを検索することもできる。例えば、該データベース上でヒットしたTEAD3 mRNAに対するmiRNAのうち上記標的予測ソフトで高スコアのものとして、例えば、hsa-miR-106b-5p、hsa-miR-20a-5p等が挙げられる。これらのmiRNA及び/又はpre-miRNAの配列情報は、例えば、英国マンチェスター大学が公開しているmiRBase(http://www.mirbase.org/search.shtml)を用いて取得することができる。 MiRNA can be searched using target prediction software provided free of charge on various websites. Such sites include, for example, TargetScan (http://www.targetscan.org/vert_72/) published by the Whitehead Institute in the United States, and Alexander Fleming Biomedical Science Research Center in Greece. DIANA-micro-T-CDS (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=microT_CDS/index), etc., but are not limited to these. Alternatively, TarBase (http://carolina.imis.athena-innovation.gr), a database on miRNAs that have been experimentally proven to act on target mRNAs, published by the Pasteur Institute of the University of Chezalley, etc. You can also search for miRNAs that target TEAD3 mRNA using /diana_tools/web/index.php?r=tarbasev8/index). For example, among the miRNAs against TEAD3 mRNA hit on the database, those having a high score in the target prediction software include, for example, hsa-miR-106b-5p, hsa-miR-20a-5p and the like. Sequence information of these miRNAs and / or pre-miRNAs can be obtained, for example, using miRBase (http://www.mirbase.org/search.shtml) published by the University of Manchester, England.
 siRNA及び/又はshRNA、あるいはmiRNA及び/又はpre-miRNAを構成するヌクレオチド分子は、天然型のRNAもしくはDNAでもよいが、安定性(化学的および/または対酵素)や比活性(RNAとの親和性)を向上させるために、種々の化学修飾を含むことができる。例えば、ヌクレアーゼなどの加水分解酵素による分解を防ぐために、アンチセンス核酸を構成する各ヌクレオチドのリン酸残基(ホスフェート)を、例えば、ホスホロチオエート(PS)、メチルホスホネート、ホスホロジチオネートなどの化学修飾リン酸残基に置換することができる。また、各ヌクレオチドの糖(リボース)の2’位の水酸基を、-OR(R=CH3(2’-O-Me)、CH2CH2OCH3(2’-O-MOE)、CH2CH2NHC(NH)NH2、CH2CONHCH3、CH2CH2CN等)に置換してもよい。さらに、塩基部分(ピリミジン、プリン)に化学修飾を施してもよく、例えば、ピリミジン塩基の5位へのメチル基やカチオン性官能基の導入、あるいは2位のカルボニル基のチオカルボニルへの置換などが挙げられる。 The nucleotide molecules that make up siRNA and / or shRNA, or miRNA and / or pre-miRNA may be natural RNA or DNA, but are stable (chemical and / or paired) and specific activity (affinity with RNA). Various chemical modifications can be included to improve sex). For example, in order to prevent degradation by hydrolytic enzymes such as nuclease, the phosphate residue (phosphate) of each nucleotide constituting the antisense nucleic acid is chemically modified with, for example, phosphorothioate (PS), methylphosphonate, phosphorodithionate, etc. It can be replaced with a phosphoric acid residue. In addition, the hydroxyl group at the 2'position of the sugar (ribose) of each nucleotide can be replaced with -OR (R = CH 3 (2'-O-Me), CH 2 CH 2 OCH 3 (2'-O-MOE), CH 2 It may be replaced with CH 2 NHC (NH) NH 2 , CH 2 CONHCH 3 , CH 2 CH 2 CN, etc.). Further, the base moiety (pyrimidine, purine) may be chemically modified, for example, introduction of a methyl group or a cationic functional group at the 5-position of the pyrimidine base, or substitution of the carbonyl group at the 2-position with thiocarbonyl. Can be mentioned.
 RNAの糖部のコンフォーメーションはC2’-endo(S型)とC3’-endo(N型)の2つが支配的であり、一本鎖RNAではこの両者の平衡として存在するが、二本鎖を形成するとN型に固定される。したがって、標的RNAに対して強い結合能を付与するために、2’酸素と4’炭素を架橋することにより、糖部のコンフォーメーションをN型に固定したRNA誘導体であるBNA(LNA)(Imanishi, T. et al., Chem. Commun., 1653-9, 2002; Jepsen, J.S. et al., Oligonucleotides, 14, 130-46, 2004)やENA(Morita, K. et al., Nucleosides Nucleotides Nucleic Acids, 22, 1619-21, 2003)もまた、好ましく用いられ得る。 C2'-endo (S type) and C3'-endo (N type) are dominant in the formation of the sugar part of RNA, and in single-strand RNA, they exist as an equilibrium between the two, but they are double-stranded. Is fixed to N type when it is formed. Therefore, BNA (LNA) (Imanishi), which is an RNA derivative in which the conformation of the sugar moiety is fixed to N type by cross-linking 2'oxygen and 4'carbon in order to impart strong binding ability to the target RNA. , T. et al., Chem. Communi., 1653-9, 2002; Jepsen, JS et al., Oligonucleotides, 14, 130-46, 2004) and ENA (Morita, K. et al., Nucleosides Nucleotides Nucleic Acids , 22, 1619-21, 2003) can also be preferably used.
 siRNAは、mRNA上の標的配列のセンス鎖及びアンチセンス鎖をDNA/RNA自動合成機でそれぞれ合成し、適当なアニーリング緩衝液中、約90~約95℃で約1分程度変性させた後、約30~約70℃で約1~約8時間アニーリングさせることにより調製することができる。また、siRNAの前駆体となるshRNAを合成し、これをダイサー(dicer)を用いて切断することにより調製することもできる。miRNA及びpre-miRNAは、それらの配列情報に基づいて、DNA/RNA自動合成機で合成することができる。 For siRNA, the sense strand and antisense strand of the target sequence on mRNA are synthesized by a DNA / RNA automatic synthesizer, respectively, and denatured in an appropriate annealing buffer at about 90 to about 95 ° C. for about 1 minute. It can be prepared by annealing at about 30 to about 70 ° C. for about 1 to about 8 hours. It can also be prepared by synthesizing shRNA as a precursor of siRNA and cleaving it with a dicer. miRNA and pre-miRNA can be synthesized by a DNA / RNA automatic synthesizer based on their sequence information.
 本明細書においては、生体内でTEAD3遺伝子のmRNAに対するsiRNA又はmiRNAを生成し得るようにデザインされた核酸もまた、TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸に包含されるものとして定義される。そのような核酸としては、上記したshRNAもしくはsiRNA又はmiRNAもしくはpre-miRNAを発現するように構築された発現ベクターなどが挙げられる。後述の実施例に示されるように、TEAD3の発現は、初期化過程の開始段階(例えば、核初期化物質の導入後3日以内)と安定化段階(例えば、核初期化物質の導入後2~3週間)の両方で上昇することから、TEAD3の機能阻害は核初期化工程を通じて長期間持続することが望ましいと考えられる。発現ベクターの使用は、TEAD3の発現を阻害する核酸を長期間持続的に体細胞に供給できる点で好ましい。 As used herein, nucleic acids designed to be capable of producing siRNAs or miRNAs against the mRNA of the TEAD3 gene in vivo are also nucleic acids comprising a nucleotide sequence complementary to or part of the nucleotide sequence of the mRNA of the TEAD3 gene. Defined as contained in. Examples of such nucleic acids include expression vectors constructed to express the above-mentioned shRNA or siRNA or miRNA or pre-miRNA. As shown in the Examples below, TEAD3 expression is at the beginning of the initialization process (eg, within 3 days after the introduction of the nuclear reprogramming material) and at the stabilization stage (eg, 2 after the introduction of the nuclear reprogramming material). Since it increases in both (up to 3 weeks), it is considered desirable that the functional inhibition of TEAD3 is sustained for a long period of time through the nuclear initialization step. The use of an expression vector is preferable in that a nucleic acid that inhibits the expression of TEAD3 can be continuously supplied to somatic cells for a long period of time.
 shRNAは、mRNA上の標的配列のセンス鎖およびアンチセンス鎖を適当なループ構造を形成しうる長さ(例えば5~25塩基程度)のスペーサー配列を間に挿入して連結したヌクレオチド配列を含むオリゴRNAをデザインし、これをDNA/RNA自動合成機で合成することにより調製することができる。shRNAを発現するベクターには、タンデムタイプとステムループ(ヘアピン)タイプとがある。前者はsiRNAのセンス鎖の発現カセットとアンチセンス鎖の発現カセットをタンデムに連結したもので、細胞内で各鎖が発現してアニーリングすることにより2本鎖のsiRNA(dsRNA)を形成するというものである。一方、後者はshRNAの発現カセットをベクターに挿入したもので、細胞内でshRNAが発現しdicerによるプロセシングを受けてdsRNAを形成するというものである。プロモーターとしては、polII系プロモーター(例えば、CMV前初期プロモーター)を使用することもできるが、短いRNAの転写を正確に行わせるために、polIII系プロモーターを使用するのが一般的である。polIII系プロモーターとしては、マウスおよびヒトのU6-snRNAプロモーター、ヒトH1-RNase P RNAプロモーター、ヒトバリン-tRNAプロモーターなどが挙げられる。また、転写終結シグナルとして4個以上Tが連続した配列が用いられる。miRNAやpre-miRNAの発現カセットも、shRNAと同様にして作製することができる。 shRNA is an oligo containing a nucleotide sequence in which the sense strand and antisense strand of the target sequence on mRNA are linked by inserting a spacer sequence of a length (for example, about 5 to 25 bases) capable of forming an appropriate loop structure. It can be prepared by designing RNA and synthesizing it with an automatic DNA / RNA synthesizer. Vectors expressing shRNA include tandem type and stem loop (hairpin) type. The former is a tandem link between the expression cassette of the sense strand of siRNA and the expression cassette of the antisense strand, and each strand is expressed and annealed in the cell to form double-stranded siRNA (dsRNA). Is. On the other hand, the latter is a vector in which an shRNA expression cassette is inserted, in which the shRNA is expressed intracellularly and processed by a dicer to form dsRNA. As the promoter, a polII-based promoter (for example, a pre-CMV early stage promoter) can be used, but it is common to use a polIII-based promoter in order to allow accurate transcription of short RNA. Examples of the polIII promoter include mouse and human U6-snRNA promoters, human H1-RNase PRNA promoters, and human valine-tRNA promoters. In addition, a sequence in which four or more Ts are continuous is used as the transcription termination signal. Expression cassettes for miRNA and pre-miRNA can also be prepared in the same manner as shRNA.
 このようにして構築したsiRNAもしくはshRNA又はmiRNAもしくはpre-miRNA発現カセットを、次いでプラスミドベクターやウイルスベクターに挿入する。このようなベクターとしては、レトロウイルス、レンチウイルス、アデノウイルス、アデノ随伴ウイルス、ヘルペスウイルス、センダイウイルスなどのウイルスベクターや、動物細胞発現プラスミドなどが用いられる。TEAD3は、恒常性維持にも関わるHippoシグナル伝達経路を介した遺伝子発現制御に深く関与していることから、初期化バリアが解除され、体細胞がiPS細胞にまで脱分化した後は、速やかに機能を回復させることが好ましいと考えられる。従って、発現ベクターとしては、非組込み型の一過的発現ベクター、例えばアデノウイルスベクターやプラスミドがより好ましい。中でも、核初期化工程を通じてTEAD3の発現を阻害する核酸を持続的発現させることができ、iPS細胞樹立後に速やかに細胞から消失し得る点で、染色体外で自律複製可能なエピゾーマルベクターの使用が好ましい。エピゾーマルベクターを用いる具体的手段は、Yu et al., Science, 324, 797-801 (2009)に開示されている。 The siRNA or shRNA or miRNA or pre-miRNA expression cassette constructed in this way is then inserted into a plasmid vector or viral vector. As such a vector, a viral vector such as a retrovirus, a lentivirus, an adenovirus, an adeno-associated virus, a herpes virus, a Sendai virus, an animal cell expression plasmid, or the like is used. Since TEAD3 is deeply involved in gene expression regulation via the Hippo signaling pathway, which is also involved in homeostasis maintenance, the reprogramming barrier is released and somatic cells are rapidly dedifferentiated into iPS cells. It may be preferable to restore function. Therefore, as the expression vector, a non-integrated transient expression vector, for example, an adenovirus vector or a plasmid is more preferable. In particular, the use of an episomal vector capable of autonomous replication outside the chromosome in that nucleic acids that inhibit TEAD3 expression can be continuously expressed through the nuclear reprogramming step and can be rapidly eliminated from the cells after the establishment of iPS cells. Is preferable. Specific means using an episomal vector are disclosed in Yu et al., Science, 324, 797-801 (2009).
 エピゾーマルベクターとしては、例えば、EBV、SV40等に由来する自律複製に必要な配列をベクター要素として含むベクターが挙げられる。自律複製に必要なベクター要素としては、具体的には、複製開始点と、複製開始点に結合して複製を制御するタンパク質をコードする遺伝子であり、例えば、EBVにあっては複製開始点oriPとEBNA-1遺伝子、SV40にあっては複製開始点oriとSV40 large T antigen遺伝子が挙げられる。 Examples of the episomal vector include a vector containing a sequence required for autonomous replication derived from EBV, SV40, etc. as a vector element. Specifically, the vector elements required for autonomous replication are a replication origin and a gene encoding a protein that binds to the replication origin and controls replication. For example, in EBV, the replication origin oriP. And the EBNA-1 gene, and in the case of SV40, the replication origin ori and the SV40 large Tantigen gene can be mentioned.
(b) TEAD3遺伝子のmRNAに対するアンチセンス核酸
 本発明における「TEAD3遺伝子のmRNAに対するアンチセンス核酸」とは、該mRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸であって、標的mRNAと特異的かつ安定した二重鎖を形成して結合することにより、タンパク質合成を抑制する機能を有するものである。
 アンチセンス核酸は、2-デオキシ-D-リボースを含有しているポリデオキシリボヌクレオチド、D-リボースを含有しているポリリボヌクレオチド、プリンまたはピリミジン塩基のN-グリコシドであるその他のタイプのポリヌクレオチド、非ヌクレオチド骨格を有するその他のポリマー(例えば、市販のタンパク質核酸および合成配列特異的な核酸ポリマー)または特殊な結合を含有するその他のポリマー(但し、該ポリマーはDNAやRNA中に見出されるような塩基のペアリングや塩基の付着を許容する配置をもつヌクレオチドを含有する)などが挙げられる。それらは、二本鎖DNA、一本鎖DNA、二本鎖RNA、一本鎖RNA、DNA:RNAハイブリッドであってもよく、さらに非修飾ポリヌクレオチド(または非修飾オリゴヌクレオチド)、公知の修飾の付加されたもの、例えば当該分野で知られた標識のあるもの、キャップの付いたもの、メチル化されたもの、1個以上の天然のヌクレオチドを類縁物で置換したもの、分子内ヌクレオチド修飾のされたもの、例えば非荷電結合(例えば、メチルホスホネート、ホスホトリエステル、ホスホルアミデート、カルバメートなど)を持つもの、電荷を有する結合または硫黄含有結合(例、ホスホロチオエート、ホスホロジチオエートなど)を持つもの、例えばタンパク質(例、ヌクレアーゼ、ヌクレアーゼ・インヒビター、トキシン、抗体、シグナルペプチド、ポリ-L-リジンなど)や糖(例、モノサッカライドなど)などの側鎖基を有しているもの、インターカレント化合物(例、アクリジン、ソラレンなど)を持つもの、キレート化合物(例えば、金属、放射活性をもつ金属、ホウ素、酸化性の金属など)を含有するもの、アルキル化剤を含有するもの、修飾された結合を持つもの(例えば、αアノマー型の核酸など)であってもよい。ここで「ヌクレオシド」、「ヌクレオチド」および「核酸」とは、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいて良い。このような修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであってよい。修飾されたヌクレオシドおよび修飾されたヌクレオチドはまた糖部分が修飾されていてよく、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されていたり、またはエーテル、アミンなどの官能基に変換されていたりしてもよい。
(b) Antisense Nucleic Acid Against mRNA of TEAD3 Gene The "antisense nucleic acid against mRNA of TEAD3 gene" in the present invention is a nucleic acid containing or a part of a nucleotide sequence complementary to the nucleotide sequence of the mRNA and is a target. It has a function of suppressing protein synthesis by forming and binding to a specific and stable double chain with mRNA.
Antisense nucleic acids include polydeoxyribonucleotides containing 2-deoxy-D-ribose, polyribonucleotides containing D-ribose, and other types of polynucleotides that are N-glycosides of purine or pyrimidine bases. Other polymers with a non-nucleotide skeleton (eg, commercially available protein nucleic acids and synthetic sequence-specific nucleic acid polymers) or other polymers containing special bindings (provided that the polymer is a base as found in DNA or RNA). (Contains a nucleotide having an arrangement that allows the pairing and attachment of a base). They may be double-stranded DNA, single-stranded DNA, double-stranded RNA, single-stranded RNA, DNA: RNA hybrids, as well as unmodified polynucleotides (or unmodified oligonucleotides), known modifications. Additions, such as those with a label known in the art, those with a cap, those that are methylated, those in which one or more natural nucleotides are replaced with an analog, those with intramolecular nucleotide modifications. For example, those with uncharged bonds (eg, methylphosphonate, phosphotriester, phosphoramidate, carbamate, etc.), charged bonds or sulfur-containing bonds (eg, phosphorothioate, phosphorodithioate, etc.). Those having side chain groups such as proteins (eg, nucleases, nuclease inhibitors, toxins, antibodies, signal peptides, poly-L-lysine, etc.) and sugars (eg, monosaccharides, etc.), intercurrent. Those with compounds (eg, acridin, solarene, etc.), those containing chelate compounds (eg, metals, radioactive metals, boron, oxidizing metals, etc.), those containing alkylating agents, modified. It may have a binding (for example, α-anomer type nucleic acid). Here, the "nucleoside", "nucleotide" and "nucleic acid" may include not only those containing purine and pyrimidine bases but also those having other modified heterocyclic bases. Such modifications may include methylated purines and pyrimidines, acylated purines and pyrimidines, or other heterocycles. Modified nucleosides and modified nucleotides may also have modified sugar moieties, for example, one or more hydroxyl groups substituted with halogens, aliphatic groups, etc., or functional groups such as ethers, amines, etc. It may have been converted.
 上記の通り、アンチセンス核酸はDNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよい。アンチセンス核酸がDNAの場合、標的RNAとアンチセンスDNAとによって形成されるRNA:DNAハイブリッドは、内在性RNase Hに認識されて標的RNAの選択的な分解を引き起こすことができる。したがって、RNase Hによる分解を指向するアンチセンスDNAの場合、標的配列は、mRNA中の配列だけでなく、TEAD3遺伝子の初期翻訳産物におけるイントロン領域の配列であってもよい。イントロン配列は、ゲノム配列と、TEAD3遺伝子のcDNAヌクレオチド配列とをBLAST、FASTA等のホモロジー検索プログラムを用いて比較することにより、決定することができる。 As described above, the antisense nucleic acid may be DNA, RNA, or a DNA / RNA chimera. When the antisense nucleic acid is DNA, the RNA: DNA hybrid formed by the target RNA and the antisense DNA can be recognized by the endogenous RNase H and cause selective degradation of the target RNA. Therefore, in the case of antisense DNA directed to degradation by RNase H, the target sequence may be not only the sequence in mRNA but also the sequence of the intron region in the initial translation product of the TEAD3 gene. The intron sequence can be determined by comparing the genomic sequence with the cDNA nucleotide sequence of the TEAD3 gene using a homology search program such as BLAST or FASTA.
 本発明のアンチセンス核酸の標的領域は、該アンチセンス核酸がハイブリダイズすることにより、結果としてタンパク質への翻訳が阻害されるものであればその長さに特に制限はなく、タンパク質をコードするmRNAの全配列であっても部分配列であってもよく、短いもので約10塩基程度、長いものでmRNAもしくは初期転写産物の全配列が挙げられる。合成の容易さや抗原性、細胞内移行性の問題等を考慮すれば、約10~約40塩基、特に約15~約30塩基からなるオリゴヌクレオチドが好ましいが、それに限定されない。具体的には、TEAD3遺伝子の5’端ヘアピンループ、5’端6-ベースペア・リピート、5’端非翻訳領域、翻訳開始コドン、タンパク質コード領域、ORF翻訳終止コドン、3’端非翻訳領域、3’端パリンドローム領域または3’端ヘアピンループなどが、アンチセンス核酸の好ましい標的領域として選択しうるが、それらに限定されない。 The target region of the antisense nucleic acid of the present invention is not particularly limited in length as long as the antisense nucleic acid hybridizes to inhibit translation into a protein, and the mRNA encoding the protein is not particularly limited. It may be a full sequence or a partial sequence of the above, and a short one may be about 10 bases, and a long one may be the whole sequence of mRNA or an early transcript. Considering the ease of synthesis, antigenicity, intracellular transferability, and the like, oligonucleotides consisting of about 10 to about 40 bases, particularly about 15 to about 30 bases are preferable, but the oligonucleotide is not limited thereto. Specifically, the 5'end hairpin loop, 5'end 6-base pair repeat, 5'end untranslated region, translation start codon, protein coding region, ORF translation stop codon, 3'end untranslated region of the TEAD3 gene. , 3'end parindrome regions or 3'end hairpin loops can be selected as preferred target regions for antisense nucleic acids, but are not limited thereto.
 一実施態様において、本発明のアンチセンス核酸の標的領域として、上記siRNAと同様に、配列番号1で表されるヌクレオチド配列中、ヌクレオチド番号219~247、あるいは1207~1235で示される領域内の、連続する少なくとも15個のヌクレオチドからなる配列を挙げることができる。ギャップマー型のアンチセンス核酸を用いると、該標的領域内でRNase Hの作用によりTEAD3 mRNAを分解することができるので、siRNAと同等の効果を得ることができる。 In one embodiment, as the target region of the antisense nucleic acid of the present invention, similarly to the above siRNA, in the nucleotide sequence represented by SEQ ID NO: 1, within the region represented by nucleotide numbers 219 to 247 or 1207 to 1235. A sequence consisting of at least 15 consecutive nucleotides can be mentioned. When a gapmer-type antisense nucleic acid is used, TEAD3 mRNA can be degraded by the action of RNase H in the target region, so that the same effect as siRNA can be obtained.
 TEAD3のパラログであるTEAD4には、N末端側のDNA結合ドメインを欠くスプライシングバリアントが知られており、エキソン3のスキッピングにより開始コドンの位置が変化するためと考えられている(Nat Commun 7:11840 | DOI: 10.1038/ncomms11840)。TEADファミリーのDNA結合領域は高度に保存されており、TEAD3にも、同様にDNA結合ドメインを欠くスプライシングバリアントの存在が推定されている。従って、エキソン3の内部もしくは隣接するイントロン内に存在するスプライシング促進配列を標的としたアンチセンス核酸を用いることにより、エキソン3を欠くスプライシングバリアントの転写を促進し、配列番号2で表されるアミノ酸配列中、アミノ酸番号112で示されるMetから始まるTEAD3アイソフォームを生成し得る。該アイソフォームは、コアクチベータのYAP/TAZに結合するが、標的遺伝子のプロモーターに結合できないので、TEAD3のドミナントネガティブ変異体として機能する。 TEAD4, a paralog of TEAD3, is known to have a splicing variant that lacks the DNA-binding domain on the N-terminal side, and it is thought that skipping of exon 3 changes the position of the start codon (NatCommun 7: 11840). | DOI: 10.1038 / ncomms11840). The DNA-binding regions of the TEAD family are highly conserved, and it is speculated that TEAD3 also has splicing variants that lack the DNA-binding domain. Therefore, by using an antisense nucleic acid targeting a splicing-promoting sequence existing inside or in an adjacent intron of exon 3, transcription of a splicing variant lacking exon 3 is promoted, and the amino acid sequence represented by SEQ ID NO: 2 is used. Among them, TEAD3 isoforms starting with Met indicated by amino acid number 112 can be produced. The isoform binds to the coactivator YAP / TAZ, but cannot bind to the promoter of the target gene, thus functioning as a dominant negative variant of TEAD3.
 さらに、本発明のアンチセンス核酸は、TEAD3遺伝子のmRNAや初期転写産物とハイブリダイズしてタンパク質への翻訳を阻害するだけでなく、二本鎖DNAであるこれらの遺伝子と結合して三重鎖(トリプレックス)を形成し、RNAへの転写を阻害し得るもの(アンチジーン)であってもよい。 Furthermore, the antisense nucleic acid of the present invention not only hybridizes with the mRNA and early transcript of the TEAD3 gene to inhibit translation into a protein, but also binds to these genes, which are double-stranded DNA, to form a triple strand (triple strand). It may be one that can form a triplet) and inhibit transcription into RNA (antigene).
 アンチセンス核酸を構成するヌクレオチド分子もまた、安定性、比活性などを向上させるために、上記のsiRNA等の場合と同様の修飾を受けていてもよい。 The nucleotide molecules constituting the antisense nucleic acid may also be modified in the same manner as in the case of siRNA and the like described above in order to improve stability, specific activity and the like.
 本発明のアンチセンスオリゴヌクレオチドは、TEAD3遺伝子のcDNA配列もしくはゲノミックDNA配列に基づいてmRNAもしくは初期転写産物の標的配列を決定し、市販のDNA/RNA自動合成機(アプライド・バイオシステムズ社、ベックマン社等)を用いて、これに相補的な配列を合成することにより調製することができる。また、上記した各種修飾を含むアンチセンス核酸も、いずれも自体公知の手法により、化学的に合成することができる。 The antisense oligonucleotide of the present invention determines the target sequence of mRNA or early transcript based on the cDNA sequence or genomic DNA sequence of the TEAD3 gene, and is a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman). Etc.) and can be prepared by synthesizing a sequence complementary to this. In addition, all of the antisense nucleic acids containing the above-mentioned various modifications can be chemically synthesized by a method known per se.
 あるいは、アンチセンス核酸は、上記のsiRNA等の場合と同様に発現ベクターに組み込んで体細胞に導入することもできる。 Alternatively, the antisense nucleic acid can be incorporated into an expression vector and introduced into somatic cells in the same manner as in the case of siRNA or the like described above.
(c) TEAD3遺伝子のmRNAに対するリボザイム核酸
 TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸の他の例としては、該mRNAをコード領域の内部で特異的に切断し得るリボザイム核酸が挙げられる。「リボザイム」とは、狭義には、核酸を切断する酵素活性を有するRNAをいうが、本明細書では配列特異的な核酸切断活性を有する限りDNAをも包含する概念として用いるものとする。リボザイム核酸として最も汎用性の高いものとしては、ウイロイドやウイルソイド等の感染性RNAに見られるセルフスプライシングRNAがあり、ハンマーヘッド型やヘアピン型等が知られている。ハンマーヘッド型は約40塩基程度で酵素活性を発揮し、ハンマーヘッド構造をとる部分に隣接する両端の数塩基ずつ(合わせて約10塩基程度)をmRNAの所望の切断部位と相補的な配列にすることにより、標的mRNAのみを特異的に切断することが可能である。このタイプのリボザイム核酸は、RNAのみを基質とするので、ゲノムDNAを攻撃することがないというさらなる利点を有する。TEAD3遺伝子のmRNAが自身で二本鎖構造をとる場合には、RNAヘリカーゼと特異的に結合し得るウイルス核酸由来のRNAモチーフを連結したハイブリッドリボザイムを用いることにより、標的配列を一本鎖にすることができる[Proc. Natl. Acad. Sci. USA, 98(10): 5572-5577 (2001)]。さらに、リボザイムを、それをコードするDNAを含む発現ベクターの形態で使用する場合には、転写産物の細胞質への移行を促進するために、tRNAを改変した配列をさらに連結したハイブリッドリボザイムとすることもできる[Nucleic Acids Res., 29(13): 2780-2788 (2001)]。
(c) Ribozyme nucleic acid for the mRNA of the TEAD3 gene As another example of a nucleic acid containing a nucleotide sequence complementary to or a part of the nucleotide sequence of the mRNA of the TEAD3 gene, the mRNA is specifically cleaved inside the coding region. Examples include the ribozyme nucleic acid obtained. The term "ribozyme" is used in a narrow sense as an RNA having an enzymatic activity for cleaving nucleic acid, but is used herein as a concept including DNA as long as it has a sequence-specific nucleic acid cleaving activity. The most versatile ribozyme nucleic acid includes self-splicing RNA found in infectious RNAs such as viroids and virusoids, and hammerhead type and hairpin type are known. The hammer head type exerts enzymatic activity at about 40 bases, and several bases at both ends adjacent to the part having the hammer head structure (about 10 bases in total) are arranged in a sequence complementary to the desired cleavage site of mRNA. By doing so, it is possible to specifically cleave only the target mRNA. This type of ribozyme nucleic acid has the additional advantage of not attacking genomic DNA because it uses only RNA as a substrate. When the mRNA of the TEAD3 gene has a double-stranded structure by itself, the target sequence is made single-stranded by using a hybrid ribozyme linked with an RNA motif derived from a viral nucleic acid that can specifically bind to RNA helicase. Can [Proc. Natl. Acad. Sci. USA, 98 (10): 5572-5577 (2001)]. Furthermore, when the ribozyme is used in the form of an expression vector containing the DNA encoding it, it should be a hybrid ribozyme in which tRNA-modified sequences are further linked in order to promote the transfer of the transcript to the cytoplasm. You can also [Nucleic Acids Res., 29 (13): 2780-2788 (2001)].
 TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列またはその一部を含む核酸は、リポソーム、ミクロスフェアのような特殊な形態で提供したり、他の要素が付加された形態で提供したりすることができうる。付加形態で用いられるものとしては、リン酸基骨格の電荷を中和するように働くポリリジンのようなポリカチオン体、細胞膜との相互作用を高めたり、核酸の取込みを増大せしめるような脂質(例、ホスホリピド、コレステロールなど)などの疎水性のものが挙げられる。付加するに好ましい脂質としては、コレステロールやその誘導体(例、コレステリルクロロホルメート、コール酸など)が挙げられる。こうしたものは、核酸の3’端または5’端に付着させることができ、塩基、糖、分子内ヌクレオシド結合を介して付着させることができうる。その他の基としては、核酸の3’端または5’端に特異的に配置されたキャップ用の基で、エキソヌクレアーゼ、RNaseなどのヌクレアーゼによる分解を阻止するためのものが挙げられる。こうしたキャップ用の基としては、ポリエチレングリコール、テトラエチレングリコールなどのグリコールをはじめとした当該分野で知られた水酸基の保護基が挙げられるが、それに限定されるものではない。 Nucleic acids containing a nucleotide sequence complementary to or a part of the nucleotide sequence of the mRNA of the TEAD3 gene may be provided in a special form such as liposomes or microspheres, or may be provided in a form in which other elements are added. Can be possible. As an additional form, polycationic substances such as polylysine, which act to neutralize the charge of the phosphate basal skeleton, and lipids that enhance interaction with cell membranes and increase nucleic acid uptake (eg,). , Phosphoripide, cholesterol, etc.) and other hydrophobic ones. Preferred lipids for addition include cholesterol and its derivatives (eg, cholesteryl chloroformate, cholic acid, etc.). These can be attached to the 3'or 5'ends of nucleic acids and can be attached via bases, sugars, intramolecular nucleoside bonds. Other groups include cap groups specifically located at the 3'or 5'ends of nucleic acids to prevent degradation by nucleases such as exonucleases and RNases. Examples of such groups for caps include, but are not limited to, hydroxyl-protecting groups known in the art, such as glycols such as polyethylene glycol and tetraethylene glycol.
 TEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列の一部を含む核酸がRNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入することができる。
 一方、該RNAをコードするDNAを含む発現ベクターの形態の場合、ベクターの種類に応じて、自体公知の手法により細胞に導入することができる。例えば、ウイルスベクターの場合、該DNAを含むプラスミドを適当なパッケージング細胞(例、Plat-E細胞)や相補細胞株(例、293細胞)に導入して、培養上清中に産生されるウイルスベクターを回収し、各ウイルスベクターに応じた適切な方法により、該ベクターを細胞に感染させる。例えば、ベクターとしてレトロウイルスベクターを用いる具体的手段が WO2007/69666、Cell, 126, 663-676 (2006) 及び Cell, 131, 861-872 (2007) に開示されており、ベクターとしてレンチウイルスベクターを用いる場合については、Science, 318, 1917-1920 (2007) に開示がある。また、アデノウイルスベクターを用いる場合については、Science, 322, 945-949 (2008) に記載されている。
 一方、非ウイルスベクターであるプラスミドベクターの場合には、リポフェクション法、リポソーム法、エレクトロポレーション法、リン酸カルシウム共沈殿法、DEAEデキストラン法、マイクロインジェクション法、遺伝子銃法などを用いて該ベクターを細胞に導入することができる。
When the nucleic acid containing a part of the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene is in the form of RNA, it can be introduced into the body cell by a method such as lipofection or microinjection.
On the other hand, in the case of the form of an expression vector containing DNA encoding the RNA, it can be introduced into cells by a method known per se, depending on the type of vector. For example, in the case of a viral vector, a virus produced in a culture supernatant by introducing a plasmid containing the DNA into an appropriate packaging cell (eg, Plat-E cell) or complementary cell line (eg, 293 cells). The vector is recovered and the cells are infected with the vector by an appropriate method according to each viral vector. For example, specific means of using a retroviral vector as a vector are disclosed in WO2007 / 69666, Cell, 126, 663-676 (2006) and Cell, 131, 861-872 (2007), and the lentiviral vector is used as a vector. The use is disclosed in Science, 318, 1917-1920 (2007). The case of using an adenovirus vector is described in Science, 322, 945-949 (2008).
On the other hand, in the case of a plasmid vector which is a non-viral vector, the vector is transferred to cells by using a lipofection method, a liposome method, an electroporation method, a calcium phosphate co-precipitation method, a DEAE dextran method, a microinjection method, a gene gun method, or the like. Can be introduced.
(d) p53のコンセンサス結合配列を含むオリゴ核酸
 TEAD3遺伝子の発現を阻害する物質の別の好ましい実施態様として、TEAD3遺伝子の転写活性化因子がTEAD3遺伝子のプロモーター領域に結合するのを阻害する物質が挙げられる。例えば、そのような物質として、p53のコンセンサス結合配列であるrrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy(rはa又はg、wはa又はt、yはc又はtを表し、nはそれぞれ独立して、存在しないか、a、g、t又はcを表す;配列番号3)を含むオリゴ核酸を挙げることができる。好ましくは、該オリゴ核酸は二本鎖DNAである。p53はTEAD3プロモーター領域に存在するシスエレメント配列に結合して、TEAD3遺伝子の転写を正に制御していると考えられるので、p53のコンセンサス結合配列を含むオリゴ核酸は、p53のTEAD3プロモーター領域への結合を阻害してその転写を抑制することができる。該オリゴ核酸の長さは、例えば、20~50ヌクレオチド、好ましくは25~40ヌクレオチドである。
(d) Another preferred embodiment of a substance that inhibits the expression of the oligonucleic acid TEAD3 gene comprising the consensus binding sequence of p53 is a substance that inhibits the transcriptional activator of the TEAD3 gene from binding to the promoter region of the TEAD3 gene. Can be mentioned. For example, as such a substance, the consensus binding sequence of p53, rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, n stands independently or does not exist, a, Can be mentioned as an oligonucleic acid comprising g, t or c; SEQ ID NO: 3). Preferably, the oligonucleic acid is double-stranded DNA. Since p53 binds to the cis-element sequence present in the TEAD3 promoter region and is thought to positively regulate the transcription of the TEAD3 gene, oligonucleic acids containing the consensus binding sequence of p53 are directed to the TEAD3 promoter region of p53. It can inhibit binding and suppress its transcription. The length of the oligonucleic acid is, for example, 20 to 50 nucleotides, preferably 25 to 40 nucleotides.
 前記オリゴ核酸は、配列番号3の配列情報に基づいて、市販のDNA/RNA自動合成機(アプライド・バイオシステムズ社、ベックマン社等)を用いて、センス鎖及びアンチセンス鎖を合成し、それらをアニーリングさせることにより製造することができる。 The oligonucleic acid synthesizes a sense strand and an antisense strand using a commercially available DNA / RNA automatic synthesizer (Applied Biosystems, Beckman, etc.) based on the sequence information of SEQ ID NO: 3, and synthesizes them. It can be manufactured by annealing.
 前記オリゴ核酸は、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入することができる。 The oligonucleic acid can be introduced into somatic cells by a method such as lipofection or microinjection.
 本発明において「TEAD3の機能を抑制する物質」とは、いったん機能的に産生されたTEAD3の機能(例えば、体細胞としての固有性を維持する遺伝子群の転写活性化機能)を抑制する限りいかなるものでもよく、例えば、TEAD3に結合して前記機能を抑制する物質、TEAD3と標的遺伝子の結合活性や、TEAD3と転写共役因子との相互作用を阻害する物質等が挙げられる。 In the present invention, the "substance that suppresses the function of TEAD3" is any substance as long as it suppresses the function of TEAD3 once functionally produced (for example, the transcriptional activation function of a gene cluster that maintains its uniqueness as a somatic cell). Examples thereof include substances that bind to TEAD3 and suppress the function, substances that inhibit the binding activity between TEAD3 and a target gene, and substances that inhibit the interaction between TEAD3 and a transcriptional coupling factor.
(e) TEAD3のドミナントネガティブ変異体
 TEAD3は、ヒトの場合、配列番号2で表されるアミノ酸配列からなるタンパク質であるが、N末端側から約30~約100アミノ酸の領域が、TEADファミリーで高度に保存されたDNA結合ドメインであり、約200位以降がYAP/TAZ結合ドメイン及び転写活性化ドメインである。従って、DNA結合ドメインを欠くTEAD3フラグメントは、内因性の全長TEAD3と競合的に転写コアクチベータであるYAP/TAZと結合し、TEAD3とYAP/TAZとの相互作用による標的遺伝子群の転写活性化を抑制することができる。一方、YAP/TAZ結合ドメイン、転写活性化ドメインを欠くTEAD3フラグメントは、内因性の全長TEAD3と競合的に標的遺伝子のプロモーター領域に結合し、TEAD3とYAP/TAZとの相互作用による標的遺伝子群の転写活性化を抑制することができる。
(e) Dominant negative mutant of TEAD3 TEAD3 is a protein consisting of the amino acid sequence represented by SEQ ID NO: 2 in humans, but the region of about 30 to about 100 amino acids from the N-terminal side is highly advanced in the TEAD family. It is a DNA-binding domain conserved in the YAP / TAZ-binding domain and the transcription activation domain after about 200 positions. Therefore, the TEAD3 fragment lacking the DNA-binding domain binds to the transcription coactivator YAP / TAZ competitively with the endogenous full-length TEAD3 and activates transcription of the target gene cluster by the interaction between TEAD3 and YAP / TAZ. It can be suppressed. On the other hand, the TEAD3 fragment lacking the YAP / TAZ binding domain and the transcription activation domain binds to the promoter region of the target gene competitively with the endogenous full-length TEAD3, and is a group of target genes due to the interaction between TEAD3 and YAP / TAZ. Transcription activation can be suppressed.
 TEAD3のドミナントネガティブ変異体は、例えば、ヒト等の温血動物のTEAD3を発現する細胞・組織由来のmRNA、cDNAもしくはcDNAライブラリーから、適当なプライマーセットを設計して(RT-)PCR法により、目的とするDNA結合ドメイン又はYAP/TAZ結合ドメイン(転写活性化ドメイン)を欠くTEAD3フラグメントをコードする核酸をクローニングし、適当な発現ベクターに挿入し、該ベクターを宿主細胞に導入し、該細胞を培養して得られる培養物から組換えタンパク質を回収することにより取得することができる。 Dominant negative variants of TEAD3 can be obtained by designing an appropriate primer set from a cell / tissue-derived mRNA, cDNA or cDNA library expressing TEAD3 in warm-blooded animals such as humans by the (RT-) PCR method. Clone a nucleic acid encoding a TEAD3 fragment lacking the DNA-binding domain of interest or the YAP / TAZ-binding domain (transcription activation domain), insert it into an appropriate expression vector, introduce the vector into a host cell, and the cell. It can be obtained by recovering the recombinant protein from the culture obtained by culturing.
 体細胞へのドミナントネガティブ変異体の接触は、自体公知の細胞へのタンパク質導入方法を用いて実施することができる。そのような方法としては、例えば、タンパク質導入試薬を用いる方法、タンパク質導入ドメイン(PTD)融合タンパク質を用いる方法、マイクロインジェクション法などが挙げられる。タンパク質導入試薬としては、カチオン性脂質をベースとしたBioPOTER Protein Delivery Reagent(Gene Therapy Systmes)、Pro-JectTM Protein Transfection Reagent(PIERCE)及びProVectin(IMGENEX)、脂質をベースとしたProfect-1(Targeting Systems)、膜透過性ペプチドをベースとしたPenetrain Peptide(Q biogene)及びChariot Kit(Active Motif)等が市販されている。導入はこれらの試薬に添付のプロトコルに従って行うことができるが、一般的な手順は以下の通りである。p38のドミナントネガティブ変異体を適当な溶媒(例えば、PBS、HEPES等の緩衝液)に希釈し、導入試薬を加えて室温で5-15分程度インキュベートして複合体を形成させ、これを無血清培地に交換した細胞に添加して37℃で1ないし数時間インキュベートする。その後培地を除去して血清含有培地に交換する。 Contact of the dominant negative mutant to somatic cells can be performed using a method for introducing a protein into cells known per se. Such methods include, for example, a method using a protein transfer reagent, a method using a protein transfer domain (PTD) fusion protein, a microinjection method, and the like. Protein transfer reagents include BioPOTER Protein Delivery Reagent (Gene Therapy Systmes) based on cationic lipids, Pro-Ject TM Protein Transfection Reagent (PIERCE) and ProVectin (IMGENEX), and Profect-1 (Targeting Systems) based on lipids. ), Penetrain Peptide (Q biogene) and Chariot Kit (Active Motif) based on membrane-permeable peptides are commercially available. The introduction can be performed according to the protocol attached to these reagents, but the general procedure is as follows. The dominant negative variant of p38 is diluted with a suitable solvent (for example, buffer solution of PBS, HEPES, etc.), an introduction reagent is added, and the mixture is incubated at room temperature for about 5-15 minutes to form a complex, which is serum-free. Add to the cells replaced with medium and incubate at 37 ° C. for 1 to several hours. Then, the medium is removed and replaced with a serum-containing medium.
 PTDとしては、ショウジョウバエ由来のAntP、HIV由来のTAT、HSV由来のVP22等のタンパク質の細胞通過ドメインを用いたものが開発されている。p38のドミナントネガティブ変異体のcDNAとPTD配列とを組み込んだ融合タンパク質発現ベクターを作製して組換え発現させ、融合タンパク質を回収して導入に用いる。導入は、タンパク質導入試薬を添加しない以外は上記と同様にして行うことができる。p38DDなどの比較的分子量の小さい欠失変異体の導入に好適である。 PTDs using cell transit domains of proteins such as Drosophila-derived AntP, HIV-derived TAT, and HSV-derived VP22 have been developed. A fusion protein expression vector incorporating the cDNA of the dominant negative mutant of p38 and the PTD sequence is prepared and recombinantly expressed, and the fusion protein is recovered and used for introduction. The introduction can be carried out in the same manner as described above except that the protein introduction reagent is not added. It is suitable for introducing deletion mutants with relatively small molecular weight such as p38DD.
 マイクロインジェクションは、先端径1μm程度のガラス針にタンパク質溶液を入れ、細胞に穿刺導入する方法であり、確実に細胞内にタンパク質を導入することができる。 Microinjection is a method in which a protein solution is put into a glass needle with a tip diameter of about 1 μm and punctured and introduced into cells, and the protein can be reliably introduced into cells.
(f) TEAD3のドミナントネガティブ変異体をコードする核酸
 しかしながら、体細胞への導入の容易さを考慮すると、TEAD3のドミナントネガティブ変異体は、タンパク質自体としてよりも、それをコードする核酸の形態で用いることがむしろ好ましい。したがって、本発明の別の好ましい実施態様において、TEAD3機能阻害物質は、TEAD3のドミナントネガティブ変異体をコードする核酸である。該核酸はDNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよいが、好ましくはDNAである。また、該核酸は二本鎖であっても、一本鎖であってもよい。TEAD3のドミナントネガティブ変異体をコードするcDNAは、該変異体タンパク質の作製について上記した手法によりクローニングすることができる。
(f) Nucleic acid encoding a dominant negative variant of TEAD3 However, given the ease of introduction into somatic cells, the dominant negative variant of TEAD3 is used in the form of a nucleic acid encoding it rather than as the protein itself. Is rather preferable. Therefore, in another preferred embodiment of the invention, the TEAD3 function inhibitor is a nucleic acid encoding a dominant negative variant of TEAD3. The nucleic acid may be DNA, RNA, or a DNA / RNA chimera, but is preferably DNA. Further, the nucleic acid may be double-stranded or single-stranded. The cDNA encoding the dominant negative variant of TEAD3 can be cloned by the method described above for the production of the variant protein.
 単離されたcDNAは、上記したTEAD3遺伝子のmRNAのヌクレオチド配列と相補的なヌクレオチド配列の一部を含む核酸と同様に、適切なウイルス性又は非ウイルス性の発現ベクターに挿入して、同様の遺伝子導入法により体細胞に導入することができる。 The isolated cDNA is inserted into a suitable viral or non-viral expression vector and similarly, as is the nucleic acid containing a part of the nucleotide sequence complementary to the nucleotide sequence of the mRNA of the TEAD3 gene described above. It can be introduced into somatic cells by the gene transfer method.
(g) TEAD3の転写共役因子の阻害物質
 上述のとおり、TEAD3はコアクチベータであるYAP/TAZと共役して標的遺伝子群の転写を活性化する。YAP/TAZはリン酸化(例えば、127位のSer残基におけるリン酸化)された状態では、14-3-3と結合して細胞質に局在し、不活性化されているが、脱リン酸化により14-3-3と解離して核内に移行し、TEAD3と共役して標的遺伝子群の転写を促進する。従って、TEAD3の転写共役因子であるYAP/TAZを阻害することにより、結果的にTEAD3の機能を阻害することができる。
(g) Inhibitors of Transcription Coupling Factors for TEAD3 As described above, TEAD3 couples with the coactivator YAP / TAZ to activate transcription of target genes. In the phosphorylated state (for example, phosphorylation at the Ser residue at position 127), YAP / TAZ binds to 14-3-3, is localized in the cytoplasm, and is inactivated, but is dephosphorylated. It dissociates with 14-3-3 and translocates into the nucleus, and promotes transcription of the target gene cluster in conjugation with TEAD3. Therefore, by inhibiting YAP / TAZ, which is a transcriptional conjugate factor of TEAD3, the function of TEAD3 can be inhibited as a result.
 YAP/TAZを阻害する方法としては、YAPやTAZに対するsiRNAやmiRNA、あるいはその前駆体、YAPやTAZに対するアンチセンス核酸、リボザイム核酸等を体細胞に導入して、それらの発現を抑制したり、YAP/TAZのリン酸化や14-3-3との複合体形成を促進して、その活性化及び核内移行を抑制したりする方法が挙げられる。 As a method of inhibiting YAP / TAZ, siRNA or miRNA against YAP or TAZ, or a precursor thereof, antisense nucleic acid against YAP or TAZ, ribozyme nucleic acid, etc. are introduced into somatic cells to suppress their expression. Examples include a method of promoting the phosphorylation of YAP / TAZ and the formation of a complex with 14-3-3, and suppressing its activation and nuclear translocation.
 YAP又はTAZに対するsiRNAやshRNAは、YAPのmRNA(例えば、ヒトYAP1-2γアイソフォームの場合、NM_001130145)又はTAZのmRNA(例えば、ヒトTAZアイソフォーム-1の場合、NM_000116)の配列情報に基づいて、TEAD3に対するsiRNA等について記載したのと同じ方法により適宜設計することができる。 SiRNAs and shRNAs for YAP or TAZ are based on the sequence information of YAP mRNA (eg, NM_001130145 for human YAP1-2γ isoform) or TAZ mRNA (eg, NM_000116 for human TAZ isoform-1). , SIRNA for TEAD3, etc. can be appropriately designed by the same method as described.
 YAP又はTAZに対するmiRNAは、TEAD3に対するmiRNAについて記載したのと同じデータベースを用いて検索することができる。例えば、TarBase(上述)によれば、YAP1に対するmiRNAとしてhsa-miR-204-5p、hsa-miR-506-3p等が挙げられるが、それらに限定されない。また、TAZに対するmiRNAとしてhsa-miR-382-3p、hsa-miR-26b-5p等が挙げられるが、それらに限定されない。これらのmiRNA及び/又はpre-miRNAの配列情報は、例えば、miRBase(上述)を用いて取得することができる。 MiRNAs for YAP or TAZ can be searched using the same database described for miRNAs for TEAD3. For example, according to TarBase (above), examples of miRNAs for YAP1 include, but are not limited to, hsa-miR-204-5p, hsa-miR-506-3p, and the like. In addition, examples of miRNAs for TAZ include, but are not limited to, hsa-miR-382-3p and hsa-miR-26b-5p. Sequence information for these miRNAs and / or pre-miRNAs can be obtained using, for example, miRBase (above).
 YAPやTAZに対するアンチセンス核酸やリボザイム核酸も、上記TEAD3に対するアンチセンス核酸やリボザイム核酸と同様にして設計し、用いることができる。 The antisense nucleic acid and ribozyme nucleic acid for YAP and TAZ can be designed and used in the same manner as the antisense nucleic acid and ribozyme nucleic acid for TEAD3.
 別の実施態様においては、YAP又はTAZの阻害物質として、14-3-3タンパク質を用いることができる。細胞内の14-3-3タンパク質を富化することにより、YAP/TAZとの複合体形成を促進し、YAP/TAZの核内移行を抑制することができる。
 また、別の実施態様においては、YAP又はTAZの阻害物質として、Hippoシグナル伝達経路の活性化物質を用いることもできる。Hippoシグナル伝達経路が活性化すると、YAP/TAZのリン酸化が促進され、核内移行が抑制され得る。Hippoシグナル伝達経路の活性化物質としては、例えば、Lats1/2(及びその共役因子であるMob1A/1B)、さらにその上流のMST1/2(及びその共役因子であるWW45)を挙げることができる。
 さらに別の実施態様においては、YAP又はTAZのドミナントネガティブ変異体を用いることができる。YAP及びTAZのTEAD結合ドメインは、それぞれN末端から50~100アミノ酸及び13~57アミノ酸であり、転写活性化ドメインは、それぞれ276~472位及び208~381位であるので、TEAD結合ドメインを含むが転写活性化ドメインを欠くYAP又はTAZフラグメントは、核内に移行すると、内因性のYAP/TAZと競合的にTEAD3に結合し、TEAD3とYAP/TAZとの相互作用による標的遺伝子の転写活性化を抑制することができる。転写活性化ドメインの欠失により核局在化が棄損される場合には、自体公知の核局在化シグナル配列を付加してもよい。
 これらのYAP/TAZ阻害物質のアミノ酸配列及びmRNA配列の情報はいずれも既知であり、種々のデータベースから配列情報を入手することができ、上記したTEAD3のドミナントネガティブ変異体及びそれをコードする核酸と同様にして、所望のタンパク質又はそれをコードする核酸を取得することができる。得られたタンパク質又は核酸は、TEAD3のドミナントネガティブ変異体又はそれをコードする核酸と同様の方法により、体細胞に導入することができる。
In another embodiment, 14-3-3 proteins can be used as inhibitors of YAP or TAZ. By enriching the intracellular 14-3-3 protein, it is possible to promote the formation of a complex with YAP / TAZ and suppress the translocation of YAP / TAZ into the nucleus.
In another embodiment, an activating substance of the Hippo signaling pathway can also be used as an inhibitor of YAP or TAZ. Activation of the Hippo signaling pathway can promote YAP / TAZ phosphorylation and suppress nuclear translocation. Examples of the activator of the Hippo signaling pathway include Lats1 / 2 (and its conjugate factor Mob1A / 1B) and its upstream MST1 / 2 (and its conjugate factor WW45).
In yet another embodiment, dominant negative variants of YAP or TAZ can be used. The TEAD-binding domains of YAP and TAZ are 50 to 100 amino acids and 13 to 57 amino acids from the N-terminal, respectively, and the transcription activation domains are positions 276 to 472 and 208 to 381, respectively, and thus include the TEAD binding domain. When a YAP or TAZ fragment lacking a transcriptional activation domain, when translocated into the nucleus, it binds to TEAD3 competitively with endogenous YAP / TAZ and activates transcription of the target gene by the interaction between TEAD3 and YAP / TAZ. Can be suppressed. If the deletion of the transcriptional activation domain impairs nuclear localization, a nuclear localization signal sequence known per se may be added.
Information on the amino acid sequence and mRNA sequence of these YAP / TAZ inhibitors is known, and sequence information can be obtained from various databases, including the above-mentioned dominant negative variant of TEAD3 and the nucleic acid encoding it. Similarly, the desired protein or nucleic acid encoding it can be obtained. The obtained protein or nucleic acid can be introduced into somatic cells by the same method as the dominant negative mutant of TEAD3 or the nucleic acid encoding the same.
(h) TEAD3に対するデコイ核酸
 YAP/TAZは、TEAD3だけでなく他の転写因子とも共役している。そのため、TEAD3選択的に標的遺伝子の転写活性化を抑制するには、TEAD3の標的遺伝子プロモーター領域への結合を阻害する物質を用いることがより好ましい。そのような物質としては、上記したYAP/TAZ結合ドメイン(転写活性化ドメイン)を欠くTEAD3のドミナントネガティブ変異体だけでなく、TED3のコンセンサス結合配列を含むデコイ核酸を挙げることができる。TEAD3のコンセンサス結合配列としては、ACATTCCAが挙げられる。好ましくは、該デコイ核酸は二本鎖DNAである。該デコイ核酸の長さは、例えば、8~30ヌクレオチド、好ましくは8~20ヌクレオチドである。
(h) The decoy nucleic acid YAP / TAZ for TEAD3 is coupled not only with TEAD3 but also with other transcription factors. Therefore, in order to selectively suppress the transcriptional activation of the target gene in TEAD3, it is more preferable to use a substance that inhibits the binding of TEAD3 to the target gene promoter region. Examples of such a substance include not only the dominant negative mutant of TEAD3 lacking the YAP / TAZ binding domain (transcription activation domain) described above, but also a decoy nucleic acid containing a consensus binding sequence of TED3. ACATTCCA is mentioned as a consensus binding sequence of TEAD3. Preferably, the decoy nucleic acid is double-stranded DNA. The length of the decoy nucleic acid is, for example, 8 to 30 nucleotides, preferably 8 to 20 nucleotides.
 TEAD3に対するデコイ核酸は、上記p53のコンセンサス結合配列を含むオリゴ核酸と同様にして調製し、体細胞に導入することができる。 The decoy nucleic acid for TEAD3 can be prepared in the same manner as the oligonucleic acid containing the consensus binding sequence of p53 and introduced into somatic cells.
 上記TEAD3の機能阻害物質は、体細胞の核初期化工程においてTEAD3の機能を阻害するのに十分な様式で体細胞に導入する必要がある。ここで体細胞の核初期化は、核初期化物質を体細胞に導入することにより実施することができる。 The above TEAD3 function-inhibiting substance needs to be introduced into somatic cells in a manner sufficient to inhibit the function of TEAD3 in the nuclear initialization step of somatic cells. Here, the nuclear reprogramming of somatic cells can be carried out by introducing a nuclear reprogramming substance into somatic cells.
(C) 核初期化物質
 本発明において「核初期化物質」とは、体細胞に導入することにより該体細胞からiPS細胞を誘導することができる物質(群)であれば、タンパク性因子またはそれをコードする核酸(ベクターに組み込まれた形態を含む)、あるいは低分子化合物等のいかなる物質から構成されてもよい。核初期化物質がタンパク性因子またはそれをコードする核酸の場合、好ましくは以下の組み合わせが例示される(以下においては、タンパク性因子の名称のみを記載する)。
(1) Oct3/4, Klf4, c-Myc
(2) Oct3/4, Klf4, c-Myc, Sox2(ここで、Sox2はSox1, Sox3, Sox15, Sox17またはSox18、好ましくはSox1, Sox3, Sox15または Sox17、より好ましくはSox1またはSox3で置換可能である。また、Klf4はKlf1, Klf2またはKlf5、好ましくはKlf2で置換可能である。さらに、c-MycはT58A(活性型変異体), N-Myc, L-Mycで置換可能である。)
(3) Oct3/4, Klf4, c-Myc, Sox2, Fbx15, Nanog, Eras, ECAT15-2, TclI, β-catenin (活性型変異体S33Y)
(4) Oct3/4, Klf4, c-Myc, Sox2, TERT, SV40 Large T antigen(以下、SV40LT)
(5) Oct3/4, Klf4, c-Myc, Sox2, TERT, HPV16 E6
(6) Oct3/4, Klf4, c-Myc, Sox2, TERT, HPV16 E7
(7) Oct3/4, Klf4, c-Myc, Sox2, TERT, HPV6 E6, HPV16 E7
(8) Oct3/4, Klf4, c-Myc, Sox2, TERT, Bmil
(以上、WO 2007/069666を参照(但し、上記(2)の組み合わせにおいて、Sox2からSox18への置換、Klf4からKlf1もしくはKlf5への置換については、Nature Biotechnology, 26, 101-106 (2008)を参照)。「Oct3/4, Klf4, c-Myc, Sox2」の組み合わせについては、Cell, 126, 663-676 (2006)、Cell, 131, 861-872 (2007) 等も参照。「Oct3/4, Klf2(またはKlf5), c-Myc, Sox2」の組み合わせについては、Nat. Cell Biol., 11, 197-203 (2009)も参照。「Oct3/4, Klf4, c-Myc, Sox2, hTERT, SV40LT」の組み合わせについては、Nature, 451, 141-146 (2008)も参照。)
(9) Oct3/4, Klf4, Sox2(Nature Biotechnology, 26, 101-106 (2008)を参照)(ここで、Sox2はSox1, Sox3, Sox15, Sox17またはSox18で置換可能である。また、Klf4はKlf1, Klf2またはKlf5で置換可能である。)
(10) Oct3/4, Sox2, Nanog, Lin28(Science, 318, 1917-1920 (2007)を参照)
(11) Oct3/4, Sox2, Nanog, Lin28, hTERT, SV40LT(Stem Cells, 26, 1998-2005 (2008)を参照)
(12) Oct3/4, Klf4, c-Myc, Sox2, Nanog, Lin28(Cell Research (2008) 600-603を参照)
(13) Oct3/4, Klf4, c-Myc, Sox2, SV40LT(Stem Cells, 26, 1998-2005 (2008)も参照)
(14) Oct3/4, Klf4(Nature 454:646-650 (2008)、Cell Stem Cell, 2:525-528(2008)を参照)
(15) Oct3/4, c-Myc(Nature 454:646-650 (2008)を参照)
(16) Oct3/4, Sox2 (Nature, 451, 141-146 (2008), WO2008/118820を参照)
(17) Oct3/4, Sox2, Nanog (WO2008/118820を参照)
(18) Oct3/4, Sox2, Lin28 (WO2008/118820を参照)
(19) Oct3/4, Sox2, c-Myc, Esrrb (ここで、EsrrbはEsrrgで置換可能である。Nat. Cell Biol., 11, 197-203 (2009) を参照)
(20) Oct3/4, Sox2, Esrrb (Nat. Cell Biol., 11, 197-203 (2009) を参照)
(21) Oct3/4, Klf4, L-Myc
(22) Oct3/4, Nanog
(23) Oct3/4 (Cell 136: 411-419 (2009)、Nature, 08436, doi:10.1038 published online(2009))
(24) Oct3/4, Klf4, c-Myc, Sox2, Nanog, Lin28, SV40LT(Science, 324: 797-801 (2009)を参照)
(25) Oct3/4, Sox2, Klf4, L-Myc, Lin28
(26) Oct3/4, Sox2, Klf4, L-Myc, Lin28, Glis1
(C) Nuclear reprogramming substance In the present invention, the "nuclear reprogramming substance" is a proteinaceous factor or a substance (group) that can induce iPS cells from the somatic cells by introducing them into the somatic cells. It may be composed of any substance such as a nucleic acid encoding it (including a form incorporated in a vector) or a low molecular weight compound. When the nuclear reprogramming substance is a proteinaceous factor or a nucleic acid encoding the same, the following combinations are preferably exemplified (in the following, only the name of the proteinaceous factor is described).
(1) Oct3 / 4, Klf4, c-Myc
(2) Oct3 / 4, Klf4, c-Myc, Sox2 (where Sox2 can be replaced with Sox1, Sox3, Sox15, Sox17 or Sox18, preferably Sox1, Sox3, Sox15 or Sox17, more preferably Sox1 or Sox3. Also, Klf4 can be replaced with Klf1, Klf2 or Klf5, preferably Klf2. Furthermore, c-Myc can be replaced with T58A (active mutant), N-Myc, L-Myc.)
(3) Oct3 / 4, Klf4, c-Myc, Sox2, Fbx15, Nanog, Eras, ECAT15-2, TclI, β-catenin (active mutant S33Y)
(4) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, SV40 Large T antigen (hereinafter, SV40LT)
(5) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, HPV16 E6
(6) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, HPV16 E7
(7) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, HPV6 E6, HPV16 E7
(8) Oct3 / 4, Klf4, c-Myc, Sox2, TERT, Bmil
(See WO 2007/069666 (however, in the combination of (2) above, for the substitution of Sox2 to Sox18 and the substitution of Klf4 to Klf1 or Klf5, see Nature Biotechnology, 26, 101-106 (2008). See). For combinations of "Oct3 / 4, Klf4, c-Myc, Sox2", see also Cell, 126, 663-676 (2006), Cell, 131, 861-872 (2007), etc. "Oct3 / 4" See also Nat. Cell Biol., 11, 197-203 (2009) for the combination of ", Klf2 (or Klf5), c-Myc, Sox2". "Oct3 / 4, Klf4, c-Myc, Sox2, hTERT, See also Nature, 451, 141-146 (2008) for the combination of "SV40LT".)
(9) Oct3 / 4, Klf4, Sox2 (see Nature Biotechnology, 26, 101-106 (2008)) (where Sox2 can be replaced with Sox1, Sox3, Sox15, Sox17 or Sox18, and Klf4 can be replaced. It can be replaced with Klf1, Klf2 or Klf5.)
(10) Oct3 / 4, Sox2, Nanog, Lin28 (see Science, 318, 1917-1920 (2007))
(11) Oct3 / 4, Sox2, Nanog, Lin28, hTERT, SV40LT (see Stem Cells, 26, 1998-2005 (2008))
(12) Oct3 / 4, Klf4, c-Myc, Sox2, Nanog, Lin28 (see Cell Research (2008) 600-603)
(13) Oct3 / 4, Klf4, c-Myc, Sox2, SV40LT (see also Stem Cells, 26, 1998-2005 (2008))
(14) Oct3 / 4, Klf4 (see Nature 454: 646-650 (2008), Cell Stem Cell, 2: 525-528 (2008))
(15) Oct3 / 4, c-Myc (see Nature 454: 646-650 (2008))
(16) Oct3 / 4, Sox2 (see Nature, 451, 141-146 (2008), WO 2008/118820)
(17) Oct3 / 4, Sox2, Nanog (see WO2008 / 118820)
(18) Oct3 / 4, Sox2, Lin28 (see WO2008 / 118820)
(19) Oct3 / 4, Sox2, c-Myc, Esrrb (where Esrrb can be replaced with Esrrg, see Nat. Cell Biol., 11, 197-203 (2009))
(20) Oct3 / 4, Sox2, Esrrb (see Nat. Cell Biol., 11, 197-203 (2009))
(21) Oct3 / 4, Klf4, L-Myc
(22) Oct3 / 4, Nanog
(23) Oct3 / 4 (Cell 136: 411-419 (2009), Nature, 08436, doi: 10.1038 published online (2009))
(24) Oct3 / 4, Klf4, c-Myc, Sox2, Nanog, Lin28, SV40LT (see Science, 324: 797-801 (2009))
(25) Oct3 / 4, Sox2, Klf4, L-Myc, Lin28
(26) Oct3 / 4, Sox2, Klf4, L-Myc, Lin28, Glis1
 上記(1)-(26)において、Oct3/4に代えて他のOctファミリーのメンバー、例えばOct1A、Oct6などを用いることもできる。また、Sox2(またはSox1、Sox3、Sox15、Sox17、Sox18)に代えて他のSoxファミリーのメンバー、例えばSox7などを用いることもできる。また、上記(1)-(26)には該当しないが、それらのいずれかにおける構成要素をすべて含み、且つ任意の他の物質をさらに含む組み合わせも、本発明における「核初期化物質」の範疇に含まれ得る。また、核初期化の対象となる体細胞が上記(1)-(26)のいずれかにおける構成要素の一部を、核初期化のために十分なレベルで内在的に発現している条件下にあっては、当該構成要素を除いた残りの構成要素のみの組み合わせもまた、本発明における「核初期化物質」の範疇に含まれ得る。 In (1)-(26) above, other members of the Oct family, such as Oct1A and Oct6, can be used instead of Oct3 / 4. It is also possible to use other members of the Sox family, such as Sox7, in place of Sox2 (or Sox1, Sox3, Sox15, Sox17, Sox18). In addition, a combination that does not fall under (1)-(26) above but contains all the components in any of them and further contains any other substance is also included in the category of "nuclear reprogramming substance" in the present invention. Can be included in. In addition, under the condition that the somatic cell targeted for nuclear reprogramming endogenously expresses some of the components in any of the above (1)-(26) at a sufficient level for nuclear reprogramming. In the present invention, the combination of only the remaining components excluding the component concerned may also be included in the category of "nuclear reprogramming substance" in the present invention.
 これらの組み合わせの中で、Oct3/4、Sox2、Klf4、c-MycもしくはL-Myc、Nanog、Lin28およびSV40LTから選択される少なくとも1つ、好ましくは2つ以上、より好ましくは3つ以上が、好ましい核初期化物質の例として挙げられる。 Among these combinations, at least one selected from Oct3 / 4, Sox2, Klf4, c-Myc or L-Myc, Nanog, Lin28 and SV40LT, preferably two or more, more preferably three or more. Examples are given as preferred nuclear reprogramming materials.
 とりわけ、得られるiPS細胞を治療用途に用いることを念頭においた場合、Oct3/4, Sox2およびKlf4の3因子の組み合わせ(即ち、上記(9))が好ましい。一方、iPS細胞を治療用途に用いることを念頭に置かない場合(例えば、創薬スクリーニング等の研究ツールとして用いる場合など)は、Oct3/4、Sox2およびKlf4の3因子のほか、それにc-Mycを加えた4因子を例示することができる。あるいは、iPS細胞の使用態様にかかわらず、Oct3/4、Sox2およびKlf4の3因子にL-MycとLin28を加えた5因子(即ち、上記(25))、さらにGlis1(即ち、上記(26))やSV40 Large Tを加えた6因子などを例示することができる。 In particular, when considering the use of the obtained iPS cells for therapeutic purposes, the combination of the three factors Oct3 / 4, Sox2 and Klf4 (that is, (9) above) is preferable. On the other hand, if iPS cells are not used for therapeutic purposes (for example, as a research tool for drug discovery screening, etc.), the three factors Oct3 / 4, Sox2 and Klf4, as well as c-Myc 4 factors including the above can be exemplified. Alternatively, regardless of the mode of use of iPS cells, 5 factors (that is, (25) above) obtained by adding L-Myc and Lin28 to 3 factors of Oct3 / 4, Sox2 and Klf4, and Glis1 (that is, (26) above). ) And 6 factors including SV40 Large T can be exemplified.
 さらに、上記におけるc-MycをL-Mycに変更した組み合わせも、好ましい核初期化物質の例として挙げられる。 Furthermore, the combination in which c-Myc is changed to L-Myc in the above is also given as an example of a preferable nuclear reprogramming substance.
 上記の各核初期化物質のマウスおよびヒトcDNAのヌクレオチド配列並びに当該cDNAにコードされるタンパク質のアミノ酸配列情報は、WO 2007/069666に記載のNCBI accession numbersを参照すること、またL-Myc、Lin28、Lin28b、Esrrb、EsrrgおよびGlis1のマウスおよびヒトのcDNA配列およびアミノ酸配列情報については、それぞれ下記NCBI accession numbersを参照することにより取得できる。当業者は、当該cDNA配列またはアミノ酸配列情報に基づいて、常法により所望の核初期化物質を調製することができる。
遺伝子名  マウス     ヒト   
L-Myc    NM_008506    NM_001033081
Lin28    NM_145833    NM_024674
Lin28b   NM_001031772  NM_001004317
Esrrb    NM_011934    NM_004452
Esrrg    NM_011935    NM_001438
Glis1    NM_147221    NM_147193
For the nucleotide sequences of mouse and human cDNAs of each of the above nuclear reprogramming substances and the amino acid sequence information of the protein encoded by the cDNA, refer to NCBI accession numbers described in WO 2007/069666, and L-Myc, Lin28. , Lin28b, Esrrb, Esrrg and Glis1 mouse and human cDNA sequences and amino acid sequence information can be obtained by referring to the NCBI accession numbers below, respectively. One of ordinary skill in the art can prepare a desired nuclear reprogramming substance by a conventional method based on the cDNA sequence or amino acid sequence information.
Gene name Mouse Human
L-Myc NM_008506 NM_001033081
Lin28 NM_145833 NM_024674
Lin28b NM_001031772 NM_001004317
Esrrb NM_011934 NM_004452
Esrrg NM_011935 NM_001438
Glis1 NM_147221 NM_147193
 核初期化物質としてタンパク性因子自体を用いる場合には、得られたcDNAを適当な発現ベクターに挿入して宿主細胞に導入し、該細胞を培養して得られる培養物から組換えタンパク性因子を回収することにより調製することができる。一方、核初期化物質としてタンパク性因子をコードする核酸を用いる場合、得られたcDNAを、上記TEAD3のドミナントネガティブ変異体をコードする核酸の場合と同様にして、ウイルスベクター、エピソーマルベクターもしくはプラスミドベクターに挿入して発現ベクターを構築し、核初期化工程に供される。必要に応じて、上記Cre-loxPシステムやpiggyBacトランスポゾンシステムを利用することもできる。尚、核初期化物質として2以上のタンパク性因子をコードする核酸を細胞に導入する場合、各核酸を別個のベクターに担持させてもよいし、複数の核酸をタンデムに繋いでポリシストロニックベクターとすることもできる。後者の場合、効率的なポリシストロニック発現を可能にするために、例えば、口蹄疫ウイルスの2A配列(PLoS ONE 3, e2532, 2008、Stem Cells 25, 1707, 2007)、IRES配列(U.S. Patent No. 4,937,190)など、好ましくは2A配列を用いることができる。 When the proteinaceous factor itself is used as the nuclear reprogramming substance, the obtained cDNA is inserted into an appropriate expression vector and introduced into a host cell, and the recombinant proteinaceous factor is obtained from the culture obtained by culturing the cells. Can be prepared by recovering. On the other hand, when a nucleic acid encoding a proteinaceous factor is used as the nuclear reprogramming substance, the obtained cDNA can be used as a viral vector, episomal vector or plasmid in the same manner as in the case of the nucleic acid encoding the dominant negative variant of TEAD3. It is inserted into a vector to construct an expression vector and subjected to a nuclear initialization step. If necessary, the above Cre-loxP system and piggyBac transposon system can also be used. When a nucleic acid encoding two or more proteinaceous factors is introduced into a cell as a nuclear reprogramming substance, each nucleic acid may be supported on a separate vector, or a plurality of nucleic acids may be linked in tandem to form a polycistronic vector. It can also be. In the latter case, in order to enable efficient polycistronic expression, for example, 2A sequence of foot-and-mouth disease virus (PLoS ONE 3, e2532, 2008, Stem Cells 25, 1707, 2007), IRES sequence (US Patent No. A 2A sequence is preferably used, such as 4,937,190).
 核初期化物質の体細胞への接触は、(a) 該物質がタンパク性因子である場合、上記TEAD3のドミナントネガティブ変異体と同様にして、(b) 該物質が(a)のタンパク性因子をコードする核酸である場合、上記TEAD3のドミナントネガティブ変異体をコードする核酸と同様にして、実施することができる。 Contact of the nuclear reprogramming substance to somatic cells is as follows: (a) If the substance is a proteinaceous factor, the substance is the proteinaceous factor of (a) in the same manner as the dominant negative variant of TEAD3 above. In the case of the nucleic acid encoding the above, it can be carried out in the same manner as the nucleic acid encoding the dominant negative variant of TEAD3.
(D) iPS細胞の樹立効率改善物質
 上記TEAD3の機能阻害物質に加え、公知の他の樹立効率改善物質を体細胞に接触させることにより、iPS細胞の樹立効率をより高めることが期待できる。
(D) IPS cell establishment efficiency improving substance In addition to the above-mentioned TEAD3 function-inhibiting substance, it can be expected that the establishment efficiency of iPS cells will be further enhanced by contacting somatic cells with other known establishment efficiency improving substances.
 iPS細胞の樹立効率改善物質としては、例えば、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸 (VPA)(Nat. Biotechnol., 26(7): 795-797 (2008))、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNAおよびshRNA(例、HDAC1 siRNA Smartpool(商標)(Millipore)、HuSH 29mer shRNA Constructs against HDAC1 (OriGene)等)等の核酸性発現阻害剤など]、DNAメチルトランスフェラーゼ阻害剤(例えば5’-azacytidine)(Nat. Biotechnol., 26(7): 795-797 (2008))、G9aヒストンメチルトランスフェラーゼ阻害剤[例えば、BIX-01294 (Cell Stem Cell, 2: 525-528 (2008))等の低分子阻害剤、G9aに対するsiRNAおよびshRNA(例、G9a siRNA(human)(Santa Cruz Biotechnology)等)等の核酸性発現阻害剤など]、L-channel calcium agonist (例えばBayk8644) (Cell Stem Cell, 3, 568-574 (2008))、UTF1(Cell Stem Cell, 3, 475-479 (2008))、Wnt Signaling活性化剤(例えばsoluble Wnt3a)(Cell Stem Cell, 3, 132-135 (2008))、2i/LIF (2iはmitogen-activated protein kinase signallingおよびglycogen synthase kinase-3の阻害剤、PloS Biology, 6(10), 2237-2247 (2008))、ES細胞特異的miRNA(例えば、miR-302-367クラスター (Mol. Cell. Biol. doi:10.1128/MCB.00398-08)、miR-302 (RNA (2008) 14: 1-10)、miR-291-3p, miR-294およびmiR-295(以上、Nat. Biotechnol. 27: 459-461 (2009)))、3’-phosphoinositide-dependent kinase-1 (PDK1) acitvator(例、PS48 (Cell Stem Cell, 7: 651-655 (2010)) など)、神経ペプチドY(WO 2010/147395)、プロスタグランジン類(例えば、プロスタグランジンE2およびプロスタグランジンJ2)(WO 2010/068955)等が挙げられるが、それらに限定されない。
 前記で核酸性の発現阻害剤はsiRNAもしくはshRNAをコードするDNAを含む発現ベクターの形態であってもよい。
Examples of substances for improving the efficiency of establishment of iPS cells include histone deacetylase (HDAC) inhibitors [eg, valproic acid (VPA) (Nat. Biotechnol., 26 (7): 795-797 (2008)), tricostatin. Nucleic acid expression such as A, sodium butyrate, small molecule inhibitors such as MC 1293, M344, siRNA and shRNA against HDAC (eg, HDAC1 siRNA Smartpool ™ (Millipore), HuSH 29mer shRNA Constructs against HDAC1 (OriGene), etc.) Inhibitors, etc.], DNA methyltransferase inhibitors (eg, 5'-azacytidine) (Nat. Biotechnol., 26 (7): 795-797 (2008)), G9a histone methyltransferase inhibitors [eg, BIX-01294 (Cell) Small molecule inhibitors such as Stem Cell, 2: 525-528 (2008)), nucleic acid expression inhibitors such as siRNA and shRNA against G9a (eg, G9a siRNA (human) (Santa Cruz Biotechnology), etc.], L. -channel nucleic acid agonist (eg Bayk8644) (Cell Stem Cell, 3, 568-574 (2008)), UTF1 (Cell Stem Cell, 3, 475-479 (2008)), Wnt Signaling activator (eg soluble Wnt3a) ( Cell Stem Cell, 3, 132-135 (2008)), 2i / LIF (2i is an inhibitor of mitogen-activated protein kinase signaling and glycogen synthase kinase-3, PloS Biology, 6 (10), 2237-2247 (2008)) ), ES cell-specific miRNA (eg, miR-302-367 cluster (Mol. Cell. Biol. Doi: 10.1128 / MCB.00398-08), miR-302 (RNA (2008) 14: 1-10), miR -291-3p, miR-294 and miR-295 (above, Nat. Biotechnol. 27: 459-461 (2009))) , 3'-phosphoinositide-dependent kinase-1 (PDK1) acitvator (eg PS48 (Cell Stem Cell, 7: 651-655 (2010)), etc.), Neuropeptide Y (WO 2010/147395), Prostaglandins (eg, PS48 (Cell Stem Cell, 7: 651-655 (2010))) For example, prostaglandin E2 and prostaglandin J2) (WO 2010/068955) and the like can be mentioned, but the present invention is not limited thereto.
The nucleic acid expression inhibitor described above may be in the form of an expression vector containing DNA encoding siRNA or shRNA.
 尚、前記核初期化物質の構成要素のうち、例えばSV40 large T等は、体細胞の核初期化のために必須ではなく補助的な因子であるという点において、iPS細胞の樹立効率改善物質の範疇にも含まれ得る。核初期化の機序が明らかでない現状においては、核初期化に必須の因子以外の補助的な因子について、それらを核初期化物質として位置づけるか、あるいはiPS細胞の樹立効率改善物質として位置づけるかは便宜的であってもよい。即ち、体細胞の核初期化プロセスは、体細胞への核初期化物質およびiPS細胞の樹立効率改善物質の接触によって生じる全体的事象として捉えられるので、当業者にとって両者を必ずしも明確に区別する必要性はないであろう。 Among the constituent elements of the nuclear reprogramming substance, for example, SV40largeT, etc., is an iPS cell establishment efficiency improving substance in that it is not essential for nuclear reprogramming of somatic cells but is an auxiliary factor. It can also be included in the category. In the current situation where the mechanism of nuclear reprogramming is not clear, whether to position auxiliary factors other than the factors essential for nuclear reprogramming as nuclear reprogramming substances or as substances for improving the establishment efficiency of iPS cells? It may be convenient. That is, since the nuclear reprogramming process of somatic cells is regarded as an overall event caused by the contact of the nuclear reprogramming substance and the iPS cell establishment efficiency improving substance with the somatic cells, it is necessary for those skilled in the art to clearly distinguish between the two. There will be no sex.
 これら他のiPS細胞の樹立効率改善物質の体細胞への接触は、該物質が(a) タンパク性因子である場合、(b) 該タンパク性因子をコードする核酸である場合に応じて、TEAD3の機能阻害物質についてそれぞれ上記したと同様の方法により、実施することができる。該物質が低分子化合物である場合は、該物質を体細胞の培地に適切な濃度となるように添加すればよい。 Contact of these other iPS cell establishment efficiency improving substances with somatic cells depends on whether the substance is (a) a proteinaceous factor or (b) a nucleic acid encoding the proteinaceous factor, TEAD3. Each of the function-inhibiting substances can be carried out by the same method as described above. When the substance is a low molecular weight compound, the substance may be added to the medium of somatic cells at an appropriate concentration.
(E) 培養条件による樹立効率の改善
 体細胞の核初期化工程において低酸素条件下で細胞を培養することにより、iPS細胞の樹立効率をさらに改善することができる。本明細書において「低酸素条件」とは、細胞を培養する際の雰囲気中の酸素濃度が、大気中のそれよりも有意に低いことを意味する。具体的には、通常の細胞培養で一般的に使用される5-10% CO2/95-90%大気の雰囲気中の酸素濃度よりも低い酸素濃度の条件が挙げられ、例えば雰囲気中の酸素濃度が18%以下の条件が該当する。好ましくは、雰囲気中の酸素濃度は15%以下(例、14%以下、13%以下、12%以下、11%以下など)、10%以下(例、9%以下、8%以下、7%以下、6%以下など)、または5%以下(例、4%以下、3%以下、2%以下など)である。また、雰囲気中の酸素濃度は、好ましくは0.1%以上(例、0.2%以上、0.3%以上、0.4%以上など)、0.5%以上(例、0.6%以上、0.7%以上、0.8%以上、0.95以上など)、または1%以上(例、1.1%以上、1.2%以上、1.3%以上、1.4%以上など)である。
 低酸素培養に関するより詳細な培養条件については、例えば、国際公開第2010/013845号公報を参照することができる。
(E) Improvement of establishment efficiency by culture conditions By culturing cells under hypoxic conditions in the nuclear initialization step of somatic cells, the establishment efficiency of iPS cells can be further improved. As used herein, the term "hypoxic condition" means that the oxygen concentration in the atmosphere when culturing cells is significantly lower than that in the atmosphere. Specifically, there are conditions of oxygen concentration lower than the oxygen concentration in the atmosphere of 5-10% CO 2 / 95-90% generally used in normal cell culture, for example, oxygen in the atmosphere. The condition that the concentration is 18% or less is applicable. Preferably, the oxygen concentration in the atmosphere is 15% or less (eg, 14% or less, 13% or less, 12% or less, 11% or less, etc.), 10% or less (eg, 9% or less, 8% or less, 7% or less). , 6% or less, etc.), or 5% or less (eg, 4% or less, 3% or less, 2% or less, etc.). The oxygen concentration in the atmosphere is preferably 0.1% or more (eg, 0.2% or more, 0.3% or more, 0.4% or more, etc.), 0.5% or more (eg, 0.6% or more, 0.7% or more, 0.8% or more, 0.95). 1% or more (eg, 1.1% or more, 1.2% or more, 1.3% or more, 1.4% or more, etc.).
For more detailed culture conditions relating to hypoxic culture, see, for example, WO 2010/013845.
 核初期化物質およびTEAD3の機能阻害物質を接触させた後、細胞を、例えばES細胞の培養に適した条件下で培養することができる。マウス細胞の場合、通常の培地に分化抑制因子としてLeukemia Inhibitory Factor(LIF)を添加して培養を行う。一方、ヒト細胞の場合には、LIFの代わりに塩基性線維芽細胞増殖因子(bFGF)および/または幹細胞因子(SCF)を添加することが望ましい。また通常、細胞は、フィーダー細胞として、放射線や抗生物質で処理して細胞分裂を停止させたマウス胎仔由来の線維芽細胞(MEF)の共存下で培養される。MEFとしては、通常STO細胞等がよく使われるが、iPS細胞の誘導には、SNL細胞(McMahon, A. P. & Bradley, A. Cell 62, 1073-1085 (1990))等がよく使われている。フィーダー細胞との共培養は、核初期化物質およびTEAD3の機能阻害物質の接触より前から開始してもよいし、該接触時から、あるいは該接触より後(例えば1-10日後)から開始してもよい。 After contacting the nuclear reprogramming substance and the TEAD3 function inhibitor, the cells can be cultured under conditions suitable for culturing ES cells, for example. In the case of mouse cells, Leukemia Inhibitory Factor (LIF) is added as a differentiation inhibitor to a normal medium and cultured. On the other hand, in the case of human cells, it is desirable to add basic fibroblast growth factor (bFGF) and / or stem cell factor (SCF) instead of LIF. In addition, cells are usually cultured as feeder cells in the coexistence of mouse embryo-derived fibroblasts (MEF) that have been treated with radiation or antibiotics to stop cell division. As MEF, STO cells are usually often used, but SNL cells (McMahon, A. P. & Bradley, A. Cell 62, 1073-1085 (1990)) are often used to induce iPS cells. ing. Co-culture with feeder cells may be initiated prior to contact with the nuclear reprogramming agent and TEAD3 function inhibitor, at the time of the contact, or after the contact (eg, 1-10 days). You may.
 iPS細胞の候補コロニーの選択は、薬剤耐性とレポーター活性を指標とする方法と目視による形態観察による方法とが挙げられる。前者としては、例えば、分化多能性細胞において特異的に高発現する遺伝子(例えば、Fbx15、Nanog、Oct3/4など、好ましくはNanogまたはOct3/4)の遺伝子座に、薬剤耐性遺伝子および/またはレポーター遺伝子をターゲッティングした組換え体細胞を用い、薬剤耐性および/またはレポーター活性陽性のコロニーを選択するというものである。そのような組換え体細胞としては、例えばFbx15遺伝子座にβgeo(β-ガラクトシダーゼとネオマイシンホスホトランスフェラーゼとの融合タンパク質をコードする)遺伝子をノックインしたマウス由来のMEF(Takahashi & Yamanaka, Cell, 126, 663-676 (2006))、あるいはNanog遺伝子座に緑色蛍光タンパク質(GFP)遺伝子とピューロマイシン耐性遺伝子を組み込んだトランスジェニックマウス由来のMEF(Okita et al., Nature, 448, 313-317 (2007))等が挙げられる。一方、目視による形態観察で候補コロニーを選択する方法としては、例えばTakahashi et al., Cell, 131, 861-872 (2007)に記載の方法が挙げられる。レポーター細胞を用いる方法は簡便で効率的ではあるが、iPS細胞がヒトの治療用途を目的として作製される場合、安全性の観点から目視によるコロニー選択が望ましい。 Selection of candidate colonies for iPS cells includes a method using drug resistance and reporter activity as indicators and a method by visual morphological observation. The former may include, for example, a drug resistance gene and / or at the locus of a gene specifically highly expressed in a pluripotent cell (eg, Fbx15, Nanog, Oct3 / 4, preferably Nanog or Oct3 / 4). Using recombinant cells targeted to the reporter gene, drug-resistant and / or reporter activity-positive colonies are selected. Such recombinant cells include, for example, MEF (Takahashi & Yamanaka, Cell, 126, 663) derived from a mouse in which the βgeo (encoding a fusion protein of β-galactosidase and neomycin phosphotransferase) gene is knocked in at the Fbx15 locus. -676 (2006)) or MEF (Okita et al., Nature, 448, 313-317 (2007)) derived from transgenic mice in which the green fluorescent protein (GFP) gene and the puromycin resistance gene have been integrated into the Nanog locus. And so on. On the other hand, as a method for selecting candidate colonies by visual morphological observation, for example, the method described in Takahashi et al., Cell, 131, 861-872 (2007) can be mentioned. Although the method using reporter cells is simple and efficient, visual colony selection is desirable from the viewpoint of safety when iPS cells are produced for human therapeutic use.
 選択されたコロニーの細胞がiPS細胞であることの確認は、上記したNanog(もしくはOct3/4)レポーター陽性(ピューロマイシン耐性、GFP陽性など)および目視によるES細胞様コロニーの形成によっても行い得るが、より正確を期すために、アルカリフォスファターゼ染色や、各種ES細胞特異的遺伝子の発現を解析したり、選択された細胞をマウスに移植してテラトーマ形成を確認する等の試験を実施することもできる。 Confirmation that the cells of the selected colony are iPS cells can also be confirmed by the above-mentioned Nanog (or Oct3 / 4) reporter positive (puromycin resistance, GFP positive, etc.) and visual formation of ES cell-like colonies. For more accuracy, tests such as alkaline phosphatase staining, analysis of the expression of various ES cell-specific genes, and transplantation of selected cells into mice to confirm teratoma formation can also be performed. ..
 このようにして樹立されたiPS細胞は、種々の目的で使用することができる。例えば、ES細胞で報告されている分化誘導法を利用して、iPS細胞から種々の細胞(例えば、心筋細胞、血液細胞、神経細胞、血管内皮細胞、インスリン分泌細胞等)への分化を誘導することができる。したがって、患者本人やHLAの型が同一もしくは実質的に同一である他人から採取した体細胞を用いてiPS細胞を誘導すれば、そこから所望の細胞(即ち、該患者が罹病している臓器の細胞や疾患に対する治療効果を発揮する細胞など)に分化させて該患者に移植するという、自家移植による幹細胞療法が可能となる。さらに、iPS細胞から分化させた機能細胞(例えば、肝細胞)は、対応する既存の細胞株よりも実際の生体内での該機能細胞の状態をより反映していると考えられるので、医薬候補化合物の薬効や毒性のin vitroスクリーニング等にも好適に用いることができる。 The iPS cells established in this way can be used for various purposes. For example, the differentiation induction method reported for ES cells is used to induce differentiation of iPS cells into various cells (for example, cardiomyocytes, blood cells, nerve cells, vascular endothelial cells, insulin secretory cells, etc.). be able to. Therefore, if iPS cells are induced using somatic cells collected from the patient or another person with the same or substantially the same HLA type, the desired cells (that is, the organ in which the patient is affected) can be induced. Stem cell therapy by autologous transplantation is possible, in which cells and cells that exert a therapeutic effect on diseases are differentiated and transplanted to the patient. Furthermore, functional cells differentiated from iPS cells (eg, hepatocytes) are considered to more reflect the actual state of the functional cells in vivo than the corresponding existing cell lines, and thus are drug candidates. It can also be suitably used for in vitro screening of the medicinal effect and toxicity of a compound.
 以下に、実施例によって本発明を更に説明するが、本発明は以下の実施例になんら限定されるものではない。 Hereinafter, the present invention will be further described by way of examples, but the present invention is not limited to the following examples.
材料及び方法
[方法1]細胞培養
 マウス胚線維芽細胞(MEFs)の初代培養は、以前に記載された確立した方法(Okitaら、2007)に従って行った。MEFsは、10%ウシ胎仔血清(FBS、Invitorogen)を添加したダルベッコ変法イーグル培地(DMEM、ナカライテスク)中で37℃、5% CO2条件下で培養した。DMEMは0.5%ペニシリン及びストレプトマイシン(Invitorogen)とともに供給された。ヒト皮膚線維芽細胞(HDF)は同等の条件下で培養した。MEF及びHDF由来iPS細胞は、白血病抑制因子(LIF)を添加した、15% FBS、2mM L-グルタミン(Invitorogen)、0.1 mM 非必須アミノ酸(Invitorogen)、0.1 mM 2-メルカプトエタノール(Invitorogen)及び0.5%ペニシリン及びストレプトマイシンを含むDMEM中で培養した。
Materials and Methods [Method 1] Cell culture Primary culture of mouse embryo fibroblasts (MEFs) was performed according to a previously established method (Okita et al., 2007). MEFs were cultured in Dulbecco's modified Eagle's medium (DMEM, Nacalai Tesque) supplemented with 10% fetal bovine serum (FBS, Invitorogen) under 37 ° C. and 5% CO 2 conditions. DMEM was supplied with 0.5% penicillin and streptomycin (Invitorogen). Human skin fibroblasts (HDF) were cultured under similar conditions. MEF and HDF-derived iPS cells are supplemented with leukemia inhibitory factor (LIF), 15% FBS, 2 mM L-glutamine (Invitorogen), 0.1 mM non-essential amino acid (Invitorogen), 0.1 mM 2-mercaptoethanol (Invitorogen) and 0.5. Incubated in DMEM containing% penicillin and streptomycin.
[方法2]マウスiPS細胞の作製
 iPS細胞は、以前の記載(Okitaら、2007; Takahashi及びYamanaka、2006)に多少の改変を加えた方法により樹立した。ウェルあたり細胞1×10個のMEFsを播種し、一晩培養した。24時間後、4種類の因子(Oct3/4、Sox2、Klf4及びc-Myc; 本明細書では“4F”と略記する場合がある)がNanog-GFPカセットに挿入されたレトロウイルスを感染させることにより、4Fを前記MEFsに導入した。24時間後、前記細胞を1回継代し、マイトマイシンCで処理されたSNL細胞のフィーダー層の上に、ディッシュあたり2.5×103個となるように播種した。翌日、培地をマウスiPS細胞培地に置換し、その後30日間培養した。
[Method 2] Preparation of mouse iPS cells iPS cells were established by a method in which some modifications were made to the previous description (Okita et al., 2007; Takahashi and Yamanaka, 2006). 1 × 10 5 MEFs of cells per well were seeded and cultured overnight. After 24 hours, four factors (Oct3 / 4, Sox2, Klf4 and c-Myc; sometimes abbreviated as “4F” herein) infect the retrovirus inserted in the Nanog-GFP cassette. Introduced 4F into the MEFs. After 24 hours, the cells were passaged once and seeded on a feeder layer of mitomycin C-treated SNL cells in 2.5 × 10 3 cells per dish. The next day, the medium was replaced with mouse iPS cell medium and then cultured for 30 days.
[方法3]レトロウイルスベクターを用いたヒトiPS細胞の作製
 iPS細胞は、以前の記載(Takahashiら、2007)に多少の改変を加えた方法により樹立した。HDFsをウェルあたり細胞1×105個となるように播種し、一晩培養した。24時間後、レトロウイルス感染により、4種類の因子(4F: OCT3/4、SOX2、KLF4及びc-MYC)又は3種類の因子(前記4Fからc-MYCを除いたもの、本書では“3F”と呼ぶ場合がある)を前記HDFsに導入した。96時間後、前記細胞を継代し、2.5×10個(4種類の因子)又は5×105個(3種類の因子)となるように、マイトマイシンCで処理されたSNL細胞のフィーダー層の上に播種した。翌日、培地を4 ng/mLのヒト塩基性繊維芽細胞成長因子(bFGF)を添加した霊長類ES培地(ReproCELL、日本)に置換し、その後30日間培養した。
[Method 3] Preparation of human iPS cells using a retroviral vector iPS cells were established by a method in which some modifications were made to the previous description (Takahashi et al., 2007). HDFs were seeded to 1 × 10 5 cells per well and cultured overnight. 24 hours later, due to retrovirus infection, 4 types of factors (4F: OCT3 / 4, SOX2, KLF4 and c-MYC) or 3 types of factors (4F excluding c-MYC, "3F" in this document. (Sometimes called) was introduced into the HDFs. After 96 hours, the feeder layer of SNL cells treated with mitomycin C to subculture the cells to 2.5 × 10 5 (4 factors) or 5 × 10 5 (3 factors). Sown on top. The next day, the medium was replaced with primate ES medium (ReproCELL, Japan) supplemented with 4 ng / mL human basic fibroblast growth factor (bFGF), and then cultured for 30 days.
[方法4]エピソーマルベクターを用いたヒトiPS細胞の作製
 iPS細胞は、以前の記載(Okitaら、2011)に多少の改変を加えた方法により樹立した。HDFsは、10% FBSを添加したDMEM中で培養した。Neonトランスフェクションシステム(Invitorogen)の指示書に従い、3 μgの発現プラスミド混合物(pCXLE-hOCT3/4-shp53、pCXLE-hSOX2-hKLF4及びpCXLE-hLIN28-hL-MYC)を、100 μLのキット溶液とともに、6×105個のHDFsにエレクトロポレーション法により導入した。エレクトロポレーションは、1650 V、10 msで、3回(3パルス)行った。トランスダクションの4日後に前記細胞をトリプシン処理し、マイトマイシンC処理されたSNL細胞のフィーダー層で覆われた100 mmディッシュ上に、2×105個の細胞密度で再播種した。翌日、培地を、bFGFを添加した霊長類ES細胞培地に置換し、その後30日間培養した。
[Method 4] Preparation of human iPS cells using episomal vector iPS cells were established by a method in which some modifications were made to the previous description (Okita et al., 2011). HDFs were cultured in DMEM supplemented with 10% FBS. Follow the instructions of the Neon Transfection System (Invitorogen) with 3 μg of the expression plasmid mixture (pCXLE-hOCT3 / 4-shp53, pCXLE-hSOX2-hKLF4 and pCXLE-hLIN28-hL-MYC) with 100 μL of the kit solution. It was introduced into 6 × 10 5 HDFs by the electroporation method. Electroporation was performed 3 times (3 pulses) at 1650 V, 10 ms. Four days after transduction, the cells were trypsinized and reseeded at a cell density of 2 × 10 5 cells on a 100 mm dish covered with a feeder layer of mitomycin C treated SNL cells. The next day, the medium was replaced with bFGF-supplemented primate ES cell medium and then cultured for 30 days.
[方法5]アルカリ性ホスファターゼ染色及び免疫細胞化学
 アルカリ性ホスファターゼ(AP)染色は、アルカリ性ホスファターゼ検出キット(Sigma)のプロトコールに従って行った。免疫細胞化学的な解析を行うために、前記細胞を、4%パラホルムアルデヒド含有PBS中室温で20分間処理して固定した。PBSでの洗浄後、前記細胞をブロッキング溶液(5%正常ヤギ血清(Millipore)、1%ウシ血清アルブミン(BSA、ナカライテスク)及び0.2% Triton X-100を含むPBS)で室温にて45分間処理した。一次抗体及び希釈率は以下のとおり。
抗OCT4抗体(1:50、Santa Cruz、sc-5279)、抗SOX2抗体(1:100、Abcam、ab75485)及び抗TRA1-60抗体(1:50、Millipore、MAB4360)。二次抗体には、Alexa Fluor 488標識抗マウスIgG(1:500、Invitrogen、A-11001)を使用した。核染色には、Hoechst 33342(1 μg/mL、Invitrogen)を使用した。
[Method 5] Alkaline phosphatase staining and immunocytochemistry Alkaline phosphatase (AP) staining was performed according to the protocol of the Alkaline Phosphatase Detection Kit (Sigma). For immunocytochemical analysis, the cells were treated and fixed in PBS containing 4% paraformaldehyde at room temperature for 20 minutes. After washing with PBS, the cells are treated with blocking solution (PBS containing 5% normal goat serum (Millipore), 1% bovine serum albumin (BSA, Nacalai Tesque) and 0.2% Triton X-100) at room temperature for 45 minutes. did. The primary antibody and dilution are as follows.
Anti-OCT4 antibody (1:50, Santa Cruz, sc-5279), anti-SOX2 antibody (1: 100, Abcam, ab75485) and anti-TRA1-60 antibody (1:50, Millipore, MAB4360). Alexa Fluor 488-labeled anti-mouse IgG (1: 500, Invitrogen, A-11001) was used as the secondary antibody. Hoechst 33342 (1 μg / mL, Invitrogen) was used for nuclear staining.
[方法6]分化誘導
 iPS細胞は、0.25%トリプシン(Invitrogen)、0.1 mg/mL コラゲナーゼIV(Invitrogen)、20% KSR及び0.1 mM CaCl2含有CTK溶液を用いて回収した。得られた細胞塊を、bFGFを含まず10 μMのY-27632(Wako)を含む霊長類ES培地中に懸濁し、胚様体を形成するために超低結合性プレート(Corning)に播種して、胚様体を形成させた。前記胚様体を8日間浮遊培養した後、ゼラチンでコーティングしたプレート上に播種し、さらに8日間培養した。その後、前記細胞に対し、免疫細胞化学的解析を行った。使用した一次抗体は以下のとおり。
抗Tuj1抗体(1:100、Chemicon: MAB1637)、抗α-平滑筋アクチン抗体(α-SMA、1:500、DAKO: M085101)及び抗α-フェトプロテイン抗体(1:100、R&D: MAB1368)。二次抗体には、Alexa488標識抗マウスIgG(1:500、Invitrogen: A-11001)を使用した。
[Method 6] Differentiation-inducing iPS cells were recovered using a CTK solution containing 0.25% trypsin (Invitrogen), 0.1 mg / mL collagenase IV (Invitrogen), 20% KSR and 0.1 mM CaCl 2. The resulting cell mass was suspended in primate ES medium containing 10 μM Y-27632 (Wako) without bFGF and seeded on an ultra-low binding plate (Corning) to form embryoid bodies. To form an embryoid body. The embryoid body was suspended and cultured for 8 days, then seeded on a plate coated with gelatin, and cultured for another 8 days. Then, the cells were subjected to immunocytochemical analysis. The primary antibodies used are as follows.
Anti-Tuj1 antibody (1: 100, Chemicon: MAB1637), anti-α-smooth muscle actin antibody (α-SMA, 1: 500, DAKO: M085101) and anti-α-fetoprotein antibody (1: 100, R & D: MAB1368). Alexa 488-labeled anti-mouse IgG (1: 500, Invitrogen: A-11001) was used as the secondary antibody.
[方法7]マイクロアレイの前処理及び差次遺伝子発現解析
 単色AgilentDNAマイクロアレイスキャナーを用いてマイクロアレイスライドをスキャンし、初期設定のパラメーターを用いて解析した。生データはRStudio(Rビジュアル・スクリプト)にローディングし、読み取り、探索及び前処理用の遺伝子発現データはBioconductorパッケージLimmaを用いて解析した。差次的遺伝子発現解析(DEG)には、Limmaのワークフローを使用した。階層的クラスター系統樹(Hierachical derived)は、statパッケージのhclust及びclusterパッケージのagnesを用いて作成した。DistanceはManhattan city-block distance法を用いて計算し、k-平均はkmeans機能を用いて計算した。距離及び相関マトリックスは、factoroextraパッケージに含まれるget_dist、fviz_distを用いて視覚化した。クラスター散布図は、fviz_cluster機能を用いて計算した。DEGsについての発現データをRスクリプトを用いてクラスター化し、Heatmapsを作成した。遺伝子オントロジーと遺伝子クラスターの統計的解析は、DOSE及びclusterProfilerパッケージを用いて解析した。なお、本願で取得したマイクロアレイデータは、Gene Expression Omnibusでアクセッション番号GSE56167として利用可能である。
[Method 7] Microarray pretreatment and differential gene expression analysis Microarray slides were scanned using a monochromatic Agilet DNA microarray scanner and analyzed using the default parameters. Raw data was loaded into RStudio (R visual script) and gene expression data for reading, exploration and pretreatment was analyzed using the Bioconductor package Limma. Limma's workflow was used for differential gene expression analysis (DEG). The hierarchical cluster phylogenetic tree (Hierachical derived) was created using hclust in the stat package and agnes in the cluster package. Distance was calculated using the Manhattan city-block distance method, and k-means was calculated using the kmeans function. The distance and correlation matrix was visualized using get_dist and fviz_dist included in the factoroextra package. The cluster scatter plot was calculated using the fviz_cluster function. Expression data for DEGs were clustered using an R script to create Heatmaps. Statistical analysis of gene ontology and gene cluster was performed using DOSE and clusterProfiler package. The microarray data acquired in the present application can be used as accession number GSE56167 in Gene Expression Omnibus.
[方法8]遺伝子サイレンシング
 p53遺伝子の継続的なノックダウンは、以前の記載(Hongら、2009; Masutomiら、2003)に多少改変を加えて、短鎖ヘアピンRNA(shRNA)を用いて行った。4Fとともに、p53遺伝子に対するshRNA(pMKO.1-puro p53 shRNA-2; Addgene plasmid 10672)又は模擬ベクター(pMXs)を、レトロウイルス感染によりMEFまたはHDFに導入した。
 TEAD3遺伝子の継続的なノックダウンは、TEAD3のmRNAに対する2種のshRNA sh#1及びsh#2 (標的mRNA配列:sh#1 5’-AGCATGACCATCAGCGTCTCCACCAAGGT-3’ (配列番号5); sh#2 5’- AGCAACCAGCACAATAGCGTCCAACAGCT-3’ (配列番号4)) を用いて行った。HDFsを6穴プレートに1×10細胞/ウェルとなるように播種し、一晩培養した。翌日、4Fとともに、shRNA又は模擬ベクター(pSINsi-hH1)をレトロウイルス感染により前記HDFsに導入した。4日後、前記細胞をトリプシン処理によって回収し、マイトマイシンC処理したSNL細胞フィーダー層上に2×105細胞/100 mmディッシュとなるように播種した。
[Method 8] Gene silencing Continuous knockdown of the p53 gene was performed using short hairpin RNA (shRNA) with some modifications to the previous description (Hong et al., 2009; Masutomi et al., 2003). .. Along with 4F, shRNA (pMKO.1-puro p53 shRNA-2; Addgene plasmid 10672) or simulated vectors (pMXs) for the p53 gene was introduced into MEF or HDF by retroviral infection.
Continuous knockdown of the TEAD3 gene resulted in two shRNAs sh # 1 and sh # 2 for TEAD3 mRNA (target mRNA sequence: sh # 1 5'-AGCATGACCATCAGCGTCTCCACCAAGGT-3' (SEQ ID NO: 5); sh # 2 5 '-AGCAACCAGCACAATAGCGTCCAACAGCT-3' (SEQ ID NO: 4)) was used. HDFs were seeded on 6- well plates at 1 × 10 5 cells / well and cultured overnight. The next day, along with 4F, shRNA or a simulated vector (pSINsi-hH1) was introduced into the HDFs by retrovirus infection. After 4 days, the cells were harvested by trypsin treatment and seeded on a mitomycin C-treated SNL cell feeder layer to form a 2 × 10 5 cell / 100 mm dish.
[方法9]テラトーマ形成
 iPS細胞をCTK溶液を用いて回収し、60 mmディッシュに播種した。コンフルエントになるまで培養した後、細胞を回収し、非肥満糖尿病/重度複合免疫不全(NOD-SCID)マウス(CREA、日本)の精巣に注入した。注入から3か月後、得られた腫瘍を切開し、PBS中4%パラホルムアルデヒドで固定した。パラフィン包埋組織から薄切された切片をヘマトキシリン及びエオジンで染色した。
[Method 9] Teratoma-forming iPS cells were collected using a CTK solution and seeded on a 60 mm dish. After culturing to confluence, cells were harvested and injected into the testis of non-obese diabetic / severe combined immunodeficiency (NOD-SCID) mice (CREA, Japan). Three months after injection, the resulting tumor was incised and fixed with 4% paraformaldehyde in PBS. Sliced sections from paraffin-embedded tissue were stained with hematoxylin and eosin.
動物福祉
 本研究は京都大学の動物実験規則の勧告を厳密に順守して実施した。
Animal Welfare This study was carried out in strict compliance with the recommendations of the Animal Experiment Regulations of Kyoto University.
結果
1)マウス胚線維芽細胞(MEF)の初期化に対する、p38阻害の促進効果
 [方法2]に従って、MEFからiPSCを作製した。その際、レトロウイルスによる4F導入から24時間後に、DMSO(vehicle、陰性コントロール)、p38選択的阻害剤(SB202190、Calbiochem、10 μM)、またはMEFの初期化効率を促進することが既知の7化合物のいずれかを培地に添加し、98時間後にそれらを含まない培地に置換した。前記7化合物とその処理濃度は以下の通りである;ビタミンC(Sigma、10 μg/mL)、バルプロ酸(Sigma、1.9 mM)、CHIR99021(Calbiochem、3 μM)、PD0325901(Calbiochem、0.5 μM)、インターロイキン-6(R&D、0.2 ng/mL)、AS601245(Calbiochem、5 μM)、ラパマイシン(Sigma、1 μM)。4F導入の陰性コントロールとして、4Fをコードしないレトロウイルス(空ベクター)を感染させた細胞に対し、同様の薬剤処理を行った。また、ウイルス感染効率を評価するために、4FとDsRed遺伝子が挿入されたレトロウイルス(4F+DsRed)を感染させて、同様の操作を行った。
result
1) iPSCs were prepared from MEFs according to the promoting effect of p38 inhibition on the reprogramming of mouse embryo fibroblasts (MEF) [Method 2]. At that time, 7 compounds known to promote the initialization efficiency of DMSO (vehicle, negative control), p38 selective inhibitor (SB202190, Calbiochem, 10 μM), or MEF 24 hours after the introduction of 4F by retrovirus. Was added to the medium and replaced with a medium containing no of them after 98 hours. The seven compounds and their treatment concentrations are as follows; Vitamin C (Sigma, 10 μg / mL), Valproic acid (Sigma, 1.9 mM), CHIR99021 (Calbiochem, 3 μM), PD0325901 (Calbiochem, 0.5 μM), Interleukin-6 (R & D, 0.2 ng / mL), AS601245 (Calbiochem, 5 μM), Rapamycin (Sigma, 1 μM). As a negative control for the introduction of 4F, cells infected with a retrovirus (empty vector) that does not encode 4F were treated with the same drug. In addition, in order to evaluate the virus infection efficiency, a retrovirus (4F + DsRed) into which the 4F and DsRed genes were inserted was infected, and the same operation was performed.
 4F導入から21日後(Day21)と28日後(Day28)にGFP陽性コロニー数を計測し、4F導入陰性コントロールのGFP陽性コロニー数と比較して、初期化効率をそれぞれ計算した。その際、前記4FとDsRed遺伝子が挿入されたレトロウイルス(4F+DsRed)を感染させて得られたGFP陽性コロニー数による補正(ウイルス感染効率による補正)を行った。結果を図1Aに示す。なお、以降の初期化効率の解析でも同様の補正を行ったが、説明を割愛する。
 図1Aに示されるように、p38選択的阻害剤(SB202190)で処理したMEFからは、Day21とDay28のいずれにおいても、DMSO処理したMEFと比べて2倍近いGFP陽性コロニーが得られた。そして、当該GFP陽性コロニー数は、前記既知7化合物の中で最も効果の高かった抗酸化剤(VC、ビタミンC)及びGSK3β阻害剤(CH、CHIR99021)処理で得られたGFP陽性コロニー数とほぼ同等であった。
The number of GFP-positive colonies was measured 21 days (Day 21) and 28 days (Day 28) after the introduction of 4F, and the initialization efficiency was calculated by comparing with the number of GFP-positive colonies of the 4F introduction negative control. At that time, correction was performed based on the number of GFP-positive colonies obtained by infecting the retrovirus (4F + DsRed) into which the 4F and DsRed genes were inserted (correction based on virus infection efficiency). The results are shown in FIG. 1A. The same correction was made in the subsequent analysis of initialization efficiency, but the explanation is omitted.
As shown in FIG. 1A, MEFs treated with a p38 selective inhibitor (SB202190) yielded nearly twice as many GFP-positive colonies as DMSO-treated MEFs on both Day 21 and Day 28. The number of GFP-positive colonies is almost the same as the number of GFP-positive colonies obtained by treatment with the most effective antioxidant (VC, vitamin C) and GSK3β inhibitor (CH, CHIR99021) among the seven known compounds. It was equivalent.
 続いて、薬剤処理する期間を変えて解析を行った。図1Bに記載した4通りの期間(A:Days 1~4、B:Days 1~8、C:Days 8~16、D:Days 1~16)にDMSOまたはSB202190を培地に添加し、Day21とDay28にGFP陽性コロニー数を計測した。結果を図1Cに示す。
 図1Cに示されるように、初期フェーズ(期間A)にSB202190処理した実験群では、コントロール(同期間にDMSO処理)と比べて、Day21、Day28におけるGFP陽性コロニー数がいずれも大幅に増加した。そして、図1Dに示されるように、期間AにSB202190処理した実験群では、Day21よりもDay28の方が、GFP陽性コロニー数が増加する傾向が認められた。さらに、図1Eに示されるように、期間AにSB202190処理した実験群では、Day21、Day28のいずれの時点においても、期間DにSB202190処理した実験群よりもGFP陽性コロニー数が有意に多かった。興味深いことに、SB202190で長期間処理すると、iPS細胞の増殖が抑制されたことから(図7A)、後期フェーズにおけるp38阻害は初期化を損なう可能性が示唆される。初期フェーズ(期間A)にSB202190処理して得たマウスiPS細胞からキメラ胚を作製し、仮親に移植したところ、複数の組織へと首尾よく分化し(図7B)、ジャームライントランスミッションも確認された(図7C)。
Subsequently, the analysis was performed by changing the period of drug treatment. DMSO or SB202190 was added to the medium during the four periods shown in FIG. 1B (A: Days 1 to 4, B: Days 1 to 8, C: Days 8 to 16, D: Days 1 to 16) to form Day 21. The number of GFP-positive colonies was counted on Day 28. The results are shown in FIG. 1C.
As shown in FIG. 1C, in the experimental group treated with SB202190 in the initial phase (period A), the number of GFP-positive colonies on Day 21 and Day 28 was significantly increased as compared with the control (DMSO treatment during the same period). As shown in FIG. 1D, in the experimental group treated with SB202190 during period A, the number of GFP-positive colonies tended to increase on Day 28 than on Day 21. Furthermore, as shown in FIG. 1E, the number of GFP-positive colonies was significantly higher in the experimental group treated with SB202190 during period A than with the experimental group treated with SB202190 during period D at both Day 21 and Day 28. Interestingly, long-term treatment with SB202190 suppressed iPS cell proliferation (Fig. 7A), suggesting that p38 inhibition in the late phase may impair reprogramming. When chimeric embryos were prepared from mouse iPS cells obtained by treatment with SB202190 in the initial phase (period A) and transplanted into foster mothers, they successfully differentiated into multiple tissues (Fig. 7B), and germline transmission was also confirmed. (Fig. 7C).
 これらの結果から、マウス細胞に初期化因子を発現させて初期化する際にp38を阻害すると、初期化効率が顕著に増加することが明らかになった。さらに、マウス細胞では、初期化の初期フェーズにおいてp38を阻害すると、非常に顕著な初期化促進効果が得られることが明らかになった。 From these results, it was clarified that the reprogramming efficiency was significantly increased when p38 was inhibited when the reprogramming factor was expressed in mouse cells and reprogrammed. Furthermore, in mouse cells, inhibition of p38 during the early phase of reprogramming was found to have a very significant reprogramming-promoting effect.
2)ヒト皮膚線維芽細胞(HDF)の初期化に対する、p38阻害の促進効果
 p38の阻害がヒト細胞に対しても同様の効果を奏するかどうか、複数のP38選択的阻害剤を用いて検討した。HDFからiPSCを作製する工程([方法3])において、図2Aに記載された4通りの期間(A~D)に、DMSO(陰性コントロール)またはp38選択的阻害剤(SB202190、SB203580、SB239063(すべてCalbiochem社製、終濃度10 μM)のいずれかを培地に添加し、4F導入から16日後(Day16)、24日後(Day24)、32日後(Day32)にGFP陽性コロニー数を計測した。初期化効率の計算方法は、前記1)のMEFの初期化効率の計算方法に従った。期間AまたはDに阻害剤処理した実験群の結果を図2Bに示す。期間Aに阻害剤処理した実験群では、前記3種類の阻害剤いずれを用いた場合にも、Day24およびDay32のGFP陽性コロニー数はコントロール(DMSO処理)の実験群よりも顕著且つ有意に多かった(図2B、左棒グラフ)。さらに、期間Dに阻害剤処理した実験群でも、前記阻害剤の種類に関わらず、コントロールに比べてGFP陽性コロニー数が顕著に多くなる傾向が認められた(図2B、右棒グラフ)。特に、SB202190またはSB203580を全フェーズ(期間D)にわたって添加した場合には、初期フェーズでのみ添加した場合と比べて、Day32におけるGFP陽性コロニー数が2倍以上に有意に増加することが示された。
2) Promoting effect of p38 inhibition on reprogramming of human skin fibroblasts (HDF) Whether inhibition of p38 has the same effect on human cells was investigated using multiple P38 selective inhibitors. .. In the step of producing iPSC from HDF ([Method 3]), DMSO (negative control) or p38 selective inhibitor (SB202190, SB203580, SB239063) (SB202190, SB203580, SB239063) during the four periods (A to D) shown in FIG. 2A. One of Calbiochem's final concentration (10 μM) was added to the medium, and the number of GFP-positive colonies was measured 16 days (Day16), 24 days (Day24), and 32 days (Day32) after the introduction of 4F. Initialization. The efficiency calculation method was in accordance with the MEF initialization efficiency calculation method described in 1) above. The results of the experimental group treated with the inhibitor during the period A or D are shown in FIG. 2B. In the experimental group treated with the inhibitor during period A, the number of GFP-positive colonies on Day 24 and Day 32 was significantly and significantly higher than that in the control (DMSO treated) experimental group when any of the above three types of inhibitors was used. (Fig. 2B, left bar graph). Furthermore, even in the experimental group treated with the inhibitor during period D, the number of GFP-positive colonies tended to be significantly higher than that of the control, regardless of the type of the inhibitor (FIG. 2B, right bar graph). In particular, it was shown that when SB202190 or SB203580 was added over the entire phase (period D), the number of GFP-positive colonies on Day32 increased more than twice as much as when added only in the initial phase. ..
 よって、マウス細胞のみならずヒト細胞でも、初期化工程においてp38を阻害すると、初期化効率が顕著に増加することが示された。さらに、ヒト細胞の初期化では、初期フェーズだけでなく、全フェーズにわたってp38を阻害した場合にも、非常に高い初期化促進効果(初期化フェーズでのみp38阻害した場合の2倍以上)が得られることが明らかになった。
 さらに、上記結果から、マウス細胞とヒト細胞では初期化工程におけるp38の役割に差異があり、ヒト細胞の方がp38によって初期化が強く阻害されている可能性が示唆された。
Therefore, it was shown that inhibition of p38 in the reprogramming step significantly increases the reprogramming efficiency not only in mouse cells but also in human cells. Furthermore, in the reprogramming of human cells, a very high reprogramming promoting effect (more than twice as much as p38 inhibition only in the reprogramming phase) is obtained when p38 is inhibited not only in the initial phase but also in all phases. It became clear that it would be done.
Furthermore, the above results suggest that there is a difference in the role of p38 in the reprogramming process between mouse cells and human cells, and that p38 may strongly inhibit reprogramming in human cells.
 SB202190で処理して得られたヒトiPSCは、Day32から30回継代培養しても、ESC様の形態を維持し(図2C)、ESC特異的マーカーであるアルカリホスファターゼを発現していた(図2D、[方法5])。さらに、OCT4、SOX2、及びTRA-1-60の発現が認められ(図2E、[方法5])、ヒトESC様のマーカープロファイルを示すことが確認された。 Human iPSCs obtained by treatment with SB202190 maintained ESC-like morphology even after 30 subcultures from Day32 (Fig. 2C) and expressed alkaline phosphatase, which is an ESC-specific marker (Fig. 2C). 2D, [Method 5]). Furthermore, expression of OCT4, SOX2, and TRA-1-60 was observed (Fig. 2E, [Method 5]), confirming that they show a human ESC-like marker profile.
 さらに、4Fでなく3F(Oct3/4、Sox2及びKlf4)をレトロウイルスベクターで、または4Fをエピソーマルベクターで導入・発現させて初期化する場合についても、同様の解析を行った。期間AにSB202190処理し、Day24およびDay32にGFP陽性コロニー数を計測した結果を図2F、Gに示す。 Furthermore, the same analysis was performed when 3F (Oct3 / 4, Sox2 and Klf4) was introduced and expressed with a retroviral vector instead of 4F, or 4F was introduced and expressed with an episomal vector. The results of SB202190 treatment during period A and the measurement of the number of GFP-positive colonies on Day 24 and Day 32 are shown in FIGS. 2F and G.
 3Fで初期化した場合(図2F)、エピソーマルベクターで4Fを発現させた場合(図2G)のいずれにおいても、コントロール(DMSO)群と比べて、最終的に得られるGFP陽性コロニー数は顕著且つ有意に増加した。 In both cases of initialization on 3F (Fig. 2F) and expression of 4F with episomal vector (Fig. 2G), the number of GFP-positive colonies finally obtained is significant compared to the control (DMSO) group. And it increased significantly.
 よって、初期化因子の種類および初期化因子の導入方法に関わらず、ヒト細胞を初期化する際にp38を阻害すると、初期化効率が顕著に増加することが示された。なお、HDF又は4F導入したHDFを96時間p38阻害剤で処理すると細胞増殖が促進されたが(図8A及びB)、HDF由来のiPSCを同様に処理しても、ヒトiPSCの増殖速度は変化しなかった(図8C)。即ち、p38阻害はヒトiPSCの増殖促進を介してiPSC数を増加させるわけではないことが示された。 Therefore, it was shown that inhibition of p38 during reprogramming of human cells significantly increases the reprogramming efficiency, regardless of the type of reprogramming factor and the method of introducing the reprogramming factor. Although cell proliferation was promoted by treating HDF or HDF introduced with 4F with a p38 inhibitor for 96 hours (FIGS. 8A and B), the proliferation rate of human iPSC changed even if iPSC derived from HDF was treated in the same manner. Did not (Fig. 8C). That is, it was shown that p38 inhibition does not increase the number of iPSCs through the promotion of human iPSC proliferation.
3)p38を阻害して得られたヒトiPSCの分化能力
 初期化工程でp38を阻害して得られたヒトiPSCの分化能力について解析した。SB202190処理して得られたHDF由来iPSCから3クローン(SB1~SB3)を樹立し、当該クローンについて、多能性の指標となるSOX2、OCT4、及びNANOGの発現量を解析した(図3A)。図3Aに示されるように、SB1~SB3では、HDF(HD)と比べて、p38を阻害せずに初期化して得られたヒトiPSC(DM、B7)やES細胞(ES)と同程度またはそれ以上に、SOX2、OCT4、及びNANOGのmRNA量が増加していた。また、核型解析では核型正常であることが確認され(図3B)、これにより、初期化工程でp38を阻害しても染色体の安定性は損なわれないことが示された。さらに、これらのクローンを胚様体経由で三胚葉に分化誘導([方法6])すると、平滑筋アクチン(A-SMA)を発現する中胚葉、β-IIIチューブリン(B-3-TUBULIN)を発現する外胚葉、α-フェトタンパク質(AFP)を発現する内胚葉にそれぞれ分化した(図3C)。また、[方法9]に従いインビボでの奇形腫(teratoma)形成能を解析した結果、解析した全クローンから奇形種が形成され、神経上皮、軟骨、及び種々の腺構造を含む三胚葉に分化したことが確認された(図3D)。よって、初期化工程でp38を阻害して得られたヒトiPSCは、インビトロ、インビボの両方において、三胚葉への分化能力を備えていることが示された。
3) Differentiation ability of human iPSC obtained by inhibiting p38 The differentiation ability of human iPSC obtained by inhibiting p38 in the initialization step was analyzed. Three clones (SB1 to SB3) were established from HDF-derived iPSCs obtained by treatment with SB202190, and the expression levels of SOX2, OCT4, and NANOG, which are indicators of pluripotency, were analyzed for the clones (Fig. 3A). As shown in FIG. 3A, SB1 to SB3 are comparable to human iPSCs (DM, B7) and ES cells (ES) obtained by reprogramming without inhibiting p38, or to the same extent as HDF (HD). More than that, the amount of SOX2, OCT4, and NANOG mRNA was increased. In addition, karyotype analysis confirmed that the karyotype was normal (Fig. 3B), indicating that inhibition of p38 in the initialization step does not impair chromosomal stability. Furthermore, when these clones are induced to differentiate into three germ layers via the embryoid body ([Method 6]), the mesoderm expressing smooth muscle actin (A-SMA), β-III tubulin (B-3-TUBULIN) Differentiated into ectoderm expressing α-fetoprotein (AFP) and endoderm expressing α-fetoprotein (AFP) (Fig. 3C). In addition, as a result of analyzing the ability to form teratoma in vivo according to [Method 9], teratoma species were formed from all the analyzed clones and differentiated into three germ layers containing neuroepithelium, cartilage, and various glandular structures. It was confirmed (Fig. 3D). Therefore, it was shown that the human iPSC obtained by inhibiting p38 in the initialization step has the ability to differentiate into three germ layers both in vitro and in vivo.
 さらに、新たなドナー4人に由来するHDF(HDF1616、HDF1079、HDF1078及びTig109)の初期化効率に対するp38阻害の効果を解析した。前記2)と同様に、初期化工程の期間DにSB202190で処理し、Day32にGFP陽性コロニー数を計測した結果を図3Eに示す。いずれのドナー由来HDFを用いた場合にも、コントロールに比べてSB202190処理した実験群ではGFP陽性コロニー数が大幅に増加すること、すなわち、p38阻害剤処理によって初期化効率が大幅に促進されることが確認された。 Furthermore, the effect of p38 inhibition on the initialization efficiency of HDF (HDF1616, HDF1079, HDF1078 and Tig109) derived from four new donors was analyzed. Similar to 2) above, the results of treatment with SB202190 during the initialization step period D and the number of GFP-positive colonies measured on Day 32 are shown in FIG. 3E. When any donor-derived HDF was used, the number of GFP-positive colonies was significantly increased in the SB202190-treated experimental colony compared to the control, that is, the initialization efficiency was significantly promoted by the p38 inhibitor treatment. Was confirmed.
 以上の結果より、初期化工程でp38を阻害して得られるヒトiPSCは、p38阻害せずに得られるヒトiPS細胞やES細胞と比べても遜色なく、核型正常で、三胚葉への分化能力を備えていることが確認された。 From the above results, human iPSC obtained by inhibiting p38 in the initialization step is comparable to human iPS cells and ES cells obtained without p38 inhibition, has normal karyotype, and differentiates into three germ layers. It was confirmed that it had the ability.
4)p38とp53のいずれによっても発現量が減少する遺伝子の解析
 p53は、ヒト及びマウス細胞の初期化において、強力な初期化バリアとして機能する遺伝子である。図4Bに示されるように、4Fによる初期化の際に、p53 mRNAに対するshRNA(図4A)を用いてp53を継続的にノックダウンすると([方法8])、iPS細胞コロニー数は顕著且つ有意に増加する(shp53のバー)。驚くべきことに、p53の継続的ノックダウンに加えてさらに期間AにSB202190処理した実験群(shp53+SB202190のバー)では、各単独処理によって得られるiPS細胞コロニー数(shp53、SB202190の各バー)のコントロール(DMSOのバー)に対する増加分の和よりも遥かに多くのiPS細胞コロニー数が得られた(図4B)。よって、p53のノックダウンとp38阻害は、初期化に対し相乗的な効果(促進効果)を奏することが示された。そして、この結果より、p53とp38によって、直接または間接的に、共通に制御される転写因子の存在が示唆された。
4) Analysis of genes whose expression levels are reduced by both p38 and p53 p53 is a gene that functions as a strong reprogramming barrier in the reprogramming of human and mouse cells. As shown in FIG. 4B, continuous knockdown of p53 using shRNA for p53 mRNA (FIG. 4A) during initialization with 4F ([Method 8]) results in significant and significant iPS cell colony numbers. Increases to (bar of shp53). Surprisingly, in the experimental group (shp53 + SB202190 bars) treated with SB202190 during period A in addition to the continuous knockdown of p53, the number of iPS cell colonies obtained by each single treatment (shp53, SB202190 bars) was controlled. Much more iPS cell colony numbers were obtained than the sum of the increases relative to (DMSO bar) (Fig. 4B). Therefore, it was shown that knockdown of p53 and inhibition of p38 have a synergistic effect (promoting effect) on initialization. This result suggests the existence of transcription factors that are directly or indirectly regulated by p53 and p38.
 P53のノックダウンとp38阻害によって生じる変化の関連性と、それらの初期化効率増加(△iPS細胞コロニー数)との関連性を調べるために、全mRNAのトランスクリプトームに基づく主成分分析(PCA)を行った。その結果、3つの主成分(PC1 54.37%, PC2 19.64%, PC3 18.57%)を同定し、これらの主成分の発現量をもとにそれぞれのサンプルをプロットし、発現プロファイルの変化を確認した(図4C)。さらに、これらの多能性トランスクリプトームは階層的クラスター分析の結果3つのクラスターに分類され(図4D上パネル)、SB202190処理とshp53・SB202190二重処理は同じクラスター(クラスターC)に分類されたことから、ある成分の類似性が示唆された。しかしながら、Sample correlation matrix解析からは、多数の遺伝子が前記4つの処理によって別々に制御されていることが示され、特にDMSO処理と二重処理の差が最も大きいことが示された(図4D下パネル)。同様に、クラスタースキャタープロットにおけるk-平均アルゴリズムでは、クラスターA(DMSO処理群)が他のクラスターから最も遠位にマップされ、shp53又はp38阻害の何れかによって制御される多能性トランスクリプトームは第1次元の方向に沿って最も分離することが示された(図4E)。この結果は上記PCA解析と整合するものである。 Transcriptome-based principal component analysis (PCA) of total mRNA to investigate the association between changes caused by P53 knockdown and p38 inhibition and their increased reprogramming efficiency (△ iPS cell colony number). ) Was performed. As a result, three main components (PC1 54.37%, PC2 19.64%, PC3 18.57%) were identified, and each sample was plotted based on the expression levels of these main components, and changes in the expression profile were confirmed (changes in the expression profile). FIG. 4C). Furthermore, these pluripotent transcriptomes were classified into three clusters as a result of hierarchical cluster analysis (Fig. 4D upper panel), and SB202190 processing and shp53 / SB202190 dual processing were classified into the same cluster (cluster C). This suggests the similarity of certain components. However, Sample correlation matrix analysis showed that a large number of genes were regulated separately by the above four treatments, and that the difference between DMSO treatment and double treatment was the largest (Fig. 4D bottom). panel). Similarly, in the k-mean algorithm in the cluster scatter plot, cluster A (DMSO treated group) is most distally mapped from other clusters, and the pluripotent transcriptome controlled by either shp53 or p38 inhibition It was shown to be the most separated along the direction of the first dimension (Fig. 4E). This result is consistent with the above PCA analysis.
 初期化効率増加のカギとなる因子を同定するために、各クラスター間で発現量変動遺伝子(DEG)解析を行った。その結果、SB202190で誘導されたDEGとして1147遺伝子、shp53で誘導されたDEGとして2185遺伝子が見いだされ(図4F)、各クラスター間で非常に大きな遺伝子発現変化が生じていることが明らかになった。 In order to identify the factors that are the key to the increase in initialization efficiency, expression level variation gene (DEG) analysis was performed between each cluster. As a result, 1147 genes were found as SB202190-induced DEG and 2185 genes were found as shp53-induced DEG (Fig. 4F), and it was clarified that a very large gene expression change occurred between each cluster. ..
5)初期化バリアとして機能する遺伝子の同定
 初期化の強力なバリアとして機能する遺伝子を同定するために、まず、shp53処理群とshp53・SB202190二重処理群とで発現量が低下する遺伝子を解析し、このうち、二重処理群特異的に発現量が低下する遺伝子として651遺伝子を同定した(図5A上のDOWN1)。同様に、SB202190処理群とshp53・SB202190二重処理群とで発現量が低下する遺伝子を解析し、このうち、二重処理群特異的に発現量が低下する遺伝子として1056遺伝子を同定した(図5B上のDOWN2)。さらに、shp53処理群と二重処理群、SB202190処理群と二重処理群のそれぞれ解析でfold changeが2以下のものを除外し2-fold cutoffを行い、DOWN1とDOWN2に共通するものとして340遺伝子を同定した(図5C)。
5) Identification of genes that function as an initialization barrier In order to identify genes that function as a strong barrier for initialization, we first analyzed genes whose expression levels decreased in the shp53 treatment group and the shp53 / SB202190 double treatment group. Of these, 651 genes were identified as genes whose expression levels were specifically reduced in the double-treated group (DOWN1 on FIG. 5A). Similarly, genes whose expression levels decreased in the SB202190-treated group and the shp53 / SB202190 double-treated group were analyzed, and among these, 1056 genes were identified as genes whose expression levels decreased specifically in the double-treated group (Fig.). DOWN 2) on 5B. Furthermore, in the analysis of shp53 treatment group and double treatment group, and SB202190 treatment group and double treatment group, those with fold change of 2 or less were excluded and 2-fold cutoff was performed, and 340 genes were common to DOWN1 and DOWN2. Was identified (Fig. 5C).
 前記340遺伝子のうち、31遺伝子が、転写因子またはDNA結合活性のあるものとして分類された(図5D)。前記340遺伝子のGOエンリッチメント解析では、主なGOタームとして、チロシンキナーゼ活性/膜受容体型キナーゼ活性/膜受容体型チロシンキナーゼ活性、コラーゲン結合/コラーゲン受容体活性、オリゴ糖転移酵素活性等がヒットした(図5E)。 Of the 340 genes, 31 were classified as having transcription factor or DNA binding activity (Fig. 5D). In the GO enrichment analysis of the 340 genes, tyrosine kinase activity / membrane receptor type kinase activity / membrane receptor type tyrosine kinase activity, collagen binding / collagen receptor activity, oligoglycosyltransferase activity, etc. were hit as the main GO terms. (Fig. 5E).
 本発明者らは、前記31遺伝子に対してさまざまな検討を行った結果、最終的に、前記31遺伝子の中から、体細胞初期化の強力なバリアをして機能する遺伝子として、TEAD3を見出した。まず、4FによるHDFの初期化におけるp53及び/又はp38阻害の効果と内因性TEAD3の発現との関係を調べた。その結果、4F導入のみ(ベヒクル(DMSO)処理)の場合と比較して、p53又はp38をそれぞれ単独で阻害するとTEAD3の発現は顕著に低下したが、p53及びp38を二重阻害すると、TEAD3の発現はさらに大きく低下した(図6A)。 As a result of various studies on the 31 genes, the present inventors finally found TEAD3 as a gene that functions as a strong barrier for somatic cell reprogramming from among the 31 genes. rice field. First, the relationship between the effect of p53 and / or p38 inhibition on the initialization of HDF by 4F and the expression of endogenous TEAD3 was investigated. As a result, the expression of TEAD3 was significantly reduced when p53 or p38 was inhibited alone as compared with the case of 4F introduction alone (vehicle (DMSO) treatment), but when p53 and p38 were double-inhibited, TEAD3 was observed. Expression was further significantly reduced (FIG. 6A).
6)TEAD3の発現阻害による初期化効率の増加
 次に、TEAD3に対する特異的なshRNA(4F-shTEAD3#1、#2の2種類、図6B)を用いて、初期化に対するTEAD3の役割を解析した。4FによるHDFの初期化([方法2])の際にこれらのshRNAを発現させると、TEAD3の発現量が大幅に減少し(図6C)、GFP陽性コロニー数が顕著且つ有意に増加することが示された(図6D)。また、TEAD3 shRNAを発現させて得られたコロニーは、アルカリホスファターゼ陽性であることも確認された(図6E)。よって、HDFを初期化する際にTEAD3の発現を減少させると、初期化効率が顕著に増加することが示された。
6) Increase in initialization efficiency by inhibiting the expression of TEAD3 Next, the role of TEAD3 in initialization was analyzed using specific shRNAs for TEAD3 (4F-shTEAD3 # 1 and # 2, Fig. 6B). .. Expression of these shRNAs during HDF initialization by 4F ([Method 2]) can significantly reduce the expression level of TEAD3 (Fig. 6C) and significantly and significantly increase the number of GFP-positive colonies. Shown (Fig. 6D). It was also confirmed that the colonies obtained by expressing TEAD3 shRNA were positive for alkaline phosphatase (Fig. 6E). Therefore, it was shown that when the expression of TEAD3 was reduced during the initialization of HDF, the initialization efficiency was significantly increased.
 MEFのトランスクリプトームデータを含むGSE36664データセット(J Biol Chem 2012 Oct 19;287(43):35825-37.参照)、ヒト肺線維芽細胞トランスクリプトームデータを含むGSE45276データセット(Mol Cell 2011 Apr 8;42(1):36-49.参照)、並びにHDFのトランスクリプトームデータセットを用い、TEAD3とp53の発現の相関を調べたところ、いずれの細胞でも正の相関が認められ(図9)、p53が初期化バリアであるTEAD3の発現を正に制御していることを示唆している。HDFのシングルセルRNA-Seqデータセットの解析から、TEAD3とMAPK13(p38δ)、ERK4(MAPK4)及びp44-ERK1(MAPK3)との正の相関、並びに、TEAD3とCDK4やCDK6等の細胞周期の進行を制御するサイクリン依存性キナーゼとの負の相関が明らかとなった(図10)。 GSE36664 dataset containing MEF transcriptome data (see J Biol Chem 2012 Oct 19; 287 (43): 35825-37.), GSE45276 dataset containing human lung fibroblast transcriptome data (MolCell 2011 Apr) 8; 42 (1): 36-49.) And the correlation between TEAD3 and p53 expression using the HDF transcriptome dataset showed a positive correlation in all cells (Fig. 9). ), It is suggested that p53 positively regulates the expression of TEAD3, which is an initialization barrier. From the analysis of the HDF single-cell RNA-Seq dataset, the positive correlation between TEAD3 and MAPK13 (p38δ), ERK4 (MAPK4) and p44-ERK1 (MAPK3), and the progression of the cell cycle of TEAD3 and CDK4, CDK6, etc. A negative correlation with the cyclin-dependent kinase that controls the disease was revealed (Fig. 10).
 TEAD3阻害による細胞周期カイネティクスへの寄与を通じたiPSCコロニー形成能の増大が腫瘍形成と関連するか否かを調べるために、TEAD3発現レベルの異なるHeLa細胞の腫瘍様塊の形成能を試験した。shRNA導入によりTEAD3発現が低下した細胞由来の腫瘍様塊の数及びサイズは、コントロール細胞由来の腫瘍様塊と比べて有意に増大していた(図11)。また、ヒト子宮頸がんの腫瘍組織では、正常組織に比べてTEAD3の発現が低下しており、がんの進展におけるTEAD3の役割が確認された(図12)。 In order to investigate whether the increase in iPSC colonization ability through the contribution of TEAD3 inhibition to cell cycle kinetics is associated with tumor formation, the ability to form tumor-like masses of HeLa cells with different TEAD3 expression levels was tested. The number and size of cell-derived tumor-like masses whose TEAD3 expression was reduced by the introduction of shRNA were significantly increased as compared with those of control cell-derived tumor-like masses (Fig. 11). In addition, the expression of TEAD3 was lower in the tumor tissue of human cervical cancer than in the normal tissue, confirming the role of TEAD3 in the progression of cancer (Fig. 12).
 4F及びTEAD3に対するshRNAを導入したHDFは4Fのみ(4F+非特異的shRNA)を導入したHDFよりも初期化速度が速かった(図13A及びB)。これは、初期化の初期フェーズにおけるより速い細胞増殖によって部分的に説明できるであろう(図13C及びE)。しかし、いったん多能性を獲得すると、4Fのみを導入して得たヒトiPSCと、TEAD3に対するshRNAをさらに導入して得たヒトiPSCとは、よく似た速度で増殖し(図13D及びF)、細胞周期チェックポイントの復元によるTEAD3阻害で誘導されたiPSCクローンの安全性が示唆された。 The HDF introduced with shRNA for 4F and TEAD3 had a faster initialization rate than the HDF introduced with only 4F (4F + non-specific shRNA) (Figs. 13A and B). This could be partially explained by the faster cell proliferation in the early phase of reprogramming (FIGS. 13C and E). However, once pluripotency was acquired, the human iPSC obtained by introducing only 4F and the human iPSC obtained by further introducing shRNA for TEAD3 proliferated at a similar rate (FIGS. 13D and F). It was suggested that iPSC clones induced by TEAD3 inhibition by restoration of cell cycle checkpoints are safe.
 GSE116309データセット(Stem Cell Reports 2019 Feb 12;12(2):319-332.参照)を用いて、MEFからiPS細胞への初期化過程におけるTEAD3の発現の変動を調べたところ、多能性獲得の直前にTEAD3の発現が急激に低下していた(図6F)。SSEA1はMEFにおける初期の初期化マーカーであり、首尾よく初期化にコミットしたことを示す。そこで、GSE106835データセット(Cell Stem Cell 2018 Aug 2;23(2):289-305.e5.参照)を用い、MEFからiPS細胞への初期化過程におけるTEAD3の発現の変動をSSEA1陽性細胞とSSEA1陰性細胞についてそれぞれ調べた。その結果、SSEA1陽性のMEF初期化中間体でのみ、多能性獲得のためにTEAD3発現が下方制御されていた(図6G)。このことは、首尾よく初期化にコミットした細胞のみが初期化を阻もうとする細胞のメカニズムを克服するのにTEAD3の発現低下を必要とすることを示している。 Using the GSE116309 dataset (see Stem Cell Reports 2019 Feb 12; 12 (2): 319-332.), We investigated changes in TEAD3 expression during the reprogramming process from MEF to iPS cells, and found that pluripotency was acquired. The expression of TEAD3 decreased sharply immediately before (Fig. 6F). SSEA1 is an early initialization marker in MEF, indicating a successful commitment to initialization. Therefore, using the GSE106835 dataset (see CellStemCell2018Aug2; 23 (2): 289-305.e5.), Changes in TEAD3 expression during the reprogramming process from MEF to iPS cells were examined in SSEA1-positive cells and SSEA1. Each negative cell was examined. As a result, TEAD3 expression was downregulated for pluripotency acquisition only in SSEA1-positive MEF reprogramming intermediates (Fig. 6G). This indicates that only cells that have successfully committed to reprogramming require downregulation of TEAD3 to overcome the cellular mechanism that attempts to block reprogramming.
 さらに、本発明者らはTEAD3発現の制御メカニズムの探索を行った。まずTEAD3 mRNA配列に基づいて、ゲノムDNA情報からその5’上流のプロモーター領域の配列を取得し、既知の転写開始サイト(TSS)配列をクエリーとして、該プロモーター配列に対してBlastを行ったところ、TSSコンセンサス配列の1つであるAGGGCGGAGC(配列番号6)と100%マッチする配列が存在することを見出した。そこで、このTSS配列に結合し得る転写因子を検索したところ、KLF4が該TSS配列と結合し得ることが推定された(図6H)。さらに、KLF4が結合することが既知の標的遺伝子群の結合シスエレメント配列の解析の結果、KLF4の結合コンセンサス配列としてGGGCGGGGC(配列番号7)が同定され、TEAD3のTSS配列と高いホモロジーを有することが確認された(図6I)。KLF4は部分的にp38によって制御されることが示唆されていることから、p38を阻害するとKLF4がTEAD3の転写を抑制することで多能性獲得を促進しているのかもしれない。
 また、TEAD3のプロモーター領域の探索の結果、p53が結合し得るコンセンサス配列の存在が確認された。
Furthermore, the present inventors searched for a regulatory mechanism of TEAD3 expression. First, based on the TEAD3 mRNA sequence, the sequence of the promoter region 5'upstream from the genomic DNA information was obtained, and the known transcription initiation site (TSS) sequence was used as a query to perform Blast on the promoter sequence. We found that there is a sequence that matches 100% with AGGGCGGAGC (SEQ ID NO: 6), which is one of the TSS consensus sequences. Therefore, when a transcription factor capable of binding to this TSS sequence was searched, it was presumed that KLF4 could bind to the TSS sequence (FIG. 6H). Furthermore, as a result of analysis of the binding cis-element sequence of the target gene cluster known to bind to KLF4, GGGCGGGGC (SEQ ID NO: 7) was identified as the binding consensus sequence of KLF4, and it has a high homology with the TSS sequence of TEAD3. Confirmed (Fig. 6I). Since it has been suggested that KLF4 is partially regulated by p38, inhibition of p38 may promote pluripotency acquisition by suppressing the transcription of TEAD3.
In addition, as a result of searching the promoter region of TEAD3, the existence of a consensus sequence to which p53 can bind was confirmed.
 これらの結果より、TEAD3は、ヒト細胞の初期化を阻む強力なバリアとして機能しており、当該発現または活性を阻害することで前記細胞の初期化効率が促進されることが明らかになった。 From these results, it was clarified that TEAD3 functions as a strong barrier that inhibits the reprogramming of human cells, and that the reprogramming efficiency of the cells is promoted by inhibiting the expression or activity thereof.
 本発明によれば、核初期化工程においてTEAD3の機能を阻害することにより、p38経路とp53経路とを二重阻害するのと同等に、顕著にiPS細胞樹立効率を改善することができる。本発明に係る方法は、さまざまな方法での初期化に有効であるため、ヒトiPS細胞の再生医療への応用に関して、安全性とコストの両面できわめて有用である。 According to the present invention, by inhibiting the function of TEAD3 in the nuclear initialization step, the iPS cell establishment efficiency can be significantly improved as much as the double inhibition of the p38 pathway and the p53 pathway. Since the method according to the present invention is effective for initialization by various methods, it is extremely useful in terms of both safety and cost for application of human iPS cells to regenerative medicine.
 本出願は、日本国に2020年6月11日付で出願された特願2020-101932を基礎としており、ここで言及することによりその内容はすべて本明細書中に包含されるものである。 This application is based on Japanese Patent Application No. 2020-101932 filed in Japan on June 11, 2020, the contents of which are all incorporated herein by reference.

Claims (17)

  1.  人工多能性幹(iPS)細胞の樹立効率の改善方法であって、体細胞の核初期化工程において転写エンハンサー関連ドメインファミリー メンバー-3(TEAD3)の機能を阻害することを含む、方法。 A method for improving the efficiency of establishment of induced pluripotent stem (iPS) cells, which comprises inhibiting the function of transcription enhancer-related domain family member-3 (TEAD3) in the nuclear reprogramming process of somatic cells.
  2.  以下の(a)~(c):
    (a)TEAD3遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体;
    (b)TEAD3遺伝子の転写産物に対するアンチセンス核酸;及び
    (c)TEAD3遺伝子の転写産物に対するリボザイム核酸
    のいずれかの核酸を体細胞に導入することによりTEAD3の機能を阻害する、請求項1に記載の方法。
    The following (a) to (c):
    (A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene;
    The first aspect of claim 1, wherein the function of TEAD3 is inhibited by introducing one of (b) an antisense nucleic acid against a transcript of the TEAD3 gene; and (c) a ribozyme nucleic acid against a transcript of the TEAD3 gene into a somatic cell. the method of.
  3.  TEAD3のドミナントネガティブ変異体又はそれをコードする核酸を体細胞に導入することによりTEAD3の機能を阻害する、請求項1に記載の方法。 The method according to claim 1, wherein the function of TEAD3 is inhibited by introducing a dominant negative mutant of TEAD3 or a nucleic acid encoding the same into a somatic cell.
  4.  体細胞においてTEAD3の転写共役因子を阻害することによりTEAD3の機能を阻害する、請求項1に記載の方法。 The method according to claim 1, wherein the function of TEAD3 is inhibited by inhibiting the transcriptional conjugate factor of TEAD3 in somatic cells.
  5.  以下の(a)又は(b):
    (a)TEAD3に対するデコイ核酸;
    (b)rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy(rはa又はg、wはa又はt、yはc又はtを表し、nはそれぞれ独立して、存在しないか、a、g、t又はcを表す;配列番号3)で表されるヌクレオチド配列を含むオリゴ核酸
    を体細胞に導入することによりTEAD3の機能を阻害する、請求項1に記載の方法。
    The following (a) or (b):
    (A) Decoy nucleic acid for TEAD3;
    (B) rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, and n stands independently for a, g, t or c; SEQ ID NO: 3) The method according to claim 1, wherein the function of TEAD3 is inhibited by introducing an oligonucleic acid containing the nucleotide sequence represented by.
  6.  TEAD3の機能阻害物質を含有してなる、iPS細胞の樹立効率改善剤。 An iPS cell establishment efficiency improving agent containing a TEAD3 function inhibitor.
  7.  前記阻害物質が、以下の(a)~(c):
    (a)TEAD3遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体;
    (b)TEAD3遺伝子の転写産物に対するアンチセンス核酸;及び
    (c)TEAD3遺伝子の転写産物に対するリボザイム核酸
    のいずれかの核酸である、請求項6に記載の剤。
    The inhibitor is the following (a) to (c):
    (A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene;
    The agent according to claim 6, wherein (b) an antisense nucleic acid for a transcript of the TEAD3 gene; and (c) a ribozyme nucleic acid for a transcript of the TEAD3 gene.
  8.  前記阻害物質が、TEAD3のドミナントネガティブ変異体又はそれをコードする核酸である、請求項6に記載の剤。 The agent according to claim 6, wherein the inhibitor is a dominant negative mutant of TEAD3 or a nucleic acid encoding the same.
  9.  前記阻害物質が、TEAD3の転写共役因子の阻害物質である、請求項6に記載の剤。 The agent according to claim 6, wherein the inhibitor is an inhibitor of a transcriptional conjugate factor of TEAD3.
  10.  前記阻害物質が、下の(a)又は(b):
    (a)TEAD3に対するデコイ核酸;
    (b)rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy(rはa又はg、wはa又はt、yはc又はtを表し、nはそれぞれ独立して、存在しないか、a、g、t又はcを表す;配列番号3)で表されるヌクレオチド配列を含むオリゴ核酸
    である、請求項6に記載の剤。
    The inhibitor is below (a) or (b):
    (A) Decoy nucleic acid for TEAD3;
    (B) rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, and n stands independently for a, g, t or c; SEQ ID NO: 3) The agent according to claim 6, which is an oligonucleic acid comprising a nucleotide sequence represented by.
  11.  体細胞に核初期化物質及びTEAD3の機能阻害物質を接触させることを含む、iPS細胞の製造方法。 A method for producing iPS cells, which comprises contacting somatic cells with a nuclear reprogramming substance and a function inhibitor of TEAD3.
  12.  前記阻害物質が、以下の(a)~(c):
    (a)TEAD3遺伝子の転写産物に対してRNAi活性を有する核酸もしくはその前駆体;
    (b)TEAD3遺伝子の転写産物に対するアンチセンス核酸;及び
    (c)TEAD3遺伝子の転写産物に対するリボザイム核酸
    のいずれかの核酸である、請求項11に記載の方法。
    The inhibitor is the following (a) to (c):
    (A) Nucleic acid or precursor having RNAi activity against the transcript of the TEAD3 gene;
    The method of claim 11, wherein (b) an antisense nucleic acid for a transcript of the TEAD3 gene; and (c) a ribozyme nucleic acid for a transcript of the TEAD3 gene.
  13.  前記阻害物質が、TEAD3のドミナントネガティブ変異体又はそれをコードする核酸である、請求項11に記載の方法。 The method according to claim 11, wherein the inhibitor is a dominant negative mutant of TEAD3 or a nucleic acid encoding the same.
  14.  前記阻害物質が、TEAD3の転写共役因子の阻害物質である、請求項11に記載の方法。 The method according to claim 11, wherein the inhibitor is an inhibitor of a transcriptional conjugate factor of TEAD3.
  15.  前記阻害物質が、下の(a)又は(b):
    (a)TEAD3に対するデコイ核酸;
    (b)rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy(rはa又はg、wはa又はt、yはc又はtを表し、nはそれぞれ独立して、存在しないか、a、g、t又はcを表す;配列番号3)で表されるヌクレオチド配列を含むオリゴ核酸
    である、請求項11に記載の方法。
    The inhibitor is below (a) or (b):
    (A) Decoy nucleic acid for TEAD3;
    (B) rrrcwwgyyynnnnnnnnnnnnnrrrcwwgyyy (r stands for a or g, w stands for a or t, y stands for c or t, and n stands independently for a, g, t or c; SEQ ID NO: 3) 11. The method of claim 11, which is an oligonucleic acid comprising a nucleotide sequence represented by.
  16.  核初期化物質がOct3/4、Klf4及びSox2、又はそれらをコードする核酸である、請求項11~15のいずれか1項に記載の方法。 The method according to any one of claims 11 to 15, wherein the nuclear reprogramming substance is Oct3 / 4, Klf4 and Sox2, or a nucleic acid encoding them.
  17.  核初期化物質がOct3/4、Klf4、Sox2、及びc-Myc、L-MycもしくはN-Mycであるか、あるいはそれらをコードする核酸である、請求項11~15のいずれか1項に記載の方法。 13. the method of.
PCT/JP2021/022154 2020-06-11 2021-06-10 Efficient method for producing induced pluripotent stem cells WO2021251466A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022530622A JPWO2021251466A1 (en) 2020-06-11 2021-06-10

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-101932 2020-06-11
JP2020101932 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021251466A1 true WO2021251466A1 (en) 2021-12-16

Family

ID=78846108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022154 WO2021251466A1 (en) 2020-06-11 2021-06-10 Efficient method for producing induced pluripotent stem cells

Country Status (2)

Country Link
JP (1) JPWO2021251466A1 (en)
WO (1) WO2021251466A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515742A (en) * 2023-07-04 2023-08-01 夏同生物科技(苏州)有限公司 Method for reprogramming human cells into induced pluripotent stem cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097875A1 (en) * 2012-12-20 2014-06-26 国立大学法人鳥取大学 Development of pluripotent stem cell employing novel dedifferentiation induction method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014097875A1 (en) * 2012-12-20 2014-06-26 国立大学法人鳥取大学 Development of pluripotent stem cell employing novel dedifferentiation induction method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAN ZHENBO, YU YING, CAI BENZHI, XU ZIHANG, BAO ZHENGYI, ZHANG YING, BAMBA DJIBRIL, MA WENYA, GAO XINLU, YUAN YE, ZHANG LAI, YU ME: "YAP/TEAD3 signal mediates cardiac lineage commitment of human‐induced pluripotent stem cells", JOURNAL OF CELLULAR PHYSIOLOGY, WILEY SUBSCRIPTION SERVICES, INC., US, vol. 235, no. 3, 1 March 2020 (2020-03-01), US , pages 2753 - 2760, XP055885345, ISSN: 0021-9541, DOI: 10.1002/jcp.29179 *
IAN LIAN, KIM JOUNGMOK, OKAZAWA HIDEKI, ZHAO JIAGANG, ZHAO BIN, YU JINDAN, CHINNAIYAN ARUL, ISRAEL MASON A, GOLDSTEIN LAWRENCE S B: "The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation", GENES & DEVELOPMENT, COLD SPRING HARBOR LABORATORY PRESS, 1 June 2010 (2010-06-01), pages 1106 - 1118, XP055240649, Retrieved from the Internet <URL:http://genesdev.cshlp.org/content/24/11/1106.full.pdf> [retrieved on 20160112], DOI: 10.1101/gad.1903310 *
TAMM CHRISTOFFER, BÖWER NATHALIE, ANNERÉN CECILIA: "Regulation of mouse embryonic stem cell self-renewal by a Yes–YAP–TEAD2 signaling pathway downstream of LIF", JOURNAL OF CELL SCIENCE, COMPANY OF BIOLOGISTS LIMITED, CAMBRIDGE, vol. 124, no. 7, 1 April 2011 (2011-04-01), Cambridge , pages 1136 - 1144, XP055885341, ISSN: 0021-9533, DOI: 10.1242/jcs.075796 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116515742A (en) * 2023-07-04 2023-08-01 夏同生物科技(苏州)有限公司 Method for reprogramming human cells into induced pluripotent stem cells
CN116515742B (en) * 2023-07-04 2023-09-01 夏同生物科技(苏州)有限公司 Method for reprogramming human cells into induced pluripotent stem cells

Also Published As

Publication number Publication date
JPWO2021251466A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
JP5340265B2 (en) Efficient method for establishing induced pluripotent stem cells
KR101774206B1 (en) Method of efficiently establishing induced pluripotent stem cells
JP5553178B2 (en) Efficient method for establishing induced pluripotent stem cells
JP5794588B2 (en) Efficient method for establishing induced pluripotent stem cells
EP2853592B1 (en) Highly efficient method for establishing artificial pluripotent stem cell
US20110189137A1 (en) Method for generation and regulation of ips cells and compositions thereof
AU2013274197A1 (en) Methods of preparing pluripotent stem cells
WO2014065435A1 (en) Method of efficiently establishing induced pluripotent stem cells
JP5682043B2 (en) How to select pluripotent stem cells safely
WO2021251466A1 (en) Efficient method for producing induced pluripotent stem cells
JP6676260B2 (en) How to establish efficient pluripotent stem cells
JP5804280B2 (en) Method for producing mast cells from pluripotent stem cells
WO2012151309A1 (en) Methods for regulating induced pluripotent stem cell generation and compositions thereof
WO2011007847A1 (en) Method for induction of differentiation of pluripotent stem cells into nerve cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821034

Country of ref document: EP

Kind code of ref document: A1