WO2021251190A1 - Image generating method - Google Patents

Image generating method Download PDF

Info

Publication number
WO2021251190A1
WO2021251190A1 PCT/JP2021/020617 JP2021020617W WO2021251190A1 WO 2021251190 A1 WO2021251190 A1 WO 2021251190A1 JP 2021020617 W JP2021020617 W JP 2021020617W WO 2021251190 A1 WO2021251190 A1 WO 2021251190A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
electron beam
height
pattern
dimensional structural
Prior art date
Application number
PCT/JP2021/020617
Other languages
French (fr)
Japanese (ja)
Inventor
浩太郎 丸山
伸一 中澤
Original Assignee
Tasmit株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tasmit株式会社 filed Critical Tasmit株式会社
Publication of WO2021251190A1 publication Critical patent/WO2021251190A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to a method of generating an image of a wafer using a scanning electron microscope, and particularly to a technique of adjusting the incident direction of an electron beam.
  • NAND flash memory manufacturers are shifting their direction from the development of conventional semiconductor device miniaturization technology to the development of stacking technology for 3D memory structures, aiming to further increase the capacity by increasing the number of stacks.
  • devices with a three-dimensional memory structure with nearly 100 layers have already been commercialized, and there is a demand for an increase in the number of layers in the future.
  • Warpage occurs in the wafer on which the device is formed due to thermal stress or the like applied in the device manufacturing process.
  • the amount of change in the height direction of the wafer due to warpage is about several hundred ⁇ m at the maximum for a wafer such as a 3D NAND flash memory.
  • the contact height of the 3D NAND device is up to 10 ⁇ m.
  • the inclination of the contact due to the warp of the wafer is larger than the required measurement accuracy, which greatly affects the measurement result.
  • a suction type wafer chuck 500 using an electrostatic chuck is generally used, but the wafer chuck 500 forcibly warps the entire surface of the wafer W. Cannot be suppressed.
  • the electron beam does not enter perpendicularly to the surface of the wafer W as shown in FIG. Therefore, the accuracy of the tilt measurement is lowered, for example, the electron beam does not reach the bottom of the contact 600.
  • the present invention provides a technique capable of incident an electron beam perpendicular to the wafer surface.
  • it is a method of generating an image of a three-dimensional structural pattern formed on a wafer, in which the heights of a plurality of height measuring points on the wafer placed on a sample stage are measured, and the plurality of heights are measured.
  • the height of the measurement point is used to calculate the normal vector of the wafer surface at the position of the three-dimensional structural pattern, and the three-dimensional structure is obtained in a state where the incident direction of the electron beam is parallel to the normal vector.
  • a method of irradiating the wafer including the structural pattern with the electron beam, detecting electrons emitted from the wafer, and generating an image of the three-dimensional structural pattern from the detection signal of the electrons.
  • the step of calculating the normal vector uses the heights of the plurality of height measurement points to determine an approximate expression representing the height of the wafer surface, and the coordinates of the three-dimensional structure pattern and the said. This is a step of calculating the normal vector of the wafer surface at the position of the three-dimensional structural pattern from the approximate expression.
  • the plurality of height measurement points are at least three height measurement points located around the three-dimensional structural pattern.
  • the step of irradiating the wafer with the electron beam includes the three-dimensional structural pattern in a state where the electron beam is tilted so that the incident direction of the electron beam is parallel to the normal vector. This is a step of irradiating the wafer with the electron beam. In one aspect, the step of irradiating the wafer with the electron beam includes the three-dimensional structural pattern in a state where the sample stage is tilted so that the incident direction of the electron beam is parallel to the normal vector. This is a step of irradiating the wafer with the electron beam. In one aspect, the step of calculating the inclination of the three-dimensional structural pattern from the image is further included.
  • the three-dimensional structural pattern is one or more patterns having dimensions in the depth direction of the wafer.
  • the three-dimensional structure pattern comprises an upper layer pattern and a lower layer pattern, and the method further includes a step of calculating the positional deviation between the upper layer pattern and the lower layer pattern from the image.
  • the electron beam is vertically incident on the wafer even if the wafer is warped. Therefore, it is possible to accurately measure the inclination of a three-dimensional structural pattern such as a contact formed on a wafer.
  • FIG. 1 is a schematic diagram showing an embodiment of an image generator.
  • the image generator includes a scanning electron microscope 100 and an arithmetic system 150.
  • the scanning electron microscope 100 is connected to the arithmetic system 150, and the operation of the scanning electron microscope 100 is controlled by the arithmetic system 150.
  • the calculation system 150 includes a storage device 162 in which the program is stored and a processing device 163 that executes the calculation according to the instructions included in the program.
  • the processing device 163 includes a CPU (central processing unit) or a GPU (graphic processing unit) that performs operations according to instructions included in a program stored in the storage device 162.
  • the storage device 162 includes a main storage device (eg, random access memory) accessible to the processing device 163 and an auxiliary storage device (eg, hard disk drive or solid state drive) for storing data and programs.
  • the arithmetic system 150 includes at least one computer.
  • the arithmetic system 150 may be an edge server connected to the scanning electron microscope 100 by a communication line, or may be a cloud server connected to the scanning electron microscope 100 by a communication network such as the Internet or a local network. It may be a fog computing device (gateway, fog server, router, etc.) installed in a network connected to the scanning electron microscope 100.
  • the arithmetic system 150 may be a combination of a plurality of servers.
  • the arithmetic system 150 may be a combination of an edge server and a cloud server connected to each other by a communication network such as the Internet or a local network.
  • the arithmetic system 150 may include a plurality of servers (computers) that are not connected by a network.
  • the scanning electron microscope 100 includes an electron gun 111 that emits an electron beam composed of primary electrons (charged particles), a focusing lens 112 that focuses the electron beam emitted from the electron gun 111, and an X deflector that deflects the electron beam in the X direction. It has 113, a Y deflector 114 that deflects an electron beam in the Y direction, and an objective lens 115 that focuses an electron beam on a wafer 124 which is an example of a sample.
  • the configuration of the electron gun 111 is not particularly limited. For example, a field emitter type electron gun, a semiconductor photocathode type electron gun, or the like can be used as the electron gun 111.
  • the focusing lens 112 and the objective lens 115 are connected to the lens control device 116, and the operation of the focusing lens 112 and the objective lens 115 is controlled by the lens control device 116.
  • the lens control device 116 is connected to the arithmetic system 150.
  • the X deflector 113 and the Y deflector 114 are connected to the deflection control device 117, and the deflection operation of the X deflector 113 and the Y deflector 114 is controlled by the deflection control device 117.
  • the deflection control device 117 is also connected to the arithmetic system 150 in the same manner.
  • the secondary electron detector 130 and the backscattered electron detector 131 are connected to the image acquisition device 118.
  • the image acquisition device 118 is configured to convert the output signal of the secondary electron detector 130 and the output signal of the backscattered electron detector 131 into an image, respectively.
  • the image acquisition device 118 is also connected to the arithmetic system 150 in the same manner
  • the sample stage 121 arranged in the sample chamber 120 is connected to the stage control device 122, and the position of the sample stage 121 is controlled by the stage control device 122.
  • the stage control device 122 is connected to the arithmetic system 150.
  • a transfer device 140 for mounting the wafer 124 on the sample stage 121 in the sample chamber 120 is also connected to the arithmetic system 150.
  • the electron beam emitted from the electron gun 111 is focused by the focusing lens 112, then focused by the objective lens 115 while being deflected by the X deflector 113 and the Y deflector 114, and is irradiated on the surface of the wafer 124.
  • the wafer 124 is irradiated with the primary electrons of the electron beam, the secondary electrons and backscattered electrons are emitted from the wafer 124.
  • Secondary electrons are detected by the secondary electron detector 130, and backscattered electrons are detected by the backscattered electron detector 131.
  • the secondary electron detection signal output from the secondary electron detector 130 and the backscattered electron detection signal output from the backscattered electron detector 131 are input to the image acquisition device 118, and the secondary electron image and the backscattered electron image are input. Each is converted to.
  • a displacement sensor 170 as a height measuring device for measuring the height of the surface of the wafer 124 on the sample stage 121, and a light source 171 that emits light toward the surface of the wafer 124 are arranged.
  • the light source 171 and the displacement sensor 170 are arranged so that the light from the light source 171 is reflected on the surface of the wafer 124 and reaches the displacement sensor 170.
  • the positions of the light source 171 and the displacement sensor 170 are not particularly limited as long as the surface height of the wafer 124 can be measured, but in the present embodiment, the displacement sensor 170 is located on the upper surface of the sample chamber 120.
  • the configuration of the displacement sensor 170 is not particularly limited, but in the present embodiment, the displacement sensor 170 is an optical displacement sensor.
  • FIG. 2 is a schematic view of the wafer 124 held on the sample stage 121 by the electrostatic chuck as viewed from above.
  • the arithmetic system 150 sets a plurality of height measurement points 202 on the entire surface of the wafer 124 having the contact 203, which is an example of the three-dimensional structural pattern to be measured.
  • the number of height measurement points 202 is not particularly limited, but in one example, four or more height measurement points 202 are set.
  • the displacement sensor 170 measures the height of each of the plurality of height measuring points 202.
  • the height measurement is sent to the arithmetic system 150.
  • the height of each height measurement point 202 is the height from a predefined reference plane.
  • the reference plane is a virtual plane.
  • the reference plane may be the upper surface of the sample stage 121.
  • the calculation system 150 applies the least squares method to the approximate expression (1), and the height z of the plurality of height measurement points 202 calculated by using the approximate expression (1), and each height measurement. Coordinates (x) on the wafer surface by determining the coefficients a 1 , a 2 , a 3 , a 4 , a 5 , a 6 with the smallest error from the height Zn measured at the point (Xn, Yn). , Y), an approximate expression f (x, y) indicating the height z is obtained.
  • the arithmetic system 150 stores the approximate expression (1) determined as described above in the storage device 162.
  • the calculation system 150 calculates the normal vector of the wafer surface at the position of the contact 203 from the coordinates of the contact 203 and the above approximate expression f (x, y). Further, the arithmetic system 150 tilts the electron beam so that the incident direction of the electron beam is parallel to the normal vector. More specifically, the arithmetic system 150 issues a command to the deflection control device 117 to control the voltage applied to the X deflector 113 and the Y deflector 114, thereby tilting the electron beam and the incident direction of the electron beam. Is parallel to the normal vector. The electron beam irradiates the wafer 124 including the contact 203 with the incident direction of the electron beam parallel to the normal vector.
  • the image acquisition device 118 When the wafer 124 is irradiated with an electron beam, secondary electrons and backscattered electrons are emitted from the wafer 124. Secondary electrons are detected by the secondary electron detector 130, and backscattered electrons are detected by the backscattered electron detector 131.
  • the image acquisition device 118 generates a secondary electron image and a backscattered electron image from the secondary electron detection signal and the backscattered electron detection signal, respectively.
  • the inclination of the contact 203 is a pattern with a high aspect ratio.
  • the inclination of the contact 203 can be obtained from the reflected electron image of the contact 203. That is, the scanning electron microscope 100 generates a backscattered electron image in which the top and bottom of the contact 203 appear, and the arithmetic system 150 acquires the backscattered electron image of the contact 203 from the scanning electron microscope 100 and puts it on the backscattered electron image.
  • the inclination and taper angle of the contact 203 are calculated from the positions of the top and bottom of the contact 203.
  • the inclination of the contact 203 is the inclination of the entire contact 203, and the taper angle of the contact 203 is the inclination angle of the side wall of the contact 203. According to the present embodiment, since the electron beam is vertically incident on the wafer surface, the arithmetic system 150 can accurately measure the inclination of the contact 203.
  • the contact 203 is used as an example of the three-dimensional structure pattern, but the three-dimensional structure pattern may be one or more patterns having dimensions in the depth direction of the wafer.
  • the tertiary structure pattern may include an upper layer pattern and a lower layer pattern instead of the contact 203.
  • the calculation system 150 may calculate the positional deviation between the upper layer pattern and the lower layer pattern from the reflected electron images of the upper layer pattern and the lower layer pattern.
  • the optical displacement sensor 170 is used as the height measuring device for measuring the height of the height measuring point 202, but the present invention is not limited to this embodiment.
  • a laser interferometer or a capacitive displacement sensor may be used as the height measuring device.
  • the height of the height measuring point 202 may be measured from the exciting current of the objective lens 115 instead of the height measuring device such as the displacement sensor 170.
  • the scanning electron microscope 100 generates an image of each height measurement point 202 in a state where the electron beam is focused on each height measurement point 202 by the objective lens 115, and the arithmetic system 150 generates an image of each height measurement point 202.
  • the height of each height measurement point 202 may be determined from the exciting current to the lens 115.
  • the exciting current to the objective lens 115 when in focus depends on the height of the height measuring point 202.
  • the arithmetic system 150 stores in advance the relational expression between the exciting current to the objective lens 115 and the height of the height measuring point 202 in the storage device 162, and excites the objective lens 115 when the lens is in focus.
  • the height of the height measuring point 202 corresponding to the current can be determined.
  • the height measured in this way may be applied to the above formula (1).
  • a quadratic polynomial is used as an approximate expression for obtaining the height of the wafer, but a polynomial of degree 3 or higher can also be used according to the shape of the warp of the wafer. It is also possible to use interval approximation such as bi-tertiary splines.
  • the height of each of the plurality of height measurement points 202 distributed over the entire surface of the wafer 124 is measured, and the inclination of the wafer surface is applied to the entire surface of the wafer to approximate the warpage of the wafer.
  • this method may not be accurate enough for local wafer tilt.
  • the height may be measured in advance only around the contact to be measured, and the local inclination may be calculated.
  • FIG. 3 is a schematic diagram illustrating an embodiment of a method for measuring a local inclination of a wafer surface. Since the operation of the present embodiment, which is not particularly described, is the same as that of the above-described embodiment described with reference to FIGS. 1 and 2, the duplicate description thereof will be omitted.
  • the arithmetic system 150 sets three height measurement points 210, 211, and 12 around the contact 214, which is an example of the three-dimensional structural pattern to be measured.
  • the displacement sensor 170 (see FIG. 1) measures the heights of the height measuring points 210 and 211,212, respectively.
  • the height measurements of the height measurement points 210, 211,212 are sent to the arithmetic system 150.
  • the coordinates (x, y) of the height measurement points 210, 211,212 and the measured height z are (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), respectively. do.
  • the normal vector 213 of the plane having the height measurement points 210, 211, and 122 as vertices can be expressed by the following equation.
  • the arithmetic system 150 when measuring the inclination of the contact 214, calculates the normal vector 213 by the above equation (2) and makes the incident direction of the electron beam 215 parallel to the normal vector 213. .. More specifically, the arithmetic system 150 issues a command to the deflection control device 117 to control the voltage applied to the X deflector 113 and the Y deflector 114, thereby tilting the electron beam 215 and tilting the electron beam 215. Make the incident direction parallel to the normal vector 213. The electron beam 215 irradiates the wafer 124 including the contact 214 with the incident direction of the electron beam 215 parallel to the normal vector 213.
  • the arithmetic system 150 applies the least squares method to the polynomial (3), and has a plurality of height measurement points height z calculated using the polynomial (3), and each height measurement point (Xn, By determining the coefficients a 1 , a 2 , and a 3 having the smallest error from the height Zn measured in Yn), a polynomial representing a plane and a normal vector of the plane can be obtained.
  • the optical displacement sensor 170 is used as the height measuring device for measuring the height of the height measuring points 210, 211,212, but the present invention is not limited to this embodiment.
  • a laser interferometer or a capacitive displacement sensor may be used as the height measuring device.
  • the height of the height measuring points 210, 211, and 12 may be measured from the exciting current of the objective lens 115.
  • the scanning electron microscope 100 generates an image of each height measurement point in a state where the electron beam is focused on each height measurement point by the objective lens 115, and the arithmetic system 150 generates an image of each height measurement point.
  • the height of each height measuring point may be determined from the exciting current to. The height thus measured may be applied to the calculation of the above equation (2) or equation (3).
  • the incident direction of the electron beam at the contacts 203 and 214 is controlled, and the electron beam is irradiated to the contacts 203 and 214 to acquire an image.
  • the method of controlling the incident direction of the electron beam in the embodiments described so far is a method of tilting the electron beam by controlling the voltage applied to the X deflector 113 and the Y deflector 114, but the present invention is limited to this. Not done.
  • the sample stage 121 on which the wafer 124 is placed may be mechanically tilted to tilt the entire wafer 124 so that the incident direction of the electron beam is parallel to the normal vector of the wafer 124.
  • FIG. 4 is a schematic diagram showing a stage actuator 250 that tilts the sample stage 121.
  • the scanning electron microscope 100 includes a plurality of stage actuators 250 that tilt the sample stage 121. These stage actuators 250 are arranged around the center of the sample stage 121 and support the sample stage 121. At least three stage actuators 250 are provided.
  • the specific configuration of each stage actuator 250 is not particularly limited, but is composed of, for example, a piezoelectric element or a combination of a ball screw mechanism and a servomotor.
  • the stage actuator 250 is electrically connected to the arithmetic system 150, and the operation of the stage actuator 250 is controlled by the arithmetic system 150. Specifically, the arithmetic system 150 tilts the sample stage 121 so that the incident direction of the electron beam is parallel to the normal vector.
  • the electron beam is irradiated to the wafer 124 including the contact, which is an example of the three-dimensional structural pattern, in a state where the incident direction of the electron beam is parallel to the normal vector.
  • the present invention relates to a method for generating an image of a wafer using a scanning electron microscope, and can be used particularly for a technique for adjusting the incident direction of an electron beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The present invention relates to a method for generating an image of a wafer using a scanning electron microscope, and in particular relates to a technique for adjusting the direction of incidence of an electron beam. Provided is a method for generating an image of a three-dimensional structural pattern (203) formed on a wafer (124), the method comprising: measuring the heights of a plurality of height measurement points (202) on the wafer (124) placed on a sample stage (121); calculating a normal vector to a surface of the wafer at the position of the three-dimensional structural pattern (203) using the heights of the plurality of height measurement points (202); irradiating the wafer (124) including the three-dimensional structural pattern (203) with an electron beam with the direction of incidence of the electron beam parallel to the normal vector; detecting electrons emitted from the wafer (124); and generating an image of the three-dimensional structural pattern (203) from an electron detection signal.

Description

画像生成方法Image generation method
 本発明は、走査電子顕微鏡を用いてウェーハの画像を生成する方法に関し、特に電子ビームの入射方向を調整する技術に関する。 The present invention relates to a method of generating an image of a wafer using a scanning electron microscope, and particularly to a technique of adjusting the incident direction of an electron beam.
 従来の半導体デバイスは平面構造内の微細化を続けてきた。しかし、特に微細化の先端を進んできたNANDフラッシュメモリでは、微細化の影響により記憶素子に蓄えることができる電子数が減少し、デバイス特性の物理的限界によりデバイスの信頼性が悪化した。この解決策として、記憶素子を縦方向に配列した3次元のメモリセル構造によりデバイス特性の物理限界を解決し、記憶素子の大容量化が実現されている。 Conventional semiconductor devices have continued to be miniaturized within the planar structure. However, especially in NAND flash memory, which has advanced the cutting edge of miniaturization, the number of electrons that can be stored in the storage element has decreased due to the influence of miniaturization, and the reliability of the device has deteriorated due to the physical limit of the device characteristics. As a solution to this problem, the physical limit of the device characteristics is solved by the three-dimensional memory cell structure in which the storage elements are arranged in the vertical direction, and the capacity of the storage elements is increased.
 NANDフラッシュメモリのメーカー各社は、従来の半導体デバイス微細化技術の開発から、3次元メモリ構造における積層技術の開発に方向転換し、積層数の増大による更なる大容量化を目指している。2020年において、既に100層近い3次元メモリ構造のデバイスが製品化され、今後も積層数の増大が要求されている。 NAND flash memory manufacturers are shifting their direction from the development of conventional semiconductor device miniaturization technology to the development of stacking technology for 3D memory structures, aiming to further increase the capacity by increasing the number of stacks. In 2020, devices with a three-dimensional memory structure with nearly 100 layers have already been commercialized, and there is a demand for an increase in the number of layers in the future.
特開2000-348658号公報Japanese Unexamined Patent Publication No. 2000-348658
 デバイス製造工程で加えられる熱応力等に起因して、デバイスが形成されたウェーハには反りが発生する。反りによるウェーハの高さ方向の変化量は、3D NANDフラッシュメモリ等のウェーハでは、大きいもので数百μm程度となる。この高さ方向の変化量を300μmと仮定すると、ウェーハ表面に対する垂直方向のコンタクトの傾きは、
  300μm(高さ方向の変化量)/15mm(ウェーハ半径)=1/500(rad)
となる。
Warpage occurs in the wafer on which the device is formed due to thermal stress or the like applied in the device manufacturing process. The amount of change in the height direction of the wafer due to warpage is about several hundred μm at the maximum for a wafer such as a 3D NAND flash memory. Assuming that the amount of change in the height direction is 300 μm, the inclination of the contact in the vertical direction with respect to the wafer surface is
300 μm (change in height direction) / 15 mm (wafer radius) = 1/500 (rad)
Will be.
 一方、3D NANDデバイスのコンタクトの高さは最大10μmである。コンタクトのトップとボトムとの位置ずれ(傾き)の測定精度は5nm以下が要求されている。つまり、傾きの測定精度としては、
  5nm/10μm=5/10000(rad)
以下が求められている。ウェーハの反りによるコンタクトの傾きは、要求される測定精度よりも大きく、測定結果に多大な影響を与えてしまう。
On the other hand, the contact height of the 3D NAND device is up to 10 μm. The measurement accuracy of the positional deviation (tilt) between the top and bottom of the contact is required to be 5 nm or less. In other words, the accuracy of tilt measurement is
5 nm / 10 μm = 5/10000 (rad)
The following is required. The inclination of the contact due to the warp of the wafer is larger than the required measurement accuracy, which greatly affects the measurement result.
 図5に示すように、一般的に、SEM等を用いた測定装置では、静電チャックによる吸着型のウェーハチャック500が用いられているが、ウェーハチャック500はウェーハWの全面の反りを強制的に抑制することはできない。ウェーハWが反った状態でコンタクトの傾きを測定すると、図6に示すように、電子ビームはウェーハWの表面に対して垂直に入射しない。そのため、コンタクト600のボトムまで電子ビームが到達しない等、傾き測定の精度が低下してしまう。 As shown in FIG. 5, in a measuring device using an SEM or the like, a suction type wafer chuck 500 using an electrostatic chuck is generally used, but the wafer chuck 500 forcibly warps the entire surface of the wafer W. Cannot be suppressed. When the inclination of the contact is measured with the wafer W warped, the electron beam does not enter perpendicularly to the surface of the wafer W as shown in FIG. Therefore, the accuracy of the tilt measurement is lowered, for example, the electron beam does not reach the bottom of the contact 600.
 そこで、本発明は、電子ビームをウェーハ表面に対して垂直に入射させることができる技術を提供する。 Therefore, the present invention provides a technique capable of incident an electron beam perpendicular to the wafer surface.
 一態様では、ウェーハに形成されている三次元構造パターンの画像を生成する方法であって、試料ステージ上に置かれた前記ウェーハ上の複数の高さ測定点の高さを測定し、前記複数の高さ測定点の高さを用いて、前記三次元構造パターンの位置でのウェーハ表面の法線ベクトルを算出し、電子ビームの入射方向が前記法線ベクトルと平行な状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射し、前記ウェーハから放出された電子を検出し、前記電子の検出信号から前記三次元構造パターンの画像を生成する、方法が提供される。 In one aspect, it is a method of generating an image of a three-dimensional structural pattern formed on a wafer, in which the heights of a plurality of height measuring points on the wafer placed on a sample stage are measured, and the plurality of heights are measured. The height of the measurement point is used to calculate the normal vector of the wafer surface at the position of the three-dimensional structural pattern, and the three-dimensional structure is obtained in a state where the incident direction of the electron beam is parallel to the normal vector. Provided is a method of irradiating the wafer including the structural pattern with the electron beam, detecting electrons emitted from the wafer, and generating an image of the three-dimensional structural pattern from the detection signal of the electrons.
 一態様では、前記法線ベクトルを算出する工程は、前記複数の高さ測定点の高さを用いて、ウェーハ表面の高さを表す近似式を決定し、前記三次元構造パターンの座標と前記近似式とから前記三次元構造パターンの位置でのウェーハ表面の法線ベクトルを算出する工程である。
 一態様では、前記複数の高さ測定点は、前記三次元構造パターンの周りに位置する少なくとも3つの高さ測定点である。
In one aspect, the step of calculating the normal vector uses the heights of the plurality of height measurement points to determine an approximate expression representing the height of the wafer surface, and the coordinates of the three-dimensional structure pattern and the said. This is a step of calculating the normal vector of the wafer surface at the position of the three-dimensional structural pattern from the approximate expression.
In one aspect, the plurality of height measurement points are at least three height measurement points located around the three-dimensional structural pattern.
 一態様では、前記電子ビームを前記ウェーハに照射する工程は、前記電子ビームの入射方向が前記法線ベクトルと平行になるように前記電子ビームを傾けた状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射する工程である。
 一態様では、前記電子ビームを前記ウェーハに照射する工程は、前記電子ビームの入射方向が前記法線ベクトルと平行になるように前記試料ステージを傾けた状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射する工程である。
 一態様では、前記画像から前記三次元構造パターンの傾きを算出する工程をさらに含む。
 一態様では、前記三次元構造パターンは、前記ウェーハの深さ方向に次元を持つ1つまたは複数のパターンである。
 一態様では、前記三次元構造パターンは、上層パターンと下層パターンを含み、前記方法は、前記画像から、前記上層パターンと前記下層パターン間の位置ずれを算出する工程をさらに含む。
In one aspect, the step of irradiating the wafer with the electron beam includes the three-dimensional structural pattern in a state where the electron beam is tilted so that the incident direction of the electron beam is parallel to the normal vector. This is a step of irradiating the wafer with the electron beam.
In one aspect, the step of irradiating the wafer with the electron beam includes the three-dimensional structural pattern in a state where the sample stage is tilted so that the incident direction of the electron beam is parallel to the normal vector. This is a step of irradiating the wafer with the electron beam.
In one aspect, the step of calculating the inclination of the three-dimensional structural pattern from the image is further included.
In one aspect, the three-dimensional structural pattern is one or more patterns having dimensions in the depth direction of the wafer.
In one aspect, the three-dimensional structure pattern comprises an upper layer pattern and a lower layer pattern, and the method further includes a step of calculating the positional deviation between the upper layer pattern and the lower layer pattern from the image.
 本発明によれば、ウェーハに反りがある場合でも、電子ビームはウェーハに垂直に入射する。したがって、ウェーハに形成されているコンタクトなどの三次元構造パターンの傾きを正確に測定することができる。 According to the present invention, the electron beam is vertically incident on the wafer even if the wafer is warped. Therefore, it is possible to accurately measure the inclination of a three-dimensional structural pattern such as a contact formed on a wafer.
画像生成装置の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of an image generation apparatus. ウェーハ表面の傾きを測定する方法の一実施形態を説明する模式図である。It is a schematic diagram explaining one Embodiment of the method of measuring the inclination of a wafer surface. ウェーハ表面の局所的な傾きを測定する方法の一実施形態を説明する模式図である。It is a schematic diagram explaining one embodiment of the method of measuring the local inclination of a wafer surface. 試料ステージを傾けるステージアクチュエータを示す模式図である。It is a schematic diagram which shows the stage actuator which tilts a sample stage. 静電チャックに保持されたウェーハを示す模式図である。It is a schematic diagram which shows the wafer held in the electrostatic chuck. ウェーハに入射する電子ビームを表す模式図である。It is a schematic diagram which shows the electron beam incident on a wafer.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、画像生成装置の一実施形態を示す模式図である。図1に示すように、画像生成装置は、走査電子顕微鏡100および演算システム150を備えている。走査電子顕微鏡100は、演算システム150に接続されており、走査電子顕微鏡100の動作は演算システム150によって制御される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing an embodiment of an image generator. As shown in FIG. 1, the image generator includes a scanning electron microscope 100 and an arithmetic system 150. The scanning electron microscope 100 is connected to the arithmetic system 150, and the operation of the scanning electron microscope 100 is controlled by the arithmetic system 150.
 演算システム150は、プログラムが格納された記憶装置162と、プログラムに含まれる命令に従って演算を実行する処理装置163を備えている。処理装置163は、記憶装置162に格納されているプログラムに含まれる命令に従って演算を行うCPU(中央処理装置)またはGPU(グラフィックプロセッシングユニット)などを含む。記憶装置162は、処理装置163がアクセス可能な主記憶装置(例えばランダムアクセスメモリ)と、データおよびプログラムを格納する補助記憶装置(例えば、ハードディスクドライブまたはソリッドステートドライブ)を備えている。 The calculation system 150 includes a storage device 162 in which the program is stored and a processing device 163 that executes the calculation according to the instructions included in the program. The processing device 163 includes a CPU (central processing unit) or a GPU (graphic processing unit) that performs operations according to instructions included in a program stored in the storage device 162. The storage device 162 includes a main storage device (eg, random access memory) accessible to the processing device 163 and an auxiliary storage device (eg, hard disk drive or solid state drive) for storing data and programs.
 演算システム150は、少なくとも1台のコンピュータを備えている。例えば、演算システム150は、走査電子顕微鏡100に通信線で接続されたエッジサーバであってもよいし、インターネットまたはローカルネットワークなどの通信ネットワークによって走査電子顕微鏡100に接続されたクラウドサーバであってもよいし、あるいは走査電子顕微鏡100に接続されたネットワーク内に設置されたフォグコンピューティングデバイス(ゲートウェイ、フォグサーバ、ルーターなど)であってもよい。演算システム150は、複数のサーバの組み合わせであってもよい。例えば、演算システム150は、インターネットまたはローカルネットワークなどの通信ネットワークにより互いに接続されたエッジサーバとクラウドサーバとの組み合わせであってもよい。他の例では、演算システム150は、ネットワークで接続されていない複数のサーバ(コンピュータ)を備えてもよい。 The arithmetic system 150 includes at least one computer. For example, the arithmetic system 150 may be an edge server connected to the scanning electron microscope 100 by a communication line, or may be a cloud server connected to the scanning electron microscope 100 by a communication network such as the Internet or a local network. It may be a fog computing device (gateway, fog server, router, etc.) installed in a network connected to the scanning electron microscope 100. The arithmetic system 150 may be a combination of a plurality of servers. For example, the arithmetic system 150 may be a combination of an edge server and a cloud server connected to each other by a communication network such as the Internet or a local network. In another example, the arithmetic system 150 may include a plurality of servers (computers) that are not connected by a network.
 走査電子顕微鏡100は、一次電子(荷電粒子)からなる電子ビームを発する電子銃111と、電子銃111から放出された電子ビームを集束する集束レンズ112、電子ビームをX方向に偏向するX偏向器113、電子ビームをY方向に偏向するY偏向器114、電子ビームを試料の一例であるウェーハ124にフォーカスさせる対物レンズ115を有する。電子銃111の構成は特に限定されない。例えば、フィールドエミッタ型電子銃、または半導体フォトカソード型電子銃などが電子銃111として使用できる。 The scanning electron microscope 100 includes an electron gun 111 that emits an electron beam composed of primary electrons (charged particles), a focusing lens 112 that focuses the electron beam emitted from the electron gun 111, and an X deflector that deflects the electron beam in the X direction. It has 113, a Y deflector 114 that deflects an electron beam in the Y direction, and an objective lens 115 that focuses an electron beam on a wafer 124 which is an example of a sample. The configuration of the electron gun 111 is not particularly limited. For example, a field emitter type electron gun, a semiconductor photocathode type electron gun, or the like can be used as the electron gun 111.
 集束レンズ112および対物レンズ115はレンズ制御装置116に接続され、集束レンズ112および対物レンズ115の動作はレンズ制御装置116によって制御される。このレンズ制御装置116は演算システム150に接続されている。X偏向器113、Y偏向器114は、偏向制御装置117に接続されており、X偏向器113、Y偏向器114の偏向動作は偏向制御装置117によって制御される。この偏向制御装置117も同様に演算システム150に接続されている。二次電子検出器130と反射電子検出器131は画像取得装置118に接続されている。画像取得装置118は二次電子検出器130の出力信号と反射電子検出器131の出力信号をそれぞれ画像に変換するように構成される。この画像取得装置118も同様に演算システム150に接続されている。 The focusing lens 112 and the objective lens 115 are connected to the lens control device 116, and the operation of the focusing lens 112 and the objective lens 115 is controlled by the lens control device 116. The lens control device 116 is connected to the arithmetic system 150. The X deflector 113 and the Y deflector 114 are connected to the deflection control device 117, and the deflection operation of the X deflector 113 and the Y deflector 114 is controlled by the deflection control device 117. The deflection control device 117 is also connected to the arithmetic system 150 in the same manner. The secondary electron detector 130 and the backscattered electron detector 131 are connected to the image acquisition device 118. The image acquisition device 118 is configured to convert the output signal of the secondary electron detector 130 and the output signal of the backscattered electron detector 131 into an image, respectively. The image acquisition device 118 is also connected to the arithmetic system 150 in the same manner.
 試料チャンバー120内に配置される試料ステージ121は、ステージ制御装置122に接続されており、試料ステージ121の位置はステージ制御装置122によって制御される。このステージ制御装置122は演算システム150に接続されている。ウェーハ124を、試料チャンバー120内の試料ステージ121に載置するための搬送装置140も同様に演算システム150に接続されている。 The sample stage 121 arranged in the sample chamber 120 is connected to the stage control device 122, and the position of the sample stage 121 is controlled by the stage control device 122. The stage control device 122 is connected to the arithmetic system 150. A transfer device 140 for mounting the wafer 124 on the sample stage 121 in the sample chamber 120 is also connected to the arithmetic system 150.
 電子銃111から放出された電子ビームは集束レンズ112で集束された後に、X偏向器113、Y偏向器114で偏向されつつ対物レンズ115により集束されてウェーハ124の表面に照射される。ウェーハ124に電子ビームの一次電子が照射されると、ウェーハ124からは二次電子および反射電子が放出される。二次電子は二次電子検出器130により検出され、反射電子は反射電子検出器131により検出される。二次電子検出器130から出力された二次電子の検出信号、および反射電子検出器131から出力された反射電子の検出信号は、画像取得装置118に入力され、二次電子画像および反射電子画像にそれぞれ変換される。 The electron beam emitted from the electron gun 111 is focused by the focusing lens 112, then focused by the objective lens 115 while being deflected by the X deflector 113 and the Y deflector 114, and is irradiated on the surface of the wafer 124. When the wafer 124 is irradiated with the primary electrons of the electron beam, the secondary electrons and backscattered electrons are emitted from the wafer 124. Secondary electrons are detected by the secondary electron detector 130, and backscattered electrons are detected by the backscattered electron detector 131. The secondary electron detection signal output from the secondary electron detector 130 and the backscattered electron detection signal output from the backscattered electron detector 131 are input to the image acquisition device 118, and the secondary electron image and the backscattered electron image are input. Each is converted to.
 試料ステージ121の上方には、試料ステージ121上のウェーハ124の表面の高さを測定するための高さ測定装置としての変位センサ170、およびウェーハ124の表面に向けて光を発する光源171が配置されている。光源171からの光は、ウェーハ124の表面で反射して変位センサ170に届くように、光源171および変位センサ170が配置されている。光源171および変位センサ170の位置は、ウェーハ124の表面高さを測定できる限りにおいて特に限定されないが、本実施形態では変位センサ170は試料チャンバー120の上面に位置している。変位センサ170の構成も特に限定されないが、本実施形態では変位センサ170は光学式変位センサである。 Above the sample stage 121, a displacement sensor 170 as a height measuring device for measuring the height of the surface of the wafer 124 on the sample stage 121, and a light source 171 that emits light toward the surface of the wafer 124 are arranged. Has been done. The light source 171 and the displacement sensor 170 are arranged so that the light from the light source 171 is reflected on the surface of the wafer 124 and reaches the displacement sensor 170. The positions of the light source 171 and the displacement sensor 170 are not particularly limited as long as the surface height of the wafer 124 can be measured, but in the present embodiment, the displacement sensor 170 is located on the upper surface of the sample chamber 120. The configuration of the displacement sensor 170 is not particularly limited, but in the present embodiment, the displacement sensor 170 is an optical displacement sensor.
 次に、測定対象のパターン周辺のウェーハの傾きを測定する方法について説明する。
 図2は、静電チャックにより試料ステージ121に保持されたウェーハ124を上から見た模式図である。演算システム150は、測定対象の三次元構造パターンの一例であるコンタクト203を有するウェーハ124の全面に複数の高さ測定点202を設定する。高さ測定点202の数は特に限定されないが、一例では4つ以上の高さ測定点202が設定される。
Next, a method of measuring the inclination of the wafer around the pattern to be measured will be described.
FIG. 2 is a schematic view of the wafer 124 held on the sample stage 121 by the electrostatic chuck as viewed from above. The arithmetic system 150 sets a plurality of height measurement points 202 on the entire surface of the wafer 124 having the contact 203, which is an example of the three-dimensional structural pattern to be measured. The number of height measurement points 202 is not particularly limited, but in one example, four or more height measurement points 202 are set.
 変位センサ170は、複数の高さ測定点202のそれぞれの高さを測定する。高さの測定値は、演算システム150に送られる。各高さ測定点202の高さは、予め定義された基準面からの高さである。基準面は仮想的な平面である。例えば、基準面は、試料ステージ121の上面であってもよい。ウェーハ表面上の座標(x,y)における高さzは、次の近似式で表すことができる。
  z=a+a+axy+ax+ay+a=f(x,y)…(1)
The displacement sensor 170 measures the height of each of the plurality of height measuring points 202. The height measurement is sent to the arithmetic system 150. The height of each height measurement point 202 is the height from a predefined reference plane. The reference plane is a virtual plane. For example, the reference plane may be the upper surface of the sample stage 121. The height z at the coordinates (x, y) on the wafer surface can be expressed by the following approximate expression.
z = a 1 x 2 + a 2 y 2 + a 3 xy + a 4 x + a 5 y + a 6 = f (x, y) ... (1)
 高さ測定点202の座標を(Xn,Yn)、測定された高さをZnとする。演算システム150は、上記近似式(1)に対して最小二乗法を適用し、上記近似式(1)を用いて算出された複数の高さ測定点202の高さzと、各高さ測定点(Xn,Yn)で測定された高さZnとの誤差が最も小さい係数a,a,a,a,a,aを決定することにより、ウェーハ表面上の座標(x,y)において高さzを示す近似式f(x,y)が得られる。演算システム150は、上述のようにして決定された近似式(1)を記憶装置162内に記憶する。 Let the coordinates of the height measurement point 202 be (Xn, Yn) and the measured height be Zn. The calculation system 150 applies the least squares method to the approximate expression (1), and the height z of the plurality of height measurement points 202 calculated by using the approximate expression (1), and each height measurement. Coordinates (x) on the wafer surface by determining the coefficients a 1 , a 2 , a 3 , a 4 , a 5 , a 6 with the smallest error from the height Zn measured at the point (Xn, Yn). , Y), an approximate expression f (x, y) indicating the height z is obtained. The arithmetic system 150 stores the approximate expression (1) determined as described above in the storage device 162.
 コンタクト203の傾きを測定する際、演算システム150は、コンタクト203の座標と上記近似式f(x,y)とから、コンタクト203の位置でのウェーハ表面の法線ベクトルを算出する。さらに、演算システム150は、電子ビームを傾けて電子ビームの入射方向を法線ベクトルと平行にする。より具体的には、演算システム150は、偏向制御装置117に指令を発して、X偏向器113およびY偏向器114に印加する電圧を制御することで、電子ビームを傾け、電子ビームの入射方向を法線ベクトルと平行にする。電子ビームの入射方向が法線ベクトルと平行な状態で、電子ビームはコンタクト203を含むウェーハ124に照射される。 When measuring the inclination of the contact 203, the calculation system 150 calculates the normal vector of the wafer surface at the position of the contact 203 from the coordinates of the contact 203 and the above approximate expression f (x, y). Further, the arithmetic system 150 tilts the electron beam so that the incident direction of the electron beam is parallel to the normal vector. More specifically, the arithmetic system 150 issues a command to the deflection control device 117 to control the voltage applied to the X deflector 113 and the Y deflector 114, thereby tilting the electron beam and the incident direction of the electron beam. Is parallel to the normal vector. The electron beam irradiates the wafer 124 including the contact 203 with the incident direction of the electron beam parallel to the normal vector.
 ウェーハ124に電子ビームが照射されると、ウェーハ124からは二次電子および反射電子が放出される。二次電子は二次電子検出器130により検出され、反射電子は反射電子検出器131により検出される。画像取得装置118は、二次電子の検出信号および反射電子の検出信号から、二次電子画像および反射電子画像をそれぞれ生成する。 When the wafer 124 is irradiated with an electron beam, secondary electrons and backscattered electrons are emitted from the wafer 124. Secondary electrons are detected by the secondary electron detector 130, and backscattered electrons are detected by the backscattered electron detector 131. The image acquisition device 118 generates a secondary electron image and a backscattered electron image from the secondary electron detection signal and the backscattered electron detection signal, respectively.
 コンタクト203は、高アスペクト比のパターンである。コンタクト203の傾きは、コンタクト203の反射電子画像から求めることができる。すなわち、走査電子顕微鏡100は、コンタクト203のトップとボトムが現れている反射電子画像を生成し、演算システム150は、コンタクト203の反射電子画像を走査電子顕微鏡100から取得し、反射電子画像上のコンタクト203のトップとボトムの位置からコンタクト203の傾きおよびテーパー角度を算出する。コンタクト203の傾きは、コンタクト203の全体の傾きであり、コンタクト203のテーパー角度は、コンタクト203の側壁の傾き角度である。本実施形態によれば、電子ビームはウェーハ表面に垂直に入射するため、演算システム150はコンタクト203の傾きを正確に測定することができる。 Contact 203 is a pattern with a high aspect ratio. The inclination of the contact 203 can be obtained from the reflected electron image of the contact 203. That is, the scanning electron microscope 100 generates a backscattered electron image in which the top and bottom of the contact 203 appear, and the arithmetic system 150 acquires the backscattered electron image of the contact 203 from the scanning electron microscope 100 and puts it on the backscattered electron image. The inclination and taper angle of the contact 203 are calculated from the positions of the top and bottom of the contact 203. The inclination of the contact 203 is the inclination of the entire contact 203, and the taper angle of the contact 203 is the inclination angle of the side wall of the contact 203. According to the present embodiment, since the electron beam is vertically incident on the wafer surface, the arithmetic system 150 can accurately measure the inclination of the contact 203.
 上述した実施形態では、三次元構造パターンの例としてコンタクト203が用いられているが、三次元構造パターンは、ウェーハの深さ方向に次元を持つ1つまたは複数のパターンであってもよい。例えば、三次元構造パターンは、コンタクト203に代えて、上層パターンと下層パターンを含んでもよい。この場合は、演算システム150は、上層パターンと下層パターンの反射電子画像から、上層パターンと下層パターン間の位置ずれを算出してもよい。 In the above-described embodiment, the contact 203 is used as an example of the three-dimensional structure pattern, but the three-dimensional structure pattern may be one or more patterns having dimensions in the depth direction of the wafer. For example, the tertiary structure pattern may include an upper layer pattern and a lower layer pattern instead of the contact 203. In this case, the calculation system 150 may calculate the positional deviation between the upper layer pattern and the lower layer pattern from the reflected electron images of the upper layer pattern and the lower layer pattern.
 上述の実施形態では、高さ測定点202の高さを測定する高さ測定装置として、光学式の変位センサ170を用いたが、本発明はこの実施形態に限定されない。一実施形態では、高さ測定装置としてレーザー干渉計または静電容量変位センサを用いてもよい。 In the above-described embodiment, the optical displacement sensor 170 is used as the height measuring device for measuring the height of the height measuring point 202, but the present invention is not limited to this embodiment. In one embodiment, a laser interferometer or a capacitive displacement sensor may be used as the height measuring device.
 一実施形態では、変位センサ170などの高さ測定装置に代えて、対物レンズ115の励磁電流から高さ測定点202の高さを測定してもよい。具体的には、走査電子顕微鏡100は、対物レンズ115により各高さ測定点202に電子ビームの焦点を合わせた状態で、各高さ測定点202の画像を生成し、演算システム150は、対物レンズ115への励磁電流から各高さ測定点202の高さを決定してもよい。焦点が合っているときの対物レンズ115への励磁電流は、高さ測定点202の高さに依存して決まる。演算システム150は、対物レンズ115への励磁電流と、高さ測定点202の高さとの関係式を記憶装置162内に予め記憶しており、焦点が合っているときの対物レンズ115への励磁電流に対応する高さ測定点202の高さを決定することができる。こうして測定された高さを、上記式(1)に適用してもよい。 In one embodiment, the height of the height measuring point 202 may be measured from the exciting current of the objective lens 115 instead of the height measuring device such as the displacement sensor 170. Specifically, the scanning electron microscope 100 generates an image of each height measurement point 202 in a state where the electron beam is focused on each height measurement point 202 by the objective lens 115, and the arithmetic system 150 generates an image of each height measurement point 202. The height of each height measurement point 202 may be determined from the exciting current to the lens 115. The exciting current to the objective lens 115 when in focus depends on the height of the height measuring point 202. The arithmetic system 150 stores in advance the relational expression between the exciting current to the objective lens 115 and the height of the height measuring point 202 in the storage device 162, and excites the objective lens 115 when the lens is in focus. The height of the height measuring point 202 corresponding to the current can be determined. The height measured in this way may be applied to the above formula (1).
 上述の実施形態では、ウェーハの高さを求めるための近似式として2次多項式を用いたが、ウェーハの反りの形状に合わせて3次以上の多項式を用いることもできる。また、双3次スプライン等の区間近似を用いることもできる。 In the above-described embodiment, a quadratic polynomial is used as an approximate expression for obtaining the height of the wafer, but a polynomial of degree 3 or higher can also be used according to the shape of the warp of the wafer. It is also possible to use interval approximation such as bi-tertiary splines.
 上述の実施形態では、ウェーハ124の全面に亘って分布する複数の高さ測定点202のそれぞれの高さを測定し、ウェーハ表面の傾きをウェーハ全面に適用してウェーハの反りを近似することができる。しかし、この方法では局所的なウェーハの傾きに対して精度が十分でない場合がある。また、ウェーハの一部のコンタクトのみを測定する場合、ウェーハ全面に亘って予め高さを測定すると、測定時間のロスが大きくなる。そこで、以下に説明するように、一実施形態では、測定対象のコンタクトの周辺のみにおいて予め高さを測定し、局所的な傾きを算出してもよい。 In the above embodiment, the height of each of the plurality of height measurement points 202 distributed over the entire surface of the wafer 124 is measured, and the inclination of the wafer surface is applied to the entire surface of the wafer to approximate the warpage of the wafer. can. However, this method may not be accurate enough for local wafer tilt. Further, when measuring only a part of the contacts of the wafer, if the height is measured in advance over the entire surface of the wafer, the loss of measurement time becomes large. Therefore, as described below, in one embodiment, the height may be measured in advance only around the contact to be measured, and the local inclination may be calculated.
 図3は、ウェーハ表面の局所的な傾きを測定する方法の一実施形態を説明する模式図である。特に説明しない本実施形態の動作は、図1および図2を参照して説明した上記実施形態と同じであるので、その重複する説明を省略する。 FIG. 3 is a schematic diagram illustrating an embodiment of a method for measuring a local inclination of a wafer surface. Since the operation of the present embodiment, which is not particularly described, is the same as that of the above-described embodiment described with reference to FIGS. 1 and 2, the duplicate description thereof will be omitted.
 演算システム150は、測定対象の三次元構造パターンの一例であるコンタクト214の周りに、3つの高さ測定点210,211,212を設定する。変位センサ170(図1参照)は、高さ測定点210,211,212の高さをそれぞれ測定する。高さ測定点210,211,212の高さの測定値は、演算システム150に送られる。 The arithmetic system 150 sets three height measurement points 210, 211, and 12 around the contact 214, which is an example of the three-dimensional structural pattern to be measured. The displacement sensor 170 (see FIG. 1) measures the heights of the height measuring points 210 and 211,212, respectively. The height measurements of the height measurement points 210, 211,212 are sent to the arithmetic system 150.
 高さ測定点210,211,212の座標(x,y)と、測定された高さzをそれぞれ(x1,y1,z1)、(x2,y2,z2)、(x3,y3,z3)とする。このとき、高さ測定点210,211,212を頂点とした平面の法線ベクトル213は、以下の式により表すことができる。
Figure JPOXMLDOC01-appb-M000001
The coordinates (x, y) of the height measurement points 210, 211,212 and the measured height z are (x1, y1, z1), (x2, y2, z2), (x3, y3, z3), respectively. do. At this time, the normal vector 213 of the plane having the height measurement points 210, 211, and 122 as vertices can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
 図3に示すように、コンタクト214の傾きを測定する際、演算システム150は、上記式(2)により法線ベクトル213を算出し、電子ビーム215の入射方向を法線ベクトル213と平行にする。より具体的には、演算システム150は、偏向制御装置117に指令を発して、X偏向器113およびY偏向器114に印加する電圧を制御することで、電子ビーム215を傾け、電子ビーム215の入射方向を法線ベクトル213と平行にする。電子ビーム215の入射方向が法線ベクトル213と平行な状態で、電子ビーム215はコンタクト214を含むウェーハ124に照射される。 As shown in FIG. 3, when measuring the inclination of the contact 214, the arithmetic system 150 calculates the normal vector 213 by the above equation (2) and makes the incident direction of the electron beam 215 parallel to the normal vector 213. .. More specifically, the arithmetic system 150 issues a command to the deflection control device 117 to control the voltage applied to the X deflector 113 and the Y deflector 114, thereby tilting the electron beam 215 and tilting the electron beam 215. Make the incident direction parallel to the normal vector 213. The electron beam 215 irradiates the wafer 124 including the contact 214 with the incident direction of the electron beam 215 parallel to the normal vector 213.
 上述の実施形態では、3つの高さ測定点を用いて平面の法線ベクトルを求めたが、4つ以上の高さ測定点の高さを測定し、法線ベクトルの精度を向上させることも可能である。具体的には、平面を表す以下の多項式を用いる。
  z=ax+ay+a=f(x,y)   …(3)
 各高さ測定点の座標を(Xn,Yn)、測定された高さをZnとする。演算システム150は、上記多項式(3)に対して最小二乗法を適用し、上記多項式(3)を用いて算出された複数の高さ測定点高さzと、各高さ測定点(Xn,Yn)で測定された高さZnとの誤差が最も小さい係数a,a,aを決定することにより、平面を表す多項式およびその平面の法線ベクトルが得られる。
In the above-described embodiment, the normal vector of the plane is obtained using three height measurement points, but the height of four or more height measurement points can be measured to improve the accuracy of the normal vector. It is possible. Specifically, the following polynomial representing a plane is used.
z = a 1 x + a 2 y + a 3 = f (x, y) ... (3)
Let the coordinates of each height measurement point be (Xn, Yn) and the measured height be Zn. The arithmetic system 150 applies the least squares method to the polynomial (3), and has a plurality of height measurement points height z calculated using the polynomial (3), and each height measurement point (Xn, By determining the coefficients a 1 , a 2 , and a 3 having the smallest error from the height Zn measured in Yn), a polynomial representing a plane and a normal vector of the plane can be obtained.
 上述の実施形態では、高さ測定点210,211,212の高さを測定する高さ測定装置として、光学式の変位センサ170を用いたが、本発明はこの実施形態に限定されない。一実施形態では、高さ測定装置としてレーザー干渉計または静電容量変位センサを用いてもよい。 In the above-described embodiment, the optical displacement sensor 170 is used as the height measuring device for measuring the height of the height measuring points 210, 211,212, but the present invention is not limited to this embodiment. In one embodiment, a laser interferometer or a capacitive displacement sensor may be used as the height measuring device.
 一実施形態では、変位センサ170などの高さ測定装置に代えて、対物レンズ115の励磁電流から高さ測定点210,211,212の高さを測定してもよい。具体的には、走査電子顕微鏡100は、対物レンズ115により各高さ測定点に電子ビームの焦点を合わせた状態で、各高さ測定点の画像を生成し、演算システム150は、対物レンズ115への励磁電流から各高さ測定点の高さを決定してもよい。こうして測定された高さを、上記式(2)または式(3)の計算に適用してもよい。 In one embodiment, instead of the height measuring device such as the displacement sensor 170, the height of the height measuring points 210, 211, and 12 may be measured from the exciting current of the objective lens 115. Specifically, the scanning electron microscope 100 generates an image of each height measurement point in a state where the electron beam is focused on each height measurement point by the objective lens 115, and the arithmetic system 150 generates an image of each height measurement point. The height of each height measuring point may be determined from the exciting current to. The height thus measured may be applied to the calculation of the above equation (2) or equation (3).
 上述の方法により、コンタクト203,214における電子ビームの入射方向を制御し、電子ビームをコンタクト203,214に照射して画像を取得する。今まで説明した実施形態における電子ビームの入射方向の制御方法は、X偏向器113、Y偏向器114に印加する電圧を制御することで電子ビームを傾ける方法であるが、本発明はこれに限定されない。一実施形態では、ウェーハ124が置かれた試料ステージ121を機械的に傾けることでウェーハ124の全体を傾け、電子ビームの入射方向をウェーハ124の法線ベクトルと平行にしてもよい。 By the above method, the incident direction of the electron beam at the contacts 203 and 214 is controlled, and the electron beam is irradiated to the contacts 203 and 214 to acquire an image. The method of controlling the incident direction of the electron beam in the embodiments described so far is a method of tilting the electron beam by controlling the voltage applied to the X deflector 113 and the Y deflector 114, but the present invention is limited to this. Not done. In one embodiment, the sample stage 121 on which the wafer 124 is placed may be mechanically tilted to tilt the entire wafer 124 so that the incident direction of the electron beam is parallel to the normal vector of the wafer 124.
 図4は、試料ステージ121を傾けるステージアクチュエータ250を示す模式図である。走査電子顕微鏡100は、試料ステージ121を傾ける複数のステージアクチュエータ250を備えている。これらステージアクチュエータ250は、試料ステージ121の中心の周りに配列されており、試料ステージ121を支持している。少なくとも3つのステージアクチュエータ250が設けられる。各ステージアクチュエータ250の具体的構成は特に限定されないが、例えば、圧電素子、またはボールねじ機構とサーボモータとの組み合わせなどから構成される。 FIG. 4 is a schematic diagram showing a stage actuator 250 that tilts the sample stage 121. The scanning electron microscope 100 includes a plurality of stage actuators 250 that tilt the sample stage 121. These stage actuators 250 are arranged around the center of the sample stage 121 and support the sample stage 121. At least three stage actuators 250 are provided. The specific configuration of each stage actuator 250 is not particularly limited, but is composed of, for example, a piezoelectric element or a combination of a ball screw mechanism and a servomotor.
 ステージアクチュエータ250は演算システム150に電気的に接続されており、ステージアクチュエータ250の動作は、演算システム150によって制御される。具体的には、演算システム150は、電子ビームの入射方向が上記法線ベクトルと平行になるように試料ステージ121を傾ける。電子ビームの入射方向が上記法線ベクトルと平行な状態で、三次元構造パターンの一例であるコンタクトを含むウェーハ124に電子ビームが照射される。 The stage actuator 250 is electrically connected to the arithmetic system 150, and the operation of the stage actuator 250 is controlled by the arithmetic system 150. Specifically, the arithmetic system 150 tilts the sample stage 121 so that the incident direction of the electron beam is parallel to the normal vector. The electron beam is irradiated to the wafer 124 including the contact, which is an example of the three-dimensional structural pattern, in a state where the incident direction of the electron beam is parallel to the normal vector.
 上述した実施形態は、本発明が属する技術分野における通常の知識を有する者が本発明を実施できることを目的として記載されたものである。上記実施形態の種々の変形例は、当業者であれば当然になしうることであり、本発明の技術的思想は他の実施形態にも適用しうる。したがって、本発明は、記載された実施形態に限定されることはなく、特許請求の範囲によって定義される技術的思想に従った最も広い範囲に解釈されるものである。 The above-described embodiment is described for the purpose of allowing a person having ordinary knowledge in the technical field to which the present invention belongs to carry out the present invention. Various modifications of the above embodiment can be naturally made by those skilled in the art, and the technical idea of the present invention can be applied to other embodiments. Accordingly, the invention is not limited to the described embodiments, but is to be construed in the broadest range in accordance with the technical ideas defined by the claims.
 本発明は、走査電子顕微鏡を用いてウェーハの画像を生成する方法に関し、特に電子ビームの入射方向を調整する技術に利用可能である。 The present invention relates to a method for generating an image of a wafer using a scanning electron microscope, and can be used particularly for a technique for adjusting the incident direction of an electron beam.
100   走査電子顕微鏡
111   電子銃
112   集束レンズ
113   X偏向器
114   Y偏向器
115   対物レンズ
116   レンズ制御装置
117   偏向制御装置
118   画像取得装置
120   試料チャンバー
121   試料ステージ
122   ステージ制御装置
124   ウェーハ
130   二次電子検出器
131   反射電子検出器
140   搬送装置
150   演算システム
170   変位センサ
171   光源
202   高さ測定点
203   コンタクト(三次元構造パターン)
210,211,212   高さ測定点
213   法線ベクトル
214   コンタクト(三次元構造パターン)
215   電子ビーム
250   ステージアクチュエータ
100 Scanning electron microscope 111 Electron gun 112 Condensing lens 113 X deflector 114 Y deflector 115 Objective lens 116 Lens control device 117 Deflection control device 118 Image acquisition device 120 Sample chamber 121 Sample stage 122 Stage control device 124 Wafer 130 Secondary electron detection Instrument 131 Reflected electron detector 140 Conveyor device 150 Computational system 170 Displacement sensor 171 Light source 202 Height measurement point 203 Contact (three-dimensional structure pattern)
210, 211,212 Height measurement point 213 Normal vector 214 Contact (tertiary structure pattern)
215 electron beam 250 stage actuator

Claims (8)

  1.  ウェーハに形成されている三次元構造パターンの画像を生成する方法であって、
     試料ステージ上に置かれた前記ウェーハ上の複数の高さ測定点の高さを測定し、
     前記複数の高さ測定点の高さを用いて、前記三次元構造パターンの位置でのウェーハ表面の法線ベクトルを算出し、
     電子ビームの入射方向が前記法線ベクトルと平行な状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射し、
     前記ウェーハから放出された電子を検出し、
     前記電子の検出信号から前記三次元構造パターンの画像を生成する、方法。
    A method of generating images of the three-dimensional structural pattern formed on a wafer.
    The heights of a plurality of height measuring points on the wafer placed on the sample stage are measured, and the heights are measured.
    Using the heights of the plurality of height measurement points, the normal vector of the wafer surface at the position of the three-dimensional structural pattern is calculated.
    The electron beam is irradiated to the wafer including the three-dimensional structural pattern in a state where the incident direction of the electron beam is parallel to the normal vector.
    The electrons emitted from the wafer are detected and
    A method of generating an image of the three-dimensional structural pattern from the electron detection signal.
  2.  前記法線ベクトルを算出する工程は、前記複数の高さ測定点の高さを用いて、ウェーハ表面の高さを表す近似式を決定し、前記三次元構造パターンの座標と前記近似式とから前記三次元構造パターンの位置でのウェーハ表面の法線ベクトルを算出する工程である、請求項1に記載の方法。 In the step of calculating the normal vector, an approximate expression representing the height of the wafer surface is determined using the heights of the plurality of height measurement points, and the coordinates of the three-dimensional structure pattern and the approximate expression are used. The method according to claim 1, which is a step of calculating a normal vector of a wafer surface at a position of the three-dimensional structural pattern.
  3.  前記複数の高さ測定点は、前記三次元構造パターンの周りに位置する少なくとも3つの高さ測定点である、請求項1に記載の方法。 The method according to claim 1, wherein the plurality of height measurement points are at least three height measurement points located around the three-dimensional structural pattern.
  4.  前記電子ビームを前記ウェーハに照射する工程は、前記電子ビームの入射方向が前記法線ベクトルと平行になるように前記電子ビームを傾けた状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射する工程である、請求項1乃至3のいずれか一項に記載の方法。 In the step of irradiating the wafer with the electron beam, the electron beam is tilted so that the incident direction of the electron beam is parallel to the normal vector, and the electron beam is applied to the wafer including the three-dimensional structural pattern. The method according to any one of claims 1 to 3, which is a step of irradiating a beam.
  5.  前記電子ビームを前記ウェーハに照射する工程は、前記電子ビームの入射方向が前記法線ベクトルと平行になるように前記試料ステージを傾けた状態で、前記三次元構造パターンを含む前記ウェーハに前記電子ビームを照射する工程である、請求項1乃至3のいずれか一項に記載の方法。 In the step of irradiating the wafer with the electron beam, the electrons are applied to the wafer including the three-dimensional structural pattern in a state where the sample stage is tilted so that the incident direction of the electron beam is parallel to the normal vector. The method according to any one of claims 1 to 3, which is a step of irradiating a beam.
  6.  前記画像から前記三次元構造パターンの傾きを算出する工程をさらに含む、請求項1乃至5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, further comprising a step of calculating the inclination of the three-dimensional structure pattern from the image.
  7.  前記三次元構造パターンは、前記ウェーハの深さ方向に次元を持つ1つまたは複数のパターンである、請求項1乃至5のいずれかの一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the three-dimensional structural pattern is one or more patterns having dimensions in the depth direction of the wafer.
  8.  前記三次元構造パターンは、上層パターンと下層パターンを含み、
     前記方法は、前記画像から、前記上層パターンと前記下層パターン間の位置ずれを算出する工程をさらに含む、請求項7に記載の方法。
    The three-dimensional structure pattern includes an upper layer pattern and a lower layer pattern.
    The method according to claim 7, further comprising the step of calculating the positional deviation between the upper layer pattern and the lower layer pattern from the image.
PCT/JP2021/020617 2020-06-10 2021-05-31 Image generating method WO2021251190A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-101065 2020-06-10
JP2020101065A JP2021197225A (en) 2020-06-10 2020-06-10 Image generation method

Publications (1)

Publication Number Publication Date
WO2021251190A1 true WO2021251190A1 (en) 2021-12-16

Family

ID=78845639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020617 WO2021251190A1 (en) 2020-06-10 2021-05-31 Image generating method

Country Status (2)

Country Link
JP (1) JP2021197225A (en)
WO (1) WO2021251190A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075246A1 (en) * 2001-03-16 2002-09-26 Hitachi, Ltd. Method for measuring dimensions of pattern
JP2018139174A (en) * 2017-02-24 2018-09-06 株式会社ホロン Sample inclination automatic correction device and sample inclination automatic correction method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002075246A1 (en) * 2001-03-16 2002-09-26 Hitachi, Ltd. Method for measuring dimensions of pattern
JP2018139174A (en) * 2017-02-24 2018-09-06 株式会社ホロン Sample inclination automatic correction device and sample inclination automatic correction method

Also Published As

Publication number Publication date
JP2021197225A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
TWI755576B (en) Overlay metrology systems and methods
JP6511193B2 (en) Pattern measurement apparatus and pattern measurement method
JP6038053B2 (en) Pattern evaluation method and pattern evaluation apparatus
JP2019536057A (en) Full beam measurement of X-ray scatterometry system
KR102521799B1 (en) Pattern measurement device and pattern measurement method
JP5439375B2 (en) Standard member for calibration, scanning electron microscope using the same, and calibration method for scanning electron microscope
WO2011013342A1 (en) Pattern evaluation method, device therefor, and electron beam device
JP5357889B2 (en) Charged particle beam equipment
TWI584334B (en) Charged particle lithography system with alignment sensor and beam measurement sensor
JP4213527B2 (en) 3D shape measuring device
TW202001973A (en) Charged Particle Beam Image Acquisition Apparatus
JP2015216225A (en) Lithography apparatus and method, and method of manufacturing article
WO2004044968A1 (en) Exposure device, exposure method, and semiconductor device manufacturing method
US6407398B1 (en) Electron beam exposure apparatus and exposure method
JP5025964B2 (en) Charged particle beam drawing method and charged particle beam drawing apparatus
US10950410B2 (en) Multiple electron beam inspection apparatus with through-hole with spiral shape
KR20060125738A (en) A measurement system and a method
WO2021251190A1 (en) Image generating method
US7910885B2 (en) System and method for determining a cross sectional feature of a structural element using a reference structural element
US10515779B2 (en) Imaging system and imaging method
US20160379902A1 (en) Measurement apparatus, measurement method, and manufacturing method of semiconductor device
JPH05190435A (en) Electron beam lithography method of semiconductor device
JP2010073870A (en) Charged particle beam lithography apparatus and method
US20230375338A1 (en) Pattern Measurement Device
US20240175829A1 (en) Inspection apparatus and inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822200

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822200

Country of ref document: EP

Kind code of ref document: A1