WO2002075246A1 - Method for measuring dimensions of pattern - Google Patents

Method for measuring dimensions of pattern Download PDF

Info

Publication number
WO2002075246A1
WO2002075246A1 PCT/JP2001/002130 JP0102130W WO02075246A1 WO 2002075246 A1 WO2002075246 A1 WO 2002075246A1 JP 0102130 W JP0102130 W JP 0102130W WO 02075246 A1 WO02075246 A1 WO 02075246A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
sample surface
incident
pattern
sample
Prior art date
Application number
PCT/JP2001/002130
Other languages
French (fr)
Japanese (ja)
Inventor
Fumio Mizuno
Mitsugu Sato
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2001/002130 priority Critical patent/WO2002075246A1/en
Priority to JP2002573615A priority patent/JPWO2002075246A1/en
Publication of WO2002075246A1 publication Critical patent/WO2002075246A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2814Measurement of surface topography

Definitions

  • the present invention irradiates a probe such as an electron beam onto a sample surface such as a wafer in a manufacturing process of a semiconductor device, an imaging device, and a display device by pattern processing, and measures and measures process parameters such as pattern dimensions. On how to do. Rice field
  • the length measurement SEM is used for measuring a pattern dimension in a semiconductor device manufacturing process or the like.
  • the measurement of the pattern size is performed by the following procedure using the SEM sample image and the line profile.
  • a pattern edge position is determined from the obtained line profile according to a predetermined pattern edge determination algorithm.
  • the obtained calculated value is output as a pattern dimension measured value.
  • the required dimension measurement accuracy has been reduced by a factor of 0.7 times in three years with the progress of miniaturization of patterns of semiconductor devices.
  • dimensional measurement accuracy of 1.4 nm or less is required to measure an isolated line having a width of 70 nm.
  • means for accurately measuring the incident angle of the electron beam is required.
  • the (focal plane) coincides, and the focal position of the electron beam does not change when the electron beam focuses on the sample plane at any position on the sample plane.
  • the sample surface and the optical axis of the incident electron beam are not orthogonal and 0 ⁇ 0, the sample surface and the focal plane of the incident electron beam have an angle of ⁇ 0, as shown in FIG. 3 (b). , The focus position changes from place to place.
  • the rising portion or the falling portion of the obtained line profile waveform is a part of the pattern.
  • the focal position of the electron beam is on the pattern. With a positive focus Although the left end is steep, the incident electron beam does not become a positive focus, and the right end where the focus of the electron beam deviates from above the pattern becomes blunt.
  • the incident angle formed by the electron beam with the sample surface can be obtained from the obtained difference between the positive focus positions. Also, adjust the tilt of the sample using the tilt function of the sample stage so that the incident electron beam is focused at all points within the observation location, or use the electron beam based on the calculated electron beam incident angle. By controlling the deflector to change the incident direction of the electron beam, the incident angle of the electron beam can be set to a predetermined value.
  • the pattern dimension measuring method according to the present invention is as follows.
  • the incident probe calculates the positive focus position of the incident probe that focuses on the sample surface, and enters the light based on the distance between the visual fields for which the positive focus position was calculated and the difference between the positive focus positions in each field of view.
  • a pattern dimension measuring method characterized in that an incident angle between a probe and a sample surface is obtained.
  • the positive focus position of the incident probe means the focal position of the incident probe when the incident probe is focused on the sample surface.
  • the incident probe finds the positive focus position of the incident probe that focuses on the sample surface in multiple fields of view on the sample surface, and enters based on the distance between the field of view where the positive focus position was found and the difference between the positive focus positions in each field of view.
  • a pattern dimension measuring method comprising: determining an incident angle formed by a probe with a sample surface; adjusting an incident angle of an incident probe and / or a tilt of the sample surface; and setting the incident angle of the probe to a predetermined value.
  • the incident probe determines the positive focus position of the incident probe that focuses on the sample surface in multiple fields of view on the sample surface, and calculates the distance between the field of view and the positive focus in each field.
  • a method for measuring a pattern dimension comprising: obtaining an incident angle between an incident probe and a sample surface from a position difference; and correcting the obtained measured pattern dimension using the incident angle.
  • a pattern size measuring method characterized by adjusting the tilt of the sample surface so that the focal point of the incident probe is at the correct focal point where the focus is focused on the sample surface in a plurality of fields on the sample surface, and then measuring the pattern size.
  • the operation for obtaining the focus point position is performed at a magnification higher than the magnification at the time of pattern dimension measurement.
  • the operation for obtaining the focus point position is performed at an incident probe opening angle larger than the incident probe opening angle at the time of pattern dimension measurement.
  • a pattern dimension measuring method characterized by the following.
  • the operation of obtaining the focus point position is performed by forming a line profile group of the detection signal while changing the focus position of the incident probe. And a focus position at which the steepest line profile is obtained is defined as a focus position.
  • the movement to the visual field for obtaining the focus point position is performed by electromagnetically deflecting the incident probe. Characteristic pattern dimension measurement method.
  • the field of view for obtaining the positive focus position passes through the pattern dimension measuring field of view and moves the sample stage.
  • a pattern dimension measuring method characterized by being arranged on one or two straight lines along a moving direction.
  • FIG. 1 is a diagram showing a schematic configuration of a length measuring SEM as an example of a pattern shape measuring apparatus according to the present invention.
  • FIG. 2 is a diagram for showing that the accuracy of re-pattern dimension measurement is reduced due to the non-zero electron beam incident angle.
  • FIG. 3 is a diagram for explaining the relationship between the electron beam incident angle, the focal plane, and the sample plane, which is the principle of the present invention.
  • FIG. 4 is a diagram showing a change in the shape of the line profile when the sample is inclined.
  • FIG. 5 is a diagram showing the relationship between the beam focal position and the line profile shape.
  • FIG. 6 is a diagram showing a flow of an example of a pattern dimension measuring process according to the present invention.
  • FIG. 7 is a diagram for explaining the relationship between the dimension measurement visual field and the focus position measurement visual field.
  • FIG. 8 is a diagram showing a configuration example for adjusting the sample height on the sample stage.
  • FIG. 9 is a schematic diagram for explaining a pattern height and a side wall inclination angle.
  • FIG. 10 is a diagram illustrating an example of an algorithm for obtaining a pattern height and a sidewall inclination angle from a pattern image.
  • FIG. 11 is an explanatory diagram of a magnification calibration standard sample.
  • BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the accompanying drawings.
  • FIG. 1 is a diagram showing a schematic configuration of a length measuring SEM as an example of a pattern shape measuring apparatus according to the present invention.
  • the electron beam 2 emitted from the electron gun 1 is accelerated to a predetermined energy, then narrowed down by the converging lens 3 and the objective lens 4, and passes through the load / unload chamber 10 into the sample chamber 11. Focus on the surface of wafer 5 on sample stage 12 introduced into Generally, the converging lens 3 is used for controlling the electron beam current value, and the objective lens 4 is used for adjusting the focal position of the electron beam 2.
  • the trajectory of the electron beam 2 whose focus has been adjusted as described below is bent by the upper and lower deflectors 6, and the two-dimensional or two-dimensional surface of the wafer 5 is set with the objective lens aperture 20 as a fulcrum of deflection.
  • secondary electrons 7 are emitted from the wafer portion irradiated with the electron beam 2.
  • the secondary electrons 7 are detected by the secondary electron detector 8, converted into electric signals, and then subjected to signal processing such as amplification and AZD conversion in the signal processing unit 14.
  • the processed image signal is stored in the memory unit 15 and is used for luminance modulation or Y modulation of the display 9.
  • the scanning lines of the display 9 are scanned in synchronization with the scanning of the electron beam 2 on the wafer surface, and a sample image is formed on the display. If two-dimensional scanning and luminance modulation are applied, a sample image is displayed. If one-dimensional scanning and Y modulation are applied, a line profile is drawn. At this time, the observation magnification of the sample image is inversely proportional to the amount of electron beam deflection on the sample surface, and can be changed by adjusting the strength of the deflector.
  • the relationship between the electronic beam focal position and the line profile shape as shown in FIG. 5 is used to adjust the focal position for finding the correct focal position.
  • the line profile obtained when the electron beam crosses the pattern has a sharp rising edge and a sharp falling edge if the electron beam is focused on the pattern as shown in Fig. 5 (a). If the pattern is out of focus as shown in Fig. 5 (b), the rising and falling portions become dull.
  • the control unit 17 forms the line profile while changing the output of the lens power supply 18, that is, the objective lens excitation current value, and sets the objective lens excitation current value where the steepest line profile is obtained.
  • Fig. 6 shows the procedure for pattern dimension measurement by the length measurement SEM shown in Fig. 1. This will be described below with reference to FIG.
  • step 11 the stage is moved to the dimension measurement visual field. After forming the sample image in step 12, the electron beam is accurately focused and the measurement pattern is positioned. Next, proceed to step 13 to change the observation magnification and electron beam opening angle for setting the focal position. Both the focal position setting magnification and the focal position setting electron beam opening angle are set to values larger than the observation magnification and the electron beam opening angle at the time of dimension measurement in order to increase the measurement accuracy of the positive focal position.
  • the aperture angle of the electron beam can be changed by forming a dimension measurement aperture and a focus position setting aperture at the aperture of the converging lens 3 or the objective lens 4 and deflecting and selecting the electron beam at a predetermined aperture. Do.
  • the deflector is controlled to move to the focal position measurement field of view electrically.
  • the focus position measurement field is located outside the dimension measurement field to increase the measurement accuracy of the electron beam incident angle.
  • the position where the focal position measurement field of view is placed is as follows: (1) In order to enable the field of view to be moved in a short time using the electron beam deflector 6, the electron beam is telecentric, that is, perpendicular to the sample surface. And (2) the direction of incidence and angle of use, depending on the application, for example, two points along the X movement direction of the stage, or As shown in Fig. 7, three points are set, two points along the X movement direction and one point along the Y movement direction.
  • step 15 in the moved focal position measurement visual field, a line profile is acquired while changing the positional relationship between the electron beam focal position and the sample surface in a predetermined step in the optical axis direction, and the right focus position is determined.
  • the focal position is changed by, for example, assembling an array of small vertically moving actuators made of piezoelectric elements on a wafer fixing pallet installed on the sample stage 12 as shown in Fig. 8. It is. In other words, assuming that the field of view is now moving to the focal position measurement field of view a, the actuator immediately below the focal point measurement field of view a is moved up and down so that the line profile becomes the steepest, and the wafer height at section a To the focus position.
  • Step 16 After adjusting the wafer height to the correct focus position within the focus position measurement field of view a, Step 16 Then, return to step 14 to move to the next focus position measurement field of view, for example, field of view b, and similarly move the actuator immediately below field of view b to adjust the wafer height in section b to the normal focus position . That is, the height of the wafer in section b is adjusted so that the obtained line profile is the steepest.
  • the correct focus position is determined in all the focus position measurement visual fields. For example, in the case of FIG. 7 in which measurement is performed at two points in the X-axis direction and at one point in the Y-axis direction, the positive focus position is determined in three focus position measurement fields of view a, b, and c, respectively.
  • step 17 Since the conditions for perpendicular incidence of the electron beam on the sample surface have been obtained by the above processing, proceed to step 17 and change the observation magnification and the electron beam opening angle to the dimension measurement magnification and the dimension measurement opening angle.
  • step 18 the deflector 6 is controlled to electrically move to the dimension measurement visual field and position the measurement pattern.
  • step 19 it is confirmed that the lens is at the correct focal position, and the flow advances to step 20 to measure a pattern dimension of a desired portion.
  • the pattern dimension measurement is performed according to a known procedure. That is, a line profile is formed by one-dimensional scanning of the electron beam across the measurement pattern in the direction in which the dimension on the pattern is to be obtained, and the pattern edge position is determined from the obtained line profile according to a predetermined pattern edge determination algorithm.
  • the dimensions of the measurement pattern are calculated from the obtained pattern edge position intervals.
  • the obtained calculated value is output as a pattern dimension measured value.
  • the electron beam incident angle ⁇ ⁇ on the sample surface may be measured, for example, separately for the X component and the ⁇ component.
  • the X component of ⁇ ⁇ can be measured as follows. For example, as shown in Fig. 7, the focus position measurement visual fields a and b are set at a distance d in the X direction outside the dimension measurement visual field. The distance d can be obtained based on the deflection current of the deflector 6 when the visual field moves from the visual field a to the visual field b. Then, in the focus position measurement field of view a, the positive focus position fa where the incident electron beam focuses on the sample surface, and in the focus position measurement field of view b, The position fb at which the incident electron beam focuses on the sample surface is determined.
  • the positive focus positions fa and fb can be obtained from the excitation current correction value of the objective lens 4 necessary to obtain the steepest line profile in each field of view.
  • the X-direction component of ⁇ ⁇ is calculated as atan ⁇ (f b — f a) no d ⁇ .
  • the Y-direction component of ⁇ 0 can also be obtained in a similar manner from measurements in two focus position measurement fields set on a straight line parallel to the Y-axis.
  • the amount of defocus from the positive focus position in the focus position measurement field of view a and the focus position measurement field b Similar results can be obtained by using the amount of defocus from the correct focus position.
  • the amount of defocus from the positive focus position in the focal position measurement field of view is determined by measuring the line profile of the sample surface at each position while moving the sample in the optical axis direction by the sample stage, and obtaining the steepest line profile. Can also be obtained as the distance in the optical axis direction by which is moved.
  • the incident electron beam with respect to the sample surface can be obtained by changing the sample height or (2) changing the excitation current of the objective lens, as described above.
  • a line profile group is formed while changing the focal position of the line, and the focal position at which the line profile having the sharpest rising edge and the sharpest falling edge of the waveform is obtained as the normal focus position.
  • the depth of focus DOF is expressed as DOF oc l / ⁇ using the observation magnification M and the half-open angle of the electron beam. Therefore, as shown in step 13 in Fig. 6, (1) (2)
  • the electron beam opening angle larger than the electron beam opening angle at the time of pattern dimension measurement is used to obtain the right focus position.
  • the influence of ⁇ 0 can be corrected by the following equation.
  • FIG. 9 shows a case where the height H of the pattern and the inclination angle ⁇ of the side wall are obtained using the schematic diagram of FIG. 9 and the flowchart of FIG.
  • the pattern height H and the side wall inclination angle 0 are required to precisely control the gate processing and trench processing of a semiconductor device. From the length LP of the side wall on the image when the electron beam is incident vertically and the length L i when the electron beam is incident at an angle of ⁇ , the procedure shown in Fig. 10 is used. Obtain the pattern height H, side wall length L, and inclination angle ⁇ . If L p and L i can be measured more accurately and more precisely, it is possible, of course, to calculate more reliable values of H, L and ⁇ .
  • step 31 an electron beam is perpendicularly incident on the sample surface, and Lp is measured from the pattern image at that time.
  • step 32 an electron beam is obliquely incident on the sample surface at an incident angle, and L ⁇ is measured from the pattern image at that time.
  • FIG. 11 shows an example of a calibration standard sample.
  • the upper part of FIG. 11 is a plan view of the calibration standard sample, and the lower part is a cross-sectional view.
  • This calibration standard sample is a process in which a fine line pattern group is processed on a Si single crystal substrate by a process similar to LSI processing using the optical interference exposure method and the anisotropic jet etching method. . According to this method, a group of lines with extremely accurate pitch can be formed, and it is used to calibrate the magnification of the length measurement SEM.
  • a pattern image corresponding to the plan view of Fig. 11 is formed by vertically incident an electron beam.
  • the pitch on the image is measured, and the length of the length-measuring SEM is adjusted so that the measured value matches the calibration value of the standard sample pitch. Adjust the observation magnification. In this case as well, the more accurate the pitch measurement, the more accurate the calibration.
  • a higher-resolution sample image can be formed over the entire screen. This also means that all measurements using sample images can be performed with higher accuracy.
  • the length measurement SEM using an electron beam has been described as an example.
  • the device to which the present invention is applied is not limited to SEM.
  • the present invention can be similarly applied to an apparatus using an ion beam other than an electron beam, a laser beam, or the like as a probe.
  • an ion beam other than an electron beam, a laser beam, or the like as a probe.
  • a laser beam is used as the scanning beam instead of the electron beam of the measurement SEM, pattern dimensions and the distance between two points can be measured by the same principle. Even in such a case, controlling the incident angle of the scanning laser beam accurately and precisely leads to an improvement in measurement accuracy.
  • the pattern size can be reduced by a direct effect or an indirect effect such as a higher resolution of the sample image and an improvement in the calibration accuracy.
  • the three-dimensional shape value such as the two-dimensional shape value or the hole depth can be obtained with higher accuracy.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

A method for measuring process parameters, e.g. dimensions of a patter, by irradiating the surface of a sample, e.g. an wafer, with a probe, e.g. an electron beam. When the positive focal position of an electron beam is measured in a plurality of points on the surface of a sample, incident angle of the electron beam to the surface of the sample can be determined from the difference of the measured positive focal positions. Dimensions of a pattern are measured by adjusting the inclination of the sample utilizing the function of inclining a sample stage so that an incident electron beam is focused positively in all points in an observation position, or altering the incident angle of the electron beam by controlling an electron beam deflector based on the measured incident angle of the electron beam thereby setting the incident angle of the electron beam at a specified value.

Description

パターン寸法測定方法 技術分野 Pattern dimension measuring method Technical field
本発明は、 パターン加工による半導体素子、 撮像素子、 表示素子の製造工程な どにおいて、 電子ビーム等のプローブをウェハ等の試料面上に照射し、 パターン 寸法などのプロセスパラメ一タを計明測するための方法に関する。 田  The present invention irradiates a probe such as an electron beam onto a sample surface such as a wafer in a manufacturing process of a semiconductor device, an imaging device, and a display device by pattern processing, and measures and measures process parameters such as pattern dimensions. On how to do. Rice field
背景技術 Background art
測長 S E M (Scanning Electron Microscope) を例にとって説明する。 測長 S E Mは、 半導体素子の製造工程等においてパターン寸法を計測するために用いら れる。パターン寸法の計測は、 S E Mの試料像及びラインプロファイルを用いて、 以下のような手順で行われる。  A description will be given of an example of a measuring SEM (Scanning Electron Microscope). The length measurement SEM is used for measuring a pattern dimension in a semiconductor device manufacturing process or the like. The measurement of the pattern size is performed by the following procedure using the SEM sample image and the line profile.
( 1 ) 試料像を形成した後、 電子ビームの焦点を正確に合わせた上、 測定パター ンを位置決めする。  (1) After forming the sample image, accurately focus the electron beam and position the measurement pattern.
( 2 ) 測定パターンを横切るようにして電子ビ一ムを一次元走査し、 ラインプロ ファイルを形成する。 電子ビームの走査方向は、 測定パターン上の寸法を求めた い方向に合致している。  (2) One-dimensional scanning of the electron beam across the measurement pattern to form a line profile. The scanning direction of the electron beam matches the direction in which the dimensions on the measurement pattern are to be obtained.
( 3 ) 得られたラインプロファイルから、 所定のパターンエッジ決定アルゴリズ ムに従って、 パターンエッジ位置を決定する。  (3) A pattern edge position is determined from the obtained line profile according to a predetermined pattern edge determination algorithm.
( 5 )得られたパターンエッジの位置間隔から、測定パターンの寸法を算出する。 エッジ間隔の算出値は、 これに相当する電子ビーム偏向量から換算される。  (5) Calculate the dimensions of the measurement pattern from the obtained pattern edge position intervals. The calculated value of the edge interval is converted from the corresponding electron beam deflection amount.
( 6 ) 得られた算出値を、 パターン寸法測定値として出力する。  (6) The obtained calculated value is output as a pattern dimension measured value.
以上が測長 S E Mを用いてパターン寸法を測定する際の標準的な処理フローで あるが、 パターン面と電子ビームのなす角度 (電子ビーム入射角) を求め、 制御 するための操作は行われていない。 したがって、 試料交換、 ビーム調整などの操 作、 あるいは浮遊磁場変動などの外乱に起因して電子ビーム入射角 Δ 0がばらつ いた場合には、 図 2に模擬的に示すように寸法測定値 a bとパターン幅 wとの間 に幾何学的な差 w (cosA Θ - 1 ) を生じるだけではなく、 左右のパターンエッジ におけるラインプロファイル形状が非対称になるため、 測定精度が低下する。 特 に、 ラインプロファイルが非対称な形になることは、 寸法測定精度に大きな影響 を与えることが実験的に確かめられている。 The above is the standard processing flow for pattern dimension measurement using length-measuring SEM.However, operations to determine and control the angle between the pattern surface and the electron beam (electron beam incident angle) are performed. Absent. Therefore, the electron beam incident angle Δ0 varies due to operations such as sample exchange and beam adjustment, or disturbances such as stray magnetic field fluctuations. In addition to the geometrical difference w (cosA Θ -1) between the dimension measurement value ab and the pattern width w, as shown in Fig. 2, the line at the left and right pattern edges As the profile shape becomes asymmetric, measurement accuracy decreases. In particular, it has been experimentally confirmed that the asymmetrical line profile has a large effect on the dimension measurement accuracy.
近年、 半導体素子のパターン微細化の進展に伴ない、 必要とされる寸法測定精 度も 0 . 7倍ノ3年の割合で縮小している。 例えば、 2 0 0 5年 l O O n m技術 ノードでは、 7 0 n m幅の孤立ラインを測定するために、 1 . 4 n m以下の寸法 測定精度が要求されている。 測長 S E Mがこのような要求測定精度を達成するた めには、 電子ビームの各パラメータをより精密に制御することが必須となる。 特 に、 電子ビーム入射角の正確さを高め、 ばらつきを小さくすることが重要である。 そして、 電子ビームを正確な角度で試料面に入射し、 かつ入射角のばらつきを低 減するためには、電子ビームの入射角を正確に測定するための手段が必要となる。 本発明は、 このような状況に鑑み、 電子ビーム等のプローブの試料面への入射 角を正確に測定するための方法及び装置を提供することを目的とする。 また、 本 発明は、 パターン寸法を高精度に測定するための方法及び装置を提供することを 目的とする。 発明の開示  In recent years, the required dimension measurement accuracy has been reduced by a factor of 0.7 times in three years with the progress of miniaturization of patterns of semiconductor devices. For example, at the 2005 O O nm technology node, dimensional measurement accuracy of 1.4 nm or less is required to measure an isolated line having a width of 70 nm. In order for the SEM to achieve such required measurement accuracy, it is essential to control each parameter of the electron beam more precisely. In particular, it is important to increase the accuracy of the electron beam incident angle and reduce its dispersion. In order to make the electron beam incident on the sample surface at an accurate angle and to reduce the dispersion of the incident angle, means for accurately measuring the incident angle of the electron beam is required. An object of the present invention is to provide a method and an apparatus for accurately measuring the angle of incidence of a probe such as an electron beam on a sample surface in view of such a situation. Another object of the present invention is to provide a method and an apparatus for measuring a pattern dimension with high accuracy. Disclosure of the invention
試料面と電子ビーム (プローブ) の光軸が直交してぉリ電子ビーム入射角 Δ 0 = 0であれば、 図 3 ( a ) に示すように、 試料面と入射電子ビームの焦点のなす 面 (焦点面) は一致し、 試料面上のどの位置においても正焦点位置、 すなわち試 料面上に電子ビームが焦点を結ぶときの電子ビームの焦点位置は変らな 、。一方、 もしも試料面と入射電子ビームの光軸とが直交しておらず厶 0≠ 0であれば、 図 3 ( b )に示すように試料面と入射電子ビームの焦点面が△ 0の角度をなすため、 正焦点位置は場所毎に変化する。 そして、 得られるラインプロファイル波形の立 ち上がり部あるいは立ち下がリ部は、 例えば試料面と入射電子ビームとの関係が 図 4に示すような場合、 電子ビームの焦点位置がパターン上にあって正焦点とな つている左端では急峻となるが、 入射電子ビームが正焦点とならず電子ビームの 焦点がバタ一ン上からずれた右端では鈍つた形状となる。 If the sample surface is perpendicular to the optical axis of the electron beam (probe) and the incident angle of the electron beam Δ 0 = 0, then the surface between the sample surface and the focal point of the incident electron beam, as shown in Fig. 3 (a). The (focal plane) coincides, and the focal position of the electron beam does not change when the electron beam focuses on the sample plane at any position on the sample plane. On the other hand, if the sample surface and the optical axis of the incident electron beam are not orthogonal and 0 厶 0, the sample surface and the focal plane of the incident electron beam have an angle of △ 0, as shown in FIG. 3 (b). , The focus position changes from place to place. The rising portion or the falling portion of the obtained line profile waveform is a part of the pattern. For example, when the relationship between the sample surface and the incident electron beam is as shown in FIG. 4, the focal position of the electron beam is on the pattern. With a positive focus Although the left end is steep, the incident electron beam does not become a positive focus, and the right end where the focus of the electron beam deviates from above the pattern becomes blunt.
この現象を利用すれば、 電子ビーム (プローブ) の試料面上の場所毎における 焦点位置を調整すること、 あるいは正焦点位置を求めることができる。 そして、 試料面上の複数箇所において電子ビームの正焦点位置を測定すると、 得られた正 焦点位置の差から電子ビームが試料面となす入射角を求めることができる。また、 観測個所内の全ての点で入射電子ビームが正焦点を結ぶように試料ステージの傾 斜機能を利用して試料の傾きを調整するか、 あるいは求めた電子ビーム入射角を 基に電子ビーム偏向器を制御して電子ビームの入射方向を変更することにより、 電子ビーム入射角を所定の値に設定することができる。  Using this phenomenon, it is possible to adjust the focus position of the electron beam (probe) at each position on the sample surface, or to obtain the correct focus position. Then, when the positive focus position of the electron beam is measured at a plurality of positions on the sample surface, the incident angle formed by the electron beam with the sample surface can be obtained from the obtained difference between the positive focus positions. Also, adjust the tilt of the sample using the tilt function of the sample stage so that the incident electron beam is focused at all points within the observation location, or use the electron beam based on the calculated electron beam incident angle. By controlling the deflector to change the incident direction of the electron beam, the incident angle of the electron beam can be set to a predetermined value.
すなわち、 本発明によるパターン寸法測定方法は、 以下の通りである。  That is, the pattern dimension measuring method according to the present invention is as follows.
( 1 ) 細く絞ったプローブを試料面に照射し、 プローブとの相互作用により試料 から発生した信号を検出し、 当該検出信号を用いて試料面に形成されたパターン の寸法を測定する方法において、 試料面上の複数の視野において入射プローブが 試料面に焦点を結ぶ入射プロ一ブの正焦点位置を求め、 正焦点位置を求めた視野 間の距離と各視野における正焦点位置の差とから入射プロ一ブが試料面となす入 射角を求めることを特徴とするパターン寸法測定方法。  (1) A method of irradiating a sample surface with a finely narrowed probe, detecting a signal generated from the sample due to interaction with the probe, and measuring a dimension of a pattern formed on the sample surface using the detected signal. In multiple fields of view on the sample surface, the incident probe calculates the positive focus position of the incident probe that focuses on the sample surface, and enters the light based on the distance between the visual fields for which the positive focus position was calculated and the difference between the positive focus positions in each field of view. A pattern dimension measuring method characterized in that an incident angle between a probe and a sample surface is obtained.
入射プロ一ブの正焦点位置とは、 入射プロ一ブが試料面上に焦点を結ぶときの 入射プロ一ブの焦点位置をいう。  The positive focus position of the incident probe means the focal position of the incident probe when the incident probe is focused on the sample surface.
( 2 ) 細く絞ったプローブを試料面に照射し、 プロ一ブとの相互作用により試料 から発生した信号を検出し、 当該検出信号を用いて試料面に形成されたパターン の寸法を測定する方法において、 試料面上の複数の視野において入射プローブが 試料面に焦点を結ぶ入射プローブの正焦点位置を求め、 正焦点位置を求めた視野 間の距離と各視野における正焦点位置の差とから入射プロ一ブが試料面となす入 射角を求め、 入射プローブの入射角及び 又は試料面の傾きを調整しプローブの 入射角を所定の値に設定することを特徴とするパターン寸法測定方法。  (2) A method of irradiating a sample surface with a finely focused probe, detecting a signal generated from the sample by interaction with the probe, and measuring the dimensions of a pattern formed on the sample surface using the detected signal. In, the incident probe finds the positive focus position of the incident probe that focuses on the sample surface in multiple fields of view on the sample surface, and enters based on the distance between the field of view where the positive focus position was found and the difference between the positive focus positions in each field of view. A pattern dimension measuring method comprising: determining an incident angle formed by a probe with a sample surface; adjusting an incident angle of an incident probe and / or a tilt of the sample surface; and setting the incident angle of the probe to a predetermined value.
( 3 ) 細く絞ったプローブを試料面に照射し、 プローブとの相互作用により試料 から発生した信号を検出し、 当該検出信号を用いて試料面に形成されたパターン の寸法を測定する方法において、 試料面上の複数の視野において入射プローブが 試料面に焦点を結ぶ入射プローブの正焦点位置を求め、 正焦点位置を求めた視野 間の距離と各視野における正焦点位置の差とから入射プロ一ブが試料面となす入 射角を求め、 得られたパターン寸法計測値を当該入射角を用いて補正することを 特徴とするパターン寸法測定方法。 (3) The sample surface is illuminated with a finely squeezed probe, a signal generated from the sample due to interaction with the probe is detected, and a pattern formed on the sample surface using the detected signal In the method for measuring the dimensions of the sample, the incident probe determines the positive focus position of the incident probe that focuses on the sample surface in multiple fields of view on the sample surface, and calculates the distance between the field of view and the positive focus in each field. A method for measuring a pattern dimension, comprising: obtaining an incident angle between an incident probe and a sample surface from a position difference; and correcting the obtained measured pattern dimension using the incident angle.
(4) 細く絞ったプローブを試料面に照射し、 プローブとの相互作用により試料 から発生した信号を検出し、 当該検出信号を用いて試料面に形成されたパターン の寸法を測定する方法において、 試料面上の複数の視野において入射プローブの 焦点が試料面に焦点を結ぶ正焦点位置となるように試料面の傾きを調整し、 その 後パターン寸法を測定することを特徴とするパターン寸法測定方法。  (4) A method of irradiating a sample surface with a finely squeezed probe, detecting a signal generated from the sample due to interaction with the probe, and measuring a dimension of a pattern formed on the sample surface using the detected signal. A pattern size measuring method characterized by adjusting the tilt of the sample surface so that the focal point of the incident probe is at the correct focal point where the focus is focused on the sample surface in a plurality of fields on the sample surface, and then measuring the pattern size. .
(5) ( 1 ) 〜 (4) のいずれかに記載のパターン寸法測定方法において、 正焦 点位置を求める操作を、 パターン寸法測定時の倍率よリも高い倍率で行うことを 特徴とするバタ一ン寸法測定方法。  (5) In the pattern dimension measuring method according to any one of (1) to (4), the operation for obtaining the focus point position is performed at a magnification higher than the magnification at the time of pattern dimension measurement. One dimension measurement method.
(6) ( 1 ) 〜 (4) のいずれかに記載のパターン寸法測定方法において、 正焦 点位置を求める操作を、 パターン寸法測定時の入射プローブ開き角よりも大きい 入射プローブ開き角で行うことを特徴とするパターン寸法測定方法。  (6) In the pattern dimension measuring method according to any one of (1) to (4), the operation for obtaining the focus point position is performed at an incident probe opening angle larger than the incident probe opening angle at the time of pattern dimension measurement. A pattern dimension measuring method characterized by the following.
(7) ( 1 ) 〜 (6) のいずれかに記載のパターン寸法測定方法において、 正焦 点位置を求める操作を、 入射プローブの焦点位置を変化させながら検出信号のラ ィンプロファイル群を形成し、 最も急峻なラインプロファイルが得られた焦点位 置を正焦点位置とすることを特徴とするパターン寸法測定方法。  (7) In the pattern dimension measurement method according to any one of (1) to (6), the operation of obtaining the focus point position is performed by forming a line profile group of the detection signal while changing the focus position of the incident probe. And a focus position at which the steepest line profile is obtained is defined as a focus position.
(8) ( 1 ) 〜 (7) のいずれかに記載のパターン寸法測定方法において、 正焦 点位置を求めるための視野をパターン寸法測定視野の範囲外に設定することを特 徴とするパターン寸法測定方法。  (8) The pattern dimension measuring method according to any one of (1) to (7), wherein the field of view for determining the focus point position is set outside the range of the pattern dimension measuring field of view. Measuring method.
(9) ( 1 ) 〜 (8) のいずれかに記載のパターン寸法測定方法において、 正焦 点位置を求めるための視野への移動を入射プロ一ブを電磁気的に偏向させること によって行うことを特徴とするパターン寸法測定方法。  (9) In the pattern dimension measuring method according to any one of (1) to (8), the movement to the visual field for obtaining the focus point position is performed by electromagnetically deflecting the incident probe. Characteristic pattern dimension measurement method.
( 1 0) (1 ) 〜 (9) のいずれかに記載のパターン寸法測定方法において、 正 焦点位置を求めるための視野が、 パターン寸法測定視野を通り試料ステージの移 動方向に沿った一本又は二本の直線上に配置されていることを特徴とするパター ン寸法測定方法。 (10) In the pattern dimension measuring method according to any one of (1) to (9), the field of view for obtaining the positive focus position passes through the pattern dimension measuring field of view and moves the sample stage. A pattern dimension measuring method characterized by being arranged on one or two straight lines along a moving direction.
( 1 1 ) ( 1 ) 〜 (1 0 ) のいずれかに記載のパターン寸法測定方法において、 プロ一ブが電子ビ一ム、 イオンビームあるいはレ一ザビ一ムであることを特徴と するパターン寸法測定方法。  (11) The pattern dimension measuring method according to any one of (1) to (10), wherein the probe is an electron beam, an ion beam, or a laser beam. Measuring method.
本発明によると、 電子ビームの入射角を求め、 試料面への電子ビーム入射角を 精密に制御できることから、 パターン寸法の高精度測定が可能になる。 図面の簡単な説明  According to the present invention, since the incident angle of the electron beam can be obtained and the incident angle of the electron beam on the sample surface can be precisely controlled, high-precision measurement of the pattern dimension becomes possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明によるパターン形状測定装置の一例としての測長 S E Mの概略 構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of a length measuring SEM as an example of a pattern shape measuring apparatus according to the present invention.
図 2は、 電子ビーム入射角が 0でないことに依リパターン寸法測定精度が低下 することを示すための図である。  FIG. 2 is a diagram for showing that the accuracy of re-pattern dimension measurement is reduced due to the non-zero electron beam incident angle.
図 3は、 本発明の原理となる電子ビーム入射角と焦点面、 試料面との関係を説 明するための図である。  FIG. 3 is a diagram for explaining the relationship between the electron beam incident angle, the focal plane, and the sample plane, which is the principle of the present invention.
図 4は、 試料が傾斜している場合のラインプロフアイルの形状変化を示す図で ある。  FIG. 4 is a diagram showing a change in the shape of the line profile when the sample is inclined.
図 5は、 ビーム焦点位置とラインプロフアイル形状の関係を示す図である。 図 6は、 本発明によるパターン寸法測定処理の一例のフローを示す図である。 図 7は、 寸法測定視野と焦点位置測定視野の関係を説明する図である。  FIG. 5 is a diagram showing the relationship between the beam focal position and the line profile shape. FIG. 6 is a diagram showing a flow of an example of a pattern dimension measuring process according to the present invention. FIG. 7 is a diagram for explaining the relationship between the dimension measurement visual field and the focus position measurement visual field.
図 8は、 試料ステージにおいて試料高さを調整するための構成例を示す図であ る。  FIG. 8 is a diagram showing a configuration example for adjusting the sample height on the sample stage.
図 9は、 パターン高さ及び側壁傾斜角を説明するための模式図である。  FIG. 9 is a schematic diagram for explaining a pattern height and a side wall inclination angle.
図 1 0は、 パターン像からパターン高さ及び側壁傾斜角を求めるための アルゴリズム例を示す図である。  FIG. 10 is a diagram illustrating an example of an algorithm for obtaining a pattern height and a sidewall inclination angle from a pattern image.
図 1 1は、 倍率校正用標準試料の説明図である。 発明を実施するための最良の形態 本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 図 1は、 本発明によるパターン形状測定装置の一例としての測長 S E Mの概略 構成を示す図である。 電子銃 1から放出された電子ビーム 2は、 所定のエネルギ 一に加速された後、 収束レンズ 3及び対物レンズ 4によって細く絞られ、 ロード /アンロード室 1 0を経由して試料室 1 1内に導入された試料ステージ 1 2上の ウェハ 5の面上に焦点を結ぶ。 一般に、 収束レンズ 3は電子ビーム電流値の制御 に、 対物レンズ 4は電子ビーム 2の焦点位置調整に使われる。 FIG. 11 is an explanatory diagram of a magnification calibration standard sample. BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a diagram showing a schematic configuration of a length measuring SEM as an example of a pattern shape measuring apparatus according to the present invention. The electron beam 2 emitted from the electron gun 1 is accelerated to a predetermined energy, then narrowed down by the converging lens 3 and the objective lens 4, and passes through the load / unload chamber 10 into the sample chamber 11. Focus on the surface of wafer 5 on sample stage 12 introduced into Generally, the converging lens 3 is used for controlling the electron beam current value, and the objective lens 4 is used for adjusting the focal position of the electron beam 2.
後述のようにして焦点調整された電子ビーム 2は、 上下二段の偏向器 6によつ て軌道を曲げられ、 対物レンズ絞り 2 0を偏向の支点として、 ウェハ 5の面上を 二次元あるいは一次元走査する。 一方、 電子ビーム 2で照射されたウェハ部分か らは、二次電子 7が放出される。二次電子 7は、二次電子検出器 8によって検出 · 電気信号に変換された後、 信号処理部 1 4で増幅 · AZ D変換などの信号処理を 受ける。 信号処理された像信号は、 メモリ部 1 5に記憶され、 ディスプレイ 9を 輝度変調あるいは Y変調するために使われる。 ディスプレイ 9の走査線は、 電子 ビーム 2のウェハ面上走査と同期して走査されており、 ディスプレイ上には試料 像が形成される。 二次元走査し輝度変調をかければ試料像が表示され、 一次元走 查し Y変調をかければラインプロファイルが描かれる。 この際、 試料像の観測倍 率は、 試料面での電子ビーム偏向量に反比例し、 偏向器の強さを調整することに 依って変えられる。  The trajectory of the electron beam 2 whose focus has been adjusted as described below is bent by the upper and lower deflectors 6, and the two-dimensional or two-dimensional surface of the wafer 5 is set with the objective lens aperture 20 as a fulcrum of deflection. One-dimensional scanning. On the other hand, secondary electrons 7 are emitted from the wafer portion irradiated with the electron beam 2. The secondary electrons 7 are detected by the secondary electron detector 8, converted into electric signals, and then subjected to signal processing such as amplification and AZD conversion in the signal processing unit 14. The processed image signal is stored in the memory unit 15 and is used for luminance modulation or Y modulation of the display 9. The scanning lines of the display 9 are scanned in synchronization with the scanning of the electron beam 2 on the wafer surface, and a sample image is formed on the display. If two-dimensional scanning and luminance modulation are applied, a sample image is displayed. If one-dimensional scanning and Y modulation are applied, a line profile is drawn. At this time, the observation magnification of the sample image is inversely proportional to the amount of electron beam deflection on the sample surface, and can be changed by adjusting the strength of the deflector.
ここで、 正焦点位置を見つけるための焦点位置調整には、 例えば、 図 5に示す ような電子ビ一ム焦点位置とラインプロフアイル形状の関係を利用する。 電子ビ —ムがパターンを横切る時に得られるラインプロファイルは、 図 5 ( a ) のよう に電子ビームがパターン上に正焦点を結んでいれば立ち上がリ部及び立ち下がり 部が急峻であるが、 図 5 ( b ) のようにパターン上から焦点がずれていれば立ち 上がり部及び立ち下がり部は鈍る。 制御部 1 7は、 レンズ電源 1 8の出力すなわ ち対物レンズ励磁電流値を変化させながらラインプロファイルを形成して行き、 最も急峻なラインプロフアイルが得られるところに対物レンズ励磁電流値を設定 することで電子ビーム 2の焦点合わせを行う。 図 1に示した測長 S E Mによるパターン寸法測定の手順を図 6に示す。 図 7を 参照しながら、 以下に説明する。 Here, for example, the relationship between the electronic beam focal position and the line profile shape as shown in FIG. 5 is used to adjust the focal position for finding the correct focal position. The line profile obtained when the electron beam crosses the pattern has a sharp rising edge and a sharp falling edge if the electron beam is focused on the pattern as shown in Fig. 5 (a). If the pattern is out of focus as shown in Fig. 5 (b), the rising and falling portions become dull. The control unit 17 forms the line profile while changing the output of the lens power supply 18, that is, the objective lens excitation current value, and sets the objective lens excitation current value where the steepest line profile is obtained. To focus the electron beam 2. Fig. 6 shows the procedure for pattern dimension measurement by the length measurement SEM shown in Fig. 1. This will be described below with reference to FIG.
ステップ 1 1において、 寸法測定視野にステージ移動する。 ステップ 1 2にお いて、 試料像を形成した後、 電子ビームの焦点を正確に合わせた上、 測定パター ンを位置決めする。 次に、 ステップ 1 3に進み、 観測倍率と電子ビーム開き角を 焦点位置設定用に変更する。 焦点位置設定用倍率及び焦点位置設定用電子ビーム 開き角ともに、 正焦点位置の測定精度を上げるために、 寸法測定時の観測倍率及 び電子ビ一ム開き角よりも大きな値に設定する。 なお、 電子ビーム開き角の変更 は、 収束レンズ 3あるいは対物レンズ 4の絞リに寸法測定用開口と焦点位置設定 用開口を形成し、 所定の開口に電子ビームを偏向 ·選択するようにことによって 行う。  In step 11, the stage is moved to the dimension measurement visual field. After forming the sample image in step 12, the electron beam is accurately focused and the measurement pattern is positioned. Next, proceed to step 13 to change the observation magnification and electron beam opening angle for setting the focal position. Both the focal position setting magnification and the focal position setting electron beam opening angle are set to values larger than the observation magnification and the electron beam opening angle at the time of dimension measurement in order to increase the measurement accuracy of the positive focal position. The aperture angle of the electron beam can be changed by forming a dimension measurement aperture and a focus position setting aperture at the aperture of the converging lens 3 or the objective lens 4 and deflecting and selecting the electron beam at a predetermined aperture. Do.
次に、 ステップ 1 4において、 偏向器を制御して電気的に焦点位置測定視野に 移動する。 焦点位置測定視野は、 電子ビーム入射角の測定精度を上げるために、 寸法測定視野の外に配置される。 焦点位置測定視野を配置する位置は、 (1)電子ビ ーム偏向器 6を用いた短時間での視野移動を可能とするために電子ビームがテレ セントリックすなわち試料面に垂直に入射していると見なされる範囲内、及び (2) 入射方向 ·角度の計算を容易にするために用途に応じてということになるが、 例 えば、 ステ一ジの X移動方向に沿った 2点、 あるいは図 7に示すように、 X移動 方向に沿った 2点と Y移動方向に沿った 1点の計 3点に設定される。  Next, in step 14, the deflector is controlled to move to the focal position measurement field of view electrically. The focus position measurement field is located outside the dimension measurement field to increase the measurement accuracy of the electron beam incident angle. The position where the focal position measurement field of view is placed is as follows: (1) In order to enable the field of view to be moved in a short time using the electron beam deflector 6, the electron beam is telecentric, that is, perpendicular to the sample surface. And (2) the direction of incidence and angle of use, depending on the application, for example, two points along the X movement direction of the stage, or As shown in Fig. 7, three points are set, two points along the X movement direction and one point along the Y movement direction.
ステップ 1 5では、 移動した焦点位置測定視野において、 電子ビームの焦点位 置と試料面との位置関係を光軸方向に所定のステップで変えながらラインプロフ アイルを取得し、 正焦点位置を決定する。 焦点位置の変更は、 例えば図 8に示す ように、 試料ステージ 1 2上に設置されたウェハ固定用のパレットに圧電素子で できた上下に動く小型ァクチユエ一タをアレー状に多数組込むことによって行わ れる。 すなわち、 いま焦点位置測定視野 aに視野移動しているとすると、 焦点位 置測定視野 aの直下にあるァクチユエータを上下動させ、 ラインプロフアイルが 最も急峻となるようにして a部のウェハ高さを正焦点位置に合わせる。  In step 15, in the moved focal position measurement visual field, a line profile is acquired while changing the positional relationship between the electron beam focal position and the sample surface in a predetermined step in the optical axis direction, and the right focus position is determined. . The focal position is changed by, for example, assembling an array of small vertically moving actuators made of piezoelectric elements on a wafer fixing pallet installed on the sample stage 12 as shown in Fig. 8. It is. In other words, assuming that the field of view is now moving to the focal position measurement field of view a, the actuator immediately below the focal point measurement field of view a is moved up and down so that the line profile becomes the steepest, and the wafer height at section a To the focus position.
焦点位置測定視野 a内でウェハ高さを正焦点位置にあわせた後、 ステップ 1 6 からステップ 1 4に戻り、 次の焦点位置測定視野、 例えば視野 bに移動し、 視野 bについても同様にその直下のァクチユエ一タを上下動させて b部のウェハ高さ を正焦点位置に合わせる。 すなわち、 得られるラインプロファイルが最も急峻と なるように b部のウェハ高さを調整する。 こうして、 全ての焦点位置測定視野に おいて正焦点位置を決定する。 例えば、 X軸方向に 2点、 Y軸方向に 1点で測定 する図 7の例の場合には、 3箇所の焦点位置測定視野 a, b, cにてそれぞれ正 焦点位置の決定を行う。 After adjusting the wafer height to the correct focus position within the focus position measurement field of view a, Step 16 Then, return to step 14 to move to the next focus position measurement field of view, for example, field of view b, and similarly move the actuator immediately below field of view b to adjust the wafer height in section b to the normal focus position . That is, the height of the wafer in section b is adjusted so that the obtained line profile is the steepest. Thus, the correct focus position is determined in all the focus position measurement visual fields. For example, in the case of FIG. 7 in which measurement is performed at two points in the X-axis direction and at one point in the Y-axis direction, the positive focus position is determined in three focus position measurement fields of view a, b, and c, respectively.
以上の処理で試料表面への電子ビーム垂直入射の条件が得られたので、 ステツ プ 1 7に進み、 観測倍率と電子ビーム開き角を寸法測定用倍率、 寸法測定用開き 角に変更する。 次に、 ステップ 1 8において、 偏向器 6を制御して電気的に寸法 測定視野に移動し、 測定パターンを位置決めする。 ステップ 1 9では、 正焦点位 置であることを確認し、 ステップ 2 0に進んで所望部分のパターン寸法測定を行 う。 パターン寸法測定は既知の手順に従って行われる。 すなわち、 パターン上の 寸法を求めたい方向に測定パターンを横切るように電子ビームを一次元走査して ラインプロファイルを形成し、 得られたラインプロファイルから所定のパターン ェッジ決定ァルゴリズムに従ってパターンエツジ位置を決定し、 得られたパター ンエッジの位置間隔から、 測定パターンの寸法を算出する。 得られた算出値は、 パターン寸法測定値として出力される。  Since the conditions for perpendicular incidence of the electron beam on the sample surface have been obtained by the above processing, proceed to step 17 and change the observation magnification and the electron beam opening angle to the dimension measurement magnification and the dimension measurement opening angle. Next, in step 18, the deflector 6 is controlled to electrically move to the dimension measurement visual field and position the measurement pattern. In step 19, it is confirmed that the lens is at the correct focal position, and the flow advances to step 20 to measure a pattern dimension of a desired portion. The pattern dimension measurement is performed according to a known procedure. That is, a line profile is formed by one-dimensional scanning of the electron beam across the measurement pattern in the direction in which the dimension on the pattern is to be obtained, and the pattern edge position is determined from the obtained line profile according to a predetermined pattern edge determination algorithm. The dimensions of the measurement pattern are calculated from the obtained pattern edge position intervals. The obtained calculated value is output as a pattern dimension measured value.
本実施の形態では、 試料 5を傾斜させて電子ビ一ム 2の入射角△ 0を 0とする ような方法を用いたが、 試料の高さを変えず、 試料面への電子ビーム入射角厶 0 を求め、 電子ビームの入射角の方を変更することによって Δ Θ = 0を実現しても よい。  In the present embodiment, a method was used in which the sample 5 was inclined to make the incident angle △ 0 of the electron beam 2 0, but the height of the sample was not changed and the electron beam incident angle on the sample surface was changed. It is also possible to realize Δ = 0 by obtaining the value of 0 and changing the incident angle of the electron beam.
試料面への電子ビーム入射角 Δ Θは、 例えば X成分と Υ成分とに分けて測定す ればよい。 Δ Θの X成分は次のようにして測定できる。例えば図 7に示すように、 寸法測定視野の外側 X方向に距離 dだけ離れたに焦点位置測定視野 a, bを設定 する。 距離 dは、 視野 aから視野 bに視野移動するときの偏向器 6の偏向電流を もとに求めることができる。 そして、 焦点位置測定視野 aにおいて、 入射電子ビ ームが試料面上に焦点を結ぶ正焦点位置 f aと、 焦点位置測定視野 bにおいて、 入射電子ビームが試料面上に焦点を結ぶ正焦点位置 f bを求める。 正焦点位置 f a , f bは、 それぞれの視野において最も急峻なラインプロファイルを得るため に必要な対物レンズ 4の励磁電流補正値から求めることができる。 The electron beam incident angle Δ Δ on the sample surface may be measured, for example, separately for the X component and the Υ component. The X component of Δ Θ can be measured as follows. For example, as shown in Fig. 7, the focus position measurement visual fields a and b are set at a distance d in the X direction outside the dimension measurement visual field. The distance d can be obtained based on the deflection current of the deflector 6 when the visual field moves from the visual field a to the visual field b. Then, in the focus position measurement field of view a, the positive focus position fa where the incident electron beam focuses on the sample surface, and in the focus position measurement field of view b, The position fb at which the incident electron beam focuses on the sample surface is determined. The positive focus positions fa and fb can be obtained from the excitation current correction value of the objective lens 4 necessary to obtain the steepest line profile in each field of view.
こうして得られた d, f a , f bから△ Θの X方向成分は atan{( f b— f a ) ノ d }と計算される。 Δ 0の Y方向成分も Y軸に平行な直線上に設定した 2つの焦 点位置測定視野での測定から同様の方法で求めることができる。 試料面への電子 ビームの入射角 Δ Θが判明すれば、 電子ビームを△ 0だけ傾けて試料面に入射さ せることで = を達成することができる。 電子ビームの入射角の調整は、 前 述したように上下二段の偏向器 6の出力を制御することによって行うことができ る。  From the d, f a, and f b obtained in this way, the X-direction component of △ 計算 is calculated as atan {(f b — f a) no d}. The Y-direction component of Δ0 can also be obtained in a similar manner from measurements in two focus position measurement fields set on a straight line parallel to the Y-axis. Once the incident angle Δ Δ of the electron beam on the sample surface is known, = can be achieved by inclining the electron beam by △ 0 and making it incident on the sample surface. The angle of incidence of the electron beam can be adjusted by controlling the outputs of the upper and lower two-stage deflectors 6 as described above.
なお、 焦点位置測定視野 aにおける正焦点位置 f aと焦点位置測定視野わにお ける正焦点位置 f bの代わりに、 焦点位置測定視野 aにおける正焦点位置からの 焦点ずれ量及び焦点位置測定視野 bにおける正焦点位置からの焦点ずれ量を用い ても同様の結果を得ることができる。 焦点位置測定視野における正焦点位置から の焦点ずれ量は、 試料ステージによって試料を光軸方向に移動しながら各位置で 試料面のラインプロファイルを測定し、 最も急峻なラインプロファイルを得るた めに試料を移動させた光軸方向の距離として求めることもできる。  Note that instead of the positive focus position fa in the focal position measurement field of view a and the positive focus position fb in the focus position measurement field of view, the amount of defocus from the positive focus position in the focus position measurement field of view a and the focus position measurement field b Similar results can be obtained by using the amount of defocus from the correct focus position. The amount of defocus from the positive focus position in the focal position measurement field of view is determined by measuring the line profile of the sample surface at each position while moving the sample in the optical axis direction by the sample stage, and obtaining the steepest line profile. Can also be obtained as the distance in the optical axis direction by which is moved.
なお、 入射電子ビームの正焦点位置を求めるためには、 上述したように、 ひ) 試料高さを変えたり、 (2)対物レンズの励磁電流を変えることにより、 試料面に対 する入射電子ビームの焦点位置を変化させながらラインプロファイル群を形成し、 波形の立ち上がリ部及び立ち下がリ部が最も急峻なラインプロフアイルが得られ た焦点位置を正焦点位置とする。 このとき、 正焦点位置を高精度に求めるために は焦点深度が浅い状態で調整した方が良い。 焦点深度 D O Fは、 観測倍率 Mと電 子ビームの半開角 を用いて、 D O F oc l /Μ αで表されることから、 図 6のス テツプ 1 3におけるように、 (1)パターン寸法測定時の倍率よリも高い倍率、 (2) パターン寸法測定時の電子ビーム開き角よりも大きい電子ビーム開き角、 を用い て正焦点位置を求める。  As described above, the incident electron beam with respect to the sample surface can be obtained by changing the sample height or (2) changing the excitation current of the objective lens, as described above. A line profile group is formed while changing the focal position of the line, and the focal position at which the line profile having the sharpest rising edge and the sharpest falling edge of the waveform is obtained as the normal focus position. At this time, in order to obtain the correct focus position with high accuracy, it is better to adjust the focus depth in a shallow state. The depth of focus DOF is expressed as DOF oc l / Μα using the observation magnification M and the half-open angle of the electron beam. Therefore, as shown in step 13 in Fig. 6, (1) (2) The electron beam opening angle larger than the electron beam opening angle at the time of pattern dimension measurement is used to obtain the right focus position.
また、 電子ビーム入射角を制御する代りに、 求めた入射角 Δ Θを用いてパター ン寸法計測値を補正し、 補正した値をパターン寸法測定値として出力することも 可能である。 例えば、 ラインプロファイルが非対称になる効果を考えなければ、 次式によって△ 0の影響を補正することができる。 ただし、 この場合には、 ライ ンプロファイルの非対称性を単純なアルゴリズムで補正することは難しく、 測定 精度向上のためには実測デ一タに裏付けられた補正ァルゴリズムを必要とする。 In addition, instead of controlling the electron beam incident angle, the It is also possible to correct the pattern dimension measurement value and output the corrected value as the pattern dimension measurement value. For example, if the effect that the line profile becomes asymmetric is not considered, the influence of △ 0 can be corrected by the following equation. However, in this case, it is difficult to correct the asymmetry of the line profile with a simple algorithm, and a correction algorithm backed by actual measurement data is required to improve measurement accuracy.
(測定結果として出力する寸法測定値) = (寸法計測値) /COSA 0 なお、 本発明の有効性が発揮されるのはパターン寸法の測定に限られない。 本 発明を適用することで、 あらゆる種類の二次元及び三次元形状をより高い精度で 計測できる。 例えば、 入射角の異なる複数の試料像を用いて算出されたホールや 溝の底面の深さ ·側面の傾き、 断面試料から求められた膜厚や接合深さなどをよ リ高精度に測定することが可能になる。 (Dimension measurement value output as measurement result) = (Dimension measurement value) / COS A 0 The effectiveness of the present invention is not limited to the measurement of pattern dimensions. By applying the present invention, all kinds of two-dimensional and three-dimensional shapes can be measured with higher accuracy. For example, the depth and slope of the bottom and side surfaces of holes and grooves calculated using multiple sample images with different incident angles are measured with higher accuracy. It becomes possible.
例として、 図 9の模式図及び図 1 0のフローチャートを用いて、 パターンの高 さ H及び側壁の傾斜角 Θを求める場合を図 9に示す。 パターンの高さ H及び側壁 の傾斜角 0は、 半導体デバイスのゲ一ト加工やトレンチ加工を精密に制御するた めに必要とされる。 電子ビームを垂直に入射させた場合の像上での側壁の長さ L Pと、 電子ビームを αだけ傾けて入射させた場合の長さ L i とから、 図 1 0に示 すような手順でパターンの高さ Hと側壁の長さ L及び傾斜角 Θを求める。 L p及 び L iをより正確 .精密に計測することができれば、 当然のことながら、 H , L , Θのより確かな値を算出することができる。  As an example, FIG. 9 shows a case where the height H of the pattern and the inclination angle 側壁 of the side wall are obtained using the schematic diagram of FIG. 9 and the flowchart of FIG. The pattern height H and the side wall inclination angle 0 are required to precisely control the gate processing and trench processing of a semiconductor device. From the length LP of the side wall on the image when the electron beam is incident vertically and the length L i when the electron beam is incident at an angle of α, the procedure shown in Fig. 10 is used. Obtain the pattern height H, side wall length L, and inclination angle 傾斜. If L p and L i can be measured more accurately and more precisely, it is possible, of course, to calculate more reliable values of H, L and Θ.
まず、 ステップ 3 1において、 電子ビームを試料面に垂直入射させ、 そのとき のパターン像から L pを測定する。 次に、 ステップ 3 2において、 電子ビームを 試料面に入射角 で斜め入射させ、 そのときのパターン像から L ρを測定する。 ステップ 3 3において、 関係式 L p = L cos 0及び L i = L cos( 0— α)から Lと 0を求める。 更に、 ステップ 3 4において、 関係式 H = L sin eから高さ Hを求め る。 First, in step 31, an electron beam is perpendicularly incident on the sample surface, and Lp is measured from the pattern image at that time. Next, in step 32, an electron beam is obliquely incident on the sample surface at an incident angle, and L ρ is measured from the pattern image at that time. In step 33, L and 0 are obtained from the relational expressions L p = L cos 0 and L i = L cos (0-α). Further, in step 3 4, Ru obtains the height H from the equation H = L si n e.
一方、 観測倍率を標準試料を用いて校正する場合にも、 より高い精度での校正 が実現される。 校正精度が高ければ、 この装置を用いた全ての計測がより高精度 で行えることに繋がる。 校正用標準試料の例を図 1 1に示す。 図 1 1の上方に示したのは校正用標準試 料の平面図、 下方に示したのは断面図である。 この校正用標準試料は、 光干渉露 光法と異方性のゥエツトエッチング法を用い、 L S I加工に準じたプロセスで、 S i単結晶基板上に微細なラインパターン群を加工したものである。 この方法に よると極めて正確なピッチのライン群を形成できるため、 測長 S E Mの倍率を校 正するために使われている。 On the other hand, when the observation magnification is calibrated using a standard sample, calibration with higher accuracy is realized. If the calibration accuracy is high, all measurements using this device can be performed with higher accuracy. Fig. 11 shows an example of a calibration standard sample. The upper part of FIG. 11 is a plan view of the calibration standard sample, and the lower part is a cross-sectional view. This calibration standard sample is a process in which a fine line pattern group is processed on a Si single crystal substrate by a process similar to LSI processing using the optical interference exposure method and the anisotropic jet etching method. . According to this method, a group of lines with extremely accurate pitch can be formed, and it is used to calibrate the magnification of the length measurement SEM.
電子ビームを垂直入射させて図 1 1の平面図に相当したパターン像を形成し、 像上のピッチを測定しながら、 該測定値が標準試料ピッチの校正値と一致するよ うに測長 S E Mの観測倍率を調整する。 この場合も、 ピッチの測定が正確 '精密 であるほど、 精度の高い校正が行える。  A pattern image corresponding to the plan view of Fig. 11 is formed by vertically incident an electron beam.The pitch on the image is measured, and the length of the length-measuring SEM is adjusted so that the measured value matches the calibration value of the standard sample pitch. Adjust the observation magnification. In this case as well, the more accurate the pitch measurement, the more accurate the calibration.
また、 画面全体に渡ってより高解像の試料像を形成できる。 このことも、 試料 画像を用いた全ての計測がよリ高精度で行えることに繋がる。  In addition, a higher-resolution sample image can be formed over the entire screen. This also means that all measurements using sample images can be performed with higher accuracy.
上記実施の形態では、 電子ビームを用いた測長 S E Mを例にとって説明した。 しかし、 本発明が適用される装置は S E Mに限られない。 本発明は、 プローブと して電子ビーム以外のイオンビームやレーザビームなどを用いた装置にも同様に 適用できる。 例えば、 測長 S E Mの電子ビームの代わりに、 走査ビームとしてレ —ザビームを用いれば、 同様の原理でパターン寸法や二点間の距離を計測するこ とが出来る。 このような場合にも、 走査レーザビームの入射角を正確 '精密に制 御することが、 計測精度を向上することに繋がる。 産業上の利用可能性  In the above embodiment, the length measurement SEM using an electron beam has been described as an example. However, the device to which the present invention is applied is not limited to SEM. The present invention can be similarly applied to an apparatus using an ion beam other than an electron beam, a laser beam, or the like as a probe. For example, if a laser beam is used as the scanning beam instead of the electron beam of the measurement SEM, pattern dimensions and the distance between two points can be measured by the same principle. Even in such a case, controlling the incident angle of the scanning laser beam accurately and precisely leads to an improvement in measurement accuracy. Industrial applicability
以上のように、 本発明によると、 電子ビーム入射角を精密に制御できることか ら、 直接的な効果あるいは試料像の高解像度化や校正精度の向上など間接的な効 果によって、 パターン寸法を始めとする二次元形状値あるいはホール深さなどの 三次元形状値をより高精度に求めることができる。  As described above, according to the present invention, since the electron beam incident angle can be precisely controlled, the pattern size can be reduced by a direct effect or an indirect effect such as a higher resolution of the sample image and an improvement in the calibration accuracy. The three-dimensional shape value such as the two-dimensional shape value or the hole depth can be obtained with higher accuracy.

Claims

請 求 の 範 囲 The scope of the claims
1 . 細く絞ったプローブを試料面に照射し、 前記プローブとの相互作用により試 料から発生した信号を検出し、 当該検出信号を用いて試料面に形成されたバタ一 ンの寸法を測定する方法において、 1. Irradiate the sample surface with a finely squeezed probe, detect the signal generated from the sample due to the interaction with the probe, and measure the dimensions of the pattern formed on the sample surface using the detected signal. In the method,
前記試料面上の複数の視野において入射プローブが試料面に焦点を結ぶ入射プ ローブの正焦点位置を求め、 前記正焦点位置を求めた視野間の距離と前記各視野 における正焦点位置の差とから入射プロ一ブが試料面となす入射角を求めること を特徴とするパターン寸法測定方法。  In a plurality of visual fields on the sample surface, the incident probe obtains a positive focus position of the incident probe that focuses on the sample surface, and calculates a distance between the visual fields for which the positive focus position is obtained and a difference between the positive focus positions in each of the visual fields. A pattern dimension measuring method characterized in that an incident angle between an incident probe and a sample surface is determined from the above.
2 . 細く絞ったプローブを試料面に照射し、 前記プローブとの相互作用により試 料から発生した信号を検出し、 当該検出信号を用いて試料面に形成されたパター ンの寸法を測定する方法において、  2. A method of irradiating a sample surface with a finely squeezed probe, detecting a signal generated from the sample due to interaction with the probe, and measuring a dimension of a pattern formed on the sample surface using the detected signal. At
前記試料面上の複数の視野において入射プローブが試料面に焦点を結ぶ入射プ ローブの正焦点位置を求め、 前記正焦点位置を求めた視野間の距離と前記各視野 における正焦点位置の差とから入射プロ一ブが試料面となす入射角を求め、 入射 プローブの入射角及び 又は試料面の傾きを調整し前記プローブの入射角を所定 の値に設定することを特徴とするバタ一ン寸法測定方法。  In a plurality of visual fields on the sample surface, the incident probe obtains a positive focus position of the incident probe that focuses on the sample surface, and calculates a distance between the visual fields for which the positive focus position is obtained and a difference between the positive focus positions in each of the visual fields. The incident angle between the incident probe and the sample surface, and the incident angle of the incident probe and / or the inclination of the sample surface are adjusted to set the incident angle of the probe to a predetermined value. Measuring method.
3 . 細く絞ったプローブを試料面に照射し、 前記プローブとの相互作用により試 料から発生した信号を検出し、 当該検出信号を用いて試料面に形成されたパター ンの寸法を測定する方法において、  3. A method of irradiating the sample surface with a finely squeezed probe, detecting a signal generated from the sample by the interaction with the probe, and measuring a dimension of a pattern formed on the sample surface using the detected signal. At
前記試料面上の複数の視野において入射プローブが試料面に焦点を結ぶ入射プ ローブの正焦点位置を求め、 前記正焦点位置を求めた視野間の距離と前記各視野 における正焦点位置の差とから入射プロ一ブが試料面となす入射角を求め、 得ら れたパターン寸法計測値を当該入射角を用いて補正することを特徴とするパター ン寸法測定方法。  In a plurality of visual fields on the sample surface, the incident probe obtains a positive focus position of the incident probe that focuses on the sample surface, and calculates a distance between the visual fields for which the positive focus position is obtained and a difference between the positive focus positions in each of the visual fields. A pattern dimension measuring method comprising: obtaining an incident angle formed by an incident probe with a sample surface from the sample; and correcting the obtained pattern dimension measured value using the incident angle.
4 . 細く絞ったプローブを試料面に照射し、 前記プローブとの相互作用により試 料から発生した信号を検出し、 当該検出信号を用いて試料面に形成されたパター ンの寸法を測定する方法において、 前記試料面上の複数の視野において入射プローブの焦点が試料面に焦点を結ぶ 正焦点位置となるように試料面の傾きを調整し、 その後パターン寸法を測定する ことを特徴とするバタ一ン寸法測定方法。 4. A method of irradiating a sample surface with a finely focused probe, detecting a signal generated from the sample by the interaction with the probe, and measuring a dimension of a pattern formed on the sample surface using the detected signal. At Adjusting the inclination of the sample surface so that the focal point of the incident probe is at a positive focus position where the focus of the incident probe is focused on the sample surface in the plurality of visual fields on the sample surface, and then measuring the pattern size. Measuring method.
5 . 請求項 1〜4のいずれか 1項記載のパターン寸法測定方法において、 前記正 焦点位置を求める操作を、 パターン寸法測定時の倍率よリも高い倍率で行うこと を特徴とするパターン寸法測定方法。  5. The pattern dimension measuring method according to any one of claims 1 to 4, wherein the operation of obtaining the focus position is performed at a magnification higher than the magnification at the time of pattern dimension measurement. Method.
6 . 請求項 1〜4のいずれか 1項記載のパターン寸法測定方法において、 前記正 焦点位置を求める操作を、 パターン寸法測定時の入射プロ一ブ開き角よりも大き い入射プローブ開き角で行うことを特徴とするパターン寸法測定方法。  6. The pattern dimension measuring method according to any one of claims 1 to 4, wherein the operation of obtaining the positive focus position is performed at an incident probe opening angle larger than the incident probe opening angle at the time of pattern dimension measurement. A method for measuring a pattern dimension, characterized in that:
7 . 請求項 1〜6のいずれか 1項記載のパターン寸法測定方法において、 前記正 焦点位置を求める操作を、 入射プロ一ブの焦点位置を変化させながら検出信号の ラインプロファイル群を形成し、 最も急峻なラインプロファイルが得られた焦点 位置を正焦点位置とすることを特徴とするパターン寸法測定方法。  7. The pattern dimension measuring method according to any one of claims 1 to 6, wherein the operation of obtaining the positive focus position is performed by forming a line profile group of a detection signal while changing a focus position of an incident probe, A pattern dimension measuring method, wherein a focal position at which a steepest line profile is obtained is set as a normal focal position.
8 . 請求項 1〜 7のいずれか 1項記載のパターン寸法測定方法において、 前記正 焦点位置を求めるための視野をパターン寸法測定視野の範囲外に設定することを 特徴とするパターン寸法測定方法。  8. The pattern dimension measuring method according to any one of claims 1 to 7, wherein a field of view for obtaining the positive focus position is set outside a field of the pattern dimension measuring field of view.
9 . 請求項 1〜8のいずれか 1項記載のパターン寸法測定方法において、 前記正 焦点位置を求めるための視野への移動を入射プロ一ブを電磁気的に偏向させるこ とによって行うことを特徴とするパターン寸法測定方法。  9. The pattern dimension measuring method according to any one of claims 1 to 8, wherein the movement to the visual field for obtaining the focus position is performed by electromagnetically deflecting the incident probe. Pattern dimension measurement method to be used.
1 0 . 請求項 1〜9のいずれか 1項記載のパターン寸法測定方法において、 前記 正焦点位置を求めるための視野が、 パターン寸法測定視野を通り試料ステージの 移動方向に沿った一本又は二本の直線上に配置されていることを特徴とするバタ —ン寸法測定方法。  10. The pattern dimension measuring method according to any one of claims 1 to 9, wherein the visual field for obtaining the focus position is one or two along the moving direction of the sample stage through the pattern dimension measuring visual field. A butterfly dimension measuring method characterized by being arranged on a straight line of a book.
1 1 . 請求項 1〜1 0のいずれか 1項記載のパターン寸法測定方法において、 前 記プロ一ブが電子ビーム、 イオンビームあるいはレーザビームであることを特徴 とするパターン寸法測定方法。  11. The pattern dimension measuring method according to any one of claims 1 to 10, wherein the probe is an electron beam, an ion beam, or a laser beam.
PCT/JP2001/002130 2001-03-16 2001-03-16 Method for measuring dimensions of pattern WO2002075246A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/002130 WO2002075246A1 (en) 2001-03-16 2001-03-16 Method for measuring dimensions of pattern
JP2002573615A JPWO2002075246A1 (en) 2001-03-16 2001-03-16 Pattern dimension measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/002130 WO2002075246A1 (en) 2001-03-16 2001-03-16 Method for measuring dimensions of pattern

Publications (1)

Publication Number Publication Date
WO2002075246A1 true WO2002075246A1 (en) 2002-09-26

Family

ID=11737135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002130 WO2002075246A1 (en) 2001-03-16 2001-03-16 Method for measuring dimensions of pattern

Country Status (2)

Country Link
JP (1) JPWO2002075246A1 (en)
WO (1) WO2002075246A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009127A (en) * 2009-06-29 2011-01-13 Hitachi High-Technologies Corp Charged particle beam-adjusting method and charged particle beam device
JP2011014299A (en) * 2009-06-30 2011-01-20 Hitachi High-Technologies Corp Scanning electron microscope
JP2011181393A (en) * 2010-03-02 2011-09-15 Hitachi High-Technologies Corp Charged particle beam device and length measurement method using charged particle beam
JP2013213781A (en) * 2012-04-04 2013-10-17 Hitachi High-Technologies Corp Positional deviation measuring device, positional deviation measuring method, and scanning electron microscope using positional deviation measuring device
JPWO2019073592A1 (en) * 2017-10-13 2020-08-06 株式会社日立ハイテク Pattern measuring device and pattern measuring method
WO2021251190A1 (en) * 2020-06-10 2021-12-16 Tasmit株式会社 Image generating method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558949A (en) * 1981-12-26 1985-12-17 Nippon Kogaku Kk Horizontal position detecting device
JPS6288907U (en) * 1985-11-22 1987-06-06
EP0348992A2 (en) * 1988-07-01 1990-01-03 Hitachi, Ltd. Apparatus and method of pattern detection based on a scanning transmission electron microscope
JPH02309627A (en) * 1989-05-24 1990-12-25 Fujitsu Ltd Electron beam exposure device
JPH1163956A (en) * 1997-08-11 1999-03-05 Nippon Dempa Kogyo Co Ltd Method for measuring multi-point angle and method for measuring angle of crystal plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558949A (en) * 1981-12-26 1985-12-17 Nippon Kogaku Kk Horizontal position detecting device
JPS6288907U (en) * 1985-11-22 1987-06-06
EP0348992A2 (en) * 1988-07-01 1990-01-03 Hitachi, Ltd. Apparatus and method of pattern detection based on a scanning transmission electron microscope
JPH02309627A (en) * 1989-05-24 1990-12-25 Fujitsu Ltd Electron beam exposure device
JPH1163956A (en) * 1997-08-11 1999-03-05 Nippon Dempa Kogyo Co Ltd Method for measuring multi-point angle and method for measuring angle of crystal plate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009127A (en) * 2009-06-29 2011-01-13 Hitachi High-Technologies Corp Charged particle beam-adjusting method and charged particle beam device
JP2011014299A (en) * 2009-06-30 2011-01-20 Hitachi High-Technologies Corp Scanning electron microscope
JP2011181393A (en) * 2010-03-02 2011-09-15 Hitachi High-Technologies Corp Charged particle beam device and length measurement method using charged particle beam
JP2013213781A (en) * 2012-04-04 2013-10-17 Hitachi High-Technologies Corp Positional deviation measuring device, positional deviation measuring method, and scanning electron microscope using positional deviation measuring device
JPWO2019073592A1 (en) * 2017-10-13 2020-08-06 株式会社日立ハイテク Pattern measuring device and pattern measuring method
WO2021251190A1 (en) * 2020-06-10 2021-12-16 Tasmit株式会社 Image generating method

Also Published As

Publication number Publication date
JPWO2002075246A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
JP4708856B2 (en) Electron beam calibration method and electron beam apparatus
US20060060781A1 (en) Charged-particle beam apparatus and method for automatically correcting astigmatism and for height detection
US6320187B1 (en) Magnification and rotation calibration patterns for particle beam projection system
JPH10289851A (en) Charged particle beam exposing device
EP1435640B1 (en) Electron beam writing equipment and method
KR102221957B1 (en) Charged particle beam writing apparatus and charged particle beam writing method
WO2002075246A1 (en) Method for measuring dimensions of pattern
JP2013021215A (en) Beam measuring device, drawing device, and method of manufacturing article
US9484188B2 (en) Individual beam pattern placement verification in multiple beam lithography
JP4754623B2 (en) Semiconductor device manufacturing method
JP6548764B2 (en) Auto focus device
US8878141B2 (en) Drawing apparatus, and method of manufacturing article
JP2007188671A (en) Beam intensity distribution measuring method of charged particle beam, and beam resolution capacity measuring method of charged particle beam
TWI827955B (en) Method of imaging a sample with a charged particle beam device, method of calibrating a charged particle beam device, and charged particle beam device
JP2002008960A (en) Target mark member, its manufacturing method and electron beam exposure system
JP2001077004A (en) Aligner and electron beam aligner
JP2001085300A (en) Method for detecting mark and manufacture of electron beam device and semiconductor device
JP2005276639A (en) Position adjusting method for objective lens diaphragm of scanning type electron beam device
JP2003197138A (en) Charged beam device, method for measuring pattern, and method for manufacturing semiconductor device
JP2009182269A (en) Charged beam lithography apparatus and method
JP2013183017A (en) Drawing apparatus, reference element, and article manufacturing method
JP2786660B2 (en) Charged beam drawing method
JP2001118537A (en) Beam-scanning inspection apparatus
JP4276892B2 (en) Standard member for length measurement and calibration method for electron beam length measuring device
JP3838771B2 (en) Electron beam incident angle measuring method in electron beam exposure apparatus and exposure method using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002573615

Country of ref document: JP

122 Ep: pct application non-entry in european phase