WO2021251118A1 - Wire protection device, wire protection method, and computer program - Google Patents
Wire protection device, wire protection method, and computer program Download PDFInfo
- Publication number
- WO2021251118A1 WO2021251118A1 PCT/JP2021/019541 JP2021019541W WO2021251118A1 WO 2021251118 A1 WO2021251118 A1 WO 2021251118A1 JP 2021019541 W JP2021019541 W JP 2021019541W WO 2021251118 A1 WO2021251118 A1 WO 2021251118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- wire
- electric wire
- fet
- value
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H3/00—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
- H02H3/08—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
- H02H3/087—Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H6/00—Emergency protective circuit arrangements responsive to undesired changes from normal non-electric working conditions using simulators of the apparatus being protected, e.g. using thermal images
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
Definitions
- the present disclosure relates to wire protection devices, wire protection methods and computer programs.
- This application claims priority based on Japanese Application No. 2020-101070 filed on June 10, 2020, and incorporates all the contents described in the Japanese application.
- Patent Document 1 discloses a power supply system for a vehicle that supplies electric power from a DC power source to a load.
- a fusing element is arranged in the current path of the current flowing from the DC power supply to the load.
- the fusing element is specifically a fuse.
- the temperature of the fusing element if the amount of heat generated per unit time exceeds the amount of heat released per unit time, the temperature of the fusing element will rise.
- the electric wire temperature of the electric wire rises.
- the fusing element is blown and the current flow from the DC power supply to the load is stopped.
- the constant temperature is lower than the smoke generation temperature at which the electric wire emits smoke. Therefore, the fusing element is blown before the electric wire emits smoke, and the electric wire is protected from the smoke emission.
- the electric wire protection device performs processing with a fusing element arranged in a current path of a current flowing through the electric wire and fusing according to its own temperature, and an FET arranged in the current path.
- the processing unit includes a processing unit to execute, and the processing unit repeatedly determines whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold, the FET. Instruct to switch to off.
- the electric wire protection method there is a step of repeatedly determining whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold, the electric wire is said.
- the computer executes a step of instructing switching of the FET arranged in the current path of the current flowing through the current path to off, and a fusing element that is fused according to its own temperature is arranged in the current path.
- the computer program repeatedly determines whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold, the electric wire is used.
- a fusing element is placed in the current path, which is used to cause the computer to perform a step of instructing the computer to switch off the FET placed in the current path of the current flowing through the current path, and is blown according to its own temperature. ing.
- the present disclosure can be realized not only as an electric wire protection device provided with such a characteristic processing unit, but also as an electric wire protection method in which such characteristic processing is a step, or such a step can be applied to a computer. It can be realized as a computer program for execution. Further, the present disclosure can be realized as a semiconductor integrated circuit that realizes a part or all of the electric wire protection device, or can be realized as a power supply system including the electric wire protection device.
- the electric wire protection device includes a fusing element arranged in a current path of a current flowing through an electric wire and fused according to its own temperature, and an FET arranged in the current path.
- the processing unit repeatedly determines whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold. Instructs the switching of the FET to off.
- the fusing element is fused when the electric wire temperature becomes a temperature equal to or higher than a predetermined temperature, and the temperature threshold is a temperature lower than the predetermined temperature. ..
- the processing unit repeatedly calculates the electric wire temperature based on the electric wire current value of the current flowing through the electric wire.
- the fusing element, the FET, and the processing unit are arranged on one printed circuit board.
- the electric wire protection method there are a step of repeatedly determining whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and a case where it is determined that the electric wire temperature is equal to or higher than the temperature threshold.
- the computer executes a step of instructing switching of the FET arranged in the current path of the current flowing through the electric wire to off, and a fusing element to be fused according to its own temperature is arranged in the current path. ing.
- the computer program according to one aspect of the present disclosure is a step of repeatedly determining whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold.
- a fusing element that is used to cause a computer to perform a step of instructing a computer to switch off an FET arranged in a current path of a current flowing through the electric wire and is blown according to its own temperature is the current path. Is located in.
- the fusing element is blown or the FET is turned off before the wire temperature reaches the smoke temperature at which the wire emits smoke. Switch. Therefore, the electric wire is protected from smoke generation. It is assumed that the FET is switched off before the fusing element is blown. In this configuration, the fusing element is blown when the FET is not switched off even though the wire temperature becomes a temperature equal to or higher than the temperature threshold value. Therefore, it is unlikely that the fusing element will be fusing.
- the temperature threshold of the FET is a temperature lower than the predetermined temperature of the fusing element, and therefore, unless a failure occurs in the device, before the fusing element is blown. FET switches off.
- the wire temperature is calculated based on the wire current value.
- the fusing element, the FET, and the processing unit are arranged on one printed circuit board.
- efficient placement can be achieved in the limited space within the vehicle.
- FIG. 1 is a block diagram showing a main configuration of the power supply system 1 in the present embodiment.
- the power supply system 1 is mounted on a vehicle and includes a power supply control device 10, a DC power supply 11, and n loads E1, E2, ..., En.
- n is an integer of 2 or more.
- the DC power supply 11 is, for example, a battery.
- the loads E1, E2, ..., En are electrical devices.
- the power supply control device 10 is connected to the positive electrode of the DC power supply 11.
- the power supply control device 10 is further connected to one end of n loads E1, E2, ..., En via n electric wires W1, W2, ..., Wn, respectively.
- n loads E1, E2, ..., En are grounded.
- any natural number less than or equal to n is represented by k. Therefore, k may be any of 1, 2, ..., N.
- the DC power supply 11 supplies power to the load Ek via the power supply control device 10 and the electric wire Wk.
- the load Ek operates.
- the load Ek stops operating.
- the power supply control device 10 has an operation signal indicating a load to be operated in n loads E1, E2, ..., En, and an operation in n loads E1, E2, ..., En.
- a stop signal indicating the load to be stopped is input.
- the power supply control device 10 electrically connects the DC power supply 11 and the load Ek when an operation signal indicating the load Ek is input. As a result, the DC power supply 11 supplies power to the load Ek, and the load Ek operates. When a stop signal indicating the load Ek is input, the power supply control device 10 cuts off the electrical connection between the DC power supply 11 and the load Ek. As a result, the power supply from the DC power supply 11 to the load Ek is stopped, and the load Ek stops operating.
- the power supply control device 10 includes a microcomputer (hereinafter referred to as a microcomputer) 20, a temperature sensor 21, n fusing elements F1, F2, ..., Fn, and n switch circuits G1, G2, ..., Gn. Have.
- a microcomputer hereinafter referred to as a microcomputer
- Each of the fusing elements F1, F2, ..., Fn is a fuse, a fusible link, or the like.
- Each of the switch circuits G1, G2, ..., Gn is, for example, an IPD (Intelligent Power Device).
- a fusing element Fk and a switch circuit Gk are arranged in the current path of the current flowing through the electric wire Wk.
- the fusing element Fk and the switch circuit Gk are arranged on the upstream side of the electric wire Wk.
- the load Ek is arranged on the downstream side of the electric wire Wk.
- the fusing element Fk is arranged on the upstream side of the switch circuit Gk.
- the switch circuit Gk is connected to the microcomputer 20.
- the temperature sensor 21 is connected to the microcomputer 20.
- the fusing element Fk may be arranged on the downstream side of the switch circuit Gk.
- the microcomputer 20 outputs a high level voltage or a low level voltage to each of the switch circuits G1, G2, ..., Gn.
- the switch circuit Gk is based on the voltage input from the microcomputer 20 and the current value of the current flowing through the electric wire Wk, the electrical connection of the DC power supply 11 and the load Ek, and the DC power supply 11 and the load Ek. It cuts off the electrical connection.
- the current value of the current flowing through the electric wire Wk is referred to as the electric wire current value.
- the switch circuit Gk switches the DC power supply 11 and the load Ek when the voltage input from the microcomputer 20 is switched from the low level voltage to the high level voltage in a state where the wire current value of the wire W1 is less than a constant current value. Connect electrically.
- the switch circuit Gk cuts off the electrical connection between the DC power supply 11 and the load Ek regardless of the wire current value of the wire Wk. do.
- the switch circuit Gk when the voltage input from the microcomputer 20 is a high level voltage and the current value of the wire Wk becomes a current value equal to or higher than a certain current value, the DC power supply 11 and the load Ek are electrically operated. Disconnect the connection. After that, the switch circuit Gk maintains the disconnection of the electrical connection until the voltage input from the microcomputer 20 is switched to the low level voltage. When the voltage input from the microcomputer 20 is switched to the low level voltage, the switch circuit Gk releases the maintenance of the disconnection of the electrical connection.
- the switch circuit Gk has a resistor 33 (see FIG. 2).
- the switch circuit Gk outputs the voltage value between both ends of the resistor 33 to the microcomputer 20.
- the voltage value between both ends of the resistor 33 is referred to as a voltage value across the ends.
- the voltage value across the switch circuit Gk is an analog value, and indicates the electric wire current value of the electric wire Wk.
- the constant current values related to the electric wire current values of the electric wires W1, W2, ..., Wn may be the same. Further, the constant current value for each of the electric wires W1, W2, ..., Wn may be different from at least one of the other constant current values.
- the fusing element Fk and the electric wire Wk When a current flows through the electric wire Wk, the fusing element Fk and the electric wire Wk generate heat. Regarding the fusing element Fk, when the calorific value per unit time exceeds the heat dissipation amount per unit time, the temperature of the fusing element Fk rises. Similarly, for the electric wire Wk, when the heat generation amount per unit time exceeds the heat dissipation amount per unit time, the electric wire temperature of the electric wire Wk rises. When the temperature of the fusing element Fk becomes a temperature equal to or higher than a certain fusing temperature, the fusing element Fk is fused. When the temperature of the fusing element Fk is the fusing temperature, the wire temperature of the wire Wk is described as the reference temperature.
- the reference temperature is constant. Therefore, when the wire temperature of the wire Wk becomes a temperature equal to or higher than the reference temperature, the fusing element Fk is blown. When the fusing element Fk is flew, the flow through the electric wire Wk is stopped.
- the reference temperature corresponds to a predetermined temperature.
- the reference temperatures of the fusing elements F1, F2, ..., Fn may be the same. Further, the reference temperature of each of the fusing elements F1, F2, ..., Fn may be different from at least one of the other reference temperatures.
- the temperature sensor 21 detects the environmental temperature of the environment in which the n electric wires W1, W2, ..., Wn are arranged.
- the temperature sensor 21 outputs analog environmental temperature information indicating the detected environmental temperature to the microcomputer 20.
- the analog environmental temperature information is, for example, a voltage value that fluctuates according to the environmental temperature.
- An operation signal and a stop signal are input to the microcomputer 20.
- the microcomputer 20 outputs to the switch circuit Gk based on a signal input from the outside, a voltage value across the resistor 33 input from the switch circuit Gk, and environmental temperature information input from the temperature sensor 21. Switch the voltage to high level voltage or low level voltage.
- FIG. 2 is a block diagram showing a main configuration of the switch circuit Gk.
- the switch circuit Gk includes an N-channel type FET 30, a current output unit 31 and a drive unit 32.
- the drain and the source of the FET 30 are arranged on the downstream side of the fusing element Fk.
- the drain is located upstream of the source.
- the current output unit 31 is arranged on the downstream side of the FET 30.
- the gate of the FET 30 is connected to the drive unit 32.
- the drive unit 32 is further connected to the microcomputer 20.
- the current output unit 31 is further connected to one end of the resistor 33. The other end of the resistor 33 is grounded. The connection node between the current output unit 31 and the resistor 33 is connected to the microcomputer 20 and the drive unit 32.
- FET 30 functions as a switch.
- the state of the FET 30 is on, the resistance value between the drain and the source is sufficiently small, and a current can flow through the drain and the source.
- the state of the FET 30 is off, the resistance value between the drain and the source is sufficiently large, and no current flows through the drain and the source.
- the FET 30 is switched from off to on, the DC power supply 11 and the load Ek are electrically connected, and the DC power supply 11 supplies power to the load Ek.
- the FET 30 is switched from on to off, the electrical connection between the DC power supply 11 and the load Ek is cut off, and the power supply to the load Ek is stopped.
- the state when the voltage of the gate whose reference potential is the ground potential is equal to or higher than a constant on voltage, the state is on.
- the state is off when the voltage of the gate whose reference potential is the ground potential is less than a constant off voltage.
- the on voltage exceeds the off voltage.
- the off voltage is a positive voltage.
- the drive unit 32 switches the FET 30 on or off by adjusting the voltage of the gate of the FET 30 whose reference potential is the ground potential.
- the current output unit 31 outputs a current to the resistor 33.
- the current value of the current output by the current output unit 31 to the resistor 33 is represented by (predetermined number) and (current value of the current flowing through the load Ek). " ⁇ " Represents a product.
- the predetermined number is a constant value, for example, 1/1000.
- the wire current value of the wire Wk corresponds to the current value of the current flowing through the load Ek.
- the current value output by the current output unit 31 to the resistor 33 increases when the electric wire current value of the electric wire Wk increases.
- the current output unit 31 is realized by using, for example, a current mirror circuit. Note that "match” does not mean only exact match. It suffices if a substantial match is achieved.
- the voltage value across the resistor 33 is output to the microcomputer 20 and the drive unit 32.
- the voltage value across the resistor 33 is represented by (the current value of the current output by the current output unit 31 to the resistor 33) and (the resistance value of the resistor 33).
- the current value of the current output to the resistor 33 by the current output unit 31 is represented by (predetermined number) and (current value of the current flowing through the load Ek). It is represented by (predetermined number), (current value of the current flowing through the load Ek), and (resistance value of the resistor 33).
- the current value of the current flowing through the load Ek matches the wire current value of the wire Wk, so that the wire current value of the wire Wk is (voltage value across the resistor 33) / ((predetermined number) / (resistance). It matches the resistance value of 33)). Since the predetermined number and the resistance value of the resistor 33 are constant values, the voltage value across the resistor 33 indicates the electric wire current value of the electric wire Wk.
- the microcomputer 20 outputs a high level voltage or a low level voltage to the drive unit 32.
- the voltage input from the microcomputer 20 is switched from the low level voltage to the high level voltage in the drive unit 32 in a state where the wire current value of the wire Wk indicated by the voltage value across the resistor 33 is less than a constant current value.
- FET 30 is switched on.
- the DC power supply 11 is electrically connected to the load Ek.
- the drive unit 32 switches the FET 30 off regardless of the wire current value of the wire Wk indicated by the voltage value across the resistor 33. .. As a result, the electrical connection between the DC power supply 11 and the load Ek is cut off.
- the drive unit 32 when the voltage input from the microcomputer 20 is a high level voltage and the wire current value of the wire Wk indicated by the voltage value across the resistor 33 becomes a current value equal to or higher than a constant current value, the FET 30 To switch off. After that, the drive unit 32 keeps the FET 30 off until the voltage input from the microcomputer 20 is switched to the low level voltage. When the voltage input from the microcomputer 20 is switched to the low level voltage, the drive unit 32 releases the maintenance of OFF of the FET 30.
- the microcomputer 20 switches the voltage output to the drive unit 32 of the switch circuit Gk from the low level voltage to the high level voltage.
- the output voltage of the microcomputer 20 is switched to the high level voltage, if the wire current value of the wire Wk indicated by the voltage value across the resistor 33 is less than a constant current value, the drive unit 32 switches the FET 30 on.
- the microcomputer 20 switches the voltage output to the drive unit 32 of the switch circuit Gk from the high level voltage to the low level voltage. As a result, the drive unit 32 switches the FET 30 off regardless of the wire current value of the wire Wk indicated by the voltage value across the resistor 33.
- the microcomputer 20 is based on the electric wire current value of the electric wire Wk indicated by the voltage value across the resistor 33 input from the switch circuit Gk and the environmental temperature indicated by the environmental temperature information input from the temperature sensor 21. The temperature is calculated repeatedly. When the wire temperature reaches a certain temperature threshold value or higher, the microcomputer 20 switches the voltage output to the drive unit 32 of the switch circuit Gk from the high level voltage to the low level voltage. As a result, the drive unit 32 switches the FET 30 off regardless of the wire current value of the wire Wk indicated by the voltage value across the resistor 33.
- the microcomputer 20 maintains the voltage output to the drive unit 32 of the switch circuit Gk at a low level voltage regardless of the signal input from the outside.
- the microcomputer 20 may release the maintenance of the voltage output to the drive unit 32 of the switch circuit Gk to the low level voltage.
- the predetermined condition is, for example, that the temperature difference between the electric wire temperature and the environmental temperature of the electric wire Wk is a value equal to or less than a predetermined value.
- the predetermined value is zero ° C, 5 ° C, or the like.
- the temperature thresholds of the wire temperatures of the wires W1, W2, ..., Wn may be the same. Further, the temperature threshold value of each wire temperature of the wires W1, W2, ..., Wn may be different from at least one of the other constant current values.
- FIG. 3 is an explanatory diagram of the relationship between the reference temperature of the fusing element Fk and the temperature threshold value of the electric wire temperature of the electric wire Wk.
- FIG. 3 shows the breaking characteristic of the FET 30 of the switch circuit Gk, the fusing characteristic of the fusing element Fk, and the smoke emitting characteristic of the electric wire Wk. Regarding these characteristics, the vertical axis shows the electric wire current value of the electric wire Wk, and the horizontal axis shows the period, that is, the length of time. Is indicates an arbitrary electric wire current value.
- T1 indicates the period corresponding to Is in the breaking property.
- T2 indicates the period corresponding to Is in the fusing characteristics.
- T3 indicates the period corresponding to Is in the smoke emission characteristics.
- the cutoff characteristic indicates the timing at which the FET 30 of the switch circuit Gk is switched off.
- the drive unit 32 switches the FET 30 off in the switch circuit Gk.
- the smaller the wire current value Is the longer the period from when the current starts flowing through the wire Wk until the FET 30 is switched off.
- the fusing characteristic indicates the timing at which the fusing element Fk is fusing.
- T2 the period during which the current whose wire current value is Is continues to flow through the wire Wk
- the fusing element Fk is fusing.
- the smaller the wire current value Is the longer the period from when the current starts to flow through the wire Wk until the fusing element Fk is blown.
- a fusing element having a rated current value of 20 A is used as the fusing element Fk.
- the following is an example of the period until the fusing element Fk is fusing.
- a current having a wire current value Is of 27 A continues to flow for 60 seconds through the fusing element Fk
- the fusing element Fk is fused.
- a current having a wire current value Is of 40 A continues to flow for 1.5 seconds through the fusing element Fk
- the fusing element Fk is fused.
- the smoke emission characteristic indicates the timing at which the electric wire Wk emits smoke.
- T3 the period in which the current whose wire current value is Is continues to flow through the wire Wk is T3
- the wire Wk emits smoke.
- the period T3 is longer than the period T1 and the period T2. This means that the smoke generation temperature at which the electric wire Wk emits smoke is higher than the reference temperature of the fusing element Fk and the temperature threshold value of the electric wire Wk. Therefore, the fusing element Fk is blown or the FET 30 of the switch circuit Gk is switched off before the wire temperature reaches the smoke generation temperature at which the wire Wk emits smoke. Therefore, the electric wire Wk is protected from smoke generation.
- the period T2 is longer than the period T1 and the period T3 is longer than the period T2.
- the fact that the period T2 is longer than the period T1 means that the reference temperature of the fusing element Fk exceeds the temperature threshold value of the wire temperature of the wire Wk. Therefore, unless a failure has occurred in the power supply control device 10, the FET 30 of the switch circuit Gk is switched off before the fusing element Fk is blown, and the fusing element Fk is not blown.
- the phenomenon that the wire temperature of the wire Wk exceeds the temperature threshold occurs, for example, when both ends of the load Ek are short-circuited.
- the phenomenon that the fusing element Fk is fusing occurs, for example, when both ends of the load Ek are short-circuited and the FET 30 of the switch circuit Gk is not switched from on to off.
- FIG. 4 is an explanatory diagram of the arrangement of the components of the power supply control device 10.
- the power supply control device 10 further includes a printed circuit board B.
- the printed circuit board B is an insulator substrate.
- FIG. 4 shows the plane and side surfaces of the printed circuit board B.
- n fusing elements F1, F2, ..., Fn, n switch circuits G1, G2, ..., Gn and a microcomputer 20 Is placed.
- a plurality of wirings (not shown) used for connection are provided on the plate surface of the printed circuit board B.
- One end of each of the n electric wires W1, W2, ... Wk is connected to the n wires provided on the plate surface of the printed circuit board B.
- the fusing element Fk will not be fusing. Therefore, it is unlikely that the n fusing elements F1, F2, ..., Fn will be fluted.
- the FET 30 of the switch circuit Gk is not switched off even though the wire temperature of the wire Wk is equal to or higher than the temperature threshold value, the fusing element Fk is blown.
- n fusing elements F1, F2, ..., Fn can be arranged on the printed circuit board B in which the n switch circuits G1, G2, ..., Gn and the microcomputer 20 are arranged. .. It is not necessary to arrange the printed circuit board B in a place where the n fusing elements F1, F2, ..., Fn can be easily replaced in the vehicle. As a result, efficient placement can be realized in the limited space in the vehicle.
- n fusing elements F1, F2, ..., Fn are not arranged on the printed circuit board B, and n fusing elements F1, F2, ... Fn is housed in a storage box. Further, it is necessary to arrange the storage box in a place where n fusing elements F1, F2, ..., Fn can be easily replaced. In this case, the degree of freedom in arranging the storage box, that is, the fusing element Fk is low, and efficient arrangement cannot be realized.
- FIG. 5 is a block diagram showing a configuration of a main part of the microcomputer 20.
- the microcomputer 20 includes an A / D conversion unit 40, an input unit 41, a storage unit 42, a control unit 43, n output units J1, J2, ..., Jn and n A / D conversion units M1, M2. ..., Has Mn. These are connected to the internal bus 44.
- the A / D conversion unit 40 is further connected to the temperature sensor 21.
- the output unit Jk is further connected to the drive unit 32 of the switch circuit Gk.
- the A / D conversion unit Mk is further connected to the connection node of the switch circuit Gk.
- the connection node of the switch circuit Gk is a connection node between the current output unit 31 and the resistor 33.
- the output unit Jk outputs a high level voltage or a low level voltage to the drive unit 32 of the switch circuit Gk.
- the drive unit 32 of the switch circuit Gk turns the FET 30 on or off as described above based on the output voltage of the output unit Jk and the electric wire current value of the electric wire Wk indicated by the voltage value across the resistor 33 of the switch circuit Gk. Switch.
- the control unit 43 instructs the output unit Jk to switch the FET 30 of the switch circuit Gk to on and to switch the FET 30 of the switch circuit Gk to off.
- the output unit Jk switches the output voltage to the high level voltage when the switching of the FET 30 is instructed to be on, and switches the output voltage to the low level voltage when the switching of the FET 30 is instructed to be turned off.
- An analog voltage value across the analog is input from the switch circuit Gk to the A / D conversion unit Mk.
- the A / D conversion unit Mk converts the analog voltage value across the analog input from the switch circuit Gk into the digital voltage value across the digital circuit.
- the control unit 43 acquires a digital voltage value across from the A / D conversion unit Mk.
- Analog environmental temperature information is input from the temperature sensor 21 to the A / D conversion unit 40.
- the A / D conversion unit 40 converts the analog environmental temperature information input from the temperature sensor 21 into digital environmental temperature information.
- the control unit 43 acquires digital environmental temperature information from the A / D conversion unit 40.
- the environmental temperature information indicates the environmental temperature of the environment in which the electric wires W1, W2, ..., Wk are arranged.
- the operation signal and stop signal are input to the input unit 41.
- the storage unit 42 is a non-volatile memory.
- the computer program P is stored in the storage unit 42.
- the control unit 43 has a processing element that executes processing, and functions as a processing unit. By executing the computer program P, the processing element of the control unit 43 performs n power supply control processing corresponding to each of the loads E1, E2, ..., En, and the electric wires W1, W2, ..., Wn, respectively.
- the n wire protection processes corresponding to the above are executed in parallel.
- the power supply control process for the load Ek is a process for controlling the power supply to the load Ek.
- the electric wire protection process of the electric wire Wk is a process of protecting the electric wire Wk from smoke generation.
- the computer program P may be stored in the storage medium A so that the processing element of the control unit 43 can be read. In this case, the computer program P read from the storage medium A by a reading device (not shown) is written in the storage unit 42.
- the storage medium A is an optical disk, a flexible disk, a magnetic disk, a magnetic disk disk, a semiconductor memory, or the like.
- the optical disk is a CD (Compact Disc) -ROM (Read Only Memory), a DVD (Digital Versatile Disc) -ROM, or a BD (Blu-ray (registered trademark) Disc).
- the magnetic disk is, for example, a hard disk.
- the computer program P may be downloaded from a device (not shown) connected to a communication network (not shown), and the downloaded computer program P may be written in the storage unit 42.
- the number of processing elements included in the control unit 43 is not limited to 1, and may be 2 or more. In this case, a plurality of processing elements may jointly execute n power supply control processes, n wire protection processes, and the like according to the computer program P.
- the storage unit 42 stores the values of n prohibition flags corresponding to each of the electric wires W1, W2, ..., Wn.
- the value of the flag of the electric wire Wk is zero, it indicates that the FET 30 of the switch circuit Gk is allowed to be switched on.
- the value of the flag of the electric wire Wk is 1, it means that switching the FET 30 of the switch circuit Gk to ON is prohibited.
- the value of the prohibition flag of the electric wire Wk is changed to zero or one by the control unit 43.
- FIG. 6 is a flowchart showing the procedure of the power supply control process of the load Ek.
- the control unit 43 periodically executes the power supply control process of the load Ek.
- the control unit 43 determines whether or not the value of the prohibition flag of the electric wire Wk is 1 (step S1).
- the value of the prohibition flag of the electric wire Wk is zero or one. Therefore, if the value of the prohibition flag is not 1, the value of the prohibition flag is zero.
- the control unit 43 ends the power supply control process of the load Ek.
- the control unit 43 again executes the power supply control process of the load Ek.
- the control unit 43 waits until the value of the prohibition flag is changed to zero.
- control unit 43 determines whether or not an operation signal indicating the load Ek has been input to the input unit 41 (step S2).
- the control unit 43 determines whether or not the stop signal indicating the load Ek has been input to the input unit 41 (step S3).
- control unit 43 determines that the stop signal indicating the load Ek has not been input (S3: NO)
- the control unit 43 ends the power supply control process of the load Ek.
- the control unit 43 again executes the power supply control process of the load Ek.
- the control unit 43 waits until the operation signal or the stop signal indicating the load Ek is input to the input unit 41.
- the control unit 43 determines that the operation signal indicating the load Ek has been input (S2: YES)
- the control unit 43 instructs the output unit Jk to switch the FET 30 of the switch circuit Gk to ON (step S4).
- the output unit Jk switches the voltage output to the drive unit 32 of the switch circuit Gk from the low level voltage to the high level voltage.
- the drive unit 32 is a switch circuit. The FET 30 of Gk is switched on.
- control unit 43 determines that the stop signal indicating the load Ek has been input (S3: YES)
- the control unit 43 instructs the output unit Jk to switch the FET 30 of the switch circuit Gk to off (step S5).
- the output unit Jk switches the voltage output to the drive unit 32 of the switch circuit Gk from the high level voltage to the low level voltage.
- the drive unit 32 switches off the FET 30 of the switch circuit Gk.
- the control unit 43 ends the power supply control process of the load Ek.
- the control unit 43 re-executes the power supply control process of the load Ek.
- the value of the prohibition flag of the electric wire Wk is changed to 1 while the FET 30 of the switch circuit Gk is off. Therefore, when the value of the prohibition flag of the electric wire Wk is 1, the FET 30 is not switched on and the FET 30 is kept off.
- the drive unit 32 uses the switch circuit Gk. FET 30 is switched on. In the same case, when the stop signal indicating the load Ek is input, the drive unit 32 switches the FET 30 of the switch circuit Gk to off.
- the control unit 43 of the microcomputer 20 repeatedly calculates the temperature difference between the electric wire temperature and the environmental temperature for the electric wire Wk. Specifically, the control unit 43 calculates the temperature difference based on the preceding temperature difference, the environmental temperature, and the electric wire current value calculated in advance. The control unit 43 calculates the wire temperature of the wire Wk by adding the calculated temperature difference to the environmental temperature detected by the temperature sensor 21.
- the electric wire current value, the temperature difference to be calculated, the preceding temperature difference, and the environmental temperature are described as Iw, ⁇ Tw, ⁇ Tp, and Ta, respectively.
- the control unit 43 calculates the temperature difference ⁇ Tw by substituting the preceding temperature difference ⁇ Tp, the electric wire current value Iw, and the environmental temperature Ta into the equations [1] and [2] shown below.
- ⁇ Tw ⁇ Tp ⁇ exp ( ⁇ t / ⁇ r) + Rth ⁇ Rw ⁇ Iw 2 ⁇ (1-exp ( ⁇ t / ⁇ r)) ⁇ ⁇ ⁇ [1]
- Rw Ro ⁇ (1 + ⁇ ⁇ (Ta + ⁇ Tp-To) ⁇ ⁇ ⁇ [2]
- the unit of the wire current value Iw is ampere.
- the units of the temperature difference ⁇ Tw, the preceding temperature difference ⁇ Tp, and the environmental temperature Ta are degrees.
- Rw is the electric wire resistance value ( ⁇ ) of the electric wire Wk.
- Rth is the electric wire thermal resistance value (° C./W) of the electric wire Wk.
- ⁇ t is the period (s) for acquiring the voltage value across the switch circuit Gk.
- ⁇ r is the electric wire heat dissipation time constant (s) of the electric wire Wk.
- To a predetermined temperature (° C.).
- Ro is the electric wire resistance value ( ⁇ ) at the temperature To.
- ⁇ is the temperature coefficient of wire resistance (/ ° C) of the wire Wk.
- the temperature difference ⁇ Tw, the preceding temperature difference ⁇ Tp, the wire current value Iw, and the environmental temperature Ta are variables, and the period ⁇ t, the wire heat dissipation time constant ⁇ r, the wire thermal resistance Rth, the wire resistance Ro, the wire resistance temperature coefficient ⁇ , and the temperature To are It is a preset constant.
- the value of the first term of the equation [1] decreases as the period ⁇ t becomes longer, so that the first term of the equation [1] represents the heat dissipation of the electric wire Wk. Further, since the value of the second term of the equation [1] increases as the period ⁇ t becomes longer, the second term of the equation [1] represents the heat generation of the electric wire Wk. The value of the second term increases as the wire current value Iw increases.
- the control unit 43 calculates the wire temperature of the wire Wk by adding the environmental temperature Ta detected by the temperature sensor 21 to the calculated temperature difference ⁇ Tw.
- the temperature difference ⁇ Tw of the electric wire Wk first executed by the control unit 43 after the microcomputer 20 is started, it is assumed that the electric wire temperature of the electric wire Wk matches the environmental temperature Ta, and the preceding temperature difference ⁇ Tp is regarded as zero.
- FIG. 7 is a flowchart showing the procedure of the electric wire protection processing of the electric wire Wk.
- the control unit 43 periodically executes the wire protection process of the wire Wk.
- the storage unit 42 stores the preceding temperature difference calculated in advance by the control unit 43. The preceding temperature difference stored in the storage unit 42 is changed by the control unit 43.
- the control unit 43 first acquires the voltage value across the resistor 33 of the switch circuit Gk from the A / D conversion unit Mk (step S11). Next, the control unit 43 calculates the electric wire current value of the electric wire Wk based on the voltage value across the voltage acquired in step S11 (step S12). As described above, the electric wire current value of the electric wire Wk is represented by (voltage value across the resistor 33) / ((predetermined number) ⁇ (resistance value of the resistor 33)). The predetermined number and the resistance value of the resistor 33 are constant values.
- step S12 the control unit 43 reads the preceding temperature difference from the storage unit 42 (step S13) and acquires the environmental temperature information from the A / D conversion unit 40 (step S14).
- step S14 the control unit 43 sets the electric wire current value calculated in step S12, the preceding temperature difference read in step S13, and the environmental temperature indicated by the environmental temperature information acquired in step S14 into the equation [1] and [2].
- step S15 the temperature difference between the electric wire temperature of the electric wire Wk and the environmental temperature is calculated (step S15).
- control unit 43 changes the preceding temperature difference stored in the storage unit 42 to the temperature difference calculated in step S15 (step S16).
- the preceding temperature difference after the change is used in the calculation of the next temperature difference.
- control unit 43 calculates the wire temperature of the wire Wk by adding the temperature difference calculated in step S15 to the environmental temperature indicated by the environmental temperature information acquired in step S14 (step S17). ).
- the control unit 43 determines whether or not the wire temperature calculated in step S17 is equal to or higher than the temperature threshold value of the wire Wk (step S18).
- the control unit 43 instructs the output unit Jk to switch the FET 30 of the switch circuit Gk to off (step S19).
- the output unit Jk switches the voltage output to the drive unit 32 of the switch circuit Gk from the high level voltage to the low level voltage.
- the drive unit 32 switches off the FET 30 of the switch circuit Gk.
- step S19 the control unit 43 changes the value of the prohibition flag of the electric wire Wk to 1 (step S20). This prohibits switching the FET 30 to on.
- step S20 the control unit 43 determines that the wire temperature is lower than the temperature threshold value (S18: NO), or after executing step S20, the control unit 43 ends the wire protection process of the wire Wk.
- the control unit 43 executes the wire protection process of the wire Wk again.
- control unit 43 repeatedly calculates the wire temperature of the wire Wk based on the wire current value of the wire Wk, and repeatedly determines whether or not the calculated wire temperature is equal to or higher than the temperature threshold of the wire Wk.
- the control unit 43 determines that the calculated wire temperature is equal to or higher than the temperature threshold value, the control unit 43 instructs the FET 30 to be switched off and prohibits the FET 30 from being switched on.
- the power supply control device 10 functions as an electric wire protection device.
- the control unit 43 may execute a release process for canceling the prohibition of switching the FET 30 on by the switch circuit Gk.
- the control unit 43 periodically executes the release process of the switch circuit Gk when the value of the prohibition flag of the electric wire Wk is 1.
- the control unit 43 calculates the temperature difference between the electric wire temperature of the electric wire Wk and the environmental temperature.
- the control unit 43 determines whether or not the above-mentioned predetermined conditions are satisfied.
- the predetermined condition is, for example, that the temperature difference is a value equal to or less than a predetermined value.
- the predetermined value is zero ° C, 5 ° C, or the like.
- the control unit 43 determines that the predetermined condition is satisfied, the control unit 43 returns the value of the prohibition flag to zero.
- the control unit 43 determines that the predetermined condition is not satisfied, the control unit 43 maintains the value of the prohibition flag at 1.
- the control unit 43 may be configured to repeatedly calculate the wire temperature of the wire Wk. Therefore, the control unit 43 does not have to periodically calculate the wire temperature of the wire Wk.
- the method of calculating the electric wire temperature of the electric wire Wk based on the electric wire current value of the electric wire Wk is not limited to the method using the equation [1] and the equation [2].
- the power supply control device 10 may have n temperature detection units for detecting the wire temperature of each of the wires W1, W2, ..., Wk.
- the control unit 43 of the microcomputer 20 does not calculate the wire temperature, and determines whether or not the wire temperature of the wire Wk detected by the temperature detection unit is equal to or higher than the temperature threshold value.
- n fusing elements F1, F2, ..., Fn, n switch circuits G1, G2, ..., Gn and the microcomputer 20 do not have to be arranged on one printed circuit board B.
- n fusing elements F1, F2, ..., Fn, n switch circuits G1, G2, ..., Gn and a part of the microcomputer 20 are on a second substrate different from the printed circuit board B. It may be arranged in.
- the number of each of the fusing element, the electric wire, the switch circuit and the load, that is, n may be 1.
- the FET 30 may function as a switch. Therefore, instead of the FET 30, a P-channel type FET, an IGBT (Insulated Gate Bipolar Transistor), a relay contact, or the like may be used.
- IGBT Insulated Gate Bipolar Transistor
- Power supply system 10 Power supply control device (electric wire protection device) 11 DC power supply 20 Microcomputer 21 Temperature sensor 30 FET 31 Current output unit 32 Drive unit 33 Resistance 40, M1, M2, ..., Mn A / D conversion unit 41 Input unit 42 Storage unit 43 Control unit (processing unit) 44 Internal bus A Storage medium B Printed circuit board E1, E2, ..., En load F1, F2, ..., Fn Fusing element G1, G2, ..., Gn switch circuit J1, J2, ..., Jn Output section W1, W2, ..., Wn wire P computer program
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Emergency Protection Circuit Devices (AREA)
- Protection Of Static Devices (AREA)
Abstract
In a power supply control device (10) that functions as a wire protection device, a fusion element (F1) is disposed on a current pathway for current that flows through a wire (W1). The fusion element (F1) fuses according to the temperature of the fusion element (F1). A switch circuit (G1) has an FET. The FET is disposed on the current pathway for the current that flows through the wire (W1). The FET is switched off when a microcomputer (20) has determined that the wire temperature of the wire (W1) is greater than or equal to a temperature threshold.
Description
本開示は、電線保護装置、電線保護方法及びコンピュータプログラムに関する。
本出願は、2020年6月10日出願の日本出願第2020-101070号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to wire protection devices, wire protection methods and computer programs.
This application claims priority based on Japanese Application No. 2020-101070 filed on June 10, 2020, and incorporates all the contents described in the Japanese application.
本出願は、2020年6月10日出願の日本出願第2020-101070号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。 The present disclosure relates to wire protection devices, wire protection methods and computer programs.
This application claims priority based on Japanese Application No. 2020-101070 filed on June 10, 2020, and incorporates all the contents described in the Japanese application.
特許文献1には、直流電源から負荷に電力を供給する車両用の電源システムが開示されている。この電源システムでは、直流電源から負荷に流れる電流の電流経路に溶断素子が配置されている。溶断素子は具体的にはヒューズである。直流電源から溶断素子を介して負荷に電流が流れた場合、溶断素子と、電流経路に配置された電線とは発熱する。
Patent Document 1 discloses a power supply system for a vehicle that supplies electric power from a DC power source to a load. In this power supply system, a fusing element is arranged in the current path of the current flowing from the DC power supply to the load. The fusing element is specifically a fuse. When a current flows from the DC power supply to the load via the fusing element, the fusing element and the electric wire arranged in the current path generate heat.
溶断素子について、単位時間当たりの発熱量が単位時間当たりの放熱量を超えている場合、溶断素子の温度は上昇する。同様に、電線について、単位時間当たりの発熱量が単位時間当たりの放熱量を超えている場合、電線の電線温度は上昇する。電線温度が一定温度以上となった場合に、溶断素子が溶断され、直流電源から負荷への電流の通流が停止する。一定温度は電線が発煙する発煙温度よりも低い。このため、溶断素子は電線が発煙する前に溶断され、電線が発煙から保護される。
For the fusing element, if the amount of heat generated per unit time exceeds the amount of heat released per unit time, the temperature of the fusing element will rise. Similarly, for an electric wire, when the heat generation amount per unit time exceeds the heat dissipation amount per unit time, the electric wire temperature of the electric wire rises. When the wire temperature rises above a certain temperature, the fusing element is blown and the current flow from the DC power supply to the load is stopped. The constant temperature is lower than the smoke generation temperature at which the electric wire emits smoke. Therefore, the fusing element is blown before the electric wire emits smoke, and the electric wire is protected from the smoke emission.
本開示の一態様に係る電線保護装置は、電線を介して流れる電流の電流経路に配置され、自身の温度に応じて溶断される溶断素子と、前記電流経路に配置されるFETと、処理を実行する処理部とを備え、前記処理部は、前記電線の電線温度が温度閾値以上であるか否かを繰り返し判定し、前記電線温度が前記温度閾値以上であると判定した場合に前記FETのオフへの切替えを指示する。
The electric wire protection device according to one aspect of the present disclosure performs processing with a fusing element arranged in a current path of a current flowing through the electric wire and fusing according to its own temperature, and an FET arranged in the current path. The processing unit includes a processing unit to execute, and the processing unit repeatedly determines whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold, the FET. Instruct to switch to off.
本開示の一態様に係る電線保護方法では、電線の電線温度が温度閾値以上であるか否かを繰り返し判定するステップと、前記電線温度が前記温度閾値以上であると判定した場合に、前記電線を介して流れる電流の電流経路に配置されるFETのオフへの切替えを指示するステップとをコンピュータが実行し、自身の温度に応じて溶断される溶断素子が前記電流経路に配置されている。
In the electric wire protection method according to one aspect of the present disclosure, there is a step of repeatedly determining whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold, the electric wire is said. The computer executes a step of instructing switching of the FET arranged in the current path of the current flowing through the current path to off, and a fusing element that is fused according to its own temperature is arranged in the current path.
本開示の一態様に係るコンピュータプログラムは、電線の電線温度が温度閾値以上であるか否かを繰り返し判定するステップと、前記電線温度が前記温度閾値以上であると判定した場合に、前記電線を介して流れる電流の電流経路に配置されるFETのオフへの切替えを指示するステップとをコンピュータに実行させるために用いられ、自身の温度に応じて溶断される溶断素子が前記電流経路に配置されている。
The computer program according to one aspect of the present disclosure repeatedly determines whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold, the electric wire is used. A fusing element is placed in the current path, which is used to cause the computer to perform a step of instructing the computer to switch off the FET placed in the current path of the current flowing through the current path, and is blown according to its own temperature. ing.
なお、本開示を、このような特徴的な処理部を備える電線保護装置として実現することができるだけでなく、かかる特徴的な処理をステップとする電線保護方法として実現したり、かかるステップをコンピュータに実行させるためのコンピュータプログラムとして実現したりすることができる。また、本開示を、電線保護装置の一部又は全部を実現する半導体集積回路として実現したり、電線保護装置を含む電源システムとして実現したりすることができる。
It should be noted that the present disclosure can be realized not only as an electric wire protection device provided with such a characteristic processing unit, but also as an electric wire protection method in which such characteristic processing is a step, or such a step can be applied to a computer. It can be realized as a computer program for execution. Further, the present disclosure can be realized as a semiconductor integrated circuit that realizes a part or all of the electric wire protection device, or can be realized as a power supply system including the electric wire protection device.
[本開示が解決しようとする課題]
特許文献1に記載の電源システムでは、電線が発煙する前に負荷への電流の通流を停止させる素子は溶断素子のみである。このため、溶断素子が溶断される可能性が高く、溶断素子を交換する頻度が高い。従って、溶断素子は、車両内において、使用者が容易に交換を行うことができる場所に溶断素子を配置しなければならず、溶断素子の配置に関する自由度は小さい。 [Problems to be solved by this disclosure]
In the power supply system described inPatent Document 1, the only element that stops the flow of current to the load before the electric wire emits smoke is the fusing element. Therefore, there is a high possibility that the fusing element will be fusing, and the frequency of replacing the fusing element is high. Therefore, the fusing element must be arranged in a place where the user can easily replace the fusing element in the vehicle, and the degree of freedom regarding the arrangement of the fusing element is small.
特許文献1に記載の電源システムでは、電線が発煙する前に負荷への電流の通流を停止させる素子は溶断素子のみである。このため、溶断素子が溶断される可能性が高く、溶断素子を交換する頻度が高い。従って、溶断素子は、車両内において、使用者が容易に交換を行うことができる場所に溶断素子を配置しなければならず、溶断素子の配置に関する自由度は小さい。 [Problems to be solved by this disclosure]
In the power supply system described in
そこで、溶断素子が溶断される可能性が低い電線保護装置、電線保護方法及びコンピュータプログラムを提供することを目的とする。
Therefore, it is an object of the present invention to provide a wire protection device, a wire protection method, and a computer program in which the fusing element is unlikely to be blown.
[本開示の効果]
本開示によれば、溶断素子が溶断される可能性が低い。 [Effect of this disclosure]
According to the present disclosure, it is unlikely that the fusing element will be fusing.
本開示によれば、溶断素子が溶断される可能性が低い。 [Effect of this disclosure]
According to the present disclosure, it is unlikely that the fusing element will be fusing.
[本開示の実施形態の説明]
最初に本開示の実施態様を列挙して説明する。以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。 [Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described. At least a part of the embodiments described below may be arbitrarily combined.
最初に本開示の実施態様を列挙して説明する。以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。 [Explanation of Embodiments of the present disclosure]
First, embodiments of the present disclosure will be listed and described. At least a part of the embodiments described below may be arbitrarily combined.
(1)本開示の一態様に係る電線保護装置は、電線を介して流れる電流の電流経路に配置され、自身の温度に応じて溶断される溶断素子と、前記電流経路に配置されるFETと、処理を実行する処理部とを備え、前記処理部は、前記電線の電線温度が温度閾値以上であるか否かを繰り返し判定し、前記電線温度が前記温度閾値以上であると判定した場合に前記FETのオフへの切替えを指示する。
(1) The electric wire protection device according to one aspect of the present disclosure includes a fusing element arranged in a current path of a current flowing through an electric wire and fused according to its own temperature, and an FET arranged in the current path. , The processing unit repeatedly determines whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold. Instructs the switching of the FET to off.
(2)本開示の一態様に係る電線保護装置では、前記溶断素子は、前記電線温度が所定温度以上の温度となった場合に溶断され、前記温度閾値は、前記所定温度未満の温度である。
(2) In the electric wire protection device according to one aspect of the present disclosure, the fusing element is fused when the electric wire temperature becomes a temperature equal to or higher than a predetermined temperature, and the temperature threshold is a temperature lower than the predetermined temperature. ..
(3)本開示の一態様に係る電線保護装置では、前記処理部は、前記電線を介して流れる電流の電線電流値に基づいて前記電線温度を繰り返し算出する。
(3) In the electric wire protection device according to one aspect of the present disclosure, the processing unit repeatedly calculates the electric wire temperature based on the electric wire current value of the current flowing through the electric wire.
(4)本開示の一態様に係る電線保護装置では、前記溶断素子、FET及び処理部は1つのプリント基板上に配置されている。
(4) In the electric wire protection device according to one aspect of the present disclosure, the fusing element, the FET, and the processing unit are arranged on one printed circuit board.
(5)本開示の一態様に係る電線保護方法では、電線の電線温度が温度閾値以上であるか否かを繰り返し判定するステップと、前記電線温度が前記温度閾値以上であると判定した場合に、前記電線を介して流れる電流の電流経路に配置されるFETのオフへの切替えを指示するステップとをコンピュータが実行し、自身の温度に応じて溶断される溶断素子が前記電流経路に配置されている。
(5) In the electric wire protection method according to one aspect of the present disclosure, there are a step of repeatedly determining whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and a case where it is determined that the electric wire temperature is equal to or higher than the temperature threshold. , The computer executes a step of instructing switching of the FET arranged in the current path of the current flowing through the electric wire to off, and a fusing element to be fused according to its own temperature is arranged in the current path. ing.
(6)本開示の一態様に係るコンピュータプログラムは、電線の電線温度が温度閾値以上であるか否かを繰り返し判定するステップと、前記電線温度が前記温度閾値以上であると判定した場合に、前記電線を介して流れる電流の電流経路に配置されるFETのオフへの切替えを指示するステップとをコンピュータに実行させるために用いられ、自身の温度に応じて溶断される溶断素子が前記電流経路に配置されている。
(6) The computer program according to one aspect of the present disclosure is a step of repeatedly determining whether or not the electric wire temperature of the electric wire is equal to or higher than the temperature threshold, and when it is determined that the electric wire temperature is equal to or higher than the temperature threshold. A fusing element that is used to cause a computer to perform a step of instructing a computer to switch off an FET arranged in a current path of a current flowing through the electric wire and is blown according to its own temperature is the current path. Is located in.
上記の一態様に係る電線保護装置、電線保護方法及びコンピュータプログラムにあっては、電線が発煙する発煙温度に電線温度が到達する前に、溶断素子が溶断されるか、又は、FETがオフに切替わる。このため、電線が発煙から保護される。溶断素子が溶断される前にFETがオフに切替わる構成であると仮定する。この構成では、電線温度が温度閾値以上の温度となったにも関わらず、FETがオフに切替わらなかった場合に溶断素子が溶断される。このため、溶断素子が溶断される可能性は低い。
In the wire protection device, wire protection method, and computer program according to the above aspect, the fusing element is blown or the FET is turned off before the wire temperature reaches the smoke temperature at which the wire emits smoke. Switch. Therefore, the electric wire is protected from smoke generation. It is assumed that the FET is switched off before the fusing element is blown. In this configuration, the fusing element is blown when the FET is not switched off even though the wire temperature becomes a temperature equal to or higher than the temperature threshold value. Therefore, it is unlikely that the fusing element will be fusing.
上記の一態様に係る電線保護装置にあっては、FETの温度閾値は、溶断素子の所定温度未満の温度であるので、装置において故障が発生していない限り、溶断素子が溶断される前にFETがオフに切替わる。
In the electric wire protection device according to the above aspect, the temperature threshold of the FET is a temperature lower than the predetermined temperature of the fusing element, and therefore, unless a failure occurs in the device, before the fusing element is blown. FET switches off.
上記の一態様に係る電線保護装置にあっては、電線電流値に基づいて電線温度が算出される。
In the wire protection device according to the above aspect, the wire temperature is calculated based on the wire current value.
上記の一態様に係る電線保護装置にあっては、溶断素子が溶断される可能性が低いので、交換を容易に行うことができる場所に溶断素子を配置する必要はない。このため、1つのプリント基板上に、溶断素子、FET及び処理部を配置される。装置が車両に搭載される場合、車両内の限定的な空間において効率的な配置を実現することができる。
In the electric wire protection device according to the above aspect, since the possibility that the fusing element is fracted is low, it is not necessary to dispose the fusing element in a place where it can be easily replaced. Therefore, the fusing element, the FET, and the processing unit are arranged on one printed circuit board. When the device is mounted on a vehicle, efficient placement can be achieved in the limited space within the vehicle.
[本開示の実施形態の詳細]
本開示の実施形態に係る電源システムの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 [Details of Embodiments of the present disclosure]
Specific examples of the power supply system according to the embodiment of the present disclosure will be described below with reference to the drawings. It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
本開示の実施形態に係る電源システムの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 [Details of Embodiments of the present disclosure]
Specific examples of the power supply system according to the embodiment of the present disclosure will be described below with reference to the drawings. It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
<電源システムの構成>
図1は、本実施形態における電源システム1の要部構成を示すブロック図である。電源システム1は、車両に搭載されており、給電制御装置10、直流電源11及びn個の負荷E1,E2,・・・,Enを備える。ここで、nは2以上の整数である。直流電源11は例えばバッテリである。負荷E1,E2,・・・,Enは電気機器である。給電制御装置10は、直流電源11の正極に接続されている。給電制御装置10は、更に、n個の電線W1,W2,・・・,Wnそれぞれを介して、n個の負荷E1,E2,・・・,Enの一端に接続されている。直流電源11の負極と、n個の負荷E1,E2,・・・,Enの他端は接地されている。以下では、n以下である任意の自然数をkで表す。従って、kは、1,2,・・・,nの中のいずれであってもよい。 <Power system configuration>
FIG. 1 is a block diagram showing a main configuration of thepower supply system 1 in the present embodiment. The power supply system 1 is mounted on a vehicle and includes a power supply control device 10, a DC power supply 11, and n loads E1, E2, ..., En. Here, n is an integer of 2 or more. The DC power supply 11 is, for example, a battery. The loads E1, E2, ..., En are electrical devices. The power supply control device 10 is connected to the positive electrode of the DC power supply 11. The power supply control device 10 is further connected to one end of n loads E1, E2, ..., En via n electric wires W1, W2, ..., Wn, respectively. The negative electrode of the DC power supply 11 and the other ends of the n loads E1, E2, ..., En are grounded. In the following, any natural number less than or equal to n is represented by k. Therefore, k may be any of 1, 2, ..., N.
図1は、本実施形態における電源システム1の要部構成を示すブロック図である。電源システム1は、車両に搭載されており、給電制御装置10、直流電源11及びn個の負荷E1,E2,・・・,Enを備える。ここで、nは2以上の整数である。直流電源11は例えばバッテリである。負荷E1,E2,・・・,Enは電気機器である。給電制御装置10は、直流電源11の正極に接続されている。給電制御装置10は、更に、n個の電線W1,W2,・・・,Wnそれぞれを介して、n個の負荷E1,E2,・・・,Enの一端に接続されている。直流電源11の負極と、n個の負荷E1,E2,・・・,Enの他端は接地されている。以下では、n以下である任意の自然数をkで表す。従って、kは、1,2,・・・,nの中のいずれであってもよい。 <Power system configuration>
FIG. 1 is a block diagram showing a main configuration of the
直流電源11は給電制御装置10及び電線Wkを介して負荷Ekに電力が供給される。負荷Ekに電力が供給された場合、負荷Ekは作動する。負荷Ekへの給電が停止した場合、負荷Ekは動作を停止する。給電制御装置10には、n個の負荷E1,E2,・・・,Enの中で作動させる負荷を示す作動信号と、n個の負荷E1,E2,・・・,Enの中で動作を停止させる負荷を示す停止信号とが入力される。
The DC power supply 11 supplies power to the load Ek via the power supply control device 10 and the electric wire Wk. When power is supplied to the load Ek, the load Ek operates. When the power supply to the load Ek is stopped, the load Ek stops operating. The power supply control device 10 has an operation signal indicating a load to be operated in n loads E1, E2, ..., En, and an operation in n loads E1, E2, ..., En. A stop signal indicating the load to be stopped is input.
給電制御装置10は、負荷Ekを示す作動信号が入力された場合、直流電源11及び負荷Ekを電気的に接続する。これにより、直流電源11は負荷Ekに電力を供給し、負荷Ekは作動する。給電制御装置10は、負荷Ekを示す停止信号が入力された場合、直流電源11及び負荷Ekの電気的な接続を遮断する。これにより、直流電源11から負荷Ekへの給電が停止し、負荷Ekは動作を停止する。
The power supply control device 10 electrically connects the DC power supply 11 and the load Ek when an operation signal indicating the load Ek is input. As a result, the DC power supply 11 supplies power to the load Ek, and the load Ek operates. When a stop signal indicating the load Ek is input, the power supply control device 10 cuts off the electrical connection between the DC power supply 11 and the load Ek. As a result, the power supply from the DC power supply 11 to the load Ek is stopped, and the load Ek stops operating.
<給電制御装置10の構成>
給電制御装置10は、マイクロコンピュータ(以下、マイコンという)20、温度センサ21、n個の溶断素子F1,F2,・・・,Fn、n個のスイッチ回路G1,G2,・・・,Gnを有する。溶断素子F1,F2,・・・,Fnそれぞれは、ヒューズ又はヒュージブルリンク等である。スイッチ回路G1,G2,・・・,Gnそれぞれは、例えば、IPD(Intelligent Power Device)である。 <Configuration of powersupply control device 10>
The powersupply control device 10 includes a microcomputer (hereinafter referred to as a microcomputer) 20, a temperature sensor 21, n fusing elements F1, F2, ..., Fn, and n switch circuits G1, G2, ..., Gn. Have. Each of the fusing elements F1, F2, ..., Fn is a fuse, a fusible link, or the like. Each of the switch circuits G1, G2, ..., Gn is, for example, an IPD (Intelligent Power Device).
給電制御装置10は、マイクロコンピュータ(以下、マイコンという)20、温度センサ21、n個の溶断素子F1,F2,・・・,Fn、n個のスイッチ回路G1,G2,・・・,Gnを有する。溶断素子F1,F2,・・・,Fnそれぞれは、ヒューズ又はヒュージブルリンク等である。スイッチ回路G1,G2,・・・,Gnそれぞれは、例えば、IPD(Intelligent Power Device)である。 <Configuration of power
The power
電線Wkを介して流れる電流の電流経路に溶断素子Fk及びスイッチ回路Gkが配置されている。電線Wkの電流経路において、電線Wkの上流側に溶断素子Fk及びスイッチ回路Gkが配置される。電線Wkの下流側に負荷Ekが配置されている。溶断素子Fkはスイッチ回路Gkの上流側に配置されている。スイッチ回路Gkはマイコン20に接続されている。温度センサ21はマイコン20に接続されている。
なお、電線Wkの電流経路において、溶断素子Fkはスイッチ回路Gkの下流側に配置されてもよい。以下では、溶断素子Fkがスイッチ回路Gkの上流側に配置される例を説明する。 A fusing element Fk and a switch circuit Gk are arranged in the current path of the current flowing through the electric wire Wk. In the current path of the electric wire Wk, the fusing element Fk and the switch circuit Gk are arranged on the upstream side of the electric wire Wk. The load Ek is arranged on the downstream side of the electric wire Wk. The fusing element Fk is arranged on the upstream side of the switch circuit Gk. The switch circuit Gk is connected to themicrocomputer 20. The temperature sensor 21 is connected to the microcomputer 20.
In the current path of the electric wire Wk, the fusing element Fk may be arranged on the downstream side of the switch circuit Gk. Hereinafter, an example in which the fusing element Fk is arranged on the upstream side of the switch circuit Gk will be described.
なお、電線Wkの電流経路において、溶断素子Fkはスイッチ回路Gkの下流側に配置されてもよい。以下では、溶断素子Fkがスイッチ回路Gkの上流側に配置される例を説明する。 A fusing element Fk and a switch circuit Gk are arranged in the current path of the current flowing through the electric wire Wk. In the current path of the electric wire Wk, the fusing element Fk and the switch circuit Gk are arranged on the upstream side of the electric wire Wk. The load Ek is arranged on the downstream side of the electric wire Wk. The fusing element Fk is arranged on the upstream side of the switch circuit Gk. The switch circuit Gk is connected to the
In the current path of the electric wire Wk, the fusing element Fk may be arranged on the downstream side of the switch circuit Gk. Hereinafter, an example in which the fusing element Fk is arranged on the upstream side of the switch circuit Gk will be described.
マイコン20は、スイッチ回路G1,G2,・・・,Gnそれぞれに、ハイレベル電圧又はローレベル電圧を出力している。スイッチ回路Gkは、マイコン20から入力されている電圧と、電線Wkを介して流れる電流の電流値とに基づいて、直流電源11及び負荷Ekの電気的な接続と、直流電源11及び負荷Ekの電気的な接続の遮断とを行う。以下では、電線Wkを介して流れる電流の電流値を電線電流値と記載する。
The microcomputer 20 outputs a high level voltage or a low level voltage to each of the switch circuits G1, G2, ..., Gn. The switch circuit Gk is based on the voltage input from the microcomputer 20 and the current value of the current flowing through the electric wire Wk, the electrical connection of the DC power supply 11 and the load Ek, and the DC power supply 11 and the load Ek. It cuts off the electrical connection. In the following, the current value of the current flowing through the electric wire Wk is referred to as the electric wire current value.
スイッチ回路Gkは、電線W1の電線電流値が一定電流値未満である状態で、マイコン20から入力されている電圧がローレベル電圧からハイレベル電圧に切替わった場合、直流電源11及び負荷Ekを電気的に接続する。スイッチ回路Gkは、マイコン20から入力されている電圧がハイレベル電圧からローレベル電圧に切替わった場合、電線Wkの電線電流値に無関係に、直流電源11及び負荷Ekの電気的な接続を遮断する。
The switch circuit Gk switches the DC power supply 11 and the load Ek when the voltage input from the microcomputer 20 is switched from the low level voltage to the high level voltage in a state where the wire current value of the wire W1 is less than a constant current value. Connect electrically. When the voltage input from the microcomputer 20 is switched from the high level voltage to the low level voltage, the switch circuit Gk cuts off the electrical connection between the DC power supply 11 and the load Ek regardless of the wire current value of the wire Wk. do.
スイッチ回路Gkは、マイコン20から入力されている電圧がハイレベル電圧である状態で、電線Wkの電線電流値が一定電流値以上の電流値となった場合、直流電源11及び負荷Ekの電気的な接続を遮断する。その後、スイッチ回路Gkは、マイコン20から入力されている電圧がローレベル電圧に切替わるまで、電気的な接続の遮断を維持する。マイコン20から入力されている電圧がローレベル電圧に切替わった場合、スイッチ回路Gkは電気的な接続の遮断の維持を解除する。
In the switch circuit Gk, when the voltage input from the microcomputer 20 is a high level voltage and the current value of the wire Wk becomes a current value equal to or higher than a certain current value, the DC power supply 11 and the load Ek are electrically operated. Disconnect the connection. After that, the switch circuit Gk maintains the disconnection of the electrical connection until the voltage input from the microcomputer 20 is switched to the low level voltage. When the voltage input from the microcomputer 20 is switched to the low level voltage, the switch circuit Gk releases the maintenance of the disconnection of the electrical connection.
スイッチ回路Gkは抵抗33(図2参照)を有する。スイッチ回路Gkは、抵抗33の両端間の電圧値をマイコン20に出力する。以下では、抵抗33の両端間の電圧値を両端電圧値と記載する。スイッチ回路Gkが出力する両端電圧値は、アナログの値であり、電線Wkの電線電流値を示す。
The switch circuit Gk has a resistor 33 (see FIG. 2). The switch circuit Gk outputs the voltage value between both ends of the resistor 33 to the microcomputer 20. Hereinafter, the voltage value between both ends of the resistor 33 is referred to as a voltage value across the ends. The voltage value across the switch circuit Gk is an analog value, and indicates the electric wire current value of the electric wire Wk.
電線W1,W2,・・・,Wnの電線電流値に関する一定電流値は同じであってもよい。また、電線W1,W2,・・・,Wnそれぞれの電線電流値に関する一定電流値は、他の一定電流値中の少なくとも1つと異なっていてもよい。
The constant current values related to the electric wire current values of the electric wires W1, W2, ..., Wn may be the same. Further, the constant current value for each of the electric wires W1, W2, ..., Wn may be different from at least one of the other constant current values.
電線Wkを介して電流が流れた場合、溶断素子Fk及び電線Wkは発熱する。溶断素子Fkについて、単位時間当たりの発熱量が単位時間当たりの放熱量を超えている場合、溶断素子Fkの温度が上昇する。同様に、電線Wkについて、単位時間当たりの発熱量が単位時間当たりの放熱量を超えている場合、電線Wkの電線温度が上昇する。溶断素子Fkの温度が一定の溶断温度以上の温度となった場合、溶断素子Fkは溶断される。溶断素子Fkの温度が溶断温度である場合における電線Wkの電線温度を基準温度と記載する。基準温度は一定である。従って、電線Wkの電線温度が基準温度以上の温度となった場合、溶断素子Fkが溶断される。溶断素子Fkが溶断された場合、電線Wkを介した通流が停止する。基準温度は所定温度に相当する。
溶断素子F1,F2,・・・,Fnの基準温度は同じであってもよい。また、溶断素子F1,F2,・・・,Fnそれぞれの基準温度は、他の基準温度中の少なくとも1つと異なっていてもよい。 When a current flows through the electric wire Wk, the fusing element Fk and the electric wire Wk generate heat. Regarding the fusing element Fk, when the calorific value per unit time exceeds the heat dissipation amount per unit time, the temperature of the fusing element Fk rises. Similarly, for the electric wire Wk, when the heat generation amount per unit time exceeds the heat dissipation amount per unit time, the electric wire temperature of the electric wire Wk rises. When the temperature of the fusing element Fk becomes a temperature equal to or higher than a certain fusing temperature, the fusing element Fk is fused. When the temperature of the fusing element Fk is the fusing temperature, the wire temperature of the wire Wk is described as the reference temperature. The reference temperature is constant. Therefore, when the wire temperature of the wire Wk becomes a temperature equal to or higher than the reference temperature, the fusing element Fk is blown. When the fusing element Fk is flew, the flow through the electric wire Wk is stopped. The reference temperature corresponds to a predetermined temperature.
The reference temperatures of the fusing elements F1, F2, ..., Fn may be the same. Further, the reference temperature of each of the fusing elements F1, F2, ..., Fn may be different from at least one of the other reference temperatures.
溶断素子F1,F2,・・・,Fnの基準温度は同じであってもよい。また、溶断素子F1,F2,・・・,Fnそれぞれの基準温度は、他の基準温度中の少なくとも1つと異なっていてもよい。 When a current flows through the electric wire Wk, the fusing element Fk and the electric wire Wk generate heat. Regarding the fusing element Fk, when the calorific value per unit time exceeds the heat dissipation amount per unit time, the temperature of the fusing element Fk rises. Similarly, for the electric wire Wk, when the heat generation amount per unit time exceeds the heat dissipation amount per unit time, the electric wire temperature of the electric wire Wk rises. When the temperature of the fusing element Fk becomes a temperature equal to or higher than a certain fusing temperature, the fusing element Fk is fused. When the temperature of the fusing element Fk is the fusing temperature, the wire temperature of the wire Wk is described as the reference temperature. The reference temperature is constant. Therefore, when the wire temperature of the wire Wk becomes a temperature equal to or higher than the reference temperature, the fusing element Fk is blown. When the fusing element Fk is flew, the flow through the electric wire Wk is stopped. The reference temperature corresponds to a predetermined temperature.
The reference temperatures of the fusing elements F1, F2, ..., Fn may be the same. Further, the reference temperature of each of the fusing elements F1, F2, ..., Fn may be different from at least one of the other reference temperatures.
温度センサ21は、n個の電線W1,W2,・・・,Wnが配置されている環境の環境温度を検出する。温度センサ21は、検出した環境温度を示すアナログの環境温度情報をマイコン20に出力する。アナログの環境温度情報は、例えば、環境温度に応じて変動する電圧値である。
The temperature sensor 21 detects the environmental temperature of the environment in which the n electric wires W1, W2, ..., Wn are arranged. The temperature sensor 21 outputs analog environmental temperature information indicating the detected environmental temperature to the microcomputer 20. The analog environmental temperature information is, for example, a voltage value that fluctuates according to the environmental temperature.
マイコン20には、作動信号及び停止信号が入力される。マイコン20は、外部から入力される信号と、スイッチ回路Gkから入力される抵抗33の両端電圧値と、温度センサ21から入力される環境温度情報とに基づいて、スイッチ回路Gkに出力している電圧をハイレベル電圧又はローレベル電圧に切替える。
An operation signal and a stop signal are input to the microcomputer 20. The microcomputer 20 outputs to the switch circuit Gk based on a signal input from the outside, a voltage value across the resistor 33 input from the switch circuit Gk, and environmental temperature information input from the temperature sensor 21. Switch the voltage to high level voltage or low level voltage.
<スイッチ回路Gkの構成>
図2はスイッチ回路Gkの要部構成を示すブロック図である。スイッチ回路Gkは、Nチャネル型のFET30、電流出力部31及び駆動部32を有する。電線Wkを介して流れる電流の電流経路において、FET30のドレイン及びソースが溶断素子Fkの下流側に配置されている。ドレインはソースの上流側に配置されている。電線Wkを介して流れる電流の電流経路において、FET30の下流側に電流出力部31が配置されている。 <Structure of switch circuit Gk>
FIG. 2 is a block diagram showing a main configuration of the switch circuit Gk. The switch circuit Gk includes an N-channel type FET 30, a current output unit 31 and a drive unit 32. In the current path of the current flowing through the electric wire Wk, the drain and the source of the FET 30 are arranged on the downstream side of the fusing element Fk. The drain is located upstream of the source. In the current path of the current flowing through the electric wire Wk, the current output unit 31 is arranged on the downstream side of the FET 30.
図2はスイッチ回路Gkの要部構成を示すブロック図である。スイッチ回路Gkは、Nチャネル型のFET30、電流出力部31及び駆動部32を有する。電線Wkを介して流れる電流の電流経路において、FET30のドレイン及びソースが溶断素子Fkの下流側に配置されている。ドレインはソースの上流側に配置されている。電線Wkを介して流れる電流の電流経路において、FET30の下流側に電流出力部31が配置されている。 <Structure of switch circuit Gk>
FIG. 2 is a block diagram showing a main configuration of the switch circuit Gk. The switch circuit Gk includes an N-
FET30のゲートは駆動部32に接続されている。駆動部32は、更に、マイコン20に接続されている。電流出力部31は、更に、抵抗33の一端に接続されている。抵抗33の他端は接地されている。電流出力部31及び抵抗33間の接続ノードは、マイコン20及び駆動部32に接続されている。
The gate of the FET 30 is connected to the drive unit 32. The drive unit 32 is further connected to the microcomputer 20. The current output unit 31 is further connected to one end of the resistor 33. The other end of the resistor 33 is grounded. The connection node between the current output unit 31 and the resistor 33 is connected to the microcomputer 20 and the drive unit 32.
FET30はスイッチとして機能する。FET30について、状態がオンである場合、ドレイン及びソース間の抵抗値が十分に小さく、ドレイン及びソースを介して電流が流れることが可能である。FET30について、状態がオフである場合、ドレイン及びソース間の抵抗値が十分に大きく、ドレイン及びソースを介して電流が流れることはない。FET30がオフからオンに切替わった場合、直流電源11及び負荷Ekが電気的に接続され、直流電源11が負荷Ekに電力を供給する。FET30がオンからオフに切替わった場合、直流電源11及び負荷Ek間の電気的な接続が遮断され、負荷Ekへの給電が停止する。
FET 30 functions as a switch. When the state of the FET 30 is on, the resistance value between the drain and the source is sufficiently small, and a current can flow through the drain and the source. When the state of the FET 30 is off, the resistance value between the drain and the source is sufficiently large, and no current flows through the drain and the source. When the FET 30 is switched from off to on, the DC power supply 11 and the load Ek are electrically connected, and the DC power supply 11 supplies power to the load Ek. When the FET 30 is switched from on to off, the electrical connection between the DC power supply 11 and the load Ek is cut off, and the power supply to the load Ek is stopped.
FET30について、基準電位が接地電位であるゲートの電圧が一定のオン電圧以上である場合、状態はオンである。FET30について、基準電位が接地電位であるゲートの電圧が一定のオフ電圧未満である場合、状態はオフである。オン電圧はオフ電圧を超えている。オフ電圧は正の電圧である。駆動部32は、基準電位が接地電位であるFET30のゲートの電圧を調整することによって、FET30をオン又はオフに切替える。
Regarding the FET 30, when the voltage of the gate whose reference potential is the ground potential is equal to or higher than a constant on voltage, the state is on. For the FET 30, the state is off when the voltage of the gate whose reference potential is the ground potential is less than a constant off voltage. The on voltage exceeds the off voltage. The off voltage is a positive voltage. The drive unit 32 switches the FET 30 on or off by adjusting the voltage of the gate of the FET 30 whose reference potential is the ground potential.
電流出力部31は抵抗33に電流を出力する。電流出力部31が抵抗33に出力する電流の電流値は、(所定数)・(負荷Ekに流れる電流の電流値)で表される。「・」は積を表す。所定数は、一定値であり、例えば1000分の1である。電線Wkの電線電流値は、負荷Ekに流れる電流の電流値に一致する。電流出力部31が抵抗33に出力する電流値は、電線Wkの電線電流値が上昇した場合に上昇する。電流出力部31は、例えば、カレントミラー回路を用いて実現される。
なお、「一致」は厳密な一致のみを意味しない。実質的な一致が実現されていればよい。 Thecurrent output unit 31 outputs a current to the resistor 33. The current value of the current output by the current output unit 31 to the resistor 33 is represented by (predetermined number) and (current value of the current flowing through the load Ek). "・" Represents a product. The predetermined number is a constant value, for example, 1/1000. The wire current value of the wire Wk corresponds to the current value of the current flowing through the load Ek. The current value output by the current output unit 31 to the resistor 33 increases when the electric wire current value of the electric wire Wk increases. The current output unit 31 is realized by using, for example, a current mirror circuit.
Note that "match" does not mean only exact match. It suffices if a substantial match is achieved.
なお、「一致」は厳密な一致のみを意味しない。実質的な一致が実現されていればよい。 The
Note that "match" does not mean only exact match. It suffices if a substantial match is achieved.
スイッチ回路Gkにおいて、抵抗33の両端電圧値は、マイコン20及び駆動部32に出力される。抵抗33の両端電圧値は、(電流出力部31が抵抗33に出力した電流の電流値)・(抵抗33の抵抗値)で表される。前述したように、電流出力部31が抵抗33に出力する電流の電流値は、(所定数)・(負荷Ekに流れる電流の電流値)で表されるので、電線Wkの電線電圧値は、(所定数)・(負荷Ekに流れる電流の電流値)・(抵抗33の抵抗値)で表される。前述したように、負荷Ekに流れる電流の電流値は電線Wkの電線電流値に一致するので、電線Wkの電線電流値は、(抵抗33の両端電圧値)/((所定数)・(抵抗33の抵抗値))に一致する。所定数、及び、抵抗33の抵抗値は一定値であるので、抵抗33の両端電圧値は、電線Wkの電線電流値を示す。
In the switch circuit Gk, the voltage value across the resistor 33 is output to the microcomputer 20 and the drive unit 32. The voltage value across the resistor 33 is represented by (the current value of the current output by the current output unit 31 to the resistor 33) and (the resistance value of the resistor 33). As described above, the current value of the current output to the resistor 33 by the current output unit 31 is represented by (predetermined number) and (current value of the current flowing through the load Ek). It is represented by (predetermined number), (current value of the current flowing through the load Ek), and (resistance value of the resistor 33). As described above, the current value of the current flowing through the load Ek matches the wire current value of the wire Wk, so that the wire current value of the wire Wk is (voltage value across the resistor 33) / ((predetermined number) / (resistance). It matches the resistance value of 33)). Since the predetermined number and the resistance value of the resistor 33 are constant values, the voltage value across the resistor 33 indicates the electric wire current value of the electric wire Wk.
マイコン20は、駆動部32にハイレベル電圧又はローレベル電圧を出力している。駆動部32は、抵抗33の両端電圧値が示す電線Wkの電線電流値が一定電流値未満である状態で、マイコン20から入力されている電圧がローレベル電圧からハイレベル電圧に切替わった場合、FET30をオンに切替える。これにより、直流電源11が負荷Ekに電気的に接続される。
The microcomputer 20 outputs a high level voltage or a low level voltage to the drive unit 32. When the voltage input from the microcomputer 20 is switched from the low level voltage to the high level voltage in the drive unit 32 in a state where the wire current value of the wire Wk indicated by the voltage value across the resistor 33 is less than a constant current value. , FET 30 is switched on. As a result, the DC power supply 11 is electrically connected to the load Ek.
駆動部32は、マイコン20から入力されている電圧がハイレベル電圧からローレベル電圧に切替わった場合、抵抗33の両端電圧値が示す電線Wkの電線電流値に無関係に、FET30をオフに切替える。これにより、直流電源11及び負荷Ekの電気的な接続が遮断される。駆動部32は、マイコン20から入力されている電圧がハイレベル電圧である状態で、抵抗33の両端電圧値が示す電線Wkの電線電流値が一定電流値以上の電流値となった場合、FET30をオフに切替える。その後、駆動部32は、マイコン20から入力されている電圧がローレベル電圧に切替わるまで、FET30のオフを維持する。マイコン20から入力されている電圧がローレベル電圧に切替わった場合、駆動部32は、FET30のオフの維持を解除する。
When the voltage input from the microcomputer 20 is switched from the high level voltage to the low level voltage, the drive unit 32 switches the FET 30 off regardless of the wire current value of the wire Wk indicated by the voltage value across the resistor 33. .. As a result, the electrical connection between the DC power supply 11 and the load Ek is cut off. In the drive unit 32, when the voltage input from the microcomputer 20 is a high level voltage and the wire current value of the wire Wk indicated by the voltage value across the resistor 33 becomes a current value equal to or higher than a constant current value, the FET 30 To switch off. After that, the drive unit 32 keeps the FET 30 off until the voltage input from the microcomputer 20 is switched to the low level voltage. When the voltage input from the microcomputer 20 is switched to the low level voltage, the drive unit 32 releases the maintenance of OFF of the FET 30.
<マイコン20の動作>
マイコン20は、負荷Ekを示す作動信号が入力された場合、スイッチ回路Gkの駆動部32に出力している電圧をローレベル電圧からハイレベル電圧に切替える。マイコン20の出力電圧がハイレベル電圧に切替わった時点において、抵抗33の両端電圧値が示す電線Wkの電線電流値が一定電流値未満である場合、駆動部32はFET30をオンに切替える。マイコン20は、負荷Ekを示す停止信号が入力された場合、スイッチ回路Gkの駆動部32に出力している電圧をハイレベル電圧からローレベル電圧に切替える。これにより、駆動部32は、抵抗33の両端電圧値が示す電線Wkの電線電流値に無関係にFET30をオフに切替える。 <Operation ofmicrocomputer 20>
When the operation signal indicating the load Ek is input, themicrocomputer 20 switches the voltage output to the drive unit 32 of the switch circuit Gk from the low level voltage to the high level voltage. When the output voltage of the microcomputer 20 is switched to the high level voltage, if the wire current value of the wire Wk indicated by the voltage value across the resistor 33 is less than a constant current value, the drive unit 32 switches the FET 30 on. When the stop signal indicating the load Ek is input, the microcomputer 20 switches the voltage output to the drive unit 32 of the switch circuit Gk from the high level voltage to the low level voltage. As a result, the drive unit 32 switches the FET 30 off regardless of the wire current value of the wire Wk indicated by the voltage value across the resistor 33.
マイコン20は、負荷Ekを示す作動信号が入力された場合、スイッチ回路Gkの駆動部32に出力している電圧をローレベル電圧からハイレベル電圧に切替える。マイコン20の出力電圧がハイレベル電圧に切替わった時点において、抵抗33の両端電圧値が示す電線Wkの電線電流値が一定電流値未満である場合、駆動部32はFET30をオンに切替える。マイコン20は、負荷Ekを示す停止信号が入力された場合、スイッチ回路Gkの駆動部32に出力している電圧をハイレベル電圧からローレベル電圧に切替える。これにより、駆動部32は、抵抗33の両端電圧値が示す電線Wkの電線電流値に無関係にFET30をオフに切替える。 <Operation of
When the operation signal indicating the load Ek is input, the
マイコン20は、スイッチ回路Gkから入力された抵抗33の両端電圧値が示す電線Wkの電線電流値と、温度センサ21から入力された環境温度情報が示す環境温度とに基づいて、電線Wkの電線温度は繰り返し算出する。マイコン20は、電線温度が一定の温度閾値以上の温度となった場合、スイッチ回路Gkの駆動部32に出力している電圧をハイレベル電圧からローレベル電圧に切替える。これにより、駆動部32は、抵抗33の両端電圧値が示す電線Wkの電線電流値に無関係にFET30をオフに切替える。
The microcomputer 20 is based on the electric wire current value of the electric wire Wk indicated by the voltage value across the resistor 33 input from the switch circuit Gk and the environmental temperature indicated by the environmental temperature information input from the temperature sensor 21. The temperature is calculated repeatedly. When the wire temperature reaches a certain temperature threshold value or higher, the microcomputer 20 switches the voltage output to the drive unit 32 of the switch circuit Gk from the high level voltage to the low level voltage. As a result, the drive unit 32 switches the FET 30 off regardless of the wire current value of the wire Wk indicated by the voltage value across the resistor 33.
その後、マイコン20は、外部から入力される信号に無関係に、スイッチ回路Gkの駆動部32に出力している電圧をローレベル電圧に維持する。
なお、マイコン20は、所定条件が満たされた場合、スイッチ回路Gkの駆動部32に出力している電圧のローレベル電圧への維持を解除してもよい。所定条件は、例えば、電線Wkの電線温度及び環境温度の温度差が所定値以下の値となることである。所定値は、ゼロ℃又は5℃等である。 After that, themicrocomputer 20 maintains the voltage output to the drive unit 32 of the switch circuit Gk at a low level voltage regardless of the signal input from the outside.
When the predetermined condition is satisfied, themicrocomputer 20 may release the maintenance of the voltage output to the drive unit 32 of the switch circuit Gk to the low level voltage. The predetermined condition is, for example, that the temperature difference between the electric wire temperature and the environmental temperature of the electric wire Wk is a value equal to or less than a predetermined value. The predetermined value is zero ° C, 5 ° C, or the like.
なお、マイコン20は、所定条件が満たされた場合、スイッチ回路Gkの駆動部32に出力している電圧のローレベル電圧への維持を解除してもよい。所定条件は、例えば、電線Wkの電線温度及び環境温度の温度差が所定値以下の値となることである。所定値は、ゼロ℃又は5℃等である。 After that, the
When the predetermined condition is satisfied, the
電線W1,W2,・・・,Wnの電線温度の温度閾値は同じであってもよい。また、電線W1,W2,・・・,Wnそれぞれの電線温度の温度閾値は、他の一定電流値中の少なくとも1つと異なっていてもよい。
The temperature thresholds of the wire temperatures of the wires W1, W2, ..., Wn may be the same. Further, the temperature threshold value of each wire temperature of the wires W1, W2, ..., Wn may be different from at least one of the other constant current values.
<溶断素子の基準温度と温度閾値との関係>
図3は、溶断素子Fkの基準温度と電線Wkの電線温度の温度閾値との関係の説明図である。図3には、スイッチ回路GkのFET30の遮断特性、溶断素子Fkの溶断特性、電線Wkの発煙特性が示されている。これらの特性について、縦軸には電線Wkの電線電流値が示され、横軸には期間、即ち、時間の長さが示されている。Isは、任意の電線電流値を示す。T1は、遮断特性においてIsに対応する期間を示す。T2は、溶断特性においてIsに対応する期間を示す。T3は、発煙特性においてIsに対応する期間を示す。 <Relationship between the reference temperature of the fusing element and the temperature threshold>
FIG. 3 is an explanatory diagram of the relationship between the reference temperature of the fusing element Fk and the temperature threshold value of the electric wire temperature of the electric wire Wk. FIG. 3 shows the breaking characteristic of theFET 30 of the switch circuit Gk, the fusing characteristic of the fusing element Fk, and the smoke emitting characteristic of the electric wire Wk. Regarding these characteristics, the vertical axis shows the electric wire current value of the electric wire Wk, and the horizontal axis shows the period, that is, the length of time. Is indicates an arbitrary electric wire current value. T1 indicates the period corresponding to Is in the breaking property. T2 indicates the period corresponding to Is in the fusing characteristics. T3 indicates the period corresponding to Is in the smoke emission characteristics.
図3は、溶断素子Fkの基準温度と電線Wkの電線温度の温度閾値との関係の説明図である。図3には、スイッチ回路GkのFET30の遮断特性、溶断素子Fkの溶断特性、電線Wkの発煙特性が示されている。これらの特性について、縦軸には電線Wkの電線電流値が示され、横軸には期間、即ち、時間の長さが示されている。Isは、任意の電線電流値を示す。T1は、遮断特性においてIsに対応する期間を示す。T2は、溶断特性においてIsに対応する期間を示す。T3は、発煙特性においてIsに対応する期間を示す。 <Relationship between the reference temperature of the fusing element and the temperature threshold>
FIG. 3 is an explanatory diagram of the relationship between the reference temperature of the fusing element Fk and the temperature threshold value of the electric wire temperature of the electric wire Wk. FIG. 3 shows the breaking characteristic of the
遮断特性は、スイッチ回路GkのFET30がオフに切替わるタイミングを示している。電線電流値がIsである電流が電線Wkを流れ続けた期間がT1となった場合、スイッチ回路Gkでは駆動部32がFET30をオフに切替える。電線電流値Isが小さい程、電流が電線Wkを流れ始めてから、FET30がオフに切替わるまでにかかる期間は長い。
The cutoff characteristic indicates the timing at which the FET 30 of the switch circuit Gk is switched off. When the period in which the current whose wire current value is Is continues to flow through the wire Wk is T1, the drive unit 32 switches the FET 30 off in the switch circuit Gk. The smaller the wire current value Is, the longer the period from when the current starts flowing through the wire Wk until the FET 30 is switched off.
溶断特性は、溶断素子Fkが溶断されるタイミングを示している。電線電流値がIsである電流が電線Wkを流れ続けた期間がT2となった場合、溶断素子Fkが溶断される。電線電流値Isが小さい程、電流が電線Wkを流れ始めてから、溶断素子Fkが溶断されるまでにかかる期間は長い。定格電流値が20Aである溶断素子が溶断素子Fkとして用いられたと仮定する。溶断素子Fkが溶断されるまでの期間として以下の一例が挙げられる。溶断素子Fkを介して、電線電流値Isが27Aである電流が60秒間流れ続けた場合、溶断素子Fkが溶断される。溶断素子Fkを介して、電線電流値Isが40Aである電流が1.5秒間流れ続けた場合、溶断素子Fkが溶断される。
The fusing characteristic indicates the timing at which the fusing element Fk is fusing. When the period during which the current whose wire current value is Is continues to flow through the wire Wk is T2, the fusing element Fk is fusing. The smaller the wire current value Is, the longer the period from when the current starts to flow through the wire Wk until the fusing element Fk is blown. It is assumed that a fusing element having a rated current value of 20 A is used as the fusing element Fk. The following is an example of the period until the fusing element Fk is fusing. When a current having a wire current value Is of 27 A continues to flow for 60 seconds through the fusing element Fk, the fusing element Fk is fused. When a current having a wire current value Is of 40 A continues to flow for 1.5 seconds through the fusing element Fk, the fusing element Fk is fused.
発煙特性は電線Wkが発煙するタイミングを示している。電線電流値がIsである電流が電線Wkを流れ続けた期間がT3となった場合、電線Wkが発煙する。電線電流値Isが小さい程、電流が電線Wkを流れ始めてから電線Wkが発煙するまでにかかる期間は長い。
The smoke emission characteristic indicates the timing at which the electric wire Wk emits smoke. When the period in which the current whose wire current value is Is continues to flow through the wire Wk is T3, the wire Wk emits smoke. The smaller the wire current value Is, the longer it takes for the current to start flowing through the wire Wk until the wire Wk emits smoke.
図3に示すように、任意の電線電流値Isについて、期間T3は、期間T1及び期間T2よりも長い。これは、電線Wkが発煙する発煙温度が、溶断素子Fkの基準温度、及び、電線Wkの温度閾値よりも高いことを意味する。従って、電線Wkが発煙する発煙温度に電線温度が到達する前に、溶断素子Fkが溶断されるか、又は、スイッチ回路GkのFET30がオフに切替わる。このため、電線Wkが発煙から保護される。
As shown in FIG. 3, for any wire current value Is, the period T3 is longer than the period T1 and the period T2. This means that the smoke generation temperature at which the electric wire Wk emits smoke is higher than the reference temperature of the fusing element Fk and the temperature threshold value of the electric wire Wk. Therefore, the fusing element Fk is blown or the FET 30 of the switch circuit Gk is switched off before the wire temperature reaches the smoke generation temperature at which the wire Wk emits smoke. Therefore, the electric wire Wk is protected from smoke generation.
また、任意の電線電流値Isについて、期間T2は期間T1よりも長く、期間T3は期間T2よりも長い。期間T2が期間T1よりも長いことは、溶断素子Fkの基準温度が電線Wkの電線温度の温度閾値を超えていることを意味する。従って、給電制御装置10において故障が発生していない限り、溶断素子Fkが溶断される前にスイッチ回路GkのFET30がオフに切替わり、溶断素子Fkが溶断されることはない。電線Wkの電線温度が温度閾値を超える現象は、例えば、負荷Ekの両端が短絡した場合に発生する。溶断素子Fkが溶断される現象は、例えば、負荷Ekの両端が短絡し、かつ、スイッチ回路GkのFET30がオンからオフに切替わらなかった場合に発生する。
Also, for any wire current value Is, the period T2 is longer than the period T1 and the period T3 is longer than the period T2. The fact that the period T2 is longer than the period T1 means that the reference temperature of the fusing element Fk exceeds the temperature threshold value of the wire temperature of the wire Wk. Therefore, unless a failure has occurred in the power supply control device 10, the FET 30 of the switch circuit Gk is switched off before the fusing element Fk is blown, and the fusing element Fk is not blown. The phenomenon that the wire temperature of the wire Wk exceeds the temperature threshold occurs, for example, when both ends of the load Ek are short-circuited. The phenomenon that the fusing element Fk is fusing occurs, for example, when both ends of the load Ek are short-circuited and the FET 30 of the switch circuit Gk is not switched from on to off.
<給電制御装置10の構成部の配置>
図4は給電制御装置10の構成部の配置の説明図である。給電制御装置10はプリント基板Bを更に有する。プリント基板Bは絶縁体の基板である。図4には、プリント基板Bの平面及び側面が示されている。図4に示すように、1つのプリント基板Bの板面上に、n個の溶断素子F1,F2,・・・,Fn、n個のスイッチ回路G1,G2,・・・,Gn及びマイコン20が配置されている。プリント基板Bの板面には、接続に用いられる図示しない複数の配線が設けられている。n個の電線W1,W2,・・・Wkそれぞれの一端は、プリント基板Bの板面に設けられたn個の配線に接続されている。 <Arrangement of components of powersupply control device 10>
FIG. 4 is an explanatory diagram of the arrangement of the components of the powersupply control device 10. The power supply control device 10 further includes a printed circuit board B. The printed circuit board B is an insulator substrate. FIG. 4 shows the plane and side surfaces of the printed circuit board B. As shown in FIG. 4, on the plate surface of one printed circuit board B, n fusing elements F1, F2, ..., Fn, n switch circuits G1, G2, ..., Gn and a microcomputer 20 Is placed. A plurality of wirings (not shown) used for connection are provided on the plate surface of the printed circuit board B. One end of each of the n electric wires W1, W2, ... Wk is connected to the n wires provided on the plate surface of the printed circuit board B.
図4は給電制御装置10の構成部の配置の説明図である。給電制御装置10はプリント基板Bを更に有する。プリント基板Bは絶縁体の基板である。図4には、プリント基板Bの平面及び側面が示されている。図4に示すように、1つのプリント基板Bの板面上に、n個の溶断素子F1,F2,・・・,Fn、n個のスイッチ回路G1,G2,・・・,Gn及びマイコン20が配置されている。プリント基板Bの板面には、接続に用いられる図示しない複数の配線が設けられている。n個の電線W1,W2,・・・Wkそれぞれの一端は、プリント基板Bの板面に設けられたn個の配線に接続されている。 <Arrangement of components of power
FIG. 4 is an explanatory diagram of the arrangement of the components of the power
前述したように、スイッチ回路GkにおいてFET30の切替えが適切に行われている限り、溶断素子Fkが溶断されることはない。従って、n個の溶断素子F1,F2,・・・,Fnが溶断される可能性は低い。電線Wkの電線温度が温度閾値以上の温度となったにも関わらず、スイッチ回路GkのFET30がオフに切替わらなかった場合に溶断素子Fkが溶断される。
As described above, as long as the FET 30 is properly switched in the switch circuit Gk, the fusing element Fk will not be fusing. Therefore, it is unlikely that the n fusing elements F1, F2, ..., Fn will be fluted. When the FET 30 of the switch circuit Gk is not switched off even though the wire temperature of the wire Wk is equal to or higher than the temperature threshold value, the fusing element Fk is blown.
このため、n個の溶断素子F1,F2,・・・,Fnを、n個のスイッチ回路G1,G2,・・・,Gn及びマイコン20が配置されているプリント基板Bに配置することができる。車両内において、n個の溶断素子F1,F2,・・・,Fnを容易に交換することができる場所にプリント基板Bを配置する必要はない。結果、車両内の限定的な空間において効率的な配置を実現することができる。
Therefore, n fusing elements F1, F2, ..., Fn can be arranged on the printed circuit board B in which the n switch circuits G1, G2, ..., Gn and the microcomputer 20 are arranged. .. It is not necessary to arrange the printed circuit board B in a place where the n fusing elements F1, F2, ..., Fn can be easily replaced in the vehicle. As a result, efficient placement can be realized in the limited space in the vehicle.
溶断素子Fkが溶断される可能性が高い場合、n個の溶断素子F1,F2,・・・,Fnをプリント基板B上に配置せず、n個の溶断素子F1,F2,・・・,Fnを収容箱に収容する。更に、n個の溶断素子F1,F2,・・・,Fnを容易に交換することができる場所に収容箱を配置する必要がある。この場合、収容箱、即ち、溶断素子Fkの配置の自由度が低く、効率的な配置を実現することができない。
When there is a high possibility that the fusing element Fk is fusing, n fusing elements F1, F2, ..., Fn are not arranged on the printed circuit board B, and n fusing elements F1, F2, ... Fn is housed in a storage box. Further, it is necessary to arrange the storage box in a place where n fusing elements F1, F2, ..., Fn can be easily replaced. In this case, the degree of freedom in arranging the storage box, that is, the fusing element Fk is low, and efficient arrangement cannot be realized.
<マイコン20の構成>
以下では、マイコン20について詳細に説明する。図5はマイコン20の要部構成を示すブロック図である。マイコン20は、A/D変換部40、入力部41、記憶部42、制御部43、n個の出力部J1,J2,・・・,Jn及びn個のA/D変換部M1,M2,・・・,Mnを有する。これらは内部バス44に接続されている。A/D変換部40は、更に、温度センサ21に接続されている。出力部Jkは、更に、スイッチ回路Gkの駆動部32に接続されている。A/D変換部Mkは、更に、スイッチ回路Gkの接続ノードに接続されている。スイッチ回路Gkの接続ノードは、電流出力部31及び抵抗33間の接続ノードである。 <Configuration ofmicrocomputer 20>
Hereinafter, themicrocomputer 20 will be described in detail. FIG. 5 is a block diagram showing a configuration of a main part of the microcomputer 20. The microcomputer 20 includes an A / D conversion unit 40, an input unit 41, a storage unit 42, a control unit 43, n output units J1, J2, ..., Jn and n A / D conversion units M1, M2. ..., Has Mn. These are connected to the internal bus 44. The A / D conversion unit 40 is further connected to the temperature sensor 21. The output unit Jk is further connected to the drive unit 32 of the switch circuit Gk. The A / D conversion unit Mk is further connected to the connection node of the switch circuit Gk. The connection node of the switch circuit Gk is a connection node between the current output unit 31 and the resistor 33.
以下では、マイコン20について詳細に説明する。図5はマイコン20の要部構成を示すブロック図である。マイコン20は、A/D変換部40、入力部41、記憶部42、制御部43、n個の出力部J1,J2,・・・,Jn及びn個のA/D変換部M1,M2,・・・,Mnを有する。これらは内部バス44に接続されている。A/D変換部40は、更に、温度センサ21に接続されている。出力部Jkは、更に、スイッチ回路Gkの駆動部32に接続されている。A/D変換部Mkは、更に、スイッチ回路Gkの接続ノードに接続されている。スイッチ回路Gkの接続ノードは、電流出力部31及び抵抗33間の接続ノードである。 <Configuration of
Hereinafter, the
出力部Jkは、スイッチ回路Gkの駆動部32にハイレベル電圧又はローレベル電圧を出力している。スイッチ回路Gkの駆動部32は、出力部Jkの出力電圧と、スイッチ回路Gkの抵抗33の両端電圧値が示す電線Wkの電線電流値とに基づいて、前述したようにFET30をオン又はオフに切替える。
The output unit Jk outputs a high level voltage or a low level voltage to the drive unit 32 of the switch circuit Gk. The drive unit 32 of the switch circuit Gk turns the FET 30 on or off as described above based on the output voltage of the output unit Jk and the electric wire current value of the electric wire Wk indicated by the voltage value across the resistor 33 of the switch circuit Gk. Switch.
制御部43は、出力部Jkに、スイッチ回路GkのFET30のオンへの切替えと、スイッチ回路GkのFET30のオフへの切替えとを指示する。出力部Jkは、FET30のオンへの切替えが指示された場合、出力電圧をハイレベル電圧に切替え、FET30のオフへの切替えが指示された場合、出力電圧をローレベル電圧に切替える。
The control unit 43 instructs the output unit Jk to switch the FET 30 of the switch circuit Gk to on and to switch the FET 30 of the switch circuit Gk to off. The output unit Jk switches the output voltage to the high level voltage when the switching of the FET 30 is instructed to be on, and switches the output voltage to the low level voltage when the switching of the FET 30 is instructed to be turned off.
A/D変換部Mkには、アナログの両端電圧値がスイッチ回路Gkから入力される。A/D変換部Mkは、スイッチ回路Gkから入力されたアナログの両端電圧値をデジタルの両端電圧値に変換する。制御部43は、A/D変換部Mkからデジタルの両端電圧値を取得する。
An analog voltage value across the analog is input from the switch circuit Gk to the A / D conversion unit Mk. The A / D conversion unit Mk converts the analog voltage value across the analog input from the switch circuit Gk into the digital voltage value across the digital circuit. The control unit 43 acquires a digital voltage value across from the A / D conversion unit Mk.
A/D変換部40には、アナログの環境温度情報が温度センサ21から入力される。A/D変換部40は、温度センサ21から入力されたアナログの環境温度情報をデジタルの環境温度情報に変換する。制御部43は、A/D変換部40からデジタルの環境温度情報を取得する。環境温度情報は、前述したように、電線W1,W2,・・・,Wkが配置されている環境の環境温度を示す。
Analog environmental temperature information is input from the temperature sensor 21 to the A / D conversion unit 40. The A / D conversion unit 40 converts the analog environmental temperature information input from the temperature sensor 21 into digital environmental temperature information. The control unit 43 acquires digital environmental temperature information from the A / D conversion unit 40. As described above, the environmental temperature information indicates the environmental temperature of the environment in which the electric wires W1, W2, ..., Wk are arranged.
作動信号及び停止信号は入力部41に入力される。記憶部42は不揮発性メモリである。記憶部42には、コンピュータプログラムPが記憶されている。制御部43は、処理を実行する処理素子を有し、処理部として機能する。制御部43の処理素子は、コンピュータプログラムPを実行することによって、負荷E1,E2,・・・,Enそれぞれに対応するn個の給電制御処理と、電線W1,W2,・・・,Wnそれぞれに対応するn個の電線保護処理を並行して実行する。負荷Ekの給電制御処理は、負荷Ekへの給電が制御する処理である。電線Wkの電線保護処理は、電線Wkを発煙から保護する処理である。
The operation signal and stop signal are input to the input unit 41. The storage unit 42 is a non-volatile memory. The computer program P is stored in the storage unit 42. The control unit 43 has a processing element that executes processing, and functions as a processing unit. By executing the computer program P, the processing element of the control unit 43 performs n power supply control processing corresponding to each of the loads E1, E2, ..., En, and the electric wires W1, W2, ..., Wn, respectively. The n wire protection processes corresponding to the above are executed in parallel. The power supply control process for the load Ek is a process for controlling the power supply to the load Ek. The electric wire protection process of the electric wire Wk is a process of protecting the electric wire Wk from smoke generation.
なお、コンピュータプログラムPは、制御部43の処理素子が読み取り可能に記憶媒体Aに記憶されていてもよい。この場合、図示しない読み出し装置によって記憶媒体Aから読み出されたコンピュータプログラムPが記憶部42に書き込まれる。記憶媒体Aは、光ディスク、フレキシブルディスク、磁気ディスク、磁気光ディスク又は半導体メモリ等である。光ディスクは、CD(Compact Disc)-ROM(Read Only Memory)、DVD(Digital Versatile Disc)-ROM、又は、BD(Blu-ray(登録商標) Disc)等である。磁気ディスクは、例えばハードディスクである。また、図示しない通信網に接続されている図示しない装置からコンピュータプログラムPをダウンロードし、ダウンロードしたコンピュータプログラムPを記憶部42に書き込んでもよい。
The computer program P may be stored in the storage medium A so that the processing element of the control unit 43 can be read. In this case, the computer program P read from the storage medium A by a reading device (not shown) is written in the storage unit 42. The storage medium A is an optical disk, a flexible disk, a magnetic disk, a magnetic disk disk, a semiconductor memory, or the like. The optical disk is a CD (Compact Disc) -ROM (Read Only Memory), a DVD (Digital Versatile Disc) -ROM, or a BD (Blu-ray (registered trademark) Disc). The magnetic disk is, for example, a hard disk. Further, the computer program P may be downloaded from a device (not shown) connected to a communication network (not shown), and the downloaded computer program P may be written in the storage unit 42.
制御部43が有する処理素子の数は、1に限定されず、2以上であってもよい。この場合、複数の処理素子がコンピュータプログラムPに従って、n個の給電制御処理及びn個の電線保護処理等を協同で実行してもよい。
The number of processing elements included in the control unit 43 is not limited to 1, and may be 2 or more. In this case, a plurality of processing elements may jointly execute n power supply control processes, n wire protection processes, and the like according to the computer program P.
記憶部42には、電線W1,W2,・・・,Wnそれぞれに対応するn個の禁止フラグの値が記憶されている。電線Wkのフラグの値がゼロであることは、スイッチ回路GkのFET30をオンに切替えることが許可されていることを示す。電線Wkのフラグの値が1であることは、スイッチ回路GkのFET30をオンに切替えることが禁止されていることを示す。電線Wkの禁止フラグの値は、制御部43によって、ゼロ又は1に変更される。
The storage unit 42 stores the values of n prohibition flags corresponding to each of the electric wires W1, W2, ..., Wn. When the value of the flag of the electric wire Wk is zero, it indicates that the FET 30 of the switch circuit Gk is allowed to be switched on. When the value of the flag of the electric wire Wk is 1, it means that switching the FET 30 of the switch circuit Gk to ON is prohibited. The value of the prohibition flag of the electric wire Wk is changed to zero or one by the control unit 43.
<負荷Ekの給電制御処理>
図6は、負荷Ekの給電制御処理の手順を示すフローチャートである。制御部43は、負荷Ekの給電制御処理を周期的に実行する。制御部43は、まず、電線Wkの禁止フラグの値が1であるか否かを判定する(ステップS1)。電線Wkの禁止フラグの値はゼロ又は1である。このため、禁止フラグの値が1ではない場合、禁止フラグの値はゼロである。制御部43は、禁止フラグの値が1である場合(S1:YES)、負荷Ekの給電制御処理を終了する。次の周期が到来した場合、制御部43は、再び、負荷Ekの給電制御処理を実行する。制御部43は、禁止フラグの値がゼロに変更されるまで待機する。 <Power supply control processing of load Ek>
FIG. 6 is a flowchart showing the procedure of the power supply control process of the load Ek. Thecontrol unit 43 periodically executes the power supply control process of the load Ek. First, the control unit 43 determines whether or not the value of the prohibition flag of the electric wire Wk is 1 (step S1). The value of the prohibition flag of the electric wire Wk is zero or one. Therefore, if the value of the prohibition flag is not 1, the value of the prohibition flag is zero. When the value of the prohibition flag is 1 (S1: YES), the control unit 43 ends the power supply control process of the load Ek. When the next cycle arrives, the control unit 43 again executes the power supply control process of the load Ek. The control unit 43 waits until the value of the prohibition flag is changed to zero.
図6は、負荷Ekの給電制御処理の手順を示すフローチャートである。制御部43は、負荷Ekの給電制御処理を周期的に実行する。制御部43は、まず、電線Wkの禁止フラグの値が1であるか否かを判定する(ステップS1)。電線Wkの禁止フラグの値はゼロ又は1である。このため、禁止フラグの値が1ではない場合、禁止フラグの値はゼロである。制御部43は、禁止フラグの値が1である場合(S1:YES)、負荷Ekの給電制御処理を終了する。次の周期が到来した場合、制御部43は、再び、負荷Ekの給電制御処理を実行する。制御部43は、禁止フラグの値がゼロに変更されるまで待機する。 <Power supply control processing of load Ek>
FIG. 6 is a flowchart showing the procedure of the power supply control process of the load Ek. The
制御部43は、禁止フラグの値が1ではないと判定した場合(S1:NO)、負荷Ekを示す作動信号が入力部41に入力されたか否かを判定する(ステップS2)。制御部43は、負荷Ekを示す作動信号が入力されていないと判定した場合(S2:NO)、負荷Ekを示す停止信号が入力部41に入力されたか否かを判定する(ステップS3)。
When the control unit 43 determines that the value of the prohibition flag is not 1 (S1: NO), the control unit 43 determines whether or not an operation signal indicating the load Ek has been input to the input unit 41 (step S2). When the control unit 43 determines that the operation signal indicating the load Ek has not been input (S2: NO), the control unit 43 determines whether or not the stop signal indicating the load Ek has been input to the input unit 41 (step S3).
制御部43は、負荷Ekを示す停止信号が入力されていないと判定した場合(S3:NO)、負荷Ekの給電制御処理を終了する。前述したように、次の周期が到来した場合、制御部43は、再び、負荷Ekの給電制御処理を実行する。禁止フラグの値がゼロである場合においては、制御部43は、負荷Ekを示す作動信号又は停止信号が入力部41に入力されるまで待機する。
When the control unit 43 determines that the stop signal indicating the load Ek has not been input (S3: NO), the control unit 43 ends the power supply control process of the load Ek. As described above, when the next cycle arrives, the control unit 43 again executes the power supply control process of the load Ek. When the value of the prohibition flag is zero, the control unit 43 waits until the operation signal or the stop signal indicating the load Ek is input to the input unit 41.
制御部43は、負荷Ekを示す作動信号が入力されたと判定した場合(S2:YES)、出力部Jkに、スイッチ回路GkのFET30のオンへの切替えを指示する(ステップS4)。これにより、出力部Jkは、スイッチ回路Gkの駆動部32に出力している電圧をローレベル電圧からハイレベル電圧に切替える。駆動部32に出力している電圧がハイレベル電圧に切替わった時点において、抵抗33の両端電圧値が示す電線Wkの電線電流値が一定電流値未満である場合、駆動部32は、スイッチ回路GkのFET30をオンに切替える。
When the control unit 43 determines that the operation signal indicating the load Ek has been input (S2: YES), the control unit 43 instructs the output unit Jk to switch the FET 30 of the switch circuit Gk to ON (step S4). As a result, the output unit Jk switches the voltage output to the drive unit 32 of the switch circuit Gk from the low level voltage to the high level voltage. When the voltage output to the drive unit 32 is switched to the high level voltage, if the wire current value of the wire Wk indicated by the voltage value across the resistor 33 is less than a constant current value, the drive unit 32 is a switch circuit. The FET 30 of Gk is switched on.
制御部43は、負荷Ekを示す停止信号が入力されたと判定した場合(S3:YES)、出力部Jkに、スイッチ回路GkのFET30のオフへの切替えを指示する(ステップS5)。これにより、出力部Jkは、スイッチ回路Gkの駆動部32に出力している電圧をハイレベル電圧からローレベル電圧に切替える。結果、駆動部32は、スイッチ回路GkのFET30をオフに切替える。
制御部43は、ステップS4,S5の一方を実行した後、負荷Ekの給電制御処理を終了する。次の周期が到来した場合、制御部43は負荷Ekの給電制御処理を再び実行する。 When thecontrol unit 43 determines that the stop signal indicating the load Ek has been input (S3: YES), the control unit 43 instructs the output unit Jk to switch the FET 30 of the switch circuit Gk to off (step S5). As a result, the output unit Jk switches the voltage output to the drive unit 32 of the switch circuit Gk from the high level voltage to the low level voltage. As a result, the drive unit 32 switches off the FET 30 of the switch circuit Gk.
After executing one of steps S4 and S5, thecontrol unit 43 ends the power supply control process of the load Ek. When the next cycle arrives, the control unit 43 re-executes the power supply control process of the load Ek.
制御部43は、ステップS4,S5の一方を実行した後、負荷Ekの給電制御処理を終了する。次の周期が到来した場合、制御部43は負荷Ekの給電制御処理を再び実行する。 When the
After executing one of steps S4 and S5, the
後述するように、スイッチ回路GkのFET30がオフである状態で電線Wkの禁止フラグの値は1に変更される。従って、電線Wkの禁止フラグの値が1である場合、FET30がオンに切替わることはなく、FET30のオフが維持される。電線Wkの禁止フラグの値がゼロであり、かつ、電線Wkの電線電流値が一定電流値未満である場合において、負荷Ekを示す作動信号が入力されたとき、駆動部32は、スイッチ回路GkのFET30をオンに切替える。同様の場合において、負荷Ekを示す停止信号が入力されたとき、駆動部32は、スイッチ回路GkのFET30をオフに切替える。
As will be described later, the value of the prohibition flag of the electric wire Wk is changed to 1 while the FET 30 of the switch circuit Gk is off. Therefore, when the value of the prohibition flag of the electric wire Wk is 1, the FET 30 is not switched on and the FET 30 is kept off. When the value of the prohibition flag of the electric wire Wk is zero and the electric wire current value of the electric wire Wk is less than a constant current value and an operation signal indicating the load Ek is input, the drive unit 32 uses the switch circuit Gk. FET 30 is switched on. In the same case, when the stop signal indicating the load Ek is input, the drive unit 32 switches the FET 30 of the switch circuit Gk to off.
<電線Wkの電線温度の算出方法>
電線Wkの電線温度を算出する算出方法を説明する。マイコン20の制御部43は、電線Wkについて、電線温度及び環境温度の温度差を繰り返し算出する。具体的には、制御部43は、先行して算出した先行温度差、環境温度及び電線電流値に基づいて、温度差を算出する。制御部43は、算出した温度差を、温度センサ21が検出した環境温度に加算することによって、電線Wkの電線温度を算出する。 <Calculation method of wire temperature of wire Wk>
The calculation method for calculating the electric wire temperature of the electric wire Wk will be described. Thecontrol unit 43 of the microcomputer 20 repeatedly calculates the temperature difference between the electric wire temperature and the environmental temperature for the electric wire Wk. Specifically, the control unit 43 calculates the temperature difference based on the preceding temperature difference, the environmental temperature, and the electric wire current value calculated in advance. The control unit 43 calculates the wire temperature of the wire Wk by adding the calculated temperature difference to the environmental temperature detected by the temperature sensor 21.
電線Wkの電線温度を算出する算出方法を説明する。マイコン20の制御部43は、電線Wkについて、電線温度及び環境温度の温度差を繰り返し算出する。具体的には、制御部43は、先行して算出した先行温度差、環境温度及び電線電流値に基づいて、温度差を算出する。制御部43は、算出した温度差を、温度センサ21が検出した環境温度に加算することによって、電線Wkの電線温度を算出する。 <Calculation method of wire temperature of wire Wk>
The calculation method for calculating the electric wire temperature of the electric wire Wk will be described. The
電線Wkについて、電線電流値、算出対象の温度差、先行温度差及び環境温度それぞれを、Iw、ΔTw、ΔTp及びTaと記載する。制御部43は、先行温度差ΔTp、電線電流値Iwと、環境温度Taとを以下に示す[1]式及び[2]式に代入することによって、温度差ΔTwを算出する。
ΔTw=ΔTp・exp(-Δt/τr)+Rth・Rw
・Iw2 ・(1-exp(-Δt/τr))・・・[1]
Rw=Ro・(1+κ・(Ta+ΔTp-To)・・・[2] For the electric wire Wk, the electric wire current value, the temperature difference to be calculated, the preceding temperature difference, and the environmental temperature are described as Iw, ΔTw, ΔTp, and Ta, respectively. Thecontrol unit 43 calculates the temperature difference ΔTw by substituting the preceding temperature difference ΔTp, the electric wire current value Iw, and the environmental temperature Ta into the equations [1] and [2] shown below.
ΔTw = ΔTp ・ exp (−Δt / τr) + Rth ・ Rw
・ Iw 2・ (1-exp (−Δt / τr)) ・ ・ ・ [1]
Rw = Ro ・ (1 + κ ・ (Ta + ΔTp-To) ・ ・ ・ [2]
ΔTw=ΔTp・exp(-Δt/τr)+Rth・Rw
・Iw2 ・(1-exp(-Δt/τr))・・・[1]
Rw=Ro・(1+κ・(Ta+ΔTp-To)・・・[2] For the electric wire Wk, the electric wire current value, the temperature difference to be calculated, the preceding temperature difference, and the environmental temperature are described as Iw, ΔTw, ΔTp, and Ta, respectively. The
ΔTw = ΔTp ・ exp (−Δt / τr) + Rth ・ Rw
・ Iw 2・ (1-exp (−Δt / τr)) ・ ・ ・ [1]
Rw = Ro ・ (1 + κ ・ (Ta + ΔTp-To) ・ ・ ・ [2]
[1]式及び[2]式で用いられている変数及び定数を説明する。変数及び定数の説明では、変数又は定数の単位も併せて示している。電線電流値Iwの単位はアンペアである。温度差ΔTw、先行温度差ΔTp及び環境温度Taの単位は度である。Rwは電線Wkの電線抵抗値(Ω)である。Rthは電線Wkの電線熱抵抗値(℃/W)である。Δtは、スイッチ回路Gkから両端電圧値を取得する周期(s)である。τrは電線Wkの電線放熱時定数(s)である。Toは、予め決められている温度(℃)である。Roは温度Toにおける電線抵抗値(Ω)である。κは電線Wkの電線抵抗温度係数(/℃)である。
Explain the variables and constants used in equations [1] and [2]. In the description of variables and constants, the units of variables or constants are also shown. The unit of the wire current value Iw is ampere. The units of the temperature difference ΔTw, the preceding temperature difference ΔTp, and the environmental temperature Ta are degrees. Rw is the electric wire resistance value (Ω) of the electric wire Wk. Rth is the electric wire thermal resistance value (° C./W) of the electric wire Wk. Δt is the period (s) for acquiring the voltage value across the switch circuit Gk. τr is the electric wire heat dissipation time constant (s) of the electric wire Wk. To is a predetermined temperature (° C.). Ro is the electric wire resistance value (Ω) at the temperature To. κ is the temperature coefficient of wire resistance (/ ° C) of the wire Wk.
温度差ΔTw、先行温度差ΔTp、電線電流値Iw及び環境温度Taは変数であり、周期Δt、電線放熱時定数τr、電線熱抵抗Rth、電線抵抗Ro、電線抵抗温度係数κ及び温度Toは、予め設定されている定数である。
The temperature difference ΔTw, the preceding temperature difference ΔTp, the wire current value Iw, and the environmental temperature Ta are variables, and the period Δt, the wire heat dissipation time constant τr, the wire thermal resistance Rth, the wire resistance Ro, the wire resistance temperature coefficient κ, and the temperature To are It is a preset constant.
[1]式の第1項の値は、周期Δtが長い程、低下するので、[1]式の第1項は電線Wkの放熱を表す。また、[1]式の第2項の値は、周期Δtが長い程、上昇するので、[1]式の第2項は電線Wkの発熱を表す。第2項の値は、電線電流値Iwが大きい程、大きい。
The value of the first term of the equation [1] decreases as the period Δt becomes longer, so that the first term of the equation [1] represents the heat dissipation of the electric wire Wk. Further, since the value of the second term of the equation [1] increases as the period Δt becomes longer, the second term of the equation [1] represents the heat generation of the electric wire Wk. The value of the second term increases as the wire current value Iw increases.
制御部43は、算出した温度差ΔTwに、温度センサ21が検出した環境温度Taを加算することによって、電線Wkの電線温度を算出する。マイコン20が起動した後に制御部43が最初に実行する電線Wkの温度差ΔTwの算出では、電線Wkの電線温度は環境温度Taと一致しているとして、先行温度差ΔTpをゼロとみなす。
The control unit 43 calculates the wire temperature of the wire Wk by adding the environmental temperature Ta detected by the temperature sensor 21 to the calculated temperature difference ΔTw. In the calculation of the temperature difference ΔTw of the electric wire Wk first executed by the control unit 43 after the microcomputer 20 is started, it is assumed that the electric wire temperature of the electric wire Wk matches the environmental temperature Ta, and the preceding temperature difference ΔTp is regarded as zero.
<電線保護処理>
図7は電線Wkの電線保護処理の手順を示すフローチャートである。制御部43は、電線Wkの電線保護処理を周期的に実行する。記憶部42には、制御部43が先行して算出した先行温度差が記憶されている。記憶部42に記憶されている先行温度差は、制御部43によって変更される。 <Wire protection treatment>
FIG. 7 is a flowchart showing the procedure of the electric wire protection processing of the electric wire Wk. Thecontrol unit 43 periodically executes the wire protection process of the wire Wk. The storage unit 42 stores the preceding temperature difference calculated in advance by the control unit 43. The preceding temperature difference stored in the storage unit 42 is changed by the control unit 43.
図7は電線Wkの電線保護処理の手順を示すフローチャートである。制御部43は、電線Wkの電線保護処理を周期的に実行する。記憶部42には、制御部43が先行して算出した先行温度差が記憶されている。記憶部42に記憶されている先行温度差は、制御部43によって変更される。 <Wire protection treatment>
FIG. 7 is a flowchart showing the procedure of the electric wire protection processing of the electric wire Wk. The
電線保護処理では、制御部43は、まず、A/D変換部Mkから、スイッチ回路Gkが有する抵抗33の両端電圧値を取得する(ステップS11)。次に、制御部43は、ステップS11で取得した両端電圧値に基づいて、電線Wkの電線電流値を算出する(ステップS12)。前述したように、電線Wkの電線電流値は、(抵抗33の両端電圧値)/((所定数)・(抵抗33の抵抗値))で表される。所定数、及び、抵抗33の抵抗値は一定値である。
In the wire protection process, the control unit 43 first acquires the voltage value across the resistor 33 of the switch circuit Gk from the A / D conversion unit Mk (step S11). Next, the control unit 43 calculates the electric wire current value of the electric wire Wk based on the voltage value across the voltage acquired in step S11 (step S12). As described above, the electric wire current value of the electric wire Wk is represented by (voltage value across the resistor 33) / ((predetermined number) · (resistance value of the resistor 33)). The predetermined number and the resistance value of the resistor 33 are constant values.
制御部43は、ステップS12を実行した後、記憶部42から先行温度差を読み出し(ステップS13)、A/D変換部40から環境温度情報を取得する(ステップS14)。次に、制御部43は、ステップS12で算出した電線電流値と、ステップS13で読み出した先行温度差と、ステップS14で取得した環境温度情報が示す環境温度とを[1]式及び[2]式に代入することによって、電線Wkの電線温度と環境温度との温度差を算出する(ステップS15)。
After executing step S12, the control unit 43 reads the preceding temperature difference from the storage unit 42 (step S13) and acquires the environmental temperature information from the A / D conversion unit 40 (step S14). Next, the control unit 43 sets the electric wire current value calculated in step S12, the preceding temperature difference read in step S13, and the environmental temperature indicated by the environmental temperature information acquired in step S14 into the equation [1] and [2]. By substituting into the equation, the temperature difference between the electric wire temperature of the electric wire Wk and the environmental temperature is calculated (step S15).
次に、制御部43は、記憶部42に記憶されている先行温度差を、ステップS15で算出した温度差に変更する(ステップS16)。変更後の先行温度差は、次回の温度差の算出で用いられる。制御部43は、ステップS16を実行した後、ステップS15で算出した温度差を、ステップS14で取得した環境温度情報が示す環境温度に加算することによって、電線Wkの電線温度を算出する(ステップS17)。
Next, the control unit 43 changes the preceding temperature difference stored in the storage unit 42 to the temperature difference calculated in step S15 (step S16). The preceding temperature difference after the change is used in the calculation of the next temperature difference. After executing step S16, the control unit 43 calculates the wire temperature of the wire Wk by adding the temperature difference calculated in step S15 to the environmental temperature indicated by the environmental temperature information acquired in step S14 (step S17). ).
次に、制御部43は、ステップS17で算出した電線温度が電線Wkの温度閾値以上であるか否かを判定する(ステップS18)。制御部43は、算出した電線温度が温度閾値以上であると判定した場合(S18:YES)、出力部Jkに、スイッチ回路GkのFET30のオフへの切替えを指示する(ステップS19)。これにより、出力部Jkは、スイッチ回路Gkの駆動部32に出力している電圧をハイレベル電圧からローレベル電圧に切替える。結果、駆動部32は、スイッチ回路GkのFET30をオフに切替える。
Next, the control unit 43 determines whether or not the wire temperature calculated in step S17 is equal to or higher than the temperature threshold value of the wire Wk (step S18). When the control unit 43 determines that the calculated wire temperature is equal to or higher than the temperature threshold value (S18: YES), the control unit 43 instructs the output unit Jk to switch the FET 30 of the switch circuit Gk to off (step S19). As a result, the output unit Jk switches the voltage output to the drive unit 32 of the switch circuit Gk from the high level voltage to the low level voltage. As a result, the drive unit 32 switches off the FET 30 of the switch circuit Gk.
制御部43は、ステップS19を実行した後、電線Wkの禁止フラグの値を1に変更する(ステップS20)。これにより、FET30のオンへの切替えが禁止される。制御部43は、電線温度が温度閾値未満であると判定した場合(S18:NO)、又は、ステップS20を実行した後、電線Wkの電線保護処理を終了する。次の周期が到来した場合、制御部43は、電線Wkの電線保護処理を再び実行する。
After executing step S19, the control unit 43 changes the value of the prohibition flag of the electric wire Wk to 1 (step S20). This prohibits switching the FET 30 to on. When the control unit 43 determines that the wire temperature is lower than the temperature threshold value (S18: NO), or after executing step S20, the control unit 43 ends the wire protection process of the wire Wk. When the next cycle arrives, the control unit 43 executes the wire protection process of the wire Wk again.
以上のように、制御部43は、電線Wkの電線電流値に基づいて電線Wkの電線温度を繰り返し算出し、算出した電線温度が電線Wkの温度閾値以上であるか否かを繰り返し判定する。制御部43は、算出した電線温度が温度閾値以上であると判定した場合、FET30のオフへの切替えを指示し、FET30のオンへの切替えを禁止する。給電制御装置10は電線保護装置として機能する。
As described above, the control unit 43 repeatedly calculates the wire temperature of the wire Wk based on the wire current value of the wire Wk, and repeatedly determines whether or not the calculated wire temperature is equal to or higher than the temperature threshold of the wire Wk. When the control unit 43 determines that the calculated wire temperature is equal to or higher than the temperature threshold value, the control unit 43 instructs the FET 30 to be switched off and prohibits the FET 30 from being switched on. The power supply control device 10 functions as an electric wire protection device.
制御部43は、電線Wkの禁止フラグの値を1に変更した場合、スイッチ回路Gkが有するFET30のオンへの切替えの禁止を解除する解除処理を実行してもよい。制御部43は、電線Wkの禁止フラグの値が1である場合に、スイッチ回路Gkの解除処理を周期的に実行する。解除処理でも、制御部43は、電線Wkの電線温度と環境温度との温度差を算出する。制御部43は、前述した所定条件が満たされるか否かを判定する。所定条件は、例えば、温度差が所定値以下の値となることである。所定値は、ゼロ℃又は5℃等である。制御部43は、所定条件が満たされると判定した場合、禁止フラグの値をゼロに戻す。制御部43は、所定条件が満たされていないと判定した場合、禁止フラグの値を1に維持する。
When the value of the prohibition flag of the electric wire Wk is changed to 1, the control unit 43 may execute a release process for canceling the prohibition of switching the FET 30 on by the switch circuit Gk. The control unit 43 periodically executes the release process of the switch circuit Gk when the value of the prohibition flag of the electric wire Wk is 1. Even in the release process, the control unit 43 calculates the temperature difference between the electric wire temperature of the electric wire Wk and the environmental temperature. The control unit 43 determines whether or not the above-mentioned predetermined conditions are satisfied. The predetermined condition is, for example, that the temperature difference is a value equal to or less than a predetermined value. The predetermined value is zero ° C, 5 ° C, or the like. When the control unit 43 determines that the predetermined condition is satisfied, the control unit 43 returns the value of the prohibition flag to zero. When the control unit 43 determines that the predetermined condition is not satisfied, the control unit 43 maintains the value of the prohibition flag at 1.
<変形例>
制御部43は、電線Wkの電線温度を繰り返し算出する構成であればよい。このため、制御部43は、電線Wkの電線温度の算出を周期的に行わなくてもよい。電線Wkの電線電流値に基づいて電線Wkの電線温度を算出する方法は、[1]式及び[2]式を用いる方法に限定されない。 <Modification example>
Thecontrol unit 43 may be configured to repeatedly calculate the wire temperature of the wire Wk. Therefore, the control unit 43 does not have to periodically calculate the wire temperature of the wire Wk. The method of calculating the electric wire temperature of the electric wire Wk based on the electric wire current value of the electric wire Wk is not limited to the method using the equation [1] and the equation [2].
制御部43は、電線Wkの電線温度を繰り返し算出する構成であればよい。このため、制御部43は、電線Wkの電線温度の算出を周期的に行わなくてもよい。電線Wkの電線電流値に基づいて電線Wkの電線温度を算出する方法は、[1]式及び[2]式を用いる方法に限定されない。 <Modification example>
The
給電制御装置10は、電線W1,W2,・・・,Wkそれぞれの電線温度を検出するn個の温度検出部を有してもよい。この場合、マイコン20の制御部43は、電線温度を算出せず、温度検出部が検出した電線Wkの電線温度を温度閾値以上であるか否かを判定する。
The power supply control device 10 may have n temperature detection units for detecting the wire temperature of each of the wires W1, W2, ..., Wk. In this case, the control unit 43 of the microcomputer 20 does not calculate the wire temperature, and determines whether or not the wire temperature of the wire Wk detected by the temperature detection unit is equal to or higher than the temperature threshold value.
n個の溶断素子F1,F2,・・・,Fn、n個のスイッチ回路G1,G2,・・・,Gn及びマイコン20は、1つのプリント基板B上に配置されていなくてもよい。例えば、n個の溶断素子F1,F2,・・・,Fn、n個のスイッチ回路G1,G2,・・・,Gn及びマイコン20の一部が、プリント基板Bとは異なる第2の基板上に配置されていてもよい。
The n fusing elements F1, F2, ..., Fn, n switch circuits G1, G2, ..., Gn and the microcomputer 20 do not have to be arranged on one printed circuit board B. For example, n fusing elements F1, F2, ..., Fn, n switch circuits G1, G2, ..., Gn and a part of the microcomputer 20 are on a second substrate different from the printed circuit board B. It may be arranged in.
溶断素子、電線、スイッチ回路及び負荷それぞれの数、即ち、nは1であってもよい。FET30は、スイッチとして機能すればよい。このため、FET30の代わりに、Pチャネル型のFET、IGBT(Insulated Gate Bipolar Transistor)又はリレー接点等が用いられてもよい。
The number of each of the fusing element, the electric wire, the switch circuit and the load, that is, n may be 1. The FET 30 may function as a switch. Therefore, instead of the FET 30, a P-channel type FET, an IGBT (Insulated Gate Bipolar Transistor), a relay contact, or the like may be used.
開示された実施形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
The disclosed embodiments should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is indicated by the scope of claims, not the above-mentioned meaning, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
1 電源システム
10 給電制御装置(電線保護装置)
11 直流電源
20 マイコン
21 温度センサ
30 FET
31 電流出力部
32 駆動部
33 抵抗
40,M1,M2,・・・,Mn A/D変換部
41 入力部
42 記憶部
43 制御部(処理部)
44 内部バス
A 記憶媒体
B プリント基板
E1,E2,・・・,En 負荷
F1,F2,・・・,Fn 溶断素子
G1,G2,・・・,Gn スイッチ回路
J1,J2,・・・,Jn 出力部
W1,W2,・・・,Wn 電線
P コンピュータプログラム 1Power supply system 10 Power supply control device (electric wire protection device)
11DC power supply 20 Microcomputer 21 Temperature sensor 30 FET
31Current output unit 32 Drive unit 33 Resistance 40, M1, M2, ..., Mn A / D conversion unit 41 Input unit 42 Storage unit 43 Control unit (processing unit)
44 Internal bus A Storage medium B Printed circuit board E1, E2, ..., En load F1, F2, ..., Fn Fusing element G1, G2, ..., Gn switch circuit J1, J2, ..., Jn Output section W1, W2, ..., Wn wire P computer program
10 給電制御装置(電線保護装置)
11 直流電源
20 マイコン
21 温度センサ
30 FET
31 電流出力部
32 駆動部
33 抵抗
40,M1,M2,・・・,Mn A/D変換部
41 入力部
42 記憶部
43 制御部(処理部)
44 内部バス
A 記憶媒体
B プリント基板
E1,E2,・・・,En 負荷
F1,F2,・・・,Fn 溶断素子
G1,G2,・・・,Gn スイッチ回路
J1,J2,・・・,Jn 出力部
W1,W2,・・・,Wn 電線
P コンピュータプログラム 1
11
31
44 Internal bus A Storage medium B Printed circuit board E1, E2, ..., En load F1, F2, ..., Fn Fusing element G1, G2, ..., Gn switch circuit J1, J2, ..., Jn Output section W1, W2, ..., Wn wire P computer program
Claims (6)
- 電線を介して流れる電流の電流経路に配置され、自身の温度に応じて溶断される溶断素子と、
前記電流経路に配置されるFETと、
処理を実行する処理部と
を備え、
前記処理部は、
前記電線の電線温度が温度閾値以上であるか否かを繰り返し判定し、
前記電線温度が前記温度閾値以上であると判定した場合に前記FETのオフへの切替えを指示する
電線保護装置。 A fusing element placed in the current path of the current flowing through the electric wire and fusing according to its own temperature,
The FET placed in the current path and
It has a processing unit that executes processing, and has a processing unit.
The processing unit
It is repeatedly determined whether or not the wire temperature of the wire is equal to or higher than the temperature threshold value.
An electric wire protection device for instructing switching of the FET to off when it is determined that the electric wire temperature is equal to or higher than the temperature threshold value. - 前記溶断素子は、前記電線温度が所定温度以上の温度となった場合に溶断され、
前記温度閾値は、前記所定温度未満の温度である
請求項1に記載の電線保護装置。 The fusing element is fluted when the wire temperature becomes a temperature equal to or higher than a predetermined temperature.
The electric wire protection device according to claim 1, wherein the temperature threshold value is a temperature lower than the predetermined temperature. - 前記処理部は、前記電線を介して流れる電流の電線電流値に基づいて前記電線温度を繰り返し算出する
請求項1又は請求項2に記載の電線保護装置。 The electric wire protection device according to claim 1 or 2, wherein the processing unit repeatedly calculates the electric wire temperature based on the electric wire current value of the current flowing through the electric wire. - 前記溶断素子、FET及び処理部は1つのプリント基板上に配置されている
請求項1から請求項3のいずれか1項に記載の電線保護装置。 The electric wire protection device according to any one of claims 1 to 3, wherein the fusing element, the FET, and the processing unit are arranged on one printed circuit board. - 電線の電線温度が温度閾値以上であるか否かを繰り返し判定するステップと、
前記電線温度が前記温度閾値以上であると判定した場合に、前記電線を介して流れる電流の電流経路に配置されるFETのオフへの切替えを指示するステップと
をコンピュータが実行し、
自身の温度に応じて溶断される溶断素子が前記電流経路に配置されている
電線保護方法。 The step of repeatedly determining whether or not the wire temperature of the wire is above the temperature threshold, and
When it is determined that the wire temperature is equal to or higher than the temperature threshold value, the computer executes a step of instructing switching of the FET arranged in the current path of the current flowing through the wire to off.
An electric wire protection method in which a fusing element that flutes according to its own temperature is arranged in the current path. - 電線の電線温度が温度閾値以上であるか否かを繰り返し判定するステップと、
前記電線温度が前記温度閾値以上であると判定した場合に、前記電線を介して流れる電流の電流経路に配置されるFETのオフへの切替えを指示するステップと
をコンピュータに実行させるために用いられ、
自身の温度に応じて溶断される溶断素子が前記電流経路に配置されている
コンピュータプログラム。 The step of repeatedly determining whether or not the wire temperature of the wire is above the temperature threshold, and
When it is determined that the wire temperature is equal to or higher than the temperature threshold value, it is used to cause the computer to perform a step of instructing switching of the FET arranged in the current path of the current flowing through the wire to off. ,
A computer program in which a fusing element that flutes according to its own temperature is arranged in the current path.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020101070A JP2021197767A (en) | 2020-06-10 | 2020-06-10 | Electric wire protection device, electric wire protection method, and computer program |
JP2020-101070 | 2020-06-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021251118A1 true WO2021251118A1 (en) | 2021-12-16 |
Family
ID=78846021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/019541 WO2021251118A1 (en) | 2020-06-10 | 2021-05-24 | Wire protection device, wire protection method, and computer program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021197767A (en) |
WO (1) | WO2021251118A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023195437A1 (en) * | 2022-04-04 | 2023-10-12 | 株式会社オートネットワーク技術研究所 | Power supply control device, power supply control method, and computer program |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2024119614A (en) * | 2023-02-22 | 2024-09-03 | 株式会社オートネットワーク技術研究所 | On-board system, on-board device for train distribution, and control method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10116552A (en) * | 1996-10-14 | 1998-05-06 | Yazaki Corp | Switching device |
JP2001286036A (en) * | 2000-03-31 | 2001-10-12 | Yazaki Corp | Bus-bar wiring board of electrical connection box |
JP2010283977A (en) * | 2009-06-04 | 2010-12-16 | Yazaki Corp | Protection device for load circuit |
JP2015149797A (en) * | 2014-02-05 | 2015-08-20 | 株式会社オートネットワーク技術研究所 | Electric wire protection device |
-
2020
- 2020-06-10 JP JP2020101070A patent/JP2021197767A/en active Pending
-
2021
- 2021-05-24 WO PCT/JP2021/019541 patent/WO2021251118A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10116552A (en) * | 1996-10-14 | 1998-05-06 | Yazaki Corp | Switching device |
JP2001286036A (en) * | 2000-03-31 | 2001-10-12 | Yazaki Corp | Bus-bar wiring board of electrical connection box |
JP2010283977A (en) * | 2009-06-04 | 2010-12-16 | Yazaki Corp | Protection device for load circuit |
JP2015149797A (en) * | 2014-02-05 | 2015-08-20 | 株式会社オートネットワーク技術研究所 | Electric wire protection device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023195437A1 (en) * | 2022-04-04 | 2023-10-12 | 株式会社オートネットワーク技術研究所 | Power supply control device, power supply control method, and computer program |
Also Published As
Publication number | Publication date |
---|---|
JP2021197767A (en) | 2021-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021251118A1 (en) | Wire protection device, wire protection method, and computer program | |
JP7028355B2 (en) | Controls, control methods and computer programs | |
JP6314845B2 (en) | Electrical junction box | |
KR20160035588A (en) | Protection device | |
US11940334B2 (en) | Power supply control device | |
JP7024682B2 (en) | Power distribution device, power distribution method and computer program | |
JP6905356B2 (en) | Power semiconductor module | |
WO2018147103A1 (en) | Switch control device, switch switching method, and computer program | |
WO2021230065A1 (en) | Power feed control device, fusing method, and computer program | |
JPH10116552A (en) | Switching device | |
WO2017199947A1 (en) | Power supply control device, power supply control method and computer program | |
JP2007236103A (en) | Power supply apparatus | |
JP7533149B2 (en) | Power supply control device | |
JP2010246262A (en) | Semiconductor driver | |
WO2023095535A1 (en) | Interrupting device | |
JP6788060B2 (en) | Power supply control device, openness detection method and computer program | |
JP2023059025A (en) | Power supply control device | |
JP2024092543A (en) | On-vehicle device, control method and program | |
JPH05260647A (en) | Current breaking device | |
JP2024128725A (en) | Current Control Device | |
JP2009284595A (en) | Power supply device | |
CN117136481A (en) | Semiconductor device and integrated circuit | |
JP2018148631A (en) | Battery controller | |
JP2000113802A (en) | Initial charging circuit | |
JP2005012923A (en) | Protective device against overcurrent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21821461 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21821461 Country of ref document: EP Kind code of ref document: A1 |