WO2023095535A1 - Interrupting device - Google Patents

Interrupting device Download PDF

Info

Publication number
WO2023095535A1
WO2023095535A1 PCT/JP2022/040163 JP2022040163W WO2023095535A1 WO 2023095535 A1 WO2023095535 A1 WO 2023095535A1 JP 2022040163 W JP2022040163 W JP 2022040163W WO 2023095535 A1 WO2023095535 A1 WO 2023095535A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
pyro
path
conductive path
fuse
Prior art date
Application number
PCT/JP2022/040163
Other languages
French (fr)
Japanese (ja)
Inventor
勇貴 藤村
貴史 川上
嵩大 倉冨
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2023095535A1 publication Critical patent/WO2023095535A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H39/00Switching devices actuated by an explosion produced within the device and initiated by an electric current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/05Details with means for increasing reliability, e.g. redundancy arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications

Definitions

  • the present disclosure relates to a blocking device.
  • Patent Document 1 when a vehicle collision is detected, a control system interposed in a power path between a high-voltage battery and a plurality of loads switches the power path between the high-voltage battery side and the plurality of loads.
  • a technique for dividing into a side and a side is disclosed.
  • Patent Document 1 has a configuration in which a relay switch is used to separate the battery side and a plurality of load sides. Due to the structure of the relay switch, it is not possible to shorten the time required from the start of disconnection to the end of disconnection. In order to make this time shorter, it is conceivable to use a pyro-switch. However, using a pyro-switch may increase surge voltage compared to using a relay switch.
  • the present disclosure has been made based on the circumstances described above, and aims to provide a breaker that can satisfactorily cut off the energization of a power line.
  • the blocking device of the present disclosure is A circuit breaker for interrupting energization of a power path having a first conductive path and a second conductive path, a pyro-switch provided between the first conductive path and the second conductive path; a fuse section provided in parallel with the pyro-switch between the first conductive path and the second conductive path; has When the pyro-switch is in a cut-off state and the fuse section is in a conducting state, current flows between the first conductive path and the second conductive path through the fuse section.
  • FIG. 1 is a block diagram illustrating a blocking device according to Embodiment 1.
  • FIG. FIG. 2 is a flowchart illustrating the flow of processing in the blocking device according to the first embodiment;
  • FIG. 3 is a block diagram illustrating a blocking device according to Embodiment 2.
  • FIG. 4 is a block diagram illustrating a blocking device according to Embodiment 3.
  • the interrupting device of the present disclosure interrupts energization of a power path having a first conductive path and a second conductive path.
  • the breaker includes a pyro-switch provided between a first conductive path and a second conductive path, and a fuse portion provided in parallel with the pyro-switch between the first conductive path and the second conductive path. have.
  • the pyro-switch when the pyro-switch is in a cut-off state and the fuse section is in a conducting state, current flows between the first conducting path and the second conducting path through the fuse section.
  • the breaker of [1] above is capable of cutting off the pyro-switch and immediately reducing the current in the power path. Moreover, if the other energization path (the fuse part side energization path) is maintained after the pyro-switch has been cut off, the surge caused by the pyro-switch cut-off can be suppressed. If the fuse remains energized after the pyro-switch is shut off, there is a concern that the current flowing through the fuse will rise sharply when the pyro-switch is shut off. , the continuation of the excessive current is suppressed.
  • the other energization path the fuse part side energization path
  • the interrupting device of [1] above may have a current detection unit that detects the current value of the power path, and a control device that switches the pyro-switch to the interruption state based on the detected value of the current detection unit.
  • the breaker of [2] above can switch the pyro-switch to the cut-off state in a configuration independent from the outside by means of the current detection unit and the control device provided in the breaker itself. It is possible to easily realize a configuration that can cut off the two conductive paths.
  • the fuse portion may be a thermal fuse that is blown by its own heat generation.
  • the interrupting device of [3] above has a current detector that detects the current value of the power line, and a control device that switches the pyro-switch to the interrupted state based on the detected value of the current detector. .
  • the controller can switch the pyro-switch to the cut-off state before the fuse blows, based on the value detected by the current detector.
  • the breaking device of [4] above is capable of switching the pyro-switch to the breaking state when the current in the power path becomes excessive. For example, when the control device switches the pyro-switch to the cut-off state based on the value detected by the current detector, the current flowing through the power path concentrates on the fuse and the fuse blows, thus reliably disconnecting the power path. can do.
  • the fuse section may be a semiconductor fuse, and may further include a breaking control section that performs control to break the fuse section after breaking the pyro-switch.
  • the breaking device of [5] above can precisely control the breaking of the fuse section by the breaking control section.
  • Any one of the breaker devices from [1] to [5] above has a signal path to which a break signal is input from an external device provided outside the breaker device, and cuts off the signal path.
  • a pyro-switch may switch to a blocking state when a signal is input.
  • the shut-off device of [6] above can be configured so that a shut-off signal is input from an external device via a signal path according to desired specifications, so it is easy to adapt to various variations.
  • the inter-terminal resistance of the fuse portion may be greater than the inter-terminal resistance of the pyro-switch.
  • the current flowing through the fuse portion can be made smaller than the current flowing through the pyro-switch, so a smaller fuse portion can be adopted.
  • the interrupting device 30 includes an electricity storage unit 91, a power line Pp, an interrupting unit 34, a current detecting unit 38, a control device 20, and the like.
  • Interrupting device 30 is configured to apply voltage to load 94 via power path Pp, which is a path through which electric power is transmitted from power storage unit 91 to load 94 .
  • the interrupting device 30 has a function of interrupting the energization of the power path Pp.
  • the power storage unit 91 is a DC power supply that generates a DC voltage, and power supply means such as a lead battery, LiB, alternator, converter, etc., are used.
  • the power storage unit 91 is provided with a high potential side terminal and a low potential side terminal.
  • the high potential side terminal is electrically connected to the high potential side first conducting path 31A, and the low potential side terminal are electrically connected to the first conductive path 31B on the low potential side.
  • the power storage unit 91 is configured to apply an output voltage having a predetermined potential difference between the first conducting paths 31A and 31B.
  • the power path Pp has a first conductive path 31 and a second conductive path 32 .
  • the first conductive path 31 and the second conductive path 32 are power paths that are paths through which power is transmitted between the power storage unit 91 and the load 94 .
  • the first conductive path 31 has a first conductive path 31A on the high potential side and a first conductive path 31B on the low potential side.
  • the second conductive path 32 has a second conductive path 32A on the high potential side and a second conductive path 32B on the low potential side.
  • First conductive path 31 is electrically connected to power storage unit 91 .
  • the second conductive path 32 is electrically connected to the load 94 .
  • the load 94 is an in-vehicle electronic component, and is applicable to products such as electric components, ECUs, and parts subject to ADAS, for example.
  • a load 94 is electrically connected to the second conductive path 32 .
  • electrically connected desirably refers to a configuration in which the objects to be connected are electrically connected to each other (a state in which current can flow) so that the potentials of both objects are equal.
  • electrically connected may be a configuration in which both connection objects are connected in a state in which an electric component is interposed between them and both connection objects are electrically connected.
  • the cut-off section 34 has a pyro-switch 34A and a fuse section 34B.
  • the cutoff portion 34 is interposed between the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A. That is, the pyro-switch 34A and the fuse portion 34B are provided between the first conductive path 31 and the second conductive path 32.
  • the breaker 34 switches from a conduction state in which electric power is supplied from the high-potential-side first conductive path 31A to the high-potential-side second conductive path 32A, from the high-potential-side first conductive path 31A to the high-potential-side second conductive path 32A. It switches to a cutoff state that cuts off the supply of power to the conductive path 32A.
  • the pyro-switch 34A allows a current to flow between the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A through itself when the pyro-switch 34A itself is in a conducting state (energization-permitting state). do.
  • the pyro-switch 34A enters a cut-off state in which a current is cut off from the first conductive path 31A on the high potential side to the second conductive path 32A on the high potential side when a drive signal D is given from the control device 20, which will be described later. do.
  • the pyro-switch 34A When the pyro-switch 34A itself is in the cut-off state, the pyro-switch 34A bi-directionally cuts off current flow between the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A. .
  • the pyro-switch 34A ignites the built-in gunpowder and uses the explosive power of the gunpowder to perform an interrupting operation of instantaneously disconnecting the bus bar element built in itself, and enters the cut-off state. Become. Therefore, the pyro-switch 34A can switch to the cut-off state in a short time compared to a relay or the like.
  • the pyro-switch 34A which has been switched to the cut-off state, does not release the cut-off state and switch to the conductive state allowing current to flow from the high-potential-side first conductive path 31A to the high-potential-side second conductive path 32A. That is, the pyro-switch 34A is maintained in the cut-off state after the cut-off operation.
  • the fuse section 34B is provided in parallel with the pyro-switch 34A.
  • a thermal fuse for example, is used for the fuse portion 34B.
  • the terminal-to-terminal resistance of the fuse portion 34B is set to be greater than the terminal-to-terminal resistance of the pyro-switch 34A.
  • the fuse portion 34B allows current to flow through itself between the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A when the fuse portion 34B itself is in a conducting state (energization-permitting state). do.
  • the fuse portion 34B When the fuse portion 34B itself is in a conductive state (energization-permitting state), if an excessive amount of current flows through the conductive path to the extent that a part of the conductive path built therein fuses, the conductive path generates heat, A part of is fused and cut off. That is, the fuse portion 34B is fused by its own heat generation. In this way, the fuse portion 34B switches to a cutoff state that cuts off the flow of current from the power storage portion 91 side to the load 94 side.
  • the fuse part 34B interrupts the flow of current between the high-potential-side first conducting path 31A and the high-potential-side second conducting path 32A in both directions when the fuse part 34B itself is in the interrupted state.
  • the fuse unit 34B that has been switched to the interrupted state does not switch to the released state that cancels the interrupted state and permits current to flow from the power storage unit 91 side to the load 94 side.
  • the fuse section 34B takes a longer time than the pyro-switch 34A to switch to the cut-off state.
  • the current detection unit 38 is interposed in the first conductive path 31A on the high potential side closer to the power storage unit 91 than the cutoff unit 34 is.
  • the current detection unit 38 has, for example, a resistor and a differential amplifier, and has a value indicating the current flowing through the high potential side first conducting path 31A (specifically, the value indicating the current flowing through the high potential side first conducting path 31A). (analog voltage corresponding to the value of the current) can be output as the current value A.
  • the current detector 38 detects the state of the current flowing through the high-potential-side first conductive path 31A.
  • the control device 20 is composed of circuits, parts, etc. that can perform control such as microcomputers and FPGAs, for example.
  • the control device 20 can perform control to switch the pyro-switch 34A to the cut-off state.
  • the controller 20 is configured to receive the current value A detected by the current detector 38 in the high-potential-side first conducting path 31A.
  • the control device 20 controls the output of the drive signal D to the pyro-switch 34A based on the current value A (detection value) that is the detection result input from the current detection section 38 .
  • the control device 20 supplies the drive signal D to the pyro-switch 34A to cut off the pyro-switch 34A. Instruct to switch to Note that the predetermined overcurrent state will be described later.
  • the magnitude of the current flowing through the high-potential-side first conductive path 31A is equal to or greater than a predetermined threshold.
  • the predetermined overcurrent state is determined in the control device 20 using the current value A input from the current detection section 38 . Specifically, in some cases, the control device 20 determines that the magnitude of the current value A input from the current detection unit 38 (that is, the current flowing through the first conductive path 31A on the high potential side) is equal to or greater than a predetermined threshold. Corresponds to a given overcurrent condition.
  • the predetermined threshold value is stored in the ROM or the like in the control device 20, for example.
  • a relay unit 35 is provided in the cutoff device 30 .
  • the relay section 35 has relays 35A, 35B, 35C and a resistor 35D.
  • the relay 35A is interposed in the second conducting path 32A on the high potential side.
  • the relay 35A switches the high-potential-side second conductive path 32A between a conducting state and a non-conducting state.
  • the relays 35B and 35C are interposed in the second conductive path 32B on the low potential side.
  • the relays 35B and 35C switch the low-potential-side second conductive path 32B between a conducting state and a non-conducting state.
  • the resistor 35D is electrically connected in series with the relay 35C.
  • a resistor 35D and a relay 35C electrically connected in series are provided in parallel with the relay 35B.
  • step S1 a start switch (ignition switch) provided in the vehicle is switched from an off state to an on state.
  • the control device 20 determines whether or not the current flowing through the high potential side first conductive path 31A is in a predetermined overcurrent state. Specifically, the control device 20 determines whether the current value A of the high-potential-side first conductive path 31A detected by the current detection unit 38 is equal to or greater than a predetermined threshold value.
  • step S2 If the current value A is equal to or greater than the predetermined threshold value, or if the current value A is less than the predetermined threshold value in step S2, the control device 20 determines that the current flowing through the high potential side first conductive path 31A is not in a predetermined overcurrent state. (No in step S2), the process in FIG. 2 ends.
  • step S2 When the control device 20 determines that the current flowing through the first conductive path 31A on the high potential side is in a predetermined overcurrent state (Yes in step S2), the process proceeds to step S3. After proceeding to step S3, the control device 20 transmits the drive signal D to the pyro-switch 34A.
  • step S4 the pyro-switch 34A to which the drive signal D is input ignites the built-in explosive. Then, the process proceeds to step S5, and the pyro-switch 34A disconnects the busbar element. At this time, the fuse portion 34B is before the start of fusing (before fusing). That is, the control device 20 switches the pyro-switch 34A to the cut-off state based on the value detected by the current detection section 38 before the fuse section 34B is fused.
  • step S6 All of the current flowing from the high potential side first conductive path 31A toward the high potential side second conductive path 32A flows into the fuse portion 34B.
  • the pyro-switch 34A is in a disconnected state
  • the fuse portion 34B is in a conductive state
  • step S7 a part of the conductive path of the fuse portion 34B is fused.
  • step S7 mainly the fuse portion 34B cuts off the first conductive path 31A on the high potential side and the second conductive path 32A on the high potential side.
  • the time required from the start of blowing to the completion of blowing in a portion of the conductive path of the fuse portion 34B is longer than the time required from the start of blowing to the completion of blowing in the busbar element of the pyro-switch 34A.
  • the fuse portion 34 ⁇ /b>B is fused while suppressing the occurrence of an arc in the breaker portion 34 .
  • the interrupting device 30 interrupts the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A, and the process in FIG. 2 ends.
  • the cutoff device 30 cuts off the energization of the power path Pp having the first conductive path 31 and the second conductive path 32 .
  • the interrupting device 30 includes a pyro-switch 34A provided between the first conducting path 31 and the second conducting path 32, and a pyro-switch 34A provided between the first conducting path 31 and the second conducting path 32 in parallel with the pyro-switch 34A. and a fuse portion 34B provided. In the interrupting device 30, current flows between the first conducting path 31 and the second conducting path 32 via the fuse part 34B when the pyro-switch 34A is in the interrupting state and the fuse part 34B is in the conducting state.
  • the interruption device 30 has a current detection section 38 that detects the current value of the power path Pp, and a control device 20 that switches the pyro-switch 34A to the interruption state based on the detection value of the current detection section 38 .
  • the pyro-switch 34A can be switched to the cut-off state in a configuration independent from the outside by the current detection unit 38 and the control device 20 provided in the cut-off device 30 itself. and the second conducting path 32 can be easily realized.
  • the fuse portion 34B of the cutoff device 30 is a thermal fuse that is blown by its own heat generation. According to this configuration, after the pyro-switch 34A completes the disconnection, the current flows through the fuse portion 34B, thereby progressing the fusing.
  • the breaker 30 has a current detector 38 that detects the current value of the power path Pp, and a controller 20 that switches the pyro-switch 34A to the cut-off state based on the value detected by the current detector 38 . Based on the value detected by the current detector 38, the controller 20 switches the pyro-switch 34A to the cut-off state before the fuse 34B is fused. With this configuration, it is possible to switch the pyro-switch 34A to the cut-off state when the current in the power path Pp becomes excessive.
  • the controller 20 switches the pyro-switch 34A to the cut-off state based on the value detected by the current detector 38, the current flowing through the power path Pp concentrates on the fuse 34B, causing the fuse 34B to melt.
  • the power path Pp can be reliably cut off.
  • the inter-terminal resistance of the fuse portion 34B of the breaker 30 is greater than the inter-terminal resistance of the pyro-switch 34A. According to this configuration, the current flowing through the fuse portion 34B can be made smaller than the current flowing through the pyro-switch 34A in the conducting state, so that a smaller component can be adopted as the fuse portion 34B.
  • the breaker 130 of the second embodiment differs from that of the first embodiment in that a semiconductor fuse is used for the fuse portion 134B of the breaker 134 and that the breaker 130 includes a break control unit 50 for controlling breakage of the fuse portion 134B.
  • the same reference numerals are assigned to the same configurations as in the first embodiment, and the description of the same actions and effects as in the first embodiment is omitted.
  • the cutoff section 134 has a pyro-switch 34A and a fuse section 134B.
  • a semiconductor fuse is used for the fuse portion 134B.
  • the terminal-to-terminal resistance of the fuse portion 134B is greater than the terminal-to-terminal resistance of the pyro-switch 34A.
  • the fuse section 134B is provided in parallel with the pyro-switch 34A.
  • a cutoff operation is performed to cut off the flow of current to the second conductive path 32A, and the state is switched to the cutoff state.
  • the fuse section 134B can be switched from the cut-off state to the released state by receiving the conduction signal C2 from the cut-off control section 50 .
  • the fuse portion 134B in the released state allows current to flow from the high-potential-side first conductive path 31A to the high-potential-side second conductive path 32A.
  • the cut-off control unit 50 is composed of circuits, parts, etc. that can perform control such as microcomputers and FPGAs, for example.
  • the cutoff control unit 50 can perform control to switch the fuse unit 134B between the cutoff state and the released state.
  • a current value A in the high-potential-side first conductive path 31A detected by the current detection unit 38 is input to the cut-off control unit 50 .
  • the breaking control unit 50 stores breaking characteristics that determine each time until the fuse unit 134B is switched to the breaking state based on each current value A from the current detection unit 38 .
  • This breaking characteristic is stored, for example, in the ROM or the like in the breaking control section 50 in a form that can be compared with the current value A from the current detection section 38, such as table data or a function.
  • the cutoff characteristic is set such that the larger the current value A in the first conductive path 31A on the high potential side, the shorter the time required for switching the fuse portion 134B from the released state to the cutoff state.
  • This cut-off characteristic is set, for example, based on the electrical characteristics of electric parts such as electric wires and connectors included in the power path Pp.
  • the cut-off control unit 50 starts comparing the cut-off characteristics stored by itself with the current value A from the current detection unit 38. Then, when the break control unit 50 determines that the current value A is large enough to cause the fuse unit 134B to break, it gives the break signal C1 to the fuse unit 134B to switch the fuse unit 134B to the cut state. In other words, the cutoff control section 50 cuts off the fuse section 134B after the pyro-switch 34A is cut off.
  • the cutoff control unit 50 determines that each current value A input from the current detection unit 38 is not large enough to cause the fuse unit 134B to perform a cutoff operation, the cutoff control unit 50 provides a conduction signal C2 to the fuse unit 134B to The part 134B is brought into the released state.
  • the fuse portion 134B of the cutoff device 130 is a semiconductor fuse. Further, the breaking device 130 has a breaking control section 50 that performs control to break the fuse section 134B (semiconductor fuse) after breaking the pyro-switch 34A. According to this configuration, it is possible to precisely control the disconnection of the fuse portion 134B by the disconnection control section 50 .
  • the breaker 230 of the third embodiment differs from the first and second embodiments in that it does not have a current detector and has a signal path 220 that gives a break signal B to the control device 20 .
  • the same reference numerals are assigned to the same configurations as those of the first and second embodiments, and the description of the same actions and effects as those of the first and second embodiments will be omitted.
  • the signal path 220 is electrically connected to the control device 20 .
  • Signal path 220 is electrically connected to external device 60 .
  • a blocking signal B is input to the signal path 220 from an external device 60 provided outside the blocking device 230 .
  • the control device 20 receives the cutoff signal B from the external device 60 via the signal path 220, it sends the drive signal D to the pyro-switch 34A. As a result, the pyro-switch 34A switches to the cut-off state.
  • the blocking device 230 has a signal path 220 to which a blocking signal B is input from an external device 60 provided outside the blocking device 230.
  • the pyro-switch 34A is activated. switches to the blocked state. According to this configuration, it is possible to input the cut-off signal B from the external device 60 via the signal path 220 according to the desired specifications, so it is easy to adapt to various variations.
  • a configuration may be used in which a cutoff signal is directly input from an external device to the pyro-switch via a signal path.
  • the controller periodically repeats the process of detecting the differential value of the current value, compares the magnitude of the absolute value of the differential value with a threshold value, and determines the state of the current flowing through the power path. It is good also as a structure which determines. Further, the predetermined threshold value may be a fixed value, or may be changed according to the operating condition of the load to determine the state of the current flowing through the power path.
  • control device and the cut-off control section may be integrally provided as one control device.
  • a comparator may be used as the current detection unit.
  • a predetermined high-level signal is output when the current value in the power path indicates a value equal to or greater than a predetermined threshold
  • a predetermined low-level signal is output when the current value indicates a value less than the predetermined threshold.
  • a configuration using a current transformer or the like may be used.
  • control device may be configured to switch the pyro-switch to the cut-off state before the end of the blowing of the fuse section based on the value detected by the current detection section. In other words, it is sufficient that the blowing of the fuse section is completed after the pyro-switch is switched to the cut-off state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuses (AREA)

Abstract

Provided is an interrupting device capable of satisfactorily interrupting the energization of a power path. An interrupting device (30) interrupts the energization of a power path (Pp) having a first conductive path (31) and a second conductive path (32). The interrupting device (30) has: a pyro-switch (34A) provided between the first conductive path (31) and the second conductive path (32); and a fuse unit (34B) provided in parallel with the pyro-switch (34A) between the first conductive path (31) and the second conductive path (32). When the pyro-switch (34A) is in an interrupted state and the fuse unit (34B) is in a conductive state, current flows through the fuse unit (34B) between the first conductive path (31) and the second conductive path (32).

Description

遮断装置breaker
 本開示は、遮断装置に関するものである。 The present disclosure relates to a blocking device.
 特許文献1には、車両の衝突を検知すると、高電圧のバッテリと複数の負荷との間の電力路に介在して設けられた制御システムが電力路を高電圧のバッテリ側と、複数の負荷側と、に分断する技術が開示されている。 In Patent Document 1, when a vehicle collision is detected, a control system interposed in a power path between a high-voltage battery and a plurality of loads switches the power path between the high-voltage battery side and the plurality of loads. A technique for dividing into a side and a side is disclosed.
米国特許第9221343号公報U.S. Pat. No. 9,221,343
 特許文献1のものは、リレースイッチを用いてバッテリ側と、複数の負荷側と、に分断する構成である。リレースイッチは、その構造上、分断開始から分断終了するまでに要する時間があまり短くできない。この時間をより短くするために、パイロスイッチを用いることが考えられる。しかし、パイロスイッチを用いると、リレースイッチを用いた場合に比べてサージ電圧が大きくなる懸念がある。 Patent Document 1 has a configuration in which a relay switch is used to separate the battery side and a plurality of load sides. Due to the structure of the relay switch, it is not possible to shorten the time required from the start of disconnection to the end of disconnection. In order to make this time shorter, it is conceivable to use a pyro-switch. However, using a pyro-switch may increase surge voltage compared to using a relay switch.
 本開示は上述した事情に基づいてなされたものであり、電力路の通電を良好に遮断することができる遮断装置の提供を目的とするものである。 The present disclosure has been made based on the circumstances described above, and aims to provide a breaker that can satisfactorily cut off the energization of a power line.
 本開示の遮断装置は、
 第1導電路と第2導電路とを有する電力路の通電を遮断する遮断装置であって、
 前記第1導電路と前記第2導電路との間に設けられるパイロスイッチと、
 前記第1導電路と前記第2導電路との間において前記パイロスイッチに対して並列に設けられるヒューズ部と、
 を有し、
 前記パイロスイッチが遮断状態であって前記ヒューズ部が導通状態である場合に、前記第1導電路と前記第2導電路との間において前記ヒューズ部を介して電流が流れる。
The blocking device of the present disclosure is
A circuit breaker for interrupting energization of a power path having a first conductive path and a second conductive path,
a pyro-switch provided between the first conductive path and the second conductive path;
a fuse section provided in parallel with the pyro-switch between the first conductive path and the second conductive path;
has
When the pyro-switch is in a cut-off state and the fuse section is in a conducting state, current flows between the first conductive path and the second conductive path through the fuse section.
 本開示によれば、電力路の通電を良好に遮断することができる。 According to the present disclosure, it is possible to satisfactorily cut off the energization of the power path.
図1は、実施形態1に係る遮御装置を例示するブロック図である。FIG. 1 is a block diagram illustrating a blocking device according to Embodiment 1. FIG. 図2は、実施形態1に係る遮断装置における処理の流れを例示するフローチャートである。FIG. 2 is a flowchart illustrating the flow of processing in the blocking device according to the first embodiment; 図3は、実施形態2に係る遮断装置を例示するブロック図である。FIG. 3 is a block diagram illustrating a blocking device according to Embodiment 2. FIG. 図4は、実施形態3に係る遮断装置を例示するブロック図である。FIG. 4 is a block diagram illustrating a blocking device according to Embodiment 3. FIG.
[本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described.
 〔1〕本開示の遮断装置は、第1導電路と第2導電路とを有する電力路の通電を遮断する。遮断装置は、第1導電路と第2導電路との間に設けられるパイロスイッチと、第1導電路と第2導電路との間においてパイロスイッチに対して並列に設けられるヒューズ部と、を有する。遮断装置は、パイロスイッチが遮断状態であってヒューズ部が導通状態である場合に、第1導電路と第2導電路との間においてヒューズ部を介して電流が流れる。 [1] The interrupting device of the present disclosure interrupts energization of a power path having a first conductive path and a second conductive path. The breaker includes a pyro-switch provided between a first conductive path and a second conductive path, and a fuse portion provided in parallel with the pyro-switch between the first conductive path and the second conductive path. have. In the breaker, when the pyro-switch is in a cut-off state and the fuse section is in a conducting state, current flows between the first conducting path and the second conducting path through the fuse section.
 上記〔1〕の遮断装置は、パイロスイッチを遮断して、電力路の電流を即座に減少させる動作が可能である。しかも、パイロスイッチの遮断動作後に他方の通電経路(ヒューズ部側の通電経路)が維持されていれば、パイロスイッチの遮断に起因するサージが抑制され得る。なお、パイロスイッチの遮断後にヒューズ部の通電が維持されていると、パイロスイッチの遮断に伴ってヒューズ部を流れる電流が急上昇する懸念があるが、電流上昇に応じてヒューズ部が遮断されれば、過剰な電流の継続は抑えられる。 The breaker of [1] above is capable of cutting off the pyro-switch and immediately reducing the current in the power path. Moreover, if the other energization path (the fuse part side energization path) is maintained after the pyro-switch has been cut off, the surge caused by the pyro-switch cut-off can be suppressed. If the fuse remains energized after the pyro-switch is shut off, there is a concern that the current flowing through the fuse will rise sharply when the pyro-switch is shut off. , the continuation of the excessive current is suppressed.
 〔2〕上記〔1〕の遮断装置は、電力路の電流値を検出する電流検知部と、電流検知部の検出値に基づいてパイロスイッチを遮断状態に切り替える制御装置と、を有し得る。 [2] The interrupting device of [1] above may have a current detection unit that detects the current value of the power path, and a control device that switches the pyro-switch to the interruption state based on the detected value of the current detection unit.
 上記〔2〕の遮断装置は、遮断装置自身が備える電流検知部と制御装置とによって、外部から独立した構成でパイロスイッチを遮断状態に切り替えることができるので、より迅速に第1導電路と第2導電路とを遮断し得る構成を簡易に実現し得る。 The breaker of [2] above can switch the pyro-switch to the cut-off state in a configuration independent from the outside by means of the current detection unit and the control device provided in the breaker itself. It is possible to easily realize a configuration that can cut off the two conductive paths.
 〔3〕上記〔1〕又は〔2〕の遮断装置において、ヒューズ部は、自身の発熱によって溶断されるサーマルヒューズであり得る。 [3] In the breaking device of [1] or [2] above, the fuse portion may be a thermal fuse that is blown by its own heat generation.
 上記〔3〕の遮断装置は、パイロスイッチが遮断完了後、ヒューズ部に電流が流れることによって溶断が進行するので、確実に第1導電路と第2導電路とを遮断することができる。 In the breaker device of [3] above, after the pyro-switch completes breaking, the current flows through the fuse portion to progress fusing, so the first conducting path and the second conducting path can be reliably broken.
 〔4〕上記〔3〕の遮断装置は、電力路の電流値を検出する電流検知部と、電流検知部の検出値に基づいてパイロスイッチを遮断状態に切り替える制御装置と、を有している。制御装置は、電流検知部の検出値に基づき、ヒューズ部の溶断前にパイロスイッチを遮断状態に切り替え得る。 [4] The interrupting device of [3] above has a current detector that detects the current value of the power line, and a control device that switches the pyro-switch to the interrupted state based on the detected value of the current detector. . The controller can switch the pyro-switch to the cut-off state before the fuse blows, based on the value detected by the current detector.
 上記〔4〕の遮断装置は、電力路の電流が過剰になったときにパイロスイッチを遮断状態に切り替えるような動作が可能である。例えば、制御装置が、電流検知部の検出値に基づいて、パイロスイッチを遮断状態に切り替えると、ヒューズ部に電力路を流れる電流が集中してヒューズ部が溶断するので、電力路を確実に分断することができる。 The breaking device of [4] above is capable of switching the pyro-switch to the breaking state when the current in the power path becomes excessive. For example, when the control device switches the pyro-switch to the cut-off state based on the value detected by the current detector, the current flowing through the power path concentrates on the fuse and the fuse blows, thus reliably disconnecting the power path. can do.
 〔5〕上記〔1〕又は〔2〕の遮断装置において、ヒューズ部は、半導体ヒューズであり、更に、パイロスイッチの遮断後にヒューズ部を遮断する制御を行う遮断制御部を有し得る。 [5] In the breaking device of [1] or [2] above, the fuse section may be a semiconductor fuse, and may further include a breaking control section that performs control to break the fuse section after breaking the pyro-switch.
 上記〔5〕の遮断装置は、遮断制御部によってヒューズ部を遮断する制御を緻密に行うことができる。 The breaking device of [5] above can precisely control the breaking of the fuse section by the breaking control section.
 〔6〕上記〔1〕から〔5〕までのいずれかの遮断装置は、この遮断装置の外部に設けられた外部装置から遮断信号が入力される信号路を有し、信号路に対して遮断信号が入力された場合にパイロスイッチが遮断状態に切り替わり得る。 [6] Any one of the breaker devices from [1] to [5] above has a signal path to which a break signal is input from an external device provided outside the breaker device, and cuts off the signal path. A pyro-switch may switch to a blocking state when a signal is input.
 上記〔6〕の遮断装置は、所望とされる仕様に応じ、信号路を介して外部装置から遮断信号が入力される構成とすることができるので、様々なバリエーションに対応させ易い。 The shut-off device of [6] above can be configured so that a shut-off signal is input from an external device via a signal path according to desired specifications, so it is easy to adapt to various variations.
 〔7〕上記〔1〕から〔6〕までのいずれかの遮断装置において、ヒューズ部の端子間抵抗は、パイロスイッチの端子間抵抗よりも大きくし得る。 [7] In any one of the interrupting devices from [1] to [6] above, the inter-terminal resistance of the fuse portion may be greater than the inter-terminal resistance of the pyro-switch.
 上記〔7〕の遮断装置は、導通状態において、ヒューズ部に流れる電流をパイロスイッチに流れる電流よりも少なくすることができるので、ヒューズ部として、より小型のものを採用することができる。
[本開示の実施形態の詳細]
In the circuit breaker of [7] above, in the conductive state, the current flowing through the fuse portion can be made smaller than the current flowing through the pyro-switch, so a smaller fuse portion can be adopted.
[Details of the embodiment of the present disclosure]
<実施形態1>
〔遮断装置の概要〕
 図1に示すように、遮断装置30は、蓄電部91、電力路Pp、遮断部34、電流検知部38、及び制御装置20等を備えている。遮断装置30は、蓄電部91から蓄電部91と負荷94との間において電力が伝送される経路である電力路Ppを介して負荷94に対して電圧を印加し得る構成をなす。遮断装置30は、電力路Ppの通電を遮断する機能を有する。
<Embodiment 1>
[Outline of the breaker]
As shown in FIG. 1, the interrupting device 30 includes an electricity storage unit 91, a power line Pp, an interrupting unit 34, a current detecting unit 38, a control device 20, and the like. Interrupting device 30 is configured to apply voltage to load 94 via power path Pp, which is a path through which electric power is transmitted from power storage unit 91 to load 94 . The interrupting device 30 has a function of interrupting the energization of the power path Pp.
 蓄電部91は、直流電圧を生じる直流電源であり、例えば、鉛バッテリ、LiB、オルタネーター、コンバータ等の電源手段が用いられている。蓄電部91には高電位側の端子と低電位側の端子が設けられ、高電位側の端子には、高電位側の第1導電路31Aが電気的に接続され、低電位側の端子には、低電位側の第1導電路31Bが電気的に接続されている。蓄電部91は、第1導電路31A,31Bの間に所定の電位差の出力電圧を印加する構成をなしている。 The power storage unit 91 is a DC power supply that generates a DC voltage, and power supply means such as a lead battery, LiB, alternator, converter, etc., are used. The power storage unit 91 is provided with a high potential side terminal and a low potential side terminal. The high potential side terminal is electrically connected to the high potential side first conducting path 31A, and the low potential side terminal are electrically connected to the first conductive path 31B on the low potential side. The power storage unit 91 is configured to apply an output voltage having a predetermined potential difference between the first conducting paths 31A and 31B.
 電力路Ppは、第1導電路31及び第2導電路32を有している。第1導電路31及び第2導電路32は、蓄電部91と負荷94との間において電力が伝送される経路となる電力経路である。第1導電路31は、高電位側の第1導電路31Aと、低電位側の第1導電路31Bと、を有している。第2導電路32は、高電位側の第2導電路32Aと、低電位側の第2導電路32Bと、を有している。第1導電路31は、蓄電部91に電気的に接続されている。第2導電路32は、負荷94に電気的に接続されている。 The power path Pp has a first conductive path 31 and a second conductive path 32 . The first conductive path 31 and the second conductive path 32 are power paths that are paths through which power is transmitted between the power storage unit 91 and the load 94 . The first conductive path 31 has a first conductive path 31A on the high potential side and a first conductive path 31B on the low potential side. The second conductive path 32 has a second conductive path 32A on the high potential side and a second conductive path 32B on the low potential side. First conductive path 31 is electrically connected to power storage unit 91 . The second conductive path 32 is electrically connected to the load 94 .
 負荷94は、車載用電子部品であり、例えば、電動部品、ECU、ADAS対象部品等の製品が適用対象となる。負荷94は、第2導電路32に電気的に接続されている。 The load 94 is an in-vehicle electronic component, and is applicable to products such as electric components, ECUs, and parts subject to ADAS, for example. A load 94 is electrically connected to the second conductive path 32 .
 本開示において、「電気的に接続される」とは、接続対象の両方の電位が等しくなるように互いに導通した状態(電流を流せる状態)で接続される構成であることが望ましい。ただし、この構成に限定されない。例えば、「電気的に接続される」とは、両接続対象の間に電気部品が介在しつつ両接続対象が導通し得る状態で接続された構成であってもよい。 In the present disclosure, "electrically connected" desirably refers to a configuration in which the objects to be connected are electrically connected to each other (a state in which current can flow) so that the potentials of both objects are equal. However, it is not limited to this configuration. For example, "electrically connected" may be a configuration in which both connection objects are connected in a state in which an electric component is interposed between them and both connection objects are electrically connected.
 遮断部34は、パイロスイッチ34A、及びヒューズ部34Bを有している。遮断部34は、高電位側の第1導電路31Aと、高電位側の第2導電路32Aとの間に介在して設けられている。つまり、パイロスイッチ34A、及びヒューズ部34Bは、第1導電路31と第2導電路32との間に設けられている。遮断部34は、高電位側の第1導電路31Aから高電位側の第2導電路32Aへ電力が供給される導通状態から、高電位側の第1導電路31Aから高電位側の第2導電路32Aへ電力が供給されることを遮断する遮断状態に切り替わる。 The cut-off section 34 has a pyro-switch 34A and a fuse section 34B. The cutoff portion 34 is interposed between the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A. That is, the pyro-switch 34A and the fuse portion 34B are provided between the first conductive path 31 and the second conductive path 32. As shown in FIG. The breaker 34 switches from a conduction state in which electric power is supplied from the high-potential-side first conductive path 31A to the high-potential-side second conductive path 32A, from the high-potential-side first conductive path 31A to the high-potential-side second conductive path 32A. It switches to a cutoff state that cuts off the supply of power to the conductive path 32A.
 パイロスイッチ34Aは、自身が導通状態(通電許容状態)のときに高電位側の第1導電路31Aと高電位側の第2導電路32Aとの間において自身を介して電流が流れることを許容する。パイロスイッチ34Aは、後述する制御装置20から駆動信号Dが与えられることによって、高電位側の第1導電路31Aから高電位側の第2導電路32Aへ電流が流れることを遮断する遮断状態にする。パイロスイッチ34Aは、自身が遮断状態のときに高電位側の第1導電路31Aと、高電位側の第2導電路32Aとの間において自身を介して電流が流れることを双方向で遮断する。 The pyro-switch 34A allows a current to flow between the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A through itself when the pyro-switch 34A itself is in a conducting state (energization-permitting state). do. The pyro-switch 34A enters a cut-off state in which a current is cut off from the first conductive path 31A on the high potential side to the second conductive path 32A on the high potential side when a drive signal D is given from the control device 20, which will be described later. do. When the pyro-switch 34A itself is in the cut-off state, the pyro-switch 34A bi-directionally cuts off current flow between the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A. .
 パイロスイッチ34Aは、例えば、駆動信号Dが与えられると、内蔵された火薬に着火し、火薬の爆発力を利用して自身に内蔵するバスバエレメントを瞬時に切断する遮断動作を行い、遮断状態になる。このため、パイロスイッチ34Aは、リレー等に比べ、短時間で遮断状態に切り替わることができる。遮断状態に切り替わったパイロスイッチ34Aは、遮断状態を解除して高電位側の第1導電路31Aから高電位側の第2導電路32Aへ電流が流れることを許容する導通状態に切り替わらない。つまり、パイロスイッチ34Aは、遮断動作後には遮断状態で維持される。 For example, when the drive signal D is given, the pyro-switch 34A ignites the built-in gunpowder and uses the explosive power of the gunpowder to perform an interrupting operation of instantaneously disconnecting the bus bar element built in itself, and enters the cut-off state. Become. Therefore, the pyro-switch 34A can switch to the cut-off state in a short time compared to a relay or the like. The pyro-switch 34A, which has been switched to the cut-off state, does not release the cut-off state and switch to the conductive state allowing current to flow from the high-potential-side first conductive path 31A to the high-potential-side second conductive path 32A. That is, the pyro-switch 34A is maintained in the cut-off state after the cut-off operation.
 ヒューズ部34Bは、パイロスイッチ34Aに対して並列に設けられている。ヒューズ部34Bには、例えば、サーマルヒューズが用いられる。ヒューズ部34Bの端子間抵抗は、パイロスイッチ34Aの端子間抵抗よりも大きく設定されている。ヒューズ部34Bは、自身が導通状態(通電許容状態)のときに高電位側の第1導電路31Aと高電位側の第2導電路32Aとの間において自身を介して電流が流れることを許容する。ヒューズ部34Bは、自身が導通状態(通電許容状態)のときに自身に内蔵する導電路の一部が溶断する程度の過剰な電流が導電路に流れると、導電路が発熱することによって導電路の一部が溶断して遮断状態になる。つまり、ヒューズ部34Bは、自身の発熱によって溶断される。こうして、ヒューズ部34Bは、蓄電部91側から負荷94側へ電流が流れることを遮断する遮断状態に切り替わる。 The fuse section 34B is provided in parallel with the pyro-switch 34A. A thermal fuse, for example, is used for the fuse portion 34B. The terminal-to-terminal resistance of the fuse portion 34B is set to be greater than the terminal-to-terminal resistance of the pyro-switch 34A. The fuse portion 34B allows current to flow through itself between the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A when the fuse portion 34B itself is in a conducting state (energization-permitting state). do. When the fuse portion 34B itself is in a conductive state (energization-permitting state), if an excessive amount of current flows through the conductive path to the extent that a part of the conductive path built therein fuses, the conductive path generates heat, A part of is fused and cut off. That is, the fuse portion 34B is fused by its own heat generation. In this way, the fuse portion 34B switches to a cutoff state that cuts off the flow of current from the power storage portion 91 side to the load 94 side.
 ヒューズ部34Bは、自身が遮断状態のときに高電位側の第1導電路31Aと高電位側の第2導電路32Aとの間において自身を介して電流が流れることを双方向で遮断する。遮断状態に切り替わったヒューズ部34Bは、遮断状態を解除して蓄電部91側から負荷94側へ電流が流れることを許容する解除状態に切り替わらない。ヒューズ部34Bは、遮断状態に切り替わるまでに要する時間がパイロスイッチ34Aに比べて長い。 The fuse part 34B interrupts the flow of current between the high-potential-side first conducting path 31A and the high-potential-side second conducting path 32A in both directions when the fuse part 34B itself is in the interrupted state. The fuse unit 34B that has been switched to the interrupted state does not switch to the released state that cancels the interrupted state and permits current to flow from the power storage unit 91 side to the load 94 side. The fuse section 34B takes a longer time than the pyro-switch 34A to switch to the cut-off state.
 電流検知部38は、遮断部34よりも蓄電部91側の高電位側の第1導電路31Aに介在して設けられている。電流検知部38は、例えば、抵抗器及び差動増幅器を有し、高電位側の第1導電路31Aを流れる電流を示す値(具体的には、高電位側の第1導電路31Aを流れる電流の値に応じたアナログ電圧)を電流値Aとして出力し得る構成をなす。電流検知部38は、高電位側の第1導電路31Aに流れる電流の状態を検出する。 The current detection unit 38 is interposed in the first conductive path 31A on the high potential side closer to the power storage unit 91 than the cutoff unit 34 is. The current detection unit 38 has, for example, a resistor and a differential amplifier, and has a value indicating the current flowing through the high potential side first conducting path 31A (specifically, the value indicating the current flowing through the high potential side first conducting path 31A). (analog voltage corresponding to the value of the current) can be output as the current value A. The current detector 38 detects the state of the current flowing through the high-potential-side first conductive path 31A.
 制御装置20は、例えば、マイクロコンピュータやFPGA等の制御を行い得る回路、及び部品等で構成される。制御装置20は、パイロスイッチ34Aを遮断状態に切り替える制御を実行し得る。 The control device 20 is composed of circuits, parts, etc. that can perform control such as microcomputers and FPGAs, for example. The control device 20 can perform control to switch the pyro-switch 34A to the cut-off state.
 制御装置20には、電流検知部38が検知した高電位側の第1導電路31Aにおける電流値Aが入力される構成とされている。制御装置20は、電流検知部38から入力された検知結果である電流値A(検出値)に基づいて、パイロスイッチ34Aへの駆動信号Dの出力を制御する。具体的には、制御装置20は、電流検知部38の検知結果である電流値Aが所定の過電流状態を示す場合にパイロスイッチ34Aに駆動信号Dを与え、パイロスイッチ34Aに対して遮断状態への切り替えを指示する。なお、所定の過電流状態については、後述する。 The controller 20 is configured to receive the current value A detected by the current detector 38 in the high-potential-side first conducting path 31A. The control device 20 controls the output of the drive signal D to the pyro-switch 34A based on the current value A (detection value) that is the detection result input from the current detection section 38 . Specifically, when the current value A, which is the detection result of the current detection unit 38, indicates a predetermined overcurrent state, the control device 20 supplies the drive signal D to the pyro-switch 34A to cut off the pyro-switch 34A. Instruct to switch to Note that the predetermined overcurrent state will be described later.
〔所定の過電流状態について〕
 所定の過電流状態において、高電位側の第1導電路31Aに流れる電流の大きさは、所定閾値以上である。所定の過電流状態は、制御装置20において、電流検知部38から入力された電流値Aを利用して判定する。具体的には、制御装置20が電流検知部38から入力された電流値A(すなわち、高電位側の第1導電路31Aに流れる電流)の大きさが所定閾値以上であると判別した場合が所定の過電流状態に相当する。所定閾値は、例えば、制御装置20内のROM等に記憶されている。
[Regarding the specified overcurrent state]
In a predetermined overcurrent state, the magnitude of the current flowing through the high-potential-side first conductive path 31A is equal to or greater than a predetermined threshold. The predetermined overcurrent state is determined in the control device 20 using the current value A input from the current detection section 38 . Specifically, in some cases, the control device 20 determines that the magnitude of the current value A input from the current detection unit 38 (that is, the current flowing through the first conductive path 31A on the high potential side) is equal to or greater than a predetermined threshold. Corresponds to a given overcurrent condition. The predetermined threshold value is stored in the ROM or the like in the control device 20, for example.
 遮断装置30には、リレー部35が設けられている。リレー部35は、リレー35A,35B,35C、及び抵抗35Dを有している。リレー35Aは、高電位側の第2導電路32Aに介在して設けられている。リレー35Aは、高電位側の第2導電路32Aを導通状態と非導通状態とに切り替える。リレー35B,35Cは、低電位側の第2導電路32Bに介在して設けられている。リレー35B,35Cは、低電位側の第2導電路32Bを導通状態と非導通状態とに切り替える。抵抗35Dは、リレー35Cに対して電気的に直列に接続されている。電気的に直列に接続された抵抗35D及びリレー35Cは、リレー35Bに対して並列に設けられている。 A relay unit 35 is provided in the cutoff device 30 . The relay section 35 has relays 35A, 35B, 35C and a resistor 35D. The relay 35A is interposed in the second conducting path 32A on the high potential side. The relay 35A switches the high-potential-side second conductive path 32A between a conducting state and a non-conducting state. The relays 35B and 35C are interposed in the second conductive path 32B on the low potential side. The relays 35B and 35C switch the low-potential-side second conductive path 32B between a conducting state and a non-conducting state. The resistor 35D is electrically connected in series with the relay 35C. A resistor 35D and a relay 35C electrically connected in series are provided in parallel with the relay 35B.
〔遮断装置の動作について〕
 次に、図2等を参照しつつ、遮断装置30の動作の一例について説明する。先ず、ステップS1において、車両に設けられた始動スイッチ(イグニッションスイッチ)をオフ状態からオン状態に切り替える。ステップS2に移行すると、制御装置20は、高電位側の第1導電路31Aに流れる電流が所定の過電流状態であるか否かを判定する。具体的には、制御装置20は、電流検知部38が検知した高電位側の第1導電路31Aの電流値Aが、所定閾値以上であるかを判定する。電流値Aが所定閾値以上である場合、ステップS2において、電流値Aが所定閾値未満である場合、制御装置20は、高電位側の第1導電路31Aに流れる電流が所定の過電流状態でないと判別(ステップS2におけるNo)すると、図2における処理を終了する。
[About the operation of the breaker]
Next, an example of the operation of the blocking device 30 will be described with reference to FIG. 2 and the like. First, in step S1, a start switch (ignition switch) provided in the vehicle is switched from an off state to an on state. After shifting to step S2, the control device 20 determines whether or not the current flowing through the high potential side first conductive path 31A is in a predetermined overcurrent state. Specifically, the control device 20 determines whether the current value A of the high-potential-side first conductive path 31A detected by the current detection unit 38 is equal to or greater than a predetermined threshold value. If the current value A is equal to or greater than the predetermined threshold value, or if the current value A is less than the predetermined threshold value in step S2, the control device 20 determines that the current flowing through the high potential side first conductive path 31A is not in a predetermined overcurrent state. (No in step S2), the process in FIG. 2 ends.
 制御装置20は、高電位側の第1導電路31Aに流れる電流が所定の過電流状態であると判別(ステップS2におけるYes)すると、ステップS3に移行する。制御装置20は、ステップS3に移行すると、パイロスイッチ34Aに駆動信号Dを送信する。 When the control device 20 determines that the current flowing through the first conductive path 31A on the high potential side is in a predetermined overcurrent state (Yes in step S2), the process proceeds to step S3. After proceeding to step S3, the control device 20 transmits the drive signal D to the pyro-switch 34A.
 ステップS4に移行すると、駆動信号Dが入力されたパイロスイッチ34Aは、内蔵された火薬に着火する。そして、ステップS5に移行し、パイロスイッチ34Aは、バスバエレメントの切断を実行する。このとき、ヒューズ部34Bは、溶断が開始する前(溶断前)である。つまり、制御装置20は、電流検知部38の検出値に基づき、ヒューズ部34Bの溶断前にパイロスイッチ34Aを遮断状態に切り替えるのである。 When the process moves to step S4, the pyro-switch 34A to which the drive signal D is input ignites the built-in explosive. Then, the process proceeds to step S5, and the pyro-switch 34A disconnects the busbar element. At this time, the fuse portion 34B is before the start of fusing (before fusing). That is, the control device 20 switches the pyro-switch 34A to the cut-off state based on the value detected by the current detection section 38 before the fuse section 34B is fused.
 ステップS5において、バスバエレメントの切断が完了すると、ステップS6に移行する。ヒューズ部34Bには、高電位側の第1導電路31Aから高電位側の第2導電路32Aに向けて流れる電流が全て流れ込む。このとき、パイロスイッチ34Aは遮断状態であり、ヒューズ部34Bは導通状態であり、第1導電路31と第2導電路32との間においてヒューズ部34Bを介して電流が流れる。そして、ステップS7に移行し、ヒューズ部34Bの導電路の一部が溶断する。 When the disconnection of the busbar element is completed in step S5, the process proceeds to step S6. All of the current flowing from the high potential side first conductive path 31A toward the high potential side second conductive path 32A flows into the fuse portion 34B. At this time, the pyro-switch 34A is in a disconnected state, the fuse portion 34B is in a conductive state, and current flows between the first conductive path 31 and the second conductive path 32 via the fuse portion 34B. Then, the process proceeds to step S7, and a part of the conductive path of the fuse portion 34B is fused.
 ステップS7では、ヒューズ部34Bを主として、高電位側の第1導電路31Aと、高電位側の第2導電路32Aと、の遮断が進行する。ヒューズ部34Bの導電路の一部において溶断開始から溶断完了するまでに要する時間は、パイロスイッチ34Aのバスバエレメントにおいて切断開始から切断完了するまでに要する時間よりも長い。このため、ヒューズ部34Bは、遮断部34内にアークが発生することを抑制しつつ溶断が進行する。こうして、遮断装置30は、高電位側の第1導電路31Aと、高電位側の第2導電路32Aと、を遮断し、図2における処理を終了する。 In step S7, mainly the fuse portion 34B cuts off the first conductive path 31A on the high potential side and the second conductive path 32A on the high potential side. The time required from the start of blowing to the completion of blowing in a portion of the conductive path of the fuse portion 34B is longer than the time required from the start of blowing to the completion of blowing in the busbar element of the pyro-switch 34A. For this reason, the fuse portion 34</b>B is fused while suppressing the occurrence of an arc in the breaker portion 34 . In this way, the interrupting device 30 interrupts the high-potential-side first conductive path 31A and the high-potential-side second conductive path 32A, and the process in FIG. 2 ends.
 次に、本構成の効果を例示する。 Next, the effects of this configuration will be illustrated.
 遮断装置30は、第1導電路31と第2導電路32とを有する電力路Ppの通電を遮断する。遮断装置30は、第1導電路31と第2導電路32との間に設けられるパイロスイッチ34Aと、第1導電路31と第2導電路32との間においてパイロスイッチ34Aに対して並列に設けられるヒューズ部34Bと、を有している。遮断装置30は、パイロスイッチ34Aが遮断状態であってヒューズ部34Bが導通状態である場合に、第1導電路31と第2導電路32との間においてヒューズ部34Bを介して電流が流れる。この構成によれば、パイロスイッチ34Aを遮断して、電力路Ppの電流を即座に減少させる動作が可能である。しかも、パイロスイッチ34Aの遮断動作後に他方の通電経路(ヒューズ部34B側の通電経路)が維持されていれば、パイロスイッチ34Aの遮断に起因するサージが抑制され得る。なお、パイロスイッチ34Aの遮断後にヒューズ部34Bの通電が維持されていると、パイロスイッチ34Aの遮断に伴ってヒューズ部34Bを流れる電流が急上昇する懸念があるが、電流上昇に応じてヒューズ部34Bが遮断されれば、過剰な電流の継続は抑えられる。 The cutoff device 30 cuts off the energization of the power path Pp having the first conductive path 31 and the second conductive path 32 . The interrupting device 30 includes a pyro-switch 34A provided between the first conducting path 31 and the second conducting path 32, and a pyro-switch 34A provided between the first conducting path 31 and the second conducting path 32 in parallel with the pyro-switch 34A. and a fuse portion 34B provided. In the interrupting device 30, current flows between the first conducting path 31 and the second conducting path 32 via the fuse part 34B when the pyro-switch 34A is in the interrupting state and the fuse part 34B is in the conducting state. With this configuration, it is possible to cut off the pyro-switch 34A and immediately reduce the current in the power path Pp. In addition, if the other energization path (the fuse portion 34B side energization path) is maintained after the pyro-switch 34A has been cut off, the surge caused by the cut-off of the pyro-switch 34A can be suppressed. If the fuse portion 34B is kept energized after the pyro-switch 34A is turned off, there is a concern that the current flowing through the fuse portion 34B will rise sharply as the pyro-switch 34A is turned off. is cut off, the continuation of the excessive current is suppressed.
 遮断装置30は、電力路Ppの電流値を検出する電流検知部38と、電流検知部38の検出値に基づいてパイロスイッチ34Aを遮断状態に切り替える制御装置20と、を有する。この構成によれば、遮断装置30自身が備える電流検知部38と制御装置20とによって、外部から独立した構成でパイロスイッチ34Aを遮断状態に切り替えることができるので、より迅速に第1導電路31と第2導電路32とを遮断し得る構成を簡易に実現し得る。 The interruption device 30 has a current detection section 38 that detects the current value of the power path Pp, and a control device 20 that switches the pyro-switch 34A to the interruption state based on the detection value of the current detection section 38 . According to this configuration, the pyro-switch 34A can be switched to the cut-off state in a configuration independent from the outside by the current detection unit 38 and the control device 20 provided in the cut-off device 30 itself. and the second conducting path 32 can be easily realized.
 遮断装置30のヒューズ部34Bは、自身の発熱によって溶断されるサーマルヒューズである。この構成によれば、パイロスイッチ34Aが遮断完了後、ヒューズ部34Bに電流が流れることによって溶断が進行するので、確実に第1導電路31と第2導電路32とを遮断することができる。 The fuse portion 34B of the cutoff device 30 is a thermal fuse that is blown by its own heat generation. According to this configuration, after the pyro-switch 34A completes the disconnection, the current flows through the fuse portion 34B, thereby progressing the fusing.
 遮断装置30は、電力路Ppの電流値を検出する電流検知部38と、電流検知部38の検出値に基づいてパイロスイッチ34Aを遮断状態に切り替える制御装置20と、を有している。制御装置20は、電流検知部38の検出値に基づき、ヒューズ部34Bの溶断前にパイロスイッチ34Aを遮断状態に切り替える。この構成によれば、電力路Ppの電流が過剰になったときにパイロスイッチ34Aを遮断状態に切り替えるような動作が可能である。例えば、制御装置20が、電流検知部38の検出値に基づいて、パイロスイッチ34Aを遮断状態に切り替えると、ヒューズ部34Bに電力路Ppを流れる電流が集中してヒューズ部34Bが溶断するので、電力路Ppを確実に分断することができる。 The breaker 30 has a current detector 38 that detects the current value of the power path Pp, and a controller 20 that switches the pyro-switch 34A to the cut-off state based on the value detected by the current detector 38 . Based on the value detected by the current detector 38, the controller 20 switches the pyro-switch 34A to the cut-off state before the fuse 34B is fused. With this configuration, it is possible to switch the pyro-switch 34A to the cut-off state when the current in the power path Pp becomes excessive. For example, when the controller 20 switches the pyro-switch 34A to the cut-off state based on the value detected by the current detector 38, the current flowing through the power path Pp concentrates on the fuse 34B, causing the fuse 34B to melt. The power path Pp can be reliably cut off.
 遮断装置30のヒューズ部34Bの端子間抵抗は、パイロスイッチ34Aの端子間抵抗よりも大きい。この構成によれば、導通状態において、ヒューズ部34Bに流れる電流をパイロスイッチ34Aに流れる電流よりも少なくすることができるので、ヒューズ部34Bとして、より小型の部品を採用することができる。 The inter-terminal resistance of the fuse portion 34B of the breaker 30 is greater than the inter-terminal resistance of the pyro-switch 34A. According to this configuration, the current flowing through the fuse portion 34B can be made smaller than the current flowing through the pyro-switch 34A in the conducting state, so that a smaller component can be adopted as the fuse portion 34B.
<実施形態2>
 次に、実施形態2に係る遮断装置130について、図3を参照しつつ説明する。実施形態2の遮断装置130は、遮断部134のヒューズ部134Bに半導体ヒューズが用いられている点、ヒューズ部134Bを遮断する制御を行う遮断制御部50を有する点等が実施形態1と異なる。実施形態1と同じ構成については同一の符号を付し、実施形態1と同じ作用及び効果については説明を省略する。
<Embodiment 2>
Next, a blocking device 130 according to Embodiment 2 will be described with reference to FIG. The breaker 130 of the second embodiment differs from that of the first embodiment in that a semiconductor fuse is used for the fuse portion 134B of the breaker 134 and that the breaker 130 includes a break control unit 50 for controlling breakage of the fuse portion 134B. The same reference numerals are assigned to the same configurations as in the first embodiment, and the description of the same actions and effects as in the first embodiment is omitted.
 図3に示すように、遮断部134は、パイロスイッチ34A、及びヒューズ部134Bを有している。ヒューズ部134Bには、半導体ヒューズが用いられる。ヒューズ部134Bの端子間抵抗は、パイロスイッチ34Aの端子間抵抗よりも大きい。ヒューズ部134Bは、パイロスイッチ34Aに対して並列に設けられている。ヒューズ部134Bは、自身に過剰な電流が流れた場合、遮断制御部50によって予め定められた遮断特性に従って遮断信号C1が与えられることにより、高電位側の第1導電路31Aから高電位側の第2導電路32Aへ電流が流れることを遮断する遮断動作がなされ、遮断状態に切り替わる。ヒューズ部134Bは、遮断制御部50から導通信号C2が与えられることによって、遮断状態を解除した解除状態に切り替わり得る。解除状態にされたヒューズ部134Bは、高電位側の第1導電路31Aから高電位側の第2導電路32Aへ電流が流れることを許容する。 As shown in FIG. 3, the cutoff section 134 has a pyro-switch 34A and a fuse section 134B. A semiconductor fuse is used for the fuse portion 134B. The terminal-to-terminal resistance of the fuse portion 134B is greater than the terminal-to-terminal resistance of the pyro-switch 34A. The fuse section 134B is provided in parallel with the pyro-switch 34A. When an excessive current flows through the fuse portion 134B, the cutoff signal C1 is applied according to the cutoff characteristics predetermined by the cutoff control portion 50, thereby causing the fuse portion 134B to move from the first conductive path 31A on the high potential side to the high potential side. A cutoff operation is performed to cut off the flow of current to the second conductive path 32A, and the state is switched to the cutoff state. The fuse section 134B can be switched from the cut-off state to the released state by receiving the conduction signal C2 from the cut-off control section 50 . The fuse portion 134B in the released state allows current to flow from the high-potential-side first conductive path 31A to the high-potential-side second conductive path 32A.
 遮断制御部50は、例えば、マイクロコンピュータやFPGA等の制御を行い得る回路、及び部品等で構成される。遮断制御部50は、ヒューズ部134Bを遮断状態と解除状態とに切り替える制御を行い得る。 The cut-off control unit 50 is composed of circuits, parts, etc. that can perform control such as microcomputers and FPGAs, for example. The cutoff control unit 50 can perform control to switch the fuse unit 134B between the cutoff state and the released state.
 遮断制御部50には、電流検知部38が検知した高電位側の第1導電路31Aにおける電流値Aが入力される。遮断制御部50には、電流検知部38からの各電流値Aに基づいて、ヒューズ部134Bを遮断状態に切り替えるまでの各時間を定める遮断特性が記憶されている。この遮断特性は、例えば、遮断制御部50内のROM等に、テーブルデータや関数等、電流検知部38からの電流値Aと比較し得る形式で記憶されている。例えば、この遮断特性は、高電位側の第1導電路31Aにおける電流値Aが大きいほど、より短時間でヒューズ部134Bを解除状態から遮断状態に切り替えるように設定されている。この遮断特性は、例えば、電力路Ppが有する電線やコネクタ等の電気部品の電気的特性に基づいて設定される。 A current value A in the high-potential-side first conductive path 31A detected by the current detection unit 38 is input to the cut-off control unit 50 . The breaking control unit 50 stores breaking characteristics that determine each time until the fuse unit 134B is switched to the breaking state based on each current value A from the current detection unit 38 . This breaking characteristic is stored, for example, in the ROM or the like in the breaking control section 50 in a form that can be compared with the current value A from the current detection section 38, such as table data or a function. For example, the cutoff characteristic is set such that the larger the current value A in the first conductive path 31A on the high potential side, the shorter the time required for switching the fuse portion 134B from the released state to the cutoff state. This cut-off characteristic is set, for example, based on the electrical characteristics of electric parts such as electric wires and connectors included in the power path Pp.
 例えば、遮断制御部50は、パイロスイッチ34Aが遮断状態に切り替わった後に、自身が記憶する遮断特性と電流検知部38からの電流値Aとの比較を開始する。そして、電流値Aがヒューズ部134Bに遮断動作をさせるべき大きさであると遮断制御部50が判別すると、ヒューズ部134Bに対して遮断信号C1を与え、ヒューズ部134Bを遮断状態に切り替える。つまり、遮断制御部50は、パイロスイッチ34Aの遮断後にヒューズ部134Bを遮断する。遮断制御部50は、電流検知部38から入力された各電流値Aがヒューズ部134Bに遮断動作をさせるべき大きさに満たないと判別すると、ヒューズ部134Bに対して導通信号C2を与え、ヒューズ部134Bを解除状態にする。 For example, after the pyro-switch 34A switches to the cut-off state, the cut-off control unit 50 starts comparing the cut-off characteristics stored by itself with the current value A from the current detection unit 38. Then, when the break control unit 50 determines that the current value A is large enough to cause the fuse unit 134B to break, it gives the break signal C1 to the fuse unit 134B to switch the fuse unit 134B to the cut state. In other words, the cutoff control section 50 cuts off the fuse section 134B after the pyro-switch 34A is cut off. When the cutoff control unit 50 determines that each current value A input from the current detection unit 38 is not large enough to cause the fuse unit 134B to perform a cutoff operation, the cutoff control unit 50 provides a conduction signal C2 to the fuse unit 134B to The part 134B is brought into the released state.
 遮断装置130のヒューズ部134Bは、半導体ヒューズである。更に、遮断装置130は、パイロスイッチ34Aの遮断後にヒューズ部134B(半導体ヒューズ)を遮断する制御を行う遮断制御部50を有する。この構成によれば、遮断制御部50によってヒューズ部134Bを遮断する制御を緻密に行うことができる。 The fuse portion 134B of the cutoff device 130 is a semiconductor fuse. Further, the breaking device 130 has a breaking control section 50 that performs control to break the fuse section 134B (semiconductor fuse) after breaking the pyro-switch 34A. According to this configuration, it is possible to precisely control the disconnection of the fuse portion 134B by the disconnection control section 50 .
<実施形態3>
 次に、実施形態3に係る遮断装置230について、図4を参照しつつ説明する。実施形態3の遮断装置230は、電流検知部を有さず、制御装置20に遮断信号Bを与える信号路220を有している点等が実施形態1、2と異なる。実施形態1、2と同じ構成については同一の符号を付し、実施形態1、2と同じ作用及び効果については説明を省略する。
<Embodiment 3>
Next, a blocking device 230 according to Embodiment 3 will be described with reference to FIG. The breaker 230 of the third embodiment differs from the first and second embodiments in that it does not have a current detector and has a signal path 220 that gives a break signal B to the control device 20 . The same reference numerals are assigned to the same configurations as those of the first and second embodiments, and the description of the same actions and effects as those of the first and second embodiments will be omitted.
 信号路220は、制御装置20に電気的に接続されている。信号路220は、外部装置60と電気的に接続されている。信号路220には、遮断装置230の外部に設けられた外部装置60から遮断信号Bが入力される。制御装置20は、信号路220を介して外部装置60からの遮断信号Bが与えられた場合、パイロスイッチ34Aに駆動信号Dを送信する。これにより、パイロスイッチ34Aは、遮断状態に切り替わる。 The signal path 220 is electrically connected to the control device 20 . Signal path 220 is electrically connected to external device 60 . A blocking signal B is input to the signal path 220 from an external device 60 provided outside the blocking device 230 . When the control device 20 receives the cutoff signal B from the external device 60 via the signal path 220, it sends the drive signal D to the pyro-switch 34A. As a result, the pyro-switch 34A switches to the cut-off state.
 遮断装置230は、遮断装置230の外部に設けられた外部装置60から遮断信号Bが入力される信号路220を有し、信号路220に対して遮断信号Bが入力された場合にパイロスイッチ34Aが遮断状態に切り替わる。この構成によれば、所望とされる仕様に応じ、信号路220を介して外部装置60から遮断信号Bが入力される構成とすることができるので、様々なバリエーションに対応させ易い。 The blocking device 230 has a signal path 220 to which a blocking signal B is input from an external device 60 provided outside the blocking device 230. When the blocking signal B is input to the signal path 220, the pyro-switch 34A is activated. switches to the blocked state. According to this configuration, it is possible to input the cut-off signal B from the external device 60 via the signal path 220 according to the desired specifications, so it is easy to adapt to various variations.
<他の実施形態>
 今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
<Other embodiments>
It should be considered that the embodiments disclosed this time are illustrative in all respects and not restrictive. The scope of the present invention is not limited to the embodiments disclosed this time, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims. be.
 実施形態3とは異なり、信号路を介して外部装置からパイロスイッチに直接的に遮断信号を入力する構成としてもよい。 Unlike the third embodiment, a configuration may be used in which a cutoff signal is directly input from an external device to the pyro-switch via a signal path.
 実施形態1とは異なり、制御装置において、電流値の微分値を検出する処理を周期的に繰り返し、微分値の絶対値の大きさと、閾値とを比較して、電力路を流れる電流の状態を判定する構成としてもよい。また、所定閾値は、固定値としてもよく、負荷の動作状況に応じて変更し、電力路を流れる電流の状態を判定してもよい。 Unlike the first embodiment, the controller periodically repeats the process of detecting the differential value of the current value, compares the magnitude of the absolute value of the differential value with a threshold value, and determines the state of the current flowing through the power path. It is good also as a structure which determines. Further, the predetermined threshold value may be a fixed value, or may be changed according to the operating condition of the load to determine the state of the current flowing through the power path.
 実施形態2とは異なり、制御装置、及び遮断制御部を1つの制御装置として一体的に設けてもよい。 Unlike the second embodiment, the control device and the cut-off control section may be integrally provided as one control device.
 電流検知部として、コンパレータを用いてもよい。この場合、電力路における電流値が所定の閾値以上の値を示したときに所定のハイレベル信号を出力し、電流値が所定の閾値未満の値を示したときに所定のローレベル信号を出力する。また、カレントトランス等を用いた構成としてもよい。 A comparator may be used as the current detection unit. In this case, a predetermined high-level signal is output when the current value in the power path indicates a value equal to or greater than a predetermined threshold, and a predetermined low-level signal is output when the current value indicates a value less than the predetermined threshold. do. Alternatively, a configuration using a current transformer or the like may be used.
 実施形態1とは異なり、制御装置は、電流検知部の検出値に基づき、ヒューズ部の溶断が終了する前にパイロスイッチを遮断状態に切り替える構成でもよい。つまり、パイロスイッチが遮断状態に切り替わった後にヒューズ部の溶断が完了する構成であればよい。 Unlike the first embodiment, the control device may be configured to switch the pyro-switch to the cut-off state before the end of the blowing of the fuse section based on the value detected by the current detection section. In other words, it is sufficient that the blowing of the fuse section is completed after the pyro-switch is switched to the cut-off state.
20…制御装置
30,130,230…遮断装置
31…第1導電路(電力路)
31A…高電位側の第1導電路
31B…低電位側の第1導電路
32…第2導電路(電力路)
32A…高電位側の第2導電路
32B…低電位側の第2導電路
34,134…遮断部
34A…パイロスイッチ
34B,134B…ヒューズ部
35…リレー部
35A,35B,35C…リレー(リレー部)
35D…抵抗(リレー部)
38…電流検知部
50…遮断制御部
60…外部装置
91…蓄電部
94…負荷
220…信号路
A…電流値
B…遮断信号
C1…遮断信号
C2…導通信号
D…駆動信号
Pp…電力路
20... Control device 30, 130, 230... Interrupting device 31... First conductive path (power path)
31A... First conductive path on the high potential side 31B... First conductive path on the low potential side 32... Second conductive path (power path)
32A High potential side second conducting path 32B Low potential side second conducting path 34, 134 Breaking portion 34A Pyro switch 34B, 134B Fuse portion 35 Relay portion 35A, 35B, 35C Relay (relay portion )
35D... Resistor (relay part)
38 Current detection unit 50 Cutoff control unit 60 External device 91 Power storage unit 94 Load 220 Signal path A Current value B Cutoff signal C1 Cutoff signal C2 Continuity signal D Drive signal Pp Power line

Claims (7)

  1.  第1導電路と第2導電路とを有する電力路の通電を遮断する遮断装置であって、
     前記第1導電路と前記第2導電路との間に設けられるパイロスイッチと、
     前記第1導電路と前記第2導電路との間において前記パイロスイッチに対して並列に設けられるヒューズ部と、
     を有し、
     前記パイロスイッチが遮断状態であって前記ヒューズ部が導通状態である場合に、前記第1導電路と前記第2導電路との間において前記ヒューズ部を介して電流が流れる遮断装置。
    A circuit breaker for interrupting energization of a power path having a first conductive path and a second conductive path,
    a pyro-switch provided between the first conductive path and the second conductive path;
    a fuse section provided in parallel with the pyro-switch between the first conductive path and the second conductive path;
    has
    A breaker for allowing a current to flow between the first conducting path and the second conducting path through the fuse portion when the pyro-switch is in the interrupted state and the fuse portion is in the conducting state.
  2.  前記電力路の電流値を検出する電流検知部と、
     前記電流検知部の検出値に基づいて前記パイロスイッチを前記遮断状態に切り替える制御装置と、
     を有する請求項1に記載の遮断装置。
    a current detection unit that detects a current value of the power path;
    a control device that switches the pyro-switch to the interrupted state based on the detected value of the current detection unit;
    2. The interrupting device of claim 1, comprising:
  3.  前記ヒューズ部は、自身の発熱によって溶断されるサーマルヒューズである
     請求項1又は請求項2に記載の遮断装置。
    3. The breaking device according to claim 1, wherein the fuse section is a thermal fuse that is blown by its own heat generation.
  4.  前記電力路の電流値を検出する電流検知部と、
     前記電流検知部の検出値に基づいて前記パイロスイッチを前記遮断状態に切り替える制御装置と、
     を有し、
     前記制御装置は、前記電流検知部の検出値に基づき、前記ヒューズ部の溶断前に前記パイロスイッチを前記遮断状態に切り替える請求項3に記載の遮断装置。
    a current detection unit that detects a current value of the power path;
    a control device that switches the pyro-switch to the interrupted state based on the detected value of the current detection unit;
    has
    4. The breaking device according to claim 3, wherein the control device switches the pyro-switch to the breaking state before the fuse section melts based on the value detected by the current detection section.
  5.  前記ヒューズ部は、半導体ヒューズであり、
     更に、前記パイロスイッチの遮断後に前記ヒューズ部を遮断する制御を行う遮断制御部を有する請求項1又は請求項2に記載の遮断装置。
    the fuse portion is a semiconductor fuse,
    3. The breaking device according to claim 1, further comprising a breaking control section for controlling breaking the fuse section after breaking the pyro-switch.
  6.  当該遮断装置の外部に設けられた外部装置から遮断信号が入力される信号路を有し、
     前記信号路に対して前記遮断信号が入力された場合に前記パイロスイッチが前記遮断状態に切り替わる請求項1又は請求項2に記載の遮断装置。
    Having a signal path through which a cutoff signal is input from an external device provided outside the cutoff device,
    3. The blocking device according to claim 1, wherein the pyro-switch switches to the blocking state when the blocking signal is input to the signal path.
  7.  前記ヒューズ部の端子間抵抗は、前記パイロスイッチの端子間抵抗よりも大きい請求項1又は請求項2に記載の遮断装置。 The breaker according to claim 1 or 2, wherein the resistance between terminals of the fuse portion is greater than the resistance between terminals of the pyro-switch.
PCT/JP2022/040163 2021-11-26 2022-10-27 Interrupting device WO2023095535A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021191933 2021-11-26
JP2021-191933 2021-11-26

Publications (1)

Publication Number Publication Date
WO2023095535A1 true WO2023095535A1 (en) 2023-06-01

Family

ID=86539386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040163 WO2023095535A1 (en) 2021-11-26 2022-10-27 Interrupting device

Country Status (1)

Country Link
WO (1) WO2023095535A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4528139B1 (en) * 1968-01-12 1970-09-14
JPS63165747U (en) * 1987-04-17 1988-10-28
JPH09115416A (en) * 1995-09-05 1997-05-02 Motorola Semiconducteurs Sa Semiconductor fuse device and manufacture thereof
JP2007502005A (en) * 2003-08-08 2007-02-01 デルファイ・テクノロジーズ・インコーポレーテッド Circuit breaker
JP2018074798A (en) * 2016-10-31 2018-05-10 株式会社オートネットワーク技術研究所 On-vehicle update system and on-vehicle update device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4528139B1 (en) * 1968-01-12 1970-09-14
JPS63165747U (en) * 1987-04-17 1988-10-28
JPH09115416A (en) * 1995-09-05 1997-05-02 Motorola Semiconducteurs Sa Semiconductor fuse device and manufacture thereof
JP2007502005A (en) * 2003-08-08 2007-02-01 デルファイ・テクノロジーズ・インコーポレーテッド Circuit breaker
JP2018074798A (en) * 2016-10-31 2018-05-10 株式会社オートネットワーク技術研究所 On-vehicle update system and on-vehicle update device

Similar Documents

Publication Publication Date Title
US11677232B2 (en) Quick battery disconnect system for high current circuits
JP4514669B2 (en) Protection device using thermal fuse
US6570272B2 (en) Safety switching device for connection and safe disconnection of an electrical load, in particular an electrically driven machine
KR101768844B1 (en) Battery system with a battery for supplying a high-voltage network and at least one switching unit for limiting a residual current flowing across the battery and the high-voltage terminals of the battery and/or for limiting a voltage applied from the battery across the high-voltage terminals of the battery to the high-voltage network and a corresponding method
US10464426B2 (en) High-voltage vehicle electrical system having a pyrotechnic disconnecting device, and method for operating the high-voltage vehicle electrical system
CN111869029B (en) Circuit breaker control module
US20180323601A1 (en) Current cut-off device, and wire harness
JP2007502005A (en) Circuit breaker
CN101983407A (en) Using a passive fuse as a current sense element in an electronic fuse circuit
CN111052291B (en) DC circuit interruption switch assembly
WO2022244687A1 (en) Blocking control device and blocking control system
WO2023095535A1 (en) Interrupting device
JP6176185B2 (en) Automotive power supply
JP2014177208A (en) Vehicular power source shut-off device
JP2017139903A (en) Current cutoff device
EP4123858A1 (en) Battery management system and method for monitoring overcurrent in a battery management system
CN110942940B (en) Method for controlling an electrical switch
CN211280650U (en) Safety control device of electric vehicle
JP2023509276A (en) DC circuit breaker switch powered by two voltage sources
JP2022035412A (en) Battery pack
WO2022190401A1 (en) Blocking control device
CN115991156A (en) Isolating switch device for protecting vehicle-mounted power supply
JPH1159293A (en) Power source device for vehicle and power source system for vehicle
WO2024100773A1 (en) Vehicular interruption control device
WO2022230636A1 (en) In-vehicle switching device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898319

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE