WO2021251078A1 - Addition-curing liquid electroconductive silicone rubber composition and electrophotographic image formation member - Google Patents

Addition-curing liquid electroconductive silicone rubber composition and electrophotographic image formation member Download PDF

Info

Publication number
WO2021251078A1
WO2021251078A1 PCT/JP2021/018866 JP2021018866W WO2021251078A1 WO 2021251078 A1 WO2021251078 A1 WO 2021251078A1 JP 2021018866 W JP2021018866 W JP 2021018866W WO 2021251078 A1 WO2021251078 A1 WO 2021251078A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
group
silicone rubber
parts
rubber composition
Prior art date
Application number
PCT/JP2021/018866
Other languages
French (fr)
Japanese (ja)
Inventor
知哉 南川
佐太央 平林
伸匡 富澤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2021251078A1 publication Critical patent/WO2021251078A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/08Apparatus for electrographic processes using a charge pattern for developing using a solid developer, e.g. powder developer

Definitions

  • the present invention relates to an electrophotographic image forming member used in an addition-curable liquid conductive silicone rubber composition and an image forming apparatus using an electrophotographic method, particularly a developing roll or a developing belt (roll for office machine or office machine). Belt for).
  • conductive rubbers in which a conductive material is blended with a rubber-like substance exhibiting electrical insulation are known.
  • conductive rubber in which carbon black or the like is blended as a conductive material is applied in a wide range of fields. ..
  • silicone rubber which is one of the electrically insulating rubber-like materials, has excellent heat resistance, cold resistance, and weather resistance, and is widely used as an electrically insulating rubber, but is conductive like other rubber-like materials. By adding a material, it has also been put into practical use as a conductive rubber.
  • the conductive material to be added to the conductive silicone rubber is, for example, various metal powders such as carbon black, graphite, silver, nickel, and copper, various non-conductive powders, and a metal such as silver on the surface of short fibers.
  • a mixture of treated material, carbon fiber, metal fiber, etc. can reduce the volume resistance of silicone rubber depending on the type and filling amount of the conductive material without impairing the unique characteristics of rubber. Is used for.
  • the addition-curing type liquid silicone rubber is widely used as a developing roll material because it has low viscosity and excellent moldability even when a conductive material such as carbon black is blended, and it can be cured in a short time. in use.
  • Image forming apparatus is required to have finer print characteristics with the recent refinement and speeding up of image formation.
  • the developing member is required to have excellent chargeability from the viewpoint of toner transportability, and is also required to have charge attenuation. After the toner is supplied to the image carrier of the developing member, if the charge attenuation does not proceed rapidly, the cleaning property of the toner by the toner supply roll or the like deteriorates. Although it is possible to reduce the chargeability by increasing the amount of the conductivity-imparting agent such as carbon black, there is a possibility that the viscosity will be greatly increased by increasing the amount of carbon black. Further, even if the resistance value is significantly lower than the target resistance value, the desired charge attenuation may not be obtained.
  • Patent Documents 1 to 3 exemplify a conductive material in which a conductive material having an ionic conductive mechanism and a conductive material having an electronic conductive mechanism are used in combination.
  • the dependence of the resistance value on the voltage and the environment with respect to temperature and humidity are exemplified. Only the stabilization of the resistance value and the uniformity of the resistance value in the above are described, and the charge attenuation characteristic is not described.
  • Patent Document 4 exemplifies a material to which an organic boron compound having a hydroxy group and a BN type molecular compound, which is a reaction product of a tertiary amine compound, are added as an antistatic agent to silicone rubber.
  • an organic boron compound having a hydroxy group and a BN type molecular compound, which is a reaction product of a tertiary amine compound, are added as an antistatic agent to silicone rubber are added as an antistatic agent to silicone rubber.
  • lithium salts no mention is made of lithium salts.
  • Patent Document 5 exemplifies a developing roll having excellent charge attenuation by using carbon and an ionic liquid in combination, but does not describe the antistatic property of the ionic conductive material.
  • Patent Document 6 exemplifies a material to which an antistatic agent selected from lithium salts is added. However, only the insulating material is mentioned, and the combined use with carbon is not mentioned.
  • Japanese Unexamined Patent Publication No. 2001-140854 Japanese Unexamined Patent Publication No. 2002-116638 Japanese Unexamined Patent Publication No. 2003-82232 Japanese Unexamined Patent Publication No. 2018-049153 Patent No. 5396540 Japanese Unexamined Patent Publication No. 2006-265340
  • the present invention has been made in view of the above circumstances, and is an addition-curable liquid conductive silicone rubber composition that gives a cured product having good charge attenuation, and an electrophotographic image-forming member having the cured product of the composition as an elastic layer.
  • the purpose is to provide.
  • the antistatic agent is such, the antistatic property is particularly good.
  • the component (E) is preferably LiN (SO 2 CF 3 ) 2.
  • This antistatic agent has particularly good antistatic attenuation.
  • the present invention provides an electrophotographic image-forming member having an elastic layer made of a cured product of the obtained addition-curable liquid conductive silicone rubber composition.
  • Such an electrophotographic image forming member shows good charge attenuation.
  • the electrophotographic image forming member is a member selected from a developing roll and a developing belt.
  • These above-mentioned members are preferably used as members having good charge attenuation.
  • an addition-curable liquid conductive silicone rubber composition for an electrophotographic image-forming member that gives a cured product having good charge damping property and an electrophotographic type having the cured product of the composition as an elastic layer.
  • An image forming member is obtained.
  • the present inventors have found that, in the addition-curing liquid conductive silicone rubber composition containing the components (A) to (E) described later, particularly the carbon of the component (D).
  • an antistatic agent containing lithium as a component (E)
  • the cured product obtained by heating and curing this realizes good heat resistance and antistatic attenuation, and develop rolls, development belts, etc. It has been found that it is suitable for the electrophotographic image forming member of the above, and the present invention has been made.
  • the present invention provides the following addition-curable liquid conductive silicone rubber composition and electrophotographic image-forming member.
  • the present invention (A) Liquid organopolysiloxane containing at least two alkenyl groups bonded to a silicon atom in one molecule: 100 parts by mass, (B) Organohydrogenpolysiloxane containing hydrogen atoms bonded to at least two silicon atoms in one molecule: The number of hydrogen atoms bonded to silicon atoms contained in the component (B) is the component (A). Amount of 0.5 to 10 per alkenyl group bonded to a silicon atom contained in (C) Platinum group metal-based catalyst as an addition reaction catalyst: An amount of 0.5 to 1,000 ppm in terms of platinum group metal with respect to the total mass of the components (A) to (B).
  • the addition-curable liquid conductive silicone rubber composition of the present invention contains at least the following components (A) to (E).
  • the component (A) is an organopolysiloxane liquid at 25 ° C. containing two or more alkenyl groups bonded to silicon atoms in one molecule, and is a base polymer (main agent) of the composition according to the present invention.
  • Examples of the molecular structure of the component (A) include linear, cyclic, branched chain, and three-dimensional network (resin), but the main chain basically consists of repeating diorganosiloxane units.
  • a linear diorganopolysiloxane having both ends of the molecular chain sealed with a triorganosyloxy group is preferable.
  • the position of the silicon atom to which the alkenyl group is bonded in the molecule of the organopolysiloxane is the terminal of the molecular chain (that is, that is, Either one or both of the triorganosyloxy group) and the middle of the molecular chain (that is, the bifunctional diorganosiloxane unit or the trifunctional monoorganosylsesquioxane unit located at the non-terminal of the molecular chain) may be used.
  • the component (A) a linear diorganopolysiloxane containing at least an alkenyl group bonded to silicon atoms at both ends of the molecular chain is particularly preferable.
  • alkenyl group bonded to the silicon atom in the component (A) examples include those having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms. Specific examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a cyclohexenyl group, a heptenyl group and the like, and a vinyl group is particularly preferable.
  • the content of the alkenyl group bonded to the silicon atom in the component (A) is 0.001 to the total of the monovalent organic group bonded to the silicon atom (that is, the unsubstituted or substituted monovalent hydrocarbon group). It is preferably 10 mol / 100 g, and particularly preferably 0.01 to 5 mol / 100 g.
  • Examples of the monovalent organic group bonded to the silicon atom other than the alkenyl group of the component (A) include monovalent hydrocarbon groups having the same or different carbon atoms of 1 to 12, preferably 1 to 10 carbon atoms. Be done.
  • Specific examples of the monovalent organic group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group and a heptyl group; a phenyl group, a trill group, a xsilyl group and a naphthyl group.
  • Aryl groups such as benzyl group, aralkyl groups such as phenethyl group, etc., in which a part or all of the hydrogen atoms of these groups are replaced with halogen atoms such as fluorine, bromine, chlorine, etc., for example, chloromethyl group.
  • a halogen-substituted alkyl group such as a 3-chloropropyl group or a 3,3,3-trifluoropropyl group may be used.
  • a methyl group is particularly preferable.
  • the component (A) preferably does not contain an epoxy group.
  • the viscosity of the component (A) at 25 ° C. is preferably 50 to 500,000 mPa ⁇ s, more preferably 600 to 200,000 mPa ⁇ s. When the viscosity is within this range, the handling workability of the obtained conductive silicone rubber composition is good, and the mechanical properties of the cured product of the obtained conductive silicone rubber composition are good.
  • the viscosity means a value measured by a rotational viscometer by the method described in JIS K 7117-1: 1999 at 25 ° C.
  • organopolysiloxane of the component (A) include a trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain, a trimethylsiloxy group-blocked methylvinylpolysiloxane at both ends of the molecular chain, and trimethyl at both ends of the molecular chain.
  • the organopolysiloxane of the component (A) may be used alone or in combination of two or more. Above all, it is preferable to use two or more kinds in combination because it becomes easy to adjust the composition of the present invention to a preferable viscosity range.
  • the organohydrogenpolysiloxane of the component (B) reacts with the alkenyl group in the component (A) by hydrosilylation addition reaction and acts as a cross-linking agent (hardener).
  • a cross-linking agent hardener
  • Various manufactured products such as linear, cyclic, branched chain, and three-dimensional network (resin-like) structures can be used, but hydrogen atoms bonded to at least two silicon atoms in one molecule can be used. It must have (hydrosilyl group represented by SiH) and does not substantially contain a hydroxyl group (that is, a silanol group) bonded to a silicon atom in the molecule.
  • the organohydrogenpolysiloxane of the component (B) may be used alone or in combination of two or more.
  • R 4 a H b SiO (4-ab) / 2 (1)
  • R 4 is identical or different from each other, excluding the aliphatic unsaturated bonds such as alkenyl groups, preferably monovalent hydrocarbon groups bonded 1 to 10 carbon atoms, a silicon atom.
  • a Is 0.7 to 2.1, b is 0.001 to 1.0, and a + b is a positive number satisfying 0.8 to 3.0.
  • R 4 is identical or different from each other, excluding the aliphatic unsaturated bonds such as alkenyl group, preferably a monovalent hydrocarbon group bonded 1 to 10 carbon atoms, a silicon atom, the monovalent hydrocarbon groups in this R 4, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, tert- butyl group, a pentyl group, a neopentyl group, a hexyl group, a cyclohexyl group, octyl Alkyl groups such as groups, nonyl groups and decyl groups; aryl groups such as phenyl group, trill group, xylyl group and naphthyl group; aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group can be mentioned.
  • alkenyl group
  • a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group and the like may be used in which a part or all of the hydrogen atom of the above is substituted with a halogen atom such as fluorine, bromine or chlorine.
  • Monovalent hydrocarbon radicals of R 4 is preferably an alkyl group, an aryl group, more preferably a methyl group.
  • a is 0.7 to 2.1
  • b is 0.001 to 1.0
  • a + b is a positive number satisfying 0.8 to 3.0, preferably a is 1.0 to 1.0.
  • 2.0 and b are positive numbers satisfying 0.01 to 1.0
  • a + b are positive numbers satisfying 1.5 to 2.5.
  • the SiH group contained at least two in one molecule may be located at the end of the molecular chain or in the middle of the molecular chain, or may be located at both of them.
  • the molecular structure of this organohydrogenpolysiloxane may be linear, cyclic, branched chain, or three-dimensional network structure, but the number of silicon atoms (or degree of polymerization) in one molecule is , Usually 2 to 300, preferably 3 to 150, more preferably 4 to 100, and the viscosity at 25 ° C. is usually 0.1 to 1,000 mPa ⁇ s, preferably 0.5 to 0.5. A liquid at 25 ° C. of about 500 mPa ⁇ s is used.
  • the degree of polymerization can be determined, for example, as a polystyrene-equivalent number average degree of polymerization (number average molecular weight) or weight average degree of polymerization (weight average molecular weight) in GPC (gel permeation chromatography) analysis using toluene as a developing solvent. ..
  • organohydrogenpolysiloxane of the component (B) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and tris (hydrogendimethylsiloxy).
  • the siloxane units represented by the formula R 5 3 SiO 1/2 siloxane units represented by the formula R 5 2 HSiO 1/2: represented by SiO 4/2 organosiloxane copolymers consisting of siloxane units of the formula: siloxane units represented by the formula R 5 2 HSiO 1/2: organosiloxane copolymers composed of siloxane units represented by SiO 4/2, wherein: R 5 HSiO 2 / siloxane units represented by 2 and formula siloxane units or of the formula represented by R 5 SiO 3/2: or siloxane units represented by HSiO 3/2 Examples thereof include an organosiloxane copolymer composed of these, and a mixture composed of two or more of these organopolysiloxanes.
  • the R 5 is a group selected from aryl alkyl group, or a C 6-12 having 1 to 8 carbon atoms, particularly preferably
  • the blending amount of the component (B) is 0.5 to 10 (or mol) of silicon atom-bonded hydrogen atoms in the component (B) with respect to one silicon atom-bonded alkenyl group (or mol) in the component (A). ), The amount is preferably 0.6 to 5 (or mol), and more preferably 0.7 to 2.0 (or mol).
  • the conductive silicone rubber composition is not sufficiently cured. The desired strength may not be obtained. If the number exceeds 10, the heat resistance of the cured product of the conductive silicone rubber composition may be extremely deteriorated.
  • Examples of the addition reaction catalyst of the component (C) include platinum black, second platinum chloride, platinum chloride acid, a reaction product of platinum chloride acid and a monovalent alcohol, a complex of platinum chloride acid and olefins, platinum bisacetoacetate and the like.
  • Examples thereof include platinum-based metal catalysts such as platinum-based catalysts, palladium-based catalysts, and rhodium-based catalysts.
  • the blending amount of the component (C) can be a catalytic amount, and usually, the total amount of the component (A) and the component (B) (total amount of polymer having a siloxane bond) is 0. It may be 5 to 1,000 ppm, particularly 1 to 500 ppm. If the amount added is too small, the curability is lowered, and if the amount added is too large, the cost becomes high and it becomes uneconomical.
  • the carbon material of the component (D) is necessary for obtaining conductivity (or volume resistivity) in a specific region, and a known production method and type of carbon material can be used.
  • conductivity in a specific region specifically means that the volume resistivity of the cured product of the obtained conductive silicone rubber composition is usually 0.1 to 10,000,000 ⁇ ⁇ m, preferably 0.1 to 10,000,000 ⁇ ⁇ m. Is designed to be 1 to 10,000,000 ⁇ ⁇ m, more preferably 10 to 1,000,000 ⁇ ⁇ m.
  • the conductivity of the carbon material differs depending on the production method, but in the present invention, any carbon material can be used as long as it obtains the desired conductivity when blended and kneaded.
  • the carbon material is not particularly limited, but is, for example, acetylene black, conductive furnace black (CF), super conductive furnace black (SCF), extra conductive furnace black (XCF), conductive channel black (CC), 1, Examples include carbon blacks such as furnace black and channel black heat-treated at a high temperature of about 500 to 3,000 ° C., carbon nanoparticles, carbon nanoparticles, carbon nanotubes, graphene, graphite, etc., and one of them. Can be used alone or in combination of two or more.
  • acetylene black includes Denka Black (manufactured by Denka) and Shaunigan acetylene black (manufactured by Shaunigan Chemical), and conductive furnace black includes Continex CF (manufactured by Continental Carbon) and Balkan. C (manufactured by Cabot), etc., as Super Conductive Furness Black, Continex SCF (manufactured by Continental Carbon), Balkan SC (manufactured by Cabot), etc., as Extra Conductive Furness Black, Asahi HS-500 (Asahi Carbon) , Vulcan XC-72 (manufactured by Cabot), etc., and Courax L (manufactured by Degussa), etc.
  • Denka Black manufactured by Denka
  • Shaunigan acetylene black manufactured by Shaunigan Chemical
  • conductive furnace black includes Continex CF (manufactured by Continental Carbon) and Balkan. C (manufactured by Cabot), etc., as
  • Ketjen Black EC-350 which is a kind of furnace black
  • Ketchen Black EC-600JD manufactured by Ketchen Black International
  • ENSACO260G ENSACO250G manufactured by the oil combustion method that does not include the quenching process with water in the oil combustion reaction stop process
  • SUPER P Li IMERYS
  • the amount of impurities, especially sulfur and sulfur compounds, in the carbon black produced by the furnace method is preferably 6,000 ppm or less, more preferably 3,000 ppm or less in terms of the concentration of sulfur elements.
  • acetylene black and oil furnace method carbon having a high degree of carbon crystallinity are particularly preferably used in the present invention because they have a low impurity content.
  • the blending amount of the carbon material (D) is 1 to 50 parts by mass, preferably 1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). ..
  • the amount of the carbon material is too large, the mechanical properties of the cured product of the conductive silicone rubber composition may deteriorate, and the viscosity of the conductive silicone rubber composition becomes high, so that the moldability when producing a roll is increased. , Workability such as coating property may deteriorate. If the amount of the carbon material blended is too small, the conductivity of the target product may not be obtained.
  • the carbon material is liquid in a state of being dispersed in advance in a higher viscosity state.
  • a method of adjusting the viscosity by adding oil (liquid organopolysiloxane of the component (A)) so as to be easy to mold is preferable.
  • a part of the liquid organopolysiloxane of the component (A) is added and mixed with the total amount of the carbon material of the component (D), and the carbon material is sufficiently dispersed.
  • a surface treatment agent may be added, or the mixture may be mixed while heating at about 100 to 180 ° C.
  • the remaining components (A) and (B) and (C) are added, and the mixture is sufficiently stirred again to obtain a liquid silicone rubber composition having a desired viscosity.
  • another conductive agent may be used in combination with the carbon material of (D), if necessary.
  • other conductive agents for example, various conductive metals or alloys such as aluminum, copper, tin and stainless steel, tin oxide, zinc oxide, indium oxide, titanium oxide, tin oxide-antimony oxide solid solution and the like are used. Examples thereof include metal oxides that have been conductively treated.
  • the lithium salt is preferably particularly excellent in charge decay property, specifically, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiSO 3 CF 3, Examples thereof include LiN (SO 2 CF 3 ) 2 , LiSO 3 C 4 F 9 , LiC (SO 2 CF 3 ) 3 , and LiB (C 6 H 5 ) 4 . These may be used alone or in combination of two or more. LiN (SO 2 CF 3 ) 2 is more preferable.
  • an ionic conductive agent other than these, an electronic conductive material such as carbon, and other organic polymer-based antistatic agents such as polyether can be used in combination.
  • the amount of the antistatic agent containing lithium as the component (E) is 0.005 to 0.2 parts by mass with respect to the total mass parts of the components (A) to (B), preferably 0.005.
  • the amount is up to 0.1 part by mass, more preferably 0.005 to 0.05 part by mass. If it is less than 0.005 parts by mass, a sufficient antistatic effect may not be obtained. If it is more than 0.2 parts by mass, compression set and heat resistance may deteriorate.
  • the reinforcing silica fine powder preferably has a specific surface area (BET adsorption method) of 10 m 2 / g or more, particularly 50 to 400 m 2 / g.
  • BET adsorption method specific surface area
  • the reinforcing silica fine powder include aerosol silica (dry silica) and precipitated silica (wet silica), and aerosol silica (dry silica) is preferable.
  • Examples of these usable reinforcing silica fine powders as commercial products include Aerosil 130, 200, 300 (trade name manufactured by Nippon Aerosil Co., Ltd.), Cab-O-sil MS-5, MS-7, HS-5, HS. -7 (Product name manufactured by Cabot), SantocelFRC, CS (Product name manufactured by Monsanto), Nipsil VN-3 (Product name manufactured by Nippon Silica Industry Co., Ltd.) and the like can be mentioned. Further, these surfaces may be hydrophobized with organopolysiloxane, organopolysilazane, chlorosilane, alkoxysilane or the like. These silicas may be used alone or in combination of two or more.
  • the reinforcing silica fine powder aggravates the compression set and has a great influence on the change in volume resistivity with time, it is desirable that the amount added to the conductive silicone rubber composition is small.
  • the blending amount is preferably 0 to 3 parts by mass.
  • the lower limit of the blending amount can be 0.1 parts by mass or more.
  • Examples of the inorganic filler other than the reinforcing silica fine powder include diatomaceous earth, pearlite, mica, calcium carbonate, glass flakes, and hollow fillers.
  • These inorganic fillers include silane-based coupling agents or partial hydrolysates thereof, alkylalkoxysilanes or partial hydrolysates thereof, organic silazanes, titanate-based coupling agents, organopolysiloxane oils, and hydrolyzable functional group-containing organos. It may be surface-treated with polysiloxane or the like. These treatments may be carried out in advance by treating the inorganic filler itself, or may be carried out at the time of mixing with the oil.
  • the blending amount is preferably about 0 to 30 parts by mass with respect to 100 parts by mass of the organopolysiloxane (A) to (B) components in the silicone rubber composition.
  • thermally conductive filler powder for example, metallic silicon powder, alumina, aluminum, silicon carbide, silicon nitride, magnesium oxide, magnesium carbonate, zinc oxide, aluminum nitride, graphite, fibrous graphite). Etc. is optional.
  • hydrosilylation reaction control agents such as nitrogen-containing compounds, acetylene compounds, phosphorus compounds, nitrile compounds, carboxylates, tin compounds, mercury compounds, sulfur compounds, various additives, flame retardants, heat resistant agents, etc. It is also optional to mix.
  • the conductive silicone rubber composition of the present invention uses a normal mixing stirrer such as a kneader or a planetary mixer, a kneader or the like, and in addition to the above components (A) to (E), other components as necessary. It can be prepared by uniformly mixing (reinforcing silica fine powder and other inorganic fillers).
  • Molding methods for the conductive silicone rubber composition include casting molding, injection molding, coating, etc., and precure in the range of 10 seconds to 1 hour at a temperature of 100 to 300 ° C. is preferably used as the curing condition. Will be done. Further, for the purpose of reducing the low-molecular-weight siloxane component that causes a decrease in compression set, post-cure (secondary cure) for about 30 minutes to 70 hours in an oven at 120 to 250 ° C. after molding is performed. You may go.
  • the thickness of the elastic layer (silicone rubber sheet) made of the cured product of the conductive silicone rubber composition thus obtained is not particularly limited, but is usually 0.1 mm to 20 mm, preferably 1 mm to 2 mm.
  • an electrophotographic image forming member having this elastic layer can be obtained.
  • the volume resistivity of the cured product may be any range of conductivity as long as it can be applied to a developing roll or a developing belt, but is usually 0.1 to 10,000,000 ⁇ ⁇ m, preferably 1 to 10,000,000 ⁇ ⁇ m. , More preferably 10 to 1,000,000 ⁇ ⁇ m.
  • the volume resistivity can be measured according to JIS K6249.
  • the time required for the withstand voltage to be halved after charging static electricity to the surface of the molded product by corona discharge using a static Honest meter is 4 It is preferably less than a second.
  • the cured product of the conductive silicone rubber composition obtained by the present invention is particularly useful as an electrophotographic image forming member (particularly a developing roll, a developing belt, etc.).
  • a single-layer roll in which the outer peripheral surface of the core metal is coated with a silicone rubber layer which is a cured product of the conductive silicone rubber composition, or the conductive silicone on the front and back surfaces of a base material made of a heat-resistant resin or a metal. It may be used as a single-layer belt coated with a silicone rubber layer which is a cured product of the rubber composition, or a roll obtained by further coating a resin such as a polyimide resin, a urethane resin, or a fluororesin on the silicone rubber layer. Or as a belt. In that case, the silicone rubber layer may be coated with only one layer on the surface (outer peripheral surface), or may be coated with two or more layers. Of these, those in which the outermost surface of the roll or belt is coated with urethane resin, fluorine-based resin, or the like is preferable from the viewpoint of durability such as abrasion resistance.
  • the material of the core metal or the base material is preferably selected from iron, stainless steel, aluminum, polyamide / polyimide resin, and PEEK (polyetheretherketone).
  • fluorine-based resin a fluorine-based resin coating material, a fluorine-based resin tube, or the like
  • fluorine-based resin coating material for example, a latex of polytetrafluoroethylene resin (PTFE) or a Daiel latex.
  • PTFE polytetrafluoroethylene resin
  • Daiel latex Daiel latex
  • commercially available products can be used as the fluorine-based resin tube, for example, polytetrafluoroethylene resin (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether co-weight.
  • Examples thereof include a coalesced resin (PFA), an ethylene fluoride-polypropylene copolymer resin (FEP), a polyvinylidene fluoride resin (PVDF), and a polyvinyl fluoride resin, and among these, PFA and PTFE latex are particularly preferable.
  • PFA coalesced resin
  • FEP ethylene fluoride-polypropylene copolymer resin
  • PVDF polyvinylidene fluoride resin
  • a polyvinyl fluoride resin and among these, PFA and PTFE latex are particularly preferable.
  • the viscosity described below is a numerical value at 25 ° C. measured by the rotational viscometer described in JIS K 7117-1: 1999.
  • both ends of the molecular chain are sealed with trimethylsiloxy groups, and dimethylsiloxane / methylhydrogensiloxane having a silicon atom-bonded hydrogen atom in the side chain.
  • the prepared composition A was made into a silicone rubber sheet by press curing at 120 ° C. for 10 minutes, then subjected to a secondary heat treatment at 200 ° C. for 4 hours, and the compression set and volume resistivity were measured according to JIS K 6249. did. The results are shown in Table 1.
  • a silicone rubber sheet was prepared in the same manner as above, and a silicone-modified urethane coating material (X-93-1549: manufactured by Shin-Etsu Chemical Co., Ltd.) was applied as a coating layer to the surface of the molded product to form a coating layer of 10 to 30 ⁇ m.
  • a static electricity meter (Sisid Electrostatic Co., Ltd.)
  • the surface of the molded product was charged with static electricity by corona discharge, and then the time required for the voltage band to be halved was measured.
  • Table 1 shows the evaluation results of the charge decay rate, assuming that the time until the charge is halved is 4 seconds or less, ⁇ , or longer than 4 seconds, or the withstand voltage does not become 0 even after 60 seconds have passed. Described.
  • Example 2 In Example 1, all the compositions were the same except that 0.1 part of LiN (SO 2 CF 3 ) 2 20% by mass adipate solution (E) was replaced with 0.18 part by mass as an antistatic agent. Table 1 shows the results of preparing the product B and performing the same evaluation as in Example 1.
  • Example 3 In Example 1, all the compositions were the same except that 0.1 part of LiN (SO 2 CF 3 ) 2 20% by mass adipate solution (E) was replaced with 0.26 part by mass as an antistatic agent. Table 1 shows the results of preparing the product C and performing the same evaluation as in Example 1.
  • Example 4 In Example 1, all the compositions were the same except that 0.1 part of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.52 parts by mass as an antistatic agent. Table 1 shows the results of preparing the product D and performing the same evaluation as in Example 1.
  • both ends of the molecular chain are sealed with trimethylsiloxy groups, and dimethylsiloxane / methylhydrogensiloxane having a silicon atom-bonded hydrogen atom in the side chain.
  • Table 1 shows the results of preparing the composition E by mixing 0.10 parts of the% adipic acid ester solution (E) at room temperature with a planetary mixer for 30 minutes and performing the same evaluation as in Example 1.
  • both ends of the molecular chain are further sealed with a trimethylsiloxy group, and the dimethylsiloxane / methylhydrogensiloxane copolymer (B) having a silicon atom-bonded hydrogen atom in the side chain (silicon atom bond).
  • Hydrogen atom content 0.0075 mol / g) 2.45 parts by mass, 1-ethynylcyclohexanol 0.1 part by mass, platinum chloride acid / 1,3-divinyltetramethyldisiloxane complex as platinum atom content 1 mass 0.20 parts by mass of dimethylpolysiloxane solution (C) containing%, and 0.025 parts of LiN (SO 2 CF 3 ) 2 as antistatic agent in 20% by mass of adipic acid ester solution (E) at room temperature in a planetary mixer.
  • the composition F was prepared by mixing with the mixture for 30 minutes, and the results of the same evaluation as in Example 1 are shown in Table 1.
  • Example 7 In Example 6, the composition was the same except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.5 part by mass as an antistatic agent. Table 1 shows the results of preparing the product G and performing the same evaluation as in Example 1.
  • Example 8 In Example 6, the composition was the same except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 1.0 part by mass as an antistatic agent. Table 1 shows the results of preparing the product H and performing the same evaluation as in Example 1.
  • both ends of the molecular chain are sealed with trimethylsiloxy groups, and dimethylsiloxane / methylhydrogensiloxane having a silicon atom-bonded hydrogen atom in the side chain.
  • composition I was prepared with the same formulation except that 0.10 part of a 20% by mass adipate solution (E) of LiN (SO 2 CF 3 ) 2 was not blended as an antistatic agent.
  • Table 2 shows the results of the same evaluation as in Example 1.
  • Table 2 shows the results of the same evaluation as in Example 1.
  • Example 3 In Example 1, all the compositions were the same except that 0.1 part of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.01 part by mass as an antistatic agent. Table 2 shows the results of preparing the product K and performing the same evaluation as in Example 1.
  • Example 6 the composition M was prepared with the same formulation except that the 20% by mass adipate ester solution (E) of LiN (SO 2 CF 3 ) 2 was not blended as an antistatic agent, and the composition M was prepared with Example 1. Table 2 shows the results of similar evaluations.
  • Example 6 the composition was the same except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.01 part by mass as an antistatic agent.
  • Table 2 shows the results of preparing the product N and performing the same evaluation as in Example 1.
  • Example 6 the composition O has the same formulation except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) is replaced with 5 parts by mass as an antistatic agent.
  • Table 2 The results of the same evaluation as in Example 1 are shown in Table 2.
  • Example 7 the composition P has the same formulation except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) is replaced with 10 parts by mass as an antistatic agent.
  • Table 2 The results of the same evaluation as in Example 1 are shown in Table 2.
  • Example 9 In Example 9, all the compositions were the same except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.01 part by mass as an antistatic agent. Table 2 shows the results of preparing the product R and performing the same evaluation as in Example 1.
  • the charge attenuation performance was sufficient because all of them contained a sufficient component (E).
  • Comparative Examples 1, 2, 4 containing no component (E) and Comparative Examples 3, 5, and 8 below the lower limit of the component (E) sufficient charge attenuation was not observed.
  • Comparative Examples 6 and 7 containing an excessive amount of the component (E) the charge attenuation was sufficient, but the compression set became large and unsuitable for use.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Dry Development In Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

The present invention provides an addition-curing liquid electroconductive silicone rubber composition characterized by comprising (A) a liquid organopolysiloxane containing at least two silicon-atom-bonded alkenyl groups in one molecule: 100 parts by mass, (B) an organohydrogenpolysiloxane containing at least two silicon-atom-bonded hydrogen atoms in one molecule, (C) a platinum group metal-based catalyst as an addition reaction catalyst, (D) a carbon material: 1-50 parts by mass, and (E) a lithium-containing antistatic agent: 0.005-0.2 parts by mass with respect to a total mass of the components (A) and (B). Thus, provided are an addition-curing liquid electroconductive silicone rubber composition for an electrophotographic image formation member, the composition providing a cured product having satisfactory charge decay, and an electrophotographic image formation member which includes, as an elastic layer, a cured product obtained from the composition.

Description

付加硬化型液状導電性シリコーンゴム組成物及び電子写真式画像形成部材Additive-curing liquid conductive silicone rubber composition and electrophotographic image forming member
 本発明は、付加硬化型液状導電性シリコーンゴム組成物及び電子写真方式を利用した画像形成装置に使用される電子写真式画像形成部材、特には現像ロール又は現像ベルト(事務機用ロール又は事務機用ベルト)に関する。 INDUSTRIAL APPLICABILITY The present invention relates to an electrophotographic image forming member used in an addition-curable liquid conductive silicone rubber composition and an image forming apparatus using an electrophotographic method, particularly a developing roll or a developing belt (roll for office machine or office machine). Belt for).
 従来、電気絶縁性を示すゴム状物質に導電性材料を配合した導電性ゴムが種々知られており、例えば、導電性材料としてカーボンブラック等を配合した導電性ゴムが広い分野で応用されている。一方、電気絶縁性ゴム状物質の一つであるシリコーンゴムは、耐熱性、耐寒性、耐候性に優れ、電気絶縁性ゴムとして多く利用されているが、他のゴム状物質と同様に導電性材料を添加することで、導電性ゴムとしても実用化されている。 Conventionally, various conductive rubbers in which a conductive material is blended with a rubber-like substance exhibiting electrical insulation are known. For example, conductive rubber in which carbon black or the like is blended as a conductive material is applied in a wide range of fields. .. On the other hand, silicone rubber, which is one of the electrically insulating rubber-like materials, has excellent heat resistance, cold resistance, and weather resistance, and is widely used as an electrically insulating rubber, but is conductive like other rubber-like materials. By adding a material, it has also been put into practical use as a conductive rubber.
 この場合、導電性シリコーンゴムに添加する導電性材料としては、例えば、カーボンブラックやグラファイト、銀,ニッケル,銅等の各種金属粉、各種非導電性粉体や短繊維表面を銀等の金属で処理したもの、炭素繊維,金属繊維などを混合したものが、ゴムが持つ特異な特性を損なうことなく、その導電性材料の種類及び充填量によりシリコーンゴムの体積抵抗率を低下させ得ることから頻繁に使用されている。
 特に、付加硬化タイプの液状シリコーンゴムは、カーボンブラックなどの導電性付与材を配合しても低粘度で成形性に優れることや、短時間での硬化が可能であることから現像ロール材として広く使用されている。
In this case, the conductive material to be added to the conductive silicone rubber is, for example, various metal powders such as carbon black, graphite, silver, nickel, and copper, various non-conductive powders, and a metal such as silver on the surface of short fibers. Frequently, a mixture of treated material, carbon fiber, metal fiber, etc. can reduce the volume resistance of silicone rubber depending on the type and filling amount of the conductive material without impairing the unique characteristics of rubber. Is used for.
In particular, the addition-curing type liquid silicone rubber is widely used as a developing roll material because it has low viscosity and excellent moldability even when a conductive material such as carbon black is blended, and it can be cured in a short time. in use.
 画像形成装置は、近年の画像形成の精密化・高速化に伴ってより精細な印字特性が求められている。現像部材はトナーの搬送性の観点からは優れた帯電性が求められる一方、帯電減衰性も求められている。現像部材は像担持体へトナーを供給した後には、帯電減衰が速やかに進行しないとトナー供給ロール等によるトナーのクリーニング性が悪化する。
 カーボンブラックなどの導電性付与剤の増量によって帯電性を低下させることが可能であるが、カーボンブラックの増量により粘度が大きく上昇する恐れがある。また目的の抵抗値より大幅に低い抵抗値でも目的とする求める帯電減衰性が得られないことがある。
Image forming apparatus is required to have finer print characteristics with the recent refinement and speeding up of image formation. The developing member is required to have excellent chargeability from the viewpoint of toner transportability, and is also required to have charge attenuation. After the toner is supplied to the image carrier of the developing member, if the charge attenuation does not proceed rapidly, the cleaning property of the toner by the toner supply roll or the like deteriorates.
Although it is possible to reduce the chargeability by increasing the amount of the conductivity-imparting agent such as carbon black, there is a possibility that the viscosity will be greatly increased by increasing the amount of carbon black. Further, even if the resistance value is significantly lower than the target resistance value, the desired charge attenuation may not be obtained.
 特許文献1~3には、イオン導電機構による導電性物質と電子導電機構による導電性物質を併用した導電性材料が例示されているが、抵抗値の電圧への依存性、温度や湿度に対する環境における抵抗値の安定化、抵抗値の均一性などについては述べられているのみであり、帯電減衰特性については述べられていない。 Patent Documents 1 to 3 exemplify a conductive material in which a conductive material having an ionic conductive mechanism and a conductive material having an electronic conductive mechanism are used in combination. However, the dependence of the resistance value on the voltage and the environment with respect to temperature and humidity are exemplified. Only the stabilization of the resistance value and the uniformity of the resistance value in the above are described, and the charge attenuation characteristic is not described.
 特許文献4では帯電防止剤としてシリコーンゴムにヒドロキシ基を有する有機ホウ素化合物及び三級アミン化合物の反応生成物であるBN型分子化合物を添加する材料が例示されている。しかし、リチウム塩については述べられていない。 Patent Document 4 exemplifies a material to which an organic boron compound having a hydroxy group and a BN type molecular compound, which is a reaction product of a tertiary amine compound, are added as an antistatic agent to silicone rubber. However, no mention is made of lithium salts.
 特許文献5ではカーボンとイオン液体の併用による帯電減衰性に優れた現像ロールの例示があるが、イオン導電材の帯電防止特性については述べられていない。 Patent Document 5 exemplifies a developing roll having excellent charge attenuation by using carbon and an ionic liquid in combination, but does not describe the antistatic property of the ionic conductive material.
 特許文献6では、リチウム塩から選ばれる帯電防止剤を添加する材料が例示されている。しかし、絶縁性材料についてのみ述べられており、カーボンとの併用については述べられていない。 Patent Document 6 exemplifies a material to which an antistatic agent selected from lithium salts is added. However, only the insulating material is mentioned, and the combined use with carbon is not mentioned.
特開2001-140854号公報Japanese Unexamined Patent Publication No. 2001-140854 特開2002-116638号公報Japanese Unexamined Patent Publication No. 2002-116638 特開2003-82232号公報Japanese Unexamined Patent Publication No. 2003-82232 特開2018-049153号公報Japanese Unexamined Patent Publication No. 2018-049153 特許5396540号Patent No. 5396540 特開2006-265340号公報Japanese Unexamined Patent Publication No. 2006-265340
 本発明は、上記事情に鑑みなされたもので、帯電減衰が良好な硬化物を与える付加硬化型液状導電性シリコーンゴム組成物及び該組成物の硬化物を弾性層として有する電子写真式画像形成部材を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is an addition-curable liquid conductive silicone rubber composition that gives a cured product having good charge attenuation, and an electrophotographic image-forming member having the cured product of the composition as an elastic layer. The purpose is to provide.
 上記課題を解決するために、本発明では、
(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有する液状のオルガノポリシロキサン:100質量部、
(B)1分子中に少なくとも2個のケイ素原子と結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(B)成分に含まれるケイ素原子と結合した水素原子の数が、前記(A)成分に含まれるケイ素原子と結合したアルケニル基1個に対して0.5~10個となる量、
(C)付加反応触媒としての白金族金属系触媒:前記(A)~(B)成分の合計質量に対し白金族金属換算で0.5~1,000ppmとなる量、
(D)カーボン材:1~50質量部、
(E)リチウムを含む帯電防止剤:前記(A)~(B)成分の合計質量に対し0.005~0.2質量部となる量、
を含む付加硬化型液状導電性シリコーンゴム組成物を提供する。
In order to solve the above problems, in the present invention,
(A) Liquid organopolysiloxane containing at least two alkenyl groups bonded to a silicon atom in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane containing hydrogen atoms bonded to at least two silicon atoms in one molecule: The number of hydrogen atoms bonded to silicon atoms contained in the component (B) is the component (A). Amount of 0.5 to 10 per alkenyl group bonded to a silicon atom contained in
(C) Platinum group metal-based catalyst as an addition reaction catalyst: An amount of 0.5 to 1,000 ppm in terms of platinum group metal with respect to the total mass of the components (A) to (B).
(D) Carbon material: 1 to 50 parts by mass,
(E) Antistatic agent containing lithium: an amount of 0.005 to 0.2 parts by mass with respect to the total mass of the components (A) to (B).
Provided is an addition-curable liquid conductive silicone rubber composition containing the above.
 このようなものであると、硬化後に帯電減衰が良好な硬化物を得ることができる。 With such a thing, it is possible to obtain a cured product having good charge attenuation after curing.
 また、前記(E)成分が、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiSOCF、LiN(SOCF、LiSO、LiC(SOCF、及びLiB(Cから選ばれる1種以上であることが好ましい。 Further, the component (E), LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiSO 3 C 4 F 9, LiC (SO 2 CF 3 ) It is preferable that the amount is one or more selected from 3 and LiB (C 6 H 5 ) 4.
 帯電防止剤がこのようなものであると帯電減衰性が特に良好なものとなる。 If the antistatic agent is such, the antistatic property is particularly good.
 その中でも、前記(E)成分が、LiN(SOCFであることが好ましい。 Among them, the component (E) is preferably LiN (SO 2 CF 3 ) 2.
 この帯電防止剤は、特に帯電減衰を良好なものとする。 This antistatic agent has particularly good antistatic attenuation.
 また、本発明では、得られた付加硬化型液状導電性シリコーンゴム組成物の硬化物からなる弾性層を有するものである電子写真式画像形成部材を提供する。 Further, the present invention provides an electrophotographic image-forming member having an elastic layer made of a cured product of the obtained addition-curable liquid conductive silicone rubber composition.
 このような電子写真式画像形成部材は、良好な帯電減衰を示す。 Such an electrophotographic image forming member shows good charge attenuation.
 また、前記電子写真式画像形成部材が、現像ロール及び現像ベルトから選ばれる部材であることが好ましい。 Further, it is preferable that the electrophotographic image forming member is a member selected from a developing roll and a developing belt.
 これら上記の部材は、良好な帯電減衰を有する部材として、好ましく使用される。 These above-mentioned members are preferably used as members having good charge attenuation.
 本発明によれば、良好な帯電減衰性を有する硬化物を与える電子写真式画像形成部材用の付加硬化型液状導電性シリコーンゴム組成物及び該組成物の硬化物を弾性層として有する電子写真式画像形成部材が得られる。 According to the present invention, an addition-curable liquid conductive silicone rubber composition for an electrophotographic image-forming member that gives a cured product having good charge damping property and an electrophotographic type having the cured product of the composition as an elastic layer. An image forming member is obtained.
 上述のように、良好な帯電減衰性を有する硬化物を与える導電性組成物、及びその組成物の硬化物を弾性層として有する電子写真式画像形成部材の開発が求められていた。 As described above, there has been a demand for the development of a conductive composition that gives a cured product having good charge attenuation, and an electrophotographic image forming member having the cured product of the composition as an elastic layer.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、後述する(A)~(E)成分を含む付加硬化型液状導電性シリコーンゴム組成物において、特に(D)成分のカーボンに加え、(E)成分のリチウムを含む帯電防止剤を特定量加えることで、これを加熱硬化して得られる硬化物が、良好な耐熱性、帯電減衰を実現し、現像ロール及び現像ベルト等の電子写真式画像形成部材に好適であることを見出し、本発明をなすに至った。 As a result of diligent studies to achieve the above object, the present inventors have found that, in the addition-curing liquid conductive silicone rubber composition containing the components (A) to (E) described later, particularly the carbon of the component (D). In addition, by adding a specific amount of an antistatic agent containing lithium as a component (E), the cured product obtained by heating and curing this realizes good heat resistance and antistatic attenuation, and develop rolls, development belts, etc. It has been found that it is suitable for the electrophotographic image forming member of the above, and the present invention has been made.
 従って、本発明は、下記付加硬化型液状導電性シリコーンゴム組成物及び電子写真式画像形成部材を提供する。 Therefore, the present invention provides the following addition-curable liquid conductive silicone rubber composition and electrophotographic image-forming member.
 即ち、本発明は、
(A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有する液状のオルガノポリシロキサン:100質量部、
(B)1分子中に少なくとも2個のケイ素原子と結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(B)成分に含まれるケイ素原子と結合した水素原子の数が、前記(A)成分に含まれるケイ素原子と結合したアルケニル基1個に対して0.5~10個となる量、
(C)付加反応触媒としての白金族金属系触媒:前記(A)~(B)成分の合計質量に対し白金族金属換算で0.5~1,000ppmとなる量、
(D)カーボン材:1~50質量部、
(E)リチウムを含む帯電防止剤:前記(A)~(B)成分の合計質量に対し0.005~0.2質量部となる量、
を含む付加硬化型液状導電性シリコーンゴム組成物である。
That is, the present invention
(A) Liquid organopolysiloxane containing at least two alkenyl groups bonded to a silicon atom in one molecule: 100 parts by mass,
(B) Organohydrogenpolysiloxane containing hydrogen atoms bonded to at least two silicon atoms in one molecule: The number of hydrogen atoms bonded to silicon atoms contained in the component (B) is the component (A). Amount of 0.5 to 10 per alkenyl group bonded to a silicon atom contained in
(C) Platinum group metal-based catalyst as an addition reaction catalyst: An amount of 0.5 to 1,000 ppm in terms of platinum group metal with respect to the total mass of the components (A) to (B).
(D) Carbon material: 1 to 50 parts by mass,
(E) Antistatic agent containing lithium: an amount of 0.005 to 0.2 parts by mass with respect to the total mass of the components (A) to (B).
It is an addition hardening type liquid conductive silicone rubber composition containing.
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.
<付加硬化型液状導電性シリコーンゴム組成物>
 本発明の付加硬化型液状導電性シリコーンゴム組成物は、少なくとも下記(A)~(E)成分を含むものである。
<Additional curing type liquid conductive silicone rubber composition>
The addition-curable liquid conductive silicone rubber composition of the present invention contains at least the following components (A) to (E).
[(A)成分]
 (A)成分は、1分子中にケイ素原子に結合したアルケニル基を2個以上含有する25℃で液状のオルガノポリシロキサンであり、本発明にかかる組成物のベースポリマー(主剤)である。
[(A) component]
The component (A) is an organopolysiloxane liquid at 25 ° C. containing two or more alkenyl groups bonded to silicon atoms in one molecule, and is a base polymer (main agent) of the composition according to the present invention.
 (A)成分の分子構造としては、例えば、直鎖状、環状、分岐鎖状、三次元網状(樹脂状)等が挙げられるが、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンが好ましい。また、(A)成分のオルガノポリシロキサンの分子構造が直鎖状又は分岐鎖状である場合、該オルガノポリシロキサンの分子中においてアルケニル基が結合するケイ素原子の位置は、分子鎖末端(即ち、トリオルガノシロキシ基)及び分子鎖途中(即ち、分子鎖非末端に位置する2官能性のジオルガノシロキサン単位又は3官能性のモノオルガノシルセスキオキサン単位)のどちらか一方でも両方でもよい。(A)成分として、特に好ましくは、少なくとも分子鎖両末端のケイ素原子に結合したアルケニル基を含有する直鎖状のジオルガノポリシロキサンである。 Examples of the molecular structure of the component (A) include linear, cyclic, branched chain, and three-dimensional network (resin), but the main chain basically consists of repeating diorganosiloxane units. A linear diorganopolysiloxane having both ends of the molecular chain sealed with a triorganosyloxy group is preferable. When the molecular structure of the organopolysiloxane component (A) is linear or branched, the position of the silicon atom to which the alkenyl group is bonded in the molecule of the organopolysiloxane is the terminal of the molecular chain (that is, that is, Either one or both of the triorganosyloxy group) and the middle of the molecular chain (that is, the bifunctional diorganosiloxane unit or the trifunctional monoorganosylsesquioxane unit located at the non-terminal of the molecular chain) may be used. As the component (A), a linear diorganopolysiloxane containing at least an alkenyl group bonded to silicon atoms at both ends of the molecular chain is particularly preferable.
 (A)成分中のケイ素原子に結合したアルケニル基としては、例えば、通常、炭素数2~8、好ましくは炭素数2~4のものが挙げられる。その具体例としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基等が挙げられ、特にビニル基であることが好ましい。 Examples of the alkenyl group bonded to the silicon atom in the component (A) include those having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms. Specific examples thereof include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, a cyclohexenyl group, a heptenyl group and the like, and a vinyl group is particularly preferable.
 (A)成分中のケイ素原子に結合したアルケニル基の含有量は、ケイ素原子に結合した1価の有機基(即ち、非置換もしくは置換の1価炭化水素基)全体に対して0.001~10mol/100gであることが好ましく、特に0.01~5mol/100gであることが好ましい。 The content of the alkenyl group bonded to the silicon atom in the component (A) is 0.001 to the total of the monovalent organic group bonded to the silicon atom (that is, the unsubstituted or substituted monovalent hydrocarbon group). It is preferably 10 mol / 100 g, and particularly preferably 0.01 to 5 mol / 100 g.
 (A)成分のアルケニル基以外のケイ素原子に結合する1価の有機基としては、例えば、互いに同一又は異種の炭素数1~12、好ましくは炭素数1~10の1価炭化水素基が挙げられる。1価の有機基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基などが挙げられ、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子で置換したもの、例えば、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン置換アルキル基などを用いてもよい。これらの中でも、特に、メチル基であることが好ましい。なお、(A)成分はエポキシ基を含有しないことが好ましい。 Examples of the monovalent organic group bonded to the silicon atom other than the alkenyl group of the component (A) include monovalent hydrocarbon groups having the same or different carbon atoms of 1 to 12, preferably 1 to 10 carbon atoms. Be done. Specific examples of the monovalent organic group include an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group and a heptyl group; a phenyl group, a trill group, a xsilyl group and a naphthyl group. Aryl groups such as benzyl group, aralkyl groups such as phenethyl group, etc., in which a part or all of the hydrogen atoms of these groups are replaced with halogen atoms such as fluorine, bromine, chlorine, etc., for example, chloromethyl group. , A halogen-substituted alkyl group such as a 3-chloropropyl group or a 3,3,3-trifluoropropyl group may be used. Among these, a methyl group is particularly preferable. The component (A) preferably does not contain an epoxy group.
 (A)成分の25℃における粘度は、好ましくは50~500,000mPa・s、より好ましくは600~200,000mPa・sである。粘度がこの範囲内にあると、得られる導電性シリコーンゴム組成物の取り扱い作業性が良好であり、また、得られる導電性シリコーンゴム組成物の硬化物の機械的特性が良好である。なお、本明細書において粘度とは、25℃においてJIS K 7117-1:1999に記載の方法で回転粘度計により測定した値を指す。 The viscosity of the component (A) at 25 ° C. is preferably 50 to 500,000 mPa · s, more preferably 600 to 200,000 mPa · s. When the viscosity is within this range, the handling workability of the obtained conductive silicone rubber composition is good, and the mechanical properties of the cured product of the obtained conductive silicone rubber composition are good. In the present specification, the viscosity means a value measured by a rotational viscometer by the method described in JIS K 7117-1: 1999 at 25 ° C.
 (A)成分のオルガノポリシロキサンの具体例としては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、及びこれらのオルガノポリシロキサンの2種以上からなる混合物が挙げられる。 Specific examples of the organopolysiloxane of the component (A) include a trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain, a trimethylsiloxy group-blocked methylvinylpolysiloxane at both ends of the molecular chain, and trimethyl at both ends of the molecular chain. Syroxy group-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer, molecular chain double-ended dimethylvinyl syroxy group-blocked dimethylpolysiloxane, molecular chain double-ended dimethylvinylsiloxy group-blocked methylvinylpolysiloxane, molecular chain double-ended dimethylvinyl Syloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer, molecular chain double-ended dimethylvinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer, molecular chain double-ended divinylmethylsiloxy group-blocked dimethylpolysiloxane, molecule Divinylmethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the chain, trivinylsiloxy group-blocked dimethylpolysiloxane at both ends of the molecular chain, trivinylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain, And a mixture of two or more of these organopolysiloxanes.
 (A)成分のオルガノポリシロキサンは、1種単独で用いても2種以上を併用してもよい。中でも2種以上を併用することが、本発明の組成物を好ましい粘度範囲に調整することが容易になるので好ましい。 The organopolysiloxane of the component (A) may be used alone or in combination of two or more. Above all, it is preferable to use two or more kinds in combination because it becomes easy to adjust the composition of the present invention to a preferable viscosity range.
[(B)成分]
 (B)成分のオルガノハイドロジェンポリシロキサンは、(A)成分中のアルケニル基とヒドロシリル化付加反応し、架橋剤(硬化剤)として作用するものであり、その分子構造に特に制限はなく、従来製造されている、例えば直鎖状、環状、分岐鎖状、三次元網状(樹脂状)構造等各種のものが使用可能であるが、1分子中に少なくとも2個のケイ素原子に結合した水素原子(SiHで表されるヒドロシリル基)を有する必要があり、また実質的に分子中にケイ素原子に結合した水酸基(即ち、シラノール基)を含有しないものである。
[(B) component]
The organohydrogenpolysiloxane of the component (B) reacts with the alkenyl group in the component (A) by hydrosilylation addition reaction and acts as a cross-linking agent (hardener). Various manufactured products such as linear, cyclic, branched chain, and three-dimensional network (resin-like) structures can be used, but hydrogen atoms bonded to at least two silicon atoms in one molecule can be used. It must have (hydrosilyl group represented by SiH) and does not substantially contain a hydroxyl group (that is, a silanol group) bonded to a silicon atom in the molecule.
 (B)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を併用してもよい。 The organohydrogenpolysiloxane of the component (B) may be used alone or in combination of two or more.
 このオルガノハイドロジェンポリシロキサンとしては、下記平均組成式(1)で示されるものを用いることができる。
 R SiO(4-a-b)/2   (1)
(式中、Rは互いに同一又は異種の、アルケニル基等の脂肪族不飽和結合を除く、好ましくは炭素数1~10の、ケイ素原子に結合した1価炭化水素基である。また、aは0.7~2.1、bは0.001~1.0で、かつa+bが0.8~3.0を満足する正数である。)
As this organohydrogenpolysiloxane, those represented by the following average composition formula (1) can be used.
R 4 a H b SiO (4-ab) / 2 (1)
(Wherein, R 4 is identical or different from each other, excluding the aliphatic unsaturated bonds such as alkenyl groups, preferably monovalent hydrocarbon groups bonded 1 to 10 carbon atoms, a silicon atom. Also, a Is 0.7 to 2.1, b is 0.001 to 1.0, and a + b is a positive number satisfying 0.8 to 3.0.)
 上記式(1)中、Rは互いに同一又は異種の、アルケニル基等の脂肪族不飽和結合を除く、好ましくは炭素数1~10の、ケイ素原子に結合した1価炭化水素基であり、このRにおける1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などが挙げられ、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基等を用いてもよい。Rの1価炭化水素基として、好ましくはアルキル基、アリール基であり、より好ましくはメチル基である。また、aは0.7~2.1、bは0.001~1.0で、かつa+bが0.8~3.0を満足する正数であり、好ましくは、aは1.0~2.0、bは0.01~1.0、a+bが1.5~2.5を満足する正数である。 In the above formula (1), R 4 is identical or different from each other, excluding the aliphatic unsaturated bonds such as alkenyl group, preferably a monovalent hydrocarbon group bonded 1 to 10 carbon atoms, a silicon atom, the monovalent hydrocarbon groups in this R 4, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, butyl group, isobutyl group, tert- butyl group, a pentyl group, a neopentyl group, a hexyl group, a cyclohexyl group, octyl Alkyl groups such as groups, nonyl groups and decyl groups; aryl groups such as phenyl group, trill group, xylyl group and naphthyl group; aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group can be mentioned. A chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group and the like may be used in which a part or all of the hydrogen atom of the above is substituted with a halogen atom such as fluorine, bromine or chlorine. Monovalent hydrocarbon radicals of R 4, is preferably an alkyl group, an aryl group, more preferably a methyl group. Further, a is 0.7 to 2.1, b is 0.001 to 1.0, and a + b is a positive number satisfying 0.8 to 3.0, preferably a is 1.0 to 1.0. 2.0 and b are positive numbers satisfying 0.01 to 1.0, and a + b are positive numbers satisfying 1.5 to 2.5.
 1分子中に少なくとも2個含有するSiH基は、分子鎖末端、分子鎖途中のいずれに位置していてもよく、またこの両方に位置するものであってもよい。また、このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐鎖状、三次元網状構造のいずれであってもよいが、1分子中のケイ素原子の数(又は重合度)は、通常2~300個、好ましくは3~150個、より好ましくは4~100個程度のものが望ましく、25℃における粘度が、通常0.1~1,000mPa・s、好ましくは0.5~500mPa・s程度の、25℃で液状のものが使用される。なお、重合度は、例えば、トルエンを展開溶媒としてGPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の数平均重合度(数平均分子量)又は重量平均重合度(重量平均分子量)等として求めることができる。 The SiH group contained at least two in one molecule may be located at the end of the molecular chain or in the middle of the molecular chain, or may be located at both of them. The molecular structure of this organohydrogenpolysiloxane may be linear, cyclic, branched chain, or three-dimensional network structure, but the number of silicon atoms (or degree of polymerization) in one molecule is , Usually 2 to 300, preferably 3 to 150, more preferably 4 to 100, and the viscosity at 25 ° C. is usually 0.1 to 1,000 mPa · s, preferably 0.5 to 0.5. A liquid at 25 ° C. of about 500 mPa · s is used. The degree of polymerization can be determined, for example, as a polystyrene-equivalent number average degree of polymerization (number average molecular weight) or weight average degree of polymerization (weight average molecular weight) in GPC (gel permeation chromatography) analysis using toluene as a developing solvent. ..
 このような(B)成分のオルガノハイドロジェンポリシロキサンとしては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサンや、これらの各例示化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基で置換されたもの、式:R SiO1/2で示されるシロキサン単位と式:R HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:R HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:RHSiO2/2で示されるシロキサン単位と式:RSiO3/2で示されるシロキサン単位もしくは式:HSiO3/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、及びこれらのオルガノポリシロキサンの2種以上からなる混合物が挙げられる。なお、前記Rは炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基であり、特にメチル基であることが好ましい。 Examples of the organohydrogenpolysiloxane of the component (B) include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and tris (hydrogendimethylsiloxy). Methylsilane, Tris (hydrogendimethylsiloxy) phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane / dimethylsiloxane cyclic copolymer, trimethylsiloxy group-sealed methylhydrogenpolysiloxane at both ends of the molecular chain, trimethyl at both ends of the molecular chain Syloxy group-blocked dimethylsiloxane / methylhydrogensiloxane copolymer, molecular chain double-ended trimethylsiloxy group-blocked dimethylsiloxane / methylhydrogensiloxane / methylphenylsiloxane copolymer, molecular chain double-ended trimethylsiloxy group-blocked dimethylsiloxane / methylhydro Gensiloxane / diphenylsiloxane copolymer, molecular chain double-ended dimethylhydrogensiloxy group-blocked methylhydrogenpolysiloxane, molecular chain double-ended dimethylhydrogensiloxy group-blocked dimethylpolysiloxane, molecular chain double-ended dimethylhydrogensiloxy group-blocked dimethyl Siloxane / Methylhydrogensyloxy group-blocked dimethylhydroxyloxy group-blocked dimethylsiloxane / methylphenylsiloxane copolymer, dimethylhydrogensiloxy group-blocked dimethylsiloxane / diphenylsiloxane copolymer at both ends of the molecular chain, molecule In the dimethylhydrogensiloxy group-blocked methylphenylpolysiloxane at both ends of the chain, the dimethylhydrogensiloxy group-blocked diphenylpolysiloxane at both ends of the molecular chain, and in each of these exemplary compounds, part or all of the methyl group is an ethyl group, a propyl group, etc. those of substituted with other alkyl groups, wherein: the siloxane units represented by the formula R 5 3 SiO 1/2: siloxane units represented by the formula R 5 2 HSiO 1/2: represented by SiO 4/2 organosiloxane copolymers consisting of siloxane units of the formula: siloxane units represented by the formula R 5 2 HSiO 1/2: organosiloxane copolymers composed of siloxane units represented by SiO 4/2, wherein: R 5 HSiO 2 / siloxane units represented by 2 and formula siloxane units or of the formula represented by R 5 SiO 3/2: or siloxane units represented by HSiO 3/2 Examples thereof include an organosiloxane copolymer composed of these, and a mixture composed of two or more of these organopolysiloxanes. Incidentally, the R 5 is a group selected from aryl alkyl group, or a C 6-12 having 1 to 8 carbon atoms, particularly preferably a methyl group.
 (B)成分の配合量は、(A)成分中のケイ素原子結合アルケニル基1個(又はモル)に対して(B)成分中のケイ素原子結合水素原子が0.5~10個(又はモル)であり、好ましくは0.6~5個(又はモル)、さらに好ましくは0.7~2.0個(又はモル)となる量である。 The blending amount of the component (B) is 0.5 to 10 (or mol) of silicon atom-bonded hydrogen atoms in the component (B) with respect to one silicon atom-bonded alkenyl group (or mol) in the component (A). ), The amount is preferably 0.6 to 5 (or mol), and more preferably 0.7 to 2.0 (or mol).
 (A)成分中のケイ素原子結合アルケニル基1個に対して(B)成分中のケイ素原子結合水素原子が0.5個未満であると、導電性シリコーンゴム組成物は十分に硬化せず、目的の強度が得られないことがある。またこれが10個を超えると、導電性シリコーンゴム組成物の硬化物の耐熱性が極端に悪化することがある。 If the number of silicon atom-bonded hydrogen atoms in the component (B) is less than 0.5 with respect to one silicon atom-bonded alkenyl group in the component (A), the conductive silicone rubber composition is not sufficiently cured. The desired strength may not be obtained. If the number exceeds 10, the heat resistance of the cured product of the conductive silicone rubber composition may be extremely deteriorated.
[(C)成分]
 (C)成分の付加反応触媒としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と1価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、白金ビスアセトアセテート等の白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族金属触媒が挙げられる。
[(C) component]
Examples of the addition reaction catalyst of the component (C) include platinum black, second platinum chloride, platinum chloride acid, a reaction product of platinum chloride acid and a monovalent alcohol, a complex of platinum chloride acid and olefins, platinum bisacetoacetate and the like. Examples thereof include platinum-based metal catalysts such as platinum-based catalysts, palladium-based catalysts, and rhodium-based catalysts.
 (C)成分の配合量は、触媒量とすることができ、通常、(A)成分と(B)成分との合計量(シロキサン結合を持つポリマー総量)に対して、白金族金属として0.5~1,000ppm、特に1~500ppmとすればよい。添加量が少なすぎると硬化性の低下を起こし、添加量が多すぎるとコストが高くなり、不経済となる。 The blending amount of the component (C) can be a catalytic amount, and usually, the total amount of the component (A) and the component (B) (total amount of polymer having a siloxane bond) is 0. It may be 5 to 1,000 ppm, particularly 1 to 500 ppm. If the amount added is too small, the curability is lowered, and if the amount added is too large, the cost becomes high and it becomes uneconomical.
[(D)成分]
 (D)成分のカーボン材は、特定領域の導電性(あるいは体積抵抗率)を得るために必要なもので、公知の製法、種類のカーボン材を使用することができる。ここで、「特定領域の導電性」とは、具体的には、得られた導電性シリコーンゴム組成物の硬化物の体積抵抗率が、通常0.1~10,000,000Ω・m、好ましくは1~10,000,000Ω・m、より好ましくは10~1,000,000Ω・mであるように設計される。カーボン材は、その製造方法により導電性が異なるが、本発明においては、配合、混練した際に所望の導電性を得るものであればいずれのものでも使用し得る。
[(D) component]
The carbon material of the component (D) is necessary for obtaining conductivity (or volume resistivity) in a specific region, and a known production method and type of carbon material can be used. Here, "conductivity in a specific region" specifically means that the volume resistivity of the cured product of the obtained conductive silicone rubber composition is usually 0.1 to 10,000,000 Ω · m, preferably 0.1 to 10,000,000 Ω · m. Is designed to be 1 to 10,000,000 Ω · m, more preferably 10 to 1,000,000 Ω · m. The conductivity of the carbon material differs depending on the production method, but in the present invention, any carbon material can be used as long as it obtains the desired conductivity when blended and kneaded.
 カーボン材としては、特に限定されるものでないが、例えば、アセチレンブラック、コンダクティブファーネスブラック(CF)、スーパーコンダクティブファーネスブラック(SCF)、エクストラコンダクティブファーネスブラック(XCF)、コンダクティブチャンネルブラック(CC)、1,500~3,000℃程度の高温で熱処理されたファーネスブラックやチャンネルブラックなどのカーボンブラック、カーボンナノ粒子、カーボンナノファイバー、カーボンナノチューブ、グラフェン、グラファイト等を挙げることができ、これらのうち、1種を単独で又は2種以上を併用して用いることができる。 The carbon material is not particularly limited, but is, for example, acetylene black, conductive furnace black (CF), super conductive furnace black (SCF), extra conductive furnace black (XCF), conductive channel black (CC), 1, Examples include carbon blacks such as furnace black and channel black heat-treated at a high temperature of about 500 to 3,000 ° C., carbon nanoparticles, carbon nanoparticles, carbon nanotubes, graphene, graphite, etc., and one of them. Can be used alone or in combination of two or more.
 具体的に、アセチレンブラックとしては、デンカブラック(デンカ社製)、シャウニガンアセチレンブラック(シャウニガンケミカル社製)等が、コンダクティブファーネスブラックとしては、コンチネックスCF(コンチネンタルカーボン社製)、バルカンC(キャボット社製)等が、スーパーコンダクティブファーネスブラックとしては、コンチネックスSCF(コンチネンタルカーボン社製)、バルカンSC(キャボット社製)等が、エクストラコンダクティブファーネスブラックとしては、旭HS-500(旭カーボン社製)、バルカンXC-72(キャボット社製)等が、コンダクティブチャンネルブラックとしては、コウラックスL(デグッサ社製)等が例示され、また、ファーネスブラックの一種であるケッチェンブラックEC-350及びケッチェンブラックEC-600JD(ケッチェンブラックインターナショナル社製)や、オイル燃焼反応停止工程に水による急冷工程を含まないオイル燃焼法で製造されるENSACO260G、ENSACO250Gや電池用グレードのSUPER P Li(IMERYS社製)を用いることもできる。 Specifically, acetylene black includes Denka Black (manufactured by Denka) and Shaunigan acetylene black (manufactured by Shaunigan Chemical), and conductive furnace black includes Continex CF (manufactured by Continental Carbon) and Balkan. C (manufactured by Cabot), etc., as Super Conductive Furness Black, Continex SCF (manufactured by Continental Carbon), Balkan SC (manufactured by Cabot), etc., as Extra Conductive Furness Black, Asahi HS-500 (Asahi Carbon) , Vulcan XC-72 (manufactured by Cabot), etc., and Courax L (manufactured by Degussa), etc. are exemplified as the conductive channel black, and Ketjen Black EC-350, which is a kind of furnace black, and Ketchen Black EC-600JD (manufactured by Ketchen Black International), ENSACO260G, ENSACO250G manufactured by the oil combustion method that does not include the quenching process with water in the oil combustion reaction stop process, and SUPER P Li (IMERYS) for battery grade. (Manufactured) can also be used.
 ファーネス法で製造されるカーボンブラックは、不純物、特に硫黄や硫黄化合物の量が硫黄元素の濃度で6,000ppm以下、より好ましくは3,000ppm以下が望ましい。なお、アセチレンブラックや、カーボン結晶化度が高いオイルファーネス法カーボンは、不純物含有率が少ないため、本発明において特に好適に用いられる。 The amount of impurities, especially sulfur and sulfur compounds, in the carbon black produced by the furnace method is preferably 6,000 ppm or less, more preferably 3,000 ppm or less in terms of the concentration of sulfur elements. In addition, acetylene black and oil furnace method carbon having a high degree of carbon crystallinity are particularly preferably used in the present invention because they have a low impurity content.
 (D)カーボン材の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して1~50質量部であり、好ましくは1~30質量部、より好ましくは1~20質量部である。 The blending amount of the carbon material (D) is 1 to 50 parts by mass, preferably 1 to 30 parts by mass, and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). ..
 カーボン材の配合量が多すぎると導電性シリコーンゴム組成物の硬化物の機械的特性が悪化することがあり、また導電性シリコーンゴム組成物の粘度が高くなり、ロールを作製する際の成形性、コーティング性などの作業性が悪化することがある。カーボン材の配合量が少なすぎると目的物の導電性が得られない場合がある。 If the amount of the carbon material is too large, the mechanical properties of the cured product of the conductive silicone rubber composition may deteriorate, and the viscosity of the conductive silicone rubber composition becomes high, so that the moldability when producing a roll is increased. , Workability such as coating property may deteriorate. If the amount of the carbon material blended is too small, the conductivity of the target product may not be obtained.
 このカーボン材の添加・混合方法は、(A)~(C)成分と同時に添加・混合することも可能であるが、好ましくは、より粘度の高い状態で予め分散させた状態のものに、液状オイル((A)成分の液状オルガノポリシロキサン)を添加して成形し易いように粘度を調整する方法が好ましい。 In this method of adding / mixing the carbon material, it is possible to add / mix at the same time as the components (A) to (C), but it is preferable that the carbon material is liquid in a state of being dispersed in advance in a higher viscosity state. A method of adjusting the viscosity by adding oil (liquid organopolysiloxane of the component (A)) so as to be easy to mold is preferable.
 具体的には、まず(D)成分のカーボン材の全量に、(A)成分の液状オルガノポリシロキサンの一部を添加、混合し、カーボン材を十分に分散させる。なお、この時、表面処理剤を加えたり、100~180℃くらいの加熱をしながら混合してもよい。混合後、残りの(A)成分、及び(B)、(C)成分を加え、再度十分に攪拌することにより、所望の粘度を有する液状のシリコーンゴム組成物を得ることができる。 Specifically, first, a part of the liquid organopolysiloxane of the component (A) is added and mixed with the total amount of the carbon material of the component (D), and the carbon material is sufficiently dispersed. At this time, a surface treatment agent may be added, or the mixture may be mixed while heating at about 100 to 180 ° C. After mixing, the remaining components (A) and (B) and (C) are added, and the mixture is sufficiently stirred again to obtain a liquid silicone rubber composition having a desired viscosity.
 導電性シリコーンゴム組成物の硬化物(弾性層)に更に導電性を付与するために、必要に応じて他の導電剤を(D)のカーボン材と併せて使用することもできる。このような他の導電剤として、例えば、アルミニウム、銅、錫、ステンレス鋼のような各種導電性金属又は合金、酸化錫、酸化亜鉛、酸化インジウム、酸化チタン、酸化錫-酸化アンチモン固溶体などを各種導電化処理した金属酸化物が挙げられる。 In order to further impart conductivity to the cured product (elastic layer) of the conductive silicone rubber composition, another conductive agent may be used in combination with the carbon material of (D), if necessary. As such other conductive agents, for example, various conductive metals or alloys such as aluminum, copper, tin and stainless steel, tin oxide, zinc oxide, indium oxide, titanium oxide, tin oxide-antimony oxide solid solution and the like are used. Examples thereof include metal oxides that have been conductively treated.
[(E)成分]
 (E)成分のリチウムを含む帯電防止剤としては、帯電減衰性に特に優れるリチウム塩が好ましく、具体的には、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiSOCF、LiN(SOCF、LiSO、LiC(SOCF、LiB(Cなどが挙げられる。これらは単独で用いてもよく、あるいは2種以上を併用してもよい。LiN(SOCFがより好ましい。
[(E) component]
As the antistatic agent containing lithium component (E), the lithium salt is preferably particularly excellent in charge decay property, specifically, LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiSO 3 CF 3, Examples thereof include LiN (SO 2 CF 3 ) 2 , LiSO 3 C 4 F 9 , LiC (SO 2 CF 3 ) 3 , and LiB (C 6 H 5 ) 4 . These may be used alone or in combination of two or more. LiN (SO 2 CF 3 ) 2 is more preferable.
 また、本発明においては、これら以外のイオン導電剤やカーボンなどの電子導電材、その他のポリエーテルなどの有機高分子系の帯電防止剤を併用することもできる。 Further, in the present invention, an ionic conductive agent other than these, an electronic conductive material such as carbon, and other organic polymer-based antistatic agents such as polyether can be used in combination.
 (E)成分のリチウムを含む帯電防止剤の添加量としては(A)~(B)成分の合計質量部に対し0.005~0.2質量部となる量であり、好ましくは0.005~0.1質量部、より好ましくは0.005~0.05質量部となる量である。0.005質量部より少ないと十分な帯電防止効果が得られない可能性がある。0.2質量部より多いと圧縮永久歪や耐熱性が悪化するおそれがある。 The amount of the antistatic agent containing lithium as the component (E) is 0.005 to 0.2 parts by mass with respect to the total mass parts of the components (A) to (B), preferably 0.005. The amount is up to 0.1 part by mass, more preferably 0.005 to 0.05 part by mass. If it is less than 0.005 parts by mass, a sufficient antistatic effect may not be obtained. If it is more than 0.2 parts by mass, compression set and heat resistance may deteriorate.
[補強性シリカ微粉末]
 本発明にかかるシリコーンゴム組成物への上述した(A)~(E)成分以外の無機質充填剤の添加は任意であり、補強性シリカ微粉末を添加することが可能である。
[Reinforcing silica fine powder]
Addition of an inorganic filler other than the above-mentioned components (A) to (E) to the silicone rubber composition according to the present invention is optional, and reinforcing silica fine powder can be added.
 補強性シリカ微粉末は、機械的強度の優れたシリコーンゴム組成物を得るために、その比表面積(BET吸着法)は10m/g以上、特に50~400m/gであることが好ましい。補強性シリカ微粉末としては、煙霧質シリカ(乾式シリカ)、沈殿シリカ(湿式シリカ)が例示され、中でも煙霧質シリカ(乾式シリカ)が好ましい。 In order to obtain a silicone rubber composition having excellent mechanical strength, the reinforcing silica fine powder preferably has a specific surface area (BET adsorption method) of 10 m 2 / g or more, particularly 50 to 400 m 2 / g. Examples of the reinforcing silica fine powder include aerosol silica (dry silica) and precipitated silica (wet silica), and aerosol silica (dry silica) is preferable.
 これらの使用可能な補強性シリカ微粉末を市販品で例示すると、アエロジル130,200,300(日本アエロジル社製商品名)、Cab-O-sil MS-5,MS-7,HS-5,HS-7(キャボット社製商品名)、SantocelFRC,CS(モンサント社製商品名)、ニップシルVN-3(日本シリカ工業社製商品名)などが挙げられる。また、これらの表面をオルガノポリシロキサン、オルガノポリシラザン、クロロシラン、アルコキシシラン等で疎水化処理してもよい。これらのシリカは単独でも2種以上併用してもよい。 Examples of these usable reinforcing silica fine powders as commercial products include Aerosil 130, 200, 300 (trade name manufactured by Nippon Aerosil Co., Ltd.), Cab-O-sil MS-5, MS-7, HS-5, HS. -7 (Product name manufactured by Cabot), SantocelFRC, CS (Product name manufactured by Monsanto), Nipsil VN-3 (Product name manufactured by Nippon Silica Industry Co., Ltd.) and the like can be mentioned. Further, these surfaces may be hydrophobized with organopolysiloxane, organopolysilazane, chlorosilane, alkoxysilane or the like. These silicas may be used alone or in combination of two or more.
 上記補強性シリカ微粉末は、圧縮永久歪を悪化させ、体積抵抗率の経時上昇変化に大きな影響を与えるため、導電性シリコーンゴム組成物への添加量は少ない方が望ましい。 Since the reinforcing silica fine powder aggravates the compression set and has a great influence on the change in volume resistivity with time, it is desirable that the amount added to the conductive silicone rubber composition is small.
 体積抵抗率や圧縮永久歪に影響なく、上記補強性シリカ微粉末を配合するには、導電性シリコーンゴム組成物中のオルガノポリシロキサン(A)成分100質量部に対して0~5質量部、特に0~3質量部の配合量とすることが好ましい。なお、配合量の下限値は、0.1質量部以上とすることができる。 In order to blend the reinforcing silica fine powder without affecting the volume resistivity and the compression set, 0 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane (A) component in the conductive silicone rubber composition. In particular, the blending amount is preferably 0 to 3 parts by mass. The lower limit of the blending amount can be 0.1 parts by mass or more.
[その他の無機質充填剤など]
 また、補強性シリカ微粉末以外の無機質充填剤としては、珪藻土、パーライト、マイカ、炭酸カルシウム、ガラスフレーク、中空フィラーなどが挙げられる。
[Other inorganic fillers, etc.]
Examples of the inorganic filler other than the reinforcing silica fine powder include diatomaceous earth, pearlite, mica, calcium carbonate, glass flakes, and hollow fillers.
 これら無機質充填剤は、シラン系カップリング剤又はその部分加水分解物、アルキルアルコキシシラン又はその部分加水分解物、有機シラザン類、チタネート系カップリング剤、オルガノポリシロキサンオイル、加水分解性官能基含有オルガノポリシロキサン等により表面処理されたものであってもよい。これらの処理は、無機質充填剤自体を予め処理しても、あるいはオイルとの混合時に処理を行ってもよい。 These inorganic fillers include silane-based coupling agents or partial hydrolysates thereof, alkylalkoxysilanes or partial hydrolysates thereof, organic silazanes, titanate-based coupling agents, organopolysiloxane oils, and hydrolyzable functional group-containing organos. It may be surface-treated with polysiloxane or the like. These treatments may be carried out in advance by treating the inorganic filler itself, or may be carried out at the time of mixing with the oil.
 配合量は、シリコーンゴム組成物中のオルガノポリシロキサン(A)~(B)成分100質量部に対して0~30質量部程度とすることが好ましい。 The blending amount is preferably about 0 to 30 parts by mass with respect to 100 parts by mass of the organopolysiloxane (A) to (B) components in the silicone rubber composition.
 更に、熱伝導性の付与を目的として、熱伝導性フィラー粉末(例えば、金属珪素粉末、アルミナ、アルミニウム、炭化珪素、窒化珪素、酸化マグネシウム、炭酸マグネシウム、酸化亜鉛、窒化アルミニウム、グラファイト、繊維状グラファイト等)を配合することは任意である。 Further, for the purpose of imparting thermal conductivity, a thermally conductive filler powder (for example, metallic silicon powder, alumina, aluminum, silicon carbide, silicon nitride, magnesium oxide, magnesium carbonate, zinc oxide, aluminum nitride, graphite, fibrous graphite). Etc.) is optional.
 また、必要に応じて、窒素含有化合物やアセチレン化合物、リン化合物、ニトリル化合物、カルボキシレート、錫化合物、水銀化合物、硫黄化合物等のヒドロシリル化反応制御剤、各種添加剤、難燃剤、耐熱剤等を配合することも任意である。 In addition, if necessary, hydrosilylation reaction control agents such as nitrogen-containing compounds, acetylene compounds, phosphorus compounds, nitrile compounds, carboxylates, tin compounds, mercury compounds, sulfur compounds, various additives, flame retardants, heat resistant agents, etc. It is also optional to mix.
[導電性シリコーンゴム組成物の調製及びその成形]
 本発明の導電性シリコーンゴム組成物は、ニーダー、プラネタリーミキサー等の通常の混合攪拌器、混練器等を用いて、上記(A)~(E)成分の他、必要に応じてその他の成分(補強性シリカ微粉末及びその他の無機質充填剤)を均一に混合することにより調製することができる。
[Preparation of Conductive Silicone Rubber Composition and Molding thereof]
The conductive silicone rubber composition of the present invention uses a normal mixing stirrer such as a kneader or a planetary mixer, a kneader or the like, and in addition to the above components (A) to (E), other components as necessary. It can be prepared by uniformly mixing (reinforcing silica fine powder and other inorganic fillers).
 導電性シリコーンゴム組成物の成形方法は、注型成形、射出成形、コーティングなどの方法があり、硬化条件としては100~300℃の温度で10秒~1時間の範囲のプレスキュアーが好適に採用される。また、圧縮永久歪を低下させる原因となる低分子シロキサン成分を低減させる等の目的で、成形後、更に120~250℃のオーブン内で30分~70時間程度のポストキュアー(2次キュアー)を行ってもよい。 Molding methods for the conductive silicone rubber composition include casting molding, injection molding, coating, etc., and precure in the range of 10 seconds to 1 hour at a temperature of 100 to 300 ° C. is preferably used as the curing condition. Will be done. Further, for the purpose of reducing the low-molecular-weight siloxane component that causes a decrease in compression set, post-cure (secondary cure) for about 30 minutes to 70 hours in an oven at 120 to 250 ° C. after molding is performed. You may go.
 こうして得られる導電性シリコーンゴム組成物の硬化物からなる弾性層(シリコーンゴムシート)の厚さについては特に限定はないが、通常0.1mm~20mm、好ましくは1mm~2mmである。 The thickness of the elastic layer (silicone rubber sheet) made of the cured product of the conductive silicone rubber composition thus obtained is not particularly limited, but is usually 0.1 mm to 20 mm, preferably 1 mm to 2 mm.
 本発明により、この弾性層を有するものである電子写真式画像形成部材が得られる。 According to the present invention, an electrophotographic image forming member having this elastic layer can be obtained.
 硬化物の体積抵抗率は、現像ロール、現像ベルト用途として適用できればいかなる範囲の導電性でもよいが、通常0.1~10,000,000Ω・m、好ましくは1~10,000,000Ω・m、より好ましくは10~1,000,000Ω・mに設計される。ここで、体積抵抗率は、JIS K6249に準じて測定することができる。 The volume resistivity of the cured product may be any range of conductivity as long as it can be applied to a developing roll or a developing belt, but is usually 0.1 to 10,000,000 Ω · m, preferably 1 to 10,000,000 Ω · m. , More preferably 10 to 1,000,000 Ω · m. Here, the volume resistivity can be measured according to JIS K6249.
 硬化物の帯電防止レベルについては、スタチックオネストメーター(シシド静電気株式会社製)を用いて、成型物の表面に、コロナ放電により静電気をチャージした後、その耐電圧が半分になる時間が、4秒以下であることが好ましい。 Regarding the antistatic level of the cured product, the time required for the withstand voltage to be halved after charging static electricity to the surface of the molded product by corona discharge using a static Honest meter (manufactured by Sisid Electrostatic Co., Ltd.) is 4 It is preferably less than a second.
 本発明により得られる導電性シリコーンゴム組成物の硬化物は、特に電子写真式画像形成部材(特に現像ロール、現像ベルトなど)として有用である。 The cured product of the conductive silicone rubber composition obtained by the present invention is particularly useful as an electrophotographic image forming member (particularly a developing roll, a developing belt, etc.).
 例えば、芯金の外周面に上記導電性シリコーンゴム組成物の硬化物であるシリコーンゴム層を被覆した単層のロールや、耐熱性樹脂又は金属からなる基材の表裏面上に上記導電性シリコーンゴム組成物の硬化物であるシリコーンゴム層を被覆した単層のベルトとして使用してもよいし、あるいはポリイミド樹脂、ウレタン樹脂、フッ素系樹脂などの樹脂を更にシリコーンゴム層の上に被覆したロールやベルトとして使用してもよい。その場合のシリコーンゴム層は表面(外周面)に1層のみの被覆でもよいし、2層以上の複層コーティングであってもよい。中でもロールやベルトの最表面にウレタン樹脂やフッ素系樹脂などを被覆したものが、耐摩耗性などの耐久性の点から好ましい。 For example, a single-layer roll in which the outer peripheral surface of the core metal is coated with a silicone rubber layer which is a cured product of the conductive silicone rubber composition, or the conductive silicone on the front and back surfaces of a base material made of a heat-resistant resin or a metal. It may be used as a single-layer belt coated with a silicone rubber layer which is a cured product of the rubber composition, or a roll obtained by further coating a resin such as a polyimide resin, a urethane resin, or a fluororesin on the silicone rubber layer. Or as a belt. In that case, the silicone rubber layer may be coated with only one layer on the surface (outer peripheral surface), or may be coated with two or more layers. Of these, those in which the outermost surface of the roll or belt is coated with urethane resin, fluorine-based resin, or the like is preferable from the viewpoint of durability such as abrasion resistance.
 ここで、芯金又は基材の材質としては、鉄、ステンレススチール、アルミニウム、ポリアミド/ポリイミド樹脂、PEEK(ポリエーテルエーテルケトン)から選ばれるものであることが好ましい。 Here, the material of the core metal or the base material is preferably selected from iron, stainless steel, aluminum, polyamide / polyimide resin, and PEEK (polyetheretherketone).
 また、フッ素系樹脂としては、フッ素系樹脂コーティング材やフッ素系樹脂チューブなどを用いることができ、フッ素系樹脂コーティング材としては、例えば、ポリテトラフルオロエチレン樹脂(PTFE)のラテックスや、ダイエルラテックス(ダイキン工業社製、フッ素系ラテックス)等が挙げられ、またフッ素系樹脂チューブとしては、市販品を使用し得、例えばポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体樹脂(PFA)、フッ化エチレン-ポリプロピレン共重合体樹脂(FEP)、ポリフッ化ビニリデン樹脂(PVDF)、ポリフッ化ビニル樹脂などが挙げられるが、これらのうちで特にPFA、PTFEラテックスが好ましい。 Further, as the fluorine-based resin, a fluorine-based resin coating material, a fluorine-based resin tube, or the like can be used, and as the fluorine-based resin coating material, for example, a latex of polytetrafluoroethylene resin (PTFE) or a Daiel latex. (Fluorine-based latex manufactured by Daikin Industries, Ltd.) and the like can be mentioned, and commercially available products can be used as the fluorine-based resin tube, for example, polytetrafluoroethylene resin (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether co-weight. Examples thereof include a coalesced resin (PFA), an ethylene fluoride-polypropylene copolymer resin (FEP), a polyvinylidene fluoride resin (PVDF), and a polyvinyl fluoride resin, and among these, PFA and PTFE latex are particularly preferable.
 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、以下に記載の粘度とはJIS K 7117-1:1999に記載の回転粘度計によって測定された25℃における数値である。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. The viscosity described below is a numerical value at 25 ° C. measured by the rotational viscometer described in JIS K 7117-1: 1999.
〔実施例1〕
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、アルケニル基量が0.0071mol/100g、粘度が9,000mPa・sのジメチルポリシロキサン(A1)45質量部、アセチレンブラック(デンカブラック、デンカ株式会社製)(D)9質量部をプラネタリーミキサーで30分混合した後、3本ロールに2回通した。これをプラネタリーミキサーに戻した後、更にジメチルポリシロキサン(A1)100質量部、分子鎖両末端がトリメチルシロキシ基で封鎖され、側鎖にケイ素原子結合水素原子を有するジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(B)(ケイ素原子結合水素原子含有量=0.0032mol/g)5.2質量部、1-エチニルシクロヘキサノール0.1質量部、塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するジメチルポリシロキサン溶液(C)0.22質量部、無機質充填剤として珪藻土15質量部、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.10部を室温にてプラネタリーミキサーで30分間混合して、組成物Aを調製した。次に、調製した組成物Aを120℃で10分プレスキュアーによってシリコーンゴムシートにした後、200℃で4時間の第2次熱処理を行い、JIS K 6249に従って圧縮永久歪、体積抵抗率を測定した。結果を表1に示す。
[Example 1]
Both ends of the molecular chain are sealed with vinyl dimethylsiloxy groups, the amount of alkenyl groups is 0.0071 mol / 100 g, the viscosity is 9,000 mPa · s, 45 parts by mass of dimethylpolysiloxane (A1), acetylene black (Denka Black, Denka Co., Ltd.). (D) 9 parts by mass was mixed with a planetary mixer for 30 minutes, and then passed through 3 rolls twice. After returning this to the planetary mixer, 100 parts by mass of dimethylpolysiloxane (A1), both ends of the molecular chain are sealed with trimethylsiloxy groups, and dimethylsiloxane / methylhydrogensiloxane having a silicon atom-bonded hydrogen atom in the side chain. Siloxane (B) (silicon atom-bonded hydrogen atom content = 0.0032 mol / g) 5.2 parts by mass, 1-ethynylcyclohexanol 0.1 parts by mass, platinum chloride acid / 1,3-divinyltetramethyldi 0.22 parts by mass of dimethylpolysiloxane solution (C) containing 1% by mass of siloxane complex as platinum atom content, 15 parts by mass of diatomaceous soil as an inorganic filler, and 20 parts by mass of LiN (SO 2 CF 3 ) 2 as an antistatic agent. 0.10 parts of the% adipic acid ester solution (E) was mixed at room temperature with a planetary mixer for 30 minutes to prepare composition A. Next, the prepared composition A was made into a silicone rubber sheet by press curing at 120 ° C. for 10 minutes, then subjected to a secondary heat treatment at 200 ° C. for 4 hours, and the compression set and volume resistivity were measured according to JIS K 6249. did. The results are shown in Table 1.
 次に、上記同様にシリコーンゴムシートを作製し、成型物表面に被覆層としてシリコーン変性ウレタンコート材料(X-93-1549:信越化学製)を塗布し、10~30μmの被覆層を形成した。スタチックオネストメーター(シシド静電気株式会社)を用いて、成型物の表面に、コロナ放電により静電気をチャージした後、その帯電圧が半分になる時間を測定した。電荷が半分になるまでの時間が4秒以下の場合〇、4秒より長い場合、もしくは60秒経過しても耐電圧が0とならない場合を×として、電荷減衰速度の評価結果を表1に記載した。 Next, a silicone rubber sheet was prepared in the same manner as above, and a silicone-modified urethane coating material (X-93-1549: manufactured by Shin-Etsu Chemical Co., Ltd.) was applied as a coating layer to the surface of the molded product to form a coating layer of 10 to 30 μm. Using a static electricity meter (Sisid Electrostatic Co., Ltd.), the surface of the molded product was charged with static electricity by corona discharge, and then the time required for the voltage band to be halved was measured. Table 1 shows the evaluation results of the charge decay rate, assuming that the time until the charge is halved is 4 seconds or less, 〇, or longer than 4 seconds, or the withstand voltage does not become 0 even after 60 seconds have passed. Described.
〔実施例2〕
 実施例1において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.1部を0.18質量部に置き換えたこと以外は全て同一の処方で組成物Bを調製し、実施例1と同様の評価を行った結果を表1に示す。
[Example 2]
In Example 1, all the compositions were the same except that 0.1 part of LiN (SO 2 CF 3 ) 2 20% by mass adipate solution (E) was replaced with 0.18 part by mass as an antistatic agent. Table 1 shows the results of preparing the product B and performing the same evaluation as in Example 1.
〔実施例3〕
 実施例1において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.1部を0.26質量部に置き換えたこと以外は全て同一の処方で組成物Cを調製し、実施例1と同様の評価を行った結果を表1に示す。
[Example 3]
In Example 1, all the compositions were the same except that 0.1 part of LiN (SO 2 CF 3 ) 2 20% by mass adipate solution (E) was replaced with 0.26 part by mass as an antistatic agent. Table 1 shows the results of preparing the product C and performing the same evaluation as in Example 1.
〔実施例4〕
 実施例1において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.1部を0.52質量部に置き換えたこと以外は全て同一の処方で組成物Dを調製し、実施例1と同様の評価を行った結果を表1に示す。
[Example 4]
In Example 1, all the compositions were the same except that 0.1 part of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.52 parts by mass as an antistatic agent. Table 1 shows the results of preparing the product D and performing the same evaluation as in Example 1.
〔実施例5〕
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、アルケニル基量が0.0044mol/100g、粘度が22,000mPa・sのジメチルポリシロキサン(A2)9質量部、アセチレンブラック(デンカブラック、デンカ株式会社製)(D)3.5質量部をプラネタリーミキサーで30分混合した後、3本ロールに2回通した。これをプラネタリーミキサーに戻した後、更にジメチルポリシロキサン(A2)100質量部、分子鎖両末端がトリメチルシロキシ基で封鎖され、側鎖にケイ素原子結合水素原子を有するジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(B)(ケイ素原子結合水素原子含有量=0.0075mol/g)5.2質量部、1-エチニルシクロヘキサノール0.1質量部、塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するジメチルポリシロキサン溶液(C)0.22質量部、無機質充填剤として珪藻土15質量部、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.10部を室温にてプラネタリーミキサーで30分間混合して、組成物Eを調製し、実施例1と同様の評価を行った結果を表1に示す。
[Example 5]
Both ends of the molecular chain are sealed with vinyl dimethylsiloxy groups, the amount of alkenyl groups is 0.0044 mol / 100 g, the viscosity is 22,000 mPa · s, 9 parts by mass of dimethylpolysiloxane (A2), acetylene black (Denka Black, Denka Co., Ltd.) (D) 3.5 parts by mass was mixed with a planetary mixer for 30 minutes, and then passed through three rolls twice. After returning this to the planetary mixer, 100 parts by mass of dimethylpolysiloxane (A2), both ends of the molecular chain are sealed with trimethylsiloxy groups, and dimethylsiloxane / methylhydrogensiloxane having a silicon atom-bonded hydrogen atom in the side chain. Siloxane (B) (silicon atom-bonded hydrogen atom content = 0.0075 mol / g) 5.2 parts by mass, 1-ethynylcyclohexanol 0.1 parts by mass, platinum chloride acid / 1,3-divinyltetramethyldi 0.22 parts by mass of dimethylpolysiloxane solution (C) containing 1% by mass of siloxane complex as platinum atom content, 15 parts by mass of diatomaceous soil as an inorganic filler, and 20 parts by mass of LiN (SO 2 CF 3 ) 2 as an antistatic agent. Table 1 shows the results of preparing the composition E by mixing 0.10 parts of the% adipic acid ester solution (E) at room temperature with a planetary mixer for 30 minutes and performing the same evaluation as in Example 1.
〔実施例6〕
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、アルケニル基量が0.015mol/100g、粘度が600mPa・sのジメチルポリシロキサン(A4)100質量部、アセチレンブラック(デンカブラック、デンカ株式会社製)(D)20質量部をプラネタリーミキサーで30分混合した後、3本ロールに2回通した。これをプラネタリーミキサーに戻した後、更に分子鎖両末端がトリメチルシロキシ基で封鎖され、側鎖にケイ素原子結合水素原子を有するジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(B)(ケイ素原子結合水素原子含有量=0.0075mol/g)2.45質量部、1-エチニルシクロヘキサノール0.1質量部、塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するジメチルポリシロキサン溶液(C)0.20質量部、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.025部を室温にてプラネタリーミキサーで30分間混合して、組成物Fを調製し、実施例1と同様の評価を行った結果を表1に示す。
[Example 6]
Both ends of the molecular chain are sealed with vinyldimethylsiloxy groups, 100 parts by mass of dimethylpolysiloxane (A4) having an alkenyl group amount of 0.015 mol / 100 g and a viscosity of 600 mPa · s, acetylene black (Denka Black, manufactured by Denka Co., Ltd.). (D) After mixing 20 parts by mass with a planetary mixer for 30 minutes, the mixture was passed through three rolls twice. After returning this to the planetary mixer, both ends of the molecular chain are further sealed with a trimethylsiloxy group, and the dimethylsiloxane / methylhydrogensiloxane copolymer (B) having a silicon atom-bonded hydrogen atom in the side chain (silicon atom bond). Hydrogen atom content = 0.0075 mol / g) 2.45 parts by mass, 1-ethynylcyclohexanol 0.1 part by mass, platinum chloride acid / 1,3-divinyltetramethyldisiloxane complex as platinum atom content 1 mass 0.20 parts by mass of dimethylpolysiloxane solution (C) containing%, and 0.025 parts of LiN (SO 2 CF 3 ) 2 as antistatic agent in 20% by mass of adipic acid ester solution (E) at room temperature in a planetary mixer. The composition F was prepared by mixing with the mixture for 30 minutes, and the results of the same evaluation as in Example 1 are shown in Table 1.
〔実施例7〕
 実施例6において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.025部を0.5質量部に置き換えたこと以外は全て同一の処方で組成物Gを調製し、実施例1と同様の評価を行った結果を表1に示す。
[Example 7]
In Example 6, the composition was the same except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.5 part by mass as an antistatic agent. Table 1 shows the results of preparing the product G and performing the same evaluation as in Example 1.
〔実施例8〕
 実施例6において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.025部を1.0質量部に置き換えたこと以外は全て同一の処方で組成物Hを調製し、実施例1と同様の評価を行った結果を表1に示す。
[Example 8]
In Example 6, the composition was the same except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 1.0 part by mass as an antistatic agent. Table 1 shows the results of preparing the product H and performing the same evaluation as in Example 1.
〔実施例9〕
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、アルケニル基量が0.015mol/100g、粘度が600mPa・sのジメチルポリシロキサン(A4)8質量部、アセチレンブラック(デンカブラック、デンカ株式会社製)(D)1.5質量部をプラネタリーミキサーで30分混合した後、3本ロールに2回通した。これをプラネタリーミキサーに戻した後、更にジメチルポリシロキサン(A4)92質量部、分子鎖両末端がトリメチルシロキシ基で封鎖され、側鎖にケイ素原子結合水素原子を有するジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(B)(ケイ素原子結合水素原子含有量=0.0075mol/g)2.45質量部、1-エチニルシクロヘキサノール0.1質量部、塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するジメチルポリシロキサン溶液(C)0.20質量部、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.025部を室温にてプラネタリーミキサーで30分間混合して、組成物Qを調製し、実施例1と同様の評価を行った結果を表1に示す。
[Example 9]
Both ends of the molecular chain are sealed with vinyldimethylsiloxy groups, the amount of alkenyl groups is 0.015 mol / 100 g, the viscosity is 600 mPa · s, 8 parts by mass of dimethylpolysiloxane (A4), acetylene black (Denka Black, manufactured by Denka Co., Ltd.). (D) After mixing 1.5 parts by mass with a planetary mixer for 30 minutes, the mixture was passed through three rolls twice. After returning this to the planetary mixer, 92 parts by mass of dimethylpolysiloxane (A4), both ends of the molecular chain are sealed with trimethylsiloxy groups, and dimethylsiloxane / methylhydrogensiloxane having a silicon atom-bonded hydrogen atom in the side chain. Copolymer (B) (silicon atom-bonded hydrogen atom content = 0.0075 mol / g) 2.45 parts by mass, 1-ethynylcyclohexanol 0.1 parts by mass, platinum chloride acid / 1,3-divinyltetramethyldi 0.20 parts by mass of dimethylpolysiloxane solution (C) containing 1% by mass of siloxane complex as platinum atom content, 20% by mass of adipic acid ester solution (E) 0 of LiN (SO 2 CF 3 ) 2 as antistatic agent .025 parts were mixed at room temperature with a planetary mixer for 30 minutes to prepare a composition Q, and the results of the same evaluation as in Example 1 are shown in Table 1.
〔比較例1〕
 実施例1において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.10部を配合しないこと以外は全て同一の処方で組成物Iを調製し、実施例1と同様の評価を行った結果を表2に示す。
[Comparative Example 1]
In Example 1, composition I was prepared with the same formulation except that 0.10 part of a 20% by mass adipate solution (E) of LiN (SO 2 CF 3 ) 2 was not blended as an antistatic agent. Table 2 shows the results of the same evaluation as in Example 1.
〔比較例2〕
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、アルケニル基量が0.0077mol/100g、粘度が7,000mPa・sのジメチルポリシロキサン(A3)58質量部、アセチレンブラック(デンカブラック、デンカ株式会社製)(D)13質量部をプラネタリーミキサーで30分混合した後、3本ロールに2回通した。これをプラネタリーミキサーに戻した後、更にジメチルポリシロキサン(A3)100質量部、分子鎖両末端がトリメチルシロキシ基で封鎖され、側鎖にケイ素原子結合水素原子を有するジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(B)(ケイ素原子結合水素原子含有量=0.0032mol/g)5.2質量部、1-エチニルシクロヘキサノール0.1質量部、塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するジメチルポリシロキサン溶液(C)0.22質量部、無機質充填剤として珪藻土15質量部を室温にてプラネタリーミキサーで30分間混合して、組成物Jを調製した。実施例1と同様の評価を行った結果を表2に示す。
[Comparative Example 2]
Both ends of the molecular chain are sealed with vinyl dimethylsiloxy groups, the amount of alkenyl groups is 0.0077 mol / 100 g, the viscosity is 7,000 mPa · s, 58 parts by mass of dimethylpolysiloxane (A3), acetylene black (Denka Black, Denka Co., Ltd.) (D) 13 parts by mass was mixed with a planetary mixer for 30 minutes, and then passed through three rolls twice. After returning this to the planetary mixer, 100 parts by mass of dimethylpolysiloxane (A3), both ends of the molecular chain are sealed with trimethylsiloxy groups, and dimethylsiloxane / methylhydrogensiloxane having a silicon atom-bonded hydrogen atom in the side chain. Siloxane (B) (silicon atom-bonded hydrogen atom content = 0.0032 mol / g) 5.2 parts by mass, 1-ethynylcyclohexanol 0.1 parts by mass, platinum chloride acid / 1,3-divinyltetramethyldi A composition obtained by mixing 0.22 parts by mass of a dimethylpolysiloxane solution (C) containing 1% by mass of a siloxane complex as a platinum atom content and 15 parts by mass of diatomaceous soil as an inorganic filler at room temperature with a planetary mixer for 30 minutes. J was prepared. Table 2 shows the results of the same evaluation as in Example 1.
〔比較例3〕
 実施例1において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.1部を0.01質量部に置き換えたこと以外は全て同一の処方で組成物Kを調製し、実施例1と同様の評価を行った結果を表2に示す。
[Comparative Example 3]
In Example 1, all the compositions were the same except that 0.1 part of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.01 part by mass as an antistatic agent. Table 2 shows the results of preparing the product K and performing the same evaluation as in Example 1.
〔比較例4〕
 実施例6において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)を配合しないこと以外は全て同一の処方で組成物Mを調製し、実施例1と同様の評価を行った結果を表2に示す。
[Comparative Example 4]
In Example 6, the composition M was prepared with the same formulation except that the 20% by mass adipate ester solution (E) of LiN (SO 2 CF 3 ) 2 was not blended as an antistatic agent, and the composition M was prepared with Example 1. Table 2 shows the results of similar evaluations.
〔比較例5〕
 実施例6において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.025部を0.01質量部に置き換えたこと以外は全て同一の処方で組成物Nを調製し、実施例1と同様の評価を行った結果を表2に示す。
[Comparative Example 5]
In Example 6, the composition was the same except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.01 part by mass as an antistatic agent. Table 2 shows the results of preparing the product N and performing the same evaluation as in Example 1.
〔比較例6〕
 実施例6において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.025部を5質量部に置き換えたこと以外は全て同一の処方で組成物Oを調製し、実施例1と同様の評価を行った結果を表2に示す。
[Comparative Example 6]
In Example 6, the composition O has the same formulation except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) is replaced with 5 parts by mass as an antistatic agent. The results of the same evaluation as in Example 1 are shown in Table 2.
〔比較例7〕
 実施例6において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.025部を10質量部に置き換えたこと以外は全て同一の処方で組成物Pを調製し、実施例1と同様の評価を行った結果を表2に示す。
[Comparative Example 7]
In Example 6, the composition P has the same formulation except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) is replaced with 10 parts by mass as an antistatic agent. The results of the same evaluation as in Example 1 are shown in Table 2.
〔比較例8〕
 実施例9において、帯電防止剤としてLiN(SOCFの20質量%アジピン酸エステル溶液(E)0.025部を0.01質量部に置き換えたこと以外は全て同一の処方で組成物Rを調製し、実施例1と同様の評価を行った結果を表2に示す。
[Comparative Example 8]
In Example 9, all the compositions were the same except that 0.025 part by mass of LiN (SO 2 CF 3 ) 2 in 20% by mass of the adipate ester solution (E) was replaced with 0.01 part by mass as an antistatic agent. Table 2 shows the results of preparing the product R and performing the same evaluation as in Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例では、いずれも十分な(E)成分が含まれているため帯電減衰の性能が十分であった。それと比べて(E)成分を含まない比較例1、2、4及び(E)成分の下限を下回る比較例3、5、8では十分な帯電減衰が見られなかった。また、過剰に(E)成分を含んだ比較例6、7では帯電減衰は十分であったが、圧縮永久歪が大きくなり使用に適さないものとなった。 In the examples, the charge attenuation performance was sufficient because all of them contained a sufficient component (E). In comparison, in Comparative Examples 1, 2, 4 containing no component (E) and Comparative Examples 3, 5, and 8 below the lower limit of the component (E), sufficient charge attenuation was not observed. Further, in Comparative Examples 6 and 7 containing an excessive amount of the component (E), the charge attenuation was sufficient, but the compression set became large and unsuitable for use.
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.

Claims (5)

  1. (A)ケイ素原子に結合したアルケニル基を1分子中に少なくとも2個含有する液状のオルガノポリシロキサン:100質量部、
    (B)1分子中に少なくとも2個のケイ素原子と結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(B)成分に含まれるケイ素原子と結合した水素原子の数が、前記(A)成分に含まれるケイ素原子と結合したアルケニル基1個に対して0.5~10個となる量、
    (C)付加反応触媒としての白金族金属系触媒:前記(A)~(B)成分の合計質量に対し白金族金属換算で0.5~1,000ppmとなる量、
    (D)カーボン材:1~50質量部、
    (E)リチウムを含む帯電防止剤:前記(A)~(B)成分の合計質量に対し0.005~0.2質量部となる量、
    を含むものであることを特徴とする付加硬化型液状導電性シリコーンゴム組成物。
    (A) Liquid organopolysiloxane containing at least two alkenyl groups bonded to a silicon atom in one molecule: 100 parts by mass,
    (B) Organohydrogenpolysiloxane containing hydrogen atoms bonded to at least two silicon atoms in one molecule: The number of hydrogen atoms bonded to silicon atoms contained in the component (B) is the component (A). Amount of 0.5 to 10 per alkenyl group bonded to a silicon atom contained in
    (C) Platinum group metal-based catalyst as an addition reaction catalyst: An amount of 0.5 to 1,000 ppm in terms of platinum group metal with respect to the total mass of the components (A) to (B).
    (D) Carbon material: 1 to 50 parts by mass,
    (E) Antistatic agent containing lithium: an amount of 0.005 to 0.2 parts by mass with respect to the total mass of the components (A) to (B).
    An addition-curable liquid conductive silicone rubber composition, which comprises.
  2.  前記(E)成分が、LiBF、LiClO、LiPF、LiAsF、LiSbF、LiSOCF、LiN(SOCF、LiSO、LiC(SOCF、及びLiB(Cから選ばれる1種以上であることを特徴とする請求項1に記載の付加硬化型液状導電性シリコーンゴム組成物。 The component (E), LiBF 4, LiClO 4, LiPF 6, LiAsF 6, LiSbF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiSO 3 C 4 F 9, LiC (SO 2 CF 3) 3. The addition-curable liquid conductive silicone rubber composition according to claim 1, wherein the composition is one or more selected from 3 and LiB (C 6 H 5 ) 4.
  3.  前記(E)成分が、LiN(SOCFであることを特徴とする請求項1又は請求項2に記載の付加硬化型液状導電性シリコーンゴム組成物。 The addition-curable liquid conductive silicone rubber composition according to claim 1 or 2 , wherein the component (E) is LiN (SO 2 CF 3 ) 2.
  4.  請求項1から請求項3のいずれか一項に記載の付加硬化型液状導電性シリコーンゴム組成物の硬化物からなる弾性層を有するものであることを特徴とする電子写真式画像形成部材。 An electrophotographic image-forming member having an elastic layer made of a cured product of the addition-curable liquid conductive silicone rubber composition according to any one of claims 1 to 3.
  5.  前記電子写真式画像形成部材が、現像ロール及び現像ベルトから選ばれる部材であることを特徴とする請求項4に記載の電子写真式画像形成部材。 The electrophotographic image forming member according to claim 4, wherein the electrophotographic image forming member is a member selected from a developing roll and a developing belt.
PCT/JP2021/018866 2020-06-11 2021-05-18 Addition-curing liquid electroconductive silicone rubber composition and electrophotographic image formation member WO2021251078A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020101423A JP7300422B2 (en) 2020-06-11 2020-06-11 Addition-curable liquid conductive silicone rubber composition and electrophotographic imaging member
JP2020-101423 2020-06-11

Publications (1)

Publication Number Publication Date
WO2021251078A1 true WO2021251078A1 (en) 2021-12-16

Family

ID=78847220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018866 WO2021251078A1 (en) 2020-06-11 2021-05-18 Addition-curing liquid electroconductive silicone rubber composition and electrophotographic image formation member

Country Status (2)

Country Link
JP (1) JP7300422B2 (en)
WO (1) WO2021251078A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265340A (en) * 2005-03-23 2006-10-05 Shin Etsu Chem Co Ltd Nonconductive silicone rubber composition for fixing roll or fixing belt and fixing roll and fixing belt therefrom
JP2018510931A (en) * 2015-02-16 2018-04-19 東レ・ダウコーニング株式会社 Sponge-forming silicone rubber composition and silicone rubber sponge
JP2019214640A (en) * 2018-06-11 2019-12-19 信越化学工業株式会社 Addition reaction curable liquid conductive silicone rubber composition, and electrophotography-type image-forming member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265340A (en) * 2005-03-23 2006-10-05 Shin Etsu Chem Co Ltd Nonconductive silicone rubber composition for fixing roll or fixing belt and fixing roll and fixing belt therefrom
JP2018510931A (en) * 2015-02-16 2018-04-19 東レ・ダウコーニング株式会社 Sponge-forming silicone rubber composition and silicone rubber sponge
JP2019214640A (en) * 2018-06-11 2019-12-19 信越化学工業株式会社 Addition reaction curable liquid conductive silicone rubber composition, and electrophotography-type image-forming member

Also Published As

Publication number Publication date
JP7300422B2 (en) 2023-06-29
JP2021195417A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
US7537838B2 (en) Heat fixing roll and fixing belt
JP4905626B2 (en) Insulating silicone rubber composition and cured product thereof
JP2022175286A (en) Addition reaction-curable liquid electroconductive silicone rubber composition, and electrophotographic image-forming member
JP4900584B2 (en) Thermal fixing roll or fixing belt
KR101235402B1 (en) Insulating Silicone Rubber Composition for Fixing Roller or Fixing Belt, and Fixing Roller and Fixing Belt
JP5835100B2 (en) Antistatic silicone rubber composition and method for inhibiting yellowing of cured antistatic silicone rubber
CN106543731B (en) Silicone rubber composition and power cable
JP4868143B2 (en) Addition-curing liquid conductive silicone rubber composition for developing roller and developing roller
JP4973845B2 (en) Addition-curable liquid conductive silicone rubber composition for roller and developing roller
JP4114071B2 (en) Addition-curable liquid conductive silicone rubber composition for roller, roller, and method for reducing compression set of cured conductive silicone rubber for roller
US11434345B2 (en) High dielectric insulating silicone rubber composition and electric field relaxation layer
JP5471350B2 (en) High heat conductive silicone rubber composition for fixing roll for office machine or fixing belt for office machine, fixing roll and fixing belt
JP6891861B2 (en) Additive-curable liquid conductive silicone rubber composition and electrophotographic image forming member
JP2003082232A (en) Silicone rubber composition for semiconductive roller and semiconductive roller
JP2017132832A (en) Manufacturing method of addition curable liquid conductive silicone rubber composition, roll for business machine and belt for business machine
JP4920147B2 (en) Semiconductive roll
JP4840560B2 (en) Conductive roller and method for improving adhesion between silicone rubber elastic layer and surface layer thereof
JP7300422B2 (en) Addition-curable liquid conductive silicone rubber composition and electrophotographic imaging member
JP4636233B2 (en) Conductive silicone rubber composition and method for producing the same
JP4893756B2 (en) Developing roll
KR102555551B1 (en) Silicone rubber composition for forming fixing member and fixing member
JP2022175019A (en) Addition-curable conductive millable silicone rubber composition and conductive silicone rubber molding, and method for inhibiting degradation of addition-curable conductive millable silicone rubber composition over time during storage
JP2023091888A (en) Addition-curing type liquid silicone rubber composition and electrophotographic image forming member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822783

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822783

Country of ref document: EP

Kind code of ref document: A1