WO2021250836A1 - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
WO2021250836A1
WO2021250836A1 PCT/JP2020/022970 JP2020022970W WO2021250836A1 WO 2021250836 A1 WO2021250836 A1 WO 2021250836A1 JP 2020022970 W JP2020022970 W JP 2020022970W WO 2021250836 A1 WO2021250836 A1 WO 2021250836A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection hole
fuel
wall portion
valve
valve seat
Prior art date
Application number
PCT/JP2020/022970
Other languages
French (fr)
Japanese (ja)
Inventor
恭輔 渡邉
啓祐 伊藤
毅 宗実
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022530447A priority Critical patent/JPWO2021250836A1/ja
Priority to PCT/JP2020/022970 priority patent/WO2021250836A1/en
Priority to CN202080101556.3A priority patent/CN115698496A/en
Publication of WO2021250836A1 publication Critical patent/WO2021250836A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This application relates to a fuel injection valve.
  • Patent Document 1 discloses a fuel injection valve provided with a valve seat and a valve body having an opening through which fuel passes from the upstream side, and a plate for forming a swirling flow on the downstream side of the valve seat.
  • a radial recess having a branch portion, an introduction portion, a cylindrical portion, and a swivel portion is machined on the upstream side of the plate, and an injection hole is machined on the downstream side of the cylindrical portion, and the flow including the swivel portion is machined.
  • the shape of the plate of the fuel injection valve has been proposed so as to realize further atomization of the fuel to be sprayed by defining the dimensions of the path.
  • the end surface of the swivel portion of the plate is tilted by an angle ⁇ with respect to the central axis of the introduction portion, and the angle ⁇ is set to a range of 0 ° or more and 45 ° or less.
  • the fuel flow A that directly flows in from the introduction portion and the fuel flow B that flows into the cylindrical portion via the swivel portion face each other, and the width of the introduction portion is W1 and the swivel portion has a width of W1. It is described that when the width is W2, the strengths of the fuel flow A and the fuel flow B are substantially the same by setting [0.3 ⁇ W2 / W1 ⁇ 0.7]. There is.
  • Patent Document 2 it is proposed to adjust the position where the injection hole is arranged and to provide an angle to the injection hole as a method for realizing sufficient atomization of the fuel while suppressing the spread of the fuel spray. ..
  • the spread of the fuel spray is suppressed by adjusting the strength of the turning force of the fuel by arranging the injection holes, and at the same time, the injection holes are adjusted by adjusting the injection hole angle. It is said that the impact force of the fuel on the inner wall surface of the fuel can be increased to suppress the deterioration of the atomization performance or improve the atomization performance.
  • Patent Document 2 by adjusting the position of the injection hole, that is, the position of the central axis of the introduction portion and the adjustment of the injection hole offset amount, the turning force of the fuel is adjusted to suppress the spread of the spray, and at the same time, the injection hole is formed.
  • the position of the injection hole that is, the position of the central axis of the introduction portion and the adjustment of the injection hole offset amount
  • the turning force of the fuel is adjusted to suppress the spread of the spray, and at the same time, the injection hole is formed.
  • a part of the fuel flow A collides with the inner wall surface of the injection hole, and the velocity component in the plane direction perpendicular to the axis of the injection hole is increased to inject. It is said that the fuel that has passed through the hole is thinned just below the injection hole, and atomization is promoted.
  • the range in which the effect is obtained is the range larger than 0 ° and smaller than 180 °, that is, the hole is tilted in the direction opposite to the offset direction of the hole with respect to the introduction portion. It is described in Patent Document 2 that the range is a range in which the atomization effect is promoted.
  • Patent Documents 1 and 2 both describe that there is a flow A in which fuel flows directly from the introduction portion into the injection hole and a flow B in which fuel flows into the injection hole via the swivel chamber.
  • the fuel flow A and the fuel flow B are opposed to each other, and the strengths of the flow A and the flow B are made substantially the same, so that the uniformity of the liquid film in the injection hole is improved and the fuel is atomized.
  • the center of the injection hole entrance is It is offset in the direction in which the first side wall portion exists with respect to the central axis of the introduction portion, and is provided so as to coincide with the center of the swivel chamber.
  • the swivel chamber comprises a curved wall portion having a curved wall surface.
  • the curved wall portion is connected to the first side wall portion via a first facing wall portion extending linearly.
  • the injection hole portion is The first side wall portion is arranged at a position where the virtual extension line extending in the direction of the injection hole portion and the injection hole inlet portion intersect with each other.
  • the central axis of the injection hole portion connecting the center of the injection hole inlet portion and the center of the injection hole outlet portion is inclined in the direction of the plate thickness of the injection hole plate.
  • the injection hole is parallel to the central axis of the introduction portion and is orthogonal to the Y axis and is orthogonal to the central axis of the introduction portion.
  • the projection central axis obtained by projecting the central axis of the injection hole portion onto a virtual plane orthogonal to the central axis of the valve seat is the Cartesian coordinate system from the positive Y axis to the positive X axis. It exists at a position rotated by an angle ⁇ 1 about the origin of The angle ⁇ 1 has a value satisfying [0 ° ⁇ ⁇ 1 ⁇ 180 °]. It is something like that.
  • the fuel injection valve disclosed in the present application it is possible to obtain a fuel injection valve that suppresses excessive spread of the fuel spray while improving the atomization performance of the fuel spray.
  • FIG. 1 It is sectional drawing of the fuel injection valve according to Embodiment 1 to Embodiment 5. It is a partially enlarged sectional view showing a part of the fuel injection valve shown in FIG. 1 in an enlarged manner. It is a conceptual diagram of the injection hole plate seen from the direction of the arrow Z of FIG. 2A. It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve according to Embodiment 1. FIG. It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by the comparative example 1. FIG. It is another explanatory view which enlarges and shows a part of the injection hole plate in the fuel injection valve according to Embodiment 1. FIG.
  • FIG. It is another explanatory view which enlarges and shows a part of the injection hole plate in the fuel injection valve according to Embodiment 2.
  • FIG. It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by the comparative example 2. It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by Embodiment 3.
  • FIG. It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by Embodiment 4.
  • FIG. It is another explanatory view which shows enlarged part of the injection hole plate in the fuel injection valve according to Embodiment 4.
  • FIG. It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve according to Embodiment 5.
  • FIG. 1 is a sectional view of the fuel injection valve according to the first to tenth embodiments
  • FIG. 2A is a partially enlarged sectional view showing a part of the fuel injection valve shown in FIG. 1
  • FIG. 2B is FIG. 2A.
  • It is a conceptual diagram of the injection hole plate seen from the direction of the arrow Z of.
  • FIG. 2B shows the concept of the injection hole plate of the fuel injection valve according to the first to tenth embodiments, and the detailed configuration of the injection hole plate according to each embodiment will be described later.
  • the solenoid device 4 is a resin frame body 71 having flanges at both ends in the axial direction, a coil 7 wound around the outer peripheral portion of the frame body 71, and a yoke arranged on the outer peripheral portion of the coil 7.
  • the metal housing 5 of the above, the metal core 6 inserted into the inner peripheral surface of the frame body 71 and the inner peripheral surface of the housing 5, the coil 7, the frame body 71, the core 6 and the housing 5 are embedded inside. It is composed of a resin-made insulating outer cover 41.
  • the valve device 9 includes a valve body 10, an amateur 8 made of a magnetic metal, a valve seat 12, a valve holder 11, and a jet hole plate 13.
  • the valve holder 11 is fixed to the core 6 by welding after the one end portion in the axial direction is press-fitted into the outer peripheral portion of the one end portion in the axial direction of the core 6.
  • the valve holder 11 is provided with an annular guide portion 11a protruding from the inner peripheral surface on the inner peripheral surface on the one end side in the axial direction.
  • the amateur 8 is fixed by welding integrally with the valve body 10 after pressing one end of the valve body 10 in the axial direction into the hollow portion of the amateur.
  • the amateur 8 is slidably supported in the axial direction by the guide portion 11a of the valve holder 11, and as will be described later, when sucked by the core 6, the amateur 8 slides in the axial direction and the end surface 8a of the amateur 8 slides in the axial direction. It abuts on the end face of the core 6.
  • the ball 15 is fixed to the other end of the valve body 10 in the axial direction by welding, and has a plurality of, for example, six flat surfaces 15a formed by chamfering.
  • the valve seat 12 is formed in a hollow cylindrical shape with one end in the axial direction open, and the valve seat opening 12d is provided at the end wall of the other end in the axial direction.
  • the above-mentioned ball 15 fixed by welding to the other end of the valve body 10 in the axial direction is arranged inside the valve seat 12.
  • the ball 15 moves with the axial movement of the valve body 10.
  • An annular valve seat seat portion 12a whose surface is inclined in the axial direction is formed on the inner surface of the end wall portion of the valve seat 12.
  • the valve seat opening 12d is closed when the ball 15 is seated on the valve seat portion 12a of the valve seat 12, and the ball 15 is released from the above-mentioned blockage when the ball 15 is separated from the valve seat portion 12a.
  • the inside and the outside of the are communicated.
  • the valve body 10 is always urged in the direction of the valve seat 12 by the compression spring 16.
  • the dish-shaped injection hole plate 13 includes a plurality of injection hole portions 14, is arranged so as to face the valve seat 12 on the downstream side of the fuel flow, and has a welded portion on the end face on the downstream side of the valve seat 12. It is fixed by 50.
  • the peripheral edge portion of the valve seat 12 and the peripheral edge portion of the injection hole plate 13 are fixed in contact with the inner peripheral portion of the other end portion in the axial direction of the valve holder 11.
  • the injection hole plate 13 has a central portion 13a, a plurality of introduction portions 13b connected to the central portion 13a, and a plurality of introduction portions 13b on the surface facing the valve seat 12, that is, the end surface on the upstream side of the fuel flow.
  • the central portion 13a, the introduction portion 13b, and the swivel chamber 13c are formed on the upstream end surface of the injection hole plate 13.
  • the injection hole plate 13 is provided on the upstream end surface of the fuel in correspondence with the central portion 13a, the four introduction portions 13b connected to the central portion 13a, and these introduction portions 13b. It has four swivel chambers 13c, each connected to a corresponding introduction portion 13b.
  • the central portion 13a is provided at a position facing the valve seat opening 12d so that the fuel flowing out from the valve seat opening 12d may flow in.
  • Each introduction portion 13b is configured to guide the fuel flowing into the central portion 13a to the corresponding swivel chamber 13c.
  • the injection hole portion 14 is provided in each swivel chamber 13c.
  • the bottom surfaces of the central portion 13a, the introduction portion 13b, and the swivel chamber 13c are configured to form substantially the same plane and be continuous.
  • the center of the central portion 13a coincides with the central axis F of the fuel injection valve 1.
  • FIG. 2B shows a case where four introduction portions 13b, four swivel chambers 13c, and four injection hole portions 14 are provided, but these are not limited to four.
  • the operation of the fuel injection valve 1 will be described.
  • the coil 7 of the fuel injection valve 1 is energized, and a magnetic circuit composed of an amateur 8, a core 6, a housing 5, and a valve holder 11.
  • a magnetic flux is generated in the engine, the amateur 8 is attracted and moves in the direction of the core 6 against the attached force of the compression spring 16, and the ball 15 of the valve body 10 having an integral structure with the amateur 8 is a valve of the valve seat 12. It separates from the seat portion 12a, and a gap is formed between the ball 15 and the valve seat portion 12a.
  • the fuel passes from the flat surface 15a of the ball 15 through the gap between the valve seat portion 12a and the valve body 10 and from the valve seat opening 12d. It flows into the central portion 13a of the injection hole plate 13 and flows into the swivel chamber 13c connected to the respective introduction portions 13b via the respective introduction portions 13b extending radially from the central portion 13a.
  • the fuel flowing into the swivel chamber 13c swirls along the curved wall portion 13c1 of the swivel chamber 13c, flows into the injection hole inlet portion 141 of the injection hole portion 14, and enters the intake port of the internal combustion engine from the injection hole outlet portion 142. It is sprayed.
  • the injection hole plate 13 has a central portion 13a communicating with the valve seat opening 12d.
  • the introduction portion 13b having a plurality of flat cross sections and the swivel chamber 13c including the injection hole portion 14 are arranged so as to communicate with each other.
  • the fuel that has flowed into the swirl chamber 13c flows into the injection hole portion 14 while generating a swirling flow, and the swirling flow is maintained inside the injection hole portion 14 so that the thin fuel along the inner wall of the injection hole portion 14 can be used.
  • a liquid film is formed, and the thin liquid film is injected from the injection hole outlet portion 142 of the injection hole portion 14 in a hollow conical shape to promote atomization of the fuel.
  • the injection hole portion 14 provided in the swirl chamber 13c includes an injection hole inlet portion 141 that opens inside the swivel chamber 13c and a injection hole outlet portion 142 that opens on the surface of the injection hole plate 13 on the downstream side with respect to the fuel flow. ,have.
  • the center O of the injection hole inlet portion 141 is provided at a position offset in the direction of the first side wall portion 13b1 of the introduction portion 13b with respect to the central axis M of the introduction portion 13b, and coincides with the center of the swivel chamber 13c. It is provided in.
  • the second side wall portion 13b2 of the introduction portion 13b faces the first side wall portion 13b1 with the central axis M interposed therebetween.
  • the first side wall portion 13b1 on the side where the center O of the injection hole inlet portion 141 is offset is connected to the curved wall portion 13c1 of the swivel chamber 13c via the first facing wall portion L extending linearly.
  • the angle formed by the first facing wall portion L and the central axis M of the introduction portion 13b is an angle ⁇ 2.
  • the injection hole portion 14 is arranged so that the first side wall portion 13b1 of the introduction portion 13b intersects the virtual extension line 13b1v extending in the direction of the injection hole portion 14 and the injection hole inlet portion 141, and the injection hole inlet.
  • the central axis N (not shown) connecting the center O of the portion 141 and the center of the injection hole outlet portion 142 is inclined at the injection hole angle ⁇ (not shown) with respect to the plate thickness direction of the injection hole plate 13. It is configured as follows.
  • the injection hole angle ⁇ is the Z axis of virtual Cartesian coordinates described later, that is, the central axis connecting the axis extending perpendicularly to the paper surface of FIG. 3 and the center O of the injection hole inlet portion 141 and the center of the injection hole outlet portion 142.
  • the angle between N and N is the Z axis of virtual Cartesian coordinates described later, that is, the central axis connecting the axis extending perpendicularly to the paper surface of FIG.
  • the Y-axis parallel to the central axis M of the introduction portion 13b and the direction from the swivel chamber 13c toward the central portion 13a is the positive direction, and the injection hole inlet portion 141 with respect to the central axis M of the introduction portion 13b orthogonal to the Y-axis.
  • the central axis N of the introduction unit 13b is projected onto the virtual plane orthogonal to the central axis F of the valve seat 12.
  • the projection axis N1 exists at a position rotated by an angle ⁇ 1 about the origin of the Cartesian coordinate system from the positive Y axis to the positive X axis, and the angle ⁇ 1 is [0 ° ⁇ ⁇ 1 ⁇ 180 °].
  • the plurality of swivel chambers 13c and the plurality of introduction portions 13b formed in the injection hole plate 13 having a value satisfying the above conditions all have the above-mentioned configuration shown in FIG.
  • the fuel injection valve 1 since the fuel injection valve 1 according to the first embodiment includes the injection hole plate 13 configured as described above, the flow A of the fuel directly flowing from the introduction portion 13b into the injection hole portion 14 is the injection hole portion 14.
  • the phenomenon of peeling from the inner wall surface of the injection hole portion 14 when plunging into the injection hole portion 14 is suppressed, and the fuel swirls inside the injection hole portion 14 along the inner wall surface of the injection hole portion 14 and is external from the injection hole outlet portion 142. Since the fuel is injected into the fuel flow A, the peripheral speed inside the injection hole portion 14 of the fuel flow A is improved.
  • the interference component with the fuel flow B generated by the collision of the fuel flow A with the inner wall surface of the injection hole portion 14 is also suppressed, the pressure loss of the entire fuel flow inside the injection hole portion 14 is suppressed. This has the effect of promoting atomization of the fuel.
  • the inflow direction of the fuel flow B into the injection hole portion 14 can be adjusted, and the fuel flow B and the fuel flow B and the fuel can be adjusted.
  • FIG. 4 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to Comparative Example 1, and is for comparison with the fuel injection valve according to the first embodiment.
  • the angle ⁇ 1 has a value satisfying [0 ° ⁇ ⁇ 1 ⁇ 180 °], but in Comparative Example 1 shown in FIG. 4, the angle ⁇ 1 is [ ⁇ 1> 180 °]. Has a value of.
  • Other configurations are the same as in the case of the first embodiment.
  • the fuel flow A from the introduction portion 13b directly flows into the injection hole portion 14 and collides with the inner wall surface of the injection hole portion 14. , Flow AL and flow AR.
  • the flow direction of the split flow AL of the flow A is opposite to the direction in which the fuel flow B from the introduction portion 13b turns clockwise inside the swivel chamber 13c and then flows into the injection hole portion 14. Will be.
  • the flow direction of the split flow AR of the flow A is the same as the direction in which the fuel flow B from the introduction portion 13b flows into the injection hole portion 14. Therefore, the degree of interference with the flow B is larger in the flow AL than in the flow AR.
  • FIG. 5 is another explanatory view showing a part of the injection hole plate in the fuel injection valve according to the second embodiment in an enlarged manner.
  • the injection hole plate 13 is injected with fuel from the injection hole outlet 142 of the injection hole 14 with the intention of reducing the amount of fuel spray adhering to the intake pipe of the internal combustion engine. It is configured to reduce the later spray angle.
  • a virtual orthogonal line orthogonal to the center O of the injection hole inlet portion 141 is provided on the virtual straight line OK connecting the intersection K of each central axis M of the plurality of introduction portions 13b and the center O of the injection hole inlet portion 141.
  • the angle ⁇ formed by the Y-axis of the Cartesian coordinate system and the virtual orthogonal line Q and the angle ⁇ 1 have values satisfying [ ⁇ 1 ⁇ ].
  • the fuel spray injected from the injection holes 14 provided in each of the plurality of swivel chambers 13c is on the inner diameter side in the direction toward the central axis F of the valve seat 12. It is sprayed in the direction of, and the effect of reducing the spray angle can be obtained.
  • angle ⁇ which is the injection hole angle
  • the angle ⁇ is preferably a value in the range of [ ⁇ 1 ⁇ ] and satisfying [ ⁇ ⁇ 15 °].
  • FIG. 6 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the second embodiment.
  • a virtual injection hole inlet portion 141 arranged at a position intersecting a virtual extension line 13b1v extending the first side wall portion 13b1 of the introduction portion 13b in the direction of the injection hole portion 14 intersects.
  • the area of the first portion S1 is S1a and the area of the second portion is S2a
  • the area S1a and the area S2a are configured to have values satisfying [S1a ⁇ S2a].
  • Other configurations are the same as those in the first embodiment.
  • the injection hole plate 13 By configuring the injection hole plate 13 as described above, the fuel flow component directly toward the injection hole outlet portion 142 without following the inner wall surface of the injection hole portion 14 is suppressed, and the peripheral speed of the fuel flow A is suppressed. Is improved, and the fuel is injected from the injection hole outlet 142 in a state where the turning force of the entire fuel is sufficiently increased. As a result, the effect of further promoting the atomization of the fuel can be obtained.
  • FIG. 7 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to Comparative Example 2, and is for comparison with the fuel injection valve according to the second embodiment.
  • the injection hole portion 14 is arranged so that the area S1a and the area S2a have a value satisfying [S1a ⁇ S2a], but in Comparative Example 2, as shown in FIG. 7, it is introduced.
  • the offset amount of the center O of the injection hole inlet portion 141 with respect to the central axis M of the portion 13b is smaller than that of the second embodiment of FIG. 6, and the area S1a and the area S2a are [S1a> S2a].
  • the injection hole portion 14 is arranged in the.
  • FIG. 8 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the third embodiment.
  • the connection portion between the first facing wall portion and the curved wall portion of the swivel chamber is formed by a curved surface. That is, as shown in FIG. 8, the connecting portion h between the curved wall portion 13c1 of the swivel chamber 13c and the first facing wall portion L is formed by a smooth curved surface Rh.
  • Other basic configurations are the same as those in the first embodiment.
  • the fuel flow B flowing into the inside of the swivel chamber 13c reaches the first facing wall portion L, it smoothly turns in the direction of the injection hole inlet portion 141 due to the curved surface Rh, so that the pressure loss of the flow B Is reduced and fuel atomization is promoted.
  • the connection portion between the curved wall portion 13c1 of the swivel chamber 13c and the first facing wall portion L by the curved surface Rh the workability of the injection hole plate 13 is improved, and the injection hole plate 13 is press-processed.
  • the swivel chamber 13c or the like is formed in the above, the durability of the mold can be improved.
  • the radius R of the curved surface Rh may be 0.1 [mm] or more in consideration of workability on the mold side. desirable.
  • the connection portion between the first facing wall portion L and the first side wall portion 13b1 of the introduction portion 13b is also formed by a smooth curved surface Rg, and the workability of the above-mentioned flow path portion is improved. Further, when the flow path portion is formed by press working, the durability of the mold can be improved.
  • FIG. 9 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the fourth embodiment.
  • a second facing wall portion extending linearly is provided between the curved wall portion of the swivel chamber and the first facing wall portion of the introduction portion, and the first facing wall portion and the second facing wall portion are provided.
  • the connection portion between the wall portion T and the first facing wall portion L is formed by a smooth curved surface Rj.
  • Other basic configurations are the same as those in the first embodiment.
  • the first facing wall portion is not limited by the size of the inner diameter of the swivel chamber 13c.
  • the length of L can be adjusted, and the length of the flow path of the fuel flow B and the direction of fuel inflow into the injection hole portion 14 can be adjusted. Therefore, the balance of the flow strength between the fuel flow A and the fuel flow B can be adjusted, and the uniformity of the thickness of the fuel liquid film formed on the inner wall surface of the injection hole portion 14 can be improved. This has the effect of further improving the atomization of the fuel.
  • the connecting portion j between the second facing wall portion T and the first facing wall portion L by a smooth curved surface Rj, the workability of the flow path portion such as the swirling chamber 13c of the injection hole plate 13 is improved. Further, when the flow path portion is formed by press working, the durability of the die can be improved.
  • FIG. 10 is another explanatory view showing an enlarged part of a injection hole plate in the fuel injection valve according to the fourth embodiment.
  • the curved wall portion of the swivel chamber is configured to be a part of the virtual arc, and the connection between the first facing wall portion and the first side wall portion is made.
  • the minimum gap between the portion and the center of the injection hole inlet portion is configured to exist within the range of the virtual arc.
  • the minimum gap E between the curved surface Rg which is the connection portion between the first facing wall portion L and the first side wall portion 13b1 and the center O of the injection hole inlet portion is within the range of the virtual arc 13c1v. Since it is configured to exist inside, it is possible to effectively suppress the later-described diversion As that separates from the fuel flow A and heads toward the swivel chamber 13c, and the pressure loss due to the collision between the diversion As and the flow B is reduced. And the atomization of the fuel spray is promoted.
  • the injection hole plate 13 extends from the curved wall portion 13c1 to the first side wall portion 13b1 via the second facing wall portion T and the first facing wall portion L. Then, the linear distance connecting the maximum distance point P at which the distance from the center O of the injection hole inlet portion 141 is maximum and the center O of the injection hole inlet portion is not twice the radius of the virtual arc 13c1v. It is configured in. With such a configuration, the effect of reducing the pressure loss by suppressing the flow path length of the fuel flow B is increased, and the volume of the swirl chamber is suppressed, so that the atomization of the fuel spray is promoted and the temperature is increased. , The change in fuel flow rate when the atmosphere changes is suppressed.
  • FIG. 11 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to Comparative Example 3, and is for comparison with the fuel injection valve according to the fourth embodiment.
  • the distance between the minimum gap E between the curved surface Rg and the first facing wall portion L and the center O of the injection hole inlet portion 141 is from the radius of the virtual arc 13c1v. It is set large, and the minimum gap E exists outside the range of the virtual arc 13c1v.
  • the diversion As that separates from the fuel flow A and heads toward the swirl chamber 13c cannot be suppressed, the pressure loss due to the collision between the diversion As and the flow B increases, and the atomization of the fuel spray is hindered. Will be done. Further, since the fuel flow B becomes an excess flow path length and the volume of the swirl chamber 13c becomes large, atomization of the fuel spray is hindered, and the flow rate change due to changes in temperature and atmosphere increases.
  • FIG. 12 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the fifth embodiment.
  • the angle formed by the first facing wall portion L and the central axis M of the introduction portion 13b is ⁇ 2, and X in the positive direction from the Y axis in the positive direction of the virtual Cartesian coordinate system.
  • the angle ⁇ 1 and the angle ⁇ 2 are configured to have values satisfying [
  • Other basic configurations are the same as those in the first embodiment.
  • the thickness of the fuel liquid film formed on the inner wall of the injection hole portion 14 uniform leads to improvement of the atomization of the fuel.
  • the flow components of the fuel flow A and the fuel flow B facing each other inside the injection hole portion 14 are strengthened, and the injection hole portion is enhanced.
  • the strengths of the flow A and the flow B inside the 14 can be brought close to each other, the uniformity of the liquid film on the inner wall of the injection hole portion 14 is increased, and the effect of improving the atomization of the fuel can be obtained.
  • This application can be used in the field of fuel injection valves, and by extension, in the field of the automobile industry having an internal combustion engine.
  • valve device 1 fuel injection valve, 4 solenoid device, 41 insulated jacket, 5 housing, 6 core, 7 coil, 71 frame, 8 amateur, 8a end face, 9 valve device, 10 valve body, 11 valve holder, 11a guide part, 12 Valve seat, 12a valve seat seat part, 12d valve seat opening, 13 injection hole plate, 13a center part, 13b introduction part, 13b1 first side wall part, 13b2 second side wall part, 13c swivel chamber, 13c1 curved wall part, 14 Injection hole, 141 injection hole inlet, 142 injection hole exit, 15 ball, 15a flat surface, 16 compression spring, 50 weld, A, B fuel flow, L first facing wall, T second facing wall Department

Abstract

This fuel injection valve includes a nozzle hole plate that is provided with a nozzle hole the center of which is offset towards a first side wall part with respect to the center axis of an introduction part and which coincides with the center of a swirl chamber. The projection center axis of the center axis of the nozzle hole is at a position that is rotated, at an angle θ1, from the Y axis to the X axis in a virtual orthogonal coordinate system, and the angle θ1 has a value that satisfies the formula: 0°≤θ1<180°.

Description

燃料噴射弁Fuel injection valve
 本願は、燃料噴射弁に関するものである。 This application relates to a fuel injection valve.
 近年、自動車の内燃機関などの排出ガス規制が強化され、燃料噴射弁から噴射される燃料噴霧に対しては、吸気管壁面への燃料の付着を考慮し、過度な噴霧角度の拡がりを抑制しつつ、燃料を充分に微粒化して燃料噴霧を行うことが求められている。燃料の微粒化の一つの手法として、燃料の旋回流れを利用した燃料の微粒化方式があるが、この燃料の微粒化方式に関して、従来から様々な検討がなされている。 In recent years, emission regulations for internal combustion engines of automobiles have been tightened, and for fuel spray injected from the fuel injection valve, consideration is given to the adhesion of fuel to the wall surface of the intake pipe, and excessive spread of the spray angle is suppressed. At the same time, it is required to sufficiently atomize the fuel and spray the fuel. As one method of atomizing fuel, there is a method of atomizing fuel using a swirling flow of fuel, and various studies have been made on this method of atomizing fuel.
 たとえば、特許文献1では、上流側から燃料が通過する開口部を有する弁座と弁体と、弁座の下流側に旋回流れ形成用のプレートとを備えた燃料噴射弁が開示されており、プレートの上流側に、分岐部と、導入部と、円筒部と、旋回部と、を有する放射状の窪みが加工され、円筒部の下流側には噴孔が加工されおり、旋回部を含む流路の寸法を規定することで噴霧する燃料の更なる微粒化を実現するようにした燃料噴射弁のプレートの形状が提案されている。 For example, Patent Document 1 discloses a fuel injection valve provided with a valve seat and a valve body having an opening through which fuel passes from the upstream side, and a plate for forming a swirling flow on the downstream side of the valve seat. A radial recess having a branch portion, an introduction portion, a cylindrical portion, and a swivel portion is machined on the upstream side of the plate, and an injection hole is machined on the downstream side of the cylindrical portion, and the flow including the swivel portion is machined. The shape of the plate of the fuel injection valve has been proposed so as to realize further atomization of the fuel to be sprayed by defining the dimensions of the path.
 特許文献1には、プレートの旋回部の終端面が導入部の中心軸に対して角度θだけ傾いており、その角度θを、0°以上で、かつ、45°以下の範囲とすることで、円筒部において導入部から直接流入する燃料の流れAと、旋回部を経由して円筒部に流入する燃料の流れBとが対向することとなり、また、導入部の幅をW1、旋回部の幅をW2としたとき、[0.3≦W2/W1≦0.7]とすることで、燃料の流れAと燃料の流れBとの強さは、略同等となること、が記載されている。これによって、スワール流れが均質なものとなり、噴孔の内壁に形成される燃料液膜の厚さが均一になるため、燃料の微粒化度合いが良好になるとされている。一方で、旋回流れにより燃料を薄膜化し、液膜を分裂させて微粒化する特許文献1に記載された手法においては、燃料の旋回力の向上により液膜の拡がりが促進され、燃料の微粒化は促進されるが、同時に、燃料の噴霧角度も大きく拡大されることになる。 In Patent Document 1, the end surface of the swivel portion of the plate is tilted by an angle θ with respect to the central axis of the introduction portion, and the angle θ is set to a range of 0 ° or more and 45 ° or less. In the cylindrical portion, the fuel flow A that directly flows in from the introduction portion and the fuel flow B that flows into the cylindrical portion via the swivel portion face each other, and the width of the introduction portion is W1 and the swivel portion has a width of W1. It is described that when the width is W2, the strengths of the fuel flow A and the fuel flow B are substantially the same by setting [0.3 ≦ W2 / W1 ≦ 0.7]. There is. As a result, the swirl flow becomes uniform, and the thickness of the fuel liquid film formed on the inner wall of the injection hole becomes uniform, so that the degree of atomization of the fuel is said to be good. On the other hand, in the method described in Patent Document 1 in which the fuel is thinned by a swirling flow and the liquid film is split and atomized, the expansion of the liquid film is promoted by improving the swirling force of the fuel, and the fuel is atomized. Is promoted, but at the same time, the fuel spray angle is also greatly expanded.
 特許文献2においては、燃料の噴霧の拡がりを抑制しつつ、十分な燃料の微粒化を実現する手法として、噴孔を配置する位置の調整、および噴孔に角度を設けることが提案されている。特許文献に開示された燃料噴射弁によれば、噴孔の配置により燃料の旋回力の強さを調節することで燃料の噴霧の広がりを抑制すると同時に、噴孔角度を調整することにより噴孔の内壁面への燃料の衝突力を大きくして、微粒化性能の低下を抑制し、あるいは微粒化性能を向上することができるとされている。 In Patent Document 2, it is proposed to adjust the position where the injection hole is arranged and to provide an angle to the injection hole as a method for realizing sufficient atomization of the fuel while suppressing the spread of the fuel spray. .. According to the fuel injection valve disclosed in the patent document, the spread of the fuel spray is suppressed by adjusting the strength of the turning force of the fuel by arranging the injection holes, and at the same time, the injection holes are adjusted by adjusting the injection hole angle. It is said that the impact force of the fuel on the inner wall surface of the fuel can be increased to suppress the deterioration of the atomization performance or improve the atomization performance.
 また、特許文献2においては、噴孔位置の調整、すなわち導入部の中心軸の位置と噴孔オフセット量の調整により、燃料の旋回力を調節して噴霧の拡がりを抑制すると同時に、噴孔を燃料の流れの方向と逆向きに傾斜させることで、燃料の流れAの一部が噴孔の内壁面に衝突し、噴孔の軸に対し垂直な面方向における速度成分が大きくして、噴孔を通過した燃料が噴孔直下で薄膜化し、微粒化が促進されるとされている。そして、その効果が得られる噴孔傾斜方向の範囲として、0°よりも大きく180°よりも小さい範囲、つまり、導入部に対する噴孔部のオフセット方向とは逆方向に噴孔が傾斜している範囲を、微粒化効果が促進する範囲とすることが特許文献2に記載されている。 Further, in Patent Document 2, by adjusting the position of the injection hole, that is, the position of the central axis of the introduction portion and the adjustment of the injection hole offset amount, the turning force of the fuel is adjusted to suppress the spread of the spray, and at the same time, the injection hole is formed. By inclining in the direction opposite to the direction of the fuel flow, a part of the fuel flow A collides with the inner wall surface of the injection hole, and the velocity component in the plane direction perpendicular to the axis of the injection hole is increased to inject. It is said that the fuel that has passed through the hole is thinned just below the injection hole, and atomization is promoted. The range in which the effect is obtained is the range larger than 0 ° and smaller than 180 °, that is, the hole is tilted in the direction opposite to the offset direction of the hole with respect to the introduction portion. It is described in Patent Document 2 that the range is a range in which the atomization effect is promoted.
WO2017/060945号公報WO2017 / 060945A 特開2017-210907号公報Japanese Unexamined Patent Publication No. 2017-210907
 特許文献1、2においては、いずれも、導入部から噴孔に燃料が直接流れ込む流れAと、旋回室を経由して燃料が噴孔に流れ込む流れBとが存在することが記載されている。特許文献1では燃料の流れAと燃料の流れBを対向させ、流れAと流れBの強さを略同等にすることで、噴孔内の液膜の均一度が向上し燃料の微粒化が改善されると記載されているが、前述のように、旋回力の向上により液膜の拡がりが促進され微粒化は促進されるが、同時に噴霧角度も大きく拡大されるという課題があった。 Patent Documents 1 and 2 both describe that there is a flow A in which fuel flows directly from the introduction portion into the injection hole and a flow B in which fuel flows into the injection hole via the swivel chamber. In Patent Document 1, the fuel flow A and the fuel flow B are opposed to each other, and the strengths of the flow A and the flow B are made substantially the same, so that the uniformity of the liquid film in the injection hole is improved and the fuel is atomized. Although it is described that it is improved, as described above, there is a problem that the expansion of the liquid film is promoted and the atomization is promoted by improving the turning force, but at the same time, the spray angle is also greatly expanded.
 また、特許文献2に記載の手法は、燃料の旋回流れにより燃料を薄膜化して微粒化させるというものであり、微粒化を向上するためには、燃料の流れA、Bの双方の噴孔内における周速を向上させることが重要である。燃料の流れAの一部は積極的に噴孔の内壁面に衝突させ、また一方で、主に燃料の流れBにより噴孔内に旋回流れを形成するようにした特許文献2に記載の手法では、燃料の流れAの一部の内壁面への衝突は、燃料の流れAが噴孔内に突入する際の燃料の剥離を伴い、噴孔内における燃料の流れの周速の向上効果が得られないばかりか、燃料の流れBによる噴孔内での旋回流れへの干渉要素となり、結果として噴孔内における流れ全体の旋回力の低下を招く要因となるという課題があった。 Further, the method described in Patent Document 2 is to thin the fuel and atomize it by the swirling flow of the fuel, and in order to improve the atomization, the inside of both the injection holes of the fuel flows A and B is used. It is important to improve the peripheral speed in. The method described in Patent Document 2 in which a part of the fuel flow A is positively collided with the inner wall surface of the injection hole, and on the other hand, a swirling flow is formed in the injection hole mainly by the fuel flow B. Then, the collision of a part of the fuel flow A with the inner wall surface is accompanied by the separation of the fuel when the fuel flow A rushes into the injection hole, and the effect of improving the peripheral speed of the fuel flow in the injection hole is obtained. Not only is it not possible to obtain it, but there is also the problem that the fuel flow B becomes an interfering factor with the swirling flow in the injection hole, and as a result, it becomes a factor that causes a decrease in the turning force of the entire flow in the injection hole.
 本願は、前述のような課題を解決するための技術を開示するものであり、燃料噴霧の微粒化性能を向上しつつ、燃料噴霧の過度な広がりを抑制する燃料噴射弁を提供することを目的とする。 The present application discloses a technique for solving the above-mentioned problems, and an object of the present application is to provide a fuel injection valve that suppresses excessive spread of fuel spray while improving the atomization performance of fuel spray. And.
 本願に開示される燃料噴射弁は、
 燃料を流出させる弁座開口部を有する弁座と、前記弁座開口部を開閉する弁体と、前記燃料の流れの下流側で前記弁座開口部に対向して配置され、前記燃料を外部へ噴射させる複数の噴孔部を有する噴孔プレートと、を備え、外部の制御装置からの動作信号に基づいて、前記弁体を前記弁座の軸方向に移動させて前記弁座開口部を開閉し、前記噴孔部からの前記燃料の噴射を制御するようにした燃料噴射弁であって、
 前記噴孔プレートは、前記燃料の流れの上流側の端面に、
 前記弁座開口部の径方向の外側に配置された複数の旋回室と、
 前記弁座開口部に接続される中央部と、
 前記燃料を前記中央部からそれぞれの前記旋回室に案内する複数の導入部と、
を備え、
 前記噴孔部は、
 前記旋回室の内部に開口する噴孔入口部と、
 前記噴孔プレートの前記上流側の端面に対向する下流側の端面に開口する噴孔出口部と、を有し、
 前記導入部は、導入部の中心軸を介して対峙する第1側壁部と第2側壁部とを有し、
 前記噴孔入口部の中心は、
 前記導入部の中心軸に対して前記第1側壁部の存在する方向にオフセットされるとともに、前記旋回室の中心と一致するように設けられ、
 前記旋回室は、湾曲した壁面を有する曲面壁部を備え、
 前記曲面壁部は、直線状に延びる第1直面壁部を介して前記第1側壁部に接続され、
 前記噴孔部は、
 前記第1側壁部を前記噴孔部の方向に延長した仮想延長線と前記噴孔入口部とが交差する位置に配置されるとともに、
 前記噴孔入口部の中心と噴孔出口部の中心とを結ぶ噴孔部の中心軸が、前記噴孔プレートの板厚の方向に対して傾斜され、
 前記導入部の前記中心軸と平行で、かつ前記旋回室から前記中央部へ向かう方向を正方向としたY軸と、前記Y軸と直交し前記導入部の前記中心軸に対して前記噴孔入口部の中心がオフセットする方向を正方向としたX軸と、で定義される直交座標系を仮想したとき、
 前記弁座の中心軸に直交する仮想平面に前記噴孔部の前記中心軸を投影させた投影中心軸は、前記正方向のY軸から前記正方向のX軸の方向へ、前記直交座標系の原点を中心として角度θ1だけ回転した位置に存在し、
 前記角度θ1は、[0°≦θ1<180°]を満たす値を有する、
ようにしたものである。
The fuel injection valve disclosed in the present application is a fuel injection valve.
A valve seat having a valve seat opening for allowing fuel to flow out, a valve body for opening and closing the valve seat opening, and a valve body arranged on the downstream side of the fuel flow facing the valve seat opening, and the fuel is externally arranged. A jet hole plate having a plurality of jet holes to be injected into the valve seat is provided, and the valve body is moved in the axial direction of the valve seat based on an operation signal from an external control device to open the valve seat opening. A fuel injection valve that opens and closes to control the injection of the fuel from the injection hole.
The injection hole plate is provided on the upstream end face of the fuel flow.
A plurality of swivel chambers arranged radially outside the valve seat opening, and
The central part connected to the valve seat opening and
A plurality of introduction portions for guiding the fuel from the central portion to each of the swivel chambers,
Equipped with
The injection hole portion is
The inlet of the injection hole that opens inside the swivel chamber,
It has an injection hole outlet portion that opens to the downstream end surface facing the upstream end surface of the injection hole plate.
The introduction portion has a first side wall portion and a second side wall portion facing each other via the central axis of the introduction portion.
The center of the injection hole entrance is
It is offset in the direction in which the first side wall portion exists with respect to the central axis of the introduction portion, and is provided so as to coincide with the center of the swivel chamber.
The swivel chamber comprises a curved wall portion having a curved wall surface.
The curved wall portion is connected to the first side wall portion via a first facing wall portion extending linearly.
The injection hole portion is
The first side wall portion is arranged at a position where the virtual extension line extending in the direction of the injection hole portion and the injection hole inlet portion intersect with each other.
The central axis of the injection hole portion connecting the center of the injection hole inlet portion and the center of the injection hole outlet portion is inclined in the direction of the plate thickness of the injection hole plate.
The injection hole is parallel to the central axis of the introduction portion and is orthogonal to the Y axis and is orthogonal to the central axis of the introduction portion. When imagining the Cartesian coordinate system defined by the X-axis with the direction in which the center of the entrance is offset as the positive direction,
The projection central axis obtained by projecting the central axis of the injection hole portion onto a virtual plane orthogonal to the central axis of the valve seat is the Cartesian coordinate system from the positive Y axis to the positive X axis. It exists at a position rotated by an angle θ1 about the origin of
The angle θ1 has a value satisfying [0 ° ≦ θ1 <180 °].
It is something like that.
 本願に開示される燃料噴射弁によれば、燃料噴霧の微粒化性能を向上しつつ、燃料噴霧の過度な広がりを抑制する燃料噴射弁が得られる。 According to the fuel injection valve disclosed in the present application, it is possible to obtain a fuel injection valve that suppresses excessive spread of the fuel spray while improving the atomization performance of the fuel spray.
実施の形態1から実施の形態5による燃料噴射弁の断面図である。It is sectional drawing of the fuel injection valve according to Embodiment 1 to Embodiment 5. 図1に示す燃料噴射弁の一部分を拡大して示す部分拡大断面図である。It is a partially enlarged sectional view showing a part of the fuel injection valve shown in FIG. 1 in an enlarged manner. 図2Aの矢印Zの方向から視た噴孔プレートの概念図である。It is a conceptual diagram of the injection hole plate seen from the direction of the arrow Z of FIG. 2A. 実施の形態1による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve according to Embodiment 1. FIG. 比較例1による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by the comparative example 1. FIG. 実施の形態1による燃料噴射弁における噴孔プレートの一部分を拡大して示す別の説明図である。It is another explanatory view which enlarges and shows a part of the injection hole plate in the fuel injection valve according to Embodiment 1. FIG. 実施の形態2による燃料噴射弁における噴孔プレートの一部分を拡大して示す別の説明図である。It is another explanatory view which enlarges and shows a part of the injection hole plate in the fuel injection valve according to Embodiment 2. FIG. 比較例2による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図ある。It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by the comparative example 2. 実施の形態3による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by Embodiment 3. FIG. 実施の形態4による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by Embodiment 4. FIG. 実施の形態4による燃料噴射弁における噴孔プレートの一部分を拡大して示す別の説明図である。It is another explanatory view which shows enlarged part of the injection hole plate in the fuel injection valve according to Embodiment 4. FIG. 比較例3による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve by the comparative example 3. FIG. 実施の形態5による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。It is explanatory drawing which enlarges and shows a part of the injection hole plate in the fuel injection valve according to Embodiment 5.
実施の形態1.
 以下、実施の形態1による燃料噴射弁について、図面を参照して説明する。図1は、実施の形態1から実施の形態10による燃料噴射弁の断面図、図2Aは、図1に示す燃料噴射弁の一部分を拡大して示す部分拡大断面図、図2Bは、図2Aの矢印Zの方向から視た噴孔プレートの概念図である。図2Bは、実施の形態1から実施の形態10による燃料噴射弁の噴孔プレートの概念を示しており、それぞれの実施の形態による噴孔プレートの詳細な構成については、後述する。
Embodiment 1.
Hereinafter, the fuel injection valve according to the first embodiment will be described with reference to the drawings. 1 is a sectional view of the fuel injection valve according to the first to tenth embodiments, FIG. 2A is a partially enlarged sectional view showing a part of the fuel injection valve shown in FIG. 1, and FIG. 2B is FIG. 2A. It is a conceptual diagram of the injection hole plate seen from the direction of the arrow Z of. FIG. 2B shows the concept of the injection hole plate of the fuel injection valve according to the first to tenth embodiments, and the detailed configuration of the injection hole plate according to each embodiment will be described later.
 図1、図2A、および図2Bにおいて、燃料噴射弁1は、燃料を流出させる弁座開口部12dを有する弁座12と、弁座開口部12dを開閉する弁体10と、燃料の流れの下流側で弁座開口部12dに対向して配置され、燃料を外部へ噴射させる複数の噴孔部14を有する噴孔プレート13と、を備え、外部の制御装置(図示せず)からの動作信号に基づいて、弁体10を弁座12の軸の方向に移動させることで弁座開口部12dを開閉し、噴孔部14からの燃料の噴射を制御するように構成されている。 In FIGS. 1, 2A, and 2B, the fuel injection valve 1 has a valve seat 12 having a valve seat opening 12d for discharging fuel, a valve body 10 for opening and closing the valve seat opening 12d, and a flow of fuel. An injection hole plate 13 which is arranged on the downstream side facing the valve seat opening 12d and has a plurality of injection holes 14 for injecting fuel to the outside, and operates from an external control device (not shown). Based on the signal, the valve body 10 is moved in the direction of the axis of the valve seat 12 to open and close the valve seat opening 12d, and is configured to control the injection of fuel from the injection hole portion 14.
 ソレノイド装置4は、軸方向の両端部に鍔部を備えた樹脂製の枠体71と、枠体71の外周部に巻回されたコイル7と、コイル7の外周部に配置されたヨークとしての金属製のハウジング5と、枠体71の内周面とハウジング5の内周面に挿入された金属製のコア6と、コイル7と枠体71とコア6とハウジング5を内部に埋設した樹脂製の絶縁外被41とにより構成されている。 The solenoid device 4 is a resin frame body 71 having flanges at both ends in the axial direction, a coil 7 wound around the outer peripheral portion of the frame body 71, and a yoke arranged on the outer peripheral portion of the coil 7. The metal housing 5 of the above, the metal core 6 inserted into the inner peripheral surface of the frame body 71 and the inner peripheral surface of the housing 5, the coil 7, the frame body 71, the core 6 and the housing 5 are embedded inside. It is composed of a resin-made insulating outer cover 41.
 弁装置9は、弁体10と、磁性体の金属により構成されたアマチュア8と、弁座12と、弁ホルダ11と、噴孔プレート13とを備えている。弁ホルダ11は、コア6の軸方向の一端部の外周部に軸方向の一端部が圧入された後、コア6に溶接により固定されている。弁ホルダ11は、軸方向の一端部側の内周面に、内周面から突出する環状のガイド部11aを備える。 The valve device 9 includes a valve body 10, an amateur 8 made of a magnetic metal, a valve seat 12, a valve holder 11, and a jet hole plate 13. The valve holder 11 is fixed to the core 6 by welding after the one end portion in the axial direction is press-fitted into the outer peripheral portion of the one end portion in the axial direction of the core 6. The valve holder 11 is provided with an annular guide portion 11a protruding from the inner peripheral surface on the inner peripheral surface on the one end side in the axial direction.
 アマチュア8は、弁体10の軸方向の一端部をアマチュアの中空部に圧入した後、弁体10と一体に溶接により固定されている。アマチュア8は、弁ホルダ11のガイド部11aにより軸方向に摺動自在に支持されており、後述するように、コア6に吸引されたとき、軸方向に摺動してアマチュア8の端面8aがコア6の端面に当接する。ボール15は、弁体10の軸方向の他端部に溶接により固定されており、複数、例えば6個の、面取りにより形成された平坦面15aを備えている。 The amateur 8 is fixed by welding integrally with the valve body 10 after pressing one end of the valve body 10 in the axial direction into the hollow portion of the amateur. The amateur 8 is slidably supported in the axial direction by the guide portion 11a of the valve holder 11, and as will be described later, when sucked by the core 6, the amateur 8 slides in the axial direction and the end surface 8a of the amateur 8 slides in the axial direction. It abuts on the end face of the core 6. The ball 15 is fixed to the other end of the valve body 10 in the axial direction by welding, and has a plurality of, for example, six flat surfaces 15a formed by chamfering.
 弁座12は、軸方向の一端部が開放された中空の円筒状に形成され、軸方向の他端部の端壁部に弁座開口部12dが設けられている。弁座12の内部には、弁体10の軸方向の他端部に溶接により固定された前述のボール15が配置されている。ボール15は、弁体10の軸方向の移動に伴って移動する。弁座12の端壁部の内面には、表面が軸方向に傾斜した環状の弁座シート部12aが形成されている。弁座開口部12dは、弁座12の弁座シート部12aにボール15が着座することにより閉塞され、弁座シート部12aからボール15が離反することにより前述の閉塞から解放されて弁座12の内部と外部とが連通される。弁体10は、圧縮バネ16により常に弁座12の方向に付勢されている。 The valve seat 12 is formed in a hollow cylindrical shape with one end in the axial direction open, and the valve seat opening 12d is provided at the end wall of the other end in the axial direction. Inside the valve seat 12, the above-mentioned ball 15 fixed by welding to the other end of the valve body 10 in the axial direction is arranged. The ball 15 moves with the axial movement of the valve body 10. An annular valve seat seat portion 12a whose surface is inclined in the axial direction is formed on the inner surface of the end wall portion of the valve seat 12. The valve seat opening 12d is closed when the ball 15 is seated on the valve seat portion 12a of the valve seat 12, and the ball 15 is released from the above-mentioned blockage when the ball 15 is separated from the valve seat portion 12a. The inside and the outside of the are communicated. The valve body 10 is always urged in the direction of the valve seat 12 by the compression spring 16.
 皿状に形成された噴孔プレート13は、複数の噴孔部14を備え、燃料の流れの下流側で弁座12に対向するように配置され、弁座12の下流側の端面に溶接部50により固定されている。弁座12の周縁部と噴孔プレート13の周縁部は、弁ホルダ11の軸方向の他端部の内周部に当接して固定されている。噴孔プレート13は、弁座12に対向する側の表面、つまり、燃料の流れの上流側の端面に、中央部13aと、この中央部13aに接続された複数の導入部13bと、複数の導入部13bに対応して設けられ、対応する導入部13bに接続された複数の旋回室13cと、を有する。中央部13aと導入部13bと旋回室13cは、噴孔プレート13の上流側の端面に形成されている。 The dish-shaped injection hole plate 13 includes a plurality of injection hole portions 14, is arranged so as to face the valve seat 12 on the downstream side of the fuel flow, and has a welded portion on the end face on the downstream side of the valve seat 12. It is fixed by 50. The peripheral edge portion of the valve seat 12 and the peripheral edge portion of the injection hole plate 13 are fixed in contact with the inner peripheral portion of the other end portion in the axial direction of the valve holder 11. The injection hole plate 13 has a central portion 13a, a plurality of introduction portions 13b connected to the central portion 13a, and a plurality of introduction portions 13b on the surface facing the valve seat 12, that is, the end surface on the upstream side of the fuel flow. It has a plurality of swivel chambers 13c provided corresponding to the introduction unit 13b and connected to the corresponding introduction unit 13b. The central portion 13a, the introduction portion 13b, and the swivel chamber 13c are formed on the upstream end surface of the injection hole plate 13.
 図2Bに示すように、噴孔プレート13は、燃料の上流側の端面に、中央部13aと、中央部13aに接続された4つの導入部13bと、これらの導入部13bに対応して設けられ、対応する導入部13bにそれぞれ接続された4つの旋回室13cと、を有する。中央部13aは、前述の弁座開口部12dから流出する燃料が流入するように、弁座開口部12dに対向した位置に設けられている。それぞれの導入部13bは、中央部13aに流入した燃料を対応する旋回室13cに案内するように構成されている。噴孔部14は、それぞれの旋回室13cに設けられている。中央部13aと導入部13bと旋回室13cのそれぞれの底面は、実質的に同一平面をなして連続されるように構成されている。中央部13aの中心は、燃料噴射弁1の中心軸Fと一致している。なお、図2Bでは、導入部13b、旋回室13c、噴孔部14がそれぞれ4つずつ設けられている場合を示しているが、これらは4つに限られるものではない。 As shown in FIG. 2B, the injection hole plate 13 is provided on the upstream end surface of the fuel in correspondence with the central portion 13a, the four introduction portions 13b connected to the central portion 13a, and these introduction portions 13b. It has four swivel chambers 13c, each connected to a corresponding introduction portion 13b. The central portion 13a is provided at a position facing the valve seat opening 12d so that the fuel flowing out from the valve seat opening 12d may flow in. Each introduction portion 13b is configured to guide the fuel flowing into the central portion 13a to the corresponding swivel chamber 13c. The injection hole portion 14 is provided in each swivel chamber 13c. The bottom surfaces of the central portion 13a, the introduction portion 13b, and the swivel chamber 13c are configured to form substantially the same plane and be continuous. The center of the central portion 13a coincides with the central axis F of the fuel injection valve 1. Note that FIG. 2B shows a case where four introduction portions 13b, four swivel chambers 13c, and four injection hole portions 14 are provided, but these are not limited to four.
 次に燃料噴射弁1の動作について説明する。内燃機関の制御装置から燃料噴射弁1の駆動回路に動作信号が送られると、燃料噴射弁1のコイル7に通電され、アマチュア8、コア6、ハウジング5、弁ホルダ11で構成される磁気回路に磁束が発生し、アマチュア8は圧縮バネ16の付性力に抗してコア6の方向へ吸引されて移動し、アマチュア8と一体構造である弁体10のボール15が弁座12の弁座シート部12aから離反し、ボール15と弁座シート部12aとの間に隙間が形成される。 Next, the operation of the fuel injection valve 1 will be described. When an operation signal is sent from the control device of the internal combustion engine to the drive circuit of the fuel injection valve 1, the coil 7 of the fuel injection valve 1 is energized, and a magnetic circuit composed of an amateur 8, a core 6, a housing 5, and a valve holder 11. A magnetic flux is generated in the engine, the amateur 8 is attracted and moves in the direction of the core 6 against the attached force of the compression spring 16, and the ball 15 of the valve body 10 having an integral structure with the amateur 8 is a valve of the valve seat 12. It separates from the seat portion 12a, and a gap is formed between the ball 15 and the valve seat portion 12a.
 ボール15と弁座シート部12aとの間に隙間が形成されると、燃料は、ボール15の平坦面15aから弁座シート部12aと弁体10との隙間を通り、弁座開口部12dから噴孔プレート13の中央部13aに流入し、中央部13aから放射状に延びるそれぞれの導入部13bを介して、それぞれの導入部13bに接続された旋回室13cに流入する。旋回室13cに流入した燃料は、旋回室13cの曲面壁部13c1に沿って旋回し、噴孔部14の噴孔入口部141に流入し、噴孔出口部142から内燃機関の吸気ポート内に噴射される。 When a gap is formed between the ball 15 and the valve seat portion 12a, the fuel passes from the flat surface 15a of the ball 15 through the gap between the valve seat portion 12a and the valve body 10 and from the valve seat opening 12d. It flows into the central portion 13a of the injection hole plate 13 and flows into the swivel chamber 13c connected to the respective introduction portions 13b via the respective introduction portions 13b extending radially from the central portion 13a. The fuel flowing into the swivel chamber 13c swirls along the curved wall portion 13c1 of the swivel chamber 13c, flows into the injection hole inlet portion 141 of the injection hole portion 14, and enters the intake port of the internal combustion engine from the injection hole outlet portion 142. It is sprayed.
 次に内燃機関の制御装置から燃料噴射弁1の駆動回路に動作停止信号が送られると、コイル7への通電が停止され、磁気回路中の磁束が減少して弁体10を閉弁方向に押圧している圧縮バネ16の弾性力により弁体10が弁座12の方向に移動し、弁体10のボール15が弁座シート部12aに着座する。その結果、弁体10のボール15と弁座シート部12aとの間の隙間は閉じた状態となり、噴孔部14からの燃料噴射が終了する。 Next, when an operation stop signal is sent from the control device of the internal combustion engine to the drive circuit of the fuel injection valve 1, the energization to the coil 7 is stopped, the magnetic flux in the magnetic circuit is reduced, and the valve body 10 is closed in the valve closing direction. The valve body 10 moves in the direction of the valve seat 12 due to the elastic force of the pressing compression spring 16, and the ball 15 of the valve body 10 is seated on the valve seat seat portion 12a. As a result, the gap between the ball 15 of the valve body 10 and the valve seat portion 12a is closed, and the fuel injection from the injection hole portion 14 is completed.
 前述のように、燃料が旋回室13cの内部で燃料の旋回流れを生じさせて燃料の微粒化を実現するために、噴孔プレート13に、弁座開口部12dと連通する中央部13aと、複数の扁平な断面を有する導入部13bと、噴孔部14を含む旋回室13cと、を互いに連通させて配置している。旋回室13cに流れ込んだ燃料は、旋回流れを生じながら噴孔部14へ流れ込み、噴孔部14の内部においても旋回流れが保たれることで、噴孔部14の内壁に沿った薄い燃料の液膜が形成され、薄い液膜を噴孔部14の噴孔出口部142から中空円錐状に燃料を噴射することで、燃料の微粒化が促進される。 As described above, in order to cause the fuel to cause a swirling flow of the fuel inside the swivel chamber 13c and to realize atomization of the fuel, the injection hole plate 13 has a central portion 13a communicating with the valve seat opening 12d. The introduction portion 13b having a plurality of flat cross sections and the swivel chamber 13c including the injection hole portion 14 are arranged so as to communicate with each other. The fuel that has flowed into the swirl chamber 13c flows into the injection hole portion 14 while generating a swirling flow, and the swirling flow is maintained inside the injection hole portion 14 so that the thin fuel along the inner wall of the injection hole portion 14 can be used. A liquid film is formed, and the thin liquid film is injected from the injection hole outlet portion 142 of the injection hole portion 14 in a hollow conical shape to promote atomization of the fuel.
 つぎに、実施の形態1による燃料噴射弁における噴孔プレートの構成について説明する。図3は、実施の形態1による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図であって、複数の導入部13bのうちの一つと、複数の旋回室13cのうちの一つと、噴孔部14と、中央部13aの一部分と、を示している。図3において、旋回室13cは、前述のように弁座開口部12dの径方向の外側に設けられ、仮想円弧の一部をなす曲面壁部13c1を有し、導入部13bにより案内された燃料を旋回室13cの内部で旋回させるように構成されている。 Next, the configuration of the injection hole plate in the fuel injection valve according to the first embodiment will be described. FIG. 3 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the first embodiment, and has one of a plurality of introduction portions 13b and one of a plurality of swivel chambers 13c. , A part of the injection hole portion 14 and the central portion 13a. In FIG. 3, the swivel chamber 13c is provided outside the valve seat opening 12d in the radial direction as described above, has a curved wall portion 13c1 forming a part of a virtual arc, and is guided by the introduction portion 13b. Is configured to be swiveled inside the swivel chamber 13c.
 旋回室13cに設けられた噴孔部14は、旋回室13cの内部に開口する噴孔入口部141と、燃料の流れに対する下流側の噴孔プレート13の表面に開口する噴孔出口部142と、を有している。噴孔入口部141の中心Oは、導入部13bの中心軸Mに対して、導入部13bの第1側壁部13b1の方向にオフセットした位置に設けられるとともに、旋回室13cの中心と一致するように設けられている。導入部13bの第2側壁部13b2は、中心軸Mを挟んで第1側壁部13b1と対峙している。 The injection hole portion 14 provided in the swirl chamber 13c includes an injection hole inlet portion 141 that opens inside the swivel chamber 13c and a injection hole outlet portion 142 that opens on the surface of the injection hole plate 13 on the downstream side with respect to the fuel flow. ,have. The center O of the injection hole inlet portion 141 is provided at a position offset in the direction of the first side wall portion 13b1 of the introduction portion 13b with respect to the central axis M of the introduction portion 13b, and coincides with the center of the swivel chamber 13c. It is provided in. The second side wall portion 13b2 of the introduction portion 13b faces the first side wall portion 13b1 with the central axis M interposed therebetween.
 噴孔入口部141の中心Oがオフセットしている側の第1側壁部13b1は、直線状に延びる第1直面壁部Lを介して、旋回室13cの曲面壁部13c1に接続されている。第1直面壁部Lと導入部13bの中心軸Mとのなす角度は、角度θ2である。 The first side wall portion 13b1 on the side where the center O of the injection hole inlet portion 141 is offset is connected to the curved wall portion 13c1 of the swivel chamber 13c via the first facing wall portion L extending linearly. The angle formed by the first facing wall portion L and the central axis M of the introduction portion 13b is an angle θ2.
 噴孔部14は、導入部13bの第1側壁部13b1を、噴孔部14の方向に延長した仮想延長線13b1vと噴孔入口部141とが交差するように配置されるとともに、噴孔入口部141の中心Oと噴孔出口部142の中心とを結ぶ中心軸N(図示せず)が、噴孔プレート13の板厚方向に対して噴孔角度α(図示せず)にて傾斜するように構成されている。噴孔角度αは、後述の仮想の直交座標のZ軸、即ち図3の紙面対して垂直に延びる軸と、噴孔入口部141の中心Oと噴孔出口部142の中心とを結ぶ中心軸Nと、のなす角度である。 The injection hole portion 14 is arranged so that the first side wall portion 13b1 of the introduction portion 13b intersects the virtual extension line 13b1v extending in the direction of the injection hole portion 14 and the injection hole inlet portion 141, and the injection hole inlet. The central axis N (not shown) connecting the center O of the portion 141 and the center of the injection hole outlet portion 142 is inclined at the injection hole angle α (not shown) with respect to the plate thickness direction of the injection hole plate 13. It is configured as follows. The injection hole angle α is the Z axis of virtual Cartesian coordinates described later, that is, the central axis connecting the axis extending perpendicularly to the paper surface of FIG. 3 and the center O of the injection hole inlet portion 141 and the center of the injection hole outlet portion 142. The angle between N and N.
 導入部13bの中心軸Mと平行で旋回室13cから中央部13aへ向かう方向を正方向としたY軸と、Y軸と直交し導入部13bの中心軸Mに対して噴孔入口部141の中心がオフセットする方向を正方向としたX軸と、で定義される直交座標系を仮想したとき、弁座12の中心軸Fに直交する仮想平面に導入部13bの中心軸Nを投影させた投影軸N1は、正方向のY軸から正方向のX軸の方向へ、直交座標系の原点を中心として角度θ1回転した位置に存在し、角度θ1は、[0°≦θ1<180°]を満たす値を有する、なお、噴孔プレート13に形成された複数の旋回室13c、複数の導入部13bは、全て図3に示す前述の構成を備えている。 The Y-axis parallel to the central axis M of the introduction portion 13b and the direction from the swivel chamber 13c toward the central portion 13a is the positive direction, and the injection hole inlet portion 141 with respect to the central axis M of the introduction portion 13b orthogonal to the Y-axis. When imagining the Cartesian coordinate system defined by the X-axis whose center is offset in the positive direction, the central axis N of the introduction unit 13b is projected onto the virtual plane orthogonal to the central axis F of the valve seat 12. The projection axis N1 exists at a position rotated by an angle θ1 about the origin of the Cartesian coordinate system from the positive Y axis to the positive X axis, and the angle θ1 is [0 ° ≤ θ1 <180 °]. The plurality of swivel chambers 13c and the plurality of introduction portions 13b formed in the injection hole plate 13 having a value satisfying the above conditions all have the above-mentioned configuration shown in FIG.
 実施の形態1による燃料噴射弁1は、以上のように構成された噴孔プレート13を備えているので、導入部13bから噴孔部14へ直接流入する燃料の流れAが、噴孔部14へ突入するときに噴孔部14の内壁面から剥離される現象が抑制され、燃料が噴孔部14の内壁面に沿って噴孔部14の内部で旋回しながら噴孔出口部142から外部へ噴射されるため、燃料の流れAの噴孔部14の内部での周速が向上する。また、燃料の流れAの噴孔部14の内壁面への衝突により発生する燃料の流れBへの干渉成分も抑制されるため、噴孔部14の内部の燃料の流れ全体の圧力損失が抑制され、燃料の微粒化が促進される効果が得られる。 Since the fuel injection valve 1 according to the first embodiment includes the injection hole plate 13 configured as described above, the flow A of the fuel directly flowing from the introduction portion 13b into the injection hole portion 14 is the injection hole portion 14. The phenomenon of peeling from the inner wall surface of the injection hole portion 14 when plunging into the injection hole portion 14 is suppressed, and the fuel swirls inside the injection hole portion 14 along the inner wall surface of the injection hole portion 14 and is external from the injection hole outlet portion 142. Since the fuel is injected into the fuel flow A, the peripheral speed inside the injection hole portion 14 of the fuel flow A is improved. Further, since the interference component with the fuel flow B generated by the collision of the fuel flow A with the inner wall surface of the injection hole portion 14 is also suppressed, the pressure loss of the entire fuel flow inside the injection hole portion 14 is suppressed. This has the effect of promoting atomization of the fuel.
 また、第1直面壁部Lと中心軸Mのなす角度θ2を調整することにより、燃料の流れBの噴孔部14への流入方向を調整することが可能となり、燃料の流れBと燃料の流れAとの流れの強さのバランスを調整することができ、噴孔部14の内壁面に形成される燃料液膜の膜厚さの均一性を向上させ、燃料の微粒化を促進できる効果が得られる。 Further, by adjusting the angle θ2 formed by the first facing wall portion L and the central axis M, the inflow direction of the fuel flow B into the injection hole portion 14 can be adjusted, and the fuel flow B and the fuel flow B and the fuel can be adjusted. The effect of being able to adjust the balance of the flow strength with the flow A, improving the uniformity of the thickness of the fuel liquid film formed on the inner wall surface of the injection hole portion 14, and promoting the atomization of the fuel. Is obtained.
 図4は、比較例1による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図であって、実施の形態1による燃料噴射弁と比較するためのものである。実施の形態1では、前述のように、角度θ1は、[0°≦θ1<180°]を満たす値を有するが、図4に示す比較例1では、角度θ1は、[θ1>180°]の値を有している。その他の構成は、実施の形態1の場合と同様である。 FIG. 4 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to Comparative Example 1, and is for comparison with the fuel injection valve according to the first embodiment. In the first embodiment, as described above, the angle θ1 has a value satisfying [0 ° ≦ θ1 <180 °], but in Comparative Example 1 shown in FIG. 4, the angle θ1 is [θ1> 180 °]. Has a value of. Other configurations are the same as in the case of the first embodiment.
 図4に示す比較例1による噴孔プレート13を備えた燃料噴射弁の場合、導入部13bからの燃料の流れAは、噴孔部14へ直接流れ込んで噴孔部14の内壁面へ衝突し、流れALと流れARとに分流する。流れAの分流した流れALの流れる方向は、導入部13bからの燃料の流れBが旋回室13cの内部で図の時計回りに旋回したのちに噴孔部14に流れ込む方向に対して、逆方向となる。一方、流れAの分流した流れARの流れる方向は、導入部13bからの燃料の流れBが噴孔部14に流れ込む方向と同一方向となる。したがって、流れARよりも流れALの方が、流れBに対する干渉の度合いが大きくなる。 In the case of the fuel injection valve provided with the injection hole plate 13 according to Comparative Example 1 shown in FIG. 4, the fuel flow A from the introduction portion 13b directly flows into the injection hole portion 14 and collides with the inner wall surface of the injection hole portion 14. , Flow AL and flow AR. The flow direction of the split flow AL of the flow A is opposite to the direction in which the fuel flow B from the introduction portion 13b turns clockwise inside the swivel chamber 13c and then flows into the injection hole portion 14. Will be. On the other hand, the flow direction of the split flow AR of the flow A is the same as the direction in which the fuel flow B from the introduction portion 13b flows into the injection hole portion 14. Therefore, the degree of interference with the flow B is larger in the flow AL than in the flow AR.
 図4に示す比較例1による燃料噴射弁によれば、前述のように、燃料の流れAは、噴孔部14へ突入したときに噴孔部14の内壁面から剥離して噴孔部14の内壁面に衝突したのち、流れALと流れARに分流し、分流した流れALの流れる方向が、流れBの旋回流れを阻害する方向となるため、燃料の流れ全体としての圧力損失が増大することになる。 According to the fuel injection valve according to Comparative Example 1 shown in FIG. 4, as described above, the fuel flow A separates from the inner wall surface of the injection hole portion 14 when it enters the injection hole portion 14, and the injection hole portion 14 After colliding with the inner wall surface of the fuel, the fuel is divided into the flow AL and the flow AR, and the flow direction of the divided flow AL becomes a direction that obstructs the swirling flow of the flow B, so that the pressure loss of the fuel flow as a whole increases. It will be.
 前述の図3に示す実施の形態1の噴孔プレート13を備えた燃料噴射弁1は、角度θ1が[0°≦θ1<180°]を満たす値を有するので、図4に示す比較例1の噴孔プレート13を備えた燃料噴射弁のように、燃料の流れAが流れALと流れARとに分流することがなく、したがって燃料の流れBが流れAの分流により干渉されることがないので、燃料の流れ全体としての圧力損失が増大することはない。 Since the fuel injection valve 1 provided with the injection hole plate 13 of the first embodiment shown in FIG. 3 described above has a value at which the angle θ1 satisfies [0 ° ≦ θ1 <180 °], Comparative Example 1 shown in FIG. Unlike the fuel injection valve provided with the injection hole plate 13, the fuel flow A does not divide into the flow AL and the flow AR, and therefore the fuel flow B does not interfere with the flow A. Therefore, the pressure loss of the fuel flow as a whole does not increase.
 つぎに、実施の形態1による燃料噴射弁の噴孔プレート13について、さらに説明する。図5は、実施の形態2による燃料噴射弁における噴孔プレートの一部分を拡大して示す別の説明図である。図5に示すように、噴孔プレート13は、燃料噴霧が、内燃機関の吸気管へ付着する量を減少させることを意図して、噴孔部14の噴孔出口部142から燃料が噴射されたのちの噴霧角度を減少させるように構成されている。 Next, the injection hole plate 13 of the fuel injection valve according to the first embodiment will be further described. FIG. 5 is another explanatory view showing a part of the injection hole plate in the fuel injection valve according to the second embodiment in an enlarged manner. As shown in FIG. 5, the injection hole plate 13 is injected with fuel from the injection hole outlet 142 of the injection hole 14 with the intention of reducing the amount of fuel spray adhering to the intake pipe of the internal combustion engine. It is configured to reduce the later spray angle.
 図5において、複数の導入部13bのそれぞれの中心軸Mの交点Kと、噴孔入口部141の中心Oとを結ぶ仮想直線OKに噴孔入口部141の中心Oで直交する仮想直交線をQとしたとき、直交座標系のY軸と仮想直交線Qとのなす角度γと、角度θ1とは、[θ1<γ]を満たす値を有する。 In FIG. 5, a virtual orthogonal line orthogonal to the center O of the injection hole inlet portion 141 is provided on the virtual straight line OK connecting the intersection K of each central axis M of the plurality of introduction portions 13b and the center O of the injection hole inlet portion 141. When Q is assumed, the angle γ formed by the Y-axis of the Cartesian coordinate system and the virtual orthogonal line Q and the angle θ1 have values satisfying [θ1 <γ].
 このように構成された噴孔プレート13によれば、複数の旋回室13cにそれぞれ設けられた噴孔部14から噴射される燃料噴霧が、弁座12の中心軸Fに向かう方向である内径側の方向に噴射され、噴霧角度を縮小させる効果が得られる。とりわけ、噴孔角度である前述の角度αが、[α≦15°]の値を有すれば、噴霧角度の縮小効果が更に向上することが実験での評価により確認されており、角度θ1と角度γとは、[θ1<γ]で、かつ、[α≦15°]を満たす範囲の値とすることが望ましい。 According to the injection hole plate 13 configured in this way, the fuel spray injected from the injection holes 14 provided in each of the plurality of swivel chambers 13c is on the inner diameter side in the direction toward the central axis F of the valve seat 12. It is sprayed in the direction of, and the effect of reducing the spray angle can be obtained. In particular, it has been confirmed by experimental evaluation that if the above-mentioned angle α, which is the injection hole angle, has a value of [α ≦ 15 °], the effect of reducing the spray angle is further improved, and the angle θ1. The angle γ is preferably a value in the range of [θ1 <γ] and satisfying [α ≦ 15 °].
実施の形態2.
 つぎに、実施の形態2による燃料噴射弁について説明する。図6は、実施の形態2による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。図6に示されるように、導入部13bの第1側壁部13b1を噴孔部14の方向に延長した仮想延長線13b1vと交差する位置に配置されている噴孔入口部141が、交差した仮想延長線13b1vにより、導入部側に存在する第1部分S1と、導入部13bの中心軸Mに対して噴孔入口部141の中心Oがオフセットしている側に存在する第2部分S2と、に仮想分断されている。ここで、第1部分S1の面積をS1a、第2部分の面積をS2a、とすると、面積S1aと面積S2aとは、[S1a<S2a]を満たす値を有するように構成されている。その他の構成は、実施の形態1と同様である。
Embodiment 2.
Next, the fuel injection valve according to the second embodiment will be described. FIG. 6 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the second embodiment. As shown in FIG. 6, a virtual injection hole inlet portion 141 arranged at a position intersecting a virtual extension line 13b1v extending the first side wall portion 13b1 of the introduction portion 13b in the direction of the injection hole portion 14 intersects. The first portion S1 existing on the introduction portion side and the second portion S2 existing on the side where the center O of the injection hole inlet portion 141 is offset with respect to the central axis M of the introduction portion 13b by the extension line 13b1v. It is virtually divided into. Here, assuming that the area of the first portion S1 is S1a and the area of the second portion is S2a, the area S1a and the area S2a are configured to have values satisfying [S1a <S2a]. Other configurations are the same as those in the first embodiment.
 噴孔プレート13を前述のように構成とすることで、噴孔部14の内壁面に沿わずに直接、噴孔出口部142へ向かう燃料の流れ成分が抑制され、燃料の流れAの周速が向上し、燃料全体の旋回力が十分に高まった状態で噴孔出口部142から噴射される。その結果、燃料の微粒化をさらに促進する効果が得られる。 By configuring the injection hole plate 13 as described above, the fuel flow component directly toward the injection hole outlet portion 142 without following the inner wall surface of the injection hole portion 14 is suppressed, and the peripheral speed of the fuel flow A is suppressed. Is improved, and the fuel is injected from the injection hole outlet 142 in a state where the turning force of the entire fuel is sufficiently increased. As a result, the effect of further promoting the atomization of the fuel can be obtained.
 図7は、比較例2による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図であって、実施の形態2による燃料噴射弁と比較するためのものである。実施の形態2では、面積S1aと面積S2aとは、[S1a<S2a]を満たす値を有するように噴孔部14が配置されているが、比較例2では、図7に示すように、導入部13bの中心軸Mに対する噴孔入口部141の中心Oのオフセット量が、図6の実施の形態2の場合に比べて小さく、面積S1aと面積S2aとは、[S1a>S2a]となるように噴孔部14が配置されている。この比較例2の場合は、燃料の流れAの大部分は導入部13bから直接、噴孔出口部142へ向かう流れとなり、燃料の周速が不十分な状態で噴射されるため、燃料の微粒化が促進されない構成となる。 FIG. 7 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to Comparative Example 2, and is for comparison with the fuel injection valve according to the second embodiment. In the second embodiment, the injection hole portion 14 is arranged so that the area S1a and the area S2a have a value satisfying [S1a <S2a], but in Comparative Example 2, as shown in FIG. 7, it is introduced. The offset amount of the center O of the injection hole inlet portion 141 with respect to the central axis M of the portion 13b is smaller than that of the second embodiment of FIG. 6, and the area S1a and the area S2a are [S1a> S2a]. The injection hole portion 14 is arranged in the. In the case of Comparative Example 2, most of the fuel flow A is a flow directly from the introduction portion 13b toward the injection hole outlet portion 142, and is injected in a state where the peripheral speed of the fuel is insufficient, so that the fuel particles are fine particles. It will be a configuration that does not promote conversion.
実施の形態3.
 つぎに、実施の形態3による燃料噴射弁について説明する。図8は、実施の形態3による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。実施の形態3では、第1直面壁部と旋回室の曲面壁部との接続部は、曲面によりに形成されている。すなわち図8に示すように、旋回室13cの曲面壁部13c1と第1直面壁部Lとの接続部hが、滑らかな曲面Rhにより形成されている。その他の基本的な構成は、実施の形態1と同様である。
Embodiment 3.
Next, the fuel injection valve according to the third embodiment will be described. FIG. 8 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the third embodiment. In the third embodiment, the connection portion between the first facing wall portion and the curved wall portion of the swivel chamber is formed by a curved surface. That is, as shown in FIG. 8, the connecting portion h between the curved wall portion 13c1 of the swivel chamber 13c and the first facing wall portion L is formed by a smooth curved surface Rh. Other basic configurations are the same as those in the first embodiment.
 接続部hが曲面Rhにより形成されていることで、旋回室13cにおける容積を縮小することができ、噴孔部14の噴孔出口部142から噴射される燃料噴霧の微粒化が促進され、温度、雰囲気の変化による流量変化が抑制される。 Since the connecting portion h is formed by the curved surface Rh, the volume in the swirl chamber 13c can be reduced, the atomization of the fuel spray injected from the injection hole outlet portion 142 of the injection hole portion 14 is promoted, and the temperature is increased. , The change in flow rate due to the change in atmosphere is suppressed.
 また、旋回室13cの内部に流入する燃料の流れBが、第1直面壁部Lに到達する際に、曲面Rhにより滑らかに噴孔入口部141の方向に転じることで、流れBの圧力損失が低減され、燃料の微粒化が促進される。さらに、旋回室13cの曲面壁部13c1と第1直面壁部Lとの接続部を曲面Rhにより形成することで、噴孔プレート13の加工性が向上し、また、噴孔プレート13をプレス加工で旋回室13cなどを形成する場合には、金型の耐久性の向上を図ることができる。 Further, when the fuel flow B flowing into the inside of the swivel chamber 13c reaches the first facing wall portion L, it smoothly turns in the direction of the injection hole inlet portion 141 due to the curved surface Rh, so that the pressure loss of the flow B Is reduced and fuel atomization is promoted. Further, by forming the connection portion between the curved wall portion 13c1 of the swivel chamber 13c and the first facing wall portion L by the curved surface Rh, the workability of the injection hole plate 13 is improved, and the injection hole plate 13 is press-processed. When the swivel chamber 13c or the like is formed in the above, the durability of the mold can be improved.
 噴孔プレート13に旋回室13cなどの流路部をプレス加工で形成する場合は、金型側の加工性に鑑みて、曲面Rhの半径Rを、0.1[mm]以上とすることが望ましい。また、実施の形態3では、第1直面壁部Lと導入部13bの第1側壁部13b1との接続部も滑らかな曲面Rgにより形成されており、前述の流路部の加工性が向上し、また、流路部をプレス加工で形成する場合には、金型の耐久性の向上を図ることができる。 When a flow path portion such as a swirl chamber 13c is formed in the injection hole plate 13 by press working, the radius R of the curved surface Rh may be 0.1 [mm] or more in consideration of workability on the mold side. desirable. Further, in the third embodiment, the connection portion between the first facing wall portion L and the first side wall portion 13b1 of the introduction portion 13b is also formed by a smooth curved surface Rg, and the workability of the above-mentioned flow path portion is improved. Further, when the flow path portion is formed by press working, the durability of the mold can be improved.
実施の形態4.
 つぎに、実施の形態4による燃料噴射弁について説明する。図9は、実施の形態4による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。実施の形態4では、旋回室の曲面壁部と導入部の第1直面壁部との間に、直線状に延びる第2直面壁部が設けられ、第1直面壁部と第2直面壁部との接続部は、曲面により形成されている。すなわち、図9に示すように、旋回室13cの曲面壁部13c1と第1直面壁部Lとの間に、曲面壁部13c1に外接する第2直面壁部Tが存在し、この第2直面壁部Tと第1直面壁部Lとの接続部は、滑らかな曲面Rjにより形成されている。その他の基本的な構成は、実施の形態1と同様である。
Embodiment 4.
Next, the fuel injection valve according to the fourth embodiment will be described. FIG. 9 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the fourth embodiment. In the fourth embodiment, a second facing wall portion extending linearly is provided between the curved wall portion of the swivel chamber and the first facing wall portion of the introduction portion, and the first facing wall portion and the second facing wall portion are provided. The connection portion with and is formed by a curved surface. That is, as shown in FIG. 9, there is a second facing wall portion T circumscribing the curved wall portion 13c1 between the curved wall portion 13c1 and the first facing wall portion L of the swivel chamber 13c, and the second facing wall portion T is present. The connection portion between the wall portion T and the first facing wall portion L is formed by a smooth curved surface Rj. Other basic configurations are the same as those in the first embodiment.
 第2直面壁部Tと第1直面壁部Lとの接続部jを、滑らかな曲面Rjにより形成することで、旋回室13cの内径の大きさに制限されることなく、第1直面壁部Lの長さを調整することが可能となり、燃料の流れBの流路長、噴孔部14への燃料の流入の方向を調整することができる。したがって、燃料の流れAと燃料の流れBとの流れの強さのバランスを調整することができ、噴孔部14の内壁面に形成される燃料液膜の厚さの均一性を向上させることができ、燃料の微粒化をさらに改善できる効果が得られる。また、第2直面壁部Tと第1直面壁部Lとの接続部jを滑らかな曲面Rjにより形成することで、噴孔プレート13の旋回室13cなどの流路部の加工性が向上し、また、その流路部をプレス加工で形成する場合に、金型の耐久性の向上を図ることができる。 By forming the connecting portion j between the second facing wall portion T and the first facing wall portion L by a smooth curved surface Rj, the first facing wall portion is not limited by the size of the inner diameter of the swivel chamber 13c. The length of L can be adjusted, and the length of the flow path of the fuel flow B and the direction of fuel inflow into the injection hole portion 14 can be adjusted. Therefore, the balance of the flow strength between the fuel flow A and the fuel flow B can be adjusted, and the uniformity of the thickness of the fuel liquid film formed on the inner wall surface of the injection hole portion 14 can be improved. This has the effect of further improving the atomization of the fuel. Further, by forming the connecting portion j between the second facing wall portion T and the first facing wall portion L by a smooth curved surface Rj, the workability of the flow path portion such as the swirling chamber 13c of the injection hole plate 13 is improved. Further, when the flow path portion is formed by press working, the durability of the die can be improved.
 また、実施の形態4では、第1直面壁部Lと導入部13bの第1側壁部13b1との接続部も、滑らかな曲面Rgにより形成されており、前述の流路部の加工性が向上し、また、その流路部をプレス加工で形成する場合に、金型の耐久性の向上を図ることができる。 Further, in the fourth embodiment, the connection portion between the first facing wall portion L and the first side wall portion 13b1 of the introduction portion 13b is also formed by a smooth curved surface Rg, and the workability of the above-mentioned flow path portion is improved. Further, when the flow path portion is formed by press working, the durability of the die can be improved.
 図10は、実施の形態4による燃料噴射弁における噴孔プレートの一部分を拡大して示す別の説明図である。実施の形態4では、前述の構成の他に、さらに、旋回室の曲面壁部は、仮想円弧の一部となるように構成されており、第1直面壁部と第1側壁部との接続部と、噴孔入口部の中心と、の間の最小隙間部は、仮想円弧の範囲内に存在するように構成されている。 FIG. 10 is another explanatory view showing an enlarged part of a injection hole plate in the fuel injection valve according to the fourth embodiment. In the fourth embodiment, in addition to the above-described configuration, the curved wall portion of the swivel chamber is configured to be a part of the virtual arc, and the connection between the first facing wall portion and the first side wall portion is made. The minimum gap between the portion and the center of the injection hole inlet portion is configured to exist within the range of the virtual arc.
 前述のように、第1直面壁部Lと第1側壁部13b1との接続部である曲面Rgと、噴孔入口部の中心Oと、の間の最小隙間部Eが、仮想円弧13c1vの範囲内に存在するように構成されているので、燃料の流れAから分かれて旋回室13cに向かう後述の分流Asを有効に抑制することが可能となり、分流Asと流れBの衝突による圧力損失が低減され、燃料噴霧の微粒化が促進される。また、燃料の流れBが余剰な流路長となることを抑制することができ、前述の圧力損失を低減できる効果と、旋回室13cの容積を抑制することができ、したがって燃料噴霧の微粒化が促進され、温度、雰囲気の変化による流量変化を抑制することができる。 As described above, the minimum gap E between the curved surface Rg which is the connection portion between the first facing wall portion L and the first side wall portion 13b1 and the center O of the injection hole inlet portion is within the range of the virtual arc 13c1v. Since it is configured to exist inside, it is possible to effectively suppress the later-described diversion As that separates from the fuel flow A and heads toward the swivel chamber 13c, and the pressure loss due to the collision between the diversion As and the flow B is reduced. And the atomization of the fuel spray is promoted. Further, it is possible to suppress the fuel flow B from becoming an excess flow path length, the above-mentioned effect of reducing the pressure loss, and the volume of the swirl chamber 13c can be suppressed, and therefore the fuel spray is atomized. Is promoted, and changes in flow rate due to changes in temperature and atmosphere can be suppressed.
 また、実施の形態4による噴孔プレート13は、図10に示すように、曲面壁部13c1から第2直面壁部Tと第1直面壁部Lとを介して第1側壁部13b1に至る間で、噴孔入口部141の中心Oからの距離が最大となる最大距離点Pと、噴孔入口部の中心Oと、を結ぶ直線距離は、仮想円弧13c1vの半径の2倍以下となるように構成されている。このように構成されることで、燃料の流れBの流路長の抑制による圧力損失低減の効果が大きくなり、また旋回室の容積が抑制されることで燃料噴霧の微粒化が促進され、温度、雰囲気の変化時における燃料の流量変化が抑制される。 Further, as shown in FIG. 10, the injection hole plate 13 according to the fourth embodiment extends from the curved wall portion 13c1 to the first side wall portion 13b1 via the second facing wall portion T and the first facing wall portion L. Then, the linear distance connecting the maximum distance point P at which the distance from the center O of the injection hole inlet portion 141 is maximum and the center O of the injection hole inlet portion is not twice the radius of the virtual arc 13c1v. It is configured in. With such a configuration, the effect of reducing the pressure loss by suppressing the flow path length of the fuel flow B is increased, and the volume of the swirl chamber is suppressed, so that the atomization of the fuel spray is promoted and the temperature is increased. , The change in fuel flow rate when the atmosphere changes is suppressed.
 図11は、比較例3による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図であって、実施の形態4による燃料噴射弁と比較するためのものである。図11に示されるように、比較例3では、曲面Rgと第1直面壁部Lとの最小隙間部Eと噴孔入口部141の中心Oとの間の距離は、仮想円弧13c1vの半径より大きく設定されており、最小隙間部Eは、仮想円弧13c1vの範囲外に存在する。この比較例によれば、燃料の流れAから分かれて旋回室13cに向かう分流Asを抑制することができず、分流Asと流れBの衝突による圧力損失が増大し、燃料噴霧の微粒化が阻害される。また、燃料の流れBが余剰な流路長となり、旋回室13cの容積が大きくなることから、燃料噴霧の微粒化が阻害され、温度、雰囲気の変化による流量変化が増加する。 FIG. 11 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to Comparative Example 3, and is for comparison with the fuel injection valve according to the fourth embodiment. As shown in FIG. 11, in Comparative Example 3, the distance between the minimum gap E between the curved surface Rg and the first facing wall portion L and the center O of the injection hole inlet portion 141 is from the radius of the virtual arc 13c1v. It is set large, and the minimum gap E exists outside the range of the virtual arc 13c1v. According to this comparative example, the diversion As that separates from the fuel flow A and heads toward the swirl chamber 13c cannot be suppressed, the pressure loss due to the collision between the diversion As and the flow B increases, and the atomization of the fuel spray is hindered. Will be done. Further, since the fuel flow B becomes an excess flow path length and the volume of the swirl chamber 13c becomes large, atomization of the fuel spray is hindered, and the flow rate change due to changes in temperature and atmosphere increases.
実施の形態5.
 つぎに、実施の形態5による燃料噴射弁について説明する。図12は、実施の形態5による燃料噴射弁における噴孔プレートの一部分を拡大して示す説明図である。実施の形態5では、図12に示すように、第1直面壁部Lと導入部13bの中心軸Mとのなす角度をθ2とし、仮想直交座標系の正方向のY軸から正方向のX軸の方向へ、直交座標系の原点を中心として回転する方向を正の角度方向としたとき、角度θ1と角度θ2は、[|θ1-θ2|≦60°]を満たす値を有するように構成されている。その他の基本的な構成は、実施の形態1と同様である。
Embodiment 5.
Next, the fuel injection valve according to the fifth embodiment will be described. FIG. 12 is an enlarged explanatory view showing a part of the injection hole plate in the fuel injection valve according to the fifth embodiment. In the fifth embodiment, as shown in FIG. 12, the angle formed by the first facing wall portion L and the central axis M of the introduction portion 13b is θ2, and X in the positive direction from the Y axis in the positive direction of the virtual Cartesian coordinate system. When the direction of rotation around the origin of the Cartesian coordinate system is a positive angle direction in the direction of the axis, the angle θ1 and the angle θ2 are configured to have values satisfying [| θ1-θ2 | ≦ 60 °]. Has been done. Other basic configurations are the same as those in the first embodiment.
 燃料の旋回流れにより燃料噴霧の微粒化を行なう手法においては、噴孔部14の内壁に形成される燃料液膜の厚さを均一にすることが燃料の微粒化を改善することにつながる。実施の形態5による燃料噴射弁によれば、前述の構成とすることで、燃料の流れAと燃料の流れBとが、噴孔部14の内部で対向する流れ成分が強化され、噴孔部14の内部における流れAと流れBとの強さを同等に近付けることができ、噴孔部14の内壁の液膜の均一度が上昇し、燃料の微粒化改善の効果が得られる。 In the method of atomizing the fuel spray by the swirling flow of the fuel, making the thickness of the fuel liquid film formed on the inner wall of the injection hole portion 14 uniform leads to improvement of the atomization of the fuel. According to the fuel injection valve according to the fifth embodiment, with the above-described configuration, the flow components of the fuel flow A and the fuel flow B facing each other inside the injection hole portion 14 are strengthened, and the injection hole portion is enhanced. The strengths of the flow A and the flow B inside the 14 can be brought close to each other, the uniformity of the liquid film on the inner wall of the injection hole portion 14 is increased, and the effect of improving the atomization of the fuel can be obtained.
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。したがって、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。 Although the present application describes various exemplary embodiments and examples, the various features, embodiments, and functions described in one or more embodiments are applications of a particular embodiment. It is not limited to, but can be applied to embodiments alone or in various combinations. Therefore, innumerable variations not exemplified are envisioned within the scope of the techniques disclosed in the present application. For example, it is assumed that at least one component is modified, added or omitted, and further, at least one component is extracted and combined with the components of other embodiments.
 本願は、燃料噴射弁の分野、ひいては内燃機関を有する自動車産業の分野に利用することができる。 This application can be used in the field of fuel injection valves, and by extension, in the field of the automobile industry having an internal combustion engine.
1 燃料噴射弁、4 ソレノイド装置、41 絶縁外被、5 ハウジング、6 コア、7 コイル、71 枠体、8 アマチュア、8a 端面、9 弁装置、10 弁体、11 弁ホルダ、11a ガイド部、12 弁座、12a 弁座シート部、12d 弁座開口部、13 噴孔プレート、13a 中央部、13b 導入部、13b1 第1側壁部、13b2 第2側壁部、13c 旋回室、13c1 曲面壁部、14 噴孔部、141 噴孔入口部、142 噴孔出口部、15 ボール、15a 平坦面、16 圧縮バネ、50 溶接部、A、B 燃料の流れ、L 第1直面壁部、T 第2直面壁部 1 fuel injection valve, 4 solenoid device, 41 insulated jacket, 5 housing, 6 core, 7 coil, 71 frame, 8 amateur, 8a end face, 9 valve device, 10 valve body, 11 valve holder, 11a guide part, 12 Valve seat, 12a valve seat seat part, 12d valve seat opening, 13 injection hole plate, 13a center part, 13b introduction part, 13b1 first side wall part, 13b2 second side wall part, 13c swivel chamber, 13c1 curved wall part, 14 Injection hole, 141 injection hole inlet, 142 injection hole exit, 15 ball, 15a flat surface, 16 compression spring, 50 weld, A, B fuel flow, L first facing wall, T second facing wall Department

Claims (8)

  1.  燃料を流出させる弁座開口部を有する弁座と、前記弁座開口部を開閉する弁体と、前記燃料の流れの下流側で前記弁座開口部に対向して配置され、前記燃料を外部へ噴射させる複数の噴孔部を有する噴孔プレートと、を備え、外部の制御装置からの動作信号に基づいて、前記弁体を前記弁座の軸方向に移動させて前記弁座開口部を開閉し、前記噴孔部からの前記燃料の噴射を制御するようにした燃料噴射弁であって、
     前記噴孔プレートは、前記燃料の流れの上流側の端面に、
     前記弁座開口部の径方向の外側に配置された複数の旋回室と、
     前記弁座開口部に接続される中央部と、
     前記燃料を前記中央部からそれぞれの前記旋回室に案内する複数の導入部と、
    を備え、
     前記噴孔部は、
     前記旋回室の内部に開口する噴孔入口部と、
     前記噴孔プレートの前記上流側の端面に対向する下流側の端面に開口する噴孔出口部と、を有し、
     前記導入部は、導入部の中心軸を介して対峙する第1側壁部と第2側壁部とを有し、
     前記噴孔入口部の中心は、
     前記導入部の中心軸に対して前記第1側壁部の存在する方向にオフセットされるとともに、前記旋回室の中心と一致するように設けられ、
     前記旋回室は、仮想円弧の一部により構成された曲面壁部を備え、
     前記曲面壁部は、直線状に延びる第1直面壁部を介して前記第1側壁部に接続され、
     前記噴孔部は、
     前記第1側壁部を前記噴孔部の方向に延長した仮想延長線と前記噴孔入口部とが交差する位置に配置されるとともに、
     前記噴孔入口部の中心と噴孔出口部の中心とを結ぶ噴孔部の中心軸が、前記噴孔プレートの板厚の方向に対して傾斜され、
     前記導入部の前記中心軸と平行で、かつ前記旋回室から前記中央部へ向かう方向を正方向としたY軸と、前記Y軸と直交し前記導入部の前記中心軸に対して前記噴孔入口部の中心がオフセットする方向を正方向としたX軸と、で定義される直交座標系を仮想したとき、
     前記弁座の中心軸に直交する仮想平面に前記噴孔部の前記中心軸を投影させた投影中心軸は、前記正方向のY軸から前記正方向のX軸の方向へ、前記直交座標系の原点を中心として角度θ1だけ回転した位置に存在し、
     前記角度θ1は、[0°≦θ1<180°]を満たす値を有する、
    ことを特徴とする燃料噴射弁。
    A valve seat having a valve seat opening for allowing fuel to flow out, a valve body for opening and closing the valve seat opening, and a valve body arranged on the downstream side of the fuel flow facing the valve seat opening, and the fuel is externally arranged. A jet hole plate having a plurality of jet holes to be injected into the valve seat is provided, and the valve body is moved in the axial direction of the valve seat based on an operation signal from an external control device to open the valve seat opening. A fuel injection valve that opens and closes to control the injection of the fuel from the injection hole.
    The injection hole plate is provided on the upstream end face of the fuel flow.
    A plurality of swivel chambers arranged radially outside the valve seat opening, and
    The central part connected to the valve seat opening and
    A plurality of introduction portions for guiding the fuel from the central portion to each of the swivel chambers,
    Equipped with
    The injection hole portion is
    The inlet of the injection hole that opens inside the swivel chamber,
    It has an injection hole outlet portion that opens to the downstream end surface facing the upstream end surface of the injection hole plate.
    The introduction portion has a first side wall portion and a second side wall portion facing each other via the central axis of the introduction portion.
    The center of the injection hole entrance is
    It is offset in the direction in which the first side wall portion exists with respect to the central axis of the introduction portion, and is provided so as to coincide with the center of the swivel chamber.
    The swivel chamber includes a curved wall portion composed of a part of a virtual arc.
    The curved wall portion is connected to the first side wall portion via a first facing wall portion extending linearly.
    The injection hole portion is
    The first side wall portion is arranged at a position where the virtual extension line extending in the direction of the injection hole portion and the injection hole inlet portion intersect with each other.
    The central axis of the injection hole portion connecting the center of the injection hole inlet portion and the center of the injection hole outlet portion is inclined in the direction of the plate thickness of the injection hole plate.
    The injection hole is parallel to the central axis of the introduction portion and is orthogonal to the Y axis and is orthogonal to the central axis of the introduction portion. When imagining the Cartesian coordinate system defined by the X-axis with the direction in which the center of the entrance is offset as the positive direction,
    The projection central axis obtained by projecting the central axis of the injection hole portion onto a virtual plane orthogonal to the central axis of the valve seat is the Cartesian coordinate system from the positive Y axis to the positive X axis. It exists at a position rotated by an angle θ1 about the origin of
    The angle θ1 has a value satisfying [0 ° ≦ θ1 <180 °].
    A fuel injection valve characterized by that.
  2.  前記複数の導入部のそれぞれの中心軸の交点と前記噴孔入口部の中心とを結ぶ仮想直線に、前記噴孔入口部の中心で直交する仮想直交線をQとしたとき、
     前記Y軸と前記仮想直交線とのなす角度γと前記角度θ1とは、[θ1<γ]を満たす値を有する、
    ことを特徴とする請求項1に記載の燃料噴射弁。
    When the virtual orthogonal line orthogonal to the center of the injection hole inlet portion is defined as Q on the virtual straight line connecting the intersection of the central axes of the plurality of introduction portions and the center of the injection hole inlet portion.
    The angle γ formed by the Y-axis and the virtual orthogonal line and the angle θ1 have values satisfying [θ1 <γ].
    The fuel injection valve according to claim 1.
  3.  前記噴孔入口部は、前記交差した仮想延長線により、前記導入部側に存在する第1部分と前記オフセット側に存在する第2部分とに仮想分断されており、
     前記第1部分の面積をS1a、前記第2部分の面積をS2a、としたとき、前記面積S1aと前記面積S2aとは、[S1a<S2a]を満たす値を有する、
    ことを特徴とする請求項1又は2に記載の燃料噴射弁。
    The injection hole inlet portion is virtually divided into a first portion existing on the introduction portion side and a second portion existing on the offset side by the intersecting virtual extension lines.
    When the area of the first portion is S1a and the area of the second portion is S2a, the area S1a and the area S2a have values satisfying [S1a <S2a].
    The fuel injection valve according to claim 1 or 2.
  4.  前記第1直面壁部と前記旋回室の曲面壁部との接続部は、曲面により形成されている、
    ことを特徴とする請求項1から3のうちの何れか一項に記載の燃料噴射弁。
    The connection portion between the first facing wall portion and the curved wall portion of the swivel chamber is formed by a curved surface.
    The fuel injection valve according to any one of claims 1 to 3, wherein the fuel injection valve is characterized.
  5.  前記曲面壁部と前記第1直面壁部との間に、直線状に延びる第2直面壁部が設けられ、
     前記第1直面壁部と前記第2直面壁部との接続部は、曲面により形成されている、
    ことを特徴とする請求項1から4のうちの何れか一項に記載の燃料噴射弁。
    A second facing wall portion extending linearly is provided between the curved wall portion and the first facing wall portion.
    The connection portion between the first facing wall portion and the second facing wall portion is formed by a curved surface.
    The fuel injection valve according to any one of claims 1 to 4, wherein the fuel injection valve is characterized.
  6.  前記曲面壁部から前記第2直面壁部と前記第1直面壁部とを介して前記第1側壁部に至る間で前記噴孔入口部の中心からの距離が最大となる最大距離点と、前記噴孔入口部の中心と、を結ぶ直線距離は、前記仮想円弧の半径の2倍以下となるように構成されている、
    ことを特徴とする請求項5に記載の燃料噴射弁。
    The maximum distance point from the curved wall portion to the first side wall portion via the second facing wall portion and the first facing wall portion and the maximum distance from the center of the injection hole inlet portion. The linear distance connecting the center of the injection hole inlet portion is configured to be not more than twice the radius of the virtual arc.
    The fuel injection valve according to claim 5.
  7.  前記第1直面壁部と前記第1側壁部との接続部と、前記噴孔入口部の中心と、の間の最小隙間部は、前記仮想円弧の範囲内に存在する、
    ことを特徴とする請求項1から6のうちの何れか一項に記載の燃料噴射弁。
    The minimum gap between the connection portion between the first facing wall portion and the first side wall portion and the center of the injection hole inlet portion exists within the range of the virtual arc.
    The fuel injection valve according to any one of claims 1 to 6, wherein the fuel injection valve is characterized.
  8.  前記第1直面壁部と前記導入部の前記中心軸とのなす角度をθ2とし、
     前記正方向の前記Y軸から前記正方向の前記X軸の方向へ、前記直交座標系の原点を中心として回転する方向を正の角度方向としたとき、
     前記角度θ1と前記角度θ2は、[|θ1-θ2|≦60°]を満たす値を有する、
    ことを特徴とする請求項1から7のうちの何れか一項に記載の燃料噴射弁。
    Let θ2 be the angle between the first facing wall portion and the central axis of the introduction portion.
    When the direction of rotation from the Y-axis in the positive direction to the X-axis in the positive direction around the origin of the Cartesian coordinate system is a positive angular direction.
    The angle θ1 and the angle θ2 have values satisfying [| θ1-θ2 | ≦ 60 °].
    The fuel injection valve according to any one of claims 1 to 7, wherein the fuel injection valve is characterized.
PCT/JP2020/022970 2020-06-11 2020-06-11 Fuel injection valve WO2021250836A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022530447A JPWO2021250836A1 (en) 2020-06-11 2020-06-11
PCT/JP2020/022970 WO2021250836A1 (en) 2020-06-11 2020-06-11 Fuel injection valve
CN202080101556.3A CN115698496A (en) 2020-06-11 2020-06-11 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022970 WO2021250836A1 (en) 2020-06-11 2020-06-11 Fuel injection valve

Publications (1)

Publication Number Publication Date
WO2021250836A1 true WO2021250836A1 (en) 2021-12-16

Family

ID=78847111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022970 WO2021250836A1 (en) 2020-06-11 2020-06-11 Fuel injection valve

Country Status (3)

Country Link
JP (1) JPWO2021250836A1 (en)
CN (1) CN115698496A (en)
WO (1) WO2021250836A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050552A (en) * 2014-09-02 2016-04-11 日立オートモティブシステムズ株式会社 Fuel injection valve

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510915A (en) * 2000-10-04 2004-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2012211532A (en) * 2011-03-31 2012-11-01 Hitachi Automotive Systems Ltd Fuel injection valve
WO2017060945A1 (en) * 2015-10-05 2017-04-13 三菱電機株式会社 Fuel injection valve
JP2019143582A (en) * 2018-02-23 2019-08-29 日立オートモティブシステムズ株式会社 Fuel injection valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004510915A (en) * 2000-10-04 2004-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Fuel injection valve
JP2012211532A (en) * 2011-03-31 2012-11-01 Hitachi Automotive Systems Ltd Fuel injection valve
WO2017060945A1 (en) * 2015-10-05 2017-04-13 三菱電機株式会社 Fuel injection valve
JP2019143582A (en) * 2018-02-23 2019-08-29 日立オートモティブシステムズ株式会社 Fuel injection valve

Also Published As

Publication number Publication date
CN115698496A (en) 2023-02-03
JPWO2021250836A1 (en) 2021-12-16

Similar Documents

Publication Publication Date Title
EP2141350B1 (en) Fuel injection valve
JP5933720B2 (en) Fuel injection valve
JP5089722B2 (en) Fuel injection valve and fuel injection system
EP2108811B1 (en) Fuel injection valve
JP2010077865A (en) Fuel injection valve
JP4215004B2 (en) Fuel injection valve
WO2021250836A1 (en) Fuel injection valve
JP6808356B2 (en) Fuel injection valve
JP4230503B2 (en) Fuel injection valve
JP2015078603A (en) Fuel injection valve
WO2021075041A1 (en) Fuel injection valve
JP2006207419A (en) Fuel injection valve
WO2017060945A1 (en) Fuel injection valve
JP7113943B1 (en) fuel injector
WO2020230225A1 (en) Fuel injection valve
JP7031020B2 (en) Fuel injection device
WO2019087326A1 (en) Fuel injection valve
JP5258644B2 (en) Fuel injection valve
WO2019087325A1 (en) Fuel injection valve
JP6735913B2 (en) Fuel injection valve
JP2003201937A (en) Fuel injection device
JP3129188B2 (en) Fuel injection device for internal combustion engine
WO2018087827A1 (en) Fuel injection valve and injection flow rate adjustment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940015

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940015

Country of ref document: EP

Kind code of ref document: A1