WO2021250357A1 - Ensemble annulaire pour turbine de turbomachine - Google Patents

Ensemble annulaire pour turbine de turbomachine Download PDF

Info

Publication number
WO2021250357A1
WO2021250357A1 PCT/FR2021/051043 FR2021051043W WO2021250357A1 WO 2021250357 A1 WO2021250357 A1 WO 2021250357A1 FR 2021051043 W FR2021051043 W FR 2021051043W WO 2021250357 A1 WO2021250357 A1 WO 2021250357A1
Authority
WO
WIPO (PCT)
Prior art keywords
circumferentially
sectors
annular
deflector
crown
Prior art date
Application number
PCT/FR2021/051043
Other languages
English (en)
Inventor
Rémi-Paul Honoré GODIER
Etienne Gérard Joseph CANELLE
Alexandre CORSAUT
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Priority to EP21737109.5A priority Critical patent/EP4165286B1/fr
Priority to US18/009,952 priority patent/US12018576B2/en
Priority to CN202180048776.9A priority patent/CN115917120A/zh
Publication of WO2021250357A1 publication Critical patent/WO2021250357A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/005Sealing means between non relatively rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position

Definitions

  • TITLE Annular assembly for turbomachine turbine
  • This document relates to a sealing member for a turbomachine, and more particularly for a low pressure turbine.
  • a turbomachine consists, upstream to downstream, of a low pressure compressor, a high pressure compressor, a combustion chamber, a high pressure turbine and a low pressure turbine.
  • the low-pressure turbine makes it possible to harness and release the power generated in a combustion chamber located upstream of said low-pressure turbine.
  • Two air flows are to be considered within a turbomachine: a primary annular flow and a secondary annular flow.
  • the secondary flow bypasses the entire hot part of the turbomachine.
  • the other flow called the primary flow passes through the entire turbomachine from the low pressure compressor to the low pressure turbine and is surrounded by the secondary air flow. This primary flow circulates within a primary vein.
  • a turbine comprises an alternation of annular rows of stator vanes and mobile vanes arranged within a housing.
  • Figure 1 illustrates part of such a turbine 1 and shows an upstream distributor 2 and an annular row of downstream blades 4.
  • the distributor 2 comprises an external annular platform 6 fixed to a radial blade 8.
  • the row of movable blades 4 comprises an external annular platform 10 from which wipers 12 extend radially outwardly cooperating in sealing with an abradabe 14, for example of the honeycomb type belonging to a sectorized ring carried by the housing 16 as illustrated in FIG. 1.
  • the circumferentially sectorized ring comprises a ring 18 bearing on its radially internal face the abradable 14.
  • the ring also comprises a thermal deflector 20 carried by the upstream end of the ring 18.
  • the ring 18 is fixed to the turbine housing 16. by a clamping tab 22 in the form of a solid C of the upstream end of an external platform of the distributor arranged downstream of the movable wheel.
  • the upstream end of the ring comprises a C-shaped member 24 for fixing the ring on a cylindrical rail 26 of the housing 16 and on a radial arm 28 of the upstream distributor 2.
  • the deflector 20 is attached to an upstream edge 30 of the ring 18 and extends radially inward.
  • the present document aims to remedy these drawbacks in a reliable, efficient and inexpensive manner.
  • annular assembly for a turbine engine, in particular an aircraft, said annular assembly extending along an axial direction X and comprising:
  • paddle wheel being surrounded by a circumferentially sectorized ring and carried by the outer casing and formed of a ring arranged radially outside the paddle wheel and an annular deflector carried by an upstream edge of the ring and extending radially inwards from said upstream edge of the crown characterized in that it comprises sealing members between two circumferentially adjacent ring sectors, these sealing members comprising first circumferential sealing means between two circumferentially consecutive deflector sectors.
  • This sealing member provides better aerothermal sealing between the thermal deflector sectors.
  • the seal provides thermal protection of the crankcase by preventing leakage of hot gases from combustion at the circumferential junctions of the heat deflector sectors.
  • the first circumferential sealing means can be arranged at the junction between two circumferentially consecutive deflector sectors.
  • the sealing members may comprise second circumferential sealing means between two circumferentially consecutive crown sectors, these second sealing means being integral with the first sealing means.
  • the second sealing means make it possible to prevent combustion gas leaks between two circumferentially consecutive crown sectors.
  • the securing of the second sealing means with the first sealing means makes it possible to facilitate the assembly of said sealing member.
  • the circumferential sealing between two crown sectors is thus produced simultaneously with the sealing between two circumferentially consecutive deflector seteurs, which avoids omissions in assembly.
  • the first sealing means may comprise a wall element applied from downstream to the circumferentially facing ends of two circumferentially consecutive deflector sectors.
  • the design of the first sealing means as a wall element eliminates doubts about the presence of the sealing element during an endoscopic inspection. This design also eliminates any risk of forgetting when fitting the sealing members, but also the risk of making a mistake in the mounting direction. The shape of these components thus achieves a keying when they are mounted between two ring sectors.
  • the second sealing means may comprise at least a first wafer and a second wafer disjoint and connected to each other to the first sealing means, the first wafer and the second wafer being engaged in a slot of one edge. of a first crown sector and for another part in a slot of a circumferentially facing edge of a second circumferentially adjacent crown sector.
  • Each sealing member may include a first junction element connecting a first plate to the wall element, this first junction element being interposed circumferentially between two edges of circumferentially adjacent deflector sectors.
  • Each sealing member may include a second junction element connecting a second plate to the wall element, this second junction element being interposed circumferentially between two edges of circumferentially adjacent crown sectors.
  • first and second junction elements make it possible to impart robustness and solidity to said sealing member. These first and second junction elements make it possible to facilitate the mounting direction of said sealing member.
  • first and second junction elements make it possible to mechanically hold the first sealing means to the second sealing means.
  • the second junction element can be arranged radially on the outside of two edges of circumferentially adjacent deflector sectors.
  • This document relates to a turbine for a turbomachine comprising a low pressure turbine comprising an annular assembly according to the aforementioned characteristics and a high pressure turbine, the outer casing of the low pressure turbine comprising an upstream annular flange for attachment to a downstream annular flange of a high pressure turbine outer casing.
  • a turbomachine comprising an annular assembly of the aforementioned type.
  • FIG. 1 shows a partial schematic half-view in axial section of a turbomachine module
  • FIG. 2 shows a partial schematic half-view in axial section of a turbomachine module according to the invention
  • FIG. 3 is a schematic perspective view of a sealing ring sector of the module of Figure 2, according to the invention.
  • FIG. 4 is a schematic perspective view of two circumferentially consecutive ring sectors and a sealing member, according to the invention.
  • FIG. 5 is a schematic perspective view of a sealing member mounted in a ring sector seen from the side, according to the invention.
  • FIG. 6 is a schematic perspective view of a sealing member mounted in a ring sector seen from downstream, according to the invention.
  • FIG. 7 is a schematic perspective view of a seal member as melted, according to the invention.
  • a turbine comprises an upstream high pressure turbine and a downstream low pressure turbine.
  • the high pressure turbine and the low pressure turbine each comprise an alternation of annular rows of stator vanes and mobile vanes arranged inside a casing.
  • a first wheel of downstream mobile blades 4 is surrounded on the outside by a casing of the low pressure turbine 16a while an upstream outlet distributor 2 of the high pressure turbine is surrounded on the outside by a casing of the high pressure turbine.
  • high pressure turbine 16b The distributor 2 comprises an outer annular platform 6 to which are connected the radially outer ends of the radial blades 8.
  • a hooking lug 32 is at one end of said outer platform 6 of the distributor 2. The circumferential and axial retention of the distributor 2 is ensured by means of said tab hooking 32 which is engaged in an annular groove 33 of the high pressure turbine housing 16b, this annular groove 33 opening downstream.
  • This high pressure turbine housing 16b is fixed at its downstream end by means of an annular flange 36 to an annular flange 38 of the upstream end of the low pressure turbine housing 16a.
  • the annular flanges 36, 38 are positioned radially at the level of the annular space between the outlet distributor 2 of the high pressure turbine and the first movable wheel 4 of the low pressure turbine.
  • the first impeller 4 is rotatably mounted about a longitudinal axis X in a ring attached to the outer casing 16a of the low pressure turbine.
  • the sectored ring is formed of several ring sectors which are arranged circumferentially end to end and each carried by the outer casing 16a of the low pressure turbine.
  • the downstream ends of the ring sectors are clamped radially by a C-shaped clamp 22, located downstream of the ring sectors.
  • each ring sector comprises a ring sector 18 arranged radially outside the impeller 4 and an annular thermal deflector sector 20.
  • the deflector sector 20 is generally z-shaped and has a substantially curved orientation.
  • the deflector sector 20 comprises, from upstream to downstream, a wall sector extending radially inwardly 40, an annular wall sector 42 and a wall sector extending radially outwardly 44.
  • the sector radially outwardly extending wall 44 is fixed by brazing to a downstream edge of a radial wall 46 of the crown sector 18.
  • the annular wall sector 42 of the deflector sector 20 circumferentially follows the direction of extension of the sector. 18.
  • the deflector sector 20 has a circumferential extent substantially the same as that of the crown sector 18 and the abradable 14 so that the circumferential ends of the deflector sector 20 are substantially axially aligned with those of the crown sector 18.
  • This deflector sector 20 may be an annular sheet metal sector.
  • the crown sector 18 extends circumferentially and comprises an annular wall sector 48 whose inner face carries an abradable 14, a radial wall sector 46 extending radially inwardly connected to a cylindrical wall sector 50 engaged in an annular groove 34 carried by the annular flange 38 of the upstream end of the low pressure turbine housing 16a.
  • the abradable 14 is of the honeycomb type and seals at the level of the blade wheel 4 by means of annular wipers 12 extending radially outwards from the outer annular platform 10 of the movable wheel 4 , in order to limit the passage of air radially to the outside of the movable wheel 4.
  • sealing tongues 52 are inserted at the level of longitudinal slots located in the longitudinal edges of the circumferential ends of the annular wall sector 48 of the crown sector 18. These sealing tongues 52 are each inserted, on a first side, into a slot of a longitudinal edge of a circumferential end of an annular wall sector 48 a first crown sector 18 and a second side of said sealing tongue 52, in a slot of a longitudinal edge of a circumferential end of an annular wall sector 48 of a second crown sector 18 circumferentially consecutive. These sealing tabs 52 have a generally flat and elongated shape.
  • the radial edges of the circumferential ends of the radial wall sector 46 of the crown sector 18 and the longitudinal edges of the circumferential ends of the cylindrical wall sector 48 of the crown sector 18 have slots 54, 55 for housing d. 'a sealing member.
  • the sealing member 56 comprises first circumferential sealing means 58 between two circumferentially consecutive deflector sectors 20, that is to say at the junction between two deflector sectors 20 circumferentially consecutive. It can also include second sealing means 60 between two circumferentially consecutive crown sectors 18.
  • the first sealing means 58 comprise a wall element 62 comprising a downstream radial wall 64 extending radially outwards and the radially inner end of which is connected to an inclined wall 66 converging towards the axis of rotation going towards upstream, this inclined wall 66 being connected at its upstream end to an upstream radial wall 68 extending radially inward.
  • This wall element 62 is shaped identically to the thermal deflector sectors 20 so as to be able to perfectly match the three-dimensional shape of two edges of circumferentially facing deflector sectors 20.
  • the second sealing means 60 between two circumferentially consecutive crown sectors 18 comprise a first plate 70 and a second plate 72 which are disjointed. These first 70 and second 72 plates have a planar, substantially rectangular shape.
  • the first plate 70 is able to be inserted on a first side into a slot 54 of an edge of a circumferential end of a cylindrical wall sector 50 of a first crown sector 18 and of a second side. , opposite the first side, in a slot 54 of an edge of a circumferential end of a cylindrical wall sector 50 of a second circumferentially consecutive crown sector 18.
  • the second plate 72 is able to be inserted on a first side into a slot 55 of a radial edge of a circumferential end of a radial wall sector 46 of a first ring sector 18 and of a second side, opposite to the first side, in a slot 55 of a radial edge of one end circumferential of a radial wall sector of a second circumferentially consecutive crown sector 18.
  • the sealing member 56 comprises a first junction element 74 connecting the first plate 70 to the inclined wall 66 converging towards the axis of rotation going upstream of the wall element 62.
  • the first junction element 74 extends radially with a substantially frustoconical shape with a section widening radially inwards. This first junction element 74 is fixed at its radially inner end to the wall element 62 and its radially outer end to the inner face of the first plate 70.
  • the first junction element 74 extends radially and longitudinally.
  • the seal member 56 also includes a second junction element 76 connecting the second plate 72 to the downstream radial wall 64 extending radially outward from the wall member 62.
  • the second junction member extends longitudinally with a substantially rectangular shape.
  • This second junction element 76 is fixed at its radially inner end to the wall element 62 and its radially outer end to the inner face of the second plate 72.
  • the second junction element 76 can extend radially up to a third. a radial length of the second wafer 72 from an inner end of the second wafer 72.
  • the first junction element 70 and the second junction element 72 are flat and between 0.2 and 0.4 mm thick. This thickness is of the same order of magnitude as that of the first and second sealing means.
  • This sealing member 56 can be manufactured by additive manufacturing. Said sealing member 56 is mounted in circumferential translation, the radially outer face of said wall element 62 conforming to the shape of the downstream face of the thermal deflector sector 20, the first 70 and second 72 plates being inserted into said slots 54, 55 of housings of two circumferentially consecutive crown sectors 18.
  • the sealing member 56 makes it possible to prevent combustion gases from passing through the circumferential and radial clearances present between two sectors of circumferentially consecutive rings 18 and between two sectors of consecutive deflectors 20.
  • the sealing member 56 makes it possible to block the air in the interstice between the first 70 and the second 72 disjointed wafer.
  • the securing of the second sealing means 60 with the first sealing means 58 makes it possible to facilitate the assembly of said sealing member 56.
  • the circumferential sealing between two crown sectors 18 is thus achieved simultaneously with the sealing. between two seteurs 20 circumferentially consecutive deflector which avoids omissions in assembly.
  • the design of the first sealing means 58 as a wall element 62 eliminates doubts about the presence of the sealing element 56 during an endoscopic inspection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Le présent document concerne un ensemble annulaire pour turbine de turbomachine, en particulier d'aéronef, ledit ensemble annulaire s'étendant autour d'un axe longitudinal X et comprenant : un distributeur fixé à un carter externe; une roue à aubes montée rotative à l'intérieur du carter externe; ladite roue à aubes étant entourée par un anneau sectorisé circonférentiellement et porté par le carter externe et formé d'une couronne agencée radialement à l'extérieur de la roue à aubes et d'un déflecteur annulaire porté par un bord amont de la couronne et s'étendant radialement vers l'intérieur depuis ledit bord amont de la couronne; caractérisé en ce qu'il comprend des organes d'étanchéité (56) entre deux secteurs d'anneau circonférentiellemment adjancents, ces organes d'étanchéité (56) comprenant des premiers moyens d'étanchéité (58) circonférentiels entre deux secteurs de déflecteur circonférentiellement consécutifs.

Description

DESCRIPTION
TITRE : Ensemble annulaire pour turbine de turbomachine
Domaine technique de l’invention
Le présent document concerne un organe d’étanchéité pour turbomachine, et plus particulièrement pour turbine basse pression.
Etat de la technique antérieure
Classiquement, une turbomachine est constituée, d’amont en aval, d’un compresseur basse pression, d’un compresseur haute pression, d’une chambre de combustion, d’une turbine haute pression et d’une turbine basse pression. La turbine basse-pression permet d’exploiter et de libérer la puissance générée dans une chambre de combustion située en amont de ladite turbine basse pression. Deux flux d’air sont à considérer au sein d’une turbomachine : un flux annuliare primaire et un flux annulaire secondaire. Le flux secondaire contourne toute la partie chaude de la turbomachine. L'autre flux appelé flux primaire traverse toute la turbomachine du compresseur basse pression à la turbine basse pression et est entouré par le flux d’air secondaire. Ce flux primaire circule au sein d’une veine primaire.
Une turbine comprend une alternance de rangées annulaires d’aubes statoriques et d’aubes mobiles agencées à l’intérieur d’un carter. La figure 1 illustre une partie d’une telle turbine 1 et représente un distributeur 2 amont et une rangée annulaire d’aubes mobiles 4 aval.
Le distributeur 2 comporte une plateforme annulaire externe 6 fixée à une pale radiale 8. La rangée d’aubes mobiles 4 comporte une plateforme annulaire externe 10 depuis laquelle s’étendent radialement vers l’extérieur des léchettes 12 coopérant à étanchéité avec un abradabe 14, par exemple du type en nid d’abeille appartenant à un anneau sectorisé porté par le carter 16 comme cela est illustré sur la figure 1.
L’anneau sectorisé circonférentiellement comprend une couronne 18 portant sur sa face radialement interne l’abradable 14. L’anneau comprend également un déflecteur thermique 20 porté par l’extrémité amont de la couronne 18. La couronne 18 est fixée au carter 16 de turbine par une patte de serrage 22 à forme en C solidiaire de l’extrémité amont d’une plateforme externe du distributeur agencé en aval de la roue mobile. L’extrémité amont de la couronne comprend un organe en C 24 pour la fixation de l’anneau sur un rail cylindrique 26 du carter 16 et sur un bras radial 28 du distributeur 2 amont. Le déflecteur 20 est fixé à un bord amont 30 de la couronne 18 et s’étend radialement vers l’intérieur.
Lorsque la turbomachine est en fonctionnement, les gaz de combustion passent d’amont en aval dans la veine primaire de la turbine et une partie de l’air chaud de combustion peut s’échapper entre l’extrémité aval de la plateforme externe 6 d’un distributeur 2 et l’extrémité amont de la plateforme externe 10 d’une roue mobile aval 4. Cet espace annulaire ainsi formé et noté J correspond à un espace nécessaire pour la rotation de roue mobile.
Pour limiter le passage d’air chaud entre deux secteurs de couronnes 18, on a recours à des languettes engagées pour partie dans un secteur de couronne 18 et pour l’autre partie dans un secteur de couronne 18 circonférentiellement adjacent.
Cependant de l’air peut toujours circuler entre deux secteurs de déflecteur 20 et venir endommager les fixations de l’anneau au carter, c’est-à-dire l’organe en C 24, le rail cylindrique 26 du carter 16, le bras radial 28 du déflecteur 20 amont et également le carter 16 lui-même. L’utilisation de languettes n’est pas envisageable puisque l’épaisseur du déflecteur est bien trop faible pour pouvoir envisager une telle solution.
Le présent document vise à remédier à ces inconvénients de manière fiable, efficace et peu onéreuse.
Présentation de l’invention
Le présent document concerne un ensemble annulaire pour turbine de turbomachine, en particulier d’aéronef, ledit ensemble annulaire s’étendant le long d’une direction axiale X et comprenant :
- un distributeur fixé à un carter externe;
- une roue à aubes agencée en aval du distributeur et montée rotative à l’intérieur du carter externe ;
- ladite roue à aubes étant entourée par un anneau sectorisé circonférentiellement et porté par le carter externe et formé d’une couronne agencée radialement à l’extérieur de la roue à aubes et d’un déflecteur annulaire porté par un bord amont de la couronne et s’étendant radialement vers l’intérieur depuis ledit bord amont de la couronne caractérisé en ce qu’il comprend des organes d’étanchéité entre deux secteurs d’anneau circonférentiellemment adjancents, ces organes d’étanchéité comprenant des premiers moyens d’étanchéité circonférentiels entre deux secteurs de déflecteur circonférentiellement consécutifs.
Cet organe d’étanchéité confère une meilleure étanchéité aérothermique entre les secteurs de déflecteurs thermiques. L’organe d’étanchéité permet de protéger thermiquement le carter en évitant les fuites de gaz chauds issus de la combustion au niveau des jonctions circonférentielles des secteurs de déflecteurs thermiques.
Les premiers moyens d’étanchéité circonférentiels peuvent être agencés à la jonction entre deux secteurs de déflecteur circonférentiellement consécutifs.
Les organes d’étanchéité peuvent comprendre des seconds moyens d’étanchéité circonférentiels entre deux secteurs de couronne circonférentiellement consécutifs, ces seconds moyens d’étanchiété étant solidaires des premiers moyens d’étanchéité. Les second moyens d’étanchéité permettent d’éviter les fuites de gaz de combustion entre deux secteurs de couronne circonférentiellement consécutifs. La solidarisation des seconds moyens d’étanchéité avec les premiers moyens d’étanchéité permet de faciliter l’assemblage dudit organe d’étanchéité. L’étanchéité circonférentielle entre deux secteurs de couronne est ainsi réalisée de manière simultanée à l’étanchéité entre deux seteurs de déflecteur circonférentiellement consécutif ce qui évite des oublis de montage.
Les premiers moyens d’étanchéité peuvent comprendre un élément de paroi appliqué depuis l’aval sur les extrémités en vis-à-vis circonférentiel de deux secteurs de déflecteur circonférentiellement consécutifs.
La conception des premiers moyens d’étanchéité sous forme d’un élément de paroi supprime les doutes sur la présence de l’organe d’étanchéité lors d’une inspection par endoscopie. Cette conception supprime également tout risque d’oubli au montage des organes d’étanchéité mais aussi le risque de se tromper dans le sens de montage. La forme de ces organes réalise ainsi un détrompage à leur montage entre deux secteurs d’anneau.
Les seconds moyens d’étanchéité peuvent comprendre au moins une première plaquette et une seconde plaquette disjointes et reliées l’une et l’autre aux premiers moyens d’étanchéité, la première plaquette et la seconde plaquette étant engagées dans une fente d’un bord d’un premier secteur de couronne et pour une autre partie dans une fente d’un bord en vis-à-vis circonférentiel d’un second secteur de couronne circonférentiellement adjacent.
On comprend que la solidarisation des plaquettes aux premiers moyens évite tout oubli de montage de l’une ou l’autre des plaquettes puisque celles-ci sont montées entre deux secteurs d’anneau simultanément aux premiers moyens.
Chaque organe d’étanchéité peut comprendre un premier élément de jonction reliant une première plaquette à l’élément de paroi, ce premier élément de jonction étant intercalé circonférentiellement entre deux bords de secteurs de déflecteurs circonférentiellement adjacents.
Chaque organe d’étanchéité peut comprendre un second élément de jonction reliant une seconde plaquette à l’élément de paroi, ce second élément de jonction étant intercalé circonférentiellement entre deux bords de secteurs de couronne circonférentiellement adjacents.
Ces premier et second élément de jonction permettent de conférer de la robustesse, de la solidité audit organe d’étanchéité. Ces premier et second éléments de jonction permettent de faciliter la direction de montage dudit organe d’étanchéité.
Ces premier et second éléments de jonction permettent de maintenir mécaniquement les premiers moyens d’étanchéité aux seconds moyens d’étanchéité. Le second élément de jonction peut être agencé radialement à l’extérieur de deux bords de secteurs de déflecteurs circonférentiellement adjacents.
Le présent document concerne une turbine pour turbomachine comprenant une turbine basse pression comportant un ensemble annulaire selon les caractéristiques précitées et une turbine haute pression, le carter externe de la turbine basse pression comprenant une bride annulaire amont de fixation à une bride annulaire aval d’un carter externe de la turbine haute pression. Le présent document concerne une turbomachine comprenant un ensemble annulaire du type précité.
Brève description des figures
[Fig. 1] représente une demie-vue schématique partielle en coupe axiale d’un module de turbomachine ;
[Fig. 2] représente une demie-vue schématique partielle en coupe axiale d’un module de turbomachine selon l’invention ;
[Fig. 3] représente une vue schématique en perspective d’un secteur d’anneau d’étanchéité du module de la figure 2, selon l’invention ;
[Fig. 4] représente une vue schématique en perspective de deux secteurs d’anneau circonférentiellement consécutifs et d’un organe d’étanchéité, selon l’invention ;
[Fig. 5] représente une vue schématique en perspective d’un organe d’étanchéité monté dans un secteur d’anneau vu de côté, selon l’invention ;
[Fig. 6] représente une vue schématique en perspective d’un organe d’étanchéité monté dans un secteur d’anneau vu depuis l’aval, selon l’invention ;
[Fig. 7] représente une vue schématique en perspective d’un organe d’étanchéité brut de fusion, selon l’invention.
Description détaillée de l’invention
Une turbine comprend une turbine haute pression amont et une turbine basse pression aval. La turbine haute pression et la turbine basse pression comprennent chacune une alternance de rangées annulaires d’aubes statoriques et d’aubes mobiles agencées à l’intérieur d’un carter. Comme illustré sur la figure 2, une première roue d’aubes mobiles aval 4 est entourée extérieurement par un carter de la turbine basse pression 16a alors qu’un distributeur de sortie amont 2 de la turbine haute pression est entouré extérieurement par un carter de la turbine haute pression 16b. Le distributeur 2 comporte une plateforme annulaire externe 6 à laquelle sont reliées les exrémités radialement externes de pales radiales 8. Une patte d’accrochage 32 est à une extrémité de ladite plateforme externe 6 du distributeur 2. Le maintien circonférentiel et axial du distributeur 2 est assuré par l’intermédiaire de ladite patte d’accrochage 32 qui est engagée dans une gorge annulaire 33 du carter de turbine haute pression 16b, cette gorge annulaire 33 débouchant vers l’aval.
Ce carter de la turbine haute pression 16b est fixé à son extrémité aval au moyen d’une bride annulaire 36 à une bride annulaire 38 de l’extrémité amont du carter de turbine basse pression 16a. Les brides annulaires 36, 38 sont positionnées radialement au niveau de l’espace annulaire séparant le distributeur de sortie 2 de la turbine haute pression et la première roue mobile 4 de la turbine basse pression.
Comme illustré à la figure 2, la première roue d’aubes mobiles 4 est montée rotative autour d’un axe longitudinal X dans un anneau accroché au carter externe 16a de la turbine basse pression. L’anneau sectorisé est formé de plusieurs secteurs d’anneau qui sont agencés circonférentiellement bout à bout et chacun porté par le carter externe 16a de la turbine basse pression. Les extrémités aval des secteurs d’anneau sont serrés radialement par une patte de serrage 22 en forme de C, situé en aval des secteurs d’anneau.
Comme illustré aux figures 3 à 6, chaque secteur d’anneau comprend un secteur de couronne 18 agencé radialement à l’extérieur de la roue à aubes 4 et un secteur de déflecteur 20 thermique annulaire.
Le secteur de déflecteur 20 a une forme générale en z et a une orientation sensiblement incurvée. Le secteur de déflecteur 20 comporte, d’amont en aval, un secteur de paroi s’étendant radialement vers l’intérieur 40, un secteur de paroi annulaire 42 et un secteur de paroi s’étendant radialement vers l’extérieur 44. Le secteur de paroi s’étendant radialement vers l’extérieur 44 est fixépar brasure sur un bord aval d’une paroi radiale 46 du secteur de couronne 18. Le secteur de paroi annulaire 42 du secteur de déflecteur 20 circonférentiellement suit la direction d’extension du secteur de couronne 18. Le secteur de déflecteur 20 a une étendue circonférentielle sensiblement identique à celle du secteur de couronne 18 et à l’abradable 14 de sorte que les extrémités circonférentielles du secteur de déflecteur 20 soient sensiblement alignées axialement avec celles du secteur de couronne 18 et de l’abradable 14. Ce secteur de déflecteur 20 peut être un secteur de tôle annulaire. Comme illustré aux figures 2 à 6, le secteur de couronne 18 s’étend circonférentiellement et comprend un secteur de paroi annulaire 48 dont la face interne porte un abradable 14, un secteur de paroi radial 46 s’étendant radialement vers l’intérieur relié à un secteur de paroi cylindrique 50 engagé dans une gorge annulaire 34 portée par la bride annulaire 38 de l’extrémité amont du carter de turbine basse pression 16a. L’abradable 14 est de type nid d’abeille et réalise l’étanchéité au niveau de la roue d’aubes 4 au moyen de léchettes annulaires 12 s’étendant radialement vers l’extérieur depuis la plateforme annulaire externe 10 de la roue mobile 4, afin de limiter le passage d’air radialement à l’extérieur de la roue mobile 4. Classiquement, comme illustré en figure 4, des languettes d’étanchéité 52 sont insérées au niveau de fentes longitudinales situées dans les bords longitudinaux des extrémités circonférentielles du secteur de paroi annulaire 48 du secteur de couronne 18. Ces languettes d’étanchéité 52 sont insérées chacune, d’un premier côté dans une fente d’un bord longitudinal d’une extrémité circonférentielle d’un secteur de paroi annulaire 48 d’un premier secteur de couronne 18 et d’un deuxième côté de ladite languette d’étanchéité 52, dans une fente d’un bord longitudinal d’une extrémité circonférentielle d’un secteur de paroi annulaire 48 d’un second secteur de couronne 18 circonférentiellement consécutif. Ces languettes d’étanchéité 52 ont une forme générale plane et allongée.
Comme illustré en figure 3, des bords radiaux des extrémités circonférentielles du secteur de paroi radial 46 du secteur de couronne 18 et des bords longitudinaux des extrémités circonférentielles du secteur de paroi cylindrique 48 du secteur de couronne 18 comportent des fentes 54, 55 de logement d’un organe d’étanchéité.
Comme illustré sur les figures 4 à 7, l’organe d’étanchéité 56 comprend des premiers moyens d’étanchéité 58 circonférentiels entre deux secteurs de déflecteur 20 circonférentiellement consécutifs, c’est-à-dire à la jonction entre deux secteurs de déflecteur 20 circonférentiellement consécutifs. Il peut aussi comprendre des seconds moyens d’étanchéité 60 entre deux secteurs de couronne 18 circonférentiellement consécutifs.
Les premiers moyens d’étanchéité 58comprennent un élément de paroi 62 comportant une paroi radiale aval 64 s’étendant radialement vers l’extérieur et dont l’extrémité radialement interne est reliée à une paroi inclinée 66 convergeant vers l’axe de rotation en allant vers l’amont, cette paroi inclinée 66 étant reliée à son extrémité amont à une paroi radiale amont 68 s’étendant radialement vers l’intérieur.
Cet élément de paroi 62 est conformé de manière identique aux secteurs de déflecteurs 20 thermique de manière à pouvoir épouser parfaitement la forme tridimensionnelle de deux bords de secteurs de déflecteurs 20 en vis-à-vis circonférentiels.
Les seconds moyens d’étanchéité 60 entre deux secteurs de couronne 18 circonférentiellement consécutifs comprennent une première plaquette 70 et une seconde plaquette 72 disjointes. Ces première 70 et seconde 72 plaquettes ont une forme plane, sensiblement rectangulaire. La première plaquette 70 est apte à s’insérer d’un premier côté dans une fente 54 d’un bord d’une extrémité circonférentielle d’un secteur de paroi cylindrique 50 d’un premier secteur de couronne 18 et d’un second côté, opposé au premier côté, dans une fente 54 d’un bord d’une extrémité circonférentielle d’un secteur de paroi cylindrique 50 d’un second secteur de couronne 18 circonférentiellement consécutif. La seconde plaquette 72 est apte à s’insérer d’un premier côté dans une fente 55 d’un bord radial d’une extrémité circonférentielle d’un secteur de paroi radial 46 d’un premier secteur de couronne 18 et d’un second côté, opposé au premier côté, dans une fente 55 d’un bord radial d’une extrémité circonférentielle d’un secteur de paroi radial d’un second secteur de couronne 18 circonférentiellement consécutif.
L’organe d’étanchéité 56 comporte un premier élément de jonction 74 reliant la première plaquette 70 à la paroi inclinée 66 convergeant vers l’axe de rotation en allant vers l’amont de l’élement de paroi 62. Le premier élément de jonction 74 s’étend radialement avec une forme sensiblement tronconique à section s’évasant radialement vers l’intérieur. Ce premier élément de jonction 74 est fixé à son extrémité radialement interne à l’élément de paroi 62 et son extrémité radialement externe à la face interne de la première plaquette 70. Le premier élément de jonction 74 s’étend radialement et longitudinalement.
L’organe d’étanchéité 56 comprend également un second élément de jonction 76 reliant la seconde plaquette 72 à la paroi radiale aval 64 s’étendant radialement vers l’extérieur de l’élément de paroi 62. Le second élément de jonction s’étend longitudinalement avec une forme sensiblement rectangulaire. Ce second élément de jonction 76 est fixé à son extrémité radialement interne à l’élément de paroi 62 et son extrémité radialement externe à la face interne de la seconde plaquette 72. Le second élément de jonction 76 peut s’étendre radialement jusqu’au tiers d’une longueur radiale de la seconde plaquette 72 depuis une extrémité interne de la seconde plaquette 72.
Le premier élément de jonction 70 et le second élément de jonction 72 sont planes et d’épaisseur comprise entre 0.2 et 0.4 mm. Cet épaisseur est du même ordre de grandeur que celle des premiers et second moyens d’étanchéité.
Cet organe d’étanchéité 56 peut être fabriqué par fabrication additive. Ledit organe d’étanchéité 56 est monté en translation circonférentielle, la face radialement extérieure dudit élément de paroi 62 venant épouser la forme de la face aval du secteur de déflecteur 20 thermique, les première 70 et seconde 72 plaquettes venant s’insérer dans lesdites fentes 54, 55 de logements de deux secteurs de couronnes 18 circonférentiellement consécutifs.
Le présent document est particulièrement intéressant dans le contexte où il est utilisé, i.e. à la jonction entre le carter haute pression 16b et basse pression 16a pusisque cette zone de jonction de carters peut être plus sensible qu'une autre à des fuites d'air chaud, les éléments de fixation pouvant être affectés et les dilatations thermiques différentielles entre les deux carters pouvant conduire à une augmentation de contrainte dans ceux-ci au niveau de leur fixation.
L’organe d’étanchéité 56 permet d’éviter que des gaz de combustion ne passent à travers les jeux circonférentiels et radiaux présents entre deux secteurs de couronnes 18 circonférentiellement consécutifs et entre deux secteurs de déflecteurs 20 consécutifs. L’organe d’étanchéité 56 permet de bloquer l’air dans l’interstice entre la première 70 et la seconde 72 plaquette disjointes. La solidarisation des seconds moyens d’étanchéité 60 avec les premiers moyens d’étanchéité 58 permet de faciliter l’assemblage dudit organe d’étanchéité 56. L’étanchéité circonférentielle entre deux secteurs de couronne 18 est ainsi réalisée de manière simultanée à l’étanchéité entre deux seteurs de déflecteur 20 circonférentiellement consécutif ce qui évite des oublis de montage.
La conception des premiers moyens d’étanchéité 58 sous forme d’un élément de paroi 62 supprime les doutes sur la présence de l’organe d’étanchéité 56 lors d’une inspection par endoscopie.

Claims

REVENDICATIONS
1. Ensemble annulaire pour turbine de turbomachine, en particulier d’aéronef, ledit ensemble annulaire s’étendant autour d’un axe longitudinal X et comprenant :
- un distributeur (2) fixé à un carter (16) externe; - une roue à aubes (4) agencée en aval du distributeur (2) et montée rotative à l’intérieur du carter (16) externe ;
- ladite roue à aubes (4) étant entourée par un anneau sectorisé circonférentiellement et porté par le carter (16) externe et formé d’une couronne (18) agencée radialement à l’extérieur de la roue à aubes (4) et d’un déflecteur (20) annulaire porté par un bord amont de la couronne (18) et s’étendant radialement vers l’intérieur depuis ledit bord amont de la couronne (18) ; caractérisé en ce qu’il comprend des organes d’étanchéité (56) entre deux secteurs d’anneau circonférentiellemment adjancents, ces organes d’étanchéité (56) comprenant des premiers moyens d’étanchéité (58) circonférentiels agencés à la jonction entre deux secteurs de déflecteur (20) circonférentiellement consécutifs et les organes d’étanchéité (56) comprenenant des seconds moyens d’étanchéité (60) circonférentiels entre deux secteurs de couronne (18) circonférentiellement consécutifs, ces seconds moyens d’étanchiété (60) étant solidaires des premiers moyens d’étanchéité (58).
2. Ensemble annulaire selon la revendication 1 , dans lequel les premiers moyens d’étanchéité (58) comprennent un élément de paroi (62) appliqué depuis l’aval sur les extrémités en vis-à- vis circonférentiel de deux secteurs de déflecteur (20) circonférentiellement consécutifs.
3. Ensemble annulaire selon les revendications 1 ou 2, dans lequel les seconds moyens d’étanchéité (60) comprennent au moins une première plaquette (70) et une seconde plaquette (72) disjointes et reliées l’une et l’autre aux premiers moyens d’étanchéité (58), la première plaquette (70) et la seconde plaquette (72) étant engagées dans une fente (54, 55) d’un bord d’un premier secteur de couronne (18) et pour une autre partie dans une fente (54, 55) d’un bord en vis-à-vis circonférentiel d’un second secteur de couronne (18) circonférentiellement adjacent.
4. Ensemble annulaire selon la revendication 3, dans lequel chaque organe d’étanchéité (56) comprend un premier élément de jonction (74) reliant une première plaquette (70) à l’élément de paroi (62), ce premier élément de jonction (74) étant intercalé circonférentiellement entre deux bords de secteurs de déflecteurs (20) circonférentiellement adjacents.
5. Ensemble annulaire selon la revendication 3 ou 4, dans lequel chaque organe d’étanchéité (56) comprend un second élément de jonction (76) reliant une seconde plaquette (72) à l’élément de paroi (62), ce second élément de jonction (76) étant intercalé circonférentiellement entre deux bords de secteurs de couronne (18) circonférentiellement adjacents.
6. Ensemble annulaire selon la revendication 5, dans lequel ledit second élément de jonction (76) est agencé radialement à l’extérieur de deux bords de secteurs de déflecteurs (20) circonférentiellement adjacents.
7. Turbine pour turbomachine comprenant une turbine basse pression comportant un ensemble annulaire selon l’une des revendications précédentes et une turbine haute pression, le carter externe de la turbine basse pression comprenant une bride annulaire amont (36) de fixation à une bride annulaire aval (38) d’un carter externe de la turbine haute pression.
8. Turbomachine comprenant un ensemble annulaire selon l’une des revendications 1 à 6.
PCT/FR2021/051043 2020-06-11 2021-06-10 Ensemble annulaire pour turbine de turbomachine WO2021250357A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21737109.5A EP4165286B1 (fr) 2020-06-11 2021-06-10 Ensemble annulaire pour turbine de turbomachine
US18/009,952 US12018576B2 (en) 2020-06-11 2021-06-10 Annular assembly for a turbomachine turbine
CN202180048776.9A CN115917120A (zh) 2020-06-11 2021-06-10 用于涡轮机涡轮的环形组合件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006131 2020-06-11
FR2006131A FR3111382B1 (fr) 2020-06-11 2020-06-11 Ensemble annulaire pour turbine de turbomachine

Publications (1)

Publication Number Publication Date
WO2021250357A1 true WO2021250357A1 (fr) 2021-12-16

Family

ID=73038077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051043 WO2021250357A1 (fr) 2020-06-11 2021-06-10 Ensemble annulaire pour turbine de turbomachine

Country Status (5)

Country Link
US (1) US12018576B2 (fr)
EP (1) EP4165286B1 (fr)
CN (1) CN115917120A (fr)
FR (1) FR3111382B1 (fr)
WO (1) WO2021250357A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3140112A1 (fr) * 2022-09-22 2024-03-29 Safran Aircraft Engines Amélioration de l’étanchéité dans une turbine de turbomachine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002779A1 (en) * 2003-07-04 2005-01-06 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbine shroud segment
CA2582398A1 (fr) * 2006-03-30 2007-09-30 Snecma Dispositif de fixation de secteurs d'anneau sur un carter de turbine d'une turbomachine
FR3071273A1 (fr) * 2017-09-21 2019-03-22 Safran Aircraft Engines Ensemble d'etancheite de turbine pour turbomachine
FR3083563A1 (fr) * 2018-07-03 2020-01-10 Safran Aircraft Engines Module d'etancheite de turbomachine d'aeronef

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188507A (en) * 1991-11-27 1993-02-23 General Electric Company Low-pressure turbine shroud
WO2014138320A1 (fr) * 2013-03-08 2014-09-12 United Technologies Corporation Composant de moteur à turbine à gaz ayant une fente de joint à couvre-joint à largeur variable
US20180347399A1 (en) * 2017-06-01 2018-12-06 Pratt & Whitney Canada Corp. Turbine shroud with integrated heat shield

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050002779A1 (en) * 2003-07-04 2005-01-06 Ishikawajima-Harima Heavy Industries Co., Ltd. Turbine shroud segment
CA2582398A1 (fr) * 2006-03-30 2007-09-30 Snecma Dispositif de fixation de secteurs d'anneau sur un carter de turbine d'une turbomachine
FR3071273A1 (fr) * 2017-09-21 2019-03-22 Safran Aircraft Engines Ensemble d'etancheite de turbine pour turbomachine
FR3083563A1 (fr) * 2018-07-03 2020-01-10 Safran Aircraft Engines Module d'etancheite de turbomachine d'aeronef

Also Published As

Publication number Publication date
FR3111382B1 (fr) 2022-12-23
EP4165286A1 (fr) 2023-04-19
CN115917120A (zh) 2023-04-04
FR3111382A1 (fr) 2021-12-17
US12018576B2 (en) 2024-06-25
EP4165286B1 (fr) 2024-05-22
US20230340893A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
FR3072720B1 (fr) Carter pour turbomachine comprenant une portion centrale en saillie relativement a deux portions laterales dans une region de jonction
EP0967364B1 (fr) Anneau de stator de turbine haute pression d'une turbomachine
EP3597864B1 (fr) Ensemble d'étanchéité pour un rotor de turbine de turbomachine et turbine de turbomachine comprenant un tel ensemble
EP3591178B1 (fr) Module d'étanchéité de turbomachine
EP1975374B1 (fr) Enveloppe externe étanche pour une roue de turbine de turbomachine
EP1811131B1 (fr) Ensemble de redresseurs fixes sectorise pour un compresseur de turbomachine
FR3114841A1 (fr) Ensemble annulaire pour turbine de turbomachine
EP3049636B1 (fr) Ensemble rotatif pour turbomachine
EP3049637B1 (fr) Ensemble rotatif pour turbomachine
EP2694781B1 (fr) Flasque d'etancheite pour etage de turbine de turbomachine d'aeronef, comprenant des tenons anti-rotation fendus
FR2919345A1 (fr) Anneau pour une roue de turbine de turbomachine.
FR3068070B1 (fr) Turbine pour turbomachine
EP4165286B1 (fr) Ensemble annulaire pour turbine de turbomachine
FR2955152A1 (fr) Turbomachine a circulation de flux d'air de purge amelioree
EP3824221B1 (fr) Ensemble pour une turbomachine
FR2972482A1 (fr) Etage de turbine pour turbomachine d'aeronef, presentant une etancheite amelioree entre le flasque aval et les aubes de la turbine, par maintien mecanique
FR3114840A1 (fr) Ensemble annulaire pour turbine de turbomachine
EP3857028B1 (fr) Distributeur amelioré de turbomachine
FR2991387A1 (fr) Turbomachine, telle qu'un turboreacteur ou un turbopropulseur d'avion
FR2961849A1 (fr) Etage de turbine dans une turbomachine
FR3049307B1 (fr) Ensemble rotatif pour turbomachine
FR3100838A1 (fr) Anneau d’etancheite de turbomachine
FR3145770A1 (fr) Assemblage de disques pour turbine basse pression équipé d’une éclisse d’étanchéité
EP4298319A1 (fr) Anneau d'etancheite de turbine
FR3146709A1 (fr) Ensemble d’étanchéité avec tôle thermique pour turbine à gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21737109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021737109

Country of ref document: EP

Effective date: 20230111