WO2021250339A1 - Turbomachine comprenant un organe de séparation d'un flux d'air et un organe de redressement du flux d'air séparé - Google Patents

Turbomachine comprenant un organe de séparation d'un flux d'air et un organe de redressement du flux d'air séparé Download PDF

Info

Publication number
WO2021250339A1
WO2021250339A1 PCT/FR2021/050995 FR2021050995W WO2021250339A1 WO 2021250339 A1 WO2021250339 A1 WO 2021250339A1 FR 2021050995 W FR2021050995 W FR 2021050995W WO 2021250339 A1 WO2021250339 A1 WO 2021250339A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbomachine
straightening
flow
axial
air flow
Prior art date
Application number
PCT/FR2021/050995
Other languages
English (en)
Inventor
Clément Raphaël LAROCHE
Original Assignee
Safran Aircraft Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Aircraft Engines filed Critical Safran Aircraft Engines
Publication of WO2021250339A1 publication Critical patent/WO2021250339A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • F01D9/041Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector using blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/321Application in turbines in gas turbines for a special turbine stage
    • F05D2220/3216Application in turbines in gas turbines for a special turbine stage for a special compressor stage
    • F05D2220/3217Application in turbines in gas turbines for a special turbine stage for a special compressor stage for the first stage of a compressor or a low pressure compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • TITLE Turbomachine comprising a component for separating an air flow and a component for straightening the separate air flow.
  • the present invention relates to the field of turbomachines, and in particular the separation of the main air flow into a primary air flow and a secondary air flow.
  • turbomachines of the bypass turbojet type comprising an inlet sleeve receiving a main air flow which is drawn in by a low pressure compressor to then be divided into a central primary flow and a secondary flow surrounding the primary flow.
  • the low-pressure compressor is similar to a blower in that part of the air flow that it compresses supplies a secondary flow.
  • the secondary flow circulates in a space called the secondary flow which is delimited externally by a secondary flow casing also called the motor hull, and internally by an envelope surrounding the primary flow.
  • the primary flow circulates in a space called the primary vein bounded on the outside by the envelope and inside by a succession of fixed and rotating internal elements.
  • the fixed internals include rectifier and valve platforms, and inner case ferrules, and the rotating internals include rotor bladed wheel platforms. More concretely, the primary flow circulates between an internal casing and an external casing of a high pressure compressor to be compressed in this high pressure compressor before being burnt in a combustion chamber. It is then expanded in a high pressure turbine to drive the high pressure compressor, then in a low pressure turbine to drive the low pressure compressor, before being expelled backwards by generating a thrust.
  • the outer casing delimiting the primary duct is thus formed by a series of casings comprising a high pressure compressor casing, a casing at the level of the combustion chamber and a high pressure turbine casing, as well as by an outer casing of the casing. 'exhaust.
  • Each turbine and each compressor is formed of stages each comprising a series of rotating blades regularly spaced around a longitudinal central axis of the engine, optionally preceded by a distributor in the case of a turbine or optionally followed by a rectifier. in the case of a compressor.
  • Distributors and rectifiers consist of a series of fixed vanes.
  • the rear part of such an engine comprises, downstream of the low pressure turbine, an exhaust casing which carries a bearing supporting a rear end of the engine rotor.
  • This exhaust casing comprises an internal ferrule and an external ferrule and radial arms joining these ferrules to one another, radially crossing the primary stream.
  • Aircraft turbomachines are also known, of the double-flow and double-body turbojet type.
  • the main air flow is divided into primary air flow and secondary air flow by a separator or air separator nozzle or nose located downstream of the fan.
  • the flow of primary air circulates in the primary duct by entering the low pressure compressor at the level of inlet guide vanes or "inlet guide vanes", acronym IGV in Anglo-Saxon terms.
  • the secondary air flow is deflected by the separator nozzle in the secondary stream towards the outlet guide vanes or "outlet guide vanes", acronym OGV in Anglo-Saxon terms, then towards the outlet of the turbomachine.
  • the separator nozzle is disposed upstream of the OGV vanes, on the upstream end of the internal platform of the OGV blading.
  • the main flow is divided downstream of said low pressure compressor and the primary air flow circulates in the primary duct. entering the high pressure compressor.
  • the separation of the main air flow by the separation nozzle creates a disturbance of the flows which are then rectified by the vanes respectively of the inlet or outlet guide vanes.
  • rectifying the secondary air flow by OGVs is particularly complex and requires increasing the number of blades.
  • the present invention therefore aims to overcome the drawbacks of the aforementioned systems and to provide a member for straightening the aerodynamic profile of the secondary air flow upstream of the OGV outlet guide vanes.
  • the subject of the invention is therefore a turbomachine, with a longitudinal axis comprising a fan delivering a main air flow and a separating member or separator nozzle configured to separate said air flow into a primary air flow circulating in a. internal vein and a secondary air flow circulating in an external vein, the external vein comprising at least one blade comprising a plurality of outlet guide vanes or "outlet guide vanes", acronym OGV in Anglo-Saxon terms configured to straighten the secondary flow into a straightened secondary flow.
  • the separation member includes a straightening member disposed upstream of the blading and configured to straighten the secondary air flow upstream of said blading.
  • the separation member comprises a base integral with the upstream end of the internal platform or the foot of the blade, the straightening member being integral with said base.
  • the rectifying member comprises at least one fixed axial rectifying fin secured to the rectifier. the separation member and protrudes radially from said member outwardly.
  • the axial straightening vane is used to orient the secondary separation flow axially and straighten it upstream of the OGV blading.
  • the axial straightening fin extends axially from an upstream end of the separator towards the blading.
  • the axial recovery fin is attached to the separator, especially the base, by its inner end.
  • the axial righting fin may have a profile curved along the longitudinal axis of the turbomachine air flow stream.
  • the straightening member comprises a plurality of axial straightening fins.
  • the axial straightening fins are spaced apart from one another to define a flow channel between two adjacent axial straightening fins.
  • the rectifying member comprises a radial rectifying fin integral with the outer end of the axial rectifying fin, opposite the internal end integral with the separating member.
  • the radial straightening vane radially straightens the secondary air flow and thus improves the maintenance of the secondary separating air flow straightened by the axial straightening fins along the inner platform of the OGV blading.
  • the radial rectifier fin is in the form of a thin plate extending the entire axial length of the axial rectifier fin.
  • the turbomachine comprises at least a second blading arranged in the internal vein and comprising a plurality of inlet guide vanes or "inlet guide vanes", acronym IGV in Anglo-Saxon terms configured to straighten the valve. primary flow into a rectified primary flow.
  • the turbomachine comprises, in the internal stream, a low pressure compressor, a high pressure compressor, an annular combustion chamber, a high pressure turbine and a low pressure turbine.
  • FIG. 1 illustrates schematically a half. axial section of a structure of an example of a turbomachine locating the location of a member for separating the main air flow into the primary air flow and the secondary air flow;
  • FIG 2 illustrates in detail the air flow separation member of Figure 1 comprising a secondary air flow straightening member according to a first embodiment of the invention
  • FIG 3 is a top view of the air flow separator of Figure 2;
  • FIG 4 is a front view of the air flow separator of Figure 2.
  • FIG 5 is a front view of the air flow separation member of Figure 2 comprising a secondary air flow straightening member according to a second embodiment of the invention.
  • upstream and downstream are defined with respect to the direction of air circulation in the turbomachine.
  • internal and exital are defined with respect to the longitudinal axis of the turbomachine, the internal term defining an element closer to said axis than an external element.
  • FIG. 1 is shown very schematically an axial half-section of a turbomachine 10, of longitudinal general axis XX ', for example of the double-flow and double-body turbojet type comprising a blower 11, coupled to a gas turbine engine comprising a low pressure compressor 12, a high compressor pressure 13, an annular combustion chamber 14, a high pressure turbine 15 and a low pressure turbine 16.
  • the rotors of the high pressure compressor and of the high pressure turbine are connected by a high pressure (HP) shaft (not shown) and form with it a high pressure body.
  • the rotors of the low pressure compressor and of the low pressure turbine are connected by a low pressure (LP) shaft (not shown) and form with it a low pressure body.
  • the HP and LP shafts extend along a longitudinal axis X-X ’of the turbomachine 10.
  • the fan shaft is rotatably linked to the LP shaft directly or indirectly.
  • turbomachine structure is not limited to such a turbomachine structure and could be applied to a turbomachine of different structure, for example to a turbomachine of the double-flow turbojet type, in which the low-pressure compressor acts as a turbomachine. blower.
  • Fe primary air flow Fl travels through an internal passage or primary stream VI entering the low pressure compressor 12 at the level of inlet guide vanes 17 or "inlet guide vanes", acronym IGV in Anglo-Saxon terms.
  • Fe main air flow deflected by the separator nozzle 20 forms a separation air flow F2 circulating with the secondary air flow F2 'of the fan in an external annular passage or secondary vein VE in the direction of guide vanes.
  • the OGV vanes are fixed and allow the flow of cold air downstream of the fan to be straightened in order to optimize the efficiency of the turbomachine.
  • the separation air flow F2 and the secondary air flow F2 ’from the blower are rectified by the OGV vanes 18 into a rectified secondary flow F2”.
  • the separator nozzle 20 comprises a base 22 integral with the upstream end of the root 18a of the OGV 18 vane and a member 30 for straightening the flow of secondary separation air F2 upstream of the OGV 18 vane.
  • the straightening member 30 is arranged upstream of guide vanes located in the cold zone.
  • the straightening member 30 comprises a plurality of fixed axial straightening fins 32 integral with the base 22 of the separator spout 20 and projecting radially outwardly.
  • the axial straightening fins 32 extend axially from the upstream end 22a of the base 22 of the separator nozzle 20 towards the OGV blade 18.
  • the axial straightening fins 32 are fixed to the base 22 by their inner end 32a.
  • the axial straightening fins 32 are spaced apart to define a flow channel 34 between two adjacent axial straightening fins 32.
  • the axial straightening fins are evenly spaced across the width of the body. base 22 of the separator nozzle 20.
  • the axial straightening fins 32 have a profile curved along the axial axis X-X 'of the air flow stream of the turbomachine.
  • the axial straightening fins 32 make it possible to orient the secondary separation flow F2 and straighten it upstream of the OGV vane 18.
  • the flow of the secondary separation air flow F2 axially straightened by the axial straightening fins 32 is thus maintained along the lower platform 18a of the OGV vane 18.
  • the OGV 18 blower then straightens the entire flow of separation air F2 and secondary air flow F2 ’from the blower into a straightened secondary flow F2”.
  • the straightening member 30 comprises a radial straightening fin 36 integral with the outer end 32b of the axial straightening fins 32, opposite at the internal end 32a integral with the base 22.
  • the radial rectifying fin 36 has the form of a thin plate extending over the entire axial length of the axial rectifying fins 32.
  • the radial straightening fin 36 helps to improve the retention of the flow of secondary separation air F2 straightened by the axial straightening fins 32 along the inner platform 18a of the OGV vane 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Turbomachine d'axe longitudinal (X-X') comprenant une soufflante délivrant un flux d'air principal (F) et un organe de séparation (20) configuré pour séparer ledit flux d'air (F) en un flux d'air primaire (F1) circulant dans une veine interne (VI) et un flux d'air secondaire (F2) circulant dans une veine externe (VE), la veine externe (VE) comprenant au moins un aubage (18) comprenant une plurali té d'aubes directrices de sortie configurées pour redresser le flux secondaire (F2) en un flux secondaire redressé (F2''). L'organe de séparation (20) comprend un organe de redressement disposé en amont de l'aubage (18) et configuré pour redresser le flux d'air secondaire (F2) en amont dudit aubage (18).

Description

DESCRIPTION
TITRE : Turbomachine comprenant un organe de séparation d’un flux d’air et un organe de redressement du flux d’air séparé.
Domaine technique de l’invention
La présente invention concerne le domaine des turbomachines, et notamment la séparation du flux d’ air principal en un flux d’air primaire et un flux d’air secondaire.
Etat de la technique antérieure
Classiquement, on connaît les turbomachines du type turboréacteur à double flux comportant une manche d'entrée recevant un flux d’ air principal qui est aspiré par un compresseur basse pression pour ensuite être divisé en un flux primaire central et un flux secondaire entourant le flux primaire. Le compresseur basse pression est assimilable à une soufflante en ce qu’une partie du flux d’ air qu’il compresse alimente un flux secondaire. Le flux secondaire circule dans un espace appelé veine secondaire qui est délimité extérieurement par un carter de veine secondaire encore appelé carène du moteur, et intérieurement par une enveloppe entourant le flux primaire.
Le flux primaire circule dans un espace appelé veine primaire délimité extérieurement par l’enveloppe et intérieurement par une succession d’éléments internes fixes et rotatifs. Les éléments internes fixes comprennent des plateformes de redresseurs et de distributeurs, et des viroles de carters intérieurs, et les éléments internes rotatifs comprennent des plateformes de roues aubagées de rotors. Plus concrètement, le flux primaire circule entre un carter interne et un carter externe de compresseur haute pression pour être comprimé dans ce compresseur haute pression avant d’être brûlé dans une chambre de combustion. Il est ensuite détendu dans une turbine haute pression pour entraîner le compresseur haute pression, puis dans une turbine basse pression pour entraîner le compresseur basse pression, avant d'être expulsé vers l'arrière en générant une poussée.
L’enveloppe délimitant extérieurement la veine primaire est ainsi formée par une série de carters comprenant un carter de compresseur haute pression, un carter au niveau de la chambre de combustion et un carter de turbine haute pression, ainsi que par une virole externe de carter d’échappement.
Chaque turbine et chaque compresseur est formé d’étages comportant chacun une série d'aubes rotatives régulièrement espacées autour d'un axe central longitudinal du moteur, précédé éventuellement d’un distributeur dans le cas d’une turbine ou suivie éventuellement d’un redresseur dans le cas d’un compresseur. Les distributeurs et les redresseurs sont constitués d’une série d’ aubes fixes.
La partie arrière d’un tel moteur comprend, en aval de la turbine basse pression, un carter d’échappement qui porte un palier supportant une extrémité arrière de rotor du moteur. Ce carter d’échappement comporte une virole interne et une virole externe et des bras radiaux solidarisant ces viroles l’une à l’ autre, en traversant radialement la veine primaire.
On connaît également les turbomachines d’ aéronef, du type turboréacteur à double flux et à double corps.
Le flux d’ air principal est divisé en flux d’air primaire et en flux d’ air secondaire par un organe de séparation ou bec ou nez séparateur d’ air situé en aval de la soufflante. Le flux d’ air primaire circule dans la veine primaire en pénétrant dans le compresseur basse pression au niveau d’ aubes directrices d’entrée ou « inlet guide vanes », d’ acronyme IGV en termes anglo-saxons. Le flux d’ air secondaire est dévié par le bec séparateur dans la veine secondaire en direction des aubes directrices de sortie ou « outlet guide vanes », d’ acronyme OGV en termes anglo-saxons, puis vers la sortie de la turbomachine. Le bec séparateur est disposé en amont des aubes OGV, sur l’extrémité amont de la plateforme interne de l’ aubage OGV.
Dans le cas où le compresseur basse pression est assimilable à une soufflante, le flux principal est divisé en aval dudit compresseur basse pression et le flux d’ air primaire circule dans la veine primaire en pénétrant dans le compresseur haute pression.
La séparation du flux d’ air principal par le bec de séparation crée une perturbation des flux qui sont ensuite redressés par les aubes respectivement des aubes directrices d’entrée ou de sortie. Toutefois, le redressement du flux d’ air secondaire par les OGV est particulièrement complexe et nécessite d’ augmenter le nombre de pales.
Ainsi, il existe un besoin d’ améliorer la séparation du flux d’ air principal et ainsi de simplifier la géométrie des pales de l’ aubage à aubes directrices de sortie OGV. Exposé de l’invention
La présente invention a donc pour but de pallier les inconvénients des systèmes précités et de proposer un organe de redressement du profil aérodynamique du flux d’ air secondaire en amont des aubes directrices de sortie OGV. L’invention a donc pour objet une turbomachine, d’ axe longitudinal comprenant une soufflante délivrant un flux d’ air principal et un organe de séparation ou bec séparateur configuré pour séparer ledit flux d’air en un flux d’ air primaire circulant dans une veine interne et en un flux d’ air secondaire circulant dans une veine externe, la veine externe comprenant au moins un aubage comprenant une pluralité d’ aubes directrices de sortie ou « outlet guide vanes », d’ acronyme OGV en termes anglo-saxons configurées pour redresser le flux secondaire en un flux secondaire redressé.
L’organe de séparation comprend un organe de redressement disposé en amont de l’ aubage et configuré pour redresser le flux d’air secondaire en amont dudit aubage.
L’ obtention d’un flux d’ air secondaire homogène en amont de l’ aubage OGV permet de simplifier la géométrie et le nombre des pales dudit aubage. Avantageusement, l’ organe de séparation comprend une base solidaire de l’extrémité amont de la plateforme interne ou pied de l’aubage, l’ organe de redressement étant solidaire de ladite base.
Selon un mode de réalisation, l’ organe de redressement comprend au moins une ailette de redressement axial fixe solidaire de l’organe de séparation et en saillie radiale dudit organe vers l’extérieur.
L’ ailette de redressement axial permet d’ orienter axialement le flux secondaire de séparation et de le redresser en amont de l’ aubage OGV. Par exemple, l’ ailette de redressement axial s’étend axialement depuis une extrémité amont de l’ organe de séparation vers l’aubage.
L’ ailette de redressement axial est fixée à l’ organe de séparation, notamment à la base, par son extrémité interne.
L’ailette de redressement axial peut présenter un profil courbé le long de l’ axe longitudinal du flux d’écoulement d’ air de la turbomachine.
Selon un mode de réalisation, l’ organe de redressement comprend une pluralité d’ ailettes de redressement axial.
Avantageusement, les ailettes de redressement axial sont espacées l’une de l’ autre pour délimiter un canal d’écoulement entre deux ailettes de redressement axial adjacentes.
Selon un mode de réalisation, l’ organe de redressement comprend une ailette de redressement radial solidaire de l’extrémité externe de l’ ailette de redressement axial, opposée à l’extrémité interne solidaire de l’organe de séparation.
L’ ailette de redressement radial permet de redresser radialement le flux d’ air secondaire et ainsi d’ améliorer le maintien du flux d’ air secondaire de séparation redressé par les ailettes de redressement axial le long de la plateforme interne de l’aubage OGV. Avantageusement, l’ ailette de redressement radial présente la forme d’une plaque fine s’étendant sur toute la longueur axiale de l’ ailette de redressement axial.
L’ ailette de redressement radial est solidaire de l’extrémité externe des ailettes de redressement axial. Selon un mode de réalisation, la turbomachine comprend au moins un deuxième aubage disposé dans la veine interne et comprenant une pluralité d’ aubes directrices d’entrée ou « inlet guide vanes », d’ acronyme IGV en termes anglo-saxons configurées pour redresser le flux primaire en un flux primaire redressé. Par exemple, la turbomachine comprend, dans la veine interne, un compresseur basse pression, un compresseur haute pression, une chambre annulaire de combustion, une turbine haute pression et une turbine basse pression. Brève description des dessins
D'autres buts, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante, donnée uniquement à titre d'exemple non limitatif, et faite en référence aux dessins indexés sur lesquels : [Fig 1] illustre schématiquement une demi-coupe axiale d’une structure d'un exemple d’une turbomachine situant l’emplacement d’un organe de séparation du flux d’ air principal en flux d’ air primaire et en flux d’ air secondaire ;
[Fig 2] illustre en détails l’ organe de séparation du flux d’ air de la figure 1 comprenant un organe de redressement du flux d’ air secondaire selon un premier mode de réalisation de l’invention ;
[Fig 3] est une vue de dessus de l’ organe de séparation du flux d’ air de la figure 2 ;
[Fig 4] est une vue de face de l’organe de séparation du flux d’ air de la figure 2 ; et
[Fig 5] est une vue de face de l’organe de séparation du flux d’ air de la figure 2 comprenant un organe de redressement du flux d’ air secondaire selon un deuxième mode de réalisation de l’invention.
Dans la suite de la description, les termes « amont » et « aval » sont définis par rapport au sens de circulation de l’ air dans la turbomachine. Les termes « interne » et « externe » sont définis par rapport à l’ axe longitudinal de la turbomachine, le terme interne définissant un élément plus proche dudit axe qu’un élément externe.
Exposé détaillé d’au moins un mode de réalisation Sur la figure 1 est représentée très schématiquement une demi- coupe axiale d’une turbomachine 10, d’ axe général longitudinal X-X’ , par exemple de type turboréacteur à double flux et double corps comprenant une soufflante 11 , accouplée à un moteur à turbine à gaz comportant un compresseur basse pression 12, un compresseur haute pression 13, une chambre annulaire de combustion 14, une turbine haute pression 15 et une turbine basse pression 16.
Les rotors du compresseur haute pression et de la turbine haute pression sont reliés par un arbre haute pression (HP) (non représenté) et forment avec lui un corps haute pression. Les rotors du compresseur basse pression et de la turbine basse pression sont reliés par un arbre basse pression (BP) (non représenté) et forment avec lui un corps basse pression. Les arbres HP et BP s'étendent suivant un axe longitudinal X- X’ de la turbomachine 10. L'arbre de soufflante est lié en rotation à l'arbre BP directement ou indirectement.
On notera que l’invention n’est pas limitée à une telle structure de turbomachine et pourrait s’ appliquer à une turbomachine de structure différente, par exemple à une turbomachine de type turboréacteur à double flux, dans laquelle le compresseur basse pression fait office de soufflante.
En aval de la soufflante 11 , le flux d’ air principal F est séparé par un organe de séparation ou bec ou nez séparateur 20 en un flux d’ air primaire Fl et en un flux d’air secondaire F2. Fe flux d’ air primaire Fl parcourt un passage interne ou veine primaire VI en pénétrant dans le compresseur basse pression 12 au niveau d’ aubes directrices d’entrée 17 ou « inlet guide vanes », d’ acronyme IGV en termes anglo-saxons.
Fe flux d’ air principal dévié par le bec séparateur 20 forme un flux d’air de séparation F2 circulant avec le flux d’air secondaire F2’ de la soufflante dans un passage annulaire externe ou veine secondaire VE en direction d’ aubes directrices de sortie 18 ou « outlet guide vanes », d’ acronyme OGV en termes anglo-saxons, puis vers la sortie de la turbomachine. Fes aubes OGV sont fixes et permettent de redresser le flux d’ air froid en aval de la soufflante afin d’ optimiser le rendement de la turbomachine. En d’ autres termes, le flux d’ air de séparation F2 et le flux d’ air secondaire F2’ de la soufflante sont redressés par les aubes OGV 18 en un flux secondaire redressé F2” .
Fa séparation du flux d’ air principal F est illustrée en détails en référence à la figure 2.
Le bec séparateur 20 comprend une base 22 solidaire de l’extrémité amont du pied 18a de l’ aubage OGV 18 et un organe 30 de redressement du flux d’ air secondaire de séparation F2 en amont de l’ aubage OGV 18.
De manière générale, l’ organe de redressement 30 est disposé en amont d’ aubes directrices situées en zone froide.
Tel qu’illustré sur les figures 3 et 4, l’organe de redressement 30 comprend une pluralité d’ ailettes de redressement axial fixes 32 solidaires de la base 22 du bec séparateur 20 et en saillie radiale vers l’extérieur. Les ailettes de redressement axial 32 s’étendent axialement depuis l’extrémité amont 22a de la base 22 du bec séparateur 20 vers l’aubage OGV 18. Les ailettes de redressement axial 32 sont fixées à la base 22 par leur extrémité interne 32a. Les ailettes de redressement axial 32 sont espacées l’une de l’ autre pour délimiter un canal d’écoulement 34 entre deux ailettes de redressement axial adjacentes 32. Tel qu’illustré, les ailettes de redressement axial sont régulièrement espacées sur la largeur de la base 22 du bec séparateur 20. Les ailettes de redressement axial 32 ont un profil courbé le long de l’ axe axial X-X’ du flux d’écoulement d’ air de la turbomachine.
Les ailettes de redressement axial 32 permettent d’ orienter le flux secondaire de séparation F2 et de le redresser en amont de l’ aubage OGV 18. L’écoulement du flux d’ air secondaire de séparation F2 redressé axialement par les ailettes de redressement axial 32 est ainsi maintenu le long de la plateforme inférieure 18a de l’ aubage OGV 18.
L’ aubage OGV 18 permet ensuite de redresser l’ensemble du flux d’ air de séparation F2 et du flux d’ air secondaire F2’ de la soufflante en un flux secondaire redressé F2” .
L’ obtention d’un flux d’ air secondaire homogène en amont de l’aubage OGV 18 permet de simplifier la géométrie et le nombre des pales dudit aubage.
Le mode de réalisation illustré sur la figure 5, dans lequel les mêmes éléments ont les mêmes références, diffère du mode de réalisation illustré sur la figure 4 uniquement par le fait que l’organe de redressement 30 comprend une ailette de redressement radial 36 solidaire de l’extrémité externe 32b des ailettes de redressement axial 32, opposée à l’extrémité interne 32a solidaire de la base 22. L’ ailette de redressement radial 36 présente la forme d’une plaque fine s’étendant sur toute la longueur axiale des ailettes de redressement axial 32.
L’ ailette de redressement radiale 36 permet d’ améliorer le maintien du flux d’ air secondaire de séparation F2 redressé par les ailettes de redressement axial 32 le long de la plateforme interne 18a de l’ aubage OGV 18.
Grâce à l’ organe de redressement du flux d’ air selon l’invention, les perturbations en aval de la séparation du flux d’ air principal sont minimisées.

Claims

REVENDICATIONS
1. Turbomachine (10) d’ axe longitudinal (X-X’ ) comprenant :
- une soufflante (1 1) délivrant un flux d’ air principal (F) ; et un organe de séparation (20) configuré pour séparer ledit flux d’ air (F) en un flux d’air primaire (Fl) circulant dans une veine interne (VI) et un flux d’ air secondaire (F2) circulant dans une veine externe (VE), la veine externe (VE) comprenant au moins un aubage ( 18) comprenant une pluralité d’ aubes directrices de sortie configurées pour redresser le flux secondaire (F2) en un flux secondaire redressé (F2” ), l’organe de séparation (20) comprenant un organe de redressement (30) disposé en amont de l’ aubage (18) et configuré pour redresser le flux d’ air secondaire (F2) en amont dudit aubage (18), ledit organe de redressement (30) comprenant au moins une ailette de redressement axial fixe (32) solidaire de l’ organe de séparation (20) et en saillie radiale dudit organe (20) vers l’extérieur, caractérisé en ce que l’organe de redressement (30) comprend une ailette de redressement radial (36) solidaire de l’extrémité externe (32b) de l’ailette de redressement axial (32), opposée à l’extrémité interne (32a) solidaire de l’ organe de séparation (20).
2. Turbomachine (10) selon la revendication 1 , dans laquelle l’organe de séparation (20) comprend une base (22) solidaire de l’extrémité amont de la plateforme interne ( 18a) de l’ aubage (18), l’ organe de redressement (30) étant solidaire de ladite base (22).
3. Turbomachine ( 10) selon la revendication 1 ou 2, dans laquelle l’ ailette de redressement axial (32) s’étend axialement depuis une extrémité amont (22a) de l’organe de séparation (20) vers l’ aubage (18).
4. Turbomachine (10) selon l’une quelconque des revendications précédentes, dans laquelle l’ ailette de redressement axial (32) présente un profil courbé le long de l’ axe longitudinal (X-X’ ) du flux d’écoulement d’ air de la turbomachine.
5. Turbomachine (10) selon l’une quelconque des revendications 1 à 4, dans laquelle l’ organe de redressement (30) comprend une pluralité d’ ailettes de redressement axial (32).
6. Turbomachine (10) selon la revendication 5, dans laquelle les ailettes de redressement axial (32) sont espacées l’une de l’ autre pour délimiter un canal d’écoulement (34) entre deux ailettes de redressement axial adjacentes (32).
7. Turbomachine (10) selon l’une quelconque des revendications précédentes, dans laquelle l’ ailette de redressement radial (36) s’étend sur toute la longueur axiale de l’ ailette de redressement axial (32) .
8. Turbomachine (10) selon la revendication 7, dans laquelle l’ ailette de redressement radial (36) est solidaire de l’extrémité externe (32b) des ailettes de redressement axial (32).
9. Turbomachine (10) selon l’une quelconque des revendications précédentes, comprenant au moins un aubage (17) disposé dans la veine interne (VI) et comprenant une pluralité d’ aubes directrices d’entrée configurées pour redresser le flux primaire (Fl ) en un flux primaire redressé (Fl ’).
10. Turbomachine (10) selon l’une quelconque des revendications précédentes, comprenant, dans la veine interne (VI), un compresseur basse pression ( 12), un compresseur haute pression (13), une chambre annulaire de combustion (14), une turbine haute pression (15) et une turbine basse pression ( 16).
PCT/FR2021/050995 2020-06-12 2021-06-02 Turbomachine comprenant un organe de séparation d'un flux d'air et un organe de redressement du flux d'air séparé WO2021250339A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2006152A FR3111394B1 (fr) 2020-06-12 2020-06-12 Turbomachine comprenant un organe de séparation d’un flux d’air et un organe de redressement du flux d’air séparé.
FR2006152 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021250339A1 true WO2021250339A1 (fr) 2021-12-16

Family

ID=72266565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/050995 WO2021250339A1 (fr) 2020-06-12 2021-06-02 Turbomachine comprenant un organe de séparation d'un flux d'air et un organe de redressement du flux d'air séparé

Country Status (2)

Country Link
FR (1) FR3111394B1 (fr)
WO (1) WO2021250339A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075194A1 (fr) * 2007-12-27 2009-07-01 Techspace Aero Echangeur de chaleur air-huile disposé à l'emplacement du bec séparateur d'air d'un turboréacteur et turboréacteur comprenant un tel échangeur de chaleur air-huile
EP2339123A1 (fr) * 2009-12-23 2011-06-29 Techspace Aero S.A. Paroi intérieure annulaire de la veine secondaire d'un turboréacteur et procédé d'assemblage d'une telle paroi
FR2989734A1 (fr) * 2012-04-24 2013-10-25 Snecma Turboreacteur incorporant des generateurs thermoelectriques
EP3070317A1 (fr) * 2015-03-20 2016-09-21 Techspace Aero S.A. Refroidissement de turbomachine par évaporation
FR3059735A1 (fr) * 2016-12-05 2018-06-08 Safran Aircraft Engines Piece de turbomachine a surface non-axisymetrique

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075194A1 (fr) * 2007-12-27 2009-07-01 Techspace Aero Echangeur de chaleur air-huile disposé à l'emplacement du bec séparateur d'air d'un turboréacteur et turboréacteur comprenant un tel échangeur de chaleur air-huile
EP2339123A1 (fr) * 2009-12-23 2011-06-29 Techspace Aero S.A. Paroi intérieure annulaire de la veine secondaire d'un turboréacteur et procédé d'assemblage d'une telle paroi
FR2989734A1 (fr) * 2012-04-24 2013-10-25 Snecma Turboreacteur incorporant des generateurs thermoelectriques
EP3070317A1 (fr) * 2015-03-20 2016-09-21 Techspace Aero S.A. Refroidissement de turbomachine par évaporation
FR3059735A1 (fr) * 2016-12-05 2018-06-08 Safran Aircraft Engines Piece de turbomachine a surface non-axisymetrique

Also Published As

Publication number Publication date
FR3111394B1 (fr) 2022-07-22
FR3111394A1 (fr) 2021-12-17

Similar Documents

Publication Publication Date Title
FR3027053B1 (fr) Stator de turbomachine d'aeronef
US20120272663A1 (en) Centrifugal compressor assembly with stator vane row
FR3051219B1 (fr) Aube de turbomachine, telle par exemple qu'un turboreacteur ou un turbopropulseur d'avion
US20210239132A1 (en) Variable-cycle compressor with a splittered rotor
FR3016956A1 (fr) Echangeur de chaleur d'une turbomachine
FR3130896A1 (fr) Turbomachine d’aéronef
FR3130897A1 (fr) Turbomachine d’aéronef
WO2023118706A1 (fr) Sous-ensemble de turbomachine comportant un col de cygne a configuration amelioree et turbomachine comportant un tel sous-ensemble
FR3081185A1 (fr) Element de stator de turbomachine
FR2961565A1 (fr) Couplage aerodynamique entre deux rangees annulaires d'aubes fixes dans une turbomachine
FR3111393A1 (fr) Turbomachine comprenant un organe de séparation d’un flux d’air amovible
WO2021250339A1 (fr) Turbomachine comprenant un organe de séparation d'un flux d'air et un organe de redressement du flux d'air séparé
CA3024433A1 (fr) Mat d'un ensemble propulsif
EP3722559B1 (fr) Turbomachine pour un aéronef
FR3092135A1 (fr) Turbomachine, telle qu’un turboreacteur d’avion
FR2688271A1 (fr) Moteur de propulsion, notamment pour avion supersonique.
BE1028097B1 (fr) Aube de compresseur de turbomachine, compresseur et turbomachine munis de celle-ci
BE1029619B1 (fr) Système pour refroidir de l'huile dans une turbomachine d'aéronef
FR2568938A1 (fr) Aube de stator
WO2024018049A1 (fr) Ensemble pour turbomachine
FR3099518A1 (fr) Ensemble redresseur pour un compresseur de turbomachine
FR2674909A1 (fr) Stator de compresseur de turbomachine a aubes demontables.
FR3116299A1 (fr) Compresseur de turbomachine
EP4374056A1 (fr) Système pour refroidir de l'huile dans une turbomachine d'aéronef
WO2023021258A1 (fr) Pièce statorique d'une turbomachine comprenant une pale et une ailette définissant entre elles une surface décroissante d'amont en aval selon le sens d'écoulement des gaz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21734432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21734432

Country of ref document: EP

Kind code of ref document: A1